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Abstract: We introduce and study a 2-parameter family of unitarily invariant probability
measures on the space of infinite Hermitian matrices. We show that the decomposition of
a measure from this family on ergodic components is described by a determinantal point
process on the real line. The correlation kernel for this process is explicitly computed.

At certain values of parameters the kernel turns into the well-known sine kernel
which describes the local correlation in Circular and Gaussian Unitary Ensembles. Thus,
the random point configuration of the sine process is interpreted as the random set of
“eigenvalues” of infinite Hermitian matrices distributed according to the corresponding
measure.
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Introduction

We first introduce some basic notions, and then describe the main results of the paper.

Random point configurations and correlation functions. Let X be a locally compact
space. Alocally finite point configuration in X is a finite or countably infinite collection
of points inX, also calledparticles, such that any compact set contains finitely many
particles. The ordering of the particles is unessential. For the sake of brevity, we will omit
the adjective “locally finite”. Apoint process onX is a probability measure on the space
Conf(X) of point configurations. Given a point process, we can speak about therandom
point configuration. Thenth correlation measure of a point process (n = 1,2, . . . ) is a
symmetric measureρn onXn, which is determined by the relation

〈ρn, F 〉 = E

(∑
F(x1, . . . , xn)

)
, (0.1)

whereF is a compactly supported test function onXn, E is the symbol of expectation,
and the summation is taken over all orderedn-tuples of particles chosen from the random
point configuration. Thenth correlation function is the density ofρn with respect to the
nth power of a certain reference measure onX. Usually, the reference measure is the
Lebesgue measure. The first correlation function is also called thedensity function. See
[Len], [DVJ, Ch. 5]1, [So].

The Dyson circular unitary ensemble. Let T ⊂ C be the unit circle andTN/S(N) be
the set of orbits of the symmetric groupS(N) of degreeN acting on the torusTN , where
N = 1,2, . . . Consider the following probability measure onT

N/S(N):

const·
∏

1≤j<k≤N
|uj − uk|2

N∏
j=1

dϕj , uj = e2πiϕj ∈ T , ϕj ∈ [−1
2,

1
2], (0.2)

where const is the normalizing factor,i = √−1. This measure defines a point process
onX = T living on theN -point configurations, which is called theN th Dyson circular
unitary ensemble or simply the Dyson ensemble for short. Note that the Dyson ensemble
is invariant under rotations ofT.

Let U(N) be the group ofN × N unitary matrices. Consider the natural projection
U(N) → T

N/S(N) assigning to a matrixU ∈ U(N) the collection of its eigenvalues.
Note that the fibers of this projection are exactly the conjugacy classes of the groupU(N).
The measure (0.2) coincides with the pushforward of the normalized Haar measure on
U(N) under this projection. In other terms, (0.2) is theradial part of the Haar measure.
It follows that the Dyson ensemble is formed by spectra of random unitary matrices
U ∈ U(N) distributed according to the Haar measure. See [Dys,Me].

1 In the book [DVJ] the correlation measures are called the “factorial moment measures”.
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The sine process. This is a translationally invariant point process onX = R. Its corre-
lation functions (with respect to the Lebesgue measure onR) are given by

ρn(y1, . . . , yn) = det

[
sin(π(yj − yk))

π(yj − yk)

]n
j,k=1

, n = 1,2, . . . , y1, . . . , yn ∈ R.

(0.3)
The functionsin(π(y−y′))

π(y−y′) onR× R is called thesine kernel.
The correlation functions of the sine process can be obtained from the correlation

functions of theN th Dyson ensemble by the following scaling limit asN → ∞. Fix
an arbitrary pointu0 ∈ T and rescale the angular coordinateϕ about the pointu0 by
writing u = u0e

2πiy/N . Then, for any fixedn, thenth correlation function of theN th

Dyson ensemble, expressed in terms of they-variables, converges, asN → ∞, to the
function (0.3). See [Dys,Me].

A substitute of the Haar measure. A natural question is whether the sine process can
be interpreted as a radial part of an infinite–dimensional analog of the Haar measure. In
this paper we suggest such an interpretation.

It is convenient to pass from unitary matrices to Hermitian matrices. LetH(N) be
the linear space ofN ×N complex Hermitian matrices. Consider the Cayley transform

H(N) � X �→ U = i −X

i +X
∈ U(N), N = 1,2, . . . . (0.4)

The map (0.4) is one-to-one, and the complement of its image inU(N) is a negligible
set. Thus, we can transfer the normalized Haar measure fromU(N) toH(N). The result
has the following form:

const·det(1+X2)−N × (the Lebesgue measure). (0.5)

LetH be the space of all infinite Hermitian matricesX = [Xjk]∞j,k=1. A remarkable
fact is that the measures (0.5) with different values ofN are consistent with natural
projectionsH(N) → H(N − 1) and, therefore, determine a probability measurem on
H . We viewm as a substitute of the Haar measure onU(N) for N = ∞.

Ergodic measures. Assume that we have a group acting on a Borel space. An invariant
probability Borel measure is calledergodic if any invariant mod 0 set has measure 0
or 1. Ergodic measures coincide with extreme points of the convex set of all invari-
ant probability measures, see [Ph]. For continuous actions of compact groups ergodic
measures are exactly orbital measures, i.e., invariant probability measures supported by
orbits. According to the general philosophy of the ergodic theory, the concept of ergodic
measure is a right generalization of that of orbital measure.

We are interested in a special situation when the space isH and the group is an
infinite–dimensional versionU(∞) of the groupsU(N). By definition,U(∞) is the
union of the groupsU(N). Its elements are infinite unitary matrices[Ujk]∞j,k=1 with
finitely many entriesUjk not equal toδjk. The groupU(∞) acts on the spaceH by
conjugations.
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Consider the space� whose elementsω are given by 2 infinite sequences

α+1 ≥ α+2 ≥ · · · ≥ 0, α−1 ≥ α−2 ≥ · · · ≥ 0, where
∞∑
j=1

(α+j )
2 +

∞∑
j=1

(α−j )
2 <∞,

(0.6)
and 2 extra real parametersγ1, γ2, whereγ2 ≥ 0.

It is known that the ergodic measures onH can be parametrized by the pointsω ∈ �.
We consider� as a substitute of the spaceT

N/S(N) for N = ∞.
Let us explain the asymptotic meaning of the parametersα±j , γ1, γ2. According to

a general result, each ergodic measureM on H can be approximated by a sequence
{M(N) | N = 1,2, . . . }, whereM(N) is an orbital measure onH(N) with respect to the
action ofU(N) by conjugations. Any such measureM(N) is specified by a collection
λ(N) of eigenvalues. Then the parameters ofω describe the asymptotic behavior ofλ(N)

asN →∞:

λ(N) = (λ
(N)
1 ≥ · · · ≥ λ

(N)
N ) ∼ (Nα+1 , Nα+2 , . . . ,−Nα−2 ,−Nα−1 ),

λ
(N)
1 + · · · + λ

(N)
N

N
→ γ1,

(λ
(N)
1 )2 + · · · + (λ

(N)
N )2

N2 → γ2 + (α+1 )
2 + (α+2 )

2 + · · · + (α−1 )
2 + (α−2 )

2 + . . . .

(0.7)
For more details, see [Pi2,OV], and references therein.

From spectral measures to point processes. It can be proved that anyU(∞)-invariant
probability measure onH can be decomposed on ergodic components. I.e., it can be
written as a continual convex combination of ergodic measures. This decomposition is
unique, we call it thespectral decomposition. It is determined by a probability measure
on�, which we call thespectral measure of the initial invariant measure.

We map the space� to the space Conf(R∗) of point configurations on the punctured
real lineR

∗ = R \ {0} as follows:

� � ω = ({α+j }, {α−j }, γ1, γ2) �→ C = (−α−1 ,−α−2 , . . . , α+2 , α+1 ) ∈ Conf(R∗),
(0.8)

where we omit possible zeros among the numbersα±j . The map (0.8) transforms any
spectral measure (which is a probability measure on�) to a point process onR∗. This
makes it possible to describe spectral measures in terms of the correlation functions.
However, the map (0.8) ignores the parametersγ1, γ2.

Note that each configurationC ∈ Conf(R∗) of the form (0.8) is contained in a
sufficiently large interval|x| ≤ const. It follows thatC−1 (the image ofC under the
inversion mapx �→ 1/x) is a well-defined configuration on the whole lineR.

An interpretation of the sine process. Applying the procedure described above to the
measurem onH we prove the following result.

Theorem I. Let P be the spectral measure of the U(∞)-invariant measure m and let P
be the corresponding point process on R

∗. Then the point process on R obtained from
P under the transform x �→ y = − 1

πx
coincides with the sine process.
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A simple explanation of this result follows from the comparison of two approximation
procedures: that for the correlation functions of the sine process and that for the ergodic
measures. Indeed, the eigenvalues in (0.7) grow linearly inN , so that we rescale them
according to the ruleλ = Nx. Under the Cayley transformu = i−λ

i+λ the scaling takes
the form

u = i −Nx

i +Nx
= −1+ 2i

Nx
+O

(
1

N2

)
= (−1)e2πiy/N +O

(
1

N2

)
, y = − 1

πx
,

(0.9)
which means that the variabley is consistent with the scaling of the Dyson ensemble
near the pointu0 = −1.

Thus, the statement of Theorem I is not surprising. However, the justification of the
formal limit transition made on the level of correlation functions requires certain efforts.

Note also that dividing the eigenvaluesλ ∈ R byN corresponds in terms ofu = i−λ
i+λ

to the fractional–linear transformation ofT of the form

u �→ (N + 1)u+ (N − 1)

(N − 1)u+ (N + 1)
. (0.10)

This transformation has two fixed points,+1 and−1. Near the point−1 it looks like
the expansion by the factor ofN while near the point+1 it looks like the contraction by
the factor ofN . Using (0.10) as a scaling transformation one can define a scaling limit
for the correlation functions of the Dyson ensembles staying on the circleT.

Theorem I is complemented by

Theorem II. The spectral measure P of the measure m is concentrated on the subset
{ω ∈ � | γ2 = 0}.

Thus, the parameterγ2 (which is ignored by the map (0.8)) is actually irrelevant
for the measurem. In a certain sense, this means that the measurem does not involve
Gaussian components (see Sect. 4 about the connection of the parameterγ2 with Gaussian
measures).

A generalization: The main result. Let s ∈ C, �s > −1
2, be a parameter. Consider the

following probability measure onTN/S(N):

const·
∏

1≤j<k≤N
|uj − uk|2

N∏
j=1

(1+ uj )
s̄(1+ ūj )

sdϕj ,

uj = e2πiϕj ∈ T , ϕj ∈ [−1
2,

1
2].

(0.11)

Whens = 0, we get (0.2). Thus, this is a deformation of the measure (0.2) depending on
two real parameters,�s and�s. The measure (0.11) is the radial part of the probability
measure onU(N) of the form

const·det((1+ U)s̄)det((1+ U−1)s)× (the Haar measure onU(N)). (0.12)

Transferring the measure (0.12) from the groupU(N) to the spaceH(N) by means of the
Cayley transform (0.4) we get the following measure onH(N), which is a deformation
of the measure (0.5):

const·det((1+ iX)−s−N)det((1− iX)−s̄−N)× (the Lebesgue measure onH(N)).

(0.13)
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Whens is real, the expression (0.13) takes a simpler form:

const·det((1+X2)−s−N)× (the Lebesgue measure onH(N)),

s ∈ R, s > −1
2 .

