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Abstract: A model-independent, locally generally covariant formulation of quantum
field theory over four-dimensional, globally hyperbolic spacetimes will be given which
generalizes similar, previous approaches. Here, a generally covariant quantum field the-
ory is an assignment of quantum fields to globally hyperbolic spacetimes with spin-
structure where each quantum field propagates on the spacetime to which it is assigned.
Imposing very natural conditions such as local general covariance, existence of a causal
dynamical law, fixed spinor- or tensor type for all quantum fields of the theory, and
that the quantum field on Minkowski spacetime satisfies the usual conditions, it will be
shown that a spin-statistics theorem holds: If for some of the spacetimes the correspond-
ing quantum field obeys the “wrong” connection between spin and statistics, then all
guantum fields of the theory, on each spacetime, are trivial.

1. Introduction

The spin-statistics theorem of quantum field theory in Minkowski spacetime asserts
that elementary particles with integer spin must obey Bose-statistics (“spacelike com-
mutativity”), while those of half-integer spin must obey Fermi-statistics (“spacelike
anti-commutativity”). Although this behaviour of elementary particles is often taken as
an experimental fact of life, it is remarkable that in quantum field theory such a con-
nection between two at first sight apparently unrelated properties of particles can be
deduced from a few very basic principles: (1) Relativistic covariance, (2) stability of
matter (spectrum condition and existence of a vacuum state), (3) localization properties
of charges and (4) locality (spacelike commutativity of observable quantities).

This deeply rooted connection between the covariance properties of elementary par-
ticles and the behaviour under exchange of their positions has attracted the attention
of numerous researchers in quantum field theory, and has a long history with a fair
number of general and rigorous results. Among the first are the investigations by Pauli
[38] and by Fierz [20] who proved the spin-statistics theorem for quantum fields of
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arbitrary spin obeying linear hyperbolic wave-equations in Minkowski-spacetime. The
first results on the connection between spin and statistics in quantum field theory in a
completely general, model-independent approach (for quantum fields in the Wightman
framework) were then obtained by Burgoyne [11] and by Liders and Zumino [36]. They
have subsequently been further extended and refined, particularly to cover the situation
of having several fields of different spinor types in a quantum field theory; these theo-
rems are presented in the textbooks by Jost [33], by Streater and Wightman [44], and by
Bogoliubov, Logunov, Todorov and Oksak [5], to which we refer the reader for further
discussion and references.

The Wightman-framework takes as fundamental objects pointlike quantum fields
which may be charge-carrying and need not represent observable quantities. The
operator-algebraic approach to quantum field theory [30, 29] uses, instead, observable
quantities as the basic objects describing a theory of elementary particles and, at the
same time, abandons their pointlike localizability. The charge-carrying objects and the
global gauge group are, in this approach, not put in by hand, but can be reconstructed
from the observables together with sets of states distinguished by certain localization
properties (representing the localization properties of the charges in a quantum field
theory). This is a deep result by Doplicher and Roberts [16] arising from the profound
analysis of the charge superselection structure by Doplicher, Haag and Roberts (see [15,
16,29] and references given therein). Spin-statistics theorems have also been derived
in the operator-algebraic approach to quantum field theory, beginning with works by
Epstein [19] and by Doplicher, Haag and Roberts [15] for the case of strictly localizable
charges. Generalizations of spin-statistics theorems to the case of charges that can be
localized in spacelike cones have been obtained by Buchholz and Epstein [10].

A new line of development has been introduced by the Tomita—Takesaki modular
theory of von Neumann algebras [46] and its connection to Lorentz-transformations
which was first established in two articles by Bisognano and Wichmann [4]; see the
recent review by Borchers [6] for more information on this nowadays very important
area of activity in algebraic quantum field theory. In this context, there are spin-statistics
theorems by Guido and Longo [26] and by Kuckert [35] in algebraic quantum field theory
which take a certain geometric action of the Tomita—Takesaki modular objects associated
with the vacuum state and distinguished algebras of quantum field observables as the
starting point.

The results just summarized concern quantum field theory on four-dimensional Min-
kowski spacetime. The present article focusses on quantum field theory on four-dimen-
sional curved spacetimes, but before turning to that topic, we just mention that spin-
statistics connections have also been investigated in other settings. Among those are, in
particular, quantum field theories on flat two-dimensional spacetime and chiral confor-
mal quantum field theories on one-dimensional spacetimes (e.g. thefijckee e.g.
the articles [40] for the case of two dimensions and [27] for chiral conformal quantum
field theory. A spin-statistics connection for so-called “topological geons” has been in-
vestigated within a diffeomorphism-covariant approach to quantum gravity [17, 2] which
is not directly related to the quantum field theoretical framework. For the sake of com-
pleteness we mention that the spin-statistics connection may also be violated e.g. for
guantum fields having infinitely many components; at this point we refer to [5] and
references cited there.

While the spin-statistics connection is well-explored in quantum field theory on flat
spacetime, offering a wealth of results, there is little analogous to be found so far for
quantum field theory on curved spacetime manifolds. We recall that in quantum field
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theory on curved spacetime one considers quantum fields propagating on a curved,
classically described spacetime background; the standard references on that subject, from
amore mathematical point of view, include [21,52]. Clearly, the reason for lacking results
on the spin-statistics connection in curved spacetime is that the spin-statistics theorem
on Minkowski spacetime rests significantly on Poincaré-covariance which possesses no
counterpart in generic curved spacetimes. In general, the isometry group of a curved
spacetime will even be trivial. Thus it is not at all clear if a spin-statistics theorem can
be established on curved spacetime in a model-independent quantum field theoretical
framework.

The situation is, of course, better when the spacetimes on which quantum fields
propagate possess still large enough isometry groups. Such a setting has been consid.
ered recently in [28]. In that article, the charge superselection theory in the operator-
algebraic approach to quantum field theory has been generalized from the familiar case
of Minkowski spacetime to arbitrary, globally hyperbolic spacetimes. Moreover, if a
spacetime admits a spatial rotation-symmetry with isometry group SO(3), and also a
certain time-space reflection symmetry, then a spin-statistics theorem has been shown
to hold for covariant charges, where the spin is defined via the SU(2)-covering of the
spatial rotation group SO(3). A certain geometric action of Tomita—Takesaki modular
objects associated with an isometry-invariant state and distinguished algebras of observ-
ables has been taken as input. (We refer to [28] for further details and discussion.) Such a
spin-statistics theorem applies e.g. for quantum field theories on Schwarzschild—Kruskal
black hole spacetimes.

However, when one is confronted with the question if there is a connection between
spin and statistics for quantum fields on general spacetime manifolds, one finds scarcely
any results. The only results known to us have been obtained in papers by Parker and
Wang [37], and by Wald [50], and they apply to the case of quantum fields obeying
linear equations of motion. The situation considered in these two papers is, roughly
speaking, as follows: A linear quantum field propagates in the background of a (globally
hyperbolic) spacetime consisting of three regions: A “past” region and a “future” region,
both of which are isomorphic to flat Minkowski spacetime, and an intermediate region
lying between the two (i.e. lying to the future of the “past” region, and to the past of
the “future” region) which is assumed to be non-flat. (Actually, only particular types
of spacetimes of this form are considered in [37] and [50].) Then it is shown in the
mentioned articles that a quantum field of integer spin2) obeying a linear wave-
equation won't satisfy canonical anti-commutation relations in the “future” region if
canonical anti-commutation relations were fulfilled in the “past” region. In other words,
the “wrong” commutation relations are unstable under the dynamical evolution of the
guantum field in the presence of a curved spacetime background. Likewise, a quantum
field of half-integer spin£ 3/2) will no longer satisfy canonical commutation relations
in the “future” region if it did so in the “past” region. It should be noted that these
results don’t make reference to states (e.g., the vacuum state in any of the flat regions),
so that itis really the non-trivial spacetime curvature in the intermediate region inducing
dynamical instability of the “wrong” connection between spin and statistics at the level
of the commutation relations. In that respect, the line of argument in [37] and [50] seems
to be restricted to free fields.

Nevertheless, there are some aspects of it which are worth pointing out since they
can be generalized to model-independent quantum field theoretical settings. So one
notes that the quantum field theories in the flat, “past” and “future” regions are “the
same” regarding field content and dynamics; otherwise it would be difficult to formulate
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that their commutation relations are unstable under the dynamical evolution. There is
another aspect in form of the well-posedness of the Cauchy-problem for linear fields in
globally hyperbolic spacetime, entailing that field operators located in the “future” are
dynamically determined by the field operators located in the “past” region. This property
is sometimes referred to asong Einstein causality, or existence of a causal dynamical
law, and not restricted to free field theories. Thus one may extract from the setting
investigated by Parker and Wang, and by Wald, the two following important ingredients
for a quantum field theory on curved spacetime: The parts of the theory restricted to
isomorphic spacetime regions should themselves be isomorphic (i.e., copies of each
other), and there should exist a causal dynamical law. One may then interpret the results
of [37] and [50] as saying that, for a certain class of curved spacetimes and for a certain
class of quantum field theories, the two said ingredients are incompatible with assuming
the “wrong” connection between spin and statistics.

On the basis of the mentioned ingredients, we can now abstract from the setting of
[37] and [50]. We shall consider familig®y }meg of quantum field theories indexed
by the elements of, the set of all four-dimensional, globally hyperbolic spacetimes
with spin-structured. Each®y, is a quantum field propagating on the background
spacetimeM, and it is assumed that for eabh, the quantum fieldby, is of a specific
spinor- or tensor-type (the same for Bll). The picture is that one can, for each spinor-
or tensor-type, formulate field equations that depend on the spacetime metrics in a
covariant manner. (A very simple example(is, + m?)®y = 0 for a scalar field
&y onM = (M, g), wherel, is the d’Alembertian associated with the metgic
on the spacetime-manifoltf.) Then there should be an isomorphiag between the
algebrasF, (01) andFu,(02) formed by the field operato®y, (f1) and @, (f2)
with suppf; € 0; (j = 1, 2), respectively! as soon as the subregio®s C M are
isomorphic, i.e. whenever there is a local isomorphism (of metrics and spin-structures)
®: M1 D 01 — 02 C Ma. Moreover,ag should be a net-isomorphism in the sense
that it respects localized inclusions, meaning that

ae(Fm,(0)) = Fm,(©(0))

holds for allO c 01. This is theprinciple of general covariance. It is worth noting
that our concept of general covariance is a “local” one, in contrast to a similar, but
global notion of general covariance for quantum field theories which has been developed
by Dimock [13,14]. Apart from that (and apart from the fact that we need the net-
isomorphisms at the level of von Neumann algebras, while in existing literature they have
been looked at a§*-algebraic net-isomorphisms), our concept of general covariance is
very close to that suggested by Dimock, and also similar to ideas in [3,34, 32].

