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Abstract: We introduce an enhanced multiscale analysis that yields subexponentially
decaying probabilities forbad events. For quantum and classical waves in random media,
we obtain exponential decay for the resolvent of the corresponding random operators
in boxes of sideL with probability higher than 1− e−Lζ

, for any 0 < ζ < 1. The
starting hypothesis for the enhanced multiscale analysis only requires the verification
of polynomial decay of the finite volume resolvent, at some sufficiently large scale,
with probability bigger than 1− 1

841d
(d is the dimension). Note that from the same

starting hypothesis we get conclusions that are valid for any 0< ζ < 1. This is achieved
by the repeated use of a bootstrap argument. As an application, we use a generalized
eigenfunction expansion to obtain strong dynamical localization of any order in the
Hilbert–Schmidt norm, and better estimates on the behavior of the eigenfunctions.

1. Introduction

Quantum and classical waves may be described by first or second order differential
equations on a Hilbert spaceH = L2(Rd ,dx;Cn). Quantum waves are described by
the Schrödinger equation:

i
∂

∂t
ψt = Hψt, (1.1)

while classical waves may be described by a second order wave equation with an auxiliary
condition:

∂2

∂t2
ψt = −Hψt, with ψt = P⊥

H ψt . (1.2)

� Partially supported by NSF Grant DMS-9800883.
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In both casesH is a self-adjoint operator onH; for the wave equation we haveH ≥ 0
andP⊥

H is the orthogonal projection on the orthogonal complement of the kernel ofH .
Finite energy solutions of the first order equation (1.1) are of the form

ψt = e−itH φ0, φ0 ∈ H, (1.3)

inasmuch as finite energy solutions of the second order equation (1.2) are given by

ψt = cos
(
t
√
H
)
P⊥
H φ0 + sin

(
t
√
H
)
P⊥
H η0, φ0, η0 ∈ H. (1.4)

In this article we discuss questions concerning localization of waves in random media.
A random medium will be modeled by aZd -ergodic random self-adjoint operatorHω,
whereω belongs to a probability set� with a probability measureP (e.g., [37,33,9,
24,25,43,12]). In this article such aHω will be simply called arandom operator. It
follows from ergodicity that there exists a nonrandom set�, such thatσ(Hω) = � with
probability one, whereσ(A) denotes the spectrum of the operatorA. In addition, the
decomposition ofσ(Hω) into pure point spectrum, absolutely continuous spectrum, and
singular continuous spectrum is also independent of the choice ofω with probability
one [37,49,8,13].

As an example one can consider the potential

Vω(x) =
∑
i∈Zd

λi(ω)u(x − i), (1.5)

whereu is a bounded nonnegative function with compact support, and the{λi(ω)}i∈Zd

are independent, identically distributed random variables (e.g., [33,9,45,38,39,52]).
The random Schrödinger operator is given byHω = −� + γVω(x) (plus possibly a
bounded periodic potential [45,38]). The parameterγ measures the amount of disorder.

For classical waves, examples include Maxwell’s equations, and the equations of
acoustics and elasticity, where the random Schrödinger-like operators in (1.2) are of the
formHω = A∗ωAω with Aω = √

RωD
√
Sω, whereD is a first order partial differential

operator with constant coefficients, andRω, Sω are strictly positive matrix valued func-
tions of the formY0(x)(1+ γVω(x))

±1, with Y0(x) a periodic matrix valued function,
not necessarily smooth, andVω(x) as in (1.5) [24,25,43,12].

In this paper we restrict ourselves to continuum models. There is a vast literature on
the Anderson model and other discrete random operators, e.g., [46,26,27,20,7,13,8,2,
1,3,22,23,41,16,55]. Our methods and results also apply to discrete random operators,
with the obvious modifications.

The main achievement of this paper is an enhanced multiscale analysis, thebootstrap
multiscale analysis, which is stated in Theorem 3.4. In this context the multiscale anal-
ysis (MSA) is a technique, initially developed in [26,27] and simplified in [19,20] (see
also [21,40]), for the purpose of provingAnderson localization (pure point spectrum and
exponential decay of eigenfunctions). It was later shown to also yield dynamical local-
ization (non spreading of the wave packets) [29], and more recently strong dynamical
localization (dynamical localization not only with probability one, but in expectation)
up to some order [14]. Our enhancement yields strong dynamical localization up to any
order. In fact, it yields more: strong dynamical localization in the Hilbert–Schmidt norm.
The usual multiscale analyses, based on von Dreifus and Klein [20], give exponential
decay of the resolvent on big boxes with sideLk ↗ ∞, with probability close to 1
up to a polynomially small correction inLk (i.e.,≥ 1− L

−p
k for a fixedp > 0). In
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comparison, the bootstrap multiscale analysis we present here in Theorem 3.4 requires
less in the starting hypotheses, and yields far better probability estimates. In fact, it gives
any desired sub-exponential decay for the probabilities ofbad events. An important new
feature of the enhanced MSA is that the final probability estimates are independent of
the probability estimate in the starting hypothesis. This is achieved by a repeated use of
a bootstrap argument. Thus one may look for the weakest possible starting hypothesis
without affecting the resulting probability estimates.

An important consequence of this bootstrap MSA is given in Theorem 3.8, which
we paraphrase as follows. For a large class of random operators, if the bootstrap MSA
starting hypothesis holds at a fixed energyE0 (E0 > 0 for Eq. (1.2)), then there exists
δ0 > 0, such that, definingI (δ0) = (E0 − δ0, E0 + δ0), one has

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHω(I (δ0))χy
∥∥2

2

)
≤ Cζe−|x−y|ζ (1.6)

for any 0< ζ < 1, whereCζ is some finite constant depending only onζ and on the
parameters of the problem (χx stands for the characteristic function of a box of side
1 centered atx; the supremum is taken over Borel functionsf of a real variable, with
‖f ‖ = supt∈R |f (t)|; EHω( ) denotes the spectral projection of the operatorHω; ‖B‖2
denotes the Hilbert–Schmidt norm of the operatorB). It follows from (1.6), by a fairly
straightforward calculation, that for any bounded region� and allq > 0 we have

E

(
sup
‖f ‖≤1

∥∥∥|X| q2f (Hω)EHω(I (δ0))χ�

∥∥∥2

2

)
<∞, (1.7)

in which case we will say that the corresponding wave equation (either (1.1) or (1.2))
exhibitsstrong HS-dynamical localization in the energy intervalI (δ0). An immediate
consequence isstrong dynamical localization, meaning that for any finite energy solution
ψt (as in either (1.3) or (1.4)), we have

E

(
sup
t

∥∥∥ |X| q2EHω(I (δ0)) ψt

∥∥∥2
)
<∞ (1.8)

for anyq > 0 and Cauchy data (eitherφ0 ∈ H orφ0, η0 ∈ H) with compact support. (It
actually follows from (1.6) that it suffices to have Cauchy data that decays faster than any
polynomial in theL2-sense, i.e., the localL2-norms decay faster than any polynomial.)

An application of the results of this paper (the bootstrap multiscale analysis and
its application to strong HS-dynamical localization) can be found in [32], where we
show a discontinuity of the transport properties of the random media at the Anderson
metal-insulator transition (if there is one).

Classical waves may be described by first order Schrödinger-like equations of the
same form as (1.1), where the self-adjoint operatorH is a first order partial differential
operator (see [42]); e.g., Maxwell equations. Such an equation yields two second order
wave equations of the form (1.2). It turns out that the bootstrap MSA for one of these
second order equations implies the estimate (1.6), and hence also (1.7) and (1.8), for the
first order classical wave equation, as well as for the other second order wave equation
(see [43]).

Dynamical localization is a term commonly used for the almost sure version of (1.8),
i.e.,

sup
t

∥∥∥ |X| q2EHω(I (δ0)) ψt

∥∥∥2
<∞ for a.e.ω. (1.9)
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It was proven in [29] in the context of this paper (the proof is given for Schrödinger
operators, but it is also applicable to classical waves). Dynamical localization implies
pure point spectrum by the RAGE Theorem (e.g., the argument in [13, Theorem 9.21]),
but the converse is not true. Dynamical localization is actually a strictly stronger notion
than pure point spectrum, since the latter can take place whereas a quasi-ballistic motion
is observed [18]. The question “what is localization?” has been raised in [17] and the
last decade has seen many contributions to this subject matter [18,29,28,3,53].

In the discrete case, the first results on dynamical localization are due to Jona-Lasinio,
Martinelli and Scoppola [35] for a hierarchical model, and to Martinelli and Scoppola
[47] for the Anderson model. For the latter, with a bounded, absolutely continuous
probability distribution for the single site potential, the Aizenman–Molchanov approach
[1,3] gives strong dynamical localization (in fact, it gives exponential decay in (1.6)).
But where the Aizenman–Molchanov approach does not apply (e.g., random operators
on the continuum, the Anderson model with a Bernoulli potential in one dimension),
dynamical localization has been harder to prove.

In the continuum the first results were obtained by Holden and Martinelli [33], who
proved subdiffusive motion for random Schrödinger operators (for the time averaged
second moment). Recently, Barbaroux et al. [5] showed the absence of diffusion for the
time averaged second moment.

The search for a proof of dynamical localization in the continuum ended when Ger-
minet and De Bièvre [29] proved (almost sure) dynamical localization whenever the
MSA applied. More recently, Damanik and Stollman [14] extended the analysis in [29]
to prove partial strong dynamical localization. In fact, they proved partial strong operator-
dynamical localization. The partial refers to the fact that they obtain (1.8) and (1.10) for
all q < q0, for someq0 <∞ that depends on the parameters of the problem - the disor-
der, the energy interval where the result takes place, etc. By strong operator-dynamical
localization on an intervalI we mean (compare with (1.7))

E

(
sup
‖f ‖≤1

∥∥∥|X| q2f (Hω)EHω(I )χ�

∥∥∥) <∞. (1.10)

We note that theq < q0 limitation comes from the fact that they only had at their
disposal the usual MSA. Theorem 3.4 below is sufficient to push their analysis to full
strong operator-dynamical localization, i.e., (1.10) for allq > 0.

In this article we propose an alternative, and quite natural, way to get strong dynamical
localization (see also [30]), which yields strong HS-dynamical localization. As in [28],
our method uses a generalized eigenfunction expansion (see Sect. 2.3) to exploit the
fruits of the bootstrap MSA, instead of resorting to centers of localization as in [29,14].
(See Remark 4.3.)

Let us give an idea of our enhancement of the multiscale analysis. Roughly, the
usual MSA works as follows: fixp > 0 and a massm > 0. In a way, the parameterp
determines how good the final result will be. A box0L(x) is said to be regular at an
energyE if the resolvent on that box,R0L(x), sandwiched between the center of the box
and its boundary, is smaller thane−mL/2 (see Sect. 2.1 and Definition 3.2):

‖3x,LRx,L(E)χx,L/3‖x,L ≤ e−m
L
2 . (1.11)

The basic result of the usual MSA is to provide an energy intervalI (p) and a sequence
of scalesLk ↗ ∞, such that the probability of getting regular boxes at the scaleLk at
energiesE ∈ I (p) is greater than 1− L

−p
k (for precise statements we refer the reader



Bootstrap Multiscale Analysis and Localization in Random Media 419

to Sects. 3 and 5.1). But this process can only take place once the first step (starting
hypothesis) is proven to hold. To achieve the first step, typically one has to work at
either the edge of a gap in the spectrum, or at high disorder, or at low energy. The point
is that the parameters of the operator (disorder, energy,. . . ) are fixed depending onp
to satisfy this starting hypothesis. As a consequence, in the usual MSA, asp →∞, then
either:

(i) at the edge of a gap in the spectrum, the intervalI (p) where localization holds will
shrink to nothing;

(ii) to obtain localization in a specified interval, the required disorderγ = γ (p) in-
creases to∞;

(iii) at low energy, the energy at which we see localization diverges.