(0.14)

Again, it turns out that the measures (0.13) are consistent with the projections
H(N) → H(N − 1), and they determine aU(∞)-invariant probability measure on
the spaceH . We denote it bym(s). Note thatm(0) = m.

To our knowledge, the finite–dimensional measures (0.14) were first studied by Hua.
He calculated the normalizing constant factor in (0.14) using a recurrence relation inN ,
and his argument proves the consistency property (although he did not state it explicitly),
see [Hua, Theorem 2.1.5]. Much later Pickrell [Pi1] considered analogs of the measures
(0.12) and (0.13) (with reals), which live on complex Grassmannians and on the spaces
of all complex matrices, respectively. He proved the consistency property and considered
the analogs of the measuresm(s) on the space of all complex matrices of infinite order.
His paper also contains a few other important ideas and results. Apparently, Pickrell
was unaware of Hua’s work. Note also Shimomura’s paper [Shim], where an analog of
the measurem(0) for the infinite-dimensional orthogonal group was constructed (more
general measures depending on a parameter are not discussed in [Shim]). The possibility
of introducing a complex parameter (in the case of Hermitian matrices) was discovered
by Neretin [Ner2]. He also examined further generalizations of the measuresm(s).

We propose to call the measuresm(s) theHua–Pickrell measures.

Theorem III. The Hua–Pickrell measures m(s) on H are pairwise disjoint. I.e., for any
two different values s′, s′′ of the parameter there exist two disjoint Borel subsets in H

supporting m(s′) and m(s′′), respectively.

The next claim is the main result of the paper.

Theorem IV. Let P (s) be the spectral measure of a Hua–Pickrell measure m(s). The
corresponding point process P(s) on R

∗ can be described in terms of its correlation
functions. They have the determinantal form

ρ(s)n (x1, . . . , xn) = det[K(s)(xj , xk)]nj,k=1 , (0.15)

where K(s)(x, x′) is a certain kernel on R
∗ × R

∗ which can be expressed through the
confluent hypergeometric function or, for real values of s, through the Bessel function.

We give explicit expressions for the kernel in Theorem 2.1 below. As in Theorem I,
one can use the transformationC �→ C−1 to pass fromR

∗ to R.

Pseudo-Jacobi polynomials. The proof of Theorem IV, similarly to that of Theorem
I, consists of three steps: the calculation of the correlation functions for the finite–
dimensional measures (0.13), the scaling limit transition asN →∞, and a justification.
However, the first step is more involved comparing to the Dyson ensemble. We show
that the correlation functions are expressed through the Christoffel–Darboux kernel for
the so-called pseudo-Jacobi polynomials. This family of orthogonal polynomials, which
is not widely known, has interesting features. It is defined by a weight function onR

with only finitely many moments, so that the system of orthogonal polynomials is finite.
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Organization of the paper. In Sect. 1 we introduce the pseudo-Jacobi ensemble and ob-
tain its correlation functions. In Sect. 2 we compute the scaling limit of these correlation
functions as the number of particles goes to infinity. The limit correlation functions are
given by a determinantal formula and we write down the correlation kernel explicitly.
In Sect. 3 we define the Hua–Pickrell measuresm(s) and show that they are pairwise
disjoint. Section 4 provides a brief summary of known results about the ergodicU(∞)-
invariant probability measures onH . In Sect. 5 we show that the spectral measure for any
U(∞)-invariant probability measureM onH can be approximated by finite-dimensional
projections ofM. Section 6 contains the proof of our main result (Theorem IV above). In
Sect. 7 we prove that the sine process has no Gaussian component (Theorem II above).
Section 8 contains remarks concerning the connections of our work with other subjects
as well as several open problems. Section 9 is an appendix where we prove the existence
and uniqueness of the decomposition ofU(∞)-invariant probability measures onH on
ergodic measures.

1. The Pseudo-Jacobi Ensemble

In this section we define the pseudo-Jacobi ensemble and compute its correlation func-
tions.

Consider the radial part of the Haar measure onU(N) which determines the Dyson
ensemble, see (0.2). Under the inverse Cayley transformT → R which takesu ∈ T

to x = i 1−u
1+u ∈ R, the measure (0.2) turns into the following measure onR

N/S(N) =
ConfN(R), the set ofN -point configurations onR:

const
∏

1≤j<k≤N
(xj − xk)

2 ·
N∏
j=1

(1+ x2
j )
−Ndxj . (1.1)

More generally, lets be a complex parameter.We introduce the following deformation
of the measure (1.1) depending ons:

const
∏

1≤j<k≤N
(xj − xk)

2 ·
N∏
j=1

(1+ ixj )
−s−N(1− ixj )

−s̄−Ndxj

= const
∏

1≤j<k≤N
(xj − xk)

2 ·
N∏
j=1

(1+ x2
j )
−�s−Ne2�s Arg(1+ixj )dxj .

(1.2)

Here we assume that the function Arg(. . . ) takes values in(−π, π) (actually, Arg(1+
ixj ) ∈ (−π

2 ,
π
2 )).

Proposition 1.1. The measure (1.2) is finite provided that �s > −1
2 .

Proof. This follows from the estimate

(1+ x2)−�s−Ne2�s Arg(1+ix) � |x|−2�s−2N, x ∈ R, |x| � 0, (1.3)

and the fact that the expansion of
∏

1≤j<k≤N(xj − xk)
2 involves only monomials of

degree less then or equal to 2N − 2 in each variable.  !
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Henceforth we assume the condition�s > −1
2 to be satisfied, and we choose the

normalizing constant in (1.2) in such a way that (1.2) defines a probability measure.
About the case�s ≤ −1

2 see Sect. 8 below.
Note that (1.2) corresponds, via the Cayley transform, to the measure (0.11).
For real values of the parameters the expression (1.2) takes a simpler form

const
∏

1≤j<k≤N
(xj − xk)

2 ·
N∏
j=1

(1+ x2
j )
−s−N, s ∈ R.

Our aim is to compute the correlation functions of the measure (1.2). We remark that
(1.2) is an orthogonal polynomial ensemble (see [Me,NW]) corresponding to the weight
function

φ(x) = (1+ix)−s−N(1−ix)−s̄−N = (1+x2)−�s−Ne2�s Arg(1+ix), x ∈ R. (1.4)

We call it theN th pseudo-Jacobi ensemble. The reason why we use this term is explained
below. For reals, this ensemble was also considered in [WF] where it was called the
unitary Cauchy ensemble. The reason is that for reals, the weight function (1.4) is
proportional to the density of the classical Cauchy distribution. For generalities about
orthogonal polynomial ensembles, see, e.g., [Me,NW].

Let p0 ≡ 1,p1,p2, . . . denote the monic orthogonal polynomials onR associated
with the weight function (1.4). Since for anys, φ(x) has only finitely many moments,
this system of orthogonal polynomials is finite. Specifically, it follows from (1.3) that
the polynomialpm(x) exists ifm < �s +N − 1

2.
According to a well-known general principle (see, e.g., [Me]), the correlation func-

tions in question are given by determinantal formulas involving the Christoffel–Darboux
kernel

N−1∑
m=0

pm(x
′)pm(x

′′)
‖pm‖2 . (1.5)

By the assumption�s > −1
2, the polynomials up to the orderm = N − 1 exist, so that

this kernel is well-defined.
The orthogonal polynomialspm are known. They were introduced byV. Romanovski

in 1929, see [Ro], and studied by R. Askey [A] and P. A. Lesky [Les1, §5], [Les2, §1.4].
Following P. A. Lesky we call thempseudo-Jacobi polynomials, which explains our
choice of the name for the ensemble (1.2).

Let

2F1

[
a, b

c

∣∣∣∣z] = ∞∑
n=0

a(a + a) . . . (a + n− 1) · b(b + 1) . . . (b + n− 1)

c(c + 1) . . . (c + n− 1) · n! zn

denote the Gauss hypergeometric function.

Proposition 1.2. Let m < �s + n − 1
2 , so that the mth monic orthogonal polynomial

pm with the weight function (1.4)exists. Then it is given by the explicit formula

pm(x) = (x − i)m2F1

[−m, s +N −m

2�s + 2N − 2m

∣∣∣∣ 2

1+ ix

]
(1.6)
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and its norm is given by

‖pm(x)‖2 =
∫ ∞

−∞
p2
m(x)φ(x)dx

= π 2−2�s

22(N−m−1)
,

[
2�s + 2(N−m)−1, 2�s + 2(N−m), m+1
s +N −m, s̄ +N −m, 2�s + 2N −m

]
, (1.7)

where we use the notation

,

[
a, b, . . .

c, d, . . .

]
= ,(a),(b) . . .

,(c),(d) . . .
.

Proof. These formulas can be extracted from [A], [Les1, §5], [Les2, §1.4]. Another
way to get them is to use a general method described in [NU]. This method works for
any orthogonal polynomials of hypergeometric type and allows to compute all the data
starting from the differential equation. In our case the differential equation has the form

−(1+ x2)p′′m+2(−�s+ (�s+N −1)x)p′m+m(m+1−2�s−2N)pm = 0. (1.8)

 !
Note the symmetry property

pm(−x) = (−1)mpm(x) |s↔s̄ . (1.9)

It follows from the symmetry of the weight function

φ(−x) = φ(x) |s↔s̄

and can be verified directly from the expression (1.6).
To compute the Christoffel–Darboux kernel we will use the classical formula

N−1∑
m=0

pm(x
′)pm(x

′′)
‖pm‖2 = 1

‖pN−1‖2

pN(x
′)pN−1(x

′′)− pN−1(x
′)pN(x

′′)
x′ − x′′

. (1.10)

If the parameters satisfies the stronger condition�s > 1
2 then the polynomialpN(x)

exists and the formula holds. Since all the terms in the left-hand side depend analyti-
cally on s and s̄, we can use the formula fors with 1

2 ≥ �s > −1
2 as well with the

understanding that the kernel is obtained by analytic continuation ins ands̄ viewed as
independent variables (or, equivalently, by analytic continuation in the variabless and
s + s̄).