The principle of existence of a causal dynamical law can then be expressed by de-
manding that, for each, there holds

Im(01) C Fm(0)

whenever the subregiofi; of M lies in the domain of dependence of the subregion
of M (that is,0; is causally determined b§, see Sect. 2 for details).

There is another principle that is also most naturally imposed. Minkowski spacetime
Mo is also a member df, and clearly the quantum field theody, should satisfy the

1 The precise mathematical sense in which the algebras are formed by the field operators will be explained
in Sect. 4. The®y are viewed as operator-valued distributions and theare test-spinors or test-tensors
(smooth sections of compact support in an appropriate spinor-bundle or tensor-bundle).
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usual properties assumed for a quantum field theory (e.g., in the Wightman framework),
like Poincaré-covariance, spectrum condition, existence of a vacuum state and, in order
that a spin-statistics theorem can be expected, the Bose—Fermi alternative.

If these conditions — fixed spinor- or tensor-type, general covariance, existence of
a causal dynamical law and the usual properties for the thégry on Minkowski
spacetime — are satisfied, we call the faniBm }m<g a generally covariant quantum
field theory over G. For such generally covariant quantum field theories ave
shall establish in the present article a spin-statistics theorem. Roughly speaking, the
contents of that theorem are as follows (see Thm. 5.1 for the precise statement): If
there is somé/ € G and a pair of causally separated regighsand O, in M so that
pairs of field operators of the quantum figbqy localized inO1 and Oz, respectively,
fulfill the “wrong” connection between spin and statistics (i.e. they anti-commuig if
is of integer spin-type (tensorial), or they commutadif; is of half-integer spin type
(spinorial)), then this entails that all field operatdxg are mutliples of the unit operator
forall M e G, thus the theory is trivial.

Our method of proof is to show with the help of a spacetime deformation argument
(Lemma 2.1) that under the said assumptions the “wrong” connection between spin and
statistics in any of the theoriaBy leads to the “wrong” spin-statistics connection for
the theory®y, on Minkowski spacetime; hence the known spin-statistics theorem for
quantum field theory on Minkowski spacetime shows #haft, must be trivial. Using
the spacetime deformation argument once more, this will then be shown to imply that
all theories®; are trivial.

The framework we use is in a sense a mixture of the Wightman-type quantum field
theoretical setting and of the operator-algebraic approach to quantum field theory. This
seems to have some technical advantages. Upon making some changes, one could refor
mulate the arguments so that they apply either to a purely Wightman-type quantum field
theoretical setting, or to a purely operator-algebraic approach; however in the latter case
it wouldn’t be so clear how to assign to a theory a spinor- or tensor-type on a curved
spacetime. This has resulted in the framework we shall be employing here.

We should like to point out that the assumptions imposed on a generally covariant
quantum field theory®y }meg Over§ are quite general. They are fulfilled for free field
theories on curved spacetimes in representations induced by Hadamard states as we will
indicate by sketching some examples in Sect. 6. Our current understanding is, however,
that these assumptions aren’t restricted to the case of free field theories but apply in fact
to a larger class of quantum field theories. At any rate, they reflect a few very natural
and general principles.

Our work is organized as follows. In Sect. 2 we summarize a few properties of
globally hyperbolic spacetimes. Lemma 2.1 will be of importance later for proving the
spin-statistics theorem; it states that one can deform a globally hyperbolic spacetime into
another globally hyperbolic spacetime which is partially flat, and partially isomorphic to
the original spacetime. Section 3 contains the technical definition of local isomorphisms
between spacetimes with spin structures. In Sect. 4 we give the full definition of a
generally covariant quantum field theory ov&rThe main result on the connection
between spin and statistics for such generally covariant quantum field theorigsisver
presented in Sect. 5. In Sect. 6 we sketch the construction of three theories that provide
examples for generally covariant quantum field theories gvdihe free scalar Klein—
Gordon field, the Proca field and the Majorana-Dirac field in representations induced by
guasifree Hadamard states.
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There are three appendices. Appendix A contains the proof of Lemma 2.1, and in
Appendix B we summarize the standard assumptions for a quantum field theory on
Minkowski spacetime and quote the corresponding spin-statistics theorem from the lit-
erature. In Appendix C we briefly indicate (generalizing similar ideas in [14]) that gen-
erally covariant quantum field theories ogmay be viewed as covariant functors from
the categong of globally hyperbolic spacetimes with a spin-structure to the cateyory
of nets of von Neumann algebras over manifolds, both categories being equipped with
suitable local isomorphisms as morphisms.

(See also the “ Note added in proof” at the end of the article.)

2. Glabally Hyperbolic Spacetimes

We begin the technical discussion by collecting some basics on globally hyperbolic
spacetimes. This section will be brief, and serves mainly for fixing our notation. The
reader is referred to the monographs [31,51] for further explanations and proofs.

A spacetime is a paitM, g) whereM is a four-dimensional smooth manifold (con-
nected, Hausdorff, paracompact, without boundary) aigla Lorentzian metric with
signature(+, —, —, —) on M. It will be assumed thatM, g) is orientable and time-
orientable, meaning that there exists a smooth timelike vectorfieth M. (Then
g(v,v) > 0 everywhere o/, sov is nhowhere vanishing). A continuous, piecewise
smooth causal curv® > (a,b) > t — yp(¢) is future-directed (past-directed) if
gly,v) > 0 (g(y,v) < 0), wherey = j—ty is the tangent vector. Henceforth, it
will be assumed that an orientation and a time-orientation have been chosen. Then one
defines the following regions of causal dependence for any give set\/:

(i) J*(0) is the set of all points lying on future(+)/past(-) -directed causal curves
emanating fron0,

(i) J(O)=JT(O)UJ (0),

(i) D*(0)isthe setofall pointp in J¥(0) such that each past(+)/future(-) -directed
causal curve starting at passes througt unless it has a past/future endpoint,

(iv) D(0)=Dt(0)UD(0),

(v) 01 = M\J(O) is thecausal complement of O.

The setD(0) is called thedomain of dependence of O. If O1 C int D(0O), then we say
that O is causally determined by O, and denote this b@1 < O.

A time-orientable spacetimeV, g) is calledglobally hyperbolic if M possesses
a smooth hypersurface which is intersected exactly once by each inextendible causal
curve. Such a hypersurface is calle@auchy-surface. It is known that globally hyper-
bolic spacetimes posse€§°-foliations into Cauchy-surfaces, in other words, for each
globally hyperbolic spacetim@, g) there exists a smooth 3-dimensional manifaig
together with a diffeomorphismi : R x g — M such that for alk € R, F({r} x £)
is a Cauchy-surface iotM, g) and such that, for eache 3o, R > ¢t — F(t, x) is an
endpointles timelike curve. While this may at first sight appear to be quite restrictive, it
is known that the set of globally hyperbolic spacetimes is quite large and contains many
spacetimes of physical interest. Moreover it should be noted that global hyperbolicity
isn’t connected to the existence of spacetime symmetries.

WhenN is an open, connected subsetfthen(N, g | N) is again an oriented and
time-oriented spacetime. We call igkobally hyperbolic sub-spacetime of (M, g) if the
following conditions are satisfied (cf. [31]Sect. 6.6): (1) the strong causality assumption
holds on(N, g | N), (2) for any two pointsp, ¢ € N, the set/*T(p) N J~(¢), if
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non-empty, is compact and containedNn This entails thatN, g | N) is a globally
hyperbolic spacetime in its own right, but also when seen as embeddetVnty).
We give two types of examples for subsétsof M so that(N, g | N) is a globally
hyperbolic sub-spacetime: First, jf, ¢ € M with p € int J*(g), then the “double
cone” N = int(J~(p) N J*(q)) gives rise to a globally hyperbolic sub-spacetime.
And secondly, suppose th@t, C2, C3 are three Cauchy-surfaces(ii, g) with Co C
int J*(Cy) andC3 C int J*(C>), and letS be a connected open subset@f Then
the “truncated diamond¥ = int(D(G) N JT(C1) N J~(C3)) yields, equipped with the
appropriate restriction of, again a globally hyperbolic sub-spacetime ®f, g).

For the purposes of the present paper, a particularly important property of globally
hyperbolic spacetimes is the following: A globally hyperbolic spacetie g) can
be “deformed” into another globally hyperbolic spacetit, g) in such a way that
certain regions of M, g) remain unchanged itM, g), while other regions ifM, 2)
are isomorphic to parts of flat Minkowski spacetime. This will be made more precise in
the subsequent statement, whose proof, given in Appendix A, is an extension of methods
used in [22].

Lemma 2.1. Let (M, g) be a globally hyperbolic spacetime and let p1, p2 € M be a
pair of causally separated points (i.e. p1 € {p2}1). Then thereis a globally hyperbolic
spacetime (M, ), together with acollection of subsetsU;, U;, U; (j = 1, 2) and G, G,
with the following properties:

(a) There are Cauchy-surfaces ¥ in (M, g), and $ in (M, 2), so that with N+ =
|ntJ+(2) c Mand N, = intJ* (), (N, g | Ny) isisomorphicto (N, 3 |
Ny).

(b) P p2 € N.. Theisomorphic imagesof p1 and p2 in N+ will be denoted by p1 and
D2.

