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Abstract: A model-independent, locally generally covariant formulation of quantum
field theory over four-dimensional, globally hyperbolic spacetimes will be given which
generalizes similar, previous approaches. Here, a generally covariant quantum field the-
ory is an assignment of quantum fields to globally hyperbolic spacetimes with spin-
structure where each quantum field propagates on the spacetime to which it is assigned.
Imposing very natural conditions such as local general covariance, existence of a causal
dynamical law, fixed spinor- or tensor type for all quantum fields of the theory, and
that the quantum field on Minkowski spacetime satisfies the usual conditions, it will be
shown that a spin-statistics theorem holds: If for some of the spacetimes the correspond-
ing quantum field obeys the “wrong” connection between spin and statistics, then all
quantum fields of the theory, on each spacetime, are trivial.

1. Introduction

The spin-statistics theorem of quantum field theory in Minkowski spacetime asserts
that elementary particles with integer spin must obey Bose-statistics (“spacelike com-
mutativity”), while those of half-integer spin must obey Fermi-statistics (“spacelike
anti-commutativity”). Although this behaviour of elementary particles is often taken as
an experimental fact of life, it is remarkable that in quantum field theory such a con-
nection between two at first sight apparently unrelated properties of particles can be
deduced from a few very basic principles: (1) Relativistic covariance, (2) stability of
matter (spectrum condition and existence of a vacuum state), (3) localization properties
of charges and (4) locality (spacelike commutativity of observable quantities).

This deeply rooted connection between the covariance properties of elementary par-
ticles and the behaviour under exchange of their positions has attracted the attention
of numerous researchers in quantum field theory, and has a long history with a fair
number of general and rigorous results. Among the first are the investigations by Pauli
[38] and by Fierz [20] who proved the spin-statistics theorem for quantum fields of
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arbitrary spin obeying linear hyperbolic wave-equations in Minkowski-spacetime. The
first results on the connection between spin and statistics in quantum field theory in a
completely general, model-independent approach (for quantum fields in the Wightman
framework) were then obtained by Burgoyne [11] and by Lüders and Zumino [36]. They
have subsequently been further extended and refined, particularly to cover the situation
of having several fields of different spinor types in a quantum field theory; these theo-
rems are presented in the textbooks by Jost [33], by Streater and Wightman [44], and by
Bogoliubov, Logunov, Todorov and Oksak [5], to which we refer the reader for further
discussion and references.

The Wightman-framework takes as fundamental objects pointlike quantum fields
which may be charge-carrying and need not represent observable quantities. The
operator-algebraic approach to quantum field theory [30,29] uses, instead, observable
quantities as the basic objects describing a theory of elementary particles and, at the
same time, abandons their pointlike localizability. The charge-carrying objects and the
global gauge group are, in this approach, not put in by hand, but can be reconstructed
from the observables together with sets of states distinguished by certain localization
properties (representing the localization properties of the charges in a quantum field
theory). This is a deep result by Doplicher and Roberts [16] arising from the profound
analysis of the charge superselection structure by Doplicher, Haag and Roberts (see [15,
16,29] and references given therein). Spin-statistics theorems have also been derived
in the operator-algebraic approach to quantum field theory, beginning with works by
Epstein [19] and by Doplicher, Haag and Roberts [15] for the case of strictly localizable
charges. Generalizations of spin-statistics theorems to the case of charges that can be
localized in spacelike cones have been obtained by Buchholz and Epstein [10].

A new line of development has been introduced by the Tomita–Takesaki modular
theory of von Neumann algebras [46] and its connection to Lorentz-transformations
which was first established in two articles by Bisognano and Wichmann [4]; see the
recent review by Borchers [6] for more information on this nowadays very important
area of activity in algebraic quantum field theory. In this context, there are spin-statistics
theorems by Guido and Longo [26] and by Kuckert [35] in algebraic quantum field theory
which take a certain geometric action of the Tomita–Takesaki modular objects associated
with the vacuum state and distinguished algebras of quantum field observables as the
starting point.

The results just summarized concern quantum field theory on four-dimensional Min-
kowski spacetime. The present article focusses on quantum field theory on four-dimen-
sional curved spacetimes, but before turning to that topic, we just mention that spin-
statistics connections have also been investigated in other settings. Among those are, in
particular, quantum field theories on flat two-dimensional spacetime and chiral confor-
mal quantum field theories on one-dimensional spacetimes (e.g. the circleS1), see e.g.
the articles [40] for the case of two dimensions and [27] for chiral conformal quantum
field theory. A spin-statistics connection for so-called “topological geons” has been in-
vestigated within a diffeomorphism-covariant approach to quantum gravity [17,2] which
is not directly related to the quantum field theoretical framework. For the sake of com-
pleteness we mention that the spin-statistics connection may also be violated e.g. for
quantum fields having infinitely many components; at this point we refer to [5] and
references cited there.

While the spin-statistics connection is well-explored in quantum field theory on flat
spacetime, offering a wealth of results, there is little analogous to be found so far for
quantum field theory on curved spacetime manifolds. We recall that in quantum field
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theory on curved spacetime one considers quantum fields propagating on a curved,
classically described spacetime background; the standard references on that subject, from
a more mathematical point of view, include [21,52]. Clearly, the reason for lacking results
on the spin-statistics connection in curved spacetime is that the spin-statistics theorem
on Minkowski spacetime rests significantly on Poincaré-covariance which possesses no
counterpart in generic curved spacetimes. In general, the isometry group of a curved
spacetime will even be trivial. Thus it is not at all clear if a spin-statistics theorem can
be established on curved spacetime in a model-independent quantum field theoretical
framework.

The situation is, of course, better when the spacetimes on which quantum fields
propagate possess still large enough isometry groups. Such a setting has been consid-
ered recently in [28]. In that article, the charge superselection theory in the operator-
algebraic approach to quantum field theory has been generalized from the familiar case
of Minkowski spacetime to arbitrary, globally hyperbolic spacetimes. Moreover, if a
spacetime admits a spatial rotation-symmetry with isometry group SO(3), and also a
certain time-space reflection symmetry, then a spin-statistics theorem has been shown
to hold for covariant charges, where the spin is defined via the SU(2)-covering of the
spatial rotation group SO(3). A certain geometric action of Tomita–Takesaki modular
objects associated with an isometry-invariant state and distinguished algebras of observ-
ables has been taken as input. (We refer to [28] for further details and discussion.) Such a
spin-statistics theorem applies e.g. for quantum field theories on Schwarzschild–Kruskal
black hole spacetimes.

However, when one is confronted with the question if there is a connection between
spin and statistics for quantum fields on general spacetime manifolds, one finds scarcely
any results. The only results known to us have been obtained in papers by Parker and
Wang [37], and by Wald [50], and they apply to the case of quantum fields obeying
linear equations of motion. The situation considered in these two papers is, roughly
speaking, as follows: A linear quantum field propagates in the background of a (globally
hyperbolic) spacetime consisting of three regions: A “past” region and a “future” region,
both of which are isomorphic to flat Minkowski spacetime, and an intermediate region
lying between the two (i.e. lying to the future of the “past” region, and to the past of
the “future” region) which is assumed to be non-flat. (Actually, only particular types
of spacetimes of this form are considered in [37] and [50].) Then it is shown in the
mentioned articles that a quantum field of integer spin (≤ 2) obeying a linear wave-
equation won’t satisfy canonical anti-commutation relations in the “future” region if
canonical anti-commutation relations were fulfilled in the “past” region. In other words,
the “wrong” commutation relations are unstable under the dynamical evolution of the
quantum field in the presence of a curved spacetime background. Likewise, a quantum
field of half-integer spin (≤ 3/2) will no longer satisfy canonical commutation relations
in the “future” region if it did so in the “past” region. It should be noted that these
results don’t make reference to states (e.g., the vacuum state in any of the flat regions),
so that it is really the non-trivial spacetime curvature in the intermediate region inducing
dynamical instability of the “wrong” connection between spin and statistics at the level
of the commutation relations. In that respect, the line of argument in [37] and [50] seems
to be restricted to free fields.

Nevertheless, there are some aspects of it which are worth pointing out since they
can be generalized to model-independent quantum field theoretical settings. So one
notes that the quantum field theories in the flat, “past” and “future” regions are “the
same” regarding field content and dynamics; otherwise it would be difficult to formulate
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that their commutation relations are unstable under the dynamical evolution. There is
another aspect in form of the well-posedness of the Cauchy-problem for linear fields in
globally hyperbolic spacetime, entailing that field operators located in the “future” are
dynamically determined by the field operators located in the “past” region. This property
is sometimes referred to asstrong Einstein causality, orexistence of a causal dynamical
law, and not restricted to free field theories. Thus one may extract from the setting
investigated by Parker and Wang, and by Wald, the two following important ingredients
for a quantum field theory on curved spacetime: The parts of the theory restricted to
isomorphic spacetime regions should themselves be isomorphic (i.e., copies of each
other), and there should exist a causal dynamical law. One may then interpret the results
of [37] and [50] as saying that, for a certain class of curved spacetimes and for a certain
class of quantum field theories, the two said ingredients are incompatible with assuming
the “wrong” connection between spin and statistics.

On the basis of the mentioned ingredients, we can now abstract from the setting of
[37] and [50]. We shall consider families{�M}M∈G of quantum field theories indexed
by the elements ofG, the set of all four-dimensional, globally hyperbolic spacetimes
with spin-structuresM. Each�M is a quantum field propagating on the background
spacetimeM, and it is assumed that for eachM, the quantum field�M is of a specific
spinor- or tensor-type (the same for allM). The picture is that one can, for each spinor-
or tensor-type, formulate field equations that depend on the spacetime metrics in a
covariant manner. (A very simple example is(✷g + m2)�M = 0 for a scalar field
�M on M = (M, g), where✷g is the d’Alembertian associated with the metricg
on the spacetime-manifoldM.) Then there should be an isomorphismα
 between the
algebrasFM1(O1) andFM2(O2) formed by the field operators�M1(f1) and�M2(f2)

with suppfj ⊂ Oj (j = 1,2), respectively,1 as soon as the subregionsOj ⊂ Mj are
isomorphic, i.e. whenever there is a local isomorphism (of metrics and spin-structures)

 : M1 ⊃ O1 → O2 ⊂ M2. Moreover,α
 should be a net-isomorphism in the sense
that it respects localized inclusions, meaning that

α
(FM1(O)) = FM2(
(O))

holds for allO ⊂ O1. This is theprinciple of general covariance. It is worth noting
that our concept of general covariance is a “local” one, in contrast to a similar, but
global notion of general covariance for quantum field theories which has been developed
by Dimock [13,14]. Apart from that (and apart from the fact that we need the net-
isomorphisms at the level of von Neumann algebras, while in existing literature they have
been looked at asC∗-algebraic net-isomorphisms), our concept of general covariance is
very close to that suggested by Dimock, and also similar to ideas in [3,34,32].

