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Abstract: We introduce an enhanced multiscale analysis that yields subexponentially
decaying probabilities fdrad events. For quantum and classical waves in random media,
we obtain exponential decay for the resolvent of the corresponding random operators

in boxes of sidel. with probability higher than - eL°, forany 0 < ¢ < 1. The
starting hypothesis for the enhanced multiscale analysis only requires the verification
of polynomial decay of the finite volume resolvent, at some sufficiently large scale,
with probability bigger than 1- 84% (d is the dimension). Note that from the same
starting hypothesis we get conclusions that are valid for aay:0< 1. Thisis achieved

by the repeated use of a bootstrap argument. As an application, we use a generalized
eigenfunction expansion to obtain strong dynamical localization of any order in the
Hilbert—Schmidt norm, and better estimates on the behavior of the eigenfunctions.

1. Introduction

Quantum and classical waves may be described by first or second order differential
equations on a Hilbert spad¢ = LZ(R?, dx; C"). Quantum waves are described by
the Schrodinger equation:

iy = Hy, 1.1

while classical waves may be described by a second order wave equation with an auxiliary
condition:

92 .
ﬁ‘”’ = —Hy,, with ¥, = P, (1.2)
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In both casedd is a self-adjoint operator oK ; for the wave equation we havé > 0
and Pﬁ is the orthogonal projection on the orthogonal complement of the kerrfél of
Finite energy solutions of the first order equation (1.1) are of the form

v =e "o, ¢oe, (1.3)

inasmuch as finite energy solutions of the second order equation (1.2) are given by
- cos(m/ﬁ) Pjr¢o + sin (tx/ﬁ) Pino,  o.mo € H. (1.4)

Inthis article we discuss questions concerning localization of waves in random media.
A random medium will be modeled byZf-ergodic random self-adjoint operat#i,,
wherew belongs to a probability se® with a probability measur® (e.g., [37,33,9,
24,25,43,12)]). In this article such H,, will be simply called arandom operator. It
follows from ergodicity that there exists a nonrandom3gsuch that- (H,,) = = with
probability one, where (A) denotes the spectrum of the operatorin addition, the
decomposition of (H,,) into pure point spectrum, absolutely continuous spectrum, and
singular continuous spectrum is also independent of the choiaevath probability
one [37,49,8,13].

As an example one can consider the potential

Vo) = D hi@u(x — i), (1.5)

ieZd

whereu is a bounded nonnegative function with compact support, an@htie)}; .«

are independent, identically distributed random variables (e.g., [33,9,45,38,39,52]).
The random Schrodinger operator is givenBy = —A + yV,,(x) (plus possibly a
bounded periodic potential [45, 38]). The parameteneasures the amount of disorder.

For classical waves, examples include Maxwell's equations, and the equations of
acoustics and elasticity, where the random Schrddinger-like operators in (1.2) are of the
form H,, = A} A, with A,, = /R, D+/S,, WhereD is a first order partial differential
operator with constant coefficients, aRg, S, are strictly positive matrix valued func-
tions of the formYo(x)(1 + ¥ V,,(x))*1, with Yo(x) a periodic matrix valued function,
not necessarily smooth, ang,(x) as in (1.5) [24,25,43,12].

In this paper we restrict ourselves to continuum models. There is a vast literature on
the Anderson model and other discrete random operators, e.g., [46,26,27,20,7,13,8,2,
1,3,22,23,41,16,55]. Our methods and results also apply to discrete random operators,
with the obvious modifications.

