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Abstract: We introduce and study a 2-parameter family of unitarily invariant probability
measures on the space of infinite Hermitian matrices. We show that the decomposition of
a measure from this family on ergodic components is described by a determinantal point
process on the real line. The correlation kernel for this process is explicitly computed.

At certain values of parameters the kernel turns into the well-known sine kernel
which describes the local correlation in Circular and Gaussian Unitary Ensembles. Thus,
the random point configuration of the sine process is interpreted as the random set of
“eigenvalues” of infinite Hermitian matrices distributed according to the corresponding
measure.
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Introduction

We first introduce some basic notions, and then describe the main results of the paper.

Random point configurations and correlation functions. Let X be a locally compact
space. Aocally finite point configuration in X is a finite or countably infinite collection

of points inX, also calledparticles, such that any compact set contains finitely many
particles. The ordering of the particles is unessential. For the sake of brevity, we will omit
the adjective “locally finite”. Apoint processon X is a probability measure on the space
Conf(X) of point configurations. Given a point process, we can speak abordritiem

point configuration. The™ correlation measure of a point processi(= 1,2, ...)is a
symmetric measurg, on X", which is determined by the relation

(o F) :E(Z F(x1, ...,xn)>, (0.1)

whereF is a compactly supported test function &f, E is the symbol of expectation,
and the summation is taken over all ordesettiples of particles chosen from the random
point configuration. The™ correlation function is the density of,, with respect to the
n™ power of a certain reference measureXnUsually, the reference measure is the
Lebesgue measure. The first correlation function is also calledetisity function. See
[Len], [DVJ, Ch. 5}, [So].

The Dyson circular unitary ensemble. Let T C C be the unit circle an@” /S(N) be
the set of orbits of the symmetric gro§pN) of degreeV acting on the toru” , where
N =1,2,... Consider the following probability measure @ /S(N):

N
const 1_[ luj — uk|2 Hd(pj, uj = e ¢ T, @j € [—%, %], (0.2
1<j<k<N j=1

where const is the normalizing factér= +/—1. This measure defines a point process
onX = T living on the N-point configurations, which is called the" Dyson circular
unitary ensemble or simply the Dyson ensemble for short. Note that the Dyson ensemble
is invariant under rotations df.

Let U(N) be the group ofV x N unitary matrices. Consider the natural projection
U(N) — TN /S(N) assigning to a matri¥/ € U (N) the collection of its eigenvalues.
Note that the fibers of this projection are exactly the conjugacy classes of thelgtaup
The measure (0.2) coincides with the pushforward of the normalized Haar measure on
U (N) under this projection. In other terms, (0.2) is tladial part of the Haar measure.

It follows that the Dyson ensemble is formed by spectra of random unitary matrices
U € U(N) distributed according to the Haar measure. See [Dys, Me].

1 In the book [DVJ] the correlation measures are called the “factorial moment measures”.
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The sine process. This is a translationally invariant point process®n= R. Its corre-
lation functions (with respect to the Lebesgue measuri@)cere given by

sin ;- "
M] n=12 ..., Y ...,y €R.

on(y1, -, Yn) :det[
T(yj — yk)

Jok=1 ’
0.3)
NG (y—

The function! n(y_y,y)/)) onR x R is called thesine kernel.

The correlation functions of the sine process can be obtained from the correlation
functions of theN" Dyson ensemble by the following scaling limit & — oc. Fix
an arbitrary pointzg € T and rescale the angular coordinat@bout the poiniig b?]/
writing u = upeZ™¥/N . Then, for any fixed:, thent correlation function of thevt
Dyson ensemble, expressed in terms of yheariables, converges, & — oo, to the
function (0.3). See [Dys, Me].

A substitute of the Haar measure. A natural question is whether the sine process can
be interpreted as a radial part of an infinite—dimensional analog of the Haar measure. In
this paper we suggest such an interpretation.

It is convenient to pass from unitary matrices to Hermitian matricesH@{) be
the linear space a¥ x N complex Hermitian matrices. Consider the Cayley transform

i—X
i+ X

HN)> X > U = cUNN), N=12 ... (0.4)

The map (0.4) is one-to-one, and the complement of its imag&() is a negligible
set. Thus, we can transfer the normalized Haar measurelfrg¥) to H (N ). The result
has the following form:

const- det(1 + XZ)*N x (the Lebesgue measure (0.5

Let H be the space of all infinite Hermitian matricEs= [Xjk]?f’k:l. A remarkable
fact is that the measures (0.5) with different valuesVofire consistent with natural
projectionsH (N) — H(N — 1) and, therefore, determine a probability measuren
H.We viewm as a substitute of the Haar measurd.aiV) for N = oo.

Ergodic measures. Assume that we have a group acting on a Borel space. An invariant
probability Borel measure is callesigodic if any invariant mod O set has measure 0
or 1. Ergodic measures coincide with extreme points of the convex set of all invari-
ant probability measures, see [Ph]. For continuous actions of compact groups ergodic
measures are exactly orbital measures, i.e., invariant probability measures supported by
orbits. According to the general philosophy of the ergodic theory, the concept of ergodic
measure is a right generalization of that of orbital measure.

We are interested in a special situation when the spaée¢ @d the group is an
infinite—dimensional versio/ (co) of the groupslU (N). By definition, U (co) is the
union of the groupd/ (N). Its elements are infinite unitary matricasjk]fk:l with
finitely many entried/;; not equal tas;;. The groupl (co) acts on the spacé by
conjugations.
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Consider the spac® whose elements are given by 2 infinite sequences

o o0
ozl+ >a; >2---20, ay >2a, >2---20, where Z(ozj)z—i—Z(a;)z < 00,
j=1 j=1
(0.6)
and 2 extra real parametersg y2, wherey, > 0.
Itis known that the ergodic measures@rcan be parametrized by the points 2.
We consider as a substitute of the spa&€ /S(N) for N = oo.
Let us explain the asymptotic meaning of the paramet%r,syl, y2. According to
a general result, each ergodic measufeon H can be approximated by a sequence
(MM | N =1,2,...}, whereM™) is an orbital measure ol (N) with respect to the
action of U (N) by conjugations. Any such measub&") is specified by a collection
A1) of eigenvalues. Then the parametersafescribe the asymptotic behaviordf')
asN — oo:

AN =0V = =) ~ (Nef, Nag L ..., —Nay, —Nay),
A Y
N

- Y1,

a2 o)?

Nz =yt @2+ @)+ + @)+ @)% +....

0.7)

For more details, see [Pi2,0V], and references therein.

From spectral measures to point processes. It can be proved that any/ (co)-invariant
probability measure o/ can be decomposed on ergodic components. l.e., it can be
written as a continual convex combination of ergodic measures. This decomposition is
unique, we call it thespectral decomposition. It is determined by a probability measure
on €2, which we call thespectral measure of the initial invariant measure.

We map the space to the space CoriR*) of point configurations on the punctured
real lineR* = R \ {0} as follows:

QLo>w= ({otj.'}, {aj_}, yLy2) = C=(—a;,—a,,..., Ol;_, af) € Conf(R*),
(0.8

where we omit possible zeros among the numbgrrsThe map (0.8) transforms any
spectral measure (which is a probability measur&dmo a point process oR*. This
makes it possible to describe spectral measures in terms of the correlation functions.
However, the map (0.8) ignores the parameters..

Note that each configuratio € Conf(R*) of the form (0.8) is contained in a
sufficiently large intervalx| < const. It follows thatC ! (the image ofC under the
inversion mapx — 1/x) is a well-defined configuration on the whole liRe

An interpretation of the sine process. Applying the procedure described above to the
measuren on H we prove the following result.

Theorem |. Let P bethe spectral measure of the U (co)-invariant measurem and let P
be the corresponding point process on R*. Then the point process on R obtained from
P under thetransformx +— y = —% coincides with the sine process.



Infinite Random Matrices and Ergodic Measures 91

A simple explanation of this result follows from the comparison of two approximation
procedures: that for the correlation functions of the sine process and that for the ergodic
measures. Indeed, the eigenvalues in (0.7) grow linearly,iso that we rescale them
according to the rulé¢. = Nx. Under the Cayley transform = % the scaling takes
the form

i — Nx 2i 1 . 1 1

= = 1+—+0(—=)=CDZYN 0=, -,
T Nx Tt <N2) (=De T O\ a2 y

(0.9)

which means that the variableis consistent with the scaling of the Dyson ensemble
near the pointig = —1.
Thus, the statement of Theorem | is not surprising. However, the justification of the
formal limit transition made on the level of correlation functions requires certain efforts.
Note also that dividing the eigenvalues R by N corresponds in terms af= ijr—i
to the fractional-linear transformation @fof the form

(N+Du+(N-1)
(N—Du+(N+1)°
This transformation has two fixed points1 and—1. Near the point-1 it looks like
the expansion by the factor &f while near the point-1 it looks like the contraction by
the factor ofN. Using (0.10) as a scaling transformation one can define a scaling limit

for the correlation functions of the Dyson ensembles staying on the dircle
Theorem | is complemented by

(0.10)

Theorem 1. The spectral measure P of the measure m is concentrated on the subset
{we]y2=0}

Thus, the parameter, (which is ignored by the map (0.8)) is actually irrelevant
for the measure:. In a certain sense, this means that the measutees not involve
Gaussian components (see Sect. 4 about the connection of the pasamétfezaussian
measures).

A generalization: The main result. Lets € C, fis > —%, be a parameter. Consider the
following probability measure ot /S(N):

N
const [ luj—wl [[@+up)’@+i)’de;,
1<j<k<N j=1 (0.11)
uj=e" eT, gjel-3 3l

Whens = 0, we get (0.2). Thus, this is a deformation of the measure (0.2) depending on
two real parametersis and3s. The measure (0.11) is the radial part of the probability
measure o/ (N) of the form

const det((1 + U)*) det((1 + U 1)*) x (the Haar measure di(N)). (0.12

Transferring the measure (0.12) from the gréu@V ) to the spacéf (N) by means of the
Cayley transform (0.4) we get the following measurefH(iV), which is a deformation
of the measure (0.5):

const det((1+ i X)) det((1 — i X) ") x (the Lebesgue measure &1 N)).
(0.13)
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When:s is real, the expression (0.13) takes a simpler form:

const det((1+ X%)~*~V) x (the Lebesgue measure 6h(N)),

.14
seR, s> —%. 014
Again, it turns out that the measures (0.13) are consistent with the projections
H(N) — H(N — 1), and they determine & (oco)-invariant probability measure on
the spaced. We denote it byn®). Note thatn© = m.
To our knowledge, the finite—dimensional measures (0.14) were first studied by Hua.
He calculated the normalizing constant factor in (0.14) using a recurrence relaiNgn in
and his argument proves the consistency property (although he did not state it explicitly),
see [Hua, Theorem 2.1.5]. Much later Pickrell [Pi1] considered analogs of the measures
(0.12) and (0.13) (with real), which live on complex Grassmannians and on the spaces
of all complex matrices, respectively. He proved the consistency property and considered
the analogs of the measura$” on the space of all complex matrices of infinite order.
His paper also contains a few other important ideas and results. Apparently, Pickrell
was unaware of Hua’s work. Note also Shimomura’s paper [Shim], where an analog of
the measure:© for the infinite-dimensional orthogonal group was constructed (more
general measures depending on a parameter are not discussed in [Shim]). The possibility
of introducing a complex parameter (in the case of Hermitian matrices) was discovered
by Neretin [Ner2]. He also examined further generalizations of the meaalives
We propose to call the measure$’ the Hua—Pickrell measures.