If one is interested in the decay of the kernel of the semigroupe−iHωt as in (1.6), then
this link between the rate of decay of the probability and the region in the diagram energy
× disorder where the conclusions hold is unfortunate, and limits the scope of the result
that can be obtained. More precisely, in that context the usual MSA can only provide
results of the type:

(i) at the edge of a gap in the spectrum (fixed disorderγ ), there exists an intervalI (p),
shrinking to nothing asp →∞, and a finite constantCp, so that

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHω(I (p))χy
∥∥) ≤ Cp

1+ |x − y|p ; (1.12)

(ii) in pre-specified intervalI , there existγ (p)→∞ asp →∞, so that ifγ ≥ γ (p),
(1.12) holds onI ;

(iii) at low energy, there existsEp →∞ asp →∞, such that (1.12) holds on compact
intervalsI ⊂ (−∞,−Ep), and, in the discrete case, also ifI ⊂ (Ep,∞). These
should be compared to (1.6) above, where the desired decay does not affect the
starting hypothesis.

In this article we show that once the MSA is performed for onep, then by a bootstrap
argument it can be done forany p′, on thesame intervalI (p) and with thesame disorder
(and of course for the same starting hypothesis). Since this in turn means that the starting
hypothesis does not affect the strength of the conclusions, another way to take advantage
of this new possibility is to start with the weakest possible starting hypothesis. In a
companion paper [31] we shall explore this fact in more detail and, in particular, propose
a finite volume criterion that may be implemented numerically.We notice that this type of
finite volume criterion is fairly close to results obtained recently in [3], a paper that deals
with the discrete setting. Moreover in [3] polynomial decay (of the averaged fractional
resolvent) is shown to imply exponential decay. Here, if polynomial decay holds, then
any sub-exponential decay follows.

To perform the bootstrap MSA we take advantage of two kinds of multiscale analyses:
one where length scales grow by multiplication by a fixed factor:Lk+1 = YLk, Y > 1,
and another with exponentially growing length scales:Lk+1 = Lα

k , α > 1. Previous
proofs yielded only a pre-fixed polynomial decay of the probabilities of bad events
(i.e., 1

L
p
k

for a pre-fixedp > 0). In this context, the MSA with exponential growth of

length scales is well known; it was put in the present form by von Dreifus [19] and von
Dreifus and Klein [20], simplifying the work of Fröhlich and Spencer [26] and Fröhlich,
Martinelli, Scoppola and Spencer [27]. The MSA with multiplicative growth of length
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scales is less well known and was developed by Figotin and Klein in [24,25], using ideas
of Spencer [51], to improve the starting hypothesis of the MSA, and thereby to weaken the
hypotheses of their theorems. We extend both types of multiscale analyses to obtain sub-

exponential decay of the probabilities of bad events (i.e., e−Lζ
k for all 0 < ζ < 1). A new

ingredient in our extension of the MSA with exponentially growing length scales is that
we allow the number of bad boxes to grow with the scale. (The bad boxes are controlled by
a Wegner estimate in the usual way.)All these multiscale analyses have differing starting
hypotheses, the weakest belonging to the Figotin and Klein MSA, which only requires
that at some sufficiently large scale we can verify polynomial decay of the finite volume
resolvent with some minimal probability, independent of the scale. (In this article we
show that a probability bigger than 1− 1

841d
suffices.) It is by successively performing the

four multiscale analyses, feeding the results of one into the next, thus doing abootstrap
multiscale analysis, that we are able to go from the weakest starting hypothesis to the
strongest conclusions. Combining the results of this bootstrap multiscale analysis with
the generalized eigenfunction expansion leads to (1.6).

The paper is organized as follows. In Sect. 2 we present, as assumptions, the properties
of the random operatorHω that are required for the multiscale analysis and its applica-
tions. In Sect. 3 we state the main results of this paper, namely thebootstrap multiscale
analysis (Theorem 3.4), and its application to various manifestations of localization:
sub-exponential decay of the kernel off (Hω) (Theorem 3.8), strong HS-dynamical lo-
calization (Corollary 3.10), and a SULE property (Theorem 3.11). In Sect. 4 we assume
Theorem 3.4 and prove Theorem 3.8, Corollary 3.10 and Theorem 3.11. In Sect. 5 we
discuss the four multiscale analyses (Theorems 5.1, 5.2, 5.6, and 5.7) that are used in
the bootstrap multiscale analysis. In Sect. 6 we prove Theorem 3.4.

2. Requirements of the Multiscale Analysis

2.1. Finite volume. Throughout this paper we use the sup norm inR
d :

|x| = max{|xi |, i = 1, . . . , d}. (2.1)

By 0L(x) we denote the open box (or cube) of sideL > 0:

0L(x) = {y ∈ R
d; |y − x| < L/2}, (2.2)

and by0L(x) the closed box.In this article we will always take boxes centered at sites
x ∈ Z

d with side L ∈ 2N. Very often we will requireL ∈ 6N; givenK ≥ 6, we set

[K]6N = max{L ∈ 6N; L ≤ K}. (2.3)

The operatorHx,L is defined as the restriction ofH , either to the open box0L(x)

with Dirichlet boundary condition, or to the closed box0L(x) with periodic boundary
condition. (We consistently work with either Dirichlet or periodic boundary condition.)
We writeRx,L = (Hx,L − z)−1 for its resolvent. By‖ ‖x,L we denote the norm or the
operator norm on L2(0L(x),dx;Cn).

The characteristic function of a set0 ⊂ R
d is denoted byχ0. If x ∈ R

d and7 > 0,
we let

χx,7 = χ07(x), χx = χx,1 = χ01(x). (2.4)
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Given a box0L(x), we set

ϒL(x) =
{
y ∈ Z

d; |y − x| = L

2
− 1

}
, (2.5)

and define its (boundary) belt by

ϒ̃L(x) = 0L−1(x)\0L−3(x) =
⋃

y∈ϒL(x)

01(y) ; (2.6)

it has the characteristic function

3x,L = χϒ̃L(x)
=

∑
y∈ϒL(x)

χy a.e. (2.7)

Note that

|ϒL(x)| = (L− 1)d − (L− 2)d = d

∫ L−1

L−2
xd−1dx ≤ d(L− 1)d−1. (2.8)

We shall suppress the dependency of a box on its center when not necessary. When
using boxes07 contained in bigger boxes0L, we shall need to know that the small box
is inside the belt̃ϒL of the bigger one. We thus introduce the following definition.

Definition 2.1. Let L > 7+ 3 and x ∈ Z
d . We say that

07 � 0L(x) if 07 ⊂ 0L−3(x).

2.2. Properties of random operators. We present here, as assumptions, the properties of
the random operatorHω that are required for the multiscale analysis and its applications.
These properties are routinely verified for the random operators of interest [26,27,20,
33,9,24,25,42,43,52]. The bootstrap multiscale analysis has the same requirements as
the usual one.

We fix a compact intervalI0 and an open interval̃I0 ⊃ I0 (we always takẽI0 ⊂ (0,∞)

for Eq. (1.2)).

2.2.1. Deterministic assumptions. The deterministic assumptions are supposed to hold
almost surely, with non-random constants. We omitω from the notation.

The first assumption is reminiscent of the Simon–Lieb inequality (SLI) in Classical
Statistical Mechanics. It relates resolvents in different scales. In the discrete case it is
an immediate consequence of the resolvent identity; in this context it was originally
used in [26]. In the continuum, its proof requires internal estimates. For Schrödinger
operators it was proved in [9]; it was adapted to classical wave operators in [24]. We
state it as in [42, Lemma 3.8]. In the continuum, we typically have the constantγI0 below

to be of the formγI0 = supE∈I0
γE , with γE = const(1+ |E|) 1

2 , where the nonrandom
constant depends only on nonrandom parameters of the operator (dimensiond, bounds
on coefficients or potential – see [42, Eq. (3.80)] for an explicit expression for classical
wave operators, a similar expression holds for Schrödinger operators).
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Assumption SLI. There exists a finite constant γI0 such that, given L, 7′, 7′′ ∈ 2N,
x, y, y′ ∈ Z

d with 07′′(y) � 07′(y′) � 0L(x), then for any E ∈ I0 with E /∈
σ(Hx,L) ∪ σ(Hy′,7′) we have

‖3x,LRx,L(E)χy,7′′ ‖x,L ≤ γI0‖3y′,7′Ry′,7′(E)χy,7′′ ‖y′,7′ ‖3x,LRx,L(E)3y′,7′ ‖x,L .
(2.9)

Assumption SLI will be used in the following way: We will take7′′ = 7/3 with
7 ∈ 6N, and7′ = k7/3 with 3≤ k ∈ N. By acell we will mean a closed box07/3(y

′′),
with y′′ ∈ 7

6Z
d . We defineZevenandZodd to be the sets of even and odd integers. We take

y ∈ 7
6Z

d , soχy,7/3 is the characteristic function of a cell. We want the closed box07′(y′)
to be exactly covered by cells (in effect, bykd cells); thus we specifyy′ ∈ 7

3Z
d = 7

6Z
d
even

if k is odd, andy′ ∈ 7
3Z

d + 7
6 (1,1, . . . ,1) = 7

6Z
d
odd if k is even. We then replace the

boundary beltϒ̃7′(y′) (of width 1) by a thicker belt̃ϒ7′,7(y′) of width 7/3. To do so, we
set

ϒ7′,7(y
′) =

{
y′′ ∈ 7

3
Z
d; |y′′ − y′| = 7′

2
− 7

6

}
, (2.10)

and define the boundary7-belt of07′(y′) by

ϒ̃7′,7(y
′) = 07′(y

′)\07′−27/3(y
′) =

⋃
y′′∈ϒ7′,7(y′)

07/3(y
′′), (2.11)

with characteristic function

3y′,7′,7 = χϒ̃7′,7(y′) =
∑

y′′∈ϒ7′,7(y′)
χy′′,7/3 a.e. (2.12)

Note that

|ϒ7′,7(y
′)| = (kd − (k − 2)d) ≤ kd . (2.13)

Since3y′,7′,73y′,7′ = 3y′,7′ , the projection37′ on the belt of07′ can be replaced by the
projection over the thicker belt of width7/3, which can be decomposed in boxes of side
7/3. Thus (2.9) yields

‖3x,LRx,L(E)χy,7/3‖x,L
≤ γI0 k

d ‖3y′,7′Ry′,7′(E)χy,7/3‖y′,7′ ‖3x,LRx,L(E)χy′′,7/3‖x,L, (2.14)

for somey′′ ∈ ϒ7′,7(y′).We will say that, after performing the SLI, i.e., using the estimate
(2.14), we moved from the cell 07/3(y) to the cell 07/3(y

′′).

Remark 2.2. While performing a multiscale analysis we will use (2.14) with either7′ = 7

(for good boxes), or some7′ = k7/3, k > 3, which will be the side of a bad box. Note
that in the first case,k = 3, and the geometric factor is 3d − 1 ≤ 3d . In that case note
also that we must havey = y′ and |y′′ − y| = 7/3, so after performing the SLI we
moved to an adjacent cell, i.e., by7/3 in the sup norm. (Recall that we are using the sup
norm inR

d , so we may move both sidewise and along the diagonals.)
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The second assumption estimates generalized eigenfunctions (see Sect. 2.3 for a
precise definition) in terms of finite volume resolvents. It is not needed for the multiscale
analysis, but it plays an important role in obtaining localization from the multiscale
analysis [27,20]. We call it aneigenfunction decay inequality (EDI), since it translates
decay of finite volume resolvents into decay of generalized eigenfunctions ; we present
it as in [42, Lemma 3.9]. It is closely related to the SLI, the proofs being very similar.

Assumption EDI. There exists a finite constant γ̃I0 such that, given a generalized eigen-
functionψ ofH with generalized eigenvalueE ∈ I0, we have for any x ∈ Z

d andL ∈ 2N

with E /∈ σ(Hx,L) that

‖χxψ‖ ≤ γ̃I0‖3x,LRx,L(E)χx‖x,L‖3x,Lψ‖. (2.15)

Typically we haveγ̃I0 = γI0, with γI0 as in (2.9). We will use the following con-
squence of (2.15):

‖χxψ‖ ≤ γ ′I0
Ld−1‖3x,LRx,L(E)χx‖x,L‖χyψ‖ (2.16)

for somey ∈ ϒL(x), with γ ′I0
= dγ̃I0.

2.2.2. Probabilistic assumptions. The first probabilistic assumption isindependence at
a distance (IAD). It says that if boxes are far apart, events related to the restrictions of
the random operatorHω to these boxes are independent. We say that an event is based on
the box0L(x) if it is determined by conditions on the restrictionHω,x,L. Given: > 0,
we say that two boxes0L(x) and0L′(x′) are:-nonoverlapping if |x− x′| > L+L′

2 +:

(i.e., if d(0L(x),0L′(x′)) > :).