The main achievement of this paper is an enhanced multiscale analy&igotsteap
multiscale analysis, which is stated in Theorem 3.4. In this context the multiscale anal-
ysis (MSA) is a technique, initially developed in [26,27] and simplified in [19,20] (see
also [21,40]), for the purpose of proving Anderson localization (pure point spectrum and
exponential decay of eigenfunctions). It was later shown to also yield dynamical local-
ization (non spreading of the wave packets) [29], and more recently strong dynamical
localization (dynamical localization not only with probability one, but in expectation)
up to some order [14]. Our enhancement yields strong dynamical localization up to any
order. In fact, it yields more: strong dynamical localization in the Hilbert—Schmidt norm.
The usual multiscale analyses, based on von Dreifus and Klein [20], give exponential
decay of the resolvent on big boxes with sile ” oo, with probability close to 1

up to a polynomially small correction ih; (i.e.,> 1 — Lk_” for a fixedp > 0). In
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comparison, the bootstrap multiscale analysis we present here in Theorem 3.4 requires
less in the starting hypotheses, and yields far better probability estimates. In fact, it gives
any desired sub-exponential decay for the probabilitidmdfevents. An important new
feature of the enhanced MSA is that the final probability estimates are independent of
the probability estimate in the starting hypothesis. This is achieved by a repeated use of
a bootstrap argument. Thus one may look for the weakest possible starting hypothesis
without affecting the resulting probability estimates.

An important consequence of this bootstrap MSA is given in Theorem 3.8, which
we paraphrase as follows. For a large class of random operators, if the bootstrap MSA
starting hypothesis holds at a fixed enefgy(Eo > 0 for Eq. (1.2)), then there exists
8o > 0, such that, defining(sp) = (Eo — 8o, Eo + 30), one has

E (l.:flup1 | xx £ (Ho)En, (1(80) xy ||§) < Ceeh ol (1.6)
forany 0 < ¢ < 1, whereC; is some finite constant depending only pand on the
parameters of the probleny,( stands for the characteristic function of a box of side
1 centered at; the supremum is taken over Borel functiofi®f a real variable, with

I £l =supegr | f(®; En, () denotes the spectral projection of the opera&gr || B2
denotes the Hilbert—-Schmidt norm of the opera®)rlt follows from (1.6), by a fairly
straightforward calculation, that for any bounded regiband allg > 0 we have

E ( sup
/=<1

in which case we will say that the corresponding wave equation (either (1.1) or (1.2))
exhibitsstrong HS-dynamical localization in the energy interval (§p). An immediate
consequence srong dynamical localization, meaning that for any finite energy solution

Yy (as in either (1.3) or (1.4)), we have

q 2
‘|X|Zf(Hw)EHw(I((SO))XQ”2> <00, L7

E <s?pH |X|%Eyw(1(50)) Vi

2) <0 (1.8)

for anyg > 0 and Cauchy data (eithep € H or ¢o, no € H) with compact support. (It
actually follows from (1.6) that it suffices to have Cauchy data that decays faster than any
polynomial in theL?-sense, i.e., the locdl?>-norms decay faster than any polynomial.)

An application of the results of this paper (the bootstrap multiscale analysis and
its application to strong HS-dynamical localization) can be found in [32], where we
show a discontinuity of the transport properties of the random media at the Anderson
metal-insulator transition (if there is one).

Classical waves may be described by first order Schrddinger-like equations of the
same form as (1.1), where the self-adjoint operatds a first order partial differential
operator (see [42]); e.g., Maxwell equations. Such an equation yields two second order
wave equations of the form (1.2). It turns out that the bootstrap MSA for one of these
second order equations implies the estimate (1.6), and hence also (1.7) and (1.8), for the
first order classical wave equation, as well as for the other second order wave equation
(see [43]).

Dynamical localization is a term commonly used for the almost sure version of (1.8),
ie.,

2
supH X2 Eq, (150) | < o0 forae. (1.9)
t
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It was proven in [29] in the context of this paper (the proof is given for Schrodinger
operators, but it is also applicable to classical waves). Dynamical localization implies
pure point spectrum by the RAGE Theorem (e.g., the argument in [13, Theorem 9.21]),
but the converse is not true. Dynamical localization is actually a strictly stronger notion
than pure point spectrum, since the latter can take place whereas a quasi-ballistic motion
is observed [18]. The question “what is localization?” has been raised in [17] and the
last decade has seen many contributions to this subject matter [18,29, 28, 3,53].