Theorem I11. The Hua—Pickrell measuresm®) on H are pairwisedisjoint. |.e., for any
two different values s/, s” of the parameter there exist two digoint Borel subsetsin H

supporting m®" and m®"), respectively.
The next claim is the main result of the paper.

Theorem IV. Let P®) be the spectral measure of a Hua—Pickrell measure m®). The
corresponding point process P*) on R* can be described in terms of its correlation
functions. They have the determinantal form

P (x1, . x) = Al KW (xj, x0)1h s (0.15)

where K@ (x, x’) is a certain kernel on R* x R* which can be expressed through the
confluent hypergeometric function or, for real values of s, through the Bessel function.

We give explicit expressions for the kernel in Theorem 2.1 below. As in Theorem |,
one can use the transformation— C ! to pass fronR* to R.

Pseudo-Jacobi polynomials. The proof of Theorem IV, similarly to that of Theorem

I, consists of three steps: the calculation of the correlation functions for the finite—
dimensional measures (0.13), the scaling limit transitioN as- oo, and a justification.
However, the first step is more involved comparing to the Dyson ensemble. We show
that the correlation functions are expressed through the Christoffel-Darboux kernel for
the so-called pseudo-Jacobi polynomials. This family of orthogonal polynomials, which
is not widely known, has interesting features. It is defined by a weight functidi on
with only finitely many moments, so that the system of orthogonal polynomials is finite.
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Organization of the paper. In Sect. 1 we introduce the pseudo-Jacobi ensemble and ob-
tain its correlation functions. In Sect. 2 we compute the scaling limit of these correlation
functions as the number of particles goes to infinity. The limit correlation functions are
given by a determinantal formula and we write down the correlation kernel explicitly.

In Sect. 3 we define the Hua—Pickrell measuré8 and show that they are pairwise
disjoint. Section 4 provides a brief summary of known results about the erf@dic)-
invariant probability measures @h. In Sect. 5 we show that the spectral measure for any

U (oo)-invariant probability measurd on H can be approximated by finite-dimensional
projections off. Section 6 contains the proof of our main result (Theorem IV above). In
Sect. 7 we prove that the sine process has no Gaussian component (Theorem Il above).
Section 8 contains remarks concerning the connections of our work with other subjects
as well as several open problems. Section 9 is an appendix where we prove the existence
and uniqueness of the decompositiorUdbo)-invariant probability measures dii on

ergodic measures.

1. The Pseudo-Jacobi Ensemble

In this section we define the pseudo-Jacobi ensemble and compute its correlation func-
tions.

Consider the radial part of the Haar measurd/gwv) which determines the Dyson
ensemble, see (0.2). Under the inverse Cayley transibras R which takesy € T
tox =i ﬁ € R, the measure (0.2) turns into the following measuréRdy S(N) =
Confy (R), the set of¥-point configurations oiR:

N
const [ Gj—x0? JJ@+xHVdx;. (L1
1<j<k<N j=1

More generally, let be a complex parameter. We introduce the following deformation
of the measure (1.1) depending an

N
const [ j—x0? []A+ixp)~N@—ix)~Vdx;

1<j<k<N j=1
(1.2)
N
2 2\—Rs—N 235 Arg(1+ix;
— const 1_[ (x; — xp)° l_[(l+xj) is—N ,23s Arg( +lxj)dxj.
1<j<k<N j=1

Here we assume that the function Arg. ) takes values ii—, ) (actually, Arg1 +
ixj) € (=%, %))

Proposition 1.1. The measure (1.2)is finite provided that Rs > —%.
Proof. This follows from the estimate

(l + x2)—fﬁs—NeZ‘3sArg(1+ix) =

|x| 22N xeR, |x|>0, (1.3

and the fact that the expansion Hfl<j<k<N()Cj — xz)? involves only monomials of
degree less then or equal t&/2- 2 in each variable. O
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Henceforth we assume the condititn > — to be satisfied, and we choose the
normalizing constant |n (2.2) in such a way that (1.2) defines a probability measure.
About the caséis < —2 see Sect. 8 below.

Note that (1.2) corresponds, via the Cayley transform, to the measure (0.11).

For real values of the parametethe expression (1.2) takes a simpler form

N
const [ j—x0? J]@a+xH—", s e R.

1<j<k<N j=1

Our aim is to compute the correlation functions of the measure (1.2). We remark that
(1.2) is an orthogonal polynomial ensemble (see [Me, NW]) corresponding to the weight
function

¢(x) — (1+l.x)7l97N(1_l.x)7§7N — (1+x2)7m57N62?\SAl'g(1+ix)’ x e R. (14)

We call it theN™ pseudo-Jacobi ensemble. The reason why we use this term is explained
below. For reals, this ensemble was also considered in [WF] where it was called the
unitary Cauchy ensemble. The reason is that for real the weight function (1.4) is
proportional to the density of the classical Cauchy distribution. For generalities about
orthogonal polynomial ensembiles, see, e.g., [Me, NW].

Let po = 1, py, po, ... denote the monic orthogonal polynomials Rrassociated
with the weight function (1.4). Since for asy ¢ (x) has only finitely many moments,
this system of orthogonal polynomials is finite. Specifically, it follows from (1.3) that
the polynomialp,, (x) exists ifm < 9s + N — 1.

According to a well-known general principle (see, e.g., [Me]), the correlation func-
tions in question are given by determinantal formulas involving the Christoffel-Darboux
kernel

Z PPy (x")

e (1.5)

o S [ %

By the assumptiofiis > —%, the polynomials up to the order = N — 1 exist, so that
this kernel is well-defined.

The orthogonal polynomialg,, are known. They were introduced by V. Romanovski
in 1929, see [Ro], and studied by R. Askey [A] and P. A. Lesky [Les1, 85], [Les2, §1.4].
Following P. A. Lesky we call thenpseudo-Jacobi polynomials, which explains our
choice of the name for the ensemble (1.2).

Let

b

}_ia(a—f-a)...(a—}-n—1)~b(b+1) (b+n-1 ,
= cct+1)...(ctn—1) nl

a,
2F1|: .

denote the Gauss hypergeometric function.

n=0

Proposition 1.2. Let m < %s + n — 3, so that the m™ monic orthogonal polynomial
P, With the weight function (1.4) exists. Then it is given by the explicit formula
0 = @ —iyraFy | G SN —m 2 (16)

Pmx X =il 2Rs + 2N — 2m 1+1x ’
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and itsnormis given by

I (OII% = f P2 (x)¢ (x)dx

w2 % 4 2(N—m)—1, 20s 4+ 2(N—m), m+1 (1.7)
T 22(N-m—1) s+N—-m,s+N—m, 2Rs +2N —m |’ )

where we use the notation

,d, T TOrd...”

b, ... C'@r®)...
foi -5
c, d,...

Proof. These formulas can be extracted from [A], [Lesl, 85], [Les2, §1.4]. Another

way to get them is to use a general method described in [NU]. This method works for
any orthogonal polynomials of hypergeometric type and allows to compute all the data
starting from the differential equation. In our case the differential equation has the form

—A+x)p! +2(—=Is + s+ N —1)x)pl, +m(m+1—2%s —2N)p,, = 0. (1.8)
i
Note the symmetry property
Pn(=x) = (=D"p,,(x) [so5 - (1.9
It follows from the symmetry of the weight function
¢(=x) = ¢(x) lso5

and can be verified directly from the expression (1.6).
To compute the Christoffel-Darboux kernel we will use the classical formula

(1.10)

N-1
T PG 1 pntpyg) = Py o)
= ip,l2 IPx_1ll2 X —x"

If the parametes satisfies the stronger conditiots > % then the polynomiap y (x)
exists and the formula holds. Since all the terms in the left-hand side depend analyti-
cally ons ands, we can use the formula ferwith 3 > 9is > —3 as well with the
understanding that the kernel is obtained by analytic continuatieraimds viewed as
independent variables (or, equivalently, by analytic continuation in the variataled
s+ 5).

Note that the trick with analytic continuation is actually needed only for the values
of s on the vertical linéits = 0, because a singularity in the expression (1.6yfce N
arises fofs = 0 only.

The next lemma makes it possible to get an alternative expression for the Christoffel—
Darboux kernel. The advantage of this new formula is that all its terms have no singu-
larities in the whole regiofits > —3.
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Lemma 1.3. Set .
2iNs

2%s(2%s + 1)

This polynomial, initially defined for %s > 1, makes sense for %is > —3, as follows
from the explicit formula:

Pyv(x) = py(x) — Py_1(x). (111D

~ (v N —N, s
Py(x) = (x —1) 2F1[2ms+1

2
H—IX:I . (1.12

Proof. Indeed, using the power series expansion of the hypergeometric function it is
readily verified that the following general relation holds:

, b , b abz 1,b+1
2F1[ac Zi| =2F1|:Ca+1 Zi|+m2F1|:a+C+2+ ‘Zi| . (113)

From (1.13) and (1.6) we easily get (1.12)Qa

We summarize the above results in the following

Theorem 1.4. The correlation functions of the N™ pseudo-Jacobi ensemble (1.2) have
theform

pEf’N)(xl, X)) = del{K(S*N)(x,-, xj)];‘l,jzl (1149

with akernd KM (x’, x”) defined on R x R.
This kernel is given by the formulas

22%s 2 +N+1, s+1, 5s+1
,N) ./ I\ . ’ ?
K® ™V x") = F[ N, 2%s + 1, 29%s + 2 ]
PN PN_1(x") — py_1(X) py(x")
X X — x"

p(xNp(x") (1.15)

or, equivalently,

22 T2Rs + N +1,s+1, 541
(\N) (o I\ _ MNs+N+1L s+1, s+
ESPenx) == F[ N, 205+ 1, 205 +2

PN Py _1(x") — py_1 (XD N (x")
X x/ _ x//

p(xNp(x"), (1.16)

where

¢(.X) — (1+l-x)—s—N(1_l-x)—§—N — (1+x2)—ms—Ng2;~SSAl‘g(l+ix)’ x e R, (117)

and
(=@ —iNoFy | 25| 2 (1.18)
PyX) =X l 201 s 1+ix s .
_ WN—1 —-N+1 s+1 2
Pn_1(x) = (x —1i) 2F1[ s 1+ 2 Toix | (1.19)
~ . —N, s 2
Py =(x— iYNoF |:2§)‘fs +1 H—UC] . (1.20)
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Note that the expression (1.15) is directly applicable when the paramétss not
lie on the linefts = O while the expression (1.16) makes sense forsamith Rs > —%.