The principle of existence of a causal dynamical law can then be expressed by de-
manding that, for eachM, there holds

FM(O1) ⊂ FM(O)

whenever the subregionO1 of M lies in the domain of dependence of the subregionO

of M (that is,O1 is causally determined byO, see Sect. 2 for details).
There is another principle that is also most naturally imposed. Minkowski spacetime

M0 is also a member ofG, and clearly the quantum field theory�M0 should satisfy the

1 The precise mathematical sense in which the algebras are formed by the field operators will be explained
in Sect. 4. The�M are viewed as operator-valued distributions and thefj are test-spinors or test-tensors
(smooth sections of compact support in an appropriate spinor-bundle or tensor-bundle).
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usual properties assumed for a quantum field theory (e.g., in the Wightman framework),
like Poincaré-covariance, spectrum condition, existence of a vacuum state and, in order
that a spin-statistics theorem can be expected, the Bose–Fermi alternative.

If these conditions – fixed spinor- or tensor-type, general covariance, existence of
a causal dynamical law and the usual properties for the theory�M0 on Minkowski
spacetime – are satisfied, we call the family{�M}M∈G a generally covariant quantum
field theory over G. For such generally covariant quantum field theories overG we
shall establish in the present article a spin-statistics theorem. Roughly speaking, the
contents of that theorem are as follows (see Thm. 5.1 for the precise statement): If
there is someM ∈ G and a pair of causally separated regionsO1 andO2 in M so that
pairs of field operators of the quantum field�M localized inO1 andO2, respectively,
fulfill the “wrong” connection between spin and statistics (i.e. they anti-commute if�M
is of integer spin-type (tensorial), or they commute if�M is of half-integer spin type
(spinorial)), then this entails that all field operators�M̃ are mutliples of the unit operator
for all M̃ ∈ G, thus the theory is trivial.

Our method of proof is to show with the help of a spacetime deformation argument
(Lemma 2.1) that under the said assumptions the “wrong” connection between spin and
statistics in any of the theories�M leads to the “wrong” spin-statistics connection for
the theory�M0 on Minkowski spacetime; hence the known spin-statistics theorem for
quantum field theory on Minkowski spacetime shows that�M0 must be trivial. Using
the spacetime deformation argument once more, this will then be shown to imply that
all theories�M̃ are trivial.

The framework we use is in a sense a mixture of the Wightman-type quantum field
theoretical setting and of the operator-algebraic approach to quantum field theory. This
seems to have some technical advantages. Upon making some changes, one could refor-
mulate the arguments so that they apply either to a purely Wightman-type quantum field
theoretical setting, or to a purely operator-algebraic approach; however in the latter case
it wouldn’t be so clear how to assign to a theory a spinor- or tensor-type on a curved
spacetime. This has resulted in the framework we shall be employing here.

We should like to point out that the assumptions imposed on a generally covariant
quantum field theory{�M}M∈G overG are quite general. They are fulfilled for free field
theories on curved spacetimes in representations induced by Hadamard states as we will
indicate by sketching some examples in Sect. 6. Our current understanding is, however,
that these assumptions aren’t restricted to the case of free field theories but apply in fact
to a larger class of quantum field theories. At any rate, they reflect a few very natural
and general principles.

Our work is organized as follows. In Sect. 2 we summarize a few properties of
globally hyperbolic spacetimes. Lemma 2.1 will be of importance later for proving the
spin-statistics theorem; it states that one can deform a globally hyperbolic spacetime into
another globally hyperbolic spacetime which is partially flat, and partially isomorphic to
the original spacetime. Section 3 contains the technical definition of local isomorphisms
between spacetimes with spin structures. In Sect. 4 we give the full definition of a
generally covariant quantum field theory overG. The main result on the connection
between spin and statistics for such generally covariant quantum field theories overG is
presented in Sect. 5. In Sect. 6 we sketch the construction of three theories that provide
examples for generally covariant quantum field theories overG: The free scalar Klein–
Gordon field, the Proca field and the Majorana-Dirac field in representations induced by
quasifree Hadamard states.
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There are three appendices. Appendix A contains the proof of Lemma 2.1, and in
Appendix B we summarize the standard assumptions for a quantum field theory on
Minkowski spacetime and quote the corresponding spin-statistics theorem from the lit-
erature. In Appendix C we briefly indicate (generalizing similar ideas in [14]) that gen-
erally covariant quantum field theories overG may be viewed as covariant functors from
the categoryG of globally hyperbolic spacetimes with a spin-structure to the categoryN
of nets of von Neumann algebras over manifolds, both categories being equipped with
suitable local isomorphisms as morphisms.
(See also the “Note added in proof” at the end of the article.)

2. Globally Hyperbolic Spacetimes

We begin the technical discussion by collecting some basics on globally hyperbolic
spacetimes. This section will be brief, and serves mainly for fixing our notation. The
reader is referred to the monographs [31,51] for further explanations and proofs.

A spacetime is a pair(M, g) whereM is a four-dimensional smooth manifold (con-
nected, Hausdorff, paracompact, without boundary) andg is a Lorentzian metric with
signature(+,−,−,−) onM. It will be assumed that(M, g) is orientable and time-
orientable, meaning that there exists a smooth timelike vectorfieldv on M. (Then
g(v, v) > 0 everywhere onM, sov is nowhere vanishing). A continuous, piecewise
smooth causal curveR ⊃ (a, b) � t �→ γ (t) is future-directed (past-directed) if
g(γ̇ , v) > 0 (g(γ̇ , v) < 0), whereγ̇ = d

dt
γ is the tangent vector. Henceforth, it

will be assumed that an orientation and a time-orientation have been chosen. Then one
defines the following regions of causal dependence for any given setO ⊂ M:

(i) J±(O) is the set of all points lying on future(+)/past(–) -directed causal curves
emanating fromO,

(ii) J (O) = J+(O) ∪ J−(O),
(iii) D±(O) is the set of all pointsp in J±(O) such that each past(+)/future(–) -directed

causal curve starting atp passes throughO unless it has a past/future endpoint,
(iv) D(O) = D+(O) ∪D−(O),
(v) O⊥ = M\J (O) is thecausal complement of O.

The setD(O) is called thedomain of dependence ofO. If O1 ⊂ intD(O), then we say
thatO1 is causally determined byO, and denote this byO1 ✁O.

A time-orientable spacetime(M, g) is calledglobally hyperbolic if M possesses
a smooth hypersurface which is intersected exactly once by each inextendible causal
curve. Such a hypersurface is called aCauchy-surface. It is known that globally hyper-
bolic spacetimes possessC∞-foliations into Cauchy-surfaces, in other words, for each
globally hyperbolic spacetime(M, g) there exists a smooth 3-dimensional manifold�0
together with a diffeomorphismF : R×�0 → M such that for allt ∈ R, F({t} ×�)
is a Cauchy-surface in(M, g) and such that, for eachx ∈ �0, R � t �→ F(t, x) is an
endpointles timelike curve. While this may at first sight appear to be quite restrictive, it
is known that the set of globally hyperbolic spacetimes is quite large and contains many
spacetimes of physical interest. Moreover it should be noted that global hyperbolicity
isn’t connected to the existence of spacetime symmetries.

WhenN is an open, connected subset ofM, then(N, g � N) is again an oriented and
time-oriented spacetime. We call it aglobally hyperbolic sub-spacetime of (M, g) if the
following conditions are satisfied (cf. [31]Sect. 6.6): (1) the strong causality assumption
holds on(N, g � N), (2) for any two pointsp, q ∈ N , the setJ+(p) ∩ J−(q), if
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non-empty, is compact and contained inN . This entails that(N, g � N) is a globally
hyperbolic spacetime in its own right, but also when seen as embedded into(M, g).
We give two types of examples for subsetsN of M so that(N, g � N) is a globally
hyperbolic sub-spacetime: First, ifp, q ∈ M with p ∈ int J+(q), then the “double
cone”N = int(J−(p) ∩ J+(q)) gives rise to a globally hyperbolic sub-spacetime.
And secondly, suppose thatC1, C2, C3 are three Cauchy-surfaces in(M, g) with C2 ⊂
int J+(C1) andC3 ⊂ int J+(C2), and letG be a connected open subset ofC2. Then
the “truncated diamond”N = int(D(G)∩ J+(C1)∩ J−(C3)) yields, equipped with the
appropriate restriction ofg, again a globally hyperbolic sub-spacetime of(M, g).

For the purposes of the present paper, a particularly important property of globally
hyperbolic spacetimes is the following: A globally hyperbolic spacetime(M, g) can
be “deformed” into another globally hyperbolic spacetime(M̃, g̃) in such a way that
certain regions of(M, g) remain unchanged in(M̃, g̃), while other regions in(M̃, g̃)
are isomorphic to parts of flat Minkowski spacetime. This will be made more precise in
the subsequent statement, whose proof, given in Appendix A, is an extension of methods
used in [22].

Lemma 2.1. Let (M, g) be a globally hyperbolic spacetime and let p1, p2 ∈ M be a
pair of causally separated points (i.e. p1 ∈ {p2}⊥). Then there is a globally hyperbolic
spacetime (M̃, g̃), together with a collection of subsetsUj , Ũj , Ûj (j = 1,2) andG, Ĝ,
with the following properties:

(a) There are Cauchy-surfaces � in (M, g), and �̃ in (M̃, g̃), so that with N+ =
int J+(�) ⊂ M and Ñ+ = int J+(�̃), (N+, g � N+) is isomorphic to (Ñ+, g̃ �
Ñ+).

(b) p1, p2 ∈ N+. The isomorphic images of p1 and p2 in Ñ+ will be denoted by p̃1 and
p̃2.

(c) Ĝ ⊂ Ñ− = int J−(�̃) is simply connected, and (Ĝ, g̃ � Ĝ) is a globally hyperbolic
sub-spacetime of (M̃, g̃) isomorphic to a globally hyperbolic sub-spacetime (G0, η �
G0) of flat Minkowski-spacetime (M0, η) ∼ (R4,diag(+,−,−,−)).

(d) G ⊂ Ñ+ is simply connected and
(G, g̃ � G) is a globally hyperbolic sub-spacetime of (M̃, g̃) containing p̃1 and p̃2.

(e) The sets Uj , Ũj , Ûj are, when equipped with the appropriate restrictions of g̃ as a
metric, globally hyperbolic, relatively compact sub-manifolds of (M̃, g̃) which are,
respectively, causally separated for different indices, and p̃j ∈ Uj ⊂ G, Ũj , Ûj ⊂ Ĝ
(j = 1,2).

(f) Ũj is causally determined by Uj , and Uj is causally determined by Ûj (j = 1,2).

Figure 2.1 may help to illustrate the relations between the sets involved in Lemma 2.1.