Assumption IAD. There exists : > 0 such that events based on :-nonoverlapping
boxes are independent.

The second probabilistic assumption is an “a priori” estimate on the averagenumber
of eigenvalues (NE) of finite volume random operators in a fixed, bounded interval.
It is usually proved by a deterministic argument, using the well known bound for the
Laplacian [9,24,25,42]. It is, of course, entirely obvious in the discrete case.

Assumption NE. There exists a finite constant CI0 such that

E

(
trHEHω,x,L

(Ĩ0)
)
≤ CI0L

d (2.17)

for all x ∈ Z
d and L ∈ 2N.

The final probabilistic assumption is a form ofWegner’s estimate (W), a probabilistic
estimate on the size of the resolvent. It is a crucial ingredient for the MSA, where it is
used to control the bad regions.

Assumption W. For some b ≥ 1 there exists a constant QI0 <∞, such that

P
{
dist(σ (Hω,x,L), E) ≤ η

} ≤ QI0ηL
bd, (2.18)

for all E ∈ Ĩ0, η > 0, x ∈ Z
d , and L ∈ 2N.
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Remark 2.3. In the continuum one usually proves the stronger estimate [33,9,10,4,24,
25,43,11]:

E
(
trHEHω,x,L ([E − η,E + η])) ≤ QI0ηL

bd, (2.19)

from which (2.18) follows by Chebychev’s inequality. The estimate (2.17) is used as an
“a priori” estimate in the proof of (2.19).

Remark 2.4. In practice we have eitherb = 1 or b = 2 in the Wegner estimate (2.18).
For random Schrödinger operators with Anderson potential we may haveb = 1 [9,45,
4] (including the Landau Hamiltonian). For classical waves in random media, (2.18) has
been proven withb = 2 [54,24,25,43]. Very recently the correct volume dependency
(i.e.,b = 1) in gaps of the unperturbed operator was obtained in [11], at the price of losing
a bit in theη dependency. In this paper, we shall use (2.18) as stated, the modifications in
our methods required for the other forms of (2.18) being obvious. Our methods may also
accommodate Assumptions NE and W being valid only for largeL, and/or Assumption
W being valid only forη < ηL for some appropriateηL, sayηL = L−r , somer > 0, or
ηL = e−Lβ

for some 0< β < 1. The latter is of importance if one wants to deal with
singular probability measures like Bernoulli [7,36,16].

2.3. Generalized eigenfunction expansion. Generalized eigenfunction expansions were
originally developed for elliptic partial differential operators with smooth coefficients
(we refer to Berezanskii’s book [6]). These expansions were extended to Schrödinger
operators with singular potentials (Simon [50] and references therein), and to classical
wave operators with nonsmooth coefficients by Klein, Koines and Seifert [44].

These expansions construct polynomially bounded generalized eigenfunctions for
a set of generalized eigenvalues with full spectral measure. These generalized eigen-
functions were used by Pastur [48] and by Martinelli and Scoppola [47] to prove that
certain Schrödinger operators with random potentials have no absolutely continuous
spectrum. They played a crucial role in the work by Fröhlich, Martinelli, Spencer and
Scoppola [27] and by von Dreifus and Klein [20] on Anderson localization of random
Schrödinger operators, providing the crucial link between the multiscale analysis and
pure point spectrum: the exponential decay of finite volume Green’s functions (obtained
by a multiscale analysis) forces polynomially bounded generalized eigenfunctions to be
bona fide eigenfunctions, so the spectrum is at most countable and hence pure point.

In this article we go further and, as in [28,30], use the generalized eigenfunction
expansion itself (not just the existence of polynomially bounded generalized eigenfunc-
tions) to provide the link between the multiscale analysis and strong HS-dynamical
localization (and hence pure point spectrum). We will state the existence of a gener-
alized eigenfunction expansion as an assumption. Proofs of such an assumption are
provided in [50,44] for Schrödinger operators and classical wave operators. We follow
the presentation in [44].

LetT be the operator onH given by multiplication by the function(1+|x|2)ν , where
ν > d/4. We define the weighted spacesH± as follows:

H± = L2(Rd , (1+ |x|2)±2νdx;Cn). (2.20)

H− is a space of polynomially L2-bounded functions. The sesquilinear form

〈φ1, φ2〉H+,H− =
∫

φ1(x) · φ2(x)dx, (2.21)
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whereφ1 ∈ H+ andφ2 ∈ H−, makesH+ andH− conjugate duals to each other.
By O† we will denote the adjoint of an operatorO with respect to this duality. By
construction,H+ ⊂ H ⊂ H− , the natural injectionsı+ : H+ → H andı− : H →
H− being continuous with dense range, withı†+ = ı− . The operatorsT+ : H+ →
H and T− : H → H−, defined byT+ = T ı+ , T− = ı−T on D(T ), are unitary
with T− = T

†
+. The mapτ : B(H) → B(H+,H−), with τ(C) = T−CT+ , is a

Banach space isomorphism, asT± are unitary operators. (B(H1,H2) denotes the Banach
space of bounded operators fromH1 to H2, B(H) = B(H,H).) If 1 ≤ q < ∞, we
defineTq(H+,H−) = τ

(Tq(H)
)
, whereTq(H) denotes the Banach space of bounded

operatorsS onH with ‖S‖q = (tr |S|q) 1
q <∞. By construction,Tq(H+,H−), equipped

with the norm‖B‖q = ‖τ−1(B)‖q , is a Banach space isomorphic toTq(H), with
T2(H+,H−) being the usual Hilbert space of Hilbert–Schmidt operators fromH+ to
H−.

Note that

‖χx,L‖H,H+ = ‖χx,L‖H−,H ≤ CL,ν(1+ |x|2)ν (2.22)

for all x ∈ R
d andL > 0, withCL,ν a finite constant depending only onL andν. (Given

an operatorB : H1 → H2, ‖B‖H1,H2 will denote its operator norm.)
The following assumption guarantees the existence of a generalized eigenfunction

expansion (GEE) with the right properties (see [44] for details). Recall thatP⊥
H is the

orthogonal projection on the orthogonal complement of the kernel ofH in the case of
classical waves; for convenience we let it be the identity operator in the case of the
Schrödinger equation. Note also that we fixν > d/4 and use the corresponding operator
T and weighted spacesH± as in (2.20).

Assumption GEE. Fix ν > d/4. The set Dω+ := {φ ∈ D(Hω) ∩H+, Hωφ ∈ H+} is
dense in H+ and an operator core for Hω, with probability one. There exists a bounded,
continuous function f , strictly positive on the spectrum of Hω, such that

trH
(
T −1f (Hω)P

⊥
Hω

T −1
)
<∞ (2.23)

with probability one.

A measurable functionψ : R
d → C

n is said to be ageneralized eigenfunction of
Hω with generalized eigenvalueλ, if ψ ∈ H− and

〈Hωφ,ψ〉H+,H− = λ〈φ,ψ〉H+,H− for all φ ∈ Dω+.

It follows from GEE that if a generalized eigenfunction is inH, then it is a bona fide
eigenfunction.

If GEE holds, for almost everyω we have

trH
(
T −1EHω(J )P

⊥
Hω

T −1
)
< +∞ (2.24)

for all bounded Borel setsJ . Thus, with probability one,

µω(J ) = trH
(
T −1EHω(J )P

⊥
Hω

T −1
)

(2.25)
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is a spectral measure for the restriction ofHω to the Hilbert spaceP⊥
Hω

H, with

µω(J ) <∞ for J bounded. (2.26)

In particular, we have a generalized eigenfunction expansion forHω: with probabil-
ity one, there exists aµω-locally integrable functionPω(λ) from the real line into
T1(H+,H−), with

Pω(λ) = Pω(λ)
† (2.27)

and

trH
(
T −1− Pω(λ)T

−1+
)
= 1 forµω − a.e.λ, (2.28)

such that

ı−EHω(J )P
⊥
Hω

ı+ =
∫
J

Pω(λ) dµω(λ) for bounded Borel setsJ, (2.29)

where the integral is the Bochner integral ofT1(H+,H−)-valued functions. Moreover,
if φ ∈ H+, thenPω(λ)φ ∈ H− is a generalized eigenfunction ofHω with generalized
eigenvalueλ, for µω almost everyλ.

The following lemma will play an important role in our proof of strong HS-dynamical
localization. Note that the constantC in (2.30) is independent ofλ, and that‖ ‖1 denotes
the trace norm inH.

Lemma 2.5.Under Assumption GEE, we have, with probability one, that for µω almost
every λ,

‖χxPω(λ)χy‖1 ≤ C(1+ |x|2)ν(1+ |y|2)ν (2.30)

for all x, y ∈ R
d , with C a finite constant independent of λ and ω.

Proof. Since

‖χxPω(λ)χy‖1 ≤ ‖χx‖H−,H‖Pω(λ)‖T1(H+,H−)‖χy‖H,H+ , (2.31)

(2.30) follows from (2.22) and (2.28).!"
Assumption GEE suffices for proofs of localization [27,20] and (almost sure) dynam-

ical localization [29,28]. But for strong HS-dynamical localization we need to strengthen
(2.23), as we will use (2.34) below.

Assumption SGEE. Assumption GEE holds with

E

[
trH

(
T −1f (Hω)P

⊥
Hω

T −1
)]2

<∞. (2.32)

It follows that

E

[
trH

(
T −1EHω(J )P

⊥
Hω

T −1
)]2

< +∞ (2.33)

for all bounded Borel setsJ , so we have a stronger version of (2.26):

E [µω(J )]
2 <∞ for J bounded. (2.34)
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Remark 2.6. Estimate (2.32) is true for the usual random operators. We could have re-
quired either the weaker

E

[
trH

(
T −1f (Hω)P

⊥
Hω

T −1
)]

<∞, (2.35)

or the stronger ∥∥∥trH
(
T −1f (Hω)P

⊥
Hω

T −1
)∥∥∥∞ <∞. (2.36)

If we assume (2.35) instead of (2.32), Theorem 3.8 yields strong operator dynamical
localization instead of strong HS-dynamical localization. One usually proves the stronger
(2.36) (e.g., [44,43]), which was one of the assumptions in [14].

3. Statement of the Main Results

In order to state our results we need first to characterizegood boxes for random operators.
We start with two definitions of good boxes. Note that these are deterministic; we omit
ω from the notation when not necessary.

Definition 3.1. Given θ > 0, E ∈ R, x ∈ Z
d , and L ∈ 6N, we say that the box 0L(x)

is (θ, E)-suitable if E /∈ σ(Hx,L) and

‖3x,LRx,L(E)χx,L/3‖x,L ≤ 1

Lθ
. (3.1)

Definition 3.2. Given m > 0, E ∈ R, x ∈ Z
d , and L ∈ 6N, we say that the box 0L(x)

is (m,E)-regular if E /∈ σ(Hx,L) and

‖3x,LRx,L(E)χx,L/3‖x,L ≤ e−m
L
2 . (3.2)

Remark 3.3. Note that a box0L(x) is (θ, E)-suitable if and only if it is(m,E)-regular,
with m = 2θ logL

L
. The difference between the two definitions is the point of view. In

Definition 3.1 we require only polynomial decay in the scaleL, while in Definition 3.2
we want exponential decay inL.

We fix a compact intervalI0 and an open interval̃I0 ⊃ I0 (Ĩ0 ⊂ (0,∞) for Eq. (1.2)).
Throughout this paper, byC = C(a, b, . . . ) we mean a positive finite constantC,
dependingonly on the parametersa, b, . . . .

The following theorem provides our enhancement of the multiscale analysis.