Proof. A standard argument from the Random Matrix Theory, see, e.g., [Me] shows that
the correlation functions are given by the determinantal formula (1.14), where the kernel
is equal to the Christoffel-Darboux kernel (1.5) multiplied by the fagtenx")¢ (x”).
Together with (1.6), (1.7), (1.10) this leads to the expression (1.15) for the kernel. The
alternative formula (1.16) then follows from Lemma 1.31

Remark 1.5. Fors = 0 the polynomialp; can be defined by taking the limit as— 0
along the real line. Taking the limit in the hypergeometric series it is easy to get the
following expression:

x+DN +x -V
5 .

pN(x) |S:O:

Likewise, we get
x+DN — @ -V
2iN
It follows that the Christoffel-Darboux kernel (1.10) is an elementary expression. This

agrees with the fact that fer= 0 our ensemble is related (via the Cayley transform) to
the Dyson ensemble.

Pn-1(%) |s=0=

2. The Scaling Limit of the Correlation Functions

In this section we compute the scaling limit of the correlation functions of the pseudo-
Jacobiensemble as the number of particles goes to infinity. The limit correlation functions
have a determinantal form, and we express the correlation kernel through the confluent
hypergeometric function.

Recall the definition of the confluent hypergeometric function:

a
1k [c

see, e.g., [Er, 6.1].
Let us rescale the correlation functiopS’N ) of the pseudo-Jacobi ensemble (see
(1.14)) by setting

’

_ X a@+1...(a+n-1
Z}_ZC(chl)...(chn_l).ng

n=0

p,gs’N)(xl, .o, X)) =N". p,(f’N)(le, ..., Nxp).

Note that the facto?w” comes from the transformation of the reference (Lebesgue)
measurelx; ...dx,. We will assume that the variables range over the punctured real
line R*, not the whole lineR, as before.

Theorem 2.1. Let %is > —3, asbefore. For anyn = 1,2,... and xg,...,x, € R*

there exists a limit of the scaled n'" correlation functions p,(,S’N) asN — oo:

im &M (g, ... %) = det[K(S’oo)(xi, xj)]
N—>oo

1<i,j<n
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Herethe kernel K©-°9)(x’, x”) on R* x R* isas follows:

s+1,5+1 ] P(xHQE") — Q)P (x")

K&® (' x") = i r |:

21 20s + 1, 2Rs + 2 X — x"
Ns ) N s 2
P(x) = ‘; e—t/x+nos-sgl’(x)/2 1F1 |:2ms ;i| , (21)
2 2 Ns ; N s + 1 2l
_ -\ = —i/x+mwJs-sgn(x)/2 <
Q(x)—x ‘x e 1F1|:2ms+2 xi|.
Or, equivalently,

K<s,oo>(x/’x,/):ir[ s+1,5+1 }ﬁ(x/)Q(x”)—Q(X’)fN’(x”)7

27'[ st —+ 1, ZSRS =+ 2 x/ — x”
Ns 2i (2'2)
D _ |z —i/x+7wIs-sgn(x)/2 s =
P(x)—‘x e 1F1[29‘ts+1 x]
The limit is uniform provided that the variables x1, . . ., x,, range over any compact
subset of R*.

Comments. 1. Asin Theorem 1.4, the formula (2.1) is directly applicable provided that
s does not lie on the lingts = 0, while the formula (2.2) holds for anywith fis > —%.

2. The kernelk ©->°) (x’, x”) can be expressed through the M-Whittaker functions,
see [Er, 6.9] for the definition. Namely,

_ 75 sgn) 2i _in(5+1) sgnx) 2i
Plx)y=e 2 M55 ms—3 <) Qx)=e 7 Myt d <)

(2.3)
3. The symmetry property (1.9) of the pseudo-Jacobi polynomials implies that

P(=x) = P(x) |so5 O(=x) = =0() [so5 (2.4

which can also be verified directly from (2.3) using the formula [Er, 6.9(7)]:

i 1 1 St >0
Mopy =)y o, ezt N0
/c,u( )=e K,M( ) € ~1, 3t <O

It follows that the correlation kernéf ©-°°) (x’, x”) remains invariant wher', x”, s are
replaced by-x’, —x”, 5 (there is one more change of sign in the denomin@ator x)).

4. Formula (2.4) implies that the functio¥x) and Q(x) are real-valued, which
agrees with the fact that the pseudo-Jacobi polynomials have real coefficients. Hence,
the kernelk ¢-°°) (x’, x”) is real symmetric.

5. Whens is real, the confluent hypergeometric functigFy turns into the Bessel
function, and the expressions fBrand Q can be written as follows:

1
P(x) = 22720 (s + 1/2)x| 72172 <ﬂ> :
X

0 (x) = sgrx)22 Y20 (s + 3/2) x| 721/ <|71|> .
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6. Fors = 0 the Bessel functions with indiceﬁ% degenerate to trigonometric
functions, and we get

P(x) |s=0=cog3),  Q(x) [s—0= 2sin(D),
1 sin(& — 3
K<O’OO)(X/» x//) = ; x/x_ x//x
Changing the variable; = % and taking into account the corresponding transforma-
tion of the differentialix we get the sine kernel, in accordance with (0.9).

Proof of Theorem 2.1. We will show that

Nlim (sgnx’) sgnx NN - KON (Nx', Nx") = K&® ', x"), x/,x" e R,
—> 00

uniformly on compact sets iR*. Note that the factogsgn(x’) sgn(x”))" does not affect
the determinantal formula.
We start with the formula (1.15). First of all, we remark that

F@is+N+1 N2+
'(N) ’

which easily follows from the Stirling formula.
Next, we will examine the asymptotics of

PNn(NX)O(Nx),  py_1(Nx)v¢(Nx), N — oo.

Here we will assume thatis not a real but a complex variable ranging in a neighborhood
of a pointxg € R*. This will allow us to overcome the difficulty related to the singularity
x"—x” = 0iinthe denominator of (1.15) by making use of the Cauchy integral formula.
The asymptotics of the hypergeometric functions entering the formulas (1.18) and
—N, s

(1.19) are as follows:
i F 2 _ gl 2i
2B o TN | T M s [ T |

[—N+1,s+1’ 2 }—11[S+1 g]
X

lim 2F
N—o0

205 + 2 14+iNx 205 + 2

Indeed, this is a special case of the well-known limit relation

Z b
-l

This can be readily verified using the integral representation of the hypergeometric
function written in the form

b-1 (4 ~e—b-1
zFl[“’cb 5]=F<c)<’+ -0y L >
a

') T'(c—b) ~(1—tz/a)*
where the brackets denote the pairing between a generalized function (which in the
present case is supported [y 1]) and a test function, andis the argument of both

im »F, [“’ b z:|, zeC.
|a]— o0 C
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functions. Note that the limit is uniform provided thatanges over a bounded subset
of C.
The asymptotics of the remaining terms look as follows:

]VIIm (:l:l)N(N.x _ l)N ¢(Nx) ~ fo)is(ix)fﬂisefi/xeiﬂ?ss’
— 00

where is the sign ofix and the limit is uniform on compact subsets in the open right
or left half-plane. Indeed, assuriia > 0. In the transformations below any expression
of the form z¢ with ¢ € C is understood as a holomorphic function in the domain
C\ (—o0, 0]. We have

(Nx — )N V/o(Nx) = (Nx — )N A+ iNx)"6N/2(1 — i Nx)~C+N/2
— (NX)N(INx)—(S-I—N)/Z(_lNx)—(§+N)/2

PN 1\ ~6+N/2 1\ ~G+N/2
x{1—— 1+ — 1-—
Nx iNx iNx

= NV N —GHN)/2(_jy—G+N)/2

P \N 1\ N2 1\ ~G+N)/2
x(1—— 1+ — 1-—
Nx iNx iNx

~ N—ﬂfsx—f)iseﬂ\\‘se—l/x.

Forfx < 0 the argument is similar.
Combining all these asymptotics we get the desired resuit.

3. The Hua—Pickrell Measures

In this section we define the Hua—Pickrell measures. They form a 2-parameter family of
U (o0)-invariant probability measures on the space of infinite Hermitian matrices.

Let H(N) denote the real vector space formed by complex Hermitian N ma-
trices, N = 1,2,... Let H stand for the space of all infinite Hermitian matrices
X = [X,-,j]jﬁzl. ForX e HandN = 1,2,..., we denote byy(X) € H(N) the
upper leftN x N corner ofX. Using the projectiongy H — H(N), N =1,2,...,we
may identify H with the projective limit spacg_lirW(N). We equipH with the corre-
sponding projective limit topology. We will also use the Borel structuréfogenerated
by this topology.

Let U(N) be the group of unitarww x N matrices,N = 1,2,... For anyN, we
L(‘)(l) . LetU(o0) = lim U(N)
denote the corresponding inductive limit group. We redafdo) as the group of infinite
unitary matriced/ = [U,-j]f;.:l with finitely many entried/;; # &;;. The groupU (co)
acts on the spacH by conjugations.

embedU (N) into U (N + 1) using the mapping —

Proposition 3.1. For any s € C, %its > —%, there exists a probability Borel measure
m'®) on H, characterized by the following property: for any N = 1, 2, ..., theimage of
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m'®) under the projection 0 is the probability measure m©-") on H(N) defined by
m SN (dX) = (consty) Ldet(1+iX)*M)ydet(1—ix) V)
N
x H dXjj ]_[ d(RX j1)d (3X j),
j=1 1<j<k<N 3.1

7T (s +5+ )
220 (s + HT G+ )

N
where consty = 1_[ ST
j=1

The measure m®) isinvariant under the action of U (00).

Comments. 1. ForX € H(N) andz € C we define the matrixl + i X)* by means of
the functional calculus. This makes the expression

fv(X) =det((1+iX)*"M)ydet((1—iXx)~5N), X € H(N)

meaningful. Equivalently, denoting by, . .., x5 the eigenvalues of,
N -
) =[Ja+ixp= VA —ix)~N, 32
j=1

where we use the analytic continuation of the function )¢ from the positive axis to
the regionC \ (—o0, O].
2. Whenis is real, the expression (3.2) takes a simpler form

Fy(X) = (detd + X?)~*N | X e HIN), seR.

Proof. Step 1. First of all, note thafy (X) > 0. Therefore, iffy is integrable then it
defines a finite measure dh(N).
Fix N > 2 and write an arbitrary matriX € H(N) in the block form

X:[Ey*ﬂ YeHIN-1, £eCVN L reRr.

We will prove that for anyy € H(N — 1) the integral offy overg, ¢ is finite and it is
equal to

N
Y & E ) J(NE Y
Jomwerses 2 ([5]) - TLeerepacen-a

aVT(s +5+ N)

. . (33
TNy TGN )

= fn-1(Y) -

For N = 1,Y andt disappear, and the claim is that the integrafpbverR is finite
and it is given by

al(s+5+1)

2H(s+DIG+1)° 349

f fl(z)dtz/ A+in YA —iny " ar =
teR —00
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Let us show (3.3) and (3.4) imply the proposition. Indeed, using inductio are
see that the integral ofy over H(N) is finite and equals congt Thus, the measure
m©N) is correctly defined for any.