Note that the trick with analytic continuation is actually needed only for the values
of s on the vertical line�s = 0, because a singularity in the expression (1.6) form = N

arises for�s = 0 only.
The next lemma makes it possible to get an alternative expression for the Christoffel–

Darboux kernel. The advantage of this new formula is that all its terms have no singu-
larities in the whole region�s > −1

2.
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Lemma 1.3. Set

p̃N(x) = pN(x)−
2iNs

2�s(2�s + 1)
pN−1(x). (1.11)

This polynomial, initially defined for �s > 1
2 , makes sense for �s > −1

2 , as follows
from the explicit formula:

p̃N(x) = (x − i)N2F1

[ −N, s

2�s + 1

∣∣∣∣ 2

1+ ix

]
. (1.12)

Proof. Indeed, using the power series expansion of the hypergeometric function it is
readily verified that the following general relation holds:

2F1

[
a, b

c

∣∣∣∣ z ] = 2F1

[
a, b

c + 1

∣∣∣∣ z ]+ abz

c(c + 1)
2F1

[
a + 1, b + 1

c + 2

∣∣∣∣ z ] . (1.13)

From (1.13) and (1.6) we easily get (1.12). !
We summarize the above results in the following

Theorem 1.4. The correlation functions of the N th pseudo-Jacobi ensemble (1.2)have
the form

ρ(s,N)
n (x1, . . . , xn) = det[K(s,N)(xi, xj )]ni,j=1 (1.14)

with a kernel K(s,N)(x′, x′′) defined on R× R.
This kernel is given by the formulas

K(s,N)(x′, x′′) = 22�s

π
,

[
2�s +N + 1, s + 1, s̄ + 1
N, 2�s + 1, 2�s + 2

]
× pN(x

′)pN−1(x
′′)− pN−1(x

′)pN(x
′′)

x′ − x′′
√
φ(x′)φ(x′′) (1.15)

or, equivalently,

K(s,N)(x′, x′′) = 22�s

π
,

[
2�s +N + 1, s + 1, s̄ + 1
N, 2�s + 1, 2�s + 2

]
× p̃N(x

′)pN−1(x
′′)− pN−1(x

′)p̃N(x
′′)

x′ − x′′
√
φ(x′)φ(x′′), (1.16)

where

φ(x) = (1+ ix)−s−N(1− ix)−s̄−N = (1+ x2)−�s−Ne2�s Arg(1+ix), x ∈ R, (1.17)

and

pN(x) = (x − i)N 2F1

[−N, s

2�s
∣∣∣∣ 2

1+ ix

]
, (1.18)

pN−1(x) = (x − i)N−1
2F1

[−N + 1, s + 1
2�s + 2

∣∣∣∣ 2

1+ ix

]
, (1.19)

p̃N(x) = (x − i)N2F1

[ −N, s

2�s + 1

∣∣∣∣ 2

1+ ix

]
. (1.20)
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Note that the expression (1.15) is directly applicable when the parameters does not
lie on the line�s = 0 while the expression (1.16) makes sense for anys with�s > −1

2.

Proof. A standard argument from the Random Matrix Theory, see, e.g., [Me] shows that
the correlation functions are given by the determinantal formula (1.14), where the kernel
is equal to the Christoffel–Darboux kernel (1.5) multiplied by the factor

√
φ(x′)φ(x′′).

Together with (1.6), (1.7), (1.10) this leads to the expression (1.15) for the kernel. The
alternative formula (1.16) then follows from Lemma 1.3. !
Remark 1.5. For s = 0 the polynomialpN can be defined by taking the limit ass → 0
along the real line. Taking the limit in the hypergeometric series it is easy to get the
following expression:

pN(x) |s=0= (x + i)N + (x − i)N

2
.

Likewise, we get

pN−1(x) |s=0= (x + i)N − (x − i)N

2iN
.

It follows that the Christoffel–Darboux kernel (1.10) is an elementary expression. This
agrees with the fact that fors = 0 our ensemble is related (via the Cayley transform) to
the Dyson ensemble.

2. The Scaling Limit of the Correlation Functions

In this section we compute the scaling limit of the correlation functions of the pseudo-
Jacobi ensemble as the number of particles goes to infinity.The limit correlation functions
have a determinantal form, and we express the correlation kernel through the confluent
hypergeometric function.

Recall the definition of the confluent hypergeometric function:

1F1

[
a

c

∣∣∣∣ z] = ∞∑
n=0

a(a + 1) . . . (a + n− 1)

c(c + 1) . . . (c + n− 1) · n! z
n ,

see, e.g., [Er, 6.1].
Let us rescale the correlation functionsρ

(s,N)
n of the pseudo-Jacobi ensemble (see

(1.14)) by setting

ρ(s,N)
n (x1, . . . , xn) = Nn · ρ(s,N)

n (Nx1, . . . , Nxn).

Note that the factorNn comes from the transformation of the reference (Lebesgue)
measuredx1 . . . dxn. We will assume that the variables range over the punctured real
line R

∗, not the whole lineR, as before.

Theorem 2.1. Let �s > −1
2 , as before. For any n = 1,2, . . . and x1, . . . , xn ∈ R

∗

there exists a limit of the scaled nth correlation functions ρ(s,N)
n as N →∞:

lim
N→∞ ρ(s,N)

n (x1, . . . , xn) = det
[
K(s,∞)(xi, xj )

]
1≤i,j≤n .
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Here the kernel K(s,∞)(x′, x′′) on R
∗ × R

∗ is as follows:

K(s,∞)(x′, x′′) = 1

2π
,

[
s + 1, s̄ + 1

2�s + 1, 2�s + 2

]
P(x′)Q(x′′)−Q(x′)P (x′′)

x′ − x′′
,

P (x) =
∣∣∣∣2

x

∣∣∣∣�s e−i/x+π�s·sgn(x)/2
1F1

[
s

2�s
∣∣∣∣ 2i

x

]
,

Q(x) = 2

x

∣∣∣∣2

x

∣∣∣∣�s e−i/x+π�s·sgn(x)/2
1F1

[
s + 1

2�s + 2

∣∣∣∣ 2i

x

]
.

(2.1)

Or, equivalently,

K(s,∞)(x′, x′′) = 1

2π
,

[
s + 1, s̄ + 1

2�s + 1, 2�s + 2

]
P̃ (x′)Q(x′′)−Q(x′)P̃ (x′′)

x′ − x′′
,

P̃ (x) =
∣∣∣∣2

x

∣∣∣∣�s e−i/x+π�s·sgn(x)/2
1F1

[
s

2�s + 1

∣∣∣∣ 2i

x

]
.

(2.2)

The limit is uniform provided that the variables x1, . . . , xn range over any compact
subset of R

∗.

Comments. 1. As in Theorem 1.4, the formula (2.1) is directly applicable provided that
s does not lie on the line�s = 0, while the formula (2.2) holds for anys with�s > −1

2.
2. The kernelK(s,∞)(x′, x′′) can be expressed through the M-Whittaker functions,

see [Er, 6.9] for the definition. Namely,

P(x) = e−
iπ s̄ sgn(x)

2 M−i�s,�s− 1
2

(
2i

x

)
, Q(x) = e−

iπ(s̄+1) sgn(x)
2 M−i�s,�s+ 1

2

(
2i

x

)
.

(2.3)
3. The symmetry property (1.9) of the pseudo-Jacobi polynomials implies that

P(−x) = P(x) |s↔s̄ , Q(−x) = −Q(x) |s↔s̄ , (2.4)

which can also be verified directly from (2.3) using the formula [Er, 6.9(7)]:

Mκ,µ(t) = e
iεπ

(
µ+ 1

2

)
M−κ,µ(−t), ε =

{
1, �t > 0,
−1, �t < 0.

It follows that the correlation kernelK(s,∞)(x′, x′′) remains invariant whenx′, x′′, s are
replaced by−x′,−x′′, s̄ (there is one more change of sign in the denominator(x′−x′′)).

4. Formula (2.4) implies that the functionsP(x) andQ(x) are real–valued, which
agrees with the fact that the pseudo-Jacobi polynomials have real coefficients. Hence,
the kernelK(s,∞)(x′, x′′) is real symmetric.

5. Whens is real, the confluent hypergeometric function1F1 turns into the Bessel
function, and the expressions forP andQ can be written as follows:

P(x) = 22s−1/2,(s + 1/2)|x|−1/2Js−1/2

(
1

|x|
)
,

Q(x) = sgn(x)22s+1/2,(s + 3/2)|x|−1/2Js+1/2

(
1

|x|
)
.
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6. For s = 0 the Bessel functions with indices±1
2 degenerate to trigonometric

functions, and we get

P(x) |s=0= cos( 1
x
), Q(x) |s=0= 2 sin( 1

x
),

K(0,∞)(x′, x′′) = 1

π

sin( 1
x′′ − 1

x′ )

x′ − x′′
.

Changing the variable,y = 1
πx

, and taking into account the corresponding transforma-
tion of the differentialdx we get the sine kernel, in accordance with (0.9).

Proof of Theorem 2.1. We will show that

lim
N→∞(sgn(x′) sgn(x′′))NN ·K(s,N)(Nx′, Nx′′) = K(s,∞)(x′, x′′), x′, x′′ ∈ R

∗,

uniformly on compact sets inR∗. Note that the factor(sgn(x′) sgn(x′′))N does not affect
the determinantal formula.

We start with the formula (1.15). First of all, we remark that

,(2�s +N + 1)

,(N)
∼ N2�s+1,

which easily follows from the Stirling formula.
Next, we will examine the asymptotics of

pN(Nx)
√
φ(Nx), pN−1(Nx)

√
φ(Nx), N →∞.

Here we will assume thatx is not a real but a complex variable ranging in a neighborhood
of a pointx0 ∈ R

∗. This will allow us to overcome the difficulty related to the singularity
x′ −x′′ = 0 in the denominator of (1.15) by making use of the Cauchy integral formula.

The asymptotics of the hypergeometric functions entering the formulas (1.18) and
(1.19) are as follows:

lim
N→∞ 2F1

[−N, s

2�s
∣∣∣∣ 2

1+ iNx

]
= 1F1

[
s

2�s
∣∣∣∣ 2i

x

]
,

lim
N→∞ 2F1

[−N + 1, s + 1
2�s + 2

∣∣∣∣ 2

1+ iNx

]
= 1F1

[
s + 1

2�s + 2

∣∣∣∣ 2i

x

]
.

Indeed, this is a special case of the well-known limit relation

lim|a|→∞ 2F1

[
a, b

c

∣∣∣∣ za
]
= 1F1

[
b

c

∣∣∣∣ z] , z ∈ C.

This can be readily verified using the integral representation of the hypergeometric
function written in the form

2F1

[
a, b

c

∣∣∣∣ za
]
= ,(c)

〈
tb−1+
,(b)

(1− t)c−b−1+
,(c − b)

,
1

(1− tz/a)a

〉
,

where the brackets denote the pairing between a generalized function (which in the
present case is supported by[0,1]) and a test function, andt is the argument of both
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functions. Note that the limit is uniform provided thatz ranges over a bounded subset
of C.

The asymptotics of the remaining terms look as follows:

lim
N→∞(±1)N(Nx − i)N

√
φ(Nx) ∼ N−�s(±x)−�se−i/xe±π�s ,

where± is the sign of�x and the limit is uniform on compact subsets in the open right
or left half-plane. Indeed, assume�x > 0. In the transformations below any expression
of the form zc with c ∈ C is understood as a holomorphic function in the domain
C \ (−∞,0]. We have

(Nx − i)N
√
φ(Nx) = (Nx − i)N (1+ iNx)−(s+N)/2(1− iNx)−(s̄+N)/2

= (Nx)N(iNx)−(s+N)/2(−iNx)−(s̄+N)/2

×
(

1− i

Nx

)N (
1+ 1

iNx

)−(s+N)/2 (
1− 1

iNx

)−(s̄+N)/2

= N−�sx−�s i−(s+N)/2(−i)−(s̄+N)/2

×
(

1− i

Nx

)N (
1+ 1

iNx

)−(s+N)/2 (
1− 1

iNx

)−(s̄+N)/2

∼ N−�sx−�seπ�se−i/x .

For�x < 0 the argument is similar.
Combining all these asymptotics we get the desired result. !

3. The Hua–Pickrell Measures

In this section we define the Hua–Pickrell measures. They form a 2-parameter family of
U(∞)-invariant probability measures on the space of infinite Hermitian matrices.

Let H(N) denote the real vector space formed by complex HermitianN × N ma-
trices,N = 1,2, . . . Let H stand for the space of all infinite Hermitian matrices
X = [Xi,j ]∞i,j=1. ForX ∈ H andN = 1,2, . . . , we denote byθN(X) ∈ H(N) the
upper leftN ×N corner ofX. Using the projectionsθN H → H(N),N = 1,2, . . . , we
may identifyH with the projective limit space lim←−H(N). We equipH with the corre-
sponding projective limit topology. We will also use the Borel structure onH generated
by this topology.