Theorem 3.4 (Bootstrap Multiscale Analysis). Let Hω be a random operator satisfying
assumptions SLI, IAD, NE and W in the compact interval I0. Given θ > bd, there exists
a finite scale L = L(d, :,QI0, γI0, b, θ), such that, if for some E0 ∈ I0 we can verify
at some finite scale L > L that

P{0L(0) is (θ, E0)-suitable} > 1− 1

841d
, (3.3)

then there exists δ0 = δ0(d, :,QI0, CI0, γI0, θ,L) > 0, such that, given any ζ ,
0 < ζ < 1, and α, 1 < α < ζ−1, there is a length scale

L0 = L0(d, :,QI0, CI0, γI0, θ,L, ζ, α) <∞,
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and a mass mζ = m(ζ, L0) > 0, so if we set Lk+1 = [Lα
k ]6N, k = 0,1, . . . , we have

P
[
R
(
mζ ,Lk, I (δ0), x, y

)] ≥ 1− e−L
ζ
k (3.4)

for all k = 0,1, . . . , and x, y ∈ Z
d with |x − y| > Lk + :, where

I (δ0) = [E0 − δ0, E0 + δ0] ∩ I0, and

R(m,L, I, x, y) {for every E ∈ I, either 0L(x) or 0L(y) is (m,E)-regular}. (3.5)

Remark 3.5. If we have the expected volume factor in (2.18), i.e.,b = 1, we need only
θ > d, hence (3.3) is an estimate on the probability that the finite volume resolvent
decays faster than the inverse of the volume.

Remark 3.6. The initial probability 1− 1
841d

in the starting hypothesis (3.3) of Theo-

rem 3.4 does not depend on the initial scaleL. It suffices to verify (3.3) for someL > L,
with L large enough depending ond, :,QI0, γI0, b, θ . This is not the case in the usual
MSA where the required initial probability behaves like 1−L−p [20]. Estimates onL,
as well as better numbers for the required initial probability, will be given in [31].

Remark 3.7. In some cases one may verify the starting hypothesis (3.3) by proving the
stronger condition:

lim sup
L→∞

P{0L(0) is (θ, E0)-suitable} > 1− 1

841d
for someθ > bd. (3.6)

In such cases one usually shows that the lim sup is actually equal to one (e.g., [24,25]).

The following result combines Theorem 3.4 and the generalized eigenfunction ex-
pansion presented in Sect. 2.3. Under the hypotheses of Theorem 3.4, we show that one
can get any sub-exponential decay of the (averaged) “kernel” of a bounded function of
Hω.

Theorem 3.8 (Decay of the Kernel). Let Hω be a random operator satisfying assump-
tions SLI, IAD, NE and W in the compact interval I0 as in Theorem 3.4, plus assump-
tions EDI and SGEE. Suppose (3.3) holds at E0 ∈ I0 for some θ > bd, and let δ0
and I (δ0) be as in Theorem 3.4. Then for any 0 < ζ < 1 there exists a finite constant
Cζ = C(ζ, d, :,QI0, γI0, γ̃I0, θ, ν), such that

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHω(I (δ0))χy
∥∥2

2

)
≤ Cζ e−|x−y|ζ (3.7)

for all x, y ∈ Z
d . (The supremum is taken over bounded Borel functions f of a real

variable, with ‖f ‖ = supt∈R |f (t)|.)
Remark 3.9. The initial probabilistic estimate (3.3) or (3.6) may be shown to be satisfied
either at the edge of a gap in the spectrum, or at low energy, or for sufficiently high
disorder in a pre-specified energy interval, e.g., [20,9] in the Schrödinger case, [24,
25,43] for classical waves. But, in contrast with the results from the usual MSA, the
region where Theorems 3.4 and 3.8 apply (in the diagram energy× disorder) is not
conditioned to the final estimate of the probability of bad events; one always getsany
sub-exponential decay on a fixed intervalI (δ0), as shown in (3.7).
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An important application of Theorem 3.8 concernsstrong HS-dynamical localization,
as defined by (1.7).

Corollary 3.10 (Strong HS-Dynamical Localization). Consider the wave equation (ei-
ther (1.1) or (1.2)) in a random medium, and assume that the corresponding random
operator Hω satisfies the hypotheses of Theorem 3.8 in the compact interval I0. Suppose
(3.3) holds at E0 ∈ I0 for some θ > bd, and let δ0 and I (δ0) be as in Theorem 3.4.
Then the wave equation exhibits strong HS-dynamical localization in the energy interval
I (δ0).

Related results have been obtained for the almost Mathieu model, a one-dimensional
quasi-periodic model: dynamical localization [34,28], and more recently strong dynam-
ical localization [30] (for the optimal set of coupling constants).

Another measure of localization is “how localized are the eigenfunctions around their
center of localization”. The criterion SULE [17,18] deals with this question. Thanks to
the sub-exponential decay of the probability in Theorem 3.4, we are able to improve the
control on the behavior of the eigenfunctions given in [29].

Theorem 3.11 (SULE). Let Hω be a random operator satisfying assumptions SLI, EDI,
GEE, IAD, NEand W in the compact interval I0. Suppose (3.3) holds at E0 ∈ I0 for
some θ > bd, and let δ0 and I (δ0) be as in Theorem 3.4. Then Hω exhibits Anderson
localization (pure point spectrum) in the interval I (δ0). In addition, one gets the follow-
ing form of SULE: for any ε > 0, there exists a mass mε > 0, and for a.e. ω there is a
constant Cε,ω < ∞, such that, if we let {φn,ω}n∈N be the normalized eigenfunctions of
Hω with energy En,ω in I (δ0), there exist {xn,ω}n∈N, so for any n ∈ N and x ∈ Z

d , we
have

‖χxφn,ω‖ ≤ Cε,ω emε(log |xn,ω|)1+ε e−mε |x−xn,ω|. (3.8)

Moreover, the centers of localization xn,ω can be reordered in such a way that |xn,ω|
increases with n, and

|xn,ω| ≥ C̃ω n
1
4ν (3.9)

for some finite constant C̃ω > 0 for a.e. ω, where ν > d
4 is as in GEE.

This improves the result obtained in [29]. First, because the intervalI (δ0) does
not depend anymore on the chosenε > 0, and second, because the control of the
eigenfunctions in terms of the centers of localization{xn,ω}n∈N, given in (3.8), is almost
polynomial (we get emε(log |xn,ω|)1+ε instead of emε |xn,ω|ε as in [29]). Note that exponential
decay of the probability of bad events in Theorem 3.4 (i.e., in (3.4)) would provide right
away polynomial behavior in|xn,ω|, as expected. In the discrete case, the Aizenman–
Molchanov [1,3] approach supplies that polynomial behavior [18].

If one is interested in proving localization in a specified interval, then sometimes it
suffices to take sufficiently large disorder to satisfy the starting hypothesis (3.3) for ev-
ery energy in the interval. The following corollary re-states Theorem 3.4, Theorem 3.8,
Corollary 3.10 and Theorem 3.11 in this case. The proof is a simple compactness ar-
gument. Here again, as in Remark 3.9, we improve on former results, since how large
the disorder has to be is not anymore conditioned by how good one wants the final
probabilistic estimates to be.
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Corollary 3.12. If for some θ > bd we have (3.3) for every energy E in the compact
interval I0, then Theorem 3.4, Theorem 3.8, Corollary 3.10, and Theorem 3.11 are valid
with the whole interval I0 substituted for I (δ0) in the conclusions.

Remark 3.13. We note that our results apply to the one-dimensional, discrete Anderson
model with a singular potential, like a Bernoulli or alloy potential [7,36] (for the one-
dimensional continuous case see the very recent work [15]). The Wegner estimate proved
in [7,36] for this case is slightly weaker than our Assumption W, since it holds only for
sub-exponentially small distances to the spectrum rather than for anyη > 0. (The
fact it only holds for scalesL large enough, uniformly in the intervalI0, does not
affect the results.) But in this case one can also prove a starting hypothesis with sub-
exponentially decaying probabilities of bad events [7,36], i.e., the starting hypothesis
(5.9) of Theorem 5.7. The proof of this theorem only requires this weaker Assumption
W, so our results are also valid for Bernoulli or alloy potentials. Another application of
this work leads to strong dynamical localization for the random dimer model [16].

4. Decay of the Kernel and Dynamical Localization

In this section we assume Theorem 3.4 and prove Theorem 3.8, Corollary 3.10, and
Theorem 3.11. We start with a preliminary lemma which translates the exponential
decay of the resolvent of finite boxes at energyλ, as given by the multiscale analysis, in
terms of an exponential decay of the kernel of the “generalized eigenprojector”Pω(λ)

defined before (2.27). We note that Lemma 2.5, with the uniform polynomial bound
(2.30) that it provides, is a crucial tool for Lemma 4.1 below.

Lemma 4.1.LetHω be a random operator satisfying assumptions EDI and GEE in some
compact interval I0. Given I ⊂ I0, m > 0, L ∈ 6N, and x, y ∈ Z

d , let R(m,L, I, x, y)
be as in (3.5). If ω ∈ R(m,L, I, x, y), we have∥∥χxPω(λ)χy∥∥2 ≤ C e−mL/4(1+ |x|2)ν(1+ |y|2)ν, (4.1)

for µω-almost all λ ∈ I , with C = C(m, d, ν, γ̃I0) < +∞.

Proof. It follows from (2.27) that∥∥χxPω(λ)χy∥∥2 =
∥∥χyPω(λ)χx∥∥2 ,

for µω-almost everyλ, so the roles played byx andy are symmetric.
Let ω ∈ R(m,L, I, x, y). Then for anyλ ∈ I , either0L(x) or 0L(y) is (m, λ)-

regular forHω, let’s say0L(x). Let φ ∈ H. Since forµω-almost allλ and ally ∈ Z
d ,

the vectorPω(λ)χyφ is a generalized eigenfunction ofHω with generalized eigenvalue
λ, it follows from the EDI (see (2.15)), usingχx = χx,L/3χx , that

‖χxPω(λ)χyφ‖ ≤ γ̃I0‖3x,LRx,L(λ)χx,L/3‖x,L‖3x,LPω(λ)χyφ‖. (4.2)

Since0L(x) is (m, λ)-regular, we have, using also Lemma 2.5 and the definition of the
HS norm, that

‖χxPω(λ)χy‖2 ≤ γ̃I0e−mL/2‖3x,LPω(λ)χy‖2 (4.3)

≤ C(ν)γ̃I0dL
d−1e−mL/2(1+ (|x| + L

2 )
2)ν(1+ |y|2)ν (4.4)

≤ C(m, d, ν, γ̃I0)e
−mL/4(1+ |x|2)ν(1+ |y|2)ν. (4.5)

!"
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Remark 4.2. The estimate (4.1) may be compared to the criterion WULE introduced in
[28]. IndeedPω(λ) can be seen as the projection operator on the set of the generalized
eigenfunctions̃ϕωλ in H− with energyλ. Hence (4.1) above provides, at a finite scaleL,
the exponential decay of the key quantity

∑ |ϕ̃ωλ (x)ϕ̃ωλ (y)|. As in [28,30], the fact that
the eigenfunctions̃ϕωλ are uniformly polynomially bounded (‖ϕ̃ωλ ‖H− ≤ 1) is crucial
for our approach.

We are now in position to prove Theorem 3.8.

Proof of Theorem 3.8. Let 0 < ξ < 1. We will apply Theorem 3.4 together with the
generalized eigenfunction expansion (2.29) to show that

E

(
sup

|‖f |‖≤1

∥∥χxf (Hω)EHω(I (δ0))χ0
∥∥2

2

)
≤ Cξ e−|x|ξ , (4.6)

for all x ∈ Z
d , whereI (δ0) ⊂ I0 is given by Theorem 3.4. Since our random operator

is Z
d -ergodic, probabilities are translation invariant, so there is no loss of generality in

takingy = 0.
Given 0< ξ < 1, we pickζ such thatζ 2 < ξ < ζ < 1 (always possible) and set

α = ζ
ξ
, noteα < ζ−1. Theorem 3.4 then provides us with a scaleL0 and a massmζ > 0,

such that, if we setLk+1 = [Lα
k ]6N, k = 0,1, . . . , then for eachk we have the estimate

(3.4) withy = 0 andx ∈ Z
d such that|x| > Lk + :.