(€) G ¢ N_ =intJ~ (%) issimply connected, and (G, g | G) isaglobally hyperbolic
sub-spacetimeof (M, g) isomor phic to a globally hyperbolic sub-spacetime (Go, 1 |
Go) of flat Minkowski-spacetime (Mo, 1) ~ (R*, diag(+, —, —, —)).

(d) G c N, issimply connected and
(G.g | G) isaglobally hyperbolic sub-spacetime of (M, %) containing p1 and po.

(e) Thesets U;, U;, U; are, when equipped with the appropriate restrLctions of gasa
metric, globally hyperbolic, relatively compact sub-manifolds of (M, Qwhich are,
respectively, causally separatedfor differentindices,andp; € U; € G,U;,U; C G
(j=12).

(f) U, iscausally determined by U, and U; is causally determined by U; (j = 1, 2).

Figure 2.1 may help to illustrate the relations between the sets involved in Lemma 2.1.

Fig. 2.1. Sketch of the causal relations of the séts U;, U}, G. G
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3. Spacetimeswith Spin-Structures

Let (M, g) be a globally hyperbolic spacetime where an orientation and a time-orienta-
tion have been chosen. Then IE{M, g) be the bundle of oriented and time-oriented
(and future-directedy-orthonormal frames o . That is, an element= (e, ... , e3)

in F(M, g) is a collection of four vectors ifi, M, p € M, with g(eq, e5) = 141, Where
(nap) = diag+, —, —, —) is the Minkowski metriceg is a future-directed timelike vec-
tor, and the framéeo, . . . , e3) is oriented according to the chosen orientatiodfbriThe
bundle projectiomy : F(M, g) — M assigns te the base poinp to which the vectors
eo, - .. , e3 are affixed. The proper orthochronous Lorentz grﬁﬁpoperates smoothly
ontherightonF (M, g) by (Rae), = ep A’ andthusF (M, g)isa principal fibre bundle
with fibre group);_TF over M. A spin structure for (M, g) is a pair(S(M, g), ¥), where
S(M, g) is an SI(2, C)-principal fibre bundle oveM andvy : S(M, g) — F(M, g) is

a base-point preserving bundle homomorphism (thatise v = ng whererng is the
base projection of (M, g)) with the property

lp' [e] RS:RA(S) [¢] w

Here, Rs denotes the right action afe SL(2, C) on S(M, g), and SI2,C) > s —
A(S) € Ll is the covering projection; recall that &, C) is the universal covering
group ofLIL.

Two spin-structuresS™ (M, g), v D) and(S@P (M, g), v @) are called (globally)
equivalent if there is a base-point preserving bundle-isomorphm SO (M, g) —

S@ (M, g) sothat® o @ = @D Itis known that each 4-dimensional globally hy-
perbolic spacetime admits spin-structures and that all such spin-structures are equivalent
if the spacetime manifold is simply connected (cf. [25]).

From now on, we willabbreviate by = (M, g), S(M, g), ¥) an oriented and time-
oriented globally hyperbolic spacetime endowed with a spin-structure, and we shall also
use the notatioM ; = ((M;, g;), S;(M;, g;), ¥;) if we have labels;j distiguishing
several such objects. We denote $yhe set of all 4-dimensional, oriented and time-
oriented globally hyperbolic spacetimes with a spin-structure. One may yie® a
category; of interest are then “local morphisms” between its objects, or more properly,
morphisms between sub-objects. We will introduce the “local morphisms” as follows.
For more details, see Appendix C.

Definition 3.1. Let M; and M2 be in G. Then we say that ® = (©, ) is a local
isomor phism between M1 and M if:

(a) There are simply connected, oriented and time-oriented globally hyperbolic sub-
SpaCGtiITES(N',gj I Nj) of Mj,g)) (j =1, 2)sothat & : (N1,g1 [ N1) —
(N2, g2 | N2) isan orientation and time-orientation preserving isomor phism. Then
N1 will be called the initial localization of @, denoted by ¢ini (®), and N2 will be
called the final localization of ®, denoted by 4sin (©).

(b) When denoting by S; (N}, g;) the restriction of S;(M;, g;) inits base set (that is,
Sj(Nj, ) = w5, (N}) , then

® : S1(N1, g1) — S2(No, g2)

is a principal fibre bundle isomorphism (so it intertwines the corresponding right
actions of the fibre groups) with the following properties:
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@) oo ms, =7s, o ® on  S1(N1, g1),

(i) p o Y1 =920 ® on S1(Ny, g1).
Here, 9F : F(N1, g1) — F (N2, g2) isinduced by the tangent map correspond-
ingto ¥ : Ny — Na.

Remark. In [14], Dimock has introduced the categdyand global isomorphisms be-
tween pairs of objects ifi as morphisms. Since each globally hyperbolic sub-spacetime
of a globally hyperbolic spacetime with spin-structure is itself a membe§, ahe
definition of local isomorphisms can be regarded as introducing morphisms between
sub-objects of objects ifi. It should be noted that the class of local isomorphisms be-
tween elements d is clearly larger than the class of global isomorphisms as considered
in [14], and therefore covariance properties imposed on quantum systems with respect
to the class of local isomorphisms are more restrictive than those using only global
isomorphisms. Further below we will see the implications of that.

Let o be a linear representation of &, C) on some finite-dimensional vector-
spaceV, (which may be real or complex). Then, given a spacetime-manifold with spin-
structureM = (M, g), S(M, g), ¥) € G, one can form the vector bundle

V,=8M,g) %, V,

associated with the principal fibre bund¥€M, ¢) and the representatign V, is a
vector bundle over the base-manifdifl, and we recall that the elements@f,) ,, the
fibre of V, at a base poinp € M, are the orbit(Rg-15,, p(Sv) : s € SL(2, C)} of
pairs(s,, v) € S(M, g), x V, under the action

S (Rg-15p, p(S)V) (3.1)
of the structure group SR, C) of S(M, g). This action induces a linear representajion

of SL(2, C) oneachV,),. We say thaV,, is the vector bundle of (spin-) representation
typep.

Now let M1 andM» be in G and letV, andV, be associated vector bundles of
representation typg; and p», respectively. Suppose that and o, are equivalent, i.e.
there is some bijective linear mdp: V1 — V> so that

Tpr()T 1 = pa(.). 3.2)

One finds from these assumptions that any local isomorp@sm (®, ¢) between

M1 andM:, lifts to a local isomorphisn@ betweerV; andV, in a way we shall now
indicate. Let7; denote the base projections¥f (j = 1, 2) and, withN1 = £ini(0©),

N> = 4in(©), letV;(N;) = ﬁj‘l(Nj) denote the restrictions of the vector bundles in
the base sets. Then defife: V1(N1) — V2(N>) by assigning to any eleme@t,, v) in
S(M1, g1)p x V1, with p € N1, the element(©s)y(p), Tv) In S(M2, g2)s(p) X V2, and

form the orbits under the corresponding structure group actions (3.1). It is not difficult
to check that this assignment indeed induces a well-defined map betyé¥n) and
V2(N2) which is linear in the fibres and fulfills

Y omMi =720 e}
onV1(N1). Moreover,® intertwines the representatiofig in the sense that
O o p1(5) = f2(S) o O
forallse SL(2, C).



270 R. Verch

4. Generally Covariant Quantum Fields

Inthe present section we introduce a concept of generally convariant quantum field theo-
ries on curved spacetimes with spin-structures. Moreover, we will make the assumption
that these quantum field theories fulfill the condition of strong Einstein causality, or
synonymously, that there exists a causal dynamical law. The combination of these two
assumptions — general covariance and existence of a causal dynamical law — will lead
to the connection between spin and statistics shown in the subsequent section.

It should be remarked that there are several possible formulations of these two as-
sumptions at the technical level. Here, we have chosen to use a framework which is in
a sense a mixture of the Wightman-approach to “pointlike” quantum fields (operator-
valued distributions) and the Haag-Kastler approach which emphasizes local algebras
of bounded operators. Therefore, some technical assumptions have to be made in order
to match these two approaches; yet we feel that the resulting framework is more gen-
eral and more flexible than e.g. a framework using only Wightman fields, since then
we would have to make even more stringent technical assumptions, for instance fairly
detailed assumptions on the domains of field operators, or we would have to impose a
very restrictive form of general covariance and strong Einstein causality. Since we don't
wish to impose conditions of such kind, we regard the approach to be presented in this
section as reasonable and fairly general.

The relevant assumptions will be listed next.

(@) Quantum fields of a spin representation type and their (local) von Neumann al-
gebras. LetM = (M, g), S(M, g), ¥) € G be a globally hyperbolic spacetime with
spin-structure. Moreover, letbe a representation of $2, C) on the finite-dimensional
vector-spacé/,. We will say that a triple of object&b, D, () is aquantumfield of spin
representation type p onM if: H is a Hilbert-space] is a dense linear subspacelof
and® is a linear map taking elemenfse I'g(V,,), the space of *°-sections irV, with
compact support, to closable operatdns/) in H having domairD. In addition, it will
be assumed thd® is invariant under application of the operatdrgf), and thatD is
also an invariant domain for the adjoint field operatorsf)*. It will also be assumed
that there are cyclic vectors i, wherey € D is called cyclic if the space generated
by x and allF1--- F,x, n € N, whereF; € {®(f}), ®(f;)*}?> with f; € To(V,), is
dense irH.

We write org M) to denote the set of open, relatively compact subset® of et
O € orc(M), then denote b (0) the von Neumann algebra which is generated by all
g\ e R, andJy, with suppf C O, where

Q(f) = Jr| PN

denotes the polar decomposition of a field operator’s closure. Thus the quantum field
(@, D, H) induces a net of von Neumann algebf@$0)} o corcar) fulfilling the isotony
condition

01 C 02 = F(01) C F(02).
In the following, we shall abbreviate a quantum fiétel, D, 3{) by the symbokb.

(b) Existence of a causal dynamical law. Let ® be a quantum field of some spin-
representation typg on M. We say that there existsaausal dynamical law for the

2 {®(f), ®(f;)*} denotes the set containing the operators in the curly brackets, and not their anti-
commutator. In t}(1is work, we will never use curly brackets to denote anti-commutators.
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qguantum field (or that the quantum field fulfissong Einstein causality) if for the net
{F(0)}ocorem) Of local von Neumann algebras it holds that

01< 02 = F(01) CF(0O).