Let U(N) be the group of unitaryN × N matrices,N = 1,2, . . . For anyN , we

embedU(N) into U(N + 1) using the mappingu �→
[
u 0
0 1

]
. LetU(∞) = lim−→U(N)

denote the corresponding inductive limit group. We regardU(∞) as the group of infinite
unitary matricesU = [Uij ]∞i,j=1 with finitely many entriesUij '= δij . The groupU(∞)

acts on the spaceH by conjugations.

Proposition 3.1. For any s ∈ C, �s > −1
2 , there exists a probability Borel measure

m(s) on H , characterized by the following property: for any N = 1,2, . . . , the image of
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m(s) under the projection θN is the probability measure m(s,N) on H(N) defined by

m(s,N)(dX) = (constN)
−1 det((1+ iX)−s−N)det((1− iX)−s̄−N)

×
N∏
j=1

dXjj

∏
1≤j<k≤N

d(�Xjk)d(�Xjk),

where constN =
N∏
j=1

πj,(s + s̄ + j)

2s+s̄+2j−2,(s + j),(s̄ + j)
.

(3.1)

The measure m(s) is invariant under the action of U(∞).

Comments. 1. ForX ∈ H(N) andz ∈ C we define the matrix(1± iX)z by means of
the functional calculus. This makes the expression

fN(X) = det((1+ iX)−s−N)det((1− iX)−s̄−N), X ∈ H(N)

meaningful. Equivalently, denoting byx1, . . . , xN the eigenvalues ofX,

fN(X) =
N∏
j=1

(1+ ixj )
−s−N(1− ixj )

−s̄−N , (3.2)

where we use the analytic continuation of the function(. . . )z from the positive axis to
the regionC \ (−∞,0].

2. Whens is real, the expression (3.2) takes a simpler form

fN(X) = (det(1+X2))−s−N , X ∈ H(N), s ∈ R.

Proof. Step 1. First of all, note thatfN(X) ≥ 0. Therefore, iffN is integrable then it
defines a finite measure onH(N).

Fix N ≥ 2 and write an arbitrary matrixX ∈ H(N) in the block form

X =
[
Y ξ

ξ∗ t

]
, Y ∈ H(N − 1), ξ ∈ C

N−1, t ∈ R.

We will prove that for anyY ∈ H(N − 1) the integral offN overξ, t is finite and it is
equal to

∫
(ξ,t)∈CN−1×R

fN

([
Y ξ

ξ∗ t

])
·

N∏
j=1

d(�ξj )d(�ξj ) · dt

= fN−1(Y ) · πN,(s + s̄ +N)

2s+s̄+2N−2,(s +N),(s̄ +N)
. (3.3)

ForN = 1,Y andt disappear, and the claim is that the integral off1 overR is finite
and it is given by∫

t∈R

f1(t)dt =
∫ ∞

−∞
(1+ it)−s−1(1− it)−s̄−1dt = π,(s + s̄ + 1)

2s+s̄,(s + 1),(s̄ + 1)
. (3.4)
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Let us show (3.3) and (3.4) imply the proposition. Indeed, using induction onN we
see that the integral offN overH(N) is finite and equals constN . Thus, the measure
m(s,N) is correctly defined for anyN .

Next, (3.3) implies that the measuresm(s,N) andm(s,N−1) are consistent with the
projectionX �→ Y from H(N) to H(N − 1). 2 SinceH coincides with the projective
limit of the spacesH(N) asN →∞, we conclude that the measurem(s) exists and is
unique.

Finally,m(s) is invariant under the action ofU(∞), because eachm(s,N) is invariant
under the action ofU(N) for all N = 1,2, . . .

Step 2. We proceed to the proof of (3.3) and (3.4). The latter formula follows from
formula (3.9) in Lemma 3.3 below.The former formula is proved in [Hua,Theorem 2.1.5]
for reals, and we employ his argument with slight modifications. Applying Lemma 3.2
(see below) we get

fN(X) = det((1+ iY )−s−N)(1+ it + ξ∗(1+ iY )−1ξ)−s−N

× det((1− iY )−s̄−N)(1− it + ξ∗(1− iY )−1ξ)−s̄−N . (3.5)

Next, note that the integral (3.3) is invariant under the conjugation ofY by a matrix
V ∈ U(N − 1). Indeed to see this, we use the invariance of the functionfN and make
a change of a variable,V ξ �→ ξ . Therefore, without loss of generality we may assume
thatY is a diagonal matrix. Denoting its diagonal entries (which are real numbers) as
y1, . . . , yN−1 and using (3.5) we reduce the integral (3.3) to

N−1∏
j=1

(1+ iyj )
−s−N(1− iyj )

−s̄−N

×
∫
(ξ,t)∈CN−1×R

1+
N−1∑
j=1

|ξj |2
1+ y2

j

+ i

t −
N−1∑
j=1

|ξj |2yj
1+ y2

j

−s−N

×
1+

N−1∑
j=1

|ξj |2
1+ y2

j

− i

t −
N−1∑
j=1

|ξj |2yj
1+ y2

j

−s̄−N
N∏
j=1

d(�ξj )d(�ξj ) · dt. (3.6)

This integral is easily simplified. First, assuming that the variablesξ1, . . . , ξN−1 are
fixed, we make a change of variable

t −
N−1∑
j=1

|ξj |2yj
1+ y2

j

�→ t.

Next, we change the variablesξj ,

ξj√
1+ y2

j

�→ ξj , j = 1, . . . , N − 1,

2 For reals, this fact was discovered by Hua Loo–Keng [Hua]. As we learnt from Peter Forrester, it was
also discussed in the physics literature, see [Br].
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which gives rise to the factor
∏
(1+ yj )

2. Then (3.6) is reduced to

N−1∏
j=1

(1+ iyj )
−s−N+1(1− iyj )

−s̄−N+1 ·
∫
(ξ,t)∈CN−1×R

1+
N−1∑
j=1

|ξj |2 + it

−s−N

×
1+

N−1∑
j=1

|ξj |2 − it

−s̄−N
N∏
j=1

d(�ξj )d(�ξj ) · dt. (3.7)

Settingr = ∑ |ξj |2 we readily reduce (3.7) to

N−1∏
j=1

(1+ iyj )
−s−N+1(1− iyj )

−s̄−N+1

· πN−1

,(N − 1)

∫
r≥0

∫
t∈R

(1+ r + it)−s−N(1+ r − it)−s̄−NrN−2drdt.

By Lemma 3.3, the double integral is finite and its value is given by (3.9), where we
substitutea = s + N , b = s̄ + N (the assumption of Lemma 3.3 is satisfied because
�s > −1

2). This implies (3.3).  !
We proceed to the proof of two lemmas which were used in Proposition 3.1.

Lemma 3.2. Consider the N ×N matrix analog of the right halfplane in C:

Mat(N,C)+ = {A ∈ Mat(N,C) | A+ A∗ > 0}.
Write N ×N matrices in the block form according to a partition N = N1 +N2,

A =
[
A11 A12
A21 A22

]
.

Then for z ∈ C and A ∈ Mat(N,C)+ the following relation holds

det(Az) = det(Az
11)det((A22− A21A

−1
11A12)

z). (3.8)

Proof. First of all, we show that both sides in (3.8) make sense. Note that ifA ∈
Mat(N,C)+ then any eigenvalueλ of A lies in the open right halfplane (indeed, if
ξ ∈ C

N is an eigenvector with the eigenvalueλ then 0< ((A+A∗)ξ, ξ) = 2�λ(ξ, ξ),
which implies�λ > 0). Therefore, we can define the matrixAz by means of the
functional calculus. Next, note that the matricesA11 andA22−A21A

−1
11A12 also belong

to the matrix right halfplanes. Indeed, for the former matrix this is evident, and for the
latter matrix this follows from the fact thatA−1 ∈ Mat(N,C)+ and

A22− A21A
−1
11A12 = ((A−1)22)

−1.

Thus, the expressions(. . . )z in the right-hand side of (3.8) are well-defined.
Since both sides of (3.8) are holomorphic functions inA in the connected region

Mat(N,C)+, we may assume, without loss of generality, thatA lies in a small neigh-
borhood of the matrix 1. Then we may interchange the symbol of determinant and
exponentiation. This reduces (3.8) to the classical formula for the determinant of a block
matrix,

detA = detA11 · det(A22− A21A
−1
11A12),

see, e.g. [Ga, Ch. II, §5.3]. !
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Lemma 3.3. We have

πN−1

,(N − 1)

∫
r≥0

∫
t∈R

(1+ r + it)−a(1+ r − it)−brN−2drdt

= πN,(a + b −N)

2a+b−2,(a),(b)
, a, b ∈ C, �(a + b) > N, N > 1, (3.9)

and∫
t∈R

(1+ it)−a(1− it)−bdt = π,(a + b − 1)

2a+b−2,(a),(b)
, a, b ∈ C, �(a + b) > 1.

(3.10)

Proof. The integral (3.10) is readily reduced to a known integral, see [Er, 1.5 (30)].
To evaluate the integral (3.9), we make a change of variable,t �→ (1 + r)t . The

integral splits into a product of two integrals, one of which is (3.10) and the other one is
the integral ∫

r≥0
(1+ r)−a−b+1 rN−2

,(N − 1)
dr = ,(a + b −N)

,(a + b − 1)
.

This proves (3.9).
Note also that (3.10) is a degeneration of (3.9), becauserN−2+ /,(N−1) degenerates

to the delta functionδ(r) atN = 1.  !
Let C+ denote the right halfplane. Following Neretin [Ner2] we define a map

H � X = [Xjk]∞j,k=1 �→ (ζ1, ζ2, . . . ) ∈ R× C
∞+ (3.11)

as follows. For anyN = 2,3, . . . , write the matrixθN(X) = [Xjk]Nj,k=1 in the block
form

θN(X) =
[
θN−1(X) ξ

ξ∗ t

]
and then set

ζN = it + ξ∗(1+ iθN−1)
−1ξ ∈ C+.

Finally, setζ1 = X11 ∈ R.

Proposition 3.4. The pushforward of the measurem(s) under the map (3.11)is a product
measure µ1 × µ2 × . . . on the space R × C

∞+ . Here µ1, µ2, . . . are the following
probability measures:

µ1(dt) = 2s+s̄,(s + 1),(s̄ + 1)

π,(s + s̄ + 1)
(1+ it)−s−1(1− it)−s̄−1dt

and, for N ≥ 2, ζ = r + it ∈ C+,

µN(dζ ) = 2s+s̄+2N−2,(s +N),(s̄ +N)

π,(s + s̄ +N)
(1+ ζ )−s−N(1+ ζ̄ )−s̄−N rN−2

,(N − 1)
drdt.

(3.12)

Proof. This follows from the proof of Proposition 3.1. !
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Theorem 3.5. The Hua–Pickrell measures m(s) are pairwise disjoint. I.e., if s′, s′′ are
two distinct values of the parameter s then there exist two disjoint Borel sets in H

supporting the measures m(s′) and m(s′′), respectively.

Proof. We will apply Kakutani’s theorem [Ka].Assume first we are given two probability
measures,µ′ andµ′′, defined on the same Borel space. Take any measureν such that both
µ′ andµ′′ are absolutely continuous with respect toν. For instance,ν = µ′+µ′′. Denote

byµ′/ν andµ′′/ν the respective Radon-Nikodym derivatives. The measure
√

µ′
ν

µ′′
ν
· ν

does not depend on the choice ofν. Denote it by
√
µ′µ′′ and set

〈µ′, µ′′〉 =
∫ √

µ′µ′′.