Let us now fixx ∈ Z
d andk such thatLk+1 + : ≥ |x| > Lk + :. In this case

Lemma 4.1 asserts that ifω ∈ R
(
mζ ,Lk, I (δ0), x,0

)
, then

sup
λ∈I (δ0)

‖χxPω(λ)χ0‖2 ≤ C1 e−mζLk/4(1+ |x|2)ν ≤ C1C2 e−L
ζ
k , (4.7)

with C1 = C1(mζ , d, ν, γ̃I0), C2 = C2(ν, :, ζ, ξ,mζ ). We split the expectation in
(4.6) in two pieces: where (4.7) holds, and over the complementary event, which has

probability less than e−L
ζ
k by (3.4). From (2.29) we have (noteEHω(I (δ0))P

⊥
Hω

=
EHω(I (δ0)) in the case of Eq. (1.2), since in this caseI0 ⊂ (0,∞)),

sup
|‖f |‖≤1

∥∥χxf (Hω)EHω(I (δ0))χ0
∥∥

2

≤ sup
‖f ‖≤1

∫
I (δ0)

|f (λ)| ‖χxPω(λ)χ0‖2 dµω(λ) (4.8)

≤
∫
I (δ0)

‖χxPω(λ)χ0‖2 dµω(λ). (4.9)

Thus, it follows from (4.7) that [withE(F (ω);A) ≡ E(F (ω)χA(ω))]

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHωI (δ0)χ0
∥∥2

2 ;R(mζ , Lk, I (δ0), x,0)

)
≤ C2

1C
2
2 E((µω(I (δ0)))

2)e−2Lζ
k . (4.10)
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To estimate the second term, note that using (2.25) we have∥∥χxf (Hω)EHω(I (δ0))χ0
∥∥2

2 ≤ ‖f ‖2
∥∥EHω(I (δ0))χ0

∥∥2
2

≤ 4ν‖f ‖2µω(I (δ0)), (4.11)

so, using the Schwarz’s inequality and (3.4),

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHωI (δ0)χ0
∥∥2

2 ;ω /∈ R(mζ , Lk, I (δ0), x,0)

)
≤ 4ν [E((µω(I (δ0)))

2)] 1
2 e−

1
2L

ζ
k . (4.12)

SinceC3 = C2
1C

2
2 E((µω(I (δ0)))

2) + 4ν [E((µω(I (δ0)))
2)] 1

2 < ∞ in view of (2.34),
we conclude from (4.10) and (4.12) that (recallα = ζ

ξ
)

E

(
sup
‖f ‖≤1

∥∥χxf (Hω)EHω(I (δ0))χ0
∥∥2

2

)
≤ C5 e−

1
2L

ζ
k ≤ C5 e−

1
2L

ξ
k+1 ≤ C5e−

1
2 (|x|−:)ξ ≤ C5e

1
2:

ξ

e−
1
2 |x|ξ (4.13)

for all |x| ≥ L0 + :. Thus (4.6) follows (for a slightly smallerξ ), and Theorem 3.8 is
proved. !"

Proof of Corollary 3.10. Let q > 0, y ∈ Z
d . We have∥∥∥∥ |X| q2f (Hω)EHω(I (δ0))χy

∥∥∥∥2

2

= tr
[
χyf (Hω)EHω(I (δ0))|X|qf (Hω)EHω(I (δ0))χy

]
(4.14)

≤
∑
x∈Zd

(|x| + 1)q tr
[
χyf (Hω)EHω(I (δ0))χxf (Hω)EHω(I (δ0))χy

]
=
∑
x∈Zd

(|x| + 1)q
∥∥χxf (Hω)EHω(I (δ0))χy

∥∥2
2 . (4.15)

Corollary 3.10 now follows from (3.7). !"

Remark 4.3. Note that we proved strong HS-dynamical localization, and hence strong
dynamical localization. without proving firstAnderson localization or resorting to centers
of localization (required in [29,14]). This is because of our better use of the Assumption
GEE (with Lemma 2.5), as in [28,30], and Assumption SGEE. However, once Ander-
son localization is proven, one can use more refined properties of orthonormal sets of
eigenfunctions as in [53], and bypass the explicit use of the generalized eigenfunctions
as well as the discussion in [14] with the centers of localization. Nevertheless we point
out that: 1) Assumption GEE is needed anyway to establish Anderson localization; 2)
the analysis in this paper (and [28,30]) shows thatPω(λ) enters the game in a natural
way.



Bootstrap Multiscale Analysis and Localization in Random Media 433

Proof of Theorem 3.11. The proof mimics the one in [29], taking into account the subex-
ponential decay of the probabilities of bad events. Givenε > 0, we pickζ , such that
ζ 2 < (1+ ε)−1 < ζ < 1 (always possible), and chooseα, 1 < α < ζ(1+ ε). (Note
α < ζ−1). Applying Theorem 3.4 yields a sequence of scales withLk+1 = [Lα

k ]6N,
k = 0,1, . . . , such that (3.4) holds. Following [29] and the notations therein, one de-
fines

Fk =
⋃

x0; |x0|≤exp

(
L
(1+ε)−1
k+1

)Ek(x0), (4.16)

whereEk(x0) is the complement of the event
⋃

x∈ALk+1(x0)
R(mζ , Lk, I (δ0), x0, x), and

ALk+1(x0) is an annulus as in [20,29] (ALk+1(x0) ≈ 0Lk+1(x0)\0Lk
(x0)). Using (3.4),

one estimates the probability ofFk as follows:

P(Fk) ≤ C Lα d
k exp(−Lζ

k + dL
α

1+ε
k ), (4.17)

whereC is a finite constant. Sinceα/(1+ ε) < ζ , the Borel-Cantelli Lemma applies,
and proceeding as in [29], it follows that for anyε > 0, there exists a massmε > 0, and
for a.e.ω there is a constantCε,ω <∞, such that, if we let{φn,ω}n∈N be the normalized
eigenfunctions ofHω with energies{En,ω}n∈N in I (δ0), there exist{xn,ω}n∈N, so for any
n ∈ N andx ∈ Z

d , we have (3.8).
For the sake of completeness we now show that it follows from GEE and (3.8) that

the centers of localization{xn,ω}n∈N can be reordered in such a way that|xn,ω| increases
with n and we have the lower bound (3.9). The spirit of the proof goes back to [18] (see
also [29,14]). GiveL > 0, if |xn,ω| ≤ L and|x| ≥ 2L, we have|x − xnω| ≥ |x|

3 + L
3 ,

and it follows from (3.8) that for a.e.ω,

‖χxφn,ω‖ ≤ Cε,ω e
−mε

(
L
3−(logL)1+ε

)
e−mε

|x|
3 ≤ Cε,ω e−mε

|x|
3 (4.18)

if L ≥ 3(logL)1+ε.Thus forLsufficiently large (depending onε andω), if |xn,ω| ≤ Lwe
have‖χ0,2Lφn,ω‖2 ≥ 1

2, so ifN(L) is the cardinal of the set{n, En,ω ∈ I (δ0), |xn,ω| ≤
L}, we conclude that

1

2
N(L) ≤

∑
n,En,ω∈I (δ0)

‖χ0,2Lφn,ω‖2 = ∥∥χ0,2LEHω(I (δ0))
∥∥2

2

≤ (1+ 4L2)2ν
∥∥∥T −1EHω(I (δ0))

∥∥∥2

2

= (1+ 4L2)2ν trH
(
T −1EHω(I (δ0))T

−1
)

= (1+ 4L2)2νµω (I (δ0)) ,

(4.19)

whereµω (I (δ0)) < ∞ for a.e.ω by (2.26) (recallEHω(I (δ0)) = EHω(I (δ0))P
⊥
Hω

). It
follows thatN(L) <∞ for all L > 0, so we may reorder the centersxn,ω in such a way
that |xn,ω| increases withn, so we haveN(|xn,ω|) ≥ n. Thus, with probability one, for
n large enough, depending onω (so that|xn,ω| ≥ 1), we have

n ≤ N(|xn,ω|) ≤ 2µω (I (δ0)) (1+ 4|xn,ω|2)2ν ≤ 2 52νµω (I (δ0)) |xn,ω|4ν, (4.20)

and the lower bound (3.9) follows.!"
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5. Multiscale Analyses

In this section we discuss the four multiscale analyses we will need for the bootstrap
multiscale analysis (i.e., for the proof of Theorem 3.4). They can be classified by either
the resulting estimate on the probabilities of bad events, or by the type of growth of
length scales. We will state them according to the first classification, and then present
the proofs conforming to the second.

5.1. Polynomially decaying probabilities. We use two multiscale analyses that yield
polynomially decaying probabilities for bad events.

Theorem 5.1 ([24, Lemma 36]). Let Hω be a random operator satisfying assumptions
SLI, IAD and W in some compact interval I0. LetE0 ∈ I0 and θ > bd. Given an odd inte-
ger Y ≥ 11, for any p with 0<p<θ−bd we can find Z=Z(d, :,QI0, γI0, b, θ, p, Y ),
such that if for some L0 > Z , L0 ∈ 6N, we have

P{0L0(0) is (θ, E0)-suitable} > 1− (3Y − 4)−2d , (5.1)

then, setting Lk+1 = YLk , k = 0,1,2, . . . , we have that

P{0Lk
(0) is (θ, E0)-suitable} ≥ 1− 1

L
p
k

(5.2)

for all k ≥ K, where K = K(p, Y, L0) <∞.

The value of Theorem 5.1 is that it requires a very weak starting hypothesis, in which
the probability of the bad event is independent of the scale, and its conclusion, in view
of Remark 3.3, gives the starting hypothesis of a modified form of the usual multiscale
analysis, as given in the following theorem. We stated Theorem 5.1 in a slightly different
form than in [24, Lemma 36]; it is adapted to our assumptions and definitions.

Theorem 5.2 ([24, Theorem 32]). Let Hω be a random operator satisfying assumptions
SLI, IAD, NE andW in some compact interval I0. LetE0 ∈ I0, θ > bd and 0 < p′ < p <

θ −bd. Then for 1 < α < 1+ p′
p′+2d , there is B = B(d, :,QI0, CI0, γI0, b, θ, p, p

′, α),
such that, if at some finite scale L0 ≥ B we verify that

P{0L0(0) is (2θ
logL0

L0
, E0)-regular} ≥ 1− 1

L
p
0

, (5.3)

then there exists δ1 = δ1(d, :,QI0, γI0, θ, p, p
′, α, L0) > 0, such that if we set I (δ1) =

[E0 − δ1, E0 + δ1] ∩ I0, m0 = 2θ logL0
L0

, and Lk+1 = [Lα
k ]6N, k = 0,1, . . . , we have

P{0Lk
(0) is (

m0

2
, E)-regular} ≥ 1− 1

L
p′
k

for all E ∈ I (δ1), (5.4)

and

P
[
R
(
m0
2 , Lk, I (δ1), x, y

)] ≥ 1− 1

L
2p′
k

for x, y ∈ Z
d , |x − y| > Lk + :, (5.5)

for all k = 0,1, . . . .
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Theorem 5.2 is quite close to the usual multiscale analysis result [20]. The crucial
difference is that Theorem 5.2 allows the mass to go to zero as the initial scaleL0 goes
to infinity, which may seem very surprising at first sight. Indeed, in the usual versions of
the MSA ( e.g., [26,27,19,20,9,45,38,29,52]), the masshas to be fixed first in order to
know how largeL0 has to be chosen. It turns out that one can handle a mass depending
on the scale, as in (5.3) above, i.e., a mass proportional to logL0/L0 [24, Theorem 32].
Thus the starting hypothesis (5.3) only requires the decay of the resolvent on finite boxes
to be polynomially small in the scale (see Remark 3.3), not exponentially small. Note
also that by using the SLI as in (2.14), so we only move between cells, we only need to

requirep > 0 as in [38], notp > d as in [20] (we need to consider only the
(
3L
7

)d
cells

that are cores of boxes of side7 inside the bigger box of sideL, instead ofLd boxes as
in [20]).

We will only need the weaker conclusion (5.4) for the bootstrap multiscale analysis;
we also stated (5.5) because it is the usual conclusion of this multiscale analysis.

Remark 5.3. In Theorem 5.2 the length scaleB is increasing inp′ ∈ (0, p), and the half-
interval lengthδ1 depends onp andp′. This should be compared with Theorem 3.4,
where the length scaleL and the half-interval lengthδ0, while depending onθ , are
independent of the parameters in the conclusion (3.4).

5.2. Sub-exponentially decaying probabilities. Previous multiscale analyses only
yielded polynomially decaying probabilities for bad events. We now provide new ver-
sions of two multiscale analyses that give sub-exponential decay for the probabilities of
bad events. We believe our method can yield any decay strictly slower than exponential.

Definition 5.4. Given ζ ∈ (0,1), E ∈ R, x ∈ Z
d , and L ∈ 6N, we say that the box

0L(x) is (ζ, E)-sub-exponentially-suitable, if E /∈ σ(Hx,L) and

‖3x,LRx,L(E)χx,L/3‖x,L ≤ e−Lζ

. (5.6)

Remark 5.5. A box 0L(x) is (ζ, E)-sub-exponentially-suitable if and only if it is
(2Lζ−1, E)-regular.