(¢) Local morphisms. Assume that we have two representatipngnd o2 on finite-
dimensional vector spac&s andVs, respectively, and suppose that these representations
are isomorphic, i.e. (3.2) holds with some bijective linear rfiapVy — V». Let®4 and
@, be quantum fields of spin-representation typ@ndp, onM 1 andM ,, respectively,
whereM; € § (j = 1, 2). Moreover, suppose that there is a local isomorph@na-
(®, ) betweerM 1 andM ;.

Then we say that the local morphisé betweenM; andM  is covered by local
isomorphisms between the quantum field theoriég and ®; if the following holds:
Given any relatively compact subsdt C ¢ini(®) and writing Ny = ¢(¥;), and
denoting by{F1(0i)}0;corcn;) @aNd{F2(0f)} o, coreny) the von Neumann algebraic
nets induced by the quantum fieléds and @, restricted toN; and N, respectively,
there is a von Neumann algebraic isomorphigg)y, : F1(N;) — F2(Ny) fulfilling
the covariance property

ae,n; (F1(0) = F2((01)),  Oi € Orc(N;). (4.1)

Comments and Remarks. (i) In (a), the property of a quantum field to be a spinor field

of a certain type is just specified by requiring that it acts linearly on the test-spinors
of the corresponding type. This is a quite common approach to defining spinor fields
on curved spacetime. An algebraic transformation property, e.g. that a (local) spinor-
transformatiorp (s) on'V, induces an endomorphism on thalgebra of quantum field
operators, holds in general only when the underlying spacetime has a flat metric. One
may regard the properties of Def. 4.1 below as a weak replacement of such an algebraic
transformation property.

(i) Existence of a causal dynamical law is a typical feature of quantum fields obeying
linear hyperbolic equations of motion, butis expected to hold also for interacting quantum
field theories as long as the mass spectrum behaves moderately. For free field theories,
the existence of a causal dynamical law is commonly fulfilled in the following stricter
form (see [13] for the case of the scalar field, but the argument generalizes to more
general types of fields, cf. e.g. [42]): Givéh < O», then for eachf; € T'o(V,) with

suppf1 C O1 thereisf, € I'g(V,) with suppfo C Oz such thatb(f2) = ®(f1). Our
formulation given in(b) is more general.

(iii) Itis of some importance ind) thatN; andN y are assumed to be relatively compact
subsets ofjn (®) and ¢4 (®), respectively, as otherwise it is known from free field
examples that a von Neumann algebraic isomorphiggny, : F1(N;)) — F2(Ny)

with the covariance property (4.1) cannot be expected to exist. In typical cases, the von
Neumann algebra$; (0) are of properly infinite type, and thery_y, is implemented

by a unitary operatotg v, : H1 — Ho.

The subsequent definition will fix the notion of general covariance for quantum fields
on curved spacetimes.

Definition 4.1. Let p be a linear representation of 9.(2, C) on a finite dimensional
vector space V. By G we denote, as before, the set of all oriented and time-oriented,
4-dimensional, globally hyperbolic spacetimes equipped with a spin-structure. A family
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{®m}Imeg Will be called a generally covariant quantum field theory over G of spin
representation type p if the following properties are fulfilled:

(A) ForeachM € G, &y = (Pm, Dm, Hm) is a quantum field theory on M of spin
representation type p (the samefor all M) such that the properties (a) and (b) stated
above are satisfied.

(B) For the casethat M = Mg is Minkowski spacetime with its usual spin-structure,
we demand that the corresponding quantum field theory @, fulfills the Wightman
axioms, including the Bose-Fermi alternative (or normal commutation relations);
see Appendix B for details.

(C) If for apair M1 and Mz in G thereis a local isomorphism © between M; and M,
then it is covered by local isomorphisms between the corresponding quantum field
theories @\, and ®y,.

Let us discuss some features of that definition in a further set of

Commentsand Remarks. (iv) Readers familiar with the articles of Dimock [13, 14] will
notice that our definition is very much inspired by the concept of general covariance
introduced in those works for quantum field theories on curved spacetimes. The main
difference, as we have mentioned already in the Remark below Def. 3.1, is that the
isomorphisms between the spacetimes with spin-structures, and accordingly between
the corresponding quantum field theories, are here assumed to be local, whereas in
[13,14] they are assumed to be global. To allow local isomorphisms in the condition
of general covariance (C) leads, in combination with the conditions (A) and (B), to
restrictions which apparently are not present when using only global isomorphisms.
The significance of that point has, in a somewhat different context, been noted by
Kay [34]. Our definition of a generally covariant quantum field theory resembles an
approach taken by Kay in his investigation of “F-locality” in [34]. The main difference
(apart from differences of technical detail) is that Kay considers a much larger class
§ of spacetimes which need not be globally hyperbolic, and he essentially investigates
the question of what the largest clgssf spacetimes might be so that a quantum field
theory over§ is compatible with the covariance property (C) once certain properties are
assumed for the quantum fields on the individual spacetimgs kor the case of the
scalar Klein—Gordon field, he finds that restrictions on the class of spacdjiarese in
order to obtain compatibility, see [34] for further discussion.

(v) Given a local isomorphism® betweenM; andM3 in G, then it is known for free
fields that typically the identification

Dy, o OF(f) = Pwy(f),  SUPPS € Lini(®), With@*f =0 o f o 971,

preserves CAR or CCR and thereby gives rise i©6°adlgebraic) local isomorphismg
covering® between the quantum field theories. In [52] (pp. 89-91 of that reference),
such a covariance property has been proposed as a condition on the (renormalized) stress-
energy tensor of a quantum field on curved spacetimes, and more recently, Hollands and
Wald have defined the notion of a local, covariant quantum field by means of such a
covariance behaviour of the quantum field and have shown that one may construct,
essentially uniquely, Wick-polynomials of the free scalar field in such a way that they
become local, covariant quantum fields [32]. Our conditions on a local isomorphism
between quantum field theories are much less detailed; indeed, the slightly complicated
definition of a local isomorphism between quantum field theories serves the purpose of
keeping this notion as general as possible and yet to transfer enough algebraic information
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for making it a useful (i.e. sufficiently restrictive) concept in combination with existence
of a causal dynamical law formulated in (b).

(vi) We have required that the spin-representajidoe the same for all membedsy,

of a generally covariant quantum field theory ogeexpressing that all these quantum
field theories on the various spacetimes have the same field content. (Of course, it would
be sufficient just to require that the variogg be isomorphic; to demand equality is

just a simplification of notation.) We think that this is necessary in order that (C) can be
fulfilled, but a proof of that remains to be given.

(vii) It should be noted that each eleménite § comes equipped with an orientation
and a time-orientation. The local isomorphisms have been assumed to preserve orienta-
tion and time-orientation, so the condition of general covariance imposes no restrictions
on quantum field theorie®y, and @y, whenM1 andM» are connected by a local
isomorphism that reverses orientation and time-orientation. In fe®tjsfan (appropri-

ately defined) local isomorphism betweleh andM reversing both time-orientation

and orientation, one would expect that for any relatively compact ¢in; (®), writing

Ny = 9 (N;), there is aranti-linear von Neumann algebraic isomorphisig, v, having

the covariance property (4.1). It would be quite interesting to see if one could deduce the
existence of such anti-linear local von Neumann algebraic isomorphisms at least for a
distinguished class of time-orientation and orientation reversing local isomorpisms
from the assumptions @y }meg of Def. 4.1. That would correspond to a PCT-theorem

in the present general setting.

(viii) The assignment of quantum field theoriés, to eachM e G fulfilling the
condition of general covariance allows a functorial description which will be indicated
in Appendix C.

5. Spin and Statistics

In the present section we state and prove a spin-statistics theorem for generally covariant
guantum field theories ovér. Before we can start to formulate the result, it is in order
to briefly recapitulate the terminology referring to “integer” and “half-integer” spin.

Let ©¥C? denote the-fold symmetrized tensor product 68. Then an irreducible
complex linear representatian’-? of SL(2, C) fork, [ € Npis given on the vectorspace
Vi = (B'C? ® (8/C?) by

D*D(g) = (B9 ® (@',

wheres € SL(2, C) acts like a matrix on column vectors@¢, ands is the matrix with
complex conjugate entrigsAll finite-dimensional complex linear irreducible represen-
tations of SI2, C) arise in this way. Such an irreducible representation is said to be
of integer type (or simply integer) if k + [ is even and ohalf-integer type (or simply
half-integer) if k41 is odd. There also the (finite dimensional) real linear irreducible rep-
resentation®®) @ DEK for k + 1, andDD. They are called real-linear irreducible
because it is possible to select real-linear subspac®s,im V;, and inV;;, respec-
tively, on which these representations act irreducibly as real-linear representations. As
complex linear representations they are, however, reducible except for th®¢dse

The classification of these representations as being of “integer” or “half-integer” type is
analogous to that of complex linear irreducible representations.

3 By convention, the case= 0 and! = 0 corresponds to a scalar field, with the trivial one-dimensional
representation of Si2, C).
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Theorem 5.1. Let {®m}meg be a generally covariant quantum field theory over G of
spin representation type p, where p is assumed to be a complex linear irreducible, or
real linear irreducible, finite dimensional representation of SL(2, C).

() If p is of half-integer type, and if there exist an M € G and a pair of non-empty
01, O € orc(M) with 01 C 02L so that F (01) € Fm(02)’ (whereby Fv (0)
we denote the local von Neumann algebras generated by @y and by Fy (0)’ the
commutant algebras®) then it follows for all M e G that Qo (f) = cp - Lfor
somecy e C, i.e the quantumfield operators of all quantum fields of the generally
covariant theory are multiples of the unit operator.