We have 0≤ 〈µ′, µ′′〉 ≤ 1. Moreover,〈µ′, µ′′〉 = 1 is equivalent toµ′ = µ′′ while
〈µ′, µ′′〉 = 0 exactly means thatµ′ andµ′′ are disjoint.

Next, assumeµ′ = µ′1 × µ′2 × . . . andµ′′ = µ′′1 × µ′′2 × . . . are two product
probability measures defined on the same countably infinite product space. Kakutani’s
theorem [Ka] says thatµ′ andµ′′ are disjoint if the infinite product

∏∞
N=1〈µ′N,µ′′N 〉 is

divergent, i.e., the partial products tend to 0.
Finally, consider the product spaceR×C

∞+ and take asµ′ andµ′′ the pushforwards
of measuresm(s′) andm(s′′), respectively, as explained in Proposition 3.4. We prove that
µ′ andµ′′ are disjoint. Then this immediately implies that the initial measuresm(s′) and
m(s′′) are disjoint.

We omit the valueN = 1 which plays a special role and calculate the integral defining
〈µ′N,µ′′N 〉 for N ≥ 2. By (3.12) and (3.9) we get

〈µ′N,µ′′N 〉 =
√
,(s′ +N),(s′ +N),(s′′ +N),(s′′ +N)

,(s′ + s′ +N),(s′′ + s′′ +N)

,(s + s̄ +N)

,(s +N),(s̄ +N)
,

s = s′ + s′′

2
.

The classical asymptotic formula for the ratio of two,-functions, see [Er, 1.18(4)],
implies that

,(z+N),(z̄+N)

,(z+ z̄+N),(N)
∼ 1− zz̄

N
+O

(
1

N2

)
.

It follows that

〈µ′N,µ′′N 〉 ∼ 1− |s′ − s′′|2
4N

+O

(
1

N2

)
.

Thus, the product of〈µ′N,µ′′N 〉’s is divergent.  !

4. Ergodic Measures

In this section we recall the classification theorem and some other known results on
U(∞)-invariant ergodic probability measures on the space of infinite Hermitian matri-
ces.
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Consider the natural embeddings

H(N)→ H(N + 1), A �→
[
A 0
0 0

]
,

and denote byH(∞) the corresponding inductive limit space lim−→H(N). ThenH(∞)

is identified with the space of infinite Hermitian matrices with finitely many nonzero
entries. We equipH(∞) with the inductive limit topology. In particular, a function
f : H(∞)→ C is continuous if its restriction toH(N) is continuous for anyN .

There is a natural pairing

H(∞)×H → R, (A,X) �→ tr(AX).

H is the algebraic dual space ofH(∞) with respect to this pairing.
Using the map

H � X �→ {Xii}∞i=1 ! {�Xij ,�Xij }i<j
we can identifyH , as a topological vector space, with the infinite product spaceR

∞ =
R × R × · · · . Under this identification,H(∞) ⊂ H turns intoR

∞
0 := ⋃

n≥1 R
n, and

the pairing defined above turns into the standard pairing betweenR
∞
0 andR

∞.
Given a Borel probability measureM on H , we define its Fourier transform, or

characteristic function, as the following function onH(∞):

A �→
∫
H

ei tr(AX)M(dX). (4.1)

The groupU(∞) acts by conjugations both onH(∞) andH , and the pairing between
these two spaces is, clearly,U(∞)-invariant. Each matrix fromH(∞) can be brought by
a conjugation to a diagonal matrix diag(r1, r2, . . . ) with finitely many nonzero entries.
It follows that the Fourier transform of aU(∞)-invariant measure onH is uniquely
determined by its values on the diagonal matrices fromH(∞).

Set

� = {ω = (α+, α−, γ1, δ) ∈ R
2∞+2 = R

∞ × R
∞ × R× R |

α+ = (α+1 ≥ α+2 ≥ · · · ≥ 0), α− = (α−1 ≥ α−2 ≥ · · · ≥ 0),

γ1 ∈ R, δ ≥ 0,
∑

(α+i )
2 +

∑
(α−i )

2 ≤ δ}.
This is a closed subset ofR

2∞+2.
Denote

γ2 = δ −
∑

(α+i )
2 −

∑
(α−i )

2 ≥ 0.

In this notation we have

Proposition 4.1. There exists a parametrization of ergodic U(∞)-invariant probability
measures on the space H by the points of the space �. Given ω, the Fourier transform
(4.1)of the corresponding ergodic measure Mω is given by∫

X∈H
ei tr(diag(r1,...,rn,0,0,... ) X)Mω(dX)

=
n∏

j=1

{
e
iγ1rj−γ2r

2
j

∞∏
k=1

e−iα
+
k rj

1− iα+k rj

∞∏
k=1

eiα
−
k rj

1+ iα−k rj

}
.
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Proof. See [Pi2, Proposition 5.9] and [OV, Theorem 2.9]. !
Remark 4.2. If only one of the parametersα±i , γ1, γ2 is distinct from 0 then the corre-
sponding ergodic measure is calledelementary.A description of the elementary measures
can be found in [OV, Corollaries 2.5–2.7]. Note, in particular, that the elementary mea-
sures corresponding to the parameterγ2 are standard Gaussian measures onH , see [OV,
Corollary 2.6]. Since the expression of Proposition 4.1 is multiplicative with respect
to the coordinates ofω, any ergodic measure is a convolution product of elementary
ergodic measures.

ForN = 1,2, . . . , let SN ⊂ R
N denote the set ofN -tuples of weakly decreasing

real numbers
λ = (λ1 ≥ · · · ≥ λN).

Given λ ∈ SN , let Orb(λ) denote the set of matricesX ∈ H(N) with eigenvalues
λ1, . . . , λN . The sets of the form Orb(λ) are exactly theU(N)-orbits inH(N).

Givenλ ∈ SN , we set

a+i (λ) =


max(λi,0)

N
, i = 1, . . . , N,

0, i = N + 1, N + 2, . . . ,

a−i (λ) =


max(−λN+1−i ,0)

N
, i = 1, . . . , N,

0, i = N + 1, N + 2, . . . .

Equivalently, ifk andl denote the numbers of strictly positive terms in{a+i } and{a−i },
respectively then

λ = (a+1 (λ), . . . , a
+
k (λ),0, . . . ,0,−a−l (λ), . . . ,−a−1 (λ)).

Further, we set

c(λ) =
∞∑
i=1

a+i (λ)−
∞∑
i=1

a−i (λ) =
λ1 + · · · + λN

N
,

d(λ) =
∞∑
i=1

(a+i (λ))
2 +

∞∑
i=1

(a−i (λ))
2 = λ2

1 + · · · + λ2
N

N2 .

By virtue of [OV, Theorem 3.3], any ergodic measure can be approximated by or-
bital measures on the spacesH(N) asN → ∞. The next result provides an explicit
description of the approximating orbital measures. It also clarifies the meaning of the
parameters in Proposition 4.1.

Proposition 4.3. Let {Orb(λ(N)) | λ(N) ∈ SN } be a sequence of orbits and let {M(N)} be
the sequence of the corresponding orbital measures on the spacesH(N),N = 1,2, . . . .
We view each M(N) as a measure on H .

The measuresM(N) weakly converge to a measureM onH , i.e., 〈f,M(N)〉 → 〈f,M〉
for any bounded continuous function f on H , if and only if there exist limits

α±i = lim
N→∞ a±i (λ

(N)), i = 1,2, . . . ,

γ1 = lim
N→∞ c(λ(N)),

δ = lim
N→∞ d(λ(N)).
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If this condition holds then the collection ω = ({α+i }, {α−i }, γ1, δ) is a point of � and
the limit measure M coincides with the ergodic measure Mω.

Proof. See [OV, Theorem 4.1].  !
Proposition 4.4. For any U(∞)-invariant probability measure M on H there exists a
probability measure P on � such that

M =
∫
�

MωP (dω),

which means that for any bounded Borel function f on H ,

〈f,M〉 =
∫
�

〈f,Mω〉P(dω). (4.2)

Such measure P is unique. Conversely, any probability measure P on � arises in this
way from a certain measure M .

Proof. This follows from Theorem 9.1 and Proposition 9.4. !
We will call P thespectral measure for M.

5. Approximation of Spectral Measures

In this section we show that the spectral measure for aU(∞)-invariant probability
measureM onH can be obtained as a certain limit of finite–dimensional projections of
M.

For X ∈ H , let λ(N)(X) ∈ SN denote the spectrum of the finite matrixθN(X) ∈
H(N). Let us say thatX ∈ H is regular if there exist limits

α±i (X) = lim
N→∞ a±i (λ

(N)(X)), i = 1,2, . . . ,

γ1(X) = lim
N→∞ c(λ(N)(X)),

δ(X) = lim
N→∞ d(λ(N)(X)).

(5.1)

LetHreg⊂ H denote the subset of regular matrices inH . Sinceλ(N)(X) is a continuous
function inX for anyN , the functionsa±i (λ(N)(X)), c(λ(N)(X)), andd(λ(N)(X)) are
also continuous. It follows thatHreg is a Borel subset ofH (more precisely, a subset of
typeFσδ).

Theorem 5.1. Any U(∞)-invariant probability measure on H is supported by Hreg.

Proof. First, letM be an ergodicU(∞)-invariant probability measure onH . By Ver-
shik’s ergodic theorem (see [OV, Theorem 3.2]),M is concentrated on the set of those
X ∈ H for which the orbital measures Orb(λ(N)(X)) weakly converge toM. By Propo-
sition 4.3, this set consists of exactly thoseX for which the limits (5.1) exist and coincide
with the parameters ofM given in Proposition 4.1.All such matricesX belong toHreg, so
thatM is supported byHreg. Thus, the claim of the theorem holds for ergodic measures.

Now let M be an arbitraryU(∞)-invariant probability measure onH andP be
its spectral measure. Apply (4.2) by taking asf the characteristic function of the set
Hreg ⊂ H . We have〈f,Mω〉 = 1 for anyω ∈ �. SinceP is a probability measure, we
get from (4.2) that〈f,M〉 = 1. Therefore,Hreg is of full measure with respect toM.
 !
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Let π : Hreg → � denote the map sendingX ∈ Hreg to the pointω with the coordi-
nates defined by (5.1). This is a Borel map, because it is a pointwise limit of a sequence
of continuous maps.

Theorem 5.2. Let M be a U(∞)-invariant probability measure on H and let M |Hreg

be the restriction of M to Hreg, which is correctly defined by Theorem 5.1.
The pushforward of the measure M |Hreg under the Borel map π introduced above

coincides with the spectral measure P .

Proof. Let F be an arbitrary bounded Borel function on� andf be its pullback on
Hreg. We must prove that〈f,M〉 = 〈F,P 〉.

By definition ofP , we have

〈f,M〉 =
∫
�

〈f,Mω〉P(dω).

On the other hand, we know that for anyω ∈ �, the measureMω is supported by
π−1(ω) ⊂ Hreg(see the beginning of the proof of Theorem 5.1). Finally, by the definition
of f , we havef |π−1(ω)≡ F(ω), so that〈f,Mω〉 = F(ω).