U1 U2

U2
~U2U1

~U1

G
Σ

G

~

Fig. 2.1. Sketch of the causal relations of the setsUj , Ûj , Ũj ,G, Ĝ
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3. Spacetimes with Spin-Structures

Let (M, g) be a globally hyperbolic spacetime where an orientation and a time-orienta-
tion have been chosen. Then letF(M, g) be the bundle of oriented and time-oriented
(and future-directed)g-orthonormal frames onM. That is, an elemente = (e0, . . . , e3)
in F(M, g) is a collection of four vectors inTpM, p ∈ M, with g(ea, eb) = ηab, where
(ηab) = diag(+,−,−,−) is the Minkowski metric,e0 is a future-directed timelike vec-
tor, and the frame(e0, . . . , e3) is oriented according to the chosen orientation onM. The
bundle projectionπF : F(M, g)→ M assigns toe the base pointp to which the vectors
e0, . . . , e3 are affixed. The proper orthochronous Lorentz groupL

↑
+ operates smoothly

on the right onF(M, g)by(R'e)a = eb'ba and thusF(M, g) is a principal fibre bundle
with fibre groupL↑+ overM. A spin structure for (M, g) is a pair(S(M, g), ψ), where
S(M, g) is an SL(2,C)-principal fibre bundle overM andψ : S(M, g)→ F(M, g) is
a base-point preserving bundle homomorphism (that is,πF ◦ ψ = πS whereπS is the
base projection ofS(M, g)) with the property

ψ ◦ Rs = R'(s) ◦ ψ.
Here,Rs denotes the right action ofs ∈ SL(2,C) on S(M, g), and SL(2,C) � s �→
'(s) ∈ L

↑
+ is the covering projection; recall that SL(2,C) is the universal covering

group ofL↑+.
Two spin-structures(S(1)(M, g), ψ(1)) and(S(2)(M, g), ψ(2)) are called (globally)

equivalent if there is a base-point preserving bundle-isomorphism
 : S(1)(M, g) →
S(2)(M, g) so that
 ◦ ψ(2) = ψ(1). It is known that each 4-dimensional globally hy-
perbolic spacetime admits spin-structures and that all such spin-structures are equivalent
if the spacetime manifold is simply connected (cf. [25]).

From now on, we will abbreviate byM = ((M, g), S(M, g), ψ)an oriented and time-
oriented globally hyperbolic spacetime endowed with a spin-structure, and we shall also
use the notationMj = ((Mj , gj ), Sj (Mj , gj ), ψj ) if we have labelsj distiguishing
several such objects. We denote byG the set of all 4-dimensional, oriented and time-
oriented globally hyperbolic spacetimes with a spin-structure. One may viewG as a
category; of interest are then “local morphisms” between its objects, or more properly,
morphisms between sub-objects. We will introduce the “local morphisms” as follows.
For more details, see Appendix C.

Definition 3.1. Let M1 and M2 be in G. Then we say that � = (
, ϑ) is a local
isomorphism between M1 and M2 if:

(a) There are simply connected, oriented and time-oriented globally hyperbolic sub-
spacetimes (Nj , gj � Nj) of (Mj , gj ) (j = 1,2) so that ϑ : (N1, g1 � N1) →
(N2, g2 � N2) is an orientation and time-orientation preserving isomorphism. Then
N1 will be called the initial localization of �, denoted by *ini(�), and N2 will be
called the final localization of �, denoted by *fin(�).

(b) When denoting by Sj (Nj , gj ) the restriction of Sj (Mj , gj ) in its base set (that is,
Sj (Nj , gj ) = π−1

Sj
(Nj )) , then


 : S1(N1, g1)→ S2(N2, g2)

is a principal fibre bundle isomorphism (so it intertwines the corresponding right
actions of the fibre groups) with the following properties:
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(i) ϑ ◦ πS1 = πS2 ◦ 
 on S1(N1, g1),
(ii) ϑF ◦ ψ1 = ψ2 ◦ 
 on S1(N1, g1).

Here, ϑF : F(N1, g1)→ F(N2, g2) is induced by the tangent map correspond-
ing to ϑ : N1 → N2.

Remark. In [14], Dimock has introduced the categoryG, and global isomorphisms be-
tween pairs of objects inG as morphisms. Since each globally hyperbolic sub-spacetime
of a globally hyperbolic spacetime with spin-structure is itself a member ofG, the
definition of local isomorphisms can be regarded as introducing morphisms between
sub-objects of objects inG. It should be noted that the class of local isomorphisms be-
tween elements ofG is clearly larger than the class of global isomorphisms as considered
in [14], and therefore covariance properties imposed on quantum systems with respect
to the class of local isomorphisms are more restrictive than those using only global
isomorphisms. Further below we will see the implications of that.

Let ρ be a linear representation of SL(2,C) on some finite-dimensional vector-
spaceVρ (which may be real or complex). Then, given a spacetime-manifold with spin-
structureM = ((M, g), S(M, g), ψ) ∈ G, one can form the vector bundle

Vρ = S(M, g)�ρ Vρ

associated with the principal fibre bundleS(M, g) and the representationρ. Vρ is a
vector bundle over the base-manifoldM, and we recall that the elements of(Vρ)p, the
fibre of Vρ at a base pointp ∈ M, are the orbits{(Rs−1sp, ρ(s)v) : s ∈ SL(2,C)} of
pairs(sp, v) ∈ S(M, g)p × Vρ under the action

s �→ (Rs−1sp, ρ(s)v) (3.1)

of the structure group SL(2,C) of S(M, g). This action induces a linear representationρ̌
of SL(2,C) on each(Vρ)p. We say thatVρ is the vector bundle of (spin-) representation
typeρ.

Now let M1 and M2 be in G and letV1 and V2 be associated vector bundles of
representation typeρ1 andρ2, respectively. Suppose thatρ1 andρ2 are equivalent, i.e.
there is some bijective linear mapT : V1 → V2 so that

Tρ1(. )T
−1 = ρ2(. ). (3.2)

One finds from these assumptions that any local isomorphism� = (
, ϑ) between
M1 andM2 lifts to a local isomorphism̌
 betweenV1 andV2 in a way we shall now
indicate. Letπ̌j denote the base projections ofVj (j = 1,2) and, withN1 = *ini(�),
N2 = *fin(
), let Vj (Nj ) = π̌−1

j (Nj ) denote the restrictions of the vector bundles in

the base sets. Then define
̌ : V1(N1)→ V2(N2) by assigning to any element(sp, v) in
S(M1, g1)p×V1, with p ∈ N1, the element((
s)ϑ(p), T v) in S(M2, g2)ϑ(p)×V2, and
form the orbits under the corresponding structure group actions (3.1). It is not difficult
to check that this assignment indeed induces a well-defined map betweenV1(N1) and
V2(N2) which is linear in the fibres and fulfills

ϑ ◦ π̌1 = π̌2 ◦ 
̌
onV1(N1). Moreover,
̌ intertwines the representationsρ̌j in the sense that


̌ ◦ ρ̌1(s) = ρ̌2(s) ◦ 
̌
for all s ∈ SL(2,C).
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4. Generally Covariant Quantum Fields

In the present section we introduce a concept of generally convariant quantum field theo-
ries on curved spacetimes with spin-structures. Moreover, we will make the assumption
that these quantum field theories fulfill the condition of strong Einstein causality, or
synonymously, that there exists a causal dynamical law. The combination of these two
assumptions – general covariance and existence of a causal dynamical law – will lead
to the connection between spin and statistics shown in the subsequent section.

It should be remarked that there are several possible formulations of these two as-
sumptions at the technical level. Here, we have chosen to use a framework which is in
a sense a mixture of the Wightman-approach to “pointlike” quantum fields (operator-
valued distributions) and the Haag-Kastler approach which emphasizes local algebras
of bounded operators. Therefore, some technical assumptions have to be made in order
to match these two approaches; yet we feel that the resulting framework is more gen-
eral and more flexible than e.g. a framework using only Wightman fields, since then
we would have to make even more stringent technical assumptions, for instance fairly
detailed assumptions on the domains of field operators, or we would have to impose a
very restrictive form of general covariance and strong Einstein causality. Since we don’t
wish to impose conditions of such kind, we regard the approach to be presented in this
section as reasonable and fairly general.

The relevant assumptions will be listed next.

(a) Quantum fields of a spin representation type and their (local) von Neumann al-
gebras. Let M = ((M, g), S(M, g), ψ) ∈ G be a globally hyperbolic spacetime with
spin-structure. Moreover, letρ be a representation of SL(2,C) on the finite-dimensional
vector-spaceVρ . We will say that a triple of objects(.,D,H) is aquantum field of spin
representation type ρ onM if: H is a Hilbert-space,D is a dense linear subspace ofH,
and. is a linear map taking elementsf ∈ /0(Vρ), the space ofC∞-sections inVρ with
compact support, to closable operators.(f ) in H having domainD. In addition, it will
be assumed thatD is invariant under application of the operators.(f ), and thatD is
also an invariant domain for the adjoint field operators.(f )∗. It will also be assumed
that there are cyclic vectors inD, whereχ ∈ D is called cyclic if the space generated
by χ and allF1 · · ·Fnχ , n ∈ N, whereFj ∈ {.(fj ),.(fj )∗}2 with fj ∈ /0(Vρ), is
dense inH.

We write orc(M) to denote the set of open, relatively compact subsets ofM. Let
O ∈ orc(M), then denote byF(O) the von Neumann algebra which is generated by all
eiλ|.(f )|, λ ∈ R, andJf , with suppf ⊂ O, where

.(f ) = Jf |.(f )|
denotes the polar decomposition of a field operator’s closure. Thus the quantum field
(.,D,H) induces a net of von Neumann algebras{F(O)}O∈orc(M) fulfilling the isotony
condition

O1 ⊂ O2 ⇒ F(O1) ⊂ F(O2).

In the following, we shall abbreviate a quantum field(.,D,H) by the symbol�.

(b) Existence of a causal dynamical law. Let � be a quantum field of some spin-
representation typeρ on M. We say that there exists acausal dynamical law for the

2 {.(fj ),.(fj )∗} denotes the set containing the operators in the curly brackets, and not their anti-
commutator. In this work, we will never use curly brackets to denote anti-commutators.
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quantum field (or that the quantum field fulfillsstrong Einstein causality) if for the net
{F(O)}O∈orc(M) of local von Neumann algebras it holds that

O1 ✁O2 ⇒ F(O1) ⊂ F(O2).

(c) Local morphisms. Assume that we have two representationsρ1 andρ2 on finite-
dimensional vector spacesV1 andV2, respectively, and suppose that these representations
are isomorphic, i.e. (3.2) holds with some bijective linear mapT : V1 → V2. Let�1 and
�2 be quantum fields of spin-representation typeρ1 andρ2 onM1 andM2, respectively,
whereMj ∈ G (j = 1,2). Moreover, suppose that there is a local isomorphism� =
(
, ϑ) betweenM1 andM2.