In the discrete case, the first results on dynamical localization are due to Jona-Lasinio,
Martinelli and Scoppola [35] for a hierarchical model, and to Martinelli and Scoppola
[47] for the Anderson model. For the latter, with a bounded, absolutely continuous
probability distribution for the single site potential, the Aizenman—Molchanov approach
[1,3] gives strong dynamical localization (in fact, it gives exponential decay in (1.6)).
But where the Aizenman—Molchanov approach does not apply (e.g., random operators
on the continuum, the Anderson model with a Bernoulli potential in one dimension),
dynamical localization has been harder to prove.

In the continuum the first results were obtained by Holden and Martinelli [33], who
proved subdiffusive motion for random Schrddinger operators (for the time averaged
second moment). Recently, Barbaroux et al. [5] showed the absence of diffusion for the
time averaged second moment.

The search for a proof of dynamical localization in the continuum ended when Ger-
minet and De Biévre [29] proved (almost sure) dynamical localization whenever the
MSA applied. More recently, Damanik and Stollman [14] extended the analysis in [29]
to prove partial strong dynamical localization. In fact, they proved partial strong operator-
dynamical localization. The partial refers to the fact that they obtain (1.8) and (1.10) for
all ¢ < qo, for somegg < oo that depends on the parameters of the problem - the disor-
der, the energy interval where the result takes place, etc. By strong operator-dynamical
localization on an interval we mean (compare with (1.7))

E ( sup
/=<1

We note that they < ¢o limitation comes from the fact that they only had at their
disposal the usual MSA. Theorem 3.4 below is sufficient to push their analysis to full
strong operator-dynamical localization, i.e., (1.10) foiga# 0.

Inthis article we propose an alternative, and quite natural, way to get strong dynamical
localization (see also [30]), which yields strong HS-dynamical localization. As in [28],
our method uses a generalized eigenfunction expansion (see Sect. 2.3) to exploit the
fruits of the bootstrap MSA, instead of resorting to centers of localization as in [29, 14].
(See Remark 4.3.)

Let us give an idea of our enhancement of the multiscale analysis. Roughly, the
usual MSA works as follows: fiy > 0 and a mass: > 0. In a way, the parameter
determines how good the final result will be. A bax (x) is said to be regular at an
energyE if the resolvent on that boxXR 5, (»), Sandwiched between the center of the box
and its boundary, is smaller than”./2 (see Sect. 2.1 and Definition 3.2):

\|X|‘5f(Hw>EHw<1>xQH> < o0, (110)

L
||Fx,LRx,L(E)Xx,L/3”x,L =< ez, (1-11)

The basic result of the usual MSA is to provide an energy intdrga) and a sequence
of scalesL; ' oo, such that the probability of getting regular boxes at the sEtalat
energiesE € I(p) is greater than + L,:” (for precise statements we refer the reader
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to Sects. 3 and 5.1). But this process can only take place once the first step (starting
hypothesis) is proven to hold. To achieve the first step, typically one has to work at
either the edge of a gap in the spectrum, or at high disorder, or at low energy. The point
is that the parameters of the operator (disorder, energy) are fixed depending op

to satisfy this starting hypothesis. As a consequence, in the usual M$A-aso, then

either:

(i) atthe edge of agap in the spectrum, the intelé@) where localization holds will
shrink to nothing;

(ii) to obtain localization in a specified interval, the required disonsdet y (p) in-
creases too;

(iii) atlow energy, the energy at which we see localization diverges.