Therefore, the integral in the right-hand side is equal to〈F,P 〉.  !
ForN = 1,2, . . . , let πN : H → � ⊂ R

2∞+2 denote the composition of the maps
H � X �→ λ(N)(X) ∈ SN andSN � λ �→ ({a+i (λ)}, {a−i (λ)}, c(λ), d(λ)) ∈ �.

Theorem 5.3. Let M be a U(∞)-invariant probability measure on H , P be its spectral
measure, and PN be the pushforward of M under the map πN : H → � defined above.

Then PN weakly converge to P as N → ∞. That is, for any continuous bounded
function F on �,

lim
N→∞

〈F,PN 〉= 〈F,P 〉.

Proof. By Theorem 5.1,Hreg⊂ H is of full measure with respect toM, so that we may
view (Hreg,M) as a probability space.

We have
πN(M) = PN, π(M) = P.

Indeed, the first equality follows from the definition ofPN and the fact thatHreg is
of full measure, and the second equality is given by Theorem 5.2.

Next, by the very definition ofHreg, we haveπN(t) → π(t) for any t ∈ Hreg as
N → ∞, where the limit is taken with respect to the coordinatewise convergence on
the spaceR2∞+2. SinceF is continuous, we getF(πN(t))→ F(π(t)). That is,F ◦πN
converges toF ◦ π at any pointt ∈ Hreg. Since these functions are uniformly bounded,
it follows that ∫

Hreg

(F ◦ πN)(t)M(dt) →
∫
Hreg

(F ◦ π)(t)M(dt).

SinceπN(M) = PN andπ(M) = P ,∫
Hreg

(F ◦ πN)(t)M(dt) = 〈F,PN 〉,
∫
Hreg

(F ◦ π)(t)M(dt) = 〈F,P 〉.

Consequently,〈F,PN 〉 → 〈F,P 〉.  !
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6. The Main Result

Let s ∈ C, �s > −1
2. Consider the Hua–Pickrell measurem(s). LetP (s) be its spectral

measure andP(s) be the corresponding point process onR
∗, see (0.8).

In this section we prove the following theorem which is our main result.

Theorem 6.1. The correlation functions of the process P(s) exist and coincide with the
limit correlation functions from Theorem 2.1.

LetX range overHreg. Recall that in Sect. 5 we attached toX two monotone sequences
{α+i (X)}, {α−i (X)} and also, for anyN = 1,2, . . . , two monotone sequences

{a+i,N (X) = a+i (λ
(N)(X))}, {a−i,N (X) = a−i (λ

(N)(X))}.
From these data we form point configurations

C(X) = {α+i (X)} ! {−α−i (X)}, CN(X) = {a+i,N (X)} ! {−a−i,N (X)},
where we omit the zero coordinates.

LetM be aU(∞)-invariant probability measure onH . We restrictM toHreg, which
is a subset of full measure, and view(Hreg,M) as a probability space. Then any quantity
depending onX becomes a random variable.

Let P be the spectral measure ofM and letPN be the finite–dimensional measures
defined in Theorem 5.3. Recall thatPN ’s approximateP asN →∞.

LetPN andP be the point processes onR
∗ corresponding toPN andP , respectively.

We may viewPN andP as the random point configurationsCN(X) andC(X), whereX
is viewed as the point of the probability space(Hreg,M).

By ρ
(N)
k andρk we denote thekth correlation measures of the processesPN andP,

respectively. Note that the very existence of the measuresρk is not evident.
For a compact setA ⊂ R

∗ we set

NA,N(X) = Card(CN(X) ∩ A), NA(X) = Card(C(X) ∩ A).

These are random variables.
We know that for any fixedX and for any indexi = 1,2, . . . ,a±i,N (X) tends toα±i (X)

asN →∞. We would like to conclude from this thatρ(N)
k converges toρk asN →∞.

The next lemma says that, under a reasonable technical assumption, this is indeed true.

Lemma 6.2. Assume that for any compact setA ⊂ R
∗ there exist uniform inN estimates

E[N l
A,N ] ≤ Cl , l = 1,2, . . . ,

where the symbol E stands for the expectation.
Then for any k = 1,2, . . . , the correlation measure ρk exists and coincides with the

weak limit of the measures ρ(N)
k as N → ∞. The limit is understood in the following

sense: for any continuous compactly supported function F on (R∗)k ,

lim
N→∞〈F, ρ

(N)
k 〉 = 〈F, ρk〉.
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Proof. Fix a continuous compactly supported functionF on(R∗)k. It will be convenient
to assume thatF is nonnegative (this does not mean any loss of generality). Introduce
random variablesf andfN as follows:

f (X) =
∑

x1,...,xk∈C(X)
F (x1, . . . , xk), fN(X) =

∑
x1,...,xk∈CN(X)

F (x1, . . . , xk), (6.1)

where the sums are taken over orderedk-tuples of points with pairwise distinct labels.
Any such sum is actually finite becauseF is compactly supported and the point config-
urations are locally finite.

By the definition of the correlation measures,

〈F, ρk〉 = E[f ], 〈F, ρ(N)
k 〉 = E[fN ].

The correlation measureρk exists ifE[f ] is finite for anyf as above, see, e.g., [Len].
Thus, we have to prove thatE[fN ] → E[f ] <∞ asN →∞. By a general theorem

(see [Shir, Ch. II, §6, Theorem 4]), it suffices to check the following two conditions:
Condition 1. fN(X)→ f (X) for anyX ∈ Hreg.
Condition 2. The random variablesfN are uniformly integrable, that is,

sup
N

∫
{X|fN (X)≥c}

fN(X)M(dX)→ 0, asc →+∞.

Let us check Condition 1. This condition does not depend onM, it is a simple
consequence of the regularity property. Indeed, let us fixX ∈ Hreg. For anyε > 0 set
R
ε = R \ (−ε, ε). Chooseε so small that the functionF is supported by(Rε)k. Fix j

so large thatα±j (X) < ε. Sincea±j,N (X) → α±j (X), we havea±N,j < ε for all N large
enough. By monotonicity, the same inequality holds for the indicesj + 1, j + 2, . . . as
well.

Recall that each pointx ∈ CN(X) has the formx = a+i,N (X) or x = −a−i,N (X)
for a certain indexi. It follows that in the sums (6.1), only the points with indices
i = 1, . . . , j − 1 may really contribute. Then, using the continuity ofF we conclude
thatfN(X)→ f (X).

Let us check Condition 2. Choose a compact setA such thatF is supported byAk.
The supremum ofF (let us denote it by supF ) is finite. We have

fN(X) ≤ supF ·NA,N(X)(NA,N(X)−1) . . . (NA,N(X)−k+1) ≤ supF ·(NA,N(X))
k.

Therefore, the random variablesfN are uniformly integrable provided that this is true
for the random variables(NA,N)

k for any fixedk. But the latter fact follows from the
assumption of the theorem and Chebyshev’s inequality. !

Assume thatPN is a determinantal process given by a symmetric nonnegative integral
operatorKN onR

∗. That is, the correlation functions have determinantal form with the
kernelKN . For a compact setA ⊂ R

∗ we denote byKA,N the restriction of the kernel
KN toA.

Lemma 6.3. Assume that for any compact set A ⊂ R
∗ we have an estimate trKA,N ≤

const, where the constant does not depend on N . Then the assumption of Lemma 6.2 is
satisfied.
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Proof. Instead of ordinary moments we can deal with factorial moments. Givenl =
1,2, . . . , thelth factorial moment ofNA,N is equal to

ρ
(N)
l (Al) =

∫
Al

det[KA,N(xi, xj )]1≤i,j≤l dx1 . . . dxl = l! tr(∧lKA,N).

SinceKA,N is nonnegative, we have

tr(∧lKA,N) ≤ tr(⊗lKA,N) = (tr(KA,N))
l .

This concludes the proof, because we have a uniform bound for the traces by the as-
sumption.  !
Proof of Theorem 6.1. TakeM = m(s) and denote the correlation measureρ

(N)
k by

ρ
(s,N)
k . The latter measure is calculated in Sect. 1: it coincides with a scaling of thekth

correlation functionρ(s,N)
k (x1, . . . , xk) for theN th pseudo-Jacobi ensemble. In terms of

the corresponding correlation functions,

ρ
(s,N)
k (x1, . . . , xk) = Nkρ

(s,N)
k (Nx1, . . . , Nxk), x1, . . . , xk ∈ R

∗.

By Theorem 2.1, for eachk = 1,2, . . . , there exists a limit

lim
N→∞ ρ

(s,N)
k (x1, . . . , xk) = ρ

(s,∞)
k (x1, . . . , xk), (6.2)

uniformly on compact subsets in(R∗)k. Moreover, the correlation functions have de-
terminantal form. It follows that the assumptions of Lemma 6.3 are satisfied (indeed,
trKA,N is simply the integral of the first correlation functionρ(s,N)

1 (x) overA). Con-
sequently, we may apply Lemma 6.2. By this lemma, the correlation measures of the
processP(s) exist and coincide with limits of the measuresρ

(s,N)
k asN →∞. Therefore,

they are nothing else than the measuresρ
(s,∞)
k defined by the limit correlation functions

(6.2).  !

7. Vanishing of the Parameter γ2

In this section we show that the parameterγ2 which is responsible for the presence of
the Gaussian component vanishes for the measurem(0).

We start with a general result concerning an abstractU(∞)-invariant probability
measureM. As in Sect. 6, letPN andP denote the corresponding point processes on
R
∗, and letρ(N)

1 andρ1 be their first correlation measures. We assume thatρ
(N)
1 approach

ρ1, asN →∞, in the sense of Lemma 6.2:

〈G,ρ(N)
1 〉 → 〈G,ρ1〉 for anyG ∈ C0(R

∗), (7.1)

whereC0(R
∗) denotes the space of continuous functions with compact support onR

∗.
In Sect. 6 we verified that the condition (7.1) holds whenM is a Hua–Pickrell measure.



Infinite Random Matrices and Ergodic Measures 113

Proposition 7.1. Let M satisfy the condition (7.1). Further, assume that

lim
ε→0

∫ ε

−ε
x2ρ

(N)
1 (dx) = 0 uniformly in N . (7.2)

Then the spectral measure P of the measure M is concentrated on the subset γ2 = 0
of �.

Comment. The density of the measureρ1 may have a singularity at 0. For instance,
whenM = m(0), the density function is proportional to 1/x2. The condition (7.2) means
that the densities of the measuresρ

(N)
1 , multiplied byx2, are uniformly integrable about

x = 0.

We need a simple lemma.

Lemma 7.2. Assume we are given sequences

a+1,N ≥ a+2,N ≥ · · · ≥ 0, a−1,N ≥ a−2,N ≥ · · · ≥ 0, N = 1,2, . . . ,

such that
lim

N→∞ a±i,N = α±i , i = 1,2, . . .

and

lim
N→∞

∞∑
i=1

((a+i,N )
2 + (a−i,N )

2) = δ < +∞, N = 1,2, . . . .

Further, let F(x) be an arbitrary continuous function on R+ such that

F(x) = x2 for |x| < ε

with a certain ε > 0. Set γ2 = δ −
∞∑
i=1

((α+i )2 + (α−i )2) and note that γ2 ≥ 0.

Then we have

lim
N→∞

∞∑
i=1

(F (a+i,N )+ F(−a−i,N )) =
∞∑
i=1

(F (α+i )+ F(−α−i ))+ γ2.

Proof. Fix k so large thatα+k+1 < ε, α−k+1 < ε. Thena+k+1,N < ε, a−k+1,N < ε for

sufficiently largeN and, moreover,a+i,N < ε, a−i,N < ε for all i ≥ k+1 by monotonicity.