Then we say that the local morphism� betweenM1 andM2 is covered by local
isomorphisms between the quantum field theories�1 and�2 if the following holds:
Given any relatively compact subsetNi ⊂ *ini(�) and writingNf = ϑ(Ni), and
denoting by{F1(Oi)}Oi∈orc(Ni) and {F2(Of )}Of ∈orc(Nf ) the von Neumann algebraic
nets induced by the quantum fields�1 and�2 restricted toNi andNf , respectively,
there is a von Neumann algebraic isomorphismα�,Ni : F1(Ni) → F2(Nf ) fulfilling
the covariance property

α�,Ni (F1(Oi)) = F2(ϑ(Oi)), Oi ∈ orc(Ni). (4.1)

Comments and Remarks. (i) In (a), the property of a quantum field to be a spinor field
of a certain type is just specified by requiring that it acts linearly on the test-spinors
of the corresponding type. This is a quite common approach to defining spinor fields
on curved spacetime. An algebraic transformation property, e.g. that a (local) spinor-
transformationρ(s) onVρ induces an endomorphism on the∗-algebra of quantum field
operators, holds in general only when the underlying spacetime has a flat metric. One
may regard the properties of Def. 4.1 below as a weak replacement of such an algebraic
transformation property.

(ii) Existence of a causal dynamical law is a typical feature of quantum fields obeying
linear hyperbolic equations of motion, but is expected to hold also for interacting quantum
field theories as long as the mass spectrum behaves moderately. For free field theories,
the existence of a causal dynamical law is commonly fulfilled in the following stricter
form (see [13] for the case of the scalar field, but the argument generalizes to more
general types of fields, cf. e.g. [42]): GivenO1 ✁ O2, then for eachf1 ∈ /0(Vρ) with
suppf1 ⊂ O1 there isf2 ∈ /0(Vρ) with suppf2 ⊂ O2 such that.(f2) = .(f1). Our
formulation given in(b) is more general.

(iii) It is of some importance in (c) thatNi andNf are assumed to be relatively compact
subsets of*ini(�) and*fin(�), respectively, as otherwise it is known from free field
examples that a von Neumann algebraic isomorphismα�,Ni : F1(Ni) → F2(Nf )

with the covariance property (4.1) cannot be expected to exist. In typical cases, the von
Neumann algebrasFj (O) are of properly infinite type, and thenα�,Ni is implemented
by a unitary operatorU�,Ni : H1 → H2.

The subsequent definition will fix the notion of general covariance for quantum fields
on curved spacetimes.

Definition 4.1. Let ρ be a linear representation of SL(2,C) on a finite dimensional
vector space V . By G we denote, as before, the set of all oriented and time-oriented,
4-dimensional, globally hyperbolic spacetimes equipped with a spin-structure. A family
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{�M}M∈G will be called a generally covariant quantum field theory over G of spin
representation type ρ if the following properties are fulfilled:

(A) For each M ∈ G, �M = (.M,DM,HM) is a quantum field theory on M of spin
representation type ρ (the same for all M) such that the properties (a) and (b) stated
above are satisfied.

(B) For the case that M = M0 is Minkowski spacetime with its usual spin-structure,
we demand that the corresponding quantum field theory �M0 fulfills the Wightman
axioms, including the Bose–Fermi alternative (or normal commutation relations);
see Appendix B for details.

(C) If for a pair M1 and M2 in G there is a local isomorphism � betweenM1 andM2,
then it is covered by local isomorphisms between the corresponding quantum field
theories �M1 and �M2.

Let us discuss some features of that definition in a further set of

Comments and Remarks. (iv) Readers familiar with the articles of Dimock [13,14] will
notice that our definition is very much inspired by the concept of general covariance
introduced in those works for quantum field theories on curved spacetimes. The main
difference, as we have mentioned already in the Remark below Def. 3.1, is that the
isomorphisms between the spacetimes with spin-structures, and accordingly between
the corresponding quantum field theories, are here assumed to be local, whereas in
[13,14] they are assumed to be global. To allow local isomorphisms in the condition
of general covariance (C) leads, in combination with the conditions (A) and (B), to
restrictions which apparently are not present when using only global isomorphisms.

The significance of that point has, in a somewhat different context, been noted by
Kay [34]. Our definition of a generally covariant quantum field theory resembles an
approach taken by Kay in his investigation of “F-locality” in [34]. The main difference
(apart from differences of technical detail) is that Kay considers a much larger class
Ĝ of spacetimes which need not be globally hyperbolic, and he essentially investigates
the question of what the largest classĜ of spacetimes might be so that a quantum field
theory over̂G is compatible with the covariance property (C) once certain properties are
assumed for the quantum fields on the individual spacetimes inĜ. For the case of the
scalar Klein–Gordon field, he finds that restrictions on the class of spacetimesĜ arise in
order to obtain compatibility, see [34] for further discussion.

(v) Given a local isomorphism� betweenM1 andM2 in G, then it is known for free
fields that typically the identification

.M2 ◦ 
̌5(f ) = .M1(f ), suppf ∈ *ini(�), with 
̌5f = 
̌ ◦ f ◦ ϑ−1,

preserves CAR or CCR and thereby gives rise to a (C∗-algebraic) local isomorphismα�

covering� between the quantum field theories. In [52] (pp. 89–91 of that reference),
such a covariance property has been proposed as a condition on the (renormalized) stress-
energy tensor of a quantum field on curved spacetimes, and more recently, Hollands and
Wald have defined the notion of a local, covariant quantum field by means of such a
covariance behaviour of the quantum field and have shown that one may construct,
essentially uniquely, Wick-polynomials of the free scalar field in such a way that they
become local, covariant quantum fields [32]. Our conditions on a local isomorphism
between quantum field theories are much less detailed; indeed, the slightly complicated
definition of a local isomorphism between quantum field theories serves the purpose of
keeping this notion as general as possible and yet to transfer enough algebraic information
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for making it a useful (i.e. sufficiently restrictive) concept in combination with existence
of a causal dynamical law formulated in (b).
(vi) We have required that the spin-representationρ be the same for all members�M
of a generally covariant quantum field theory overG, expressing that all these quantum
field theories on the various spacetimes have the same field content. (Of course, it would
be sufficient just to require that the variousρM be isomorphic; to demand equality is
just a simplification of notation.) We think that this is necessary in order that (C) can be
fulfilled, but a proof of that remains to be given.
(vii) It should be noted that each elementM ∈ G comes equipped with an orientation
and a time-orientation. The local isomorphisms have been assumed to preserve orienta-
tion and time-orientation, so the condition of general covariance imposes no restrictions
on quantum field theories�M1 and�M2 whenM1 andM2 are connected by a local
isomorphism that reverses orientation and time-orientation. In fact, if� is an (appropri-
ately defined) local isomorphism betweenM1 andM2 reversing both time-orientation
and orientation, one would expect that for any relatively compactNi ⊂ *ini(�), writing
Nf = ϑ(Ni), there is ananti-linear von Neumann algebraic isomorphismα�,Ni having
the covariance property (4.1). It would be quite interesting to see if one could deduce the
existence of such anti-linear local von Neumann algebraic isomorphisms at least for a
distinguished class of time-orientation and orientation reversing local isomorphisms�
from the assumptions on{�M}M∈G of Def. 4.1. That would correspond to a PCT-theorem
in the present general setting.
(viii) The assignment of quantum field theories�M to eachM ∈ G fulfilling the
condition of general covariance allows a functorial description which will be indicated
in Appendix C.

5. Spin and Statistics

In the present section we state and prove a spin-statistics theorem for generally covariant
quantum field theories overG. Before we can start to formulate the result, it is in order
to briefly recapitulate the terminology referring to “integer” and “half-integer” spin.

Let �k
C

2 denote thek-fold symmetrized tensor product ofC
2. Then an irreducible

complex linear representationD(k,l) of SL(2,C) for k, l ∈ N0 is given on the vectorspace
Vk,l = (�k

C
2)⊗ (�l

C
2) by

D(k,l)(s) = (�ks)⊗ (�ls),

wheres ∈ SL(2,C) acts like a matrix on column vectors inC2, ands is the matrix with
complex conjugate entries.3 All finite-dimensional complex linear irreducible represen-
tations of SL(2,C) arise in this way. Such an irreducible representation is said to be
of integer type (or simply integer) if k + l is even and ofhalf-integer type (or simply
half-integer) if k+ l is odd. There also the (finite dimensional) real linear irreducible rep-
resentationsD(k,l) ⊕D(l,k) for k != l, andD(l,l). They are called real-linear irreducible
because it is possible to select real-linear subspaces inVk,l ⊕ Vl,k and inVl,l , respec-
tively, on which these representations act irreducibly as real-linear representations. As
complex linear representations they are, however, reducible except for the caseD(l,l).
The classification of these representations as being of “integer” or “half-integer” type is
analogous to that of complex linear irreducible representations.

3 By convention, the casek = 0 andl = 0 corresponds to a scalar field, with the trivial one-dimensional
representation of SL(2,C).
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Theorem 5.1. Let {�M}M∈G be a generally covariant quantum field theory over G of
spin representation type ρ, where ρ is assumed to be a complex linear irreducible, or
real linear irreducible, finite dimensional representation of SL(2,C).

(I) If ρ is of half-integer type, and if there exist an M ∈ G and a pair of non-empty
O1,O2 ∈ orc(M) with O1 ⊂ O⊥2 so that FM(O1) ⊂ FM(O2)

′ (where by FM(O)

we denote the local von Neumann algebras generated by �M and by FM(O)
′ the

commutant algebras4) then it follows for all M̂ ∈ G that .M̂(f ) = cf · 1 for
some cf ∈ C, i.e. the quantum field operators of all quantum fields of the generally
covariant theory are multiples of the unit operator.

(II) If ρ is of integer type, and if there exist an M ∈ G, a pair of causally separated
points p1 and p2 in M and for each pair of open neighbourhoods Oj of pj with
O1 ⊂ O⊥2 a pair fj ∈ /0(Vρ) with suppfj ⊂ Oj and .M(fj ) != 0 (j = 1,2) so
that

.M(f1).M(f2)+.M(f2).M(f1) = 0 or

.M(f1).M(f2)
∗ +.M(f2)

∗.M(f1) = 0,
(5.1)

then it follows again for all M̂ ∈ G that all field operators .M̂(f ) are multiples of
the unit operator.