Next, (3.3) implies that the measures*") andm N1 are consistent with the
projectionX — Y from H(N) to H(N — 1). % SinceH coincides with the projective
limit of the spacesd (N) asN — oo, we conclude that the measuné®) exists and is
unique.

Finally, m® is invariant under the action &f (co), because each®-") is invariant
under the action o/ (N) forall N =1, 2, ...

Step 2. We proceed to the proof of (3.3) and (3.4). The latter formula follows from
formula (3.9) inLemma 3.3 below. The former formulais proved in [Hua, Theorem 2.1.5]
for reals, and we employ his argument with slight modifications. Applying Lemma 3.2
(see below) we get

fvX) =det(L+i¥) M)A +ir +E*A+iy) )N
xdet(1— i) M@ —ir+e*A—-iy)" )~ N, (35)

Next, note that the integral (3.3) is invariant under the conjugatidn lof a matrix
V € U(N — 1). Indeed to see this, we use the invariance of the funcfjpmnd make
a change of a variablé/& — &. Therefore, without loss of generality we may assume
thatY is a diagonal matrix. Denoting its diagonal entries (which are real numbers) as
1, ..., yn—1 and using (3.5) we reduce the integral (3.3) to

N-1

[Ta+ivp=Na—iy)=~
j=1
1 —s—N
x/ 14+ Z |§J|2 _NX: 112,
(£,1)eCN-1xR — 1+ yZ
J= J
1 —5—N
|xs,|2 S Py e
1+ Z B - Z 2 Hd(-hé‘/)d(oéj) -dt. (3.6)
j=1 l+yj j=1

This integral is easily simplified. First, assuming that the variables. ., £y_1 are
fixed, we make a change of variable

~ Z L 1g 12 J
1+ y? i
Next, we change the variablésg,

§j
/14 yjz-

2 For reals, this fact was discovered by Hua Loo-Keng [Hua]. As we learnt from Peter Forrester, it was
also discussed in the physics literature, see [Br].

I—)%‘j, j:l,...,N—l,
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which gives rise to the factdr](1 + y;)2. Then (3.6) is reduced to

=1 (€.)€CN-1xR =

N-1 ] N-1 SN
[Ta+ivp=Vrta—iyy -V / 1+ ) 1g1 +ir

N-1 —S=N N
X (1+ D IE1P - it) [[aoepde)) -dr. (3.7)
j=1

j=1
Settingr = ) |§; 12 we readily reduce (3.7) to

N-1

l_[ (1 + l-yj)—S—N+l(1 _ iyj)—E—N-Fl
j=1
Nt . —s—N 5N _N-2
.m/r;O/ZER(l—i—r—l—zt) A4+r—in r drdt.

By Lemma 3.3, the double integral is finite and its value is given by (3.9), where we
substituten = s + N, b = 5§ + N (the assumption of Lemma 3.3 is satisfied because
s > —3). This implies (3.3). O

We proceed to the proof of two lemmas which were used in Proposition 3.1.
Lemma 3.2. Consider the N x N matrix analog of the right halfplanein C:
Mat(N,C)y = {A e Mat(N,C) | A+ A" > 0}.
Write N x N matricesin the block form according to a partition N = N1 + No,

A11 A12
A= .
|:A21 Azz]
Thenfor z € Cand A € Mat(N, C), the following relation holds
det(A%) = det(A},) det((Az2 — A21AT; A12)°). 38

Proof. First of all, we show that both sides in (3.8) make sense. Note that
Mat(N, C)4 then any eigenvalug of A lies in the open right halfplane (indeed, if

£ € CN is an eigenvector with the eigenvalugéhen O< ((A + A*)E, £) = 2RA(E, &),
which implies®A > 0). Therefore, we can define the matX by means of the
functional calculus. Next, note that the matrieeg andA, — Az]_AIf'A 12 also belong

to the matrix right halfplanes. Indeed, for the former matrix this is evident, and for the
latter matrix this follows from the fact that—1 € Mat(N, C), and

A2p — AnA Az = (A H ™t

Thus, the expressiors. . )* in the right-hand side of (3.8) are well-defined.

Since both sides of (3.8) are holomorphic functionsdirin the connected region
Mat(N, €)1, we may assume, without loss of generality, tAdies in a small neigh-
borhood of the matrix 1. Then we may interchange the symbol of determinant and
exponentiation. This reduces (3.8) to the classical formula for the determinant of a block
matrix,

detA = detAqs - det(Az — A21A71 A1),

see, e.g. [Ga, Ch. Il, 85.3].0
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L emma 3.3. We have
ZN-1
F(N—l) r>0JreR

_ a"T(a+b—N)
T 2a+b=20 ()T (b))’

A+r+i) QA +r—in rN2drdr

a,beC, Na+b)>N, N>1, (3.9

and

nl'a+b-1)

201520 ()T ()’ a,beC, NR@a+b) >1

(3.10)

/ A+in"A—it)bdt =
teR

Proof. The integral (3.10) is readily reduced to a known integral, see [Er, 1.5 (30)].

To evaluate the integral (3.9), we make a change of variable, (1 + r)t. The
integral splits into a product of two integrals, one of which is (3.10) and the other one is
the integral

/ (14 ry-a-bHL rN-2 o F(a—l—b—N)'
0 (N —1) Fa+b—1)

This proves (3.9).
Note also that (3.10) is a degeneration of (3.9), becaﬁgé/ (N — 1) degenerates
to the delta functiod(r) atN = 1. O

Let C; denote the right halfplane. Following Neretin [Ner2] we define a map

as follows. For anyv = 2, 3, ..., write the matrixdy (X) = [Xjk]j.\szl in the block
form
_|Ov-1(X) &
On(X) = [ £* t}

and then set
v =it +E¥(L+i0y_1) € € Cy.

Finally, set;; = X11 € R.

Proposition 3.4. The pushforward of the measurem ®) under themap (3.11)isa product
measure ju1 X 2 x ... on the space R x C°. Here ug, uo, ... are the following
probability measures:

2B+ 1DIG+1) 1 -
dr) = 1+in* 1 —-in™"1a
pn1(dt) ATG 151D A +ir) 1-i1) t

and,for N > 2, ¢ =r +it € Cy,

2H5H2N=2D (5 4 N)T' (5 + N) —s—N Fy-s-N_ 7
N (de) = 7l'(s +5+N) Gro e mdgi;
(312

Proof. This follows from the proof of Proposition 3.1.0
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Theorem 3.5. The Hua—Pickrell measures m®) are pairwise digoint. l.e, if s, s” are
two distinct values of the parameter s then there exist two disjoint Borel setsin H
supporting the measures m " and m©"), respectively.

Proof. We will apply Kakutani’s theorem [Ka]. Assume first we are given two probability
measureg;’ andu”, defined on the same Borel space. Take any measureh that both
' andu” are absolutely continuous with respecttdor instancey = '+ u”. Denote

by u’/v andu” /v the respective Radon-Nikodym derivatives. The meag/l.@- v
does not depend on the choicewoDenote it by,/u’ 1 and set

(W, n'y = f Vi

We have 0< (u/, u”) < 1. Moreover,(u/, u”) = 1 is equivalent tq’ = u” while
(', u”y = 0 exactly means that’ andu” are disjoint.

Next, assumeu’ = pj x uyH x ... andu” = pj x py x ... are two product
probability measures defined on the same countably infinite product space. Kakutani's
theorem [Ka] says thal_/ andu” are disjoint if the infinite produdf]y_, (i, ix) is
divergent, i.e., the partial products tend to 0.

Finally, consider the product spaex C° and take ag’ andu” the pushforwards
of measures:*” andm ", respectively, as explained in Proposition 3.4. We prove that
w' andy” are disjoint. Then this immediately implies that the initial measurés and
m©") are disjoint.

We omitthe valugV = 1 which plays a special role and calculate the integral defining
(i, my) for N > 2. By (3.12) and (3.9) we get

, (s’ + N)T(5' + N)T(s” + N)T(" + N)  T(s +5+ N)
<,U«N7N«N>=\/

T'(s'+5 + N)[(s" +5" + N) L +NTGE+N)
s/ + S//

2

The classical asymptotic formula for the ratio of tWefunctions, see [Er, 1.18(4)],
implies that

F(z+N)F(Z+N)N1_§ 0(i)
I'z+z+ N)I'(N) N N2 )°
It follows that

|S/_s//|2 1

Thus, the product ofiy,, iy )’s is divergent. O

4. Ergodic Measures

In this section we recall the classification theorem and some other known results on
U (o0)-invariant ergodic probability measures on the space of infinite Hermitian matri-
ces.
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Consider the natural embeddings

HN) > H(N+1), A [6‘ 8] ,
and denote byH (co) the corresponding inductive limit spac@)l'ﬁ(N). ThenH (o0)
is identified with the space of infinite Hermitian matrices with finitely many nonzero
entries. We equipH (co) with the inductive limit topology. In particular, a function
f: H(oo) — Cis continuous if its restriction téf (N) is continuous for anyv.
There is a natural pairing

H(oc0) x H — R, (A, X) —> tr(AX).

H is the algebraic dual space Hf(co) with respect to this pairing.

Using the map

H>X— {Xii}?il L {ERX,-J-, ‘\NSXI']'},'<J'

we can identifyH, as a topological vector space, with the infinite product sfEte=
R x R x ---. Under this identification (co) C H turns intoRg := (J,-,R", and
the pairing defined above turns into the standard pairing betiRgeandR>.

Given a Borel probability measur® on H, we define its Fourier transform, or
characteristic function, as the following function &co):

A / AN M Xx). (4.1)
H

The groupl (00) acts by conjugations both dii(co) andH, and the pairing between
these two spaces is, clearly(oco)-invariant. Each matrix fron#f (co) can be brought by
a conjugation to a diagonal matrix diag, r», . . . ) with finitely many nonzero entries.
It follows that the Fourier transform of & (co)-invariant measure o/ is uniquely
determined by its values on the diagonal matrices fidmo).

Set

Q={w=(",a,y1,8) e RPTZ=R® x R® xR x R |
at=(@f 20220, o =( =20, >-->0),
yieR, 820, Y @)+ (¢)* <8}
This is a closed subset &2°°+2,
Denote
y2=08-Y (@)?=> (@)*=0.
In this notation we have

Proposition 4.1. There exists a parametrization of ergodic U (co)-invariant probability
measures on the space H by the points of the space 2. Given w, the Fourier transform
(4.1) of the corresponding ergodic measure M® is given by

/ ei tr(diag(rl,...,rn,O,O,...)X)Mw(dx)
XeH

n 00 —iafr; o rj
— 1_[ eiylrjf)/zr,2 1_[ e "+ e
o1 iy L—iogry o I+iogr;
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Proof. See [Pi2, Proposition 5.9] and [OV, Theorem 2.9%

Remark 4.2. If only one of the parametengi, 1, v2 is distinct from 0 then the corre-
sponding ergodic measure is calementary. A description of the elementary measures
can be found in [OV, Corollaries 2.5-2.7]. Note, in particular, that the elementary mea-
sures corresponding to the parameteare standard Gaussian measureglosee [OV,
Corollary 2.6]. Since the expression of Proposition 4.1 is multiplicative with respect
to the coordinates ab, any ergodic measure is a convolution product of elementary
ergodic measures.