If one is interested in the decay of the kernel of the semigeoufi~’ as in (1.6), then

this link between the rate of decay of the probability and the region in the diagram energy
x disorder where the conclusions hold is unfortunate, and limits the scope of the result
that can be obtained. More precisely, in that context the usual MSA can only provide
results of the type:

(i) atthe edge of a gap in the spectrum (fixed disogdethere exists an intervdk p),
shrinking to nothing ap — oo, and a finite constant,, so that

C
E xf (Ho)En, (I < —F— 1.12
<|?L|‘<pl [ f (Ho) En, ( <p>)xy||> S R E—T (1.12)

(ii) in pre-specified interval, there exist/ (p) — oo asp — oo, so thatify > y(p),
(1.12) holds or;

(iii) atlow energy, there exist8,, — oo asp — oo, such that (1.12) holds on compact
intervals! C (—oo, —E)), and, in the discrete case, alsdit- (E,, c0). These
should be compared to (1.6) above, where the desired decay does not affect the
starting hypothesis.

In this article we show that once the MSA is performed for pnthen by a bootstrap
argument it can be done fany p’, on thesameinterval (p) and with thesame disorder
(and of course for the same starting hypothesis). Since this in turn means that the starting
hypothesis does not affect the strength of the conclusions, another way to take advantage
of this new possibility is to start with the weakest possible starting hypothesis. In a
companion paper [31] we shall explore this fact in more detail and, in particular, propose
afinite volume criterion that may be implemented numerically. We notice that this type of
finite volume criterion is fairly close to results obtained recently in [3], a paper that deals
with the discrete setting. Moreover in [3] polynomial decay (of the averaged fractional
resolvent) is shown to imply exponential decay. Here, if polynomial decay holds, then
any sub-exponential decay follows.

To perform the bootstrap MSA we take advantage of two kinds of multiscale analyses:
one where length scales grow by multiplication by a fixed fadt@t:y = Y Lg, Y > 1,
and another with exponentially growing length scaleg;1 = L}, @ > 1. Previous
proofs yielded only a pre-fixed polynomial decay of the probabilities of bad events

(i.e., Li, for a pre-fixedp > 0). In this context, the MSA with exponential growth of

Iengthkscales is well known; it was put in the present form by von Dreifus [19] and von
Dreifus and Klein [20], simplifying the work of Frohlich and Spencer [26] and Frohlich,
Martinelli, Scoppola and Spencer [27]. The MSA with multiplicative growth of length
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scales is less well known and was developed by Figotin and Klein in [24, 25], using ideas
of Spencer[51], toimprove the starting hypothesis of the MSA, and thereby to weaken the
hypotheses of their theorems. We extend both types of multiscale analyses to obtain sub-

exponential decay of the probabilities of bad events (i.‘eL.g dorall0 < ¢ < 1).Anew
ingredient in our extension of the MSA with exponentially growing length scales is that
we allow the number of bad boxes to grow with the scale. (The bad boxes are controlled by
aWegner estimate in the usual way.) All these multiscale analyses have differing starting
hypotheses, the weakest belonging to the Figotin and Klein MSA, which only requires
that at some sufficiently large scale we can verify polynomial decay of the finite volume
resolvent with some minimal probability, independent of the scale. (In this article we
show that a probability bigger than—lmild suffices.) Itis by successively performing the
four multiscale analyses, feeding the results of one into the next, thus dbougstrap
multiscale analysis, that we are able to go from the weakest starting hypothesis to the
strongest conclusions. Combining the results of this bootstrap multiscale analysis with
the generalized eigenfunction expansion leads to (1.6).

The paperis organized as follows. In Sect. 2 we present, as assumptions, the properties
of the random operataf,, that are required for the multiscale analysis and its applica-
tions. In Sect. 3 we state the main results of this paper, namebotitstrap multiscale
analysis (Theorem 3.4), and its application to various manifestations of localization:
sub-exponential decay of the kernel ofH,,) (Theorem 3.8), strong HS-dynamical lo-
calization (Corollary 3.10), and a SULE property (Theorem 3.11). In Sect. 4 we assume
Theorem 3.4 and prove Theorem 3.8, Corollary 3.10 and Theorem 3.11. In Sect. 5 we
discuss the four multiscale analyses (Theorems 5.1, 5.2, 5.6, and 5.7) that are used in
the bootstrap multiscale analysis. In Sect. 6 we prove Theorem 3.4.