We note thatFM(O1) ⊂ FM(O2)
′means that the field operators.M(f1)and.M(f2)

for suppfj ⊂ Oj commute strongly in the sense that the operators appearing in their
polar decompositions commute strongly. This stronger form of commutativity at causal
separation is expected to hold in physically relevant theories. In Appendix B we give a
few more comments on this point. If the stronger forms of general covariance at the level
of invidual field operators as indicated in Remarks (ii) and (iv) of Sect. 4 were assumed,
the statement for the half-integer case could be strengthened to resemble the integer case
more closely; namely, then one would conclude for the half-integer case that the relations
.M(f1).M(f2)−.M(f2).M(f1) = 0 or.M(f1).M(f2)

∗ −.M(f2)
∗.M(f1) = 0

for someM and a pair of test-spinorsf1 andf2 with causally separated supports so that
.M(fj ) != 0 already imply that the field operators.M̂(f ) are multiples of unity for all

M̂ ∈ G.

Proof of Theorem 4.1. We begin with part (I) of the statement involving a theory of
half-integer type, and we suppose thatF(O1) ⊂ F(O2)

′ for a pair of causally separated
O1,O2 ∈ orc(M), where we use the notationF(O) = FM(O). Then letpj ∈ Oj , and
choose for this pair of causally separated points inM a globally hyperbolic spacetime
(M̃, g̃) with neighbourhoodsUj , Ûj , Ũj , G, Ĝ, as in Lemma 2.1, which can be done
in such a way thatϑ−1(Uj ) ⊂ Oj , whereϑ is the isomorphismM ⊃ N → Ñ ⊂ M̃.
Now we equip(M̃, g̃) with any spin-structure and denote the resulting spacetime with
spin-structure bỹM. The neighbourhoodsG andĜ are simply connected. Thus, since
all spin-structures over simply connected globally hyperbolic spacetimes are equivalent,
there is a local isomorphism� betweenM and M̃ with *fin(�) = G, and also a
local isomorphism�0 betweeñM andM̃0, whereM̃0 is Minkowski spacetime with its
standard spin-structure. This is due to the fact thatG is isomorphic to a subsetϑ−1(G)

inM andĜ is isomorphic to a subset in Minkowski-spacetimeM0, cf. Lemma 2.1.
Let us now introduce the notatioñF(U) = FM̃(U) andF0(U) = FM0(U) for the

local von Neumann algebras corresponding to the theories�M̃ and�M0, respectively.

4 I.e.FM(O)
′ = {A′ ∈ B(HM) : A′A = AA′, ∀ A ∈ FM(O)}.



Spin-Statistics Theorem for Quantum Fields on Curved Spacetime 275

Then choose two globally hyperbolic, relatively compact submanifoldsNf andN̂i of
G andĜ, respectively, with the additional property thatUj ⊂ Nf andŨj , Ûj ⊂ N̂i
(j = 1,2). DenoteNi = ϑ−1(Nf ). According to the general covariance assumption
(C) there are local isomorphismsα�,Ni between�M and�M̃ andα�0,N̂i

between�M̃
and�M0 so that

α�,Ni (F(ϑ
−1(U))) = F̃(U), U ∈ orc(Nf ), (5.2)

α�0,N̂i
(F̃(Û)) = F0(ϑ0(Û)), Û ∈ orc(N̂i), (5.3)

whereϑ0 is the isomorphism embeddinĝG intoM0. Since we have supposed initially
thatF(O1) ⊂ F(O2)

′, and sinceϑ−1(Uj ) ⊂ Oj , relation (5.2) implies that̃F(U1) ⊂
F̃(U2)

′. Moreover,Uj ✄ Ũj and hence, by the existence of a causal dynamical law, it
follows that

F̃(Ũ1) ⊂ F̃(Ũ2)
′.

Exploiting also (5.3), one obtains

F0(ϑ0(Ũ1)) ⊂ F0(ϑ0(Ũ2))
′, (5.4)

whereϑ0(Ũ1) andϑ0(Ũ2) are a pair of open, causally separated subsets of Minkowski
spacetime. Since the quantum field theory�M0 on Minkowski spacetime has been as-
sumed to fulfill the usual assumptions, and is, by assumption, of half-integer spin-type,
the last relation (5.4) implies by the known spin-statistics theorem for quantum field
theories on Minkowski spacetime thatF0(U0) = C · 1 holds for allU0 ∈ orc(M0). (See
Appendix B for details.)

In a next step we will show how that conclusion implies that all other quantum field
theories�M̂ are likewise trivial. LetM̂ = ((M̂, ĝ), S(M̂, ĝ), ψ̂) ∈ G and choose any

pointp1 ∈ M̂ (and any other causally separated pointp2 ∈ M̂, which actually plays no
role). Then choose a spacetime(M̃, g̃) with subsetsUj , Ũj , Ûj ,G, Ĝ as in Lemma 2.1
for these data,(M̂, ĝ) now playing the role of(M, g). IdentifyingF(O) = FM̂(O) and
making similar adaptations, Eqs. (5.2) and (5.3) hold accordingly. ThenF0(ϑ0(Û1)) =
C · 1 implies, by (5.3),̃F(Û1) = C · 1, and sincêU1 ✄U1 it follows thatF̃(U1) = C · 1.
Hence (5.2) leads toF(ϑ−1(U1)) = C ·1, implying that.

M̂
(f ) is a multiple of the unit

operator for allf with suppf ⊂ ϑ−1(U1). Asϑ−1(U1) is an open neighbourhood of an
arbitrary pointp1 ∈ M̂, and since the quantum fieldf �→ .M̂(f ) is linear, a partition
of unity argument shows that therefore one must have.M̂(f ) = cf · 1 with suitable

cf ∈ C for all test-spinorsf on M̂.
Now we turn to the proof of statement (II) of the theorem. According to the assump-

tions, there are two pointsp1 andp2 inM which are causally separated, and moreover,
when choosing a deformation(M̃, g̃) of (M, g)with neighbourhoodsUj , Ũj , Ûj ,G, Ĝ
as in Lemma 2.1, there are a pair of testing spinorsfj supported inϑ−1(Uj ) so that
.M(fj ) != 0 and such that one of the relations (5.1) holds. We shall, for the sake of
simplicity of notation, assume that

.M(f1).M(f2)+.M(f2).M(f1) = 0 (5.5)

holds, and we will show that these properties are in conflict with Bosonic commutation
relations for the theory�M0 on Minkowski spacetime. The other case of (5.1) can be
treated by similar arguments. The proof proceeds indirectly, so we suppose that�M0
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possesses Bosonic commutation relations. As before in the proof of (I) above, we can
find local isomorphismsα�,Ni andα�0,N̂i

fulfilling the relations (5.2) and (5.3) for the

von Neumann algebraic nets corresponding to the quantum field theories onM, M̃ and
M0. Having supposed Bosonic commutation relations for the quantum field theory on
Minkowski spacetime, it follows by (5.3) that̃F(Û1) ⊂ F̃(Û2)

′. NowUj ✁ Ûj and thus,
by the existence of a causal dynamical law, it holds thatF̃(U1) ⊂ F̃(U2)

′. By (5.2) we
obtainF(ϑ−1(U1)) ⊂ F(ϑ−1(U2))

′. Since the operators.M(fj ) are affiliated to the
von Neumann algebrasF(ϑ−1(Uj )), one concludes that

.M(f1).M(f2)−.M(f2).M(f1) = 0. (5.6)

Comparing (5.5) and (5.6) yields

.M(f1).M(f2) = 0.

It is clear that this relation entails.M(f1)
∗.M(f1).M(f2).M(f2)

∗ = 0. The operators
A1 = .M(f1)

∗.M(f1) andA2 = .M(f2).M(f2)
∗ are positive and possess selfadjoint

extensions affiliated toF(ϑ−1(U1)) andF(ϑ−1(U2)), respectively. Denoting byEj(a)
their spectral projections corresponding to the spectral interval(−a, a), the operators
Aj(a) = Ej(a)Aj are contained inF(ϑ−1(Û1))and it holds thatA1(a)A2(a) = 0 for all
a > 0. Repeating the arguments that led to Eq. (5.6), one can see that theAj(a) possess
isomorphic imageŝAj(a) in F0(ϑ0(Ûj )) so thatÂ1(a)Â2(a) = 0 for all a > 0. But
since the net{F0(U)}U∈orc(M0) was assumed to fulfill Bosonic commutations relations,
and since it fulfills the usual assumptions for a quantum field theory on Minkowski-
spacetime, including the spectrum condition and the existence of a vacuum state, it
follows that the Schlieder property [43] holds for this net. This property states that
the relationŝAj(a) ∈ F0(ϑ0(Ûj )), clϑ0(Û1) ⊂ ϑ0(Û2)

⊥ andÂ1(a)Â2(a) = 0 imply
Â1(a) = 0 orÂ2(a) = 0. Hence one obtains that, for alla > 0,A1(a) = 0 orA2(a) = 0,
and this entailsA1 = 0 orA2 = 0, which in turn enforces.M(f1) = 0 or.M(f2) = 0.
Thus one arrives at a contradiction since both operators.M(f1) and.M(f2) are by
assumption different from 0. One concludes that Bosonic commutation relations are
an impossible option for the theory�M0 on Minkowski spacetime and thus, due to the
Bose–Fermi-alternative, that theory must fulfill Fermionic commutation relations. Since
the theory is of integer spin-type, this implies that the von Neumann algebrasF0(U0)

of the theory on Minkowski spacetime consist only of multiples of the unit operator
because of the spin-statistics theorem on flat spacetime (cf. Appendix B). Repeating the
argument given for part (I) above, it follows that for eachM̂ ∈ G the quantum field
operators.M̂(f ) are multiples of the unit operator for all test-tensorsf . %&

6. Examples

In this section we briefly indicate examples of linear quantum field theories which fulfill
the properties required for a generally covariant quantum field theory overG in Sect. 4.

1. The free scalar field. The simplest example is the free scalar field, although its sig-
nificance for a spin-statistics theorem is, naturally, quite limited.
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For each globally hyperbolic spacetimeM = (M, g) ∈ G (endowed with a spin-
structure whose explicit appearance is now suppressed since it is irrelevant for the scalar
field) we consider the scalar Klein–Gordon equation

(✷g +m2)ϕ = 0

for real-valued functionsϕ onM, wherem ≥ 0 is a constant independent ofM and
✷g is the scalar d’Alembertian for(M, g). Following Dimock [13], one can construct
a C∗-algebraic quantization of this field as follows. There are uniquely determined,
continuous linear mapsE±M : C∞0 (M,R)→ C∞(M,R) with the properties

(✷g +m2)E±M = f = E±M(✷g +m2)f and

suppE±Mf ⊂ J±(suppf ),

f ∈ C∞0 (M,R).
Their differenceE±M = E+M −E−M, called the (causal) propagator, induces a symplectic
form

κM([f ], [h]) =
∫
M

dη f · EMh, [f ], [h] ∈ KM,

on KM = C∞0 (M,R)/kerEM, wheref �→ [f ] = [f ]M denotes the quotient map
anddη is the metric-induced volume-form on(M, g). To the resulting symplectic space
(KM, κM) there corresponds the CCR-Weyl algebraA[KM, κM], defined as the (up to
C∗-isomorphisms unique)C∗-algebra generated by unitary elementsWM(x), x ∈ KM,
fullfilling the Weyl-relations, or “exponentiated” canonical commutation relations (see
[9])

WM(x)WM(y) = exp(−iκM(x, y)/2)WM(x + y),
WM(x)

∗ = WM(−x), x, y ∈ KM.