The multiscale analysis with multiplicative growth of length scales has the following
sub-exponential version (compare with Theorem 5.1).

Theorem 5.6.Let Hω be a random operator satisfying assumptions SLI, IAD and W in

some compact interval I0. LetE0 ∈ I0 and ζ0 ∈ (0,1). Given an odd integerY ≥ 11
1

1−ζ0 ,
for any ζ1 with 0 < ζ1 < ζ0 we can find Z = Z(d, :,QI0, γI0, b, ζ0, ζ1, Y ), such that
if for some L0 > Z , L0 ∈ 6N, we have

P{0L0(0) is (ζ0, E0)-sub-exponentially-suitable} > 1− (3Y − 4)−2d , (5.7)

then, setting Lk+1 = YLk , k = 0,1,2, . . . , we have that

P{0Lk
(0) is (ζ0, E0)-sub-exponentially-suitable} ≥ 1− e−L

ζ1
k (5.8)

for all k ≥ K, where K = K(ζ0, ζ1, Y, L0) <∞.
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The well known multiscale analysis with exponential growth of length scales has
the following sub-exponential version (compare with Theorem 5.2). In order to get sub-
exponential decay of probabilities, our proof allows the number of bad boxes to grow
with the scale.

Theorem 5.7.Let Hω be a random operator satisfying assumptions SLI, IAD, NE and
W in some compact interval I0. Let E0 ∈ I0, 0 < ζ2 < ζ1 < ζ0 < 1. Then for
1 < α < ζ0/ζ1, there is C = C(d, :,QI0, CI0, γI0, b, ζ0, ζ1, ζ2, α), such that, if at some
finite scale L0 ≥ C, L0 ∈ 6N, we verify that

P{0L0(0) is (2Lζ0−1
0 , E0)-regular} ≥ 1− e−L

ζ1
0 , (5.9)

then there exists δ2 = δ2(d, :,QI0, γI0, ζ0, ζ1, ζ2, α, L0) > 0such that, if we set I (δ2) =
[E0 − δ2, E0 + δ2] ∩ I0, m0 = 2Lζ0−1

0 , and Lk+1 = [Lα
k ]6N, k = 0,1, . . . , we have

P

[
R
(m0

4
, Lk, I (δ2), x, y

)]
≥ 1− e−L

ζ2
k (5.10)

for all k = 0,1,2, . . . and x, y ∈ Z
d with |x − y| > Lk + :.

We took m0
4 in (5.10) for convenience; we may take any massm′ = βm0 with

0 < β < 1, butC andδ2 will also depend onβ. Note also that we allow the massm0 in
the starting hypothesis (5.9) to decay with the scaleL0.

The equivalent to (5.4) holds in the context of Theorem 5.7, but it will not be needed.

5.3. Multiplicative growth of length scales: Proofs. We now prove Theorems 5.1 and
5.6, along the lines of [24, Proof of Lemma 36].

We start by introducing some notations to facilitate the simultaneous proof of both
theorems. For Theorem 5.1, we will say that a box is good if it is(θ, E0)-suitable. Pick
s such that

p + bd < s < θ, (5.11)

and set

qL = L−p, tL = L−s , uL = L−θ . (5.12)

For Theorem 5.6, we say that a box is good if it is(ζ0, E0)-sub-exponentially-suitable.
Pick ξ such that

ζ1 < ξ < ζ0, (5.13)

and set

qL = e−Lζ1
, tL = e−Lξ

, uL = e−Lζ0
. (5.14)

In both cases,uL is the decay of the finite volume resolvent we want to propagate,tL
or t−1

L is a control term to be used with Assumption W (the Wegner estimate), andqL
is the probability decay of a bad event we want to end up with. A box is bad if it is not
good. We setpL to be the probability of a bad box at scaleL, i.e.,

pL = P{0L(0) is bad}. (5.15)
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Note that the conclusions (5.2) and (5.8) may now be restated aspLk
≤ qLk

for k ≥ K.
The proof will proceed by induction. For the induction step, let7 ∈ 6N, 7 > 3:,

Y ∈ N odd, andL = Y7. Knowingp7, we will estimatepL.
We set

ML,7(x) = 0L(x) ∩ 7

3
Z
d ⊂ Z

d , ML,7 = ML,7(0), (5.16)

CL,7(x) = {07(y); y ∈ ML,7(x),07(y) � 0L(x)}, CL,7 = CL,7(0), (5.17)

M′L,7(x) = 0L(x) ∩ 7

6
Z
d ⊂ Z

d , M′L,7 = M′L,7(0). (5.18)

Note |ML,7| = (3Y )d , |M′L,7| = (6Y )d , ML,7 ⊂ M′L,7 . By a cell we will now mean

a closed box07/3(y) with y ∈ ML,7, thecore of the box07(y). ThusCL,7(x) is the
collection of boxes of side7 whose core is a cell and are inside the boundary beltϒ̃L(x)

of the big box0L(x); we have|CL,7| = (3Y −4)d . Note that the big box is divided into
cells:0L(0) =⋃

x∈ML,7
07/3(x).

The induction step proceeds as in [24, Lemma 36], it is based on the SLI, but only
boxes inCL,7 are allowed. The basic idea is that, if all boxes inCL,7 were good in scale7,
then it would follow from applying the SLI (2.14) repeatedly that the big box is also good
in scaleL. To obtain an improvement in the probability of having a good box, we need
to admit the possibility of the existence of bad boxes, to be controlled by Assumption
W, but we only need to allow for a fixed number of bad boxes [19,20].

One starts in a cell inside the core of the big box0L(0), i.e., in0L/3(0), apply the
SLI (2.14) repeatedly, and stops just before hitting the boundary belt. Each time the SLI
is performed with a good box of size7, one gains the small factoru7, and moves to an
adjacent cell (see Remark 2.2). Each time we must perform the SLI with a bad box, we
enlarge the box slightly, so the SLI moves us to the core of a good box, where we also
perform the SLI. The small factor from the latter SLI is used to control the bad factor
(estimated by (2.18)) coming from the former SLI (see (5.24) below).

To make this discussion rigorous, letS denote be the maximum number of:-
nonoverlapping bad boxes inCL,7 that we shall allow. Thus at mostS boxes, which
must be:-nonoverlapping, may be bad, out of a total of(3Y − 4)d boxes, and we will
control the probability of such an event. The bad boxes produce bad regions, such that
any box inCL,7 outside these bad regions must be good. If one has one bad box, then to
be sure that another box of size7 is:-nonoverlapping, it suffices to add to the bad box an
exterior belt of size 27/3 (recall7 > 3:), and consider boxes of size7with cores outside
this region. So the bad region will have size7+ 47/3= 77/3. If one hasj , j ≤ S, bad
boxes which are clustered in the worst possible way (their exterior belts of size 27/3 just
touch), then the size of the bad region will be 2(27/3)+j7+(j−1)47/3= 7j7/3. Note
that the bad region has center either inML,7, if j is odd, or inM′L,7, if j is even. Since
after using the SLI with a box07′ one ends upinside this box, on its boundary belt, we
shall use slightly bigger boxes of size7′ = 7j7/3+27/3= (7j +2)7/3, j ≤ S, so one
gets out of the bad region after executing this procedure. The bad regions are inside the
big box, so we require(7S + 2)7/3 < L, i.e.,

Y > (7S + 2)/3. (5.19)

Now let FL,7 denote the event that either there are at leastS + 1 :-nonoverlapping
bad boxes inCL,7, or dist(σ (Hx,7′ , E0)) ≤ tL for somex ∈ M′L,7 and7′ of the form
(7j + 2)7/3, with j = 1,2, · · · , S, or dist(σ (H0,L, E0)) ≤ tL. If β(Y, S + 1) denotes
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the number of possible choices ofS+1:-nonoverlapping boxes inCL,7, andS ≥ 1, we
have

β(Y, S + 1) ≤ (3Y − 4)d(S+1)

(S + 1)! ≤ 1

2
(3Y − 4)d(S+1). (5.20)

As in [24, Lemma 36], we will show that, forL andY large (in a sense to be specified
later),

{0L(0) is bad} ⊂ FL,7, (5.21)

so

pL ≤ P(FL,7) ≤ 1

2
(3Y − 4)d(S+1)pS+1

7 +
[
S(6Y )d + 1

]
QI0L

bdtL (5.22)

≤ 1

2
(3Y − 4)d(S+1)pS+1

7 + 1

2
qL, (5.23)

where we used (2.18) to obtain the last term in (5.22). To obtain (5.23), we takeL

large enough:L > Z1, for someZ1 = Z1(d,QI0, b, S, Y, p, s) for Theorem 5.1, and
Z1 = Z1(d,QI0, b, S, Y, ζ1, ξ) for Theorem 5.6.

To prove (5.21), note that if the eventFL,7 does not happen (i.e.,ω /∈ FL,7), we
can find:-nonoverlapping boxes07i , i = 1, . . . , r ≤ S, with 7i ∈ {7j7/3; j =
1,2, · · · , S}, and

∑r
i=1 7i ≤ 7S7/3, such that ifx ∈ ML,7, x /∈ ⋃r

i=107i , the box
07(x) is good. We control the “bad region”07i as follows: we apply the SLI (2.14)
twice as in [20, Lemma 4.2], first with the extended box07′i (7′i = 7i + 27/3), followed
by a good box inCL,7. We require that the product of these two factors gives rise to
a number strictly smaller than one, so that if one keeps visiting a bad region infinitely
often, it yields zero. In other words, taking into account thatω /∈ FL,7, we require

[γI0(7S + 2)d t−1
L ][γI03du7] < 1, (5.24)

which is true for7 large enough (how large depending onγI0, Y, S, and on eitherθ , s or
ζ0, ξ ). Thus repeated use of the SLI (2.14) yields

‖30,LR0,L(E0)χL/3‖0,L ≤
∑

x∈ML/3,7

‖30,LR0,L(E0)χx,7/3‖0,L

≤
(
L

7

)d
sup

x∈ML/3,7

‖30,LR0,L(E0)χx,7/3‖0,L

≤ Yd
[
γI03du7

]N(Y )

t−1
L ,

(5.25)

whereN(Y ) is the number of times we are able to perform the SLI on good boxes,
without using the result for the control of a “bad region” as in (5.24). (We cannot get
trapped in the bad regions; if we keep getting back to a bad region after performing
the SLI to control a bad region, the estimate (5.24) would drive the left-hand-side of
(5.25) to zero.) To estimateN(Y ), note that one goes from a cellinside the core of the
big box0L(0) to its boundary. Each time we perform the SLI on a good box inCL,7,
one moves to an adjacent cell. The last good box that can be used has its core cell two
cells away from the boundary of0L(0) (because of the boundary belt of size 3/2 of
the latter); the shortest (thus the worst for our purposes) possible way is then made of
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(L/3)/(7/3) − 1 = Y − 1 cells. In addition to that one has to subtract the number of
cells where one did not gain anything due to the bad regions, which is, in the worst case,
(7+ 1)S = 8S cells. We thus have

N(Y ) ≥ Y − 8S − 1. (5.26)

Thus for0L(0) to be good, it suffices, in view of (5.25), to require

Yd
[
γI03du7

]Y−8S−1
t−1
L ≤ uL, (5.27)

which is true if we fixY such that

Y − 8S − 1≥ 2 for Theorem 5.1,

Y − 8S − 1≥ 2Y ζ0 for Theorem 5.6,
(5.28)

and then take7 large enough, large enough depending onγI0, Y and on eitherθ , s or ζ0,
ξ . Thus (5.21) is proven.

So far we did not specify the value ofS. Roughly,S has to be large enough so that
the termpS+1

7 in (5.23) can be converted intopL. It turns out thatS = 1 is sufficient
for Theorem 5.1, as in [24, Proof of Lemma 36]. For Theorem 5.6 we takeS = [Y ζ0],
where[M] denotes the largest integer≤ M.

We now set

Y = 11 for Theorem 5.1,

Y = 11
1

1−ζ0 for Theorem 5.6.
(5.29)

We now requireY to be an odd integer such thatY ≥ Y, so with our choice ofS
conditions (5.19) and (5.28) are satisfied, and we require that7 is large enough to obtain
(5.27).