ForN =1,2,..., letSy c R" denote the set ai-tuples of weakly decreasing
real numbers
A=@A1>--->An).
Given A € Sy, let Orb(A) denote the set of matrices € H(N) with eigenvalues
A, ..., An. The sets of the form Orl) are exactly thé/ (N)-orbits in H(N).
Giveni € Sy, we set

max(A;, 0) .
_ =1...,N,
af () = N ’
0, i=N+1,N+2,...,
max(—An+1-i, 0) P N
al—()\’): N ’ e AR ’
0, i=N+1N+2,....

Equivalently, ifk andl denote the numbers of strictly positive terms{dxﬁ“ } and{a; },
respectively then

A= (af W), ....af (1),0,...,0,—a; V), ..., —a; (V).
Further, we set

c) =Y ato) =Y a0y = w
i=1 i=1

il 0 A4 ... 402
40y = Y af 002 + 3 (e ()7 = A
i=1 i=1
By virtue of [OV, Theorem 3.3], any ergodic measure can be approximated by or-
bital measures on the spacd§N) asN — oo. The next result provides an explicit
description of the approximating orbital measures. It also clarifies the meaning of the
parameters in Proposition 4.1.

Proposition 4.3. Let {Orb(A)) | A(V) e Sy} bea sequenceof orbitsand let {M ™)} be
the sequence of the corresponding orbital measuresonthespaces H(N),N =1, 2, ....
We view each MN) asa measureon H.

Themeasures M N) weakly convergetoameasure M on H,i.e., (f, M)y — (f, M)
for any bounded continuous function f on H, if and only if there exist limits

oziileim aFoMNy, =12,
—00

yr=lim c(™),
N—oo

§= lim d0.™).
N—o0
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If this condition holdsthen the collection w = ({a;r}, {o; }, y1, 8) isapoint of 2 and
the limit measure M coincides with the ergodic measure M“.

Proof. See [OV, Theorem 4.1]. O

Proposition 4.4. For any U (co)-invariant probability measure M on H there exists a
probability measure P on €2 such that

M = f M?P(dw),
Q
which means that for any bounded Borel function f on H,

(f. M) =/Q<fl M®)P(dw). 4.2)

Such measure P is unique. Conversely, any probability measure P on 2 arisesin this
way from a certain measure M.

Proof. This follows from Theorem 9.1 and Proposition 9.41

We will call P the spectral measure for M.

5. Approximation of Spectral Measures

In this section we show that the spectral measure féf(ao)-invariant probability
measureV! on H can be obtained as a certain limit of finite—dimensional projections of
M.

ForX e H, let A (X) e Sy denote the spectrum of the finite matéix (X)
H(N). Let us say thaX € H isregular if there exist limits

ocii(X)leim a= (M (X)), i=12 ...,
n(x) = lim G ), (5.1)

8(X) = Nli_r)noo do.M(Xx)).

Let Hreg C H denote the subset of regular matricegfinSincer™ (X) is a continuous
function in X for any N, the functionsz;* (A (X)), c(2 ™ (X)), andd (A (X)) are
also continuous. It follows thaieg is a Borel subset off (more precisely, a subset of
type Fys).

Theorem 5.1. Any U (co)-invariant probability measure on H is supported by Hreg.

Proof. First, let M be an ergodi@/ (co)-invariant probability measure oH. By Ver-
shik’s ergodic theorem (see [OV, Theorem 3.2}),is concentrated on the set of those
X € H for which the orbital measures Qus") (X)) weakly converge ta/. By Propo-
sition 4.3, this set consists of exactly thaséor which the limits (5.1) exist and coincide
with the parameters @i given in Proposition 4.1. All such matricésbelong toH;eg, SO
that M is supported bydreq. Thus, the claim of the theorem holds for ergodic measures.
Now let M be an arbitrarylU (co)-invariant probability measure off and P be
its spectral measure. Apply (4.2) by taking Ashe characteristic function of the set
Hyeg C H. We have(f, M“) = 1 for anyew € Q. SinceP is a probability measure, we
get from (4.2) that f, M) = 1. Therefore Hegq is of full measure with respect .
O
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Letw: Hreg— 2 denote the map sendirdg € Hyeg to the pointw with the coordi-
nates defined by (5.1). This is a Borel map, because it is a pointwise limit of a sequence
of continuous maps.

Theorem 5.2. Let M be a U (oco)-invariant probability measure on H and let M |y,
be the restriction of M to Hyeg, which is correctly defined by Theorem 5.1.

The pushforward of the measure M | ., under the Borel map  introduced above
coincides with the spectral measure P.

Proof. Let F be an arbitrary bounded Borel function éhand f be its pullback on
Hreg. We must prove thatf, M) = (F, P).
By definition of P, we have

(fi M) = /Q(f, M®)P(dw).

On the other hand, we know that for any € 2, the measuré/® is supported by
7 w) C Hyeg(see the beginning of the proof of Theorem 5.1). Finally, by the definition
of £, we havef | -1,= F(w), sothat(f, M*) = F(w).

Therefore, the integral in the right-hand side is equdlRpoP). O

ForN =1,2,...,letay : H— Q c R?°*2 denote the composition of the maps
H> X AM(X)eSyandSy 31— ({a;" M)}, {a; W)}, c(h), d() € Q.

Theorem 5.3. Let M bea U (co)-invariant probability measureon H, P beits spectral
measure, and Py be the pushforward of M under themap 7y : H — € defined above.
Then Py weakly convergeto P as N — oo. That is, for any continuous bounded
function F on 2,
lim ("L
N—o0

(F, P).

Proof. By Theorem 5.1Heg C H is of full measure with respect #, so that we may
view (Hreg, M) as a probability space.
We have
ny(M) = Py, T(M)=P.

Indeed, the first equality follows from the definition Bf and the fact thaHegq is
of full measure, and the second equality is given by Theorem 5.2.

Next, by the very definition off;eq, We havery(t) — n(r) for anyt € Hieg as
N — oo, where the limit is taken with respect to the coordinatewise convergence on
the spac&®?>°*2, SinceF is continuous, we geli (y (1)) — F(r(¢)). Thatis,F oy
converges td o r at any point € Hreg. Since these functions are uniformly bounded,
it follows that

/ (Fomy)t)M(dt) — (Fom)(t)M(dt).
Hreg Hreg
Sincery (M) = Py andn (M) = P,
/ (Fomn)®)M(dt) = (F, Py), / (Fom)(®)M(dt) = (F, P).
Hreg erQ

ConsequentlyF, Py) — (F, P). O
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6. The Main Result

Lets € C, %is > —3. Consider the Hua—Pickrell measuné”. Let P®) be its spectral

measure an®®) be the corresponding point processikf see (0.8).
In this section we prove the following theorem which is our main result.

Theorem 6.1. The correlation functions of the process P*) exist and coincide with the
limit correlation functions from Theorem 2.1.

LetX range oveHeg. Recallthatin Sect. 5 we attachedfdwo monotone sequences
{oci+(X)}, {; (X)} and also, forany = 1,2, ..., two monotone sequences

lafy(X) =af N XN} e y(X) =a; ANV X))
From these data we form point configurations
CX) ={of XN u{-a; (X)), Cn(X) = {a]y (X} U {—a (X))},

where we omit the zero coordinates.

Let M be aU (co)-invariant probability measure . We restrictM to Hreg, Which
is a subset of full measure, and vieWieq, M) as a probability space. Then any quantity
depending orX becomes a random variable.

Let P be the spectral measure &f and letPy be the finite—dimensional measures
defined in Theorem 5.3. Recall thBf;'s approximateP asN — oo.

LetPy andP be the point processes & corresponding t@y and P, respectively.
We may viewPy andP as the random point configuratiofig (X) andC(X), whereX

is viewed as the point of the probability spadéeg, M).

By p,EN) andp, we denote thé™ correlation measures of the procesgasandP,

respectively. Note that the very existence of the measprésnot evident.
For a compact set C R* we set

Nan(X) =CardCy(X)NA),  Na(X) = CardC(X) N A).

These are random variables.
We know that for any fixe& and foranyindex =1, 2, ... ,afN (X) tendstmii(X)

asN — oo. We would like to conclude from this thaﬁN) converges tg; asN — oc.
The next lemma says that, under a reasonable technical assumption, this is indeed true.

Lemma 6.2. Assumethat for any compact set A C R* thereexist uniformin N estimates
BN, y1<C,  1=12,...,

where the symbol E stands for the expectation.

Thenforanyk =1, 2, ..., the correlation measure p; exists and coincides with the
weak limit of the measures p,EN) as N — oo. Thelimit is understood in the following

sense: for any continuous compactly supported function F on (R*)*,

lim (F, o™y = (F, p1).
N%O( or ) =A{F, pr)
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Proof. Fix a continuous compactly supported functiBon (R*)X. It will be convenient
to assume thak' is nonnegative (this does not mean any loss of generality). Introduce
random variableg and fy as follows:

fO= Y FG@u...xw, fnX)= Y F(Gi....x). (61

X1,...,x, €C(X) X1,..., Xk €CN (X)

where the sums are taken over ordetedples of points with pairwise distinct labels.
Any such sum is actually finite becaugds compactly supported and the point config-
urations are locally finite.

By the definition of the correlation measures,

(F,p) =EL[f],  (F,p") = Elfy].

The correlation measug, exists ifE[ f] is finite for any f as above, see, e.g., [Len].
Thus, we have to prove th&f fy] — E[f] < co asN — oo. By a general theorem
(see [Shir, Ch. Il, 86, Theorem 4]), it suffices to check the following two conditions:
Condition 1. fy(X) — f(X) foranyX € Hyeg.
Condition 2. The random variablegy are uniformly integrable, that is,

sup/ INXO)M(@dX) - 0, asc— +oo.
N J{X|fn(X)=c)

Let us check Condition 1. This condition does not dependihnit is a simple
consequence of the regularity property. Indeed, let uXfik Hyeg. For anye > 0 set
R? = R\ (—¢, £). Chooses so small that the functiof¥ is supported byR?®)X. Fix j
so large thatyj[(X) <s. Sinceaji’N(X) — a7 (X), we havezy, . < ¢ for all N large
enough. By monotonicity, the same inequality holds for the indjcesl, j + 2, ... as
well.