Dimock has shown that any isometryθ : M1 → M2 induces aC∗-algebraic isomorphism
αθ : A[KM1, κM1] → A[KM2, κM2] with the property that

αθ (WM1([f ]M1)) = WM2([θ∗f ]M2), f ∈ C∞0 (M1,R), (6.1)

whereθ∗f = f ◦ θ−1. If M1 ⊂ M′
1 and M2 ⊂ M′

2 are globally hyperbolic sub-
spacetimes of a pair of globally hyperbolic spacetimesM′

1 andM′
2, thenWMj

= WM′
j

�
KMj

(j = 1,2) holds up toC∗-isomorphisms as a consequence of the uniqueness of
the causal propagators, thus there is always aC∗-algebraic Weyl-algebra isomorphism
covering a local isomorphism between members ofG. Furthermore, Dimock has also
shown in [13] that, upon denoting byAM(O) theC∗-subalgebra ofA[KM, κM]generated
by allWM([f ]M), suppf ⊂ O, there holds

O1 ✁O2 ⇒ AM(O1) ⊂ AM(O2) (6.2)

for all O1,O2 ⊂ M.
Now letωM be an arbitrary quasifree Hadamard state onA[KM, κM]. Such a state

is determined by its two-point correlation function which here is required to be of
“Hadamard form”. The Hadamard form specifies the singular short-distance behaviour
in a particular way, see [21,52] and references cited therein for discussion. Equivalently,
the Hadamard form of a two-point function can be characterized by a certain form of
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its wavefront set (see [39,42] for details). It has been shown in [22] that there exists an
abundance of Hadamard states onA[KM, κM]. To such a quasifree Hadamard stateωM
there corresponds its GNS-Hilbertspace representation(πM,HM, CM), cf. e.g. [8]. In
that representation, we define the local von Neumann algebras

FM(O) = πM(AM(O))
′′

for eachO ∈ orc(M). Then (6.2) clearly implies the existence of a causal dynamical
law

O1 ✁O2 ⇒ FM(O1) ⊂ FM(O2).

A vectorχ ∈ HM is defined to be inDM if for each choice ofx = (x1, . . . , xn) ∈
(KM)

n the map

t �→ πM(WM(t1x1)) · · ·πM(WM(tnxn))χ, t = (t1, . . . , tn) ∈ R
n,

is C∞. One can show thatDM is a dense domain inHM (cf. [9]). One can define for
eachf ∈ C∞0 (M,R) the quantum field operator.M(f ) by

.M(f )χ = −i d
dt

∣∣∣∣
t=0
πM(WM(t[f ]M))χ, χ ∈ DM.

One can also show thatDM is left invariant under the action of.M(f ) and that.M(f )

is essentially self-adjoint [9]. It is also obvious that.M(f ) is affiliated toFM(O) as
soon as suppf ⊂ O.

Moreover, the results of [48] show that theC∗-algebraic isomorphismαθ in (6.1) can
be extended, in representations induced by quasifree Hadamard states, to von Neumann
algebraic isomorphisms in the following way. Suppose that betweenM1 andM2 in G
there is a local isomorphismθ , and letNi ⊂ *ini(θ) be a relatively compact subset. Then,
writing Nf = θ(Ni), the Weyl-algebra isomorphismαθ in (6.1) extends to an isomor-
phismαθ,Ni : FM1(Ni) → FM2(Nf ) between von Neumann algebras. Consequently,
there holds the covariance property

αθ,Ni (FM1(Oi)) = FM2(θ(Oi)), Oi ∈ orc(Ni).

Finally, if M0 is Minkowski spacetime, we takeωM0 to be the vacuum state which
is known to be a quasifree Hadamard state. In conclusion, the just constructed family
{�M}M∈G of Klein–Gordon quantum fields for eachM ∈ G satisfies all the assumptions
required for a generally covariant quantum field theory overG.

2. The Proca field. The Proca field is a co-vector field, i.e. of tensorial type, correspond-
ing to theD(1,1) irreducible representation of SL(2,C). For each globally hyperbolic
spacetimeM = (M, g) ∈ G (where again we suppress the spin-structure in our notation
since it is presently not relevant), we denote byd the exterior derivative of differen-
tial forms, by∗ the Hodge-star operator corresponding to the metricg, and define the
co-differentialδ = ∗d∗. Then the Proca equation reads, forϕ ∈ /0(T

∗M),

(δd +m2)ϕ = 0,

wherem > 0 is a constant independent ofM. (Note thatδd depends on the metricg.) A
C∗-algebraic quantization has recently been given by Furlani [23] (cf. also [45], whose
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notation we follow here). To this end one constructs advanced and retarded fundamental
solutionsF±M : /0(T

∗M)→ /(T ∗M) uniquely determined by

F±M(δd +m2)f = f = (δd +m2)F±Mf, suppF±Mf ⊂ J±(suppf ), f ∈ /0(T
∗M).

As in the case of the scalar Klein–Gordon field, one defines the (causal) propagator
FM = F+M − F−M and a symplectic space(KM, κM) where

κM([f ], [h]) =
∫
M

f ∧ ∗FMh, [f ], [h] ∈ KM,

onKM = /0(T
∗M)/kerFM andf �→ [f ] = [f ]M is the quotient map.

From here onwards, all the arguments leading to the construction of a generally
covariant theory{�M}M∈G can be taken over almost literally, except for obvious mod-
ifications, from the previous case of the scalar Klein–Gordon field to the present case
of the Proca field. There are some provisions which should nevertheless be recorded:
Firstly, the existence of Hadamard states for the Proca field has not been demonstrated.
However, as mentioned towards the end of Sect. 5.1 in [42], the existence of Hadamard
states could be established by using the existence of a ground state for the Proca field
on ultrastatic spacetimes [24] in combination with results in [41] and [22] to prove that
there exists a large set of quasifree Hadamard states for the Proca field. Secondly, the ar-
guments given in [48] showing that theC∗-algebraic isomorphism (6.1) can be extended
to a von Neumann algebraic isomorphism in the above said way apply to the case of
the free scalar Klein–Gordon field. But those arguments can obviously be generalized
to apply to a far more general class of free fields, including the Proca field. Thus, one
may conclude that also the Proca field gives rise to a generally covariant quantum field
theory{�M}M∈G.

3. The Dirac field. Our last example is the Dirac field, which is a spinorial field of spin
1/2. We consider it in a Majorana representation; our presentation follows [14] to large
extent, with some alterations specific to Majorana representations, see [42] for details.
The Majorana representation corresponds to the real linear irreducible representation
D(1,0) ⊕D(0,1) of SL(2,C). This Majorana-Dirac representation will be denoted byρ.
Its representation space isVρ = C

4.
Let M = (M, g, S(M, g), ψ) ∈ G be a globally hyperbolic spacetime with spin-

structure. The vector bundleV = S(M, g) �ρ C
4 associated withS(M, g) and the

representationρ will be denoted byDρM; its sections are called spinors, or spinor
fields. The metric-induced connection∇ on TM lifts to a connection on the frame
bundleF(M, g) which in turn lifts to a connection onS(M, g), and this induces also a
connection onDρM. The corresponding covariant derivative operator will be denoted by
∇. One can then introduce the spinor-tensorγ ∈ /(T ∗M⊗DρM⊗D∗ρM) by requiring
that its componentsγ a

A
B in (appropriate, dual) local frames are equal to the matrix

elements(γa)AB of the gamma-matrices in the Majorana-representation. This is a set of
four 4× 4 matricesγ0, γ1, γ2, γ3 obeying the relations

γaγb + γbγa = 2ηab, γ ∗0 = γ0, γ ∗k = −γk (k = 1,2,3), γa = γa.
Here,γ ∗a means the Hermitian conjugate ofγa andγa is the transpose ofγ ∗a , and(ηab) =
diag(1,−1,−1,−1) is the Minkowskian metric. Then the Dirac-operator∇/ is defined
by setting in frame components, for any local sectionf = f AEA ∈ /0(DρM),

(∇/ f )A = ηabγ aAB(∇bf )B.
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(At this point, we refer to [14,42] for details.) There is a charge conjugationC which
operates by complex conjugation of the frame-components in any frame, i.e.(Cu)A =
uA for the components ofu ∈ DρM. There is also the Dirac adjointu �→ u+ mapping
DρM anti-linearly and base-point preserving onto its dual bundleD∗ρM; in dual frame

components it is defined as(u+)B = uAγ0AB .
The Dirac-equation onM is the differential equation

(∇/ + im)ϕ = 0

for ϕ ∈ /(DρM), wherem ≥ 0 is a constant, independent ofM. As in the cases
considered before, there are uniquely determined advanced and retarded fundamental
solutionsS±M : /0(DρM)→ /(DρM) distinguished by the properties

S±M(∇/ + im)f = f = (∇/ + im)S±Mf, suppS±Mf ⊂ J±(suppf ), f ∈ /0(DρM).

Hence one obtains a distinguished causal propagatorSM = S+M − S−M. It gives rise to a
pre-Hilbertspace(HM, sM), whereHM = /0(DρM)/kerSM with scalar product

sM([f ], [h]) =
∫
M

dη (Sf )+(h), [f ], [h] ∈ HM,

where we have denoted the metric-induced measure onM by dη and byf �→ [f ] =
[f ]M the quotient map. The charge conjugationC can be shown to induce a conjugation
on (HM, sM) which will be denoted by the same symbol. We shall also notationally
identifyHM with its completion to a Hilbertspace.

To the Hilbertspace(HM, sM) with complex conjugationC there corresponds
(uniquely, up toC∗-algebraic equivalence) the self-dual CAR-algebraB[HM, sM, C]
(cf. [1]) which is aC∗-algebra generated by elementsBM(v) depending linearly on
v ∈ HM and fulfilling the canonical anti-commutation relations

BM(v)
∗BM(w)+ BM(w)BM(v)

∗ = sM(v,w), BM(v)
∗ = BM(Cv), v,w ∈ HM.

In [14], Dimock has proven that each (global) isomorphism� = (
, ϑ) between mem-
bersM1 andM2 in G induces aC∗-algebraic isomorphismα� : B[HM1, sM1, C] →
B[HM2, sM2, C] satisfying

α�(BM1([f ]M1)) = BM2([
̌5f ]M2), f ∈ /0(DρM1), (6.3)

where
̌5f = 
̌ ◦ f ◦ ϑ−1, 
̌ being the mapDρM1 → DρM2 induced by
. As in
the cases discussed before, this statement has a local version to the effect that for each
local isomorphism between members ofG there is aC∗-algebraic isomorphism between
the corresponding CAR-algebras covering it.