(I If p is of integer type, and if there exist an M € G, a pair of causally separated
points p1 and p in M and for each pair of open neighbourhoods O; of p; with
01 C 03 apair f; € I'o(V,) withsuppf; C O; and dw(fj) #0(j = 1,2) s0
that

Om (fO)PM(f2) + Pm(f2)Pm(f1) =0 or
oM (f)PM(f2)" + Pm(f2)*Pm(f1) =0

then it follows again for all M € § that all field operators o (f) are multiples of
the unit operator.

We note thaffy (01) C Fm (02) meansthatthe field operatabsg ( f1) anddm (f2)
for suppf; C O; commute strongly in the sense that the operators appearing in their
polar decompositions commute strongly. This stronger form of commutativity at causal
separation is expected to hold in physically relevant theories. In Appendix B we give a
few more comments on this point. If the stronger forms of general covariance at the level
of invidual field operators as indicated in Remarks (ii) and (iv) of Sect. 4 were assumed,
the statement for the half-integer case could be strengthened to resemble the integer case
more closely; namely, then one would conclude for the half-integer case that the relations
Om (fO)Pm (f2) — DM (f2)Pm (f1) =0 or Py (fDPM(f2)* — Pm(f2)*Pm(f1) =0
for someM and a pair of test-spinorg and f> with causally separated supports so that
@y (f;) # 0 already imply that the field operatobg, (f) are multiples of unity for all
M e .
Proof of Theorem 4.1. We begin with part (I) of the statement involving a theory of
half-integer type, and we suppose tigi01) C F(02)’ for a pair of causally separated
01, Oz € orc(M), where we use the notatidh(O) = I (0). Then letp; € O}, and
choose for this pair of causally separated pothra globally hyperbolic spacetime
(M, %) with neighbourhood®/;, U;, U;, G, G, as in Lemma 2.1, which can be done
in such a way that —~ l(U ) C 0}, wherey is the isomorphisnd > N — N c M.
Now we equip(]VI, 2) with any spin-structure and denote the resulting spacetime with
spin-structure bﬂ. The neighbourhood& andG are simply connected. Thus, since
all spin-structures over simply connected globally hyperbolic spacetimes are equivalent,
there is a local isomorphisr®_betweenM and M with ¢4r(®) = G, and also a
local isomorphisn®g betweerM andM 0, whereM o Is Minkowski spacetime with its
standard spin-structure. This is due to the fact thas isomorphic to a subset 1(G)
in M andG is isomorphic to a subset in Minkowski-spacetitfg, cf. Lemma 2.1.

Let us now introduce the notatidh(U) = JF; (U) andFo(U) = Fm,(U) for the
local von Neumann algebras corresponding to the thedrigsind @y, respectively.

(5.1)

4 1e.Fm(0) = (A € B(Hy) : A/A = AA', ¥ A € Ty (0)).
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Then choose two globally hyperbolic, relatively compact submanlfqydsandN of

G andG, respectively, with the additional property thdf ¢ Ny andU;, U; C N;
(j = 1,2). DenoteN; = 9~ 1(Nj) According to the general covariance assumption
(C) there are local |somorph|sm@ ~; between®y and®g andag 5. betweendg
and®y, so that

e (F@ L)) =FWU), U eorc(Ny), (5.2)
g5, (F(0)) = Fo@o(0)), U e ora(Ny), (5.3)

wheredy is the isomorphism embeddlr@ into Mp. Since we have supposed initially
that"f(Ol) C F(0»)’, and sincey 1(U]) C 0y, relation (5.2) implies tha (Uy) C
EF(Uz)’ Moreover,U; > U] and hence, by the existence of a causal dynamical law, it
follows that - o
F(U1) CcF (U2
Exploiting also (5.3), one obtains
Foo(U1)) C Fo(o(U2)) . (5.4)

wheredo(U1) anddo(U») are a pair of open, causally separated subsets of Minkowski
spacetime. Since the quantum field thedny, on Minkowski spacetime has been as-
sumed to fulfill the usual assumptions, and is, by assumption, of half-integer spin-type,
the last relation (5.4) implies by the known spin-statistics theorem for quantum field
theories on Minkowski spacetime th&§(Ug) = C - 1 holds for allUp € orc(Mp). (See
Appendix B for details.)

In a next step we will show how that conclusion implies that all other quantum field
theories®,, are likewise trivial. Let = (M, §), S(M, §), ¥) € § and choose any

point p1 € M (and any other causally separated pgipte AZ which actually plays no
role). Then choose a spacetirt, g) with subsetd/;, U;, U;, G, G asin Lemma 2.1
for these data(M, g) now playing the role of M, g). Identifying F(0) = F(0) and
making similar adaptations, Egs. (5.2) and (5.3) hold accordingly. ]}bezl%o(ﬁl)) =
C-1implies, by (5.3)F(U1) = C- 1, and sincd/1 > U1 it follows thatF (Uy) =

Hence (5.2) leads t§ (¢ ~1(U1)) = C- 1, implying thatd , (f) is a multiple of the unit
operator for allf with suppf ¢ ®~1(U1). As9~1(U1) is an open neighbourhood of an
arbitrary pointp; € M, and since the quantum fielél — @ (f) is linear, a partition
of unity argument shows that therefore one must hbyg( f) = ¢y - 1 with suitable

¢y € C for all test-spinorsf on M.

Now we turn to the proof of statement (Il) of the theorem. According to the assump-
tions, there are two points; andp, in M which are causally separated, and moreover,
when choosing a deformatiai?, g) of (M, g) with neighbourhood®;, U;, Uj, G, G
as in Lemma 2.1, there are a pair of testing spinfyrsupported inj — l(U /) so that
@M (f;) # 0 and such that one of the relations (5.1) holds. We shall, for the sake of
simplicity of notation, assume that

DM (f1)PMm(f2) + Pm(f2)Pm(f1) =0 (5.5)

holds, and we will show that these properties are in conflict with Bosonic commutation
relations for the theorgy, on Minkowski spacetime. The other case of (5.1) can be
treated by similar arguments. The proof proceeds indirectly, so we supposeyipat
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possesses Bosonic commutation relations. As before in the proof of (I) above, we can
find local isomorphismee, y; andeg, . fulfilling the relations (5.2) and (5.3) for the

von Neumann algebraic nets corresponding to the quantum field theoriésnand

M. Having supposed Bosonic commutation relations for the quantum field theory on
Minkowski spacetime, it follows by (5.3) tha’t(Ul) C ?(Uz)’ Now U; < U and thus,

by the existence of a causal dynamical law, it holds ﬂﬁ(alfl) - S"(Uz)/ By (5.2) we
obtainF (¥ ~1(U1)) ¢ F(®@~1(U))". Since the operator®y (f;) are affiliated to the

von Neumann algebraﬁ(ﬂ‘l(Uj)), one concludes that

Pm (f)Pm(f2) — Pm(f2)Pm (f1) = 0. (5.6)

Comparing (5.5) and (5.6) yields

Pm(fDPm(f2) =0.

Itis clear that this relation entaifBy ( f1)*®m (1) Pm (f2)Pm (f2)* = 0. The operators

A1 = O (f1)*Pm(f1) andAz = O (f2)Dm (f2)* are positive and possess selfadjoint
extensions affiliated t6 (¢ ~1(U1)) andF (9 ~1(U»)), respectively. Denoting biZ ; (a)

their spectral projections corresponding to the spectral intérval a), the operators
Aj(a) = E;(a)A; are containediff (v~ 1(U1))and itholdsthati1(a)A2(a) = Oforall

a > 0. Repeatlng the arguments that led to Eqg. (5.6), one can see thatnepossess
isomorphic images?j(a) in ?o(ﬁo(ﬁj)) SO thatXl(a)ng(a) = O foralla > 0. But

since the netFo(U)}ycorcmy) Was assumed to fulfill Bosonic commutations relations,
and since it fulfills the usual assumptions for a quantum field theory on Minkowski-
spacetime, including the spectrum condition and the existence of a vacuum state, it
follows that the Schlieder property [43] holds for this net. This property states that
the relationsA ; (@) € Fo(9o(U))), cldo(U1) C 9o(U2)* andA1(a)Az(a) = 0 imply

A1(a) = 00rAz(a) = 0. Hence one obtains that, forall> 0, A1(a) = 0orAz(a) = 0,

and this entail$i; = 0 or A, = 0, which in turn enforce®y (f1) = 0ordy (f2) =

Thus one arrives at a contradiction since both operatgjs f1) and @y (f2) are by
assumption different from 0. One concludes that Bosonic commutation relations are
an impossible option for the theodyy, on Minkowski spacetime and thus, due to the
Bose—Fermi-alternative, that theory must fulfill Fermionic commutation relations. Since
the theory is of integer spin-type, this implies that the von Neumann alg&i(&%)

of the theory on Minkowski spacetime consist only of multiples of the unit operator
because of the spin-statistics theorem on flat spacetime (cf. Appendix B). Repeating the
argument given for part (I) above, it follows that for ed¢he G the guantum field
operatorsby, () are multiples of the unit operator for all test-tensgrs o

6. Examples

In this section we briefly indicate examples of linear quantum field theories which fulfill
the properties required for a generally covariant quantum field theorySoveBect. 4.

1. The free scalar field. The simplest example is the free scalar field, although its sig-
nificance for a spin-statistics theorem is, naturally, quite limited.
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For each globally hyperbolic spacetink = (M, g) € § (endowed with a spin-
structure whose explicit appearance is now suppressed since it is irrelevant for the scalar
field) we consider the scalar Klein—Gordon equation

(Og +m*)p =0

for real-valued functiong on M, wherem > 0 is a constant independent gf and

O, is the scalar d’Alembertian forM, g). Following Dimock [13], one can construct

a C*-algebraic quantization of this field as follows. There are uniquely determined,
continuous linear mathﬂj : CP (M, R) — C*°(M, R) with the properties

(Og +m?Es = f = EL (@, +m?f and

SUPPEL f € J*(suppf),
feCP(M,R).