Recall that each point € Cy(X) has the formnw = a;rN(X) orx = —a; y(X)
for a certain index. It follows that in the sums (6.1), only the points with indices
i =1,...,j — 1 may really contribute. Then, using the continuityfofve conclude
that fy(X) — f(X).

Let us check Condition 2. Choose a compact4stuch thatF is supported byi¥.
The supremum of (let us denote it by sup) is finite. We have

fn(X) < SUPF-Na ny(X)Nan(X)=1) ... (Nan(X)—k+1) < SUPF-(Na n (X)X

Therefore, the random variablgs are uniformly integrable provided that this is true
for the random variables/\fA,N)k for any fixedk. But the latter fact follows from the
assumption of the theorem and Chebyshev’s inequality.

Assume thaPy is a determinantal process given by a symmetric nonnegative integral
operatorK y onR*, That is, the correlation functions have determinantal form with the
kernelKy. For a compact sed C R* we denote byK 4 y the restriction of the kernel
Ky to A.

Lemma 6.3. Assume that for any compact set A C R* we have an estimatetr K4 x <
const where the constant does not depend on N. Then the assumption of Lemma 6.2 is
satisfied.
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Proof. Instead of ordinary moments we can deal with factorial moments. Given
1,2, ..., thel™ factorial moment ofV4 y is equal to

o™ (aly = / etk an (xi, )z et d = 1A K )
A

SinceK 4 n is nonnegative, we have

tr(A Kan) <@ Kan) = (tr(Kan).

This concludes the proof, because we have a uniform bound for the traces by the as-
sumption. O

Proof of Theorem 6.1. Take M = m() and denote the correlation measwié” by
p,E‘Y’N). The latter measure is calculated in Sect. 1: it coincides with a scaling éftihe

correlation functiorp,(j’N) (x1, ..., xx) forthe Nth pseudo-Jacobi ensemble. In terms of
the corresponding correlation functions,

p,ES’N)(xl, e Xp) = Nkp,(:’N)(le, .., Nxp), X1, ..., x; € R,
By Theorem 2.1, foreach= 1, 2, ..., there exists a limit

. s,N s,
lim oM (eq, ) = p0 ™ (L ), (6.2)
N—o0

uniformly on compact subsets {f®R*)*. Moreover, the correlation functions have de-
terminantal form. It follows that the assumptions of Lemma 6.3 are satisfied (indeed,

tr K4 n is simply the integral of the first correlation functi@é‘“m(x) over A). Con-
sequently, we may apply Lemma 6.2. By this lemma, the correlation measures of the

process®) existand coincide with limits of the measures ™’ asN — oc. Therefore,

they are nothing else than the measurjéé’o) defined by the limit correlation functions
(6.2). O

7. Vanishing of the Parameter y»

In this section we show that the parametgmhich is responsible for the presence of
the Gaussian component vanishes for the meas(ffe

We start with a general result concerning an absttagio)-invariant probability
measureM. As in Sect. 6, lefPy andP denote the corresponding point processes on
R*, and Iet,o{N) andp; be their first correlation measures. We assumadﬁ\é{tapproach
p1, @SN — oo, in the sense of Lemma 6.2:

(G, py") —> (G, p1)  foranyG e Co(R"), (7.1)

whereCo(R*) denotes the space of continuous functions with compact suppdtt.on
In Sect. 6 we verified that the condition (7.1) holds wiiéns a Hua—Pickrell measure.
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Proposition 7.1. Let M satisfy the condition (7.1). Further, assume that
&
Iimof xzpiN)(dx) =0 uniformly in N. (7.2
e—0J_¢

Then the spectral measure P of the measure M is concentrated on the subset y» = 0
of Q.

Comment. The density of the measur® may have a singularity at 0. For instance,
whenM = m @, the density function is proportional tg42. The condition (7.2) means

that the densities of the measup{é”, multiplied byx?, are uniformly integrable about
x =0.

We need a simple lemma.

Lemma 7.2. Assume we are given sequences

+ + — - _
ajy=azy=--=0, ajy = ayy =--=0, N=12 ...,
such that N N
Nlinooai’Nzai’ i=12, ...

and

o

: + 32 —\2

Nlinoo .El((ai’N) + (a; y)9) =8 < +o0, N=12....
i=

Further, let F(x) be an arbitrary continuous function on R such that

F(x)=x> for|x| <e

[}
withacertaine > 0. Sety» = § — Y ((&;h)? + (e )?) and note that y, > 0.

i=

Then we have
Jim > (Flafy) + F=aiy)) = 3 J(F@) + F(=a)) + y2.
i=1 i=1

Proof. Fix k so large thaty” ; < &, o, < e. Thena’,, y < &, a4y < € for
sufficiently largeN and, moreoveul*N < ¢,a; y < eforalli > k+1 by monotonicity.
Likewise,oz;r <e¢e,a; <efori>k+ 1. Therefore,

F(xaiy) = (aify)? (forlargeN), F(+o;) = (o), i>k+1

It follows that

[ee) k 00
Y (F@hy) + F(=aiy) =Y (Flafy) + F(=a ) + Y (@)% + (@ )
i=1 i=1 i=k+1

and similarly

00 k o0
Y (F)+ F(=a;) =) (Fle)+ F(—e; )+ Y ()% + @)

i=1 i=1 i=k+1
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As N — oo, we have

k k

Y (Flafy) + F(=aiy) > Y (F(o}) + F(=o;)).

i=1 i=1

by continuity of F, and

3 (@2 + @D = Y (@2 + @)D + 2,

i=k+1 i=k+1
by the assumption of the lemma. This conludes the proof.

Proof of Proposition 7.1. Let X range ovelHreg. Recall the notatioan(X ) andoe,.i(X )
introduced in Sect. 5 and in the beginning of Sect. 6.)€K) denote the value of the
parametery, at the pointr (X) € Q, wherer: Heg — 2 is the projection defined
in Sect. 5. Our aim is to prove thgt(X) = 0 almost everywhere with respect to the
measure. This implies the claim of the proposition.

Fix a continuous function(x) > 0, with compact support o and such that
F(x) = x2 near 0. For any € Heg Set

on(X) =Y (F(a;jfy (X)) + F(—a; (X)),
i=1

o0
Poo(X) = Y (Flejf (X)) + F(—e; (X))).
i=1
Applying Lemma 7.2 to the sequenags, = a;y(X) anda;" = " (X), we get
PN (X) = @oo(X) + y2(X), X € Hreg.
The functionsey (X), ¢oo (X), y2(X) are all nonnegative Borel functions. By Fatou’s

lemma (see, e.g., [Shir, Ch. I, 86, Theorem 2]),

0 (X)M(dX) + / Y2 (X)M(dX).

lim inf oN(X)M(dX) > /
X €Hreg

N—>00 JteTreq X€Hreg

Recall that in the beginning of Sect. 6 we introduced the point configuratip(¥)
associated with an arbitra®y € Hyeg. We have

on(X) =) (Flajy(X) + F(=a y(X)) = Y F(x),

i=1 xeCy(X)
so that
N
/ on(X)M(dX) = (F, p{™).
X€Hreg

Likewise,
/ Yoo (XIM(AX) = (F, p1).
X€Hreg
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Therefore,

liminf (F, p\™) > (F, p1) + f yo(X)M(dX). (7.3)
N—o0 XEHreg

On the other hand, we will prove that

limsup(F, p{V) < (F, p1). (7.4

N—oo

Itwill follow from (7.3) and (7.4) thaj»(X) = Ofor M-almostallX, becausg>(X) > 0.
To prove (7.4) we represeft(x), for an arbitrarye > 0, in the form

F(x) = Fe(x) + Ge(x),

where 0< F,(x) < x2, suppF, C [—¢,¢], F.(x)=x2near0, G, e Co(R*).

Choosings small enough, we can maké,, piN)> arbitrarily small, uniformly innN,

by virtue of the assumption (7.2). As fo6 ., ,oiN)), it tends to(G., p1), by (7.1). This

concludes the proof of Proposition 7.10

Theorem 7.3. The spectral measure of the measure m(? is concentrated on the subset
y2 = 0of Q.

Proof. By virtue of Proposition 7.1, it suffices to verify the condition (7.2). To do this,
we use the fact that in our case the first correlation funqbﬁ:’?ﬁ x) = piO’N)(x) has a
very simple expression:
W= N

The simplest way to check (7.5) is to use the relationship to\ttleDyson ensemble,
where the first correlation function is identically equaifo

From (7.5) and the trivial estimaﬁéﬁ% < 1 we readily conclude that the condition
(7.2) is indeed satisfied.o

(7.5)

We expect that Theorem 7.3 holds for any Hua—Pickrell measure.

8. Remarksand Problems

Orthogonal polynomials on the circle. In this paper we deal with the pseudo-Jacobi
ensemble (1.1) defined by the weight function (1.4) on the real line. Instead of this, one
could work with the orthogonal polynomial ensemble (0.11). Then we need orthogonal
polynomials on the unit circl& with the weight function

A+ uw)’ A+ a)* =21+ cosp)® e,

whereu = e € T, —m <@ <m, s =a +ib.

For reals, the weight function depends only dtw = cosp € [—1, 1]. Then one can

use a general trick described in [Sz, §11.5]. It allows one to express the polynomials on
T in terms of two families of orthogonal polynomials on the inteijval, 1], which, in

our case, turn out to be certain Jacobi polynomials. This makes it possible to evaluate
the Christoffel-Darboux kernel and then pass to a limiiNas> oo, which leads to
another derivation of Theorem 2.1 (for redl Perhaps, such an approach can be used
for nonreal values of as well.
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PainlevéV. Consider a kernel of the form

K x") = P(x )Q(x;:xQ//(x )P (x )’

where the function® and Q satisfy a differential equation of the form

d [P _ .. [PG)
dx [Q(x)} =4 [Q(x)]

with a traceless rational>2 matrix A(x). Let J be a union of intervals inside the
real line. Then the Fredholm determinant det K|;) satisfies a certain system of
partial differential equations with the endpoints.bfegarded as variables, see [TW].
In particular, when only one endpoint is moving the corresponding ordinary differential
equation often happens to be one of the Painlevé equations.

The kernelk > introduced in Theorem 2.1 is not an exception. In particular, the
function

dindet(1— K¢ 1, )

, t>0,
dt

ot)=t

satisfies ar-version of the Painlevé V equation:
—(to")? = 2(to’ — o) + ()2 +iG — $)0')? — (6))%(0’ — 2is) (0’ + 2i5),

see [BD] for details. Note that the approach of [BD] is very different from the machinery
developed in [TW].

Infinitemeasures. The construction of the Hua—Pickrell measurés, %ts > —1, given

in Sect. 3 can be extended to arbitrary complex valuas Bbwever, wheris < —%,

m'®) ceases to be a probability measure and becomes an infinite measure. Its pushforward
m®N) under the projectioy : H — H(N) makes sense only for sufficiently large
values of N. Specifically, N must be strictly greater thar2%s. Then the measure
m©N) is defined, within a constant factor not depending\arby formula (3.1), where

the factor consy is subject to the recurrence relation

aVT'(s +5+ N)

v -1 25+542N=2 (s + N)['(5 + N)

In other words, even if the measure$ ") are infinite, their projective limit:®) =
lim m V) still exists. The reason is that the fibers of the projechiiN) — H(N —1)
have finite mass with respect to the conditional measures providel thédrge enough.