Moreover it was shown in [49] that strong Einstein causality,

O1 ✁O2 ⇒ BM(O2) ⊂ BM(O2), (6.4)

holds for the localC∗-subalgebrasBM(O) of B[HM, sM, C] which are generated by
all BM([f ]M) with suppf ⊂ O.

Now letωM be any quasifree Hadamard state onB[HM, sM, C], and(πM,HM, CM)

the corresponding GNS-representation, then the local von Neumann algebras will be
defined via

FM(O) = πM(BM(O))
′′, O ∈ orc(M),
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whereas the field operators are now given as

.M(f ) = πM(BM([f ]M)), f ∈ /0(DρM).

Owing to the canonical anti-commutation relations, these field operators are bounded,
and one may take their domainDM to be equal toHM. The existence of a causal
dynamical law at the level of the local von Neumann algebras is then granted by (6.4).

It is to be expected that the arguments of [48] showing that theC∗-algebraic Weyl-
algebra isomorphisms (6.1) (when appropriately localized, see above) extend to von
Neumann algebraic isomorphisms for the case of the scalar Klein–Gordon field and have
generalizations allowing to conclude that theC∗-algebraic CAR-algebra isomorphisms
(6.3) extend, in a similar manner, to von Neumann algebraic isomorphisms, so that
general covariance is fulfilled. Another provision is that, as in the case of the Proca
field, the existence of quasifree Hadamard states for the Dirac field has as yet not been
demonstrated. However, the same comment as given above for the case of the Proca field
applies here. Anticipating therefore that these provisions are lifted, the just constructed
family {�M}M∈G of Dirac quantum fields for eachM ∈ G yields another example of a
generally covariant quantum field theory overG upon choosingωM0 as the vacuum state
(being quasifree and Hadamard) on Minkowski spacetimeM0.
(See also the “Note added in proof” at the end of the article.)

Appendix A

Proof of Lemma 2.1. Let two causally separated pointsp1 andp2 be given; hence we
may form the manifoldM∨ = M\(J+(p1) ∪ J+(p2)). Then(M∨, g � M∨) is again
a globally hyperbolic spacetime. This globally hyperbolic spacetime may be smoothly
foliated into Cauchy-surfaces and thus one can move Cauchy-surfaces for(M∨, g � M∨)
arbitrarily close top1 andp2. We will use this property in order to construct a Cauchy-
surface� in (M, g) having the following properties:

(i) � ⊂ M∨.
(ii) There is an open, simply connected neighbourhoodW ⊂ � which is contained in

a coordinate chart (for�), and it holds thatJ−(pj ) ∩� ⊂ W (j = 1,2).

To this end, letF : R×�0 → M be aC∞-foliation of (M, g) in Cauchy-surfaces.
If C is any Cauchy-surface in(M, g), then there is a diffeomorphismHC : �0 → C

which is defined by assigning tox ∈ �0 the pointqx ∈ C so thatF(tx, x) = qx
for some (uniquely determined)tx ∈ R. Now let (tj , xj ) ∈ R × �0 be such that
F(tj , xj ) = pj , j = 1,2. Then there is clearly a pairS1, S2 of open neighbourhoods
of x1, x2, respectively, in�0 lying in a simply connected chart domainW0 (of �0),
cf. [12], Prop. 16.26.9. Thus, wheneverC is a Cauchy-surface in(M, g), then the sets
HC(S1) andHC(S2) are contained in the simply connected chart domainHC(W0) of C.
On the other hand,HC(Sj ) is the intersection ofC with the “tube”Tj = ⋃{F(t, x) :
t ∈ R, x ∈ Sj }. It is now fairly easy to see that, ifBj denotes the unit ball inTpjM
with respect to arbitrarily given coordinates, then the setsVj (τ ) = {exppj (v) : v ∈
τ · Bj , v past-directed and causal} of segments of “causal rays” emanating to the past
from pj will be contained inTj if τ > 0 is small enough. Choosing such aτ and using
that (M∨, g � M∨) is globally hyperbolic, one can thus find a Cauchy-surface� in
(M∨, g � M∨) with (Vj (τ )\Vj (τ/2)) ⊂ int J−(�); this implies that the intersection of
J−(pj )with� is contained inTj ∩� = H�(Sj ), and since� is also a Cauchy-surface
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for (M, g), one realizes that it has the desired properties (i) and (ii) upon choosing
W = H�(W0).

In a next step we note that, since the setsJ−(pj )∩� are closed and contained in the
open setW , also the closures of sufficiently small open neighbourhoods of these sets
are contained inW . Thus we can choose two sufficiently small setsUj = int(J−(p+1 )∩
J+(p−j )), wherep±j ∈ int J±(pj ), i.e. they are “double cones” surrounding the points

pj , with J−(Uj ) ∩ � ⊂ W . [Note that in Fig. 2.1 we have represented the setsUj
as truncated double cones since this turned out to be easier graphically.] Obviously
one may choose theUj so that they are contained inN+ = int J+(�). Moreover,
J−(Uj ) ∩ � will be contained in an open, simply connected subsetW1 of � with
W1 ⊂ W . Then intD+(W1) is a simply connected neighbourhood ofU1 andU2, and
is globally hyperbolic when endowed with the metricg. Since(N+, g � N+) is a
globally hyperbolic spacetime, one can choose a Cauchy-surface�+ in (N+, g � N+)
“sufficiently close to�” so that the set

G = intD+(W1) ∩ int J+(�+) ⊂ N+
is still an open, simply connected neighbourhood ofU1 andU2 which is globally hyper-
bolic when supplied withg as metric.

The remaining part of the argument proceeds in a similar way as the proof ofAppendix
C in [22]. We can cover� with a system{Xα}α of coordinate patches, choosing one of
them, sayX1, to have the property

W1 ⊂ X1, X1 ⊂ W. (A.1)

Using Gaussian normal coordinates for�, one may introduce coordinate patches
(−εα, εα) × Xa covering a neighbourhoodN0 of �, on each of which the metricg
assumes the form

dt2− gij (t, x)dxidxj ,
wheret ∈ (−εα, εα) andx = (xi)3i=1 are coordinates onXα; (gij (t, x)) are the coordi-
nates of the 3-dim. Riemannian metric induced by the metricg on the slices of constant
t . Here, the coordinatization is assumed to be such that(t, x) represents a point inN+
for t > 0 and a point inN− = int J−(�) for t < 0. Moreover,N0 may be chosen so
that it is, withg � N0 as metric, a globally hyperbolic sub-spacetime of(M, g), and
assuming now thatN0 has been chosen in that way, alsoN0 ∩ N− is a globally hyper-
bolic sub-spacetime with the appropriate restriction ofg as metric. After a moment of
reflection one can see that this implies the existence of a Cauchy-surface�1 inN0∩N−
so that

J−(W1) ∩ J+(�1) ⊂ (−ε1,0)×X1

by “moving�1 sufficiently close to�”. Upon moving�1, if necessary, “still closer” to
�, it is also possible to ensure that the parts ofJ−(U1) andJ−(U2) lying in J+(�1) are
causally separated. With�1 chosen in that manner, one can now pick some pair of small
neighbourhoods̃Uj lying relatively compact in int(J+(�1) ∩ J−(Uj )) (j = 1,2). We
may then also select another Cauchy-surface�2 in N0 ∩N1, with

cl Ũj ⊂ int J−(�2), �2 ⊂ int J+(�1).

In the next step, we endow� with a complete Riemannian metricγ , which we
prescribe to be a flat Euclidean metric onX1 (which is possible because of (A.1) in view
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of the fact thatW is a coordinate patch). We shall, furthermore, chooseγ so that the flat
Lorentzian metricη on (−ε1,0)×X1 given by

η = dt2− γij dxidxj
has for(t, x) ∈ (−ε1,0)× X1 the property that each causal curve forη is also a causal
curve forg, i.e. Jη(q) ⊂ Jg(q) on (−ε1,0) × X1. This may always be realized by
rescalingγ by a constant factor.

Now defineM̃ = int J+(�1). Let f ∈ C∞(M̃,R+) have the following properties:
0 ≤ f ≤ 1,f ≡ 0 onJ+(�), f ≡ 1 onJ−(�2). Then define a metric̃g onN0∩ M̃ by
setting its coordinate expression to be equal to

b(t, x)dt2− (
f (t, x)γij + (1− f (t, x))gij (t, x)

)
dxidxj

on each coordinate patch(−εα, εα) × Xα. Here,b is a smooth function onN0 ∩ M̃
with 0 < b ≤ 1 and sufficiently small so that, with the new metricg̃, N0 is globally
hyperbolic; from the properties ofγ mentioned before it is obvious that one can choose
such ab so thatb ≡ 1 onN+ andb ≡ 1 on the set

Y = int
(
M̃ ∩ J−(�2) ∩ (−ε1,0)×X1

)
.

With this choice ofb, it is moreover clear that̃g coincides onN+ with the metricg, and
sog̃ may be extended fromN0 ∩ M̃ to all of M̃ by defining̃g asg onN+. Moreover,̃g
is a flat Lorentzian metric onY , and viewingUj , j = 1,2, canonically as subsets of̃M,
the previous constructions entail that there are two globally hyperbolic sub-spacetimes
Û (with metricg̃) which are relatively compact inY , and have the property that̂Uj ✄Uj
with respect to the metric̃g.

Finally, one can makeY slightly smaller in order to obtain a globally hyperbolic
sub-spacetimêG of (M̃, g̃) which is simply connected and still contains̃Uj andÛj (if
necessary, by making thêUj slightly smaller as well); and̃g is flat onĜ. Therefore we
have now constructed the required(M̃, g̃) and the subsetsUj , Ũj , Ûj (j = 1,2) andG,
Ĝ with the properties claimed in Lemma 2.1.%&

Appendix B

In this appendix we collect the assumptions about a quantum field theory�M0 on
Minkowski spacetime equipped with its standard spin structure, and quote the spin-
statistics theorem for this setting. The assumptions are those given in the book by Streater
and Wightman [44], except that in formulating the Bose–Fermi alternative (normal com-
mutation relations), we will posit that Bosonic commutation relations hold in the strong
sense, similarly as in the statement of Thm. 4.1. See below for details.