]'cl'heir differenceE,ﬁ = E,\J; — E,,, called the (causal) propagator, induces a symplectic
orm

KM([f],[h])=/Mdﬁf'EMh, [f].[h] € Kw,

on Ky = C°(M,R)/kerEn, where f — [f] = [f]m denotes the quotient map
anddn is the metric-induced volume-form diM, g). To the resulting symplectic space
(Km, km) there corresponds the CCR-Weyl algeRii&y , kv 1, defined as the (up to
C*-isomorphisms uniqua)*-algebra generated by unitary elemeWg (x), x € Ky,
fullfilling the Weyl-relations, or “exponentiated” canonical commutation relations (see

[0

W () Wh (y) = exp—ikm (x, y)/2)Wm (x + ),
WM (x)* = Wy (—x), x,y€Kpn.

Dimock has shown thatanyisometry M1 — M induces a*-algebraic isomorphism
ap : A[Kmy, km,] = A[Kwm,, km,] With the property that

ap(Ww,([fIme) = Wi, (107 fm,),  f € C5° (M1, R), (6.1)

whered*f = f o 671 If My C M} andM, C M) are globally hyperbolic sub-
spacetimes of a pair of globally hyperbolic spacetiigsandMs, thenWy ; = WM;_ i

Knm; (j = 1,2) holds up toC*-isomorphisms as a consequence of the uniqueness of
the causal propagators, thus there is alwags -algebraic Weyl-algebra isomorphism
covering a local isomorphism between member§ ofFurthermore, Dimock has also
shownin[13]that, upon denoting Bif (O) theC*-subalgebra dll[ K , kv ] generated

by all Wy ([f1m), suppf C O, there holds

01 < 02 = A (01) C Am(02) (6.2)

forall 01, 0> C M.

Now letwy be an arbitrary quasifree Hadamard statdiy , kv ]. Such a state
is determined by its two-point correlation function which here is required to be of
“Hadamard form”. The Hadamard form specifies the singular short-distance behaviour
in a particular way, see [21,52] and references cited therein for discussion. Equivalently,
the Hadamard form of a two-point function can be characterized by a certain form of
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its wavefront set (see [39,42] for details). It has been shown in [22] that there exists an
abundance of Hadamard statesrK v, v ]. To such a quasifree Hadamard statg

there corresponds its GNS-Hilbertspace representétign Hy , 2m), cf. e.g. [8]. In

that representation, we define the local von Neumann algebras

Im(0) = m (Am (0))”

for eachO € orc(M). Then (6.2) clearly implies the existence of a causal dynamical
law

01< 02 = Fv(01) C Fm(02).

A vector y € Hy is defined to be irDy, if for each choice ok = (x1,...,x,) €
(Km)" the map

t = (Ww(t1x) - - am (W (taxn))x, ¢t = (11, ..., 1,) € R",

is C*°. One can show thaby, is a dense domain ifi(y (cf. [9]). One can define for
eachf e C5°(M, R) the quantum field operatdpy (f) by

. d
Om(Hx = i am(Wm@ELfIm)x, x € Dm.
ti—o

One can also show thdty is left invariant under the action dfy (/) and thatdy (1)
is essentially self-adjoint [9]. It is also obvious thbt, (f) is affiliated toFy (0) as
soon as supp C O.

Moreover, the results of [48] show that thé-algebraic isomorphismay in (6.1) can
be extended, in representations induced by quasifree Hadamard states, to von Neumann
algebraic isomorphisms in the following way. Suppose that betw&eandM, in G
there is alocal isomorphisén and letN; C ¢i»i(0) be arelatively compact subset. Then,
writing Ny = 0(N;), the Weyl-algebra isomorphisay in (6.1) extends to an isomor-
phismag n, : Fm,(Ni) — Fm,(Nf) between von Neumann algebras. Consequently,
there holds the covariance property

ag,N; (Fm(01) = Fm,(0(0i)),  O; € Orc(N;).

Finally, if Mg is Minkowski spacetime, we takey, to be the vacuum state which

is known to be a quasifree Hadamard state. In conclusion, the just constructed family
{®m}meg Of Klein—-Gordon quantum fields for eabh € G satisfies all the assumptions
required for a generally covariant quantum field theory ger

2. TheProcafield. The Procafield is a co-vector field, i.e. of tensorial type, correspond-
ing to the DD irreducible representation of $2, C). For each globally hyperbolic
spacetimeM = (M, g) € G (where again we suppress the spin-structure in our notation
since it is presently not relevant), we denoteddyhe exterior derivative of differen-
tial forms, byx* the Hodge-star operator corresponding to the metrignd define the
co-differentiald = xd=. Then the Proca equation reads, goe I'o(T*M),

(6d +m%)¢ =0,

wherem > 0 is a constant independentidf. (Note thatsd depends on the metric) A
C*-algebraic quantization has recently been given by Furlani [23] (cf. also [45], whose
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notation we follow here). To this end one constructs advanced and retarded fundamental
solutionsF,ﬁ : To(T*M) — T'(T*M) uniquely determined by

Fi(dd+m?) f = f = (8d +m?)F f, SuppFis f C JE(suppf), f € To(T*M).

As in the case of the scalar Klein—Gordon field, one defines the (causal) propagator
Fm = Fyi — Fy, and a symplectic spac&, xv) where

«m (L], [AD) Z/Mf/\*FMh, [f],[h] € Kwm,

onKy = To(T*M)/ker Fy and f +— [ f] = [f]m is the quotient map.

From here onwards, all the arguments leading to the construction of a generally
covariant theorf®y }meg can be taken over almost literally, except for obvious mod-
ifications, from the previous case of the scalar Klein—Gordon field to the present case
of the Proca field. There are some provisions which should nevertheless be recorded:
Firstly, the existence of Hadamard states for the Proca field has not been demonstrated.
However, as mentioned towards the end of Sect. 5.1 in [42], the existence of Hadamard
states could be established by using the existence of a ground state for the Proca field
on ultrastatic spacetimes [24] in combination with results in [41] and [22] to prove that
there exists a large set of quasifree Hadamard states for the Proca field. Secondly, the ar-
guments given in [48] showing that tii& -algebraic isomorphism (6.1) can be extended
to a von Neumann algebraic isomorphism in the above said way apply to the case of
the free scalar Klein—Gordon field. But those arguments can obviously be generalized
to apply to a far more general class of free fields, including the Proca field. Thus, one
may conclude that also the Proca field gives rise to a generally covariant quantum field
theory{®m }meg.

3. TheDiracfield. Our last example is the Dirac field, which is a spinorial field of spin
1/2. We consider it in a Majorana representation; our presentation follows [14] to large
extent, with some alterations specific to Majorana representations, see [42] for details.
The Majorana representation corresponds to the real linear irreducible representation
DEO ¢ pOD of SL(2, C). This Majorana-Dirac representation will be denotegby

Its representation spaceWs = c4.

LetM = (M, g,S(M, g),¥) € G be a globally hyperbolic spacetime with spin-
structure. The vector bundié = S(M, g) x, C* associated with§(M, g) and the
representationp will be denoted byD,M; its sections are called spinors, or spinor
fields. The metric-induced connectidn on T M lifts to a connection on the frame
bundleF (M, g) which in turn lifts to a connection ofi(M, g), and this induces also a
connection orD, M. The corresponding covariant derivative operator will be denoted by
V. One can then introduce the spinor-tengas I'(T*M ® D, M ® D; M) by requiring
that its componentg ,“ 5 in (appropriate, dual) local frames are equal to the matrix
elementgy,)4 g of the gamma-matrices in the Majorana-representation. This is a set of
four 4 x 4 matricesyo, 1, y2, y3 obeying the relations

YaVb + VoVa =2Nabs Y5 =Y0, Vi = k=123), Vi=Va.

Here,y,* means the Hermitian conjugategfandyy is the transpose of;, and(n.») =
diag1, —1, —1, —1) is the Minkowskian metric. Then the Dirac-opera¥is defined
by setting in frame components, for any local sectfor: fAE4 € T'o(D,M),

(YO =0y AV )E.
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(At this point, we refer to [14,42] for details.) There is a charge conjugatiavhich
operates by complex conjugation of the frame-components in any frameQicg! =
u? for the components of € D, M. There is also the Dirac adjoint— «™ mapping
D, M anti-linearly and base-point preserving onto its dual bu2lj@/; in dual frame

components it is defined &8%) p = u_AyQAB.
The Dirac-equation oM is the differential equation

(Y +im)p =0

for ¢ € T'(D,M), wherem > 0 is a constant, independent bf. As in the cases
considered before, there are uniquely determined advanced and retarded fundamental
solutionsS,\ﬂ,lE :To(D,M) — T'(D,M) distinguished by the properties

Se (Y +im)f = f=(V+im)Sig f, suppSg; f € JE(suppf), f € To(D,M).

Hence one obtains a distinguished causal propagaios S,\J; — Sy Itgivesrise to a
pre-Hilbertspac€Hw , sm), whereHy = I'o(D,M)/ker Sm with scalar product

sm([f]. [r]) = /Mdn (SHTh), [f1.[h] € Hu,

where we have denoted the metric-induced measur® doy dn and by f +— [f] =
[f1m the quotient map. The charge conjugati®pan be shown to induce a conjugation
on (Hwm, sm) which will be denoted by the same symbol. We shall also notationally
identify Hy with its completion to a Hilbertspace.

To the Hilbertspace(Hy, sm) with complex conjugationC there corresponds
(uniguely, up toC*-algebraic equivalence) the self-dual CAR-algefeHm , sm, C1
(cf. [1]) which is aC*-algebra generated by elememg (v) depending linearly on
v € Hy and fulfilling the canonical anti-commutation relations

By (v)*Bm (w) + By (w) By (v)* = sm (v, w), Bu@)* = Bu(Cv), v,w e Hy.