Probleml. Define and study the spectral decomposition of the infinite measures m ),
Rs < —5.
=72
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Representation-theoretic meaning of U (co)-invariant measureson H. Let G(N) =
U(N) x H(N) be the semidirect product of the grodfN) acting on the additive
groupH (N) by conjugations. Similarly, set

G = U(c0) x H(c0) = lim G(N).

The groupsG (N) are examples of the so-called Cartan motion groups, and the group
is an infinite—dimensional version of the groupén).

A unitary representatiofi of the groupG is calledspherical if it possesses a cyclic
unit vectoré which is invariant with respect to the subgroligoo) ¢ G. There is a
one-to-one correspondence between the classes of equivalence of th@ pajrand
the U (oo)-invariant probability Borel measurdg on H. Given M, the representation
T can be realized in the Hilbert spaté(H, M). Elementd/ € U(co) andA € H (c0)
act on functionsf € L2(H, M) as follows:

(TW)YHX) = FWUTXU), (TAHX) =" D fFX),  XeH.

In this realization§¢ is the constant function 1.

Consider the matrix coefficiert(g) = (T (g)&, &), called thespherical function.
Sinceg is U (co)-biinvariant, the functio |y (o0, the restriction ofp to the subgroup
H(o0) C G, is aU(oco)-invariant positive definite normalized function @h(co). It
follows thaty |#(0) coincides with the Fourier transform (4.1) of th&oo)-invariant
probability Borel measurd/.

Underthe correspondenc€g, £) <> M, ergodicity ofM is equivalentto irreducibility
of T. Note also that for an irreducible spherical representafigtihe vectok is unique
(within a scalar multiple), so that the functignis an invariant off'.

Thus, irreducible spherical representations of the grGug U (co) X H (co) are
parametrized by ergodic measuresinFor more details about representations of the
groupgG, see [OI2,Pi2].

Thegraph of spectra. Recall that bySy we denoted the subset®f¥ formed by vectors
A with weakly decreasing coordinates. oE Sy _1 andi € Sy we writep < A if the
coordinates of. andyu interlace:

Al> 1> A2 > > AN_1> UN-1 > AN.
We set
[T wi—np/ I Ga—A), ifu=<a,
an-1.n (i, &) = § 1<i<j<N-1 1<k<I<N
0, otherwise.

Note that for any. € Sy,
/S gN-1N(u, A)dp =1, du=dpi...duy_1.
N-1

Let M be an arbitrary/ (oo)-invariant probability Borel measure aiig be the radial
part of the measurey (M) (this is a probability measure dyy). Then the measures
P1, P, ... satisfy the following consistency relation:

/ gn-1.n (1, A) Py (d2) = the density ofPy_1 atu.
Sn
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Conversely, if a sequendéy } of probability measures satisfies the above consistency
relation for each pair of adjacentindices then this sequence comes from a certain measure
M.

Introduce the sef formed by all infinite sequences

t:(r(l) <@ < ..., M) € Sy.

Consider the probability measur@son 7~ with the following property: for eactv =
2,3,..., the probability thatt V=1 lies in an infinitesimal regiom/x about a point
w € Sy_1 provided that ™) = A, isgy_1. 5 (1, A)d . Any such measurg is uniquely
determined by a sequentRy } satisfying the consistency relations. Thus, the measures
P are in one-to-one correspondence with theo)-invariant probability measured
onH.

We call the collection of se{§ y } together with the functiongy _1 v (1, A) thegraph
of spectra. Thistermwas suggested by Sergei Kerov. According to the philosophy of [VK]
we call the functiong;y_1 x (1, 1) the cotransition functions of the graph of spectra.
Here the term “graph” should not be understood literally, it only hints at a similarity
with some “branching graphs” like the Young graph [VK] or the Gelfand—Tsetlin graph
[BOJ. For instance, the séf is an analogue of the set of paths in a branching graph. It
can be shown that the graph of spectra can be obtained from the Gelfand-Tsetlin graph
via a scaling limit procedure.

Projective limit of the spaces U(N). There exist projections (not group homomor-
phisms!)U(N) — U(N — 1) which correspond, via the Cayley transform, to the
projectionsH(N) — H(N — 1). This allows one to form the projective limit space
U= L@ U(N). The spacél admits a natural two-sided action of the grduipo). The

spaceH is embedded intél, and the measures® are transferred ttl via this embed-

ding. The resulting measures fdrare quasiinvariant with respect to the two-sided action
of U (oc0). This makes it possible to construct analogs of the biregular representation for
the groupU (o0), see [Ner2, 0lI5] for more details.

Analogy with the infinite symmetric group and the Poisson-Dirichlet distributions. The
construction of the spadé mentioned above is parallel to the construction of the space
lim S(n) of virtual permutations, see [KOV]. Hetn) denotes the symmetric group of

egreen. The family of the Hua—Pickrell measures should be viewed as a counterpart
of a family {u,};~o Of probability measures on the space of virtual permutations, see
[KOV]. The Hua—Pickrell measures play the same role in harmonic analysis on the group
U (00) as the measures, do in harmonic analysis on the infinite symmetric group
S(c0). The decomposition of the measupeson ergodic components is described by
the Poisson-Dirichlet distributions. These are remarkable probability measures on an
infinite—dimensional simplex (see [Kin]), which were studied by many authors. Thus,
the spectral measure®® may be viewed as counterparts of the Poisson—Dirichlet
distributions.

Other examples of group actions. The action of the group/ (co) on the spacéf exam-
ined in the present paper is connected with a particular series of flat symmetric spaces
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{G(N)/U(N) = H(N)}n=1,2... which in turn is related to a series of compact sym-
metric spaces: the unitary groupgN) with the action ofU (N) x U(N). There exist

10 infinite series of compact symmetric spaces and related flat spaces. With each such
series, one can associate an infinite—dimensional group action on a space of infinite ma-
trices (see, e.g., [Pi2]) and a family of “Hua—Pickrell measures” on that space depending
on a real or complex parameter (see [Ner2]). We expect that the results of the present
paper can be carried over to this more general context.

9. Appendix: Existence and Uniqueness of Decomposition on Ergodic
Components

Let M be the set o/ (co)-invariant probability Borel measures d@i. We equipdt
with the Borel structure generated by the functions of the fdfm> (F, M), whereM
ranges ove?)t and F is an arbitrary bounded Borel function éh.

Let the symbol ek . .) denote the set of extreme points of a convex set. Recall that
elements of et are called ergodic measures.

Theorem 9.1. (i) ex9t isa Borel subsetin M.
(i) For any M € 91 there exists a probability Borel measure P on ext representing
M,ie,

(F, M) =/ (F, M)P(dM) 9.1
Meex

for any bounded Borel function F on H.
(iii) The measure P isunique.

There exist different ways to prove such results, in particular:

(a) Representation—theoretic techniques.

(b) Dynkin’s theorem about boundaries of general Markov processes, see [Dyn] and the
references therein.

(c) Choquet's theorem about existence and uniqueness of barycentric decomposition in
compact metrizable convex sets which are “Choquet simplices”, see [Ph].

In (a) we reduce the problem to that of decomposing a spherical representation of
the Cartan motion grour (see Sect. 8 above). Here we have to apply the classical
desintegration theory for representations of locally compact groupsCéralgebras
(see [Dix]) to groups which are not locally compact but are inductive limits of locally
compact groups (see [Ol1, §3.6]). A crucial fact is th@t U (c0)) is a Gelfand pair in
the sense of [Ol4, 8§6].

In (b) one should use the graph of spectra (see Sect. 8) to reduce Theorem 9.1 to
Dynkin’s theorem.

We follow (c) below.

Proposition 9.2 (Choquet’s theorems). Let 21 be a convex subset of a locally convex
topological vector space E. Assume that 2l is compact and metrizable.

(i) ex2AisaBorel subset of 2l (more precisely, a G5 subset).
(i) For any a € 2 there exists a probability Borel measure P on ex2l representing a,
ie,

fla)= / S (b)P(db) (9.2)
beex

for any continuous linear functional f on E.
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(iii) Themeasure P isuniqueif and only if the cone spanned by 2l isa lattice.

Proof. Claim (i) is an elementary fact, see [Ph, Prop. 1.3]. Claims (ii) and (iii) are
Choquet’s theorems, see [Ph, Sects. 3 and f].

We need one more general result.

Proposition 9.3. For any group action onaBorel space, the cone of finite Borel measures
isalattice.

Proof. See [Ph, Sect. 10].0

By Proposition 9.3, the sébt satisfies the lattice condition from the last part of
Proposition 9.2. However, there is no apparent way to ri&ike compact space, which
is the major obstacle to applying Choquet's theorems. We bypass it by embégiding
into a larger convex set to which Choquet's theorems can be applied. Here we use an
idea borrowed from the proof of Theorem 22.10 in [OI3] (see also Sect. 6 in [OKOI]).

Proof of Theorem 9.1. For N = 1,2, ... let 9y denote the set o/ (V)-invariant
probability Borel measures oH (N), and let)ty be the larger set formed by (N)-
invariant finite Borel measures of total mass less or equal to 1.

Further, letCo(H (N)) be the Banach space of continuous functiongiv) van-
ishing at infinity, and le y denote its dual space equipped with the weak star topology.
Using the natural pairing between functions fr@fa(H (N)) and finite measures, we
embedMiy into Ey. Note that)iy is a compact metrizable space with respect to the
topology ofE .

ForN = 2,3..., letOy_1 y denote the projectiodd (N) — H(N — 1) which
consists in removing th&/™™ row and column from av x N matrix. This projection
sends)ty to My_1 and also send¥iy to Niy_1. Moreover, M coincides with the
projective limit space(jr@ﬁ;v.

Note that the mapy_1 n : 971,\, — 97?/\/71 is not continuous. The reason is that the
projectionH(N) — H(N — 1) is not a proper map. (To illustrate this phenomenon,
consider the projection of the plafi® onto its first coordinate axis. Take the Dirac
measure at a point on the second coordinate axis and move the point to infinity. Then
the measure will weakly converge to the zero measure, while its projection will remain
fixed.) " "

However, the mapy_1y : My — My_1 possesses a weaker property: it is
semicontinuous from below. (This property does not rely on the specific character of
the projectionH (N) — H(N — 1), it holds for any continuous map between locally
compact spaces.) This implies that for avy= 2, 3, ... the set

Av_1ny ={(My_1, My) € My_1 x My | My_1 > On—1,n(Mp)} 9.9

is closed.

It is convenient to allow the indeX in (9.3) to take the valu¢l}. To this end we
define H (0) as a one-point set. Thek 1 projectsH (1) onto a single point, the vector
spacek is identified withRR, 55?0 is the interval0, 1] € Eq, andMig is identified with
1.