2. Requirements of the Multiscale Analysis
2.1. Finite volume. Throughout this paper we use the sup norrih
Ix| = maxX{|x;|, i =1,...,d}. (2.1)
By A (x) we denote the open box (or cube) of side- 0:
Ar@) ={y e R |y —x| < L/2), (2.2)

and byA (x) the closed boxin this article we will always take boxes centered at sites
x € Z with side L e 2N. Very often we will requireL € 6N; givenK > 6, we set

[Kleny = maxL € 6N; L < K}. (2.3)

The operatoiH, ; is defined as the restriction @, either to the open box  (x)
with Dirichlet boundary condition, or to the closed bax (x) with periodic boundary
condition. (We consistently work with either Dirichlet or periodic boundary condition.)
We write R, ;, = (Hy,L — z)~1 for its resolvent. Byj| |z, we denote the norm or the
operator norm on &(A (x), dx; C").

The characteristic function of a satc R¢ is denoted by, If x € R¢ and¢ > 0,
we let

el = XAe(x)>  Xx = Xx.1 = XA1(x)- (2.4)
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Given a boxA (x), we set

L
TL(x)={y€Zd; Iy—xlzi—l}, (2.5)
and define its (boundary) belt by
T =R a\AL @) = (] Aa0): (2.6)
yEYL(x)
it has the characteristic function
Tel = X1, = D Xy ae. (2.7)
YETL(x)
Note that
L-1
IYLx)| =L -1 (L -27= d/ x4 ldx <d@L - 1?1t (2.8)
L-2

We shall suppress the dependency of a box on its center when not necessary. When
using boxes\, cgntained in bigger boxes; , we shall need to know that the small box
is inside the beltr; of the bigger one. We thus introduce the following definition.

Definition 2.1. Let L > ¢ 4+ 3and x € Z¢. \e say that

Ay C Ap(x) if Ay C Ap_3(x).

2.2. Propertiesof randomoperators. We present here, as assumptions, the properties of
the random operatdi,, that are required for the multiscale analysis and its applications.
These properties are routinely verified for the random operators of interest [26,27, 20,
33,9,24,25,42,43,52]. The bootstrap multiscale analysis has the same requirements as
the usual one. B 3

We fix acompactintervdp and an openintervdp > Ip (we always takég C (0, o0)
for Eq. (1.2)).

2.2.1. Deterministic assumptions. The deterministic assumptions are supposed to hold
almost surely, with non-random constants. We amftom the notation.

The first assumption is reminiscent of the Simon-Lieb inequality (SLI) in Classical
Statistical Mechanics. It relates resolvents in different scales. In the discrete case it is
an immediate consequence of the resolvent identity; in this context it was originally
used in [26]. In the continuum, its proof requires internal estimates. For Schrodinger
operators it was proved in [9]; it was adapted to classical wave operators in [24]. We
state itasin [42, Lemma 3.8]. In the continuum, we typically have the congign¢low

to be of the formy;, = supg,, ve, with yg = const1 + |E|)%, where the nonrandom
constant depends only on nonrandom parameters of the operator (diménismmds

on coefficients or potential — see [42, Eq. (3.80)] for an explicit expression for classical
wave operators, a similar expression holds for Schrédinger operators).
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Assumption SLI. There exists a finite constant y;, such that, given L, ¢', ¢” € 2N,
x,y,y € Z4 with Ap(y) © Ap(y) T Ar(x), then for any E € I with E ¢
o(Hy 1) Uo(Hy ¢) e have

ITx. L Rx. L(E) Xy, e llx.L < VIollTy o Ry o (ED) Xy 07 llyr e 1 Tx, L R L (E)Tyr g |z, L -
(2.9)