In [14], Dimock has proven that each (global) isomorph@®ma= (0, ¢) between mem-
bersM1 andM3 in § induces aC*-algebraic isomorphisrag : B[Hm,, sm,, C]1 —
B[Hwm,, sm,, C] satisfying

ae(Bv;([fIM1) = Bw,(1O* flm,),  f € To(D,M1), (6.3)

where®@*f = © o f o ¥, © being the mag, M1 — D, M induced by®. As in
the cases discussed before, this statement has a local version to the effect that for each
local isomorphism between membergidhere is aC*-algebraic isomorphism between
the corresponding CAR-algebras covering it.
Moreover it was shown in [49] that strong Einstein causality,

01 < 02 = Bm(02) C Bum(02), (6.4)

holds for the localC*-subalgebra®8y (0O) of B[Hw, sm, C] which are generated by
all By ([f1m) with suppf C O.
Now letwy be any quasifree Hadamard stateéd®iHy , sm, C1, and(zrm, Hm, 2m)
the corresponding GNS-representation, then the local von Neumann algebras will be
defined via
Im(0) = 7m(Bm(0))", O €orc(M),
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whereas the field operators are now given as

Pm(f) =amBm([fIm), [ € To(D,M).

Owing to the canonical anti-commutation relations, these field operators are bounded,
and one may take their domaiy, to be equal tdHy . The existence of a causal
dynamical law at the level of the local von Neumann algebras is then granted by (6.4).

It is to be expected that the arguments of [48] showing thatthalgebraic Weyl-
algebra isomorphisms (6.1) (when appropriately localized, see above) extend to von
Neumann algebraic isomorphisms for the case of the scalar Klein—Gordon field and have
generalizations allowing to conclude that ti&-algebraic CAR-algebra isomorphisms
(6.3) extend, in a similar manner, to von Neumann algebraic isomorphisms, so that
general covariance is fulfilled. Another provision is that, as in the case of the Proca
field, the existence of quasifree Hadamard states for the Dirac field has as yet not been
demonstrated. However, the same comment as given above for the case of the Proca field
applies here. Anticipating therefore that these provisions are lifted, the just constructed
family {®m}meg Of Dirac quantum fields for eadil € G yields another example of a
generally covariant quantum field theory ogaupon choosing, as the vacuum state
(being quasifree and Hadamard) on Minkowski spacetifige
(See also the “ Note added in proof” at the end of the article.)

Appendix A

Proof of Lemma 2.1. Let two causally separated poingg and p2 be given; hence we
may form the manifold¥ = M\(JF(p1) U JT(p2)). Then(MY, g | M"Y) is again

a globally hyperbolic spacetime. This globally hyperbolic spacetime may be smoothly
foliated into Cauchy-surfaces and thus one can move Cauchy-surfa¢gsfog | MY)
arbitrarily close top; and p2. We will use this property in order to construct a Cauchy-
surfaceX in (M, g) having the following properties:

i)y Tcm.
(i) There is an open, simply connected neighbourh@od- X which is contained in
a coordinate chart (foE), and it holds that ~(p;) N X C W (j = 1, 2).

To this end, letF : R x X9 — M be aC*>-foliation of (M, g) in Cauchy-surfaces.
If C is any Cauchy-surface iV, g), then there is a diffeomorphisdic : o — C
which is defined by assigning to € Xg the pointg, € C so thatF(t,,x) = gx
for some (uniquely determined) e R. Now let (t;,x;) € R x Xp be such that
F(tj,x;) = pj, j = 1, 2. Then there is clearly a paff, S> of open neighbourhoods
of x1, x2, respectively, inZg lying in a simply connected chart domaiiy (of Xo),
cf. [12], Prop. 16.26.9. Thus, wheneweris a Cauchy-surface itW, g), then the sets
W (S1) andWe(S2) are contained in the simply connected chart donigiriWo) of C.
On the other hand¥¢ (S)) is the intersection o€ with the “tube”T; = (J{F(, x) :
t € R, x € §;}. Itis now fairly easy to see that, #; denotes the unit ball iff;,, M
with respect to arbitrarily given coordinates, then the 36ig) = {exppj ) :v e
T - B}, v past-directed and causalf segments of “causal rays” emanating to the past
from p; will be contained irT; if r > 0 is small enough. Choosing such and using
that (MY, g | MY) is globally hyperbolic, one can thus find a Cauchy-surfaci
(MY, g | MY)with (V;(t)\V;(r/2)) C int J~(X); this implies that the intersection of
J~(p;) with X is contained irf; N X = ¥x(S;), and sinces is also a Cauchy-surface
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for (M, g), one realizes that it has the desired properties (i) and (ii) upon choosing
W = U (Wo).

In a next step we note that, since the sktgp;) N X are closed and contained in the
open setW, also the closures of sufficiently small open neighbourhoods of these sets
are contained inV. Thus we can choose two sufficiently small sgts= int(J—(pf) N

J*(p,?)), wherep;—L €int Ji(pj), i.e. they are “double cones” surrounding the points

pj, with J=(U;) N ¥ C W. [Note that in Fig. 2.1 we have represented the 85ts

as truncated double cones since this turned out to be easier graphically.] Obviously
one may choose th&; so that they are contained ;. = intJ*(X). Moreover,
J=(U;) N = will be contained in an open, simply connected subiggtof X with

W1 C W. Then intD* (W) is a simply connected neighbourhood@f andUs, and

is globally hyperbolic when endowed with the metgc Since(N,, g | Ny) is a
globally hyperbolic spacetime, one can choose a Cauchy-suxfada (N,, g [ N4)
“sufficiently close toX” so that the set

G =intDT (W) nintJT(Zy) C Ny

is still an open, simply connected neighbourhoo@efindU; which is globally hyper-
bolic when supplied witty as metric.

The remaining part of the argument proceeds in a similar way as the proof of Appendix
C in [22]. We can covek with a systen{ X, }, of coordinate patches, choosing one of
them, sayX1, to have the property

WicC X1, X1CW. (A1)

Using Gaussian normal coordinates oy one may introduce coordinate patches
(—eq, £a) X X, covering a neighbourhooly of X, on each of which the metrig
assumes the form o

dt® — gij(t, x)dx'dx,

wherer € (—&qy, £4) andx = (xi)?:1 are coordinates ol (g;;(t, x)) are the coordi-
nates of the 3-dim. Riemannian metric induced by the metdn the slices of constant
t. Here, the coordinatization is assumed to be such(tha) represents a point iV,
fort > 0 and a pointinN_ = int J=(Z) forz < 0. Moreover,Ng may be chosen so
that it is, withg [ Ng as metric, a globally hyperbolic sub-spacetime #f, g), and
assuming now thaWg has been chosen in that way, al§g N N_ is a globally hyper-
bolic sub-spacetime with the appropriate restrictiorg @fs metric. After a moment of
reflection one can see that this implies the existence of a Cauchy-stfacevo N N_
so that

J-W)NJIH(Z1) C(—e1,0) x X1

by “moving X, sufficiently close ta=”. Upon movingXs, if necessary, “still closer” to

¥, itis also possible to ensure that the parts ofU 1) andJ ~(U>) lying in J*(21) are
causally separated. With; chosen in that manner, one can now pick some pair of small
neighbourhood#/; lying relatively compact in int/ *(£1) N J~(U;)) (j = 1, 2). We
may then also select another Cauchy-surfagen No N N1, with

cdU; cintJ=(Z2), Tz cints™(Ty).

In the next step, we endo& with a complete Riemannian metrjc, which we
prescribe to be a flat Euclidean metric ¥ (which is possible because of (A.1) in view
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of the fact thatW is a coordinate patch). We shall, furthermore, chgose that the flat
Lorentzian metrig) on (—e1, 0) x X given by

n= dr? — yijdxidxj

has for(z, x) € (—e1, 0) x X1 the property that each causal curve fds also a causal
curve forg, i.e. J,(q) C Jg(g) on (—e1,0) x X1. This may always be realized by
rescalingy by a constant factor. ~

Now defineM = int J*(Xy). Let f € C*°(M, R;) have the following properties:
0<f<1 f=00nJ"(2), f=1lonJ (Z2). Then define a metrig on No N M by
setting its coordinate expression to be equal to

b(t, x)dt? — (f(t, x)yij + (L— f(t,x)gij(t, x)) dx'dx

on each coordinate patdh-¢,, ) x X,. Here,b is a smooth function ovg N M
with 0 < b < 1 and sufficiently small so that, with the new met8icNy is globally
hyperbolic; from the properties ¢f mentioned before it is obvious that one can choose
such ab so thath = 1 on N andb = 1 on the set

Y =int (M NJ7(2) N (—¢1,0) x X1).

With this choice ob, it is moreover clear thak coincides onV,. with the metricg, and
sog may be extended fromvy N M to all of M by definingg asg on N... Moreover,g
is a flat Lorentzian metric ofi, and viewingU;, j = 1, 2, canonically as subsets f,
the previous constructions entail that there are two globally hyperbolic sub-spacetimes
U (with metricg) which are relatively compact iri, and have the property thét; > U
with respect to the metrig.
Finally, one can maké& slightly smaller in order to obtain a globally hyperbolic

sub-spacetimé& of (M, g) which is simply connected and still contai’s andU; (if
necessary, by making trféj slightly smaller as well); and is flat onG. Therefore we
have now constructed the requiretd, ) and the subsets;, U;, U, (j = 1, 2) andG,
G with the properties claimed in Lemma 2.10

Appendix B

In this appendix we collect the assumptions about a quantum field thkggyon
Minkowski spacetime equipped with its standard spin structure, and quote the spin-
statistics theorem for this setting. The assumptions are those given in the book by Streater
and Wightman [44], except that in formulating the Bose—Fermi alternative (normal com-
mutation relations), we will posit that Bosonic commutation relations hold in the strong
sense, similarly as in the statement of Thm. 4.1. See below for details.

To begin with, write(Mo, ) = (R*, diag(+, —, —, —)) for Minkowski spacetime.
A Lorentzian coordinate framgy, .. . , e3) has been chosen by whidlf is identified
with R4, and which also serves to fix orientation and time-orientation. The framebundle
F (Mo, n) is isomorphic tdR* x /;1, and for eachr € R?, (x, (eo, . .. , e3)) represents
an elementirF (Mo, n). Then the spin-bundIg&(Mo, 1) is isomorphic tdR* x SL(2, C),
and one obtains a spin-structugg : S(Mg, n) — F (Mo, n) by assigning tqx, s) €
S(Mo, n) the elementyp(x, S) = (x, (eo(S), ... , e3(9)) in F(Mp, ) with

ep(S) = e A (9),
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where SI(2,C) > s+ A(S) € Ll is the covering projection. Explicitly, the matrix
components of\ (s) are given by

1 *
Agp(S) = ETr(S 0450p),

whereoy, ... , o3 are the Pauli-matrices.