Next, we take a8l the subset oEp x Ey x ... formed by infinite sequences=
(Mo, M1, ...) such thatMg = 1, My € My for N = 1,2,..., and for anyN =
1,2, ..., the pair(My—_1, My) belongs to the set y_1 y defined in (9.3). We remark
that2( is a convex compact metrizable set.
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ForanyN =0, 1, 2,..., we define an embedding My — 2 as follows:

My >M—a= (Mg, M1,..., My,0,0,...),
My =M, Mi_1=06_1;(M;), i=N,..., L

We also consider the embedding9t — 2 which comes from the identification oft
with lim 9y

Now, we make the following crucial observation:

(*) Any element a € 2l can be written as a convex combination of certain elements
ay € t(My) and an element a., € ((IN). Moreover, this representation is unique.

By Proposition 9.3, for any, the cone inEy spanned bylty is a lattice, and the
same is also true fapt. Together with (*), this implies that the cone generate@itiyg a
lattice. Thus, the séX satisfies all the assumptions of Choquet's theorem. Applying this
theorem, we get that any poimte 2( is uniquely represented by a probability measure
P on ex.

On the other hand, (*) implies the following fact:

(**) ex 2l isthe digoint union of the sets ((exM), «(exMp), t(exMy), ... .

Since exXl is a Borel set by Choquet’s theorem, and since all theigexty) are
evidently Borel sets, we conclude from (**) thaex9t) c 2( is a Borel set.

Next, we note that the Borel structure 8\ coming from its embedding int@(
coincides with its initial Borel structure. Indeed, both structures are defined by functions
on <M of the formM +— (F, M), the only difference is in the choice of a clags}
of functions on the spacH. In the latter caseF may be an arbitrary bounded Borel
function, while in the former casE belongs to the smaller class of cylindrical functions
of the formG o Oy with G € Co(H(N)), N = 1, 2, .... However, both classes clearly
generate the same Borel structure.

This proves claim (i) of Theorem 9.1.

Further, it follows from (**) and the definition of the sét that if « € 9 then
its representing measur is concentrated onext) c exA. Comparing (9.1) and
(9.2) we get that (9.1) holds for any cylindrical function of the fofim= G o 6y with
G € Co(H(N)).Butthenitalso holds for any bounded Borel functiontyas required.

O

Recall that we have an explicit description of the sef)exit is parametrized by
the space? (Proposition 4.1). The next claim, together with Theorem 9.1, is used in
Proposition 4.4 above:

Proposition 9.4. The “ abstract” Borel structure on ex9t, which comes from the stan-
dard Borel structureson 9, coincideswith the* concrete” Borel structure, which comes
from the natural Borel structure on €2 via the bijection ex9t < Q.

Proof. Let us show that for any bounded Borel functignthe expressionf, M) is

a Borel function inw € . Indeed, it suffices to check this claim for functiofisof
the form f(X) = ¢ 'A% whereA is an arbitrary fixed matrix fronH (co). Further,
without loss of generality we may assume thas a diagonal matrix, and then the claim
follows from Proposition 4.1.

Consider the correspondenceX@x< Q2 provided by Proposition 4.1. We have just
proved that? — ext is a Borel map. Since botfe and exJt are standard Borel
spaces, we may apply a general result (see [Ma, Theorem 3.2]) to conclude that our
correspondence is an isomorphism of Borel spaces.



122 A. Borodin, G. Olshanski

Acknowledgements. At various stages of the work we discussed the subject with Sergei Kerov, Yuri Neretin,
and Anatoly Vershik. We are grateful to them for valuable remarks. The present work was completed during our
stay at the Erwin Schrédinger International Institute for Mathematical Physics in July 2000, in the framework
of the semester “Representation Theory 2000” organized by Victor Kac and Alexandre Kirillov. We thank
them for the invitation and the administration of ESI for warm hospitality. We also thank Peter Forrester for
drawing our attention to [WF] and [Br]. The second author (G. O.) was supported by the Russian Foundation
for Basic Research, grant 98-01-00303.

References

[A] Askey, R.: An integral of Ramanujan and orthogonal polynomials. J. Indian Math.8B027-36
(1987)

[BD] Borodin, A. and Deift, P.: In preparation

[BO] Borodin, A. and Olshanski, G.: Harmonic analysis on the infinite—dimensional unitary group and
determinantal point processes. In preparation

[Br] Brouwer, P.W.: Generalized circular ensemble of scattering matrices for a chaotic cavity with nonideal
leads. Physical Review B1,16878-16884 (1995); cond-mat/9501825

[DVJ] Daley, D.J., Vere-Jones, DAn introduction to the theory of point processes. Springer series in
statistics, Berlin—Heidelberg—New York: Springer, 1988

[Dix]  Dixmier, D.: Les C*-algébres et leurs représentations. Paris: Gauthier-Villars, 1969

[Dyn] Dynkin, E.B.: Sufficient statistics and extreme points. Ann. ProbaB05—730 (1978)

[Dys] Dyson, F.J.: Statistical theory of the energy levels of complex systems |, II, Ill. J. Math. Bhys.
140-156, 157-165, 166—175 (1962)

[Er] Erdelyi, A. (ed.):Higher transcendental functions, Vol. 1. New York: Mc Graw—Hill, 1953

[Ga] Gantmakher, F.RThe theory of matrices. Russian edition: Moscow: Nauka, 1988; English edition:
New York: Chelsea Publ. Co., 1959

[Hua] Hua, L.K.:Harmonic analysis of functions of several complex variables in the classical domains.
Chinese edition: Peking: Science Press, 1958; Russian edition: Moscow: IL, 1959; English edition:
Transl. Math. Monograph8, Providence; RI: Amer. Math. Soc., 1963

[Ka] Kakutani, S.: On equivalence of infinite product measures. Ann. of M&d8, 214-224 (1948)

[Kin]  Kingman, J.F.C.Poisson processes. Oxford; Oxford Univ. Press, 1993

[KOV] Kerov, S., Olshanski, G., Vershik, A.: Harmonic analysis on the infinite symmetric group. A defor-
mation of the regular representation. Comptes Rend. Acad. Sci. Paris,336y.173-778 (1993);
detailed version in preparation

[Len] Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics.
Commun. Math. Phys30, 35-44 (1973)

[Lesl] Lesky, P.A.: Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpoly-
nomen. Z. angew. Math. Mechi6, (3), 181-184 (1996)

[Les2] Lesky, P.A.EineCharakterisierung der kontinuierlichen und diskreten klassischen Orthogonal poly-
nome. Preprint 98-12, Mathematisches Institut A, Universitat Stuttgart, 1998

[Ma]  Mackey, G.W.: Borel structure in groups and their duals. Trans. Amer. Math85at34-165 (1957)

[Me]  Mehta, M.L.: Random matrices. 2nd edition. New York: Academic Press, 1991

[NW] Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthog-
onal polynomials. J. Phys. Soc. Jaj§in (10), 3298-3322 (1991)

[Nerl] Neretin,Yu.A.: Separation of spectra in analysis of Berezin kernel. Func. Anal.24(8), 197-207
(2000), math/9906075

[Ner2] Neretin, Yu.A.: Hua type integrals over unitary groups and over projective limits of unitary groups.
math-ph/0010014

[NU]  Nikiforov, A.F. and Uvarov, V.B.: Secial functions of mathematical physics. Russian edition:
Moscow: Nauka, 1984; English edition: Basel-Boston, MA: Birkhauser Verlag, 1988

[OkOI] Okounkov, A. and Olshanski, G.: Asymptotics of Jack polynomials as the number of variables goes
to infinity. Internat. Math. Res. NoticeS, 641-682 (1998)

[Ol1] Olshanski, G.I.: Unitary representations of the infinite—dimensional classical gi@gpsoo),
SO(p, o0), Sp(p, oo) and the corresponding motion groups. Funct. Anal. Appl185-195 (1979)

[OI2] Olshanski, G.l.. Method of holomorphic extensions in the representation theory of infinite—
dimensional classical groups. Funct. Anal. A4, (4), 273—-285 (1989)



Infinite Random Matrices and Ergodic Measures 123

[013]

[ol4]

[ols]

[ov]

[Ph]
[Pi1]

[Pi2]
[Ro]
[Shim]
[Shir]
[So]
[Sz]
[Tw]
[VK]

[WF]

Olshanski, G.I..Unitary representations of infinite-dimensional pairs (G, K) and the formalism of

R. Howe. Representation of Lie Groups and Related Topics, A.M. Vershik and D.P. Zhelobenko, eds.,
Advanced Studies in Contemporary MathNew York, etc.: Gordon and Breach Science Publishers,
1990, pp. 269-463

Olshanski, G.1..0n semigroups related to infinite-dimensional groups. In: Topics in representation
theory, A.A. Kirillov, ed., Advances in Soviet Math., VA@. Providence, R.l.: Am. Math. Soc. 1991,
67-101

Olshanski, G.I.:The problem of harmonic analysis on the infinite-dimensional unitary group. In
preparation

Olshanski, G. and Vershik, AErgodic unitary invariant measures on the space of infinite Hermi-

tian matrices. Contemporary Mathematical Physics, R. L. Dobrushin, R. A. Minlos, M. A. Shubin,
A. M. Vershik (eds.) American Mathematical Society Translations, Ser. 2, \ol. 175, Providence, RI:
Amer. Math. Soc., 1996, pp. 137-175

Phelps, R.R.Lectures on Choquet’s theorem. Van Nostrand, 1966

Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Func.7@r{a), 323-356
(1987)

Pickrell, D.: Mackey analysis of infinite classical motion groups. Pacific J. M8, 139-166
(1991)

Romanovski, V.: Sur quelques classes nouvelles de polyndmes orthogonaux. C. R. Acad. Sci. Paris
188, 1023-1025 (1928)

Shimomura, H.: On the construction of invariant measure over the orthogonal group on the Hilbert
space by the method of Cayley transformation. Publ. RIMS Kyoto W@iv413-424 (1974/75)
Shiryaev, A.N.:Probability. Russian edition: Moscow: Nauka, 1980; English edition: New York:
Springer-Verlag, 1996

Soshnikov, A.: Determinantal random point fields. Russian Math. Su¥&y823-975 (2000),
math/0002099

Szeg0, G.Orthogonal polynomials. AMS Colloquium PublicationXX111. New York: Amer. Math.

Soc., 1959

Tracy, C.and Widom, H.: Fredholm determinants, differential equations and matrix models. Commun.
Math. Phys163, 33-72 (1994)

Vershik, A.M., Kerov, S.V.: Asymptotic theory of characters of the symmetric group. Funct. Anal.
Appl. 15, (4), 246-255 (1981)

Witte, N.S. and Forrester, P.J.: Gap probabilities in the finite and scaled Cauchy random matrix
ensembles. Nonlinearity3, 1965-1986 (2000), math-ph/0009022

Communicated by P. Sarnak