Likewise,α+i < ε, α−i < ε for i ≥ k + 1. Therefore,

F(±a±i,N ) = (a±i,N )
2 (for largeN ), F (±α±i ) = (α±i )

2, i ≥ k + 1.

It follows that

∞∑
i=1

(F (a+i,N )+ F(−a−i,N )) =
k∑

i=1

(F (a+i,N )+ F(−a−i,N ))+
∞∑

i=k+1

((a+i,N )
2 + (a−i,N )

2)

and similarly

∞∑
i=1

(F (α+i )+ F(−α−i )) =
k∑

i=1

(F (α+i )+ F(−α−i ))+
∞∑

i=k+1

((α+i )
2 + (α−i )

2).
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AsN →∞, we have

k∑
i=1

(F (a+i,N )+ F(−a−i,N ))→
k∑

i=1

(F (α+i )+ F(−α−i )),

by continuity ofF , and

∞∑
i=k+1

((a+i,N )
2 + (a−i,N )

2)→
∞∑

i=k+1

((α+i )
2 + (α−i )

2)+ γ2,

by the assumption of the lemma. This conludes the proof. !
Proof of Proposition 7.1. LetX range overHreg. Recall the notationa±i,N (X) andα±i (X)
introduced in Sect. 5 and in the beginning of Sect. 6. Letγ2(X) denote the value of the
parameterγ2 at the pointπ(X) ∈ �, whereπ : Hreg → � is the projection defined
in Sect. 5. Our aim is to prove thatγ2(X) = 0 almost everywhere with respect to the
measureM. This implies the claim of the proposition.

Fix a continuous functionF(x) ≥ 0, with compact support onR and such that
F(x) = x2 near 0. For anyX ∈ Hreg set

ϕN(X) =
∞∑
i=1

(F (a+i,N (X))+ F(−a−i,N (X))),

ϕ∞(X) =
∞∑
i=1

(F (α+i (X))+ F(−α−i (X))).

Applying Lemma 7.2 to the sequencesa±i,N = a±i,N (X) andα±i = α±i (X), we get

ϕN(X)→ ϕ∞(X)+ γ2(X), X ∈ Hreg.

The functionsϕN(X),ϕ∞(X), γ2(X) are all nonnegative Borel functions. By Fatou’s
lemma (see, e.g., [Shir, Ch. II, §6, Theorem 2]),

lim inf
N→∞

∫
t∈Treg

ϕN(X)M(dX) ≥
∫
X∈Hreg

ϕ∞(X)M(dX)+
∫
X∈Hreg

γ2(X)M(dX).

Recall that in the beginning of Sect. 6 we introduced the point configurationsCN(X)
associated with an arbitraryX ∈ Hreg. We have

ϕN(X) =
∞∑
i=1

(F (a+i,N (X))+ F(−a−i,N (X)) =
∑

x∈CN(X)
F (x),

so that ∫
X∈Hreg

ϕN(X)M(dX) = 〈F, ρ(N)
1 〉.

Likewise, ∫
X∈Hreg

ϕ∞(X)M(dX) = 〈F, ρ1〉.
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Therefore,

lim inf
N→∞ 〈F, ρ(N)

1 〉 ≥ 〈F, ρ1〉 +
∫
X∈Hreg

γ2(X)M(dX). (7.3)

On the other hand, we will prove that

lim sup
N→∞

〈F, ρ(N)
1 〉 ≤ 〈F, ρ1〉. (7.4)

It will follow from (7.3) and (7.4) thatγ2(X) = 0 forM-almost allX, becauseγ2(X) ≥ 0.
To prove (7.4) we representF(x), for an arbitraryε > 0, in the form

F(x) = Fε(x)+Gε(x),

where 0≤ Fε(x) ≤ x2, suppFε ⊂ [−ε, ε], Fε(x) = x2 near 0, Gε ∈ C0(R
∗).

Choosingε small enough, we can make〈Fε, ρ(N)
1 〉 arbitrarily small, uniformly inN ,

by virtue of the assumption (7.2). As for〈Gε, ρ
(N)
1 〉, it tends to〈Gε, ρ1〉, by (7.1). This

concludes the proof of Proposition 7.1. !

Theorem 7.3. The spectral measure of the measure m(0) is concentrated on the subset
γ2 = 0 of �.

Proof. By virtue of Proposition 7.1, it suffices to verify the condition (7.2). To do this,
we use the fact that in our case the first correlation functionρ

(N)
1 (x) = ρ

(0,N)
1 (x) has a

very simple expression:

ρ
(0,N)
1 (x) = 1

π

N2

1+N2x2 . (7.5)

The simplest way to check (7.5) is to use the relationship to theN th Dyson ensemble,
where the first correlation function is identically equal toN .

From (7.5) and the trivial estimateN
2x2

1+N2x2 ≤ 1 we readily conclude that the condition
(7.2) is indeed satisfied. !

We expect that Theorem 7.3 holds for any Hua–Pickrell measure.

8. Remarks and Problems

Orthogonal polynomials on the circle. In this paper we deal with the pseudo-Jacobi
ensemble (1.1) defined by the weight function (1.4) on the real line. Instead of this, one
could work with the orthogonal polynomial ensemble (0.11). Then we need orthogonal
polynomials on the unit circleT with the weight function

(1+ u)s̄(1+ ū)s = 2a (1+ cosϕ)a ebϕ,

whereu = eiϕ ∈ T, −π < ϕ < π , s = a + ib.
For reals, the weight function depends only on�u = cosϕ ∈ [−1,1]. Then one can
use a general trick described in [Sz, §11.5]. It allows one to express the polynomials on
T in terms of two families of orthogonal polynomials on the interval[−1,1], which, in
our case, turn out to be certain Jacobi polynomials. This makes it possible to evaluate
the Christoffel–Darboux kernel and then pass to a limit asN → ∞, which leads to
another derivation of Theorem 2.1 (for reals). Perhaps, such an approach can be used
for nonreal values ofs as well.
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Painlevé V. Consider a kernel of the form

K(x′, x′′) = P(x′)Q(x′′)−Q(x′)P (x′′)
x′ − x′′

,

where the functionsP andQ satisfy a differential equation of the form

d

dx

[
P(x)

Q(x)

]
= A(x)

[
P(x)

Q(x)

]
with a traceless rational 2×2 matrix A(x). Let J be a union of intervals inside the
real line. Then the Fredholm determinant det(1 + K|J ) satisfies a certain system of
partial differential equations with the endpoints ofJ regarded as variables, see [TW].
In particular, when only one endpoint is moving the corresponding ordinary differential
equation often happens to be one of the Painlevé equations.

The kernelK(s,∞) introduced in Theorem 2.1 is not an exception. In particular, the
function

σ(t) = t
d ln det

(
1−K(s,∞)|(t−1,+∞)

)
dt

, t > 0,

satisfies aσ -version of the Painlevé V equation:

−(tσ ′′)2 = (2(tσ ′ − σ)+ (σ ′)2 + i(s̄ − s)σ ′)2 − (σ ′)2(σ ′ − 2is)(σ ′ + 2is̄),

see [BD] for details. Note that the approach of [BD] is very different from the machinery
developed in [TW].

Infinite measures. The construction of the Hua–Pickrell measuresm(s),�s > −1
2, given

in Sect. 3 can be extended to arbitrary complex values ofs. However, when�s ≤ −1
2,

m(s) ceases to be a probability measure and becomes an infinite measure. Its pushforward
m(s,N) under the projectionθN : H → H(N) makes sense only for sufficiently large
values ofN . Specifically,N must be strictly greater than−2�s. Then the measure
m(s,N) is defined, within a constant factor not depending onN , by formula (3.1), where
the factor constN is subject to the recurrence relation

constN = constN−1
πN,(s + s̄ +N)

2s+s̄+2N−2,(s +N),(s̄ +N)
.

In other words, even if the measuresm(s,N) are infinite, their projective limitm(s) =
lim←−m(s,N) still exists. The reason is that the fibers of the projectionH(N)→ H(N−1)
have finite mass with respect to the conditional measures provided thatN is large enough.

Problem. Define and study the spectral decomposition of the infinite measures m(s),
�s ≤ −1

2 .
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Representation-theoretic meaning of U(∞)-invariant measures on H . Let G(N) =
U(N) � H(N) be the semidirect product of the groupU(N) acting on the additive
groupH(N) by conjugations. Similarly, set

G = U(∞) � H(∞) = lim−→G(N).

The groupsG(N) are examples of the so-called Cartan motion groups, and the groupG

is an infinite–dimensional version of the groupsG(N).
A unitary representationT of the groupG is calledspherical if it possesses a cyclic

unit vectorξ which is invariant with respect to the subgroupU(∞) ⊂ G. There is a
one-to-one correspondence between the classes of equivalence of the pairs(T , ξ) and
theU(∞)-invariant probability Borel measuresM onH . GivenM, the representation
T can be realized in the Hilbert spaceL2(H,M). ElementsU ∈ U(∞) andA ∈ H(∞)

act on functionsf ∈ L2(H,M) as follows:

(T (U)f )(X) = f (U−1XU), (T (A)f )(X) = ei tr(AX)f (X), X ∈ H.

In this realization,ξ is the constant function 1.
Consider the matrix coefficientϕ(g) = (T (g)ξ, ξ), called thespherical function.

Sinceϕ isU(∞)-biinvariant, the functionϕ |H(∞), the restriction ofϕ to the subgroup
H(∞) ⊂ G, is aU(∞)-invariant positive definite normalized function onH(∞). It
follows thatϕ |H(∞) coincides with the Fourier transform (4.1) of theU(∞)-invariant
probability Borel measureM.

Under the correspondence(T , ξ)↔ M, ergodicity ofM is equivalent to irreducibility
of T . Note also that for an irreducible spherical representationT , the vectorξ is unique
(within a scalar multiple), so that the functionϕ is an invariant ofT .

Thus, irreducible spherical representations of the groupG = U(∞) � H(∞) are
parametrized by ergodic measures onH . For more details about representations of the
groupG, see [Ol2,Pi2].

The graph of spectra. Recall that bySN we denoted the subset ofR
N formed by vectors

λ with weakly decreasing coordinates. Forµ ∈ SN−1 andλ ∈ SN we writeµ ≺ λ if the
coordinates ofλ andµ interlace:

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ µN−1 ≥ λN .

We set

qN−1,N (µ, λ) =


∏
1≤i<j≤N−1

(µi − µj )/
∏

1≤k<l≤N
(λk − λl), if µ ≺ λ,

0, otherwise.

Note that for anyλ ∈ SN ,∫
SN−1

qN−1,N (µ, λ)dµ = 1, dµ = dµ1 . . . dµN−1.

LetM be an arbitraryU(∞)-invariant probability Borel measure andPN be the radial
part of the measureθN(M) (this is a probability measure onSN ). Then the measures
P1, P2, . . . satisfy the following consistency relation:∫

SN

qN−1,N (µ, λ)PN(dλ) = the density ofPN−1 atµ.
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Conversely, if a sequence{PN } of probability measures satisfies the above consistency
relation for each pair of adjacent indices then this sequence comes from a certain measure
M.

Introduce the setT formed by all infinite sequences

τ = (τ (1) ≺ τ (2) ≺ . . . ), τ (N) ∈ SN.