So if we pickL0 ≥ Z2, whereZ2 is chosen soZ2 ≥ Z1 and is large enough so
(5.27), and hence (5.21), holds, and setLk+1 = YLk, k = 0,1,2, · · · , pk = pLk

and
qk = qLk

, it follows from (5.23) that

pk+1 ≤ 1

2

(
(3Y − 4)dpk

)S+1 + 1

2
qk+1 for k = 0,1,2, . . . . (5.30)

We are now in position to finish the argument. Notice first that ifpk < qk, then(
(3Y − 4)dpk

)S+1 ≤ qk+1 for Z2 large enough (depending on the constantsY and on
p for Theorem 5.1,ζ0, ζ1 for Theorem 5.6). This is clear in the first case. In the second,
it comes from the choice ofS, which satisfiesS + 1 ≥ Y ζ0 > Yζ1. With this choice of
Z2, pk < qk leads to

pk+1 ≤ 1

2
qk+1 + 1

2
qk+1 = qk+1. (5.31)

It thus suffices to show thatpk < qk must occur at some scale. Supposepk+1 ≥ qk+1

for k = 0,1,2, . . . , n−1. It then follows from (5.30) that we have
(
(3Y − 4)dpk

)S+1 ≥
qk+1 for k = 0,1,2, . . . , n − 1, so, using again (5.30), we conclude thatpk+1 ≤(
(3Y − 4)dpk

)S+1
for k = 0,1, . . . , n− 1, obtaining

qn ≤ pn ≤ (3Y − 4)−
d(S+1)

S

(
(3Y − 4)

d(S+1)
S p0

)(S+1)n

. (5.32)
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We now requirep0 to be such that(3Y − 4)
d(S+1)

S p0 < 1. Note that in both cases

(3Y − 4)−
d(S+1)

S ≤ (3Y − 4)2d . (5.33)

Thus takingp0 so that

p0 < (3Y − 4)−2d , (5.34)

the right-hand side of (5.32) decays much faster thanqn, so we get a contradiction. This
is clear in the case of Theorem 5.1, whereqn decays exponentially inn. For Theorem 5.6,
we have

qn = exp
(
−(Y ζ1)nL

ζ1
0

)
, (5.35)

and the contradiction comes from having chosenS = [Y ζ0] andζ0 > ζ1. Thus there
must beK depending onY,L0, d, and on eitherp or ζ0, ζ1, sopk ≤ qk for all k ≥ K.

Theorems 5.1 and 5.6 are proven.!"

5.4. Exponential growth of length scales: Proofs. The proofs of Theorems 5.2 and 5.7
may be done simultaneously, as we did for Theorems 5.1 and 5.6. For simplicity, we will
only give the proof of Theorem 5.7, adapting the methods of [20] to get sub-exponential
decay of the probabilities of bad events, rather than the usual polynomial decay. The
modifications in the proof to obtain Theorem 5.2 will be apparent to the reader. (We
refer to [20] and [24, Theorem 32] for the proof of Theorem 5.2.)

We start by deriving from (5.9) the initial step of the inductive process, i.e., (5.10)
with k = 0, but with m0

2 substituted form0
4 . We recall 0< ζ2 < ζ1 < ζ0 < 1,

m0 = 2Lζ0−1
0 , and pickζ2 < ξ1 < ζ1. As in [20, p. 287], if0L0(0) is (m0, E0)-regular,

dist(σ (H0,L0), E0) > e−L
ξ1
0 , and we set

δ2 = δ2(m0, L0, ξ1) = e−2L
ξ1
0

2

[
e−

m0
2

L0
2 − e−m0

L0
2

]
, (5.36)

it follows from the resolvent identity that0L0(0) is (m0
2 , E)-regular for allE ∈ I (δ2) =

[E0 − δ2, E0 + δ2] ∩ I0. Thus, it is a consequence of (5.9) and (2.18) that

P{for everyE ∈ I (δ2), 0L0(0) is (
m0

2
, E)-regular} (5.37)

≥ 1− e−L
ζ1
0 −QI0L

bd
0 e−L

ξ1
0 ≥ 1− e−

1
2L

ζ2
0 ,

providedL0 is large enough (depending only on the parametersd, QI0, b, ζ1, ζ2, ξ1).
Combining with Assumption IAD, we get that

P
[
R
(
m0
2 , L0, I (δ2), x, y

)] ≥ 1− e−L
ζ2
0 (5.38)

for all x, y ∈ Z
d with |x − y| > L0 + :.

The theorem is now proven by induction.The induction step goes from scale7 ≥ L0 to
scaleL = [7α]6N, with 1< α < ζ0/ζ1.We assume that for some massm, m0

4 < m ≤ m0
2 ,

we have

P [R (m, 7, I (δ2), x, y)] ≥ 1− e−7ζ2 (5.39)
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for all x, y ∈ Z
d with |x − y| > Lk + :. We will show that, if7 is large enough (in a

sense to be specified), the same statement holds at scaleL with a new massm′, and we
will estimatem−m′.

We proceed as in the proof of Theorems 5.1 and 5.6; the basic idea is the same. But
in order to propagate such a strong decay of the bad probabilities as in (5.39), it does
not suffice to allow for afixed number of bad (i.e., non-regular) boxes of size7 inside a
bigger box0L(x) of sizeL. We must allow the number of bad boxes to grow with the
scale. We fixζ2 < ζ ′ < ζ1, and allow at most

S7 = 2[7(α−1)ζ ′ ] − 1 (5.40)

:-nonoverlapping bad boxes. That will produce, as in the proof of Theorems 5.1 and
5.6, bad regions07i , i = 1, . . . , r ≤ S7, with 7i ∈ {7j7/3, j = 1,2, · · · , S7}, with
centers inM′L,7(x) (see (5.18)). Note that

r∑
i=1

7i ≤ 14

3
71+(α−1)ζ1 < 57α−(α−1)(1−ζ1), (5.41)

and(α − 1)(1− ζ1) > 0, so the sum of the sizes of the bad regions grows slower than
7α.

The effect of the bad regions will be controlled as follows. We pickξ ,

ζ2 < ξ < ζ1,

and require that in a bad region of size7′i = 7i+27/3 we have dist(σ (H7′i ), E) > e−Lξ
,

so the corresponding resolvent will be estimated by a factor eLξ
. (The price we will

have to pay, in terms of probabilities, is then given by (2.18) in Assumption W, with
η = e−Lξ

.) By the same reasoning that lead us to (5.24) (we also specify7 > 3:), we
require

[γI0(7S7 + 2)deL
ξ ]
[
γI03de−

m
2 7
]
< 1. (5.42)

We have

[γI0(7S7 + 2)deL
ξ ]
[
γI03de−

m
2 7
]
= γ 2

I0
[3(7S7 + 2)]de7

αξ

e−
m
2 7 ≤ e

1
47

ζ0−m
2 7 (5.43)

for 7 (and thusL0) large enough, depending onγI0, d, α, ξ and ζ0 (but not onm0),
provided

αξ < ζ0, (5.44)

which is true since we pickedα <
ζ0
ζ1

. Moreover, recallingm0 = 2Lζ0−1
0 , we have

m >
m0

4
= 1

2
L
ζ0−1
0 ≥ 1

2
7ζ0−1, (5.45)

so (5.42) follows from (5.43).
Once we have (5.42), and assume dist(σ (H0,L), E) > e−Lξ

, the same argument used
to derive (5.25) leads to

‖30,LR0,L(E0)χL/3‖0,L ≤ 7d(α−1)
[
3dγI0e−

m
2 7
]N7

eL
ξ

, (5.46)
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whereN7 is the number of times we are guaranteed to be able to perform the SLI on good
boxes, without using the result for the control of a “bad region” as in (5.42). Similarly
to (5.26), we have

N7 ≥ L

7
− 8S7 − 1≥ L

7

(
1− 327(α−1)(ζ ′−1)

)
, (5.47)

if, say7 ≥ 12 (so 1− 67−α ≥ 1/2; recallL = [7α]6N ≥ 7α − 6). Thus

‖30,LR0,L(E0)χL/3‖0,L ≤ e−m′
L
2 , (5.48)

with, usingL ≥ 7α − 6 and (5.45),

m′ ≥ m
(
1− 327(α−1)(ζ ′−1)

)
− 2

[
(α − 1)d log7

7α − 6
+ log(3dγI0)

7
+ 1

(7α − 6)1−ξ

]
≥ m

{
1− 327(α−1)(ζ ′−1) − 4

7ζ0

[
(α − 1)d 7 log7

7α − 6
+ log(3dγI0)+

7

(7α − 6)1−ξ

]}
≥ m

(
1− C

7τ

)
, (5.49)

for some finite constantC = C(d, γI0, α) > 0 and

τ = min{ζ0, (α − 1)(1− ζ ′), ζ0 − (α(ξ − 1)+ 1)} > 0 ; (5.50)

noteζ0 − (α(ξ − 1)+ 1) = α − 1+ ζ0 − αξ > 0 by (5.44).
We still need to assure thatm0

4 < m′ ≤ m0
2 . This cannot be done in a single induction

step, because we would need to take7 large depending onm. But we can do it in a
way that applies to all inductive steps. GivenL0 large enough for the inductive step,
1 < α < ζ1/ζ0, we construct the sequence of length scalesLk+1 = Lα

k , k = 0,1, . . . .
Applying the inductive step from scaleLk to scaleLk+1, we obtain a decreasing sequence
of massesm′

k, with m′
0 = m0

2 , satisfying (5.48) and (5.49) at scaleLk. We then have

0 ≤
+∞∑
k=0

(m′
k −m′

k+1) ≤
m0

2

+∞∑
k=0

C

Lτ
k

<
m0

4
, (5.51)

providedL0 is large enough, depending ond, γI0, α, ζ0, ζ
′, ξ , but not onm0. (Note that

the fact that how largeL0 has to be is independent ofm0, possible in view of (5.45) and
(5.49), is quite important, since in (5.9) we havem0 = 2Lζ0−1

0 .) It follows that

m0

4
< m′

k ≤
m0

2
, k = 0,1,2, . . . . (5.52)

We now turn to the probability estimates of the inductive step; here we follow [20,
Lemma 4.1]. To apply the just discussed deterministic argument in a given box0L(x),
for a fixed energyE ∈ I0, it suffices to require:

(i) dist(σ (H0,L), E)) > e−Lξ
.

(ii) dist(σ (Hy,7′), E)) > e−Lξ
for all 7′ ∈ {(7j + 2)7/3, j = 1,2, · · · , S7} and

y ∈ M′L,7(x).
(iii) There are at mostS7 :-nonoverlapping bad boxes inCL,7(x).
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It follows that

P
[
R
(
m′, L, I (δ2), x, y

)] ≥
P
[
for anyE ∈ I (δ2), (i), (ii) and (iii) hold for either0L(x) or0L(y)

]
.

(5.53)

Thus, to complete the inductive step, it suffices to show that the the right-hand-side of
(5.53) is bigger than 1− e−Lζ2 for anyx, y ∈ Z

d with |x − y| > L+ :.
Let Ĩ0 ⊃ I0 be the open interval inAssumptions NE and W, and letσ̃ (A) = σ(A)∩ Ĩ0

for any operatorA. If 071(x1) and072(x2) are:-nonoverlapping boxes, then it follows
from Assumptions IAD, NE and W that

P
[
dist

(
σ̃ (Hx1,71), σ̃ (Hx2,72)

) ≤ η
] ≤ CI0QI0η7

d
17

bd
2 , (5.54)

by the same argument as in [20, p. 293], using (2.18) and (2.17) (see [29] for an argument
using (2.19)). Thus, if we fixx, y ∈ Z

d with |x − y| > L+ :, we have

P
[
dist(σ̃ (Hx1,71), σ̃ (Hx2,72)) ≤ 2e−Lξ

for some

x1 ∈ M′L,7(x), x2 ∈ M′L,7(y), 71, 72 ∈ {L, (7j + 2)7/3, j = 1,2, · · · , S7}
]

≤ 2CI0QI0(S7 + 1)2
(

6L

7

)2d

L(b+1)de−Lξ

≤ 8 · 36dCI0QI07
(α−1)(ζ ′+2d)+(b+1)αde−Lξ ≤ 1

2
e−Lζ2

,

(5.55)

for 7 sufficiently large, depending ond, CI0,QI0, b, ζ2, α, ζ
′, ξ .