To begin with, write(M0, η) = (R4,diag(+,−,−,−)) for Minkowski spacetime.
A Lorentzian coordinate frame(e0, . . . , e3) has been chosen by whichM0 is identified
with R

4, and which also serves to fix orientation and time-orientation. The framebundle
F(M0, η) is isomorphic toR4×L

↑
+, and for eachx ∈ R

4, (x, (e0, . . . , e3)) represents
an element inF(M0, η). Then the spin-bundleS(M0, η) is isomorphic toR4×SL(2,C),
and one obtains a spin-structureψ0 : S(M0, η) → F(M0, η) by assigning to(x, s) ∈
S(M0, η) the elementψ0(x, s) = (x, (e0(s), . . . , e3(s))) in F(M0, η) with

eb(s) = ea'ab(s),
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where SL(2,C) � s �→ '(s) ∈ L
↑
+ is the covering projection. Explicitly, the matrix

components of'(s) are given by

'ab(s) = 1

2
Tr(s∗σasσb),

whereσ0, . . . , σ3 are the Pauli-matrices.
Now let ρ denote any of the complex linear irreducible representationsD(k,l), or

of the real linear irreducible representationsD(k,l) ⊕ D(l,k) (k != l), wherek, l ∈ N0.
The corresponding representation space will be denoted byVρ . Then we require that the
quantum field theory�M0 = (.M0,DM0,HM0) has the following properties (where in
the following, we abbreviate(.M0,DM0,HM0) by (.0,D0,H0)):

(1) H0 is a Hilbertspace andD0 ⊂ H0 is a dense linear subspace.
(2) .0 is a linear map taking elementsf in S(R4, Vρ) to closable operators.0(f )

all having the common, dense and invariant domainD0. Here,S(R4, Vρ) is the set
of Schwartz-functions onR4 taking values in the finite-dimensional representation
spaceVρ .5

(3) For each pair of vectorsχ, χ ′ ∈ D0, the map

S(R4, Vρ) � f �→ (χ,.0(f )χ
′)

is continuous, hence an element inS′(R4, Vρ).
(4) There is a strongly continuous representation

P̃
↑
+ � (a, s) �→ U(a, s)

of P̃
↑
+ = R

4
� SL(2,C) (the covering group of the proper orthochronous Poincaré

group) by unitary operators onH0; D0 is left invariant under the action of the
U(a, s).

(5) The spectrum of the translation-subgroupa �→ U(a,1) is contained in the closed
forward lightconeV +, i.e. the relativistic spectrum condition holds. Moreover,
there is an up to a phase unique unit vectorC ∈ H0, the vacuum vector, fulfilling
U(a, s)C = C for all (a, s) ∈ P̃

↑
+. This vector is assumed to be contained in

D0 and to be cyclic for the algebra generated by the field operators in the sense
thatD0 coincides with the vector space spanned byC and all vectors of the form
F1 · · ·FnC, n ∈ N, Fj ∈ {.0(fj ),.0(fj )

∗}, f1, . . . , fn ∈ S(R4, Vρ).
(6) The quantum field possesses the covariance property

U(a, s).0(f )U(a, s)−1 = .0(ρa
5(s)f ),

where
ρa
5(s)f (y) = ρ(s)(f ('(s)−1(y − a)))

for all a ∈ R
4, s ∈ SL(2,C), f ∈ S(R4, Vρ).

(7) Spacelike clustering holds on the vacuum, i.e. ifa is any non-zero spacelike vector,
then one has

(C, F1 · · ·FkU(ta,1)Fk+1 · · ·FnC) −→
t→∞ (C, F1 · · ·FkC)(C, Fk+1 · · ·FnC)

for all Fj ∈ {.0(fj ),.0(fj )
∗}, with f1, . . . , fn ∈ S(R4, Vρ), n ∈ N.

5 In the case of flat Minkowski-spacetime,S(M0, η) = R
4 × SL(2,C) and one can canonically identify

Vρ with R
4 × Vρ andρ̌ with id × ρ.
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(8) Finally, the Bose–Fermi alternative is required to hold in the following form. The
quantum field fulfills either
Bosonic commutation relations. Given any pair of causally separated subsets
O1,O2 ∈ orc(R4), then it holds that

F0(O1) ⊂ F0(O2)
′,

or
Fermionic commutation relations. Given any pair off1, f2 ∈ S(R4, Vρ) with
spacelike separated supports, then it holds that

.0(f1).0(f2)+.0(f2).0(f1) = 0 and.0(f1).0(f2)
∗ +.0(f2)

∗.0(f1) = 0.

In formulating the statement of Bosonic commutation relations (orlocality, as it is also
called),F0(O) denotes the von Neumann algebra generated via the polar decomposition
of the closed field operators.0(f ) with suppf ⊂ O as described in assumption (a)
of Sect. 4. The above statement of Bosonic commutation relations is thus equivalent
to saying that the field operators.0(f1) and.0(f2) commute strongly for spacelike
separated supports off1 andf2; here we say that a pair of closable operatorsXj (j =
1,2) commutes strongly ifJ1 and eis|X1| commute withJ2 and eit |X2|, s, t ∈ R, where
Xj = Jj |Xj | denotes polar decomposition. Clearly, the property of field operators to
commute strongly at spacelike separation implies their spacelike commutativity in the
ordinary sense,

.0(f1).0(f2)−.0(f2).0(f1) = 0 and .0(f1).0(f2)
∗ −.0(f2)

∗.0(f1) = 0

whenever the supports off1 andf2 are spacelike separated, but without further in-
formation one can in general not conclude that this last relation also implies spacelike
commutativity of the field operators in the strong sense as usually the field operators will
be unbounded. The question as to when this conclusion may nevertheless be drawn for
field operators in quantum field theory is a longstanding one; however, several criteria
are known. We refer the reader to [7,18] for further discussion and references. Suffice it
to say here that ordinary spacelike commutativity is expected to imply strong spacelike
commutativity of field operators in the case of physically relevant theories.

We also mention that in Def. 4.1 the quantum field.0 = .M0 has only been assumed
to be an operator-valued distribution defined on test-spinors of compact support, which
would correspond to elements inD(R4, Vρ). Thus, we assume here that.0 can be ex-
tended to an operator-valued distribution onS(R4, Vρ) with the above stated properties.

Now we quote the spin-statistics theorem for a quantum field theory on Minkowski
spacetime which is proved in [44] for complex linear irreducibleρ and in [33] for real
linear irreducibleρ. (In fact, the results in [44,33] are slightly more general since Bosonic
commutation relations are only required in the ordinary sense there.)

Theorem 2.1. Suppose that �M0 is a quantum field theory on Minkowski spacetime
fulfilling the above listed Conditions (1)–(8). Then the following two cases imply that
.0(f ) = 0, f ∈ S(R4, Vρ), and hence that F0(O) = C · 1 holds for all bounded open
regions O in Minkowski spacetime:

(α) Bosonic commutation relations hold and the field is of half-integer spin type (k + l
is odd).

(β) Fermionic commutation relations hold and the field is of integer-spin type (k + l is
even).
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Appendix C

In this appendix we will explain how a generally covariant quantum field theory overG
may be viewed as a covariant functor between the categoryG and a categoryN of nets
of von Neumann algebras over manifolds (more generally, one could considerN as the
category of isotonous families of Neumann algebras indexed by directed index sets, but
we don’t need that generality here). A similar functorial description has been given by
Dimock [14] for the case that the morphisms ofG are global isomorphisms, and that
N is a category ofC∗-algebraic nets. Here, we take the morphisms ofG to be the local
isomorphisms, and correspondingly we have to consider local morphisms forN.

We now considerG as a category whose objects are the four-dimensional, globally
hyperbolic spacetimes with a spin-structure. GivenM1 andM2 in G, we define the set
of morphisms hom(M1,M2) to consist of the local isomorphisms betweenM1 andM2.
We also add to hom(M1,M2) a trivial morphism0. (In fact,0 should be indexed byM1
andM2, but that is inconvenient and will be skipped as there is no danger of confusion.)
The composition of two morphisms�a ∈ hom(M1,M2) and�b ∈ hom(M2,M3) will
be defined according to the following rules: If�a = 0 or �b = 0, then�b�a = 0.
If both �a and�b are non-trivial, but*ini(�b) ∩ *fin(�a) = ∅, then also�b�a =
0. Otherwise, we declare�b�a to be the local isomorphism betweenM1 and M3
obtained by composing the bundle maps and isometries on their natural domains, so that
*ini(�b�a) = ϑ−1

a (*ini(�b) ∩ *fin(�a)). This is reasonable because it is not difficult
to show that the intersection of two globally hyperbolic submanifolds of a globally
hyperbolic spacetime yields again a globally hyperbolic submanifold. The identical
bundle map gives the unit element in hom(M,M), and one can straightforwardly check
that also the associativity of morphisms is fulfilled.

The objects of the categoryN are familiesF = {F(O)}O∈orc(X) of von Neumann
algebras which are indexed by the open, relatively compact subsets of a manifoldX and
which are subject to the condition of isotony (cf. Sect. 4, item (a)). The morphisms in
hom(F1,F2) are local net-isomorphisms. A local net isomorphism is a pair({αNi }, φ)
with the following properties:φ : X1 ⊃ N1 → N2 ⊂ X2 is a diffeomorphism between
open subsets of the manifoldsX1 andX2 which relate to the indexing sets ofF1 andF2 in
the obvious manner.{αNi }Ni∈orc(N1) is a family of von Neumann algebraic isomorphisms
αNi : F1(Ni)→ F2(Nf ) with Nf = φ(Ni) obeying the covariance property

αNi (F1(O)) = F2(φ(O)), O ∈ orc(Ni).

As before, we add to the local net-isomorphisms in hom(F1,F2) a trivial morphism0
(which may here be concretely thought of as the map which sends each algebra element
in the netF1 to the algebraic zero element in the netF2). The composition rule for
morphisms is then analogous as before, we only have to specify the case of two net-
isomorphisms(αNi , φ) ∈ hom(F1,F2) and(βN ′i , φ

′) ∈ hom(F2,F3) when*ini(φ
′) ∩

*fin(φ) != ∅. In this situation, we define the composition of the two morphisms as the
element(γNi , ψ) in hom(F1,F3), whereψ isφ′ ◦ φ restricted toφ−1(*ini(φ

′)∩*fin(φ)),
and for any open, relatively compact subsetNi in *ini(ψ) we define

γNi = βφ(Ni) ◦ αNi .
Again, each hom(F,F) contains the identical map as an identity, and one may check
the associativity of the composition rule.

Then the covariance structure (Condition (C) of Def. 4.1) of a generally covariant
quantum field theory is that of a covariant functorF : G → N which assigns to each
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objectM ∈ G an objectF(M) = {F(O)}O∈orc(M) in N, and which assigns to each (non-
trivial) morphism� = (
, ϑ) of G a morphismF(�) = (α�,Ni , ϑ) of N. Moreover,F
maps trivial morphisms to trivial morphisms. Diagrammatically, one has

M1
F−−−−→ {F1(O)}O∈orc(M1)

�

	 	({α�,Ni
},ϑ)

M2
F−−−−→ {F2(U)}U∈orc(M2)

Note added in proof.

• A more general and concise functorial decription of the principle of general covariance
will appear in [53].

• The required properties concerning Hadamard states mentioned at the end of Sect. 6
have recently been discussed in a preprint by D’Antoni and Hollands [54].
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