Consider the probability measures̃P on T with the following property: for eachN =
2,3, . . . , the probability thatτ (N−1) lies in an infinitesimal regiondµ about a point
µ ∈ SN−1 provided thatτ (N) = λ, isqN−1,N (µ, λ)dµ.Any such measurẽP is uniquely
determined by a sequence{PN } satisfying the consistency relations. Thus, the measures
P̃ are in one-to-one correspondence with theU(∞)-invariant probability measuresM
onH .

We call the collection of sets{SN } together with the functionsqN−1,N (µ, λ) thegraph
of spectra.This term was suggested by Sergei Kerov.According to the philosophy of [VK]
we call the functionsqN−1,N (µ, λ) the cotransition functions of the graph of spectra.
Here the term “graph” should not be understood literally, it only hints at a similarity
with some “branching graphs” like the Young graph [VK] or the Gelfand–Tsetlin graph
[BO]. For instance, the setT is an analogue of the set of paths in a branching graph. It
can be shown that the graph of spectra can be obtained from the Gelfand–Tsetlin graph
via a scaling limit procedure.

Projective limit of the spaces U(N). There exist projections (not group homomor-
phisms!)U(N) → U(N − 1) which correspond, via the Cayley transform, to the
projectionsH(N) → H(N − 1). This allows one to form the projective limit space
U = lim←−U(N). The spaceU admits a natural two-sided action of the groupU(∞). The
spaceH is embedded intoU, and the measuresm(s) are transferred toU via this embed-
ding. The resulting measures onU are quasiinvariant with respect to the two-sided action
of U(∞). This makes it possible to construct analogs of the biregular representation for
the groupU(∞), see [Ner2,Ol5] for more details.

Analogy with the infinite symmetric group and the Poisson–Dirichlet distributions. The
construction of the spaceU mentioned above is parallel to the construction of the space
lim←− S(n) of virtual permutations, see [KOV]. HereS(n) denotes the symmetric group of
degreen. The family of the Hua–Pickrell measures should be viewed as a counterpart
of a family {µt }t>0 of probability measures on the space of virtual permutations, see
[KOV]. The Hua–Pickrell measures play the same role in harmonic analysis on the group
U(∞) as the measuresµt do in harmonic analysis on the infinite symmetric group
S(∞). The decomposition of the measuresµt on ergodic components is described by
the Poisson–Dirichlet distributions. These are remarkable probability measures on an
infinite–dimensional simplex (see [Kin]), which were studied by many authors. Thus,
the spectral measuresP (s) may be viewed as counterparts of the Poisson–Dirichlet
distributions.

Other examples of group actions. The action of the groupU(∞) on the spaceH exam-
ined in the present paper is connected with a particular series of flat symmetric spaces
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{G(N)/U(N) = H(N)}N=1,2,... which in turn is related to a series of compact sym-
metric spaces: the unitary groupsU(N) with the action ofU(N) × U(N). There exist
10 infinite series of compact symmetric spaces and related flat spaces. With each such
series, one can associate an infinite–dimensional group action on a space of infinite ma-
trices (see, e.g., [Pi2]) and a family of “Hua–Pickrell measures” on that space depending
on a real or complex parameter (see [Ner2]). We expect that the results of the present
paper can be carried over to this more general context.

9. Appendix: Existence and Uniqueness of Decomposition on Ergodic
Components

Let M be the set ofU(∞)-invariant probability Borel measures onH . We equipM
with the Borel structure generated by the functions of the formM �→ 〈F,M〉, whereM
ranges overM andF is an arbitrary bounded Borel function onH .

Let the symbol ex(. . . ) denote the set of extreme points of a convex set. Recall that
elements of exM are called ergodic measures.

Theorem 9.1. (i) exM is a Borel subset in M.
(ii) For any M ∈ M there exists a probability Borel measure P on exM representing

M , i.e.,

〈F,M〉 =
∫
M∈exM

〈F,M〉P(dM) (9.1)

for any bounded Borel function F on H .
(iii) The measure P is unique.

There exist different ways to prove such results, in particular:

(a) Representation–theoretic techniques.
(b) Dynkin’s theorem about boundaries of general Markov processes, see [Dyn] and the

references therein.
(c) Choquet’s theorem about existence and uniqueness of barycentric decomposition in

compact metrizable convex sets which are “Choquet simplices”, see [Ph].

In (a) we reduce the problem to that of decomposing a spherical representation of
the Cartan motion groupG (see Sect. 8 above). Here we have to apply the classical
desintegration theory for representations of locally compact groups andC∗-algebras
(see [Dix]) to groups which are not locally compact but are inductive limits of locally
compact groups (see [Ol1, §3.6]). A crucial fact is that(G,U(∞)) is a Gelfand pair in
the sense of [Ol4, §6].

In (b) one should use the graph of spectra (see Sect. 8) to reduce Theorem 9.1 to
Dynkin’s theorem.

We follow (c) below.

Proposition 9.2 (Choquet’s theorems). Let A be a convex subset of a locally convex
topological vector space E. Assume that A is compact and metrizable.

(i) exA is a Borel subset of A (more precisely, a Gδ subset).
(ii) For any a ∈ A there exists a probability Borel measure P on exA representing a,

i.e.,

f (a) =
∫
b∈exA

f (b)P (db) (9.2)

for any continuous linear functional f on E.
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(iii) The measure P is unique if and only if the cone spanned by A is a lattice.

Proof. Claim (i) is an elementary fact, see [Ph, Prop. 1.3]. Claims (ii) and (iii) are
Choquet’s theorems, see [Ph, Sects. 3 and 9]. !

We need one more general result.

Proposition 9.3. For any group action on a Borel space, the cone of finite Borel measures
is a lattice.

Proof. See [Ph, Sect. 10]. !
By Proposition 9.3, the setM satisfies the lattice condition from the last part of

Proposition 9.2. However, there is no apparent way to makeM a compact space, which
is the major obstacle to applying Choquet’s theorems. We bypass it by embeddingM
into a larger convex set to which Choquet’s theorems can be applied. Here we use an
idea borrowed from the proof of Theorem 22.10 in [Ol3] (see also Sect. 6 in [OkOl]).

Proof of Theorem 9.1. For N = 1,2, . . . let MN denote the set ofU(N)-invariant
probability Borel measures onH(N), and letM̃N be the larger set formed byU(N)-
invariant finite Borel measures of total mass less or equal to 1.

Further, letC0(H(N)) be the Banach space of continuous functions onH(N) van-
ishing at infinity, and letEN denote its dual space equipped with the weak star topology.
Using the natural pairing between functions fromC0(H(N)) and finite measures, we
embed̃MN into EN . Note that̃MN is a compact metrizable space with respect to the
topology ofEN .

For N = 2,3 . . . , let θN−1,N denote the projectionH(N) → H(N − 1) which
consists in removing theN th row and column from aN × N matrix. This projection
sends̃MN to M̃N−1 and also sendsMN to MN−1. Moreover,M coincides with the
projective limit space lim←−MN .

Note that the mapθN−1,N : M̃N → M̃N−1 is not continuous. The reason is that the
projectionH(N) → H(N − 1) is not a proper map. (To illustrate this phenomenon,
consider the projection of the planeR2 onto its first coordinate axis. Take the Dirac
measure at a point on the second coordinate axis and move the point to infinity. Then
the measure will weakly converge to the zero measure, while its projection will remain
fixed.)

However, the mapθN−1,N : M̃N → M̃N−1 possesses a weaker property: it is
semicontinuous from below. (This property does not rely on the specific character of
the projectionH(N) → H(N − 1), it holds for any continuous map between locally
compact spaces.) This implies that for anyN = 2,3, . . . the set

AN−1,N = {(MN−1,MN) ∈ M̃N−1 × M̃N | MN−1 ≥ θN−1,N (MN)} (9.3)

is closed.
It is convenient to allow the indexN in (9.3) to take the value{1}. To this end we

defineH(0) as a one-point set. Thenθ0,1 projectsH(1) onto a single point, the vector
spaceE0 is identified withR, M̃0 is the interval[0,1] ∈ E0, andM0 is identified with
1.

Next, we take asA the subset ofE0 × E1 × . . . formed by infinite sequencesa =
(M0,M1, . . . ) such thatM0 = 1, MN ∈ M̃N for N = 1,2, . . . , and for anyN =
1,2, . . . , the pair(MN−1,MN) belongs to the setAN−1,N defined in (9.3). We remark
thatA is a convex compact metrizable set.
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For anyN = 0,1,2, . . . , we define an embeddingι : MN → A as follows:

MN � M �→ a = (M0,M1, . . . ,MN,0,0, . . . ),

MN = M, Mi−1 = θi−1,i (Mi), i = N, . . . ,1.

We also consider the embeddingι : M → A which comes from the identification ofM
with lim←−MN .

Now, we make the following crucial observation:
(*) Any element a ∈ A can be written as a convex combination of certain elements

aN ∈ ι(MN) and an element a∞ ∈ ι(M). Moreover, this representation is unique.
By Proposition 9.3, for anyN , the cone inEN spanned byMN is a lattice, and the

same is also true forM. Together with (*), this implies that the cone generated byA is a
lattice. Thus, the setA satisfies all the assumptions of Choquet’s theorem. Applying this
theorem, we get that any pointa ∈ A is uniquely represented by a probability measure
P on exA.

On the other hand, (*) implies the following fact:
(**) ex A is the disjoint union of the sets ι(exM), ι(exM0), ι(exM1), . . . .
Since exA is a Borel set by Choquet’s theorem, and since all the setsι(exMN) are

evidently Borel sets, we conclude from (**) thatι(exM) ⊂ A is a Borel set.
Next, we note that the Borel structure onM coming from its embedding intoA

coincides with its initial Borel structure. Indeed, both structures are defined by functions
on M of the formM �→ 〈F,M〉, the only difference is in the choice of a class{F }
of functions on the spaceH . In the latter case,F may be an arbitrary bounded Borel
function, while in the former caseF belongs to the smaller class of cylindrical functions
of the formG ◦ θN with G ∈ C0(H(N)), N = 1,2, . . . . However, both classes clearly
generate the same Borel structure.

This proves claim (i) of Theorem 9.1.
Further, it follows from (**) and the definition of the setA that if a ∈ M then

its representing measureP is concentrated onι(exM) ⊂ exA. Comparing (9.1) and
(9.2) we get that (9.1) holds for any cylindrical function of the formF = G ◦ θN with
G ∈ C0(H(N)). But then it also holds for any bounded Borel function onH , as required.
 !

Recall that we have an explicit description of the set exM: it is parametrized by
the space� (Proposition 4.1). The next claim, together with Theorem 9.1, is used in
Proposition 4.4 above:

Proposition 9.4. The “abstract” Borel structure on exM, which comes from the stan-
dard Borel structures on M, coincides with the “concrete” Borel structure, which comes
from the natural Borel structure on � via the bijection exM ↔ �.

Proof. Let us show that for any bounded Borel functionf , the expression〈f,Mω〉 is
a Borel function inω ∈ �. Indeed, it suffices to check this claim for functionsf of
the formf (X) = ei tr(AX), whereA is an arbitrary fixed matrix fromH(∞). Further,
without loss of generality we may assume thatA is a diagonal matrix, and then the claim
follows from Proposition 4.1.

Consider the correspondence exM ↔ � provided by Proposition 4.1. We have just
proved that� → exM is a Borel map. Since both� and exM are standard Borel
spaces, we may apply a general result (see [Ma, Theorem 3.2]) to conclude that our
correspondence is an isomorphism of Borel spaces. !
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