Assumption SLI will be used in the following way: We will tak& = ¢/3 with
¢ € 6N, and¢’ = k¢/3 with 3 < k € N. By acell we will mean a closed box ¢/3(y"),
with y” € éZd . We definéZevenandZogq to be the sets of even and odd integers. We take
y € éZd, S0xy,¢/3is the characteristic function of a cell. We want the closedbpxy’)
to be exactly covered by cells (in effect, bfj/cells); thus we specify’ e %Zd = %ngen
if kisodd, andy’ € §Z¢ + £ (1, 1,...,1) = §Z%yif k is even. We then replace the

boundary belf(, (y") (of width 1) by a thicker beltty ,(y") of width ¢/3. To do so, we
set

¢ 2
Yo e(y) = {y” € éZ"’; ' =y ==— —} : (2.10)

and define the bounda#ybelt of A, (y") by

Too) =AeONAe—2030) = | Aoz, (2.11)
Y'eYy o(y)

with characteristic function

Fy/’e/’e = X‘?[Qz(y/) = Z Xy//’e/:g a.e. (212)
Y €Yy ()
Note that
e e N = k= (k — %) < k. (2.13)

Sincel'y ¢ oIy ¢ = 'y ¢, the projectiorTs on the belt ofA - can be replaced by the
projection over the thicker belt of widity3, which can be decomposed in boxes of side
¢/3. Thus (2.9) yields

”FX,LRX,L(E)Xy,Z/3||x,L
< vk ITy o Ry o (E) Xy 0/3lly .0 ITx. L Ry LCE) Xy ¢/3llx,r,  (2.14)

forsomey” € Yy ¢(y"). Wewill saythat, after performingthe SLI, i.e., using theestimate
(2.14), we moved from the cell Ay /3(y) to the cell Ag/3(y").

Remark 2.2. While performing a multiscale analysis we will use (2.14) with eittet ¢

(for good boxes), or som& = k£/3, k > 3, which will be the side of a bad box. Note
that in the first cases = 3, and the geometric factor i€ 3- 1 < 3. In that case note
also that we must have = y’ and|y” — y| = ¢/3, so after performing the SLI we
moved to an adjacent cell, i.e., By3 in the sup norm. (Recall that we are using the sup
norm inR?, so we may move both sidewise and along the diagonals.)
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The second assumption estimates generalized eigenfunctions (see Sect. 2.3 for a
precise definition) in terms of finite volume resolvents. Itis not needed for the multiscale
analysis, but it plays an important role in obtaining localization from the multiscale
analysis [27,20]. We call it aaigenfunction decay inequality (EDI), since it translates
decay of finite volume resolvents into decay of generalized eigenfunctions ; we present
itas in [42, Lemma 3.9]. It is closely related to the SLI, the proofs being very similar.

Assumption EDI. Thereexistsafiniteconstant 7, suchthat, given ageneralized eigen-
function v of H withgeneralized eigenvalue E € I, wehavefor anyx € Z¢ and L € 2N
with E ¢ o (H, 1) that

¥l = Vol T, L R, L (E) Yl L I, W 1. (2.15)

Typically we havey;, = yj,, with yz, as in (2.9). We will use the following con-
squence of (2.15):

el < v LT L Re L (E) il Ly (2.16)

for somey € Ty (x), with y; = dyp,.

2.2.2. Probabilistic assumptions. The first probabilistic assumptioniisdependence at

a distance (IAD). It says that if boxes are far apart, events related to the restrictions of
the random operatdi,, to these boxes are independent. We say that an event is based on
the boxA (x) if it is determined by conditions on the restrictiéf, . ;. Givenp > O,

we say that two boxes ; (x) andA ./ (x') areg-nonoverlappingif [x —x'| > L5 + o
(i.e., if d(AL(x), Ap(x)) > 0).

Assumption IAD. There exists ¢ > 0 such that events based on g-nonoverlapping
boxes are independent.