Now, letE ∈ I (δ2), and suppose there existx1 ∈ M′L,7(x),71 ∈ {L, (7j+2)7/3, j =
1,2, · · · , S7}, with dist(σ (Hx1,71), E)) ≤ e−Lξ

. If L is large enough, depending only on

Ĩ0\I0, we must also have dist(σ̃ (Hx1,71), E)) ≤ e−Lξ
. If the event whose probability is

estimated in (5.55) does not occur, we must have dist(σ̃ (Hx2,72), E) > e−Lξ
, and hence

also dist(σ (Hx2,72), E) > e−Lξ
, for all x2 ∈ M′L,7(y) and72 ∈ {L, (7j + 2)7/3, j =

1,2, · · · , S7}. Since we can interchangex andy in this argument, we can conclude that
if 7 is large enough,

P
[
for anyE ∈ I (δ2), (i) and (ii) hold for either0L(x) or0L(y)

]
≥ 1− 1

2e−Lζ2
. (5.56)

On the other hand, since we choseS7 to be an odd integer, and using Assumption
IAD, we have

P
[
for someE ∈ I (δ2) there are at leastS7 + 1 :-nonoverlapping

bad boxes inCL,7(0)
]

≤ P
[
for someE ∈ I (δ2) there are at least two:-nonoverlapping

bad boxes inCL,7(0)
] S7+1

2

≤
[(

3L

7

)2d

e−7ζ2
] S7+1

2

≤
[
9d72(α−1)de−7ζ2

][7(α−1)ζ ′ ]
(5.57)

≤ 1
4e−Lζ2

, (5.58)
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where we used the induction hypothesis (5.39) to get (5.57). The final estimate (5.58)
holds for7 sufficiently large, depending ond, ζ2, α, ζ

′, sinceζ2 + (α − 1)ζ ′ > αζ2 as
ζ ′ > ζ2. We can thus conclude that

P [for someE ∈ I (δ2), (iii) does not hold for either0L(x) or0L(y)]

≤ 1
2e−Lζ2

. (5.59)

Combining (5.53), (5.56) and (5.59), we get that

P
[
R
(
m′, L, I (δ2), x, y

)] ≥ 1− e−Lζ2
, (5.60)

for 7 sufficiently large, the desired result.
Thus, ifL0 is large enough, how large depending only on the parametersd, :,QI0,

CI0, γI0, b, ζ0, ζ1, ζ2, α, we construct the sequence of length scalesLk+1 = Lα
k , k =

0,1, . . . , and we may apply the inductive step from scaleLk to scaleLk+1, starting from
(5.38) fork = 0, obtaining (5.60) withL = Lk andm′ = m′

k, and hence, using (5.52),
the conclusion (5.10) for allk = 0,1,2, . . . .

This finishes the proof of Theorem 5.7.!"

6. Bootstrap Multiscale Analysis

We now prove Theorem 3.4. This will be done by a bootstrapping argument, making
successive use of Theorems 5.1, 5.2, 5.6, and 5.7.

We start by giving an outline of the proof:

Prologue: Under the hypotheses of Theorem 3.4, we note that hypothesis (5.1) of The-
orem 5.1 is the same as hypothesis (3.3) for appropriate choices of the parameters.

Act 1: We apply Theorem 5.1, obtaining a sequence of length scales satisfying conclu-
sion (5.2), with its polynomial decay estimate of the probability of bad events.

Act 2: In view of Remark 3.3, it follows that hypothesis (5.3) of Theorem 5.2 is now
satisfied at suitably large scale. (We have bootstrapped from hypothesis (3.3) to
hypothesis (5.3)!). Thus we can apply Theorem 5.2 with appropriate parameters,
gettingδ1 > 0 and a sequence of length scales satisfying conclusion (5.4) for all
E ∈ I (δ1). We setδ0 = δ1.

Act 3: We fix ζ andα as in Theorem 3.4, and pickζ0, ζ1, ζ2 such that 0< ζ < ζ2 <

ζ1 < ζ0 < 1 < α < ζ0ζ
−1
1 < ζ−1

2 < ζ−1. We note that we have bootstrapped
again: hypothesis (5.7) of Theorem 5.6 is satisfied at all energiesE ∈ I (δ0) at
appropriately large scale (the same for allE). Applying Theorem 5.6, we obtain a
sequence of length scales for which conclusion (5.8) holds for allE ∈ I (δ0), with
its sub-exponential decay estimate of the probability of bad events.

Act 4: Using Remark 5.5, we can see that we have bootstrapped to Theorem 5.7: for
any 0< ζ2 < ζ1 < ζ0 < 1, hypothesis (5.9) is satisfied at all energiesE ∈ I (δ1)

at sufficiently large scale (depending onζ0, ζ1, ζ2 but independent ofE). We apply
Theorem 5.7, obtainingδ2 > 0 and an exponentially growing sequence of length
scales, depending onζ0, ζ1, ζ2, but independent ofE, such that conclusion (5.10)
holds for allE ∈ I (δ1).

Epilogue: We have constructed in Act 4 a sequence of length scales for which (5.10)
holds for allE ∈ I (δ0). Since the intervalI (δ0) (which is independent ofζ ) can be
covered by[ δ0

δ2
]+1 closed intervals of lengthδ2, we note that the desired conclusion
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(3.4) now follows from (5.10), at the energies that are the centers of the[ δ1
δ2
] + 1

covering intervals, if we takeL0 appropriately large.

We now give the detailed proof of Theorem 3.4: Givenθ > bd, we pickp, 0 <

p < θ − bd; to fixate ideas we takep = θ−bd
2 . We chooseY = 11, and letZ =

Z(d, :,QI0, γI0, b, θ, p, Y = 11) be as in Theorem 5.1. We take

L = L(d, :,QI0, γI0, b, θ) = Z,

and note that hypothesis (5.1) of Theorem 5.1 is now the same as hypothesis (3.3) with
L0 = L and(3Y − 4)2d = 841d .

We now fixE0 ∈ I0 and assume (3.3) for thisE0 with L > L. We setL(1)
0 = L, and

define a sequence of length scalesL
(1)
k by L

(1)
k+1 = YL

(1)
k , k = 0,1,2, . . . . We apply

Theorem 5.1, and conclude that (5.2) holds for these length scales for allk ≥ K(1) =
K(1)(d, γI0, b, θ,L). In view of Remark 3.3, we have that

P

{
0
L
(1)
k

(0) is

(
2θ

logL(1)
k

L
(1)
k

, E0

)
-regular

}
≥ 1− 1(

L
(1)
k

)p (6.1)

for all k ≥ K(1).
Note that we have bootstrapped to hypothesis (5.3) of Theorem 5.2, since (6.1) is

the same as (5.3) at scaleL(1)
k . We takep′ = θ−bd

4 andα1 = 1+ p′
2(p′+2d) , and take

B = B(d, :,QI0, CI0, γI0, b, θ, p, p
′, α1) as in Theorem 5.2. Lettingk1 be the smallest

k ≥ K(1) such thatL(1)
k > B, we define length scalesL(2)

0 = L
(1)
k1

,L(2)
k+1 =

[(
L
(2)
k

)α1
]

6N

for k = 0,1,2, . . . . We apply Theorem 5.2 withL0 = L
(2)
0 in (5.3), and conclude that

(5.4) holds for these length scales withδ1 = δ1(d, :,QI0, γI0, θ, p, p
′, α1, L

(2)
0 ) > 0.

Letting

δ0 = δ0(d, :,QI0, CI0, γI0, θ,L) = δ1(d, :,QI0, γI0, θ, p, p
′, α1, L

(2)
0 ) > 0, (6.2)

we proved that for allk = 0,1,2, . . . we have

P{0
L
(2)
k

(0) is (m1, E)-regular} ≥ 1− 1(
L
(2)
k

)p′ for all E ∈ I (δ0), (6.3)

with I (δ0) = (E0 − δ0, E0 + δ0) ∩ I0 andm1 = θ
logL(2)

0

L
(2)
0

.

Now let us fixζ andα as in Theorem 3.4, so 0< ζ < 1 < α < ζ−1. To be definite,
we take

ζ2 =
√
ζα−1, ζ1 =

√
ζ2α−1, ζ0 =

√
ζ1α, (6.4)

so we have

0 < ζ < ζ2 < ζ1 < ζ0 < 1 < α < ζ0ζ
−1
1 < ζ−1

2 < ζ−1. (6.5)
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Next, we apply Theorem 5.6. To do so, letY1 be the first odd integer bigger than 11
1

1−ζ0

and letZ1 = Z(d, :,QI0, γI0, b, ζ0, ζ1, Y1) be as in Theorem 5.6. LetL(3)
0 = L

(2)
k2

,
wherek2 is the smallest integerk such that:

L
(2)
k > Z1,

(
L
(2)
k

)p′
> (3Y1 − 4)2d , 2

(
L
(2)
k

)ζ0−1
< m1. (6.6)

Then, recalling Remark 5.5, it follows from (6.3) that for allE ∈ I (δ0) we have

P{0
L
(3)
0
(0) is (ζ0, E)-sub-exponentially-suitable} > 1− (3Y1 − 4)−2d , (6.7)

and we have bootstrapped to hypothesis (5.7) of Theorem 5.6 for allE ∈ I (δ0), uni-
formly in E ∈ I (δ0). We now setL(3)

k+1 = Y1L
(3)
k , k = 0,1,2, . . . , so it follows from

Theorem 5.6 that for allE ∈ I (δ0),

P{0
L
(3)
k

(0) is (ζ0, E)-sub-exponentially-suitable} ≥ 1− e
−
(
L
(3)
k

)ζ1
(6.8)

for all k ≥ K(3), whereK(3) = K(ζ1, Y1, L
(3)
0 ) <∞.

To complete our final bootstrap, we use Remark 5.5 to rewrite (6.8) as

P

{
0
L
(3)
k

(0) is

(
2
(
L
(3)
k

)ζ0−1
, E

)
-regular

}
≥ 1− e

−
(
L
(3)
k

)ζ1
(6.9)

for all E ∈ I (δ0) andk ≥ K(3). Note that (6.9) is just a hypothesis (5.9) of Theorem 5.7
at scaleL(3)

k for eachE ∈ I (δ0). Thus we setL(4)
0 = L

(3)
k3

, wherek3 is the smallest

integerk ≥ K(3) such thatL(3)
k > C, where the constant

C = C(d, :,QI0, CI0, γI0, b, ζ0, ζ1, ζ2, α)

is as in Theorem 5.7, with the parameters from (6.4). Note the crucial fact thatL
(4)
0 is

the same for allE ∈ I (δ0). Theorem 5.7 provides us with

δ2 = δ2(d, :,QI0, γI0, ζ0, ζ1, ζ2, α, L
(4)
0 ) > 0,

so, settingI (δ2, E) = [E − δ2, E + δ2] ∩ I0, mζ = 1
2(L

(4)
0 )ζ0−1, andL

(4)
k+1 =[(

L
(4)
k

)α]
6N

, k = 0,1, . . . , we have

P

[
R
(
mζ ,L

(4)
k , I (δ2, E), x, y

)]
≥ 1− e

−
(
L
(4)
k

)ζ2
(6.10)

for all E ∈ I (δ0), k = 0,1,2, . . . , andx, y ∈ Z
d with |x − y| > L

(4)
k + :. SinceI (δ0)

can be covered by intervalsI (δ2, Ei), i = 1,2, . . . , [ δ0
δ2
] + 1, with eachEi ∈ I (δ0), we

can conclude from (6.10) that

P

[
R
(
mζ ,L

(4)
k , I (δ0), x, y

)]
≥ 1−

(
[ δ0
δ2
] + 1

)
e
−
(
L
(4)
k

)ζ2

≥ 1− e
−
(
L
(4)
k

)ζ
,

(6.11)
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for all x, y ∈ Z
d with |x − y| > L

(4)
k + :, andk ≥ k4, wherek4 is the smallestk such

that the last inequality in (6.11) holds. NoteL(4)
k4

depends only onδ0, δ2, α, L
(4)
0 , ζ, ζ2,

and hence only ond, :,QI0, CI0, γI0, θ, ζ, α,L. To conclude the proof of Theorem 3.4,
we setL0 = L

(4)
k4

, soLk = L
(4)
k4+k, k = 0,1, . . . , and note that (3.4) now follows from

(6.11).
The proof of Theorem 3.4 is complete.!"
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