Now let p denote any of the complex linear irreducible representatiofis’, or
of the real linear irreducible representatiah&-" @ D@ (k +# 1), wherek, I € No.
The corresponding representation space will be denotéd byhen we require that the
quantum field theorgm, = (Pm,, Dmg. Hm,) has the following properties (where in
the following, we abbreviatéPm,, Dm,. Hmg) by (Po, Do, Ho)):

(1) Hois a Hilbertspace anfdg C Hy is a dense linear subspace.

(2) g is a linear map taking elemengsin S(R*, V,) to closable operator®q( f)
all having the common, dense and invariant donfagn Here,S(R?, V,) is the set
of Schwartz-functions ot* taking values in the finite-dimensional representation
spaceV, >

(3) For each pair of vectorg, x’ € Do, the map

SR, V,) 3 f = (x, @o(f)x")

is continuous, hence an elementiiiR?, Vy).
(4) There is a strongly continuous representation

Pl 5@ 9 U9

of ﬁﬁ = R* x SL(2, C) (the covering group of the proper orthochronous Poincaré
group) by unitary operators dip; Do is left invariant under the action of the
U(a,>).

(5) The spectrum of the translation-subgreup> U (a, 1) is contained in the closed
forward lightconeV ., i.e. the relativistic spectrum condition holds. Moreover,
there is an up to a phase unique unit ve€e Hop, the vacuum vector, fulfilling

U(a,92 = Q forall (a,9 € 51. This vector is assumed to be contained in

Do and to be cyclic for the algebra generated by the field operators in the sense

thatDg coincides with the vector space spannedbgnd all vectors of the form
Fi---F,Qn €N, Fj € {(®o(f), Po(f)*}s fr. - s fu € SRE V).
(6) The quantum field possesses the covariance property

Ua, 9)Po(f)U(a, 9 = Polpa* (9 f),
where

pa* (O f () = pS(f(AO®Hy — a)))
foralla e R4 se SL(2,C), f € S(R4, V,).
(7) Spacelike clustering holds on the vacuum, i.e.i any non-zero spacelike vector,
then one has

(Q,Fy---FU@ta, DFiy1--- F,Q) =2 (2, F1--- FiQ)(Q, Fri1--- FQ)
for all Fje {@o(fj), q)o(fj)*}, with f1,..., fn € S(R4, V,),neN.

5 In the case of flat Minkowski-spacetim&(Mg, n) = R4 x SL(2, C) and one can canonically identify
V, with R* x V,, andg with id x p.
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(8) Finally, the Bose—Fermi alternative is required to hold in the following form. The
guantum field fulfills either
Bosonic commutation relations. Given any pair of causally separated subsets
01, 07 € orc(R%), then it holds that

Fo(01) C Fo(02),

or
Fermionic commutation relations. Given any pair offy, f» € S(R?, V) with
spacelike separated supports, then it holds that

@o(f1)Po(f2) + Po(f2)Po(f1) = 0 and Po(f1)Po(f2)* + Po(f2)* Po(f1) = 0.

In formulating the statement of Bosonic commutation relationsdeality, as it is also
called),¥p(0) denotes the von Neumann algebra generated via the polar decomposition
of the closed field operatorbg( f) with suppf C O as described in assumption (a)

of Sect. 4. The above statement of Bosonic commutation relations is thus equivalent
to saying that the field operatofsy( f1) and ®g( f2) commute strongly for spacelike
separated supports ¢f and f>; here we say that a pair of closable operatrs(j =

1, 2) commutes strongly if, and é*1X1l commute withJ/, and é'1X2l, 5, € R, where

X; = J;|1X;| denotes polar decomposition. Clearly, the property of field operators to
commute strongly at spacelike separation implies their spacelike commutativity in the
ordinary sense,

Do(f1)Po(f2) — Po(f2)Po(f1) =0 and Po(f1)Po(f2)* — Po(f2)*Po(f1) =0

whenever the supports gf and f> are spacelike separated, but without further in-
formation one can in general not conclude that this last relation also implies spacelike
commutativity of the field operators in the strong sense as usually the field operators will
be unbounded. The question as to when this conclusion may nevertheless be drawn for
field operators in quantum field theory is a longstanding one; however, several criteria
are known. We refer the reader to [7, 18] for further discussion and references. Suffice it
to say here that ordinary spacelike commutativity is expected to imply strong spacelike
commutativity of field operators in the case of physically relevant theories.

We also mention that in Def. 4.1 the quantum fi@lgl= &y, has only been assumed
to be an operator-valued distribution defined on test-spinors of compact support, which
would correspond to elements (R?, V,). Thus, we assume here thhg can be ex-
tended to an operator-valued distributionSaiR*, V,) with the above stated properties.

Now we quote the spin-statistics theorem for a quantum field theory on Minkowski
spacetime which is proved in [44] for complex linear irreducibland in [33] for real
linearirreduciblep. (Infact, the resultsin [44, 33] are slightly more general since Bosonic
commutation relations are only required in the ordinary sense there.)

Theorem 2.1. Suppose that @y, is a quantum field theory on Minkowski spacetime
fulfilling the above listed Conditions (1)—8). Then the following two cases imply that
Do(f) =0, f € S(R?, V,), and hence that F9(0) = C - 1 holds for all bounded open
regions O in Minkowski spacetime:

() Bosonic commutation relations hold and the field is of half-integer spin type (k + /
isodd).

(B) Fermionic commutation relations hold and the field is of integer-spin type (k + [ is
even).
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Appendix C

In this appendix we will explain how a generally covariant quantum field theory$ver
may be viewed as a covariant functor between the categarnyd a categoriN of nets

of von Neumann algebras over manifolds (more generally, one could cofsidethe
category of isotonous families of Neumann algebras indexed by directed index sets, but
we don’t need that generality here). A similar functorial description has been given by
Dimock [14] for the case that the morphisms ®fre global isomorphisms, and that

N is a category oC*-algebraic nets. Here, we take the morphism§ td be the local
isomorphisms, and correspondingly we have to consider local morphisié for

We now consideg as a category whose objects are the four-dimensional, globally
hyperbolic spacetimes with a spin-structure. GinpandM:» in G, we define the set
of morphisms hortM 1, M) to consist of the local isomorphisms betwaédn andM .

We also add to hoiiM 1, M) a trivial morphismD. (In fact,0 should be indexed byl

andM ,, but that is inconvenient and will be skipped as there is no danger of confusion.)
The composition of two morphisn®, € hom(M 1, M2) and®;, € hom(M2, M 3) will

be defined according to the following rules:@&, = 0 or ®, = 0, then®,0, = 0.

If both ®, and ®, are non-trivial, butlini (@) N 4in(O,) = ¥, then also®,0, =

0. Otherwise, we declar®,0, to be the local isomorphism betwedh; and M3
obtained by composing the bundle maps and isometries on their natural domains, so that
Lini(©p0,) = 19;1(5"“ (®p) N Lin(O,)). This is reasonable because it is not difficult

to show that the intersection of two globally hyperbolic submanifolds of a globally
hyperbolic spacetime yields again a globally hyperbolic submanifold. The identical
bundle map gives the unit element in hgvh M), and one can straightforwardly check
that also the associativity of morphisms is fulfilled.

The objects of the categofy are familiesT = {F(O0)}ocorex) Of von Neumann
algebras which are indexed by the open, relatively compact subsets of a mah#olti
which are subject to the condition of isotony (cf. Sect. 4, ite)).(The morphisms in
hom(F1, F>) are local net-isomorphisms. A local net isomorphism is a (ai¥, }, ¢)
with the following propertiesy : X1 D N1 — N2 C X3 is a diffeomorphism between
open subsets of the manifoldg andX» which relate to the indexing sets®f andF; in
the obvious mannefu v, } v, corcivy) iS @ family of von Neumann algebraic isomorphisms
an; : T1(N;) — F2(Ny) with Ny = ¢ (N;) obeying the covariance property

an; (F1(0)) = F2(¢(0)), O € orc(N;).

As before, we add to the local net-isomorphisms in (BmJ2) a trivial morphism0

(which may here be concretely thought of as the map which sends each algebra element
in the netd; to the algebraic zero element in the 1%&f). The composition rule for
morphisms is then analogous as before, we only have to specify the case of two net-
isomorphismgay;, ¢) € hom(F, F2) and(ﬁN;, ¢') € hom(F2, F3) whentini(¢') N

Lin(¢) # @. In this situation, we define the composition of the two morphisms as the
elementyy,, ) inhom(F1, F3), wherey is¢’ o ¢ restricted tap 1 (Lini (') Nefin (),

and for any open, relatively compact subAgtin ¢y (1) we define

YN, = Bop o an;.

Again, each hort¥¥, &) contains the identical map as an identity, and one may check
the associativity of the composition rule.

Then the covariance structure (Condition (C) of Def. 4.1) of a generally covariant
guantum field theory is that of a covariant funckor G — N which assigns to each
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objectM € G an objecF(M) = {F(0)}ocorcmr) iN N, and which assigns to each (non-
trivial) morphism® = (©, ¢#) of § a morphisn(®) = (xe, ;, ") of N. MoreoverF
maps trivial morphisms to trivial morphisms. Diagrammatically, one has

F
M1 —— {F1(0)}ocorcmy)

el l({ae,Ni ).9)

F
My —— {SZ(U)}errc(Mz)

Note added in proof.

e Amore general and concise functorial decription of the principle of general covariance
will appear in [53].

e The required properties concerning Hadamard states mentioned at the end of Sect. 6
have recently been discussed in a preprint by D’Antoni and Hollands [54].
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