The second probabilistic assumption is an “a priori” estimate on the aveuager
of eigenvalues (NE) of finite volume random operators in a fixed, bounded interval.
It is usually proved by a deterministic argument, using the well known bound for the
Laplacian [9,24,25,42]. Itis, of course, entirely obvious in the discrete case.

Assumption NE. There exists a finite constant Cy, such that
E (trHEHw,X,L(fo)) < CpL? (2.17)

for all x € Z¢ and L € 2N.

The final probabilistic assumption is a form\bigner’ s estimate (W), a probabilistic
estimate on the size of the resolvent. It is a crucial ingredient for the MSA, where it is
used to control the bad regions.

Assumption W. For some b > 1 there exists a constant Q;, < oo, such that
P {dist(o (Ho,x,1), E) < n} < QienL™, (2.18)

forall E € Ip,n > 0,x € Z¢,and L € 2N.
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Remark 2.3. In the continuum one usually proves the stronger estimate [33,9,10,4,24,
25,43,11]:

E(tryEn, ., (E —n, E+nl) < QrnL™, (2.19)

from which (2.18) follows by Chebychev’s inequality. The estimate (2.17) is used as an
“a priori” estimate in the proof of (2.19).

Remark 2.4. In practice we have eithér = 1 orb = 2 in the Wegner estimate (2.18).

For random Schrddinger operators with Anderson potential we mayzhavé [9,45,

4] (including the Landau Hamiltonian). For classical waves in random media, (2.18) has
been proven witth = 2 [54,24,25,43]. Very recently the correct volume dependency
(i.e.,b = 1)ingaps ofthe unperturbed operator was obtained in [11], at the price of losing
a bitin then dependency. In this paper, we shall use (2.18) as stated, the modifications in
our methods required for the other forms of (2.18) being obvious. Our methods may also
accommodate Assumptions NE and W being valid only for ldrgand/or Assumption

W being valid only fory < 5, for some appropriate;, sayn; = L~", somer > 0, or

nL = e’ for some 0< B < 1. The latter is of importance if one wants to deal with
singular probability measures like Bernoulli [7,36,16].

2.3. Generalized eigenfunction expansion. Generalized eigenfunction expansions were
originally developed for elliptic partial differential operators with smooth coefficients
(we refer to Berezanskii's book [6]). These expansions were extended to Schrédinger
operators with singular potentials (Simon [50] and references therein), and to classical
wave operators with nonsmooth coefficients by Klein, Koines and Seifert [44].

These expansions construct polynomially bounded generalized eigenfunctions for
a set of generalized eigenvalues with full spectral measure. These generalized eigen-
functions were used by Pastur [48] and by Martinelli and Scoppola [47] to prove that
certain Schrodinger operators with random potentials have no absolutely continuous
spectrum. They played a crucial role in the work by Fréhlich, Martinelli, Spencer and
Scoppola [27] and by von Dreifus and Klein [20] on Anderson localization of random
Schrédinger operators, providing the crucial link between the multiscale analysis and
pure point spectrum: the exponential decay of finite volume Green'’s functions (obtained
by a multiscale analysis) forces polynomially bounded generalized eigenfunctions to be
bona fide eigenfunctions, so the spectrum is at most countable and hence pure point.

In this article we go further and, as in [28,30], use the generalized eigenfunction
expansion itself (not just the existence of polynomially bounded generalized eigenfunc-
tions) to provide the link between the multiscale analysis and strong HS-dynamical
localization (and hence pure point spectrum). We will state the existence of a gener-
alized eigenfunction expansion as an assumption. Proofs of such an assumption are
provided in [50,44] for Schrédinger operators and classical wave operators. We follow
the presentation in [44].

Let T be the operator ol given by multiplication by the functiofl + |x|?)”, where
v > d /4. We define the weighted spacks as follows:

Hy = LR, (1 + |x[9)Tdx; C). (2.20)

#_ is a space of polynomially4-bounded functions. The sesquilinear form

(01, S, 7 = f 100 - $o(r)dl, (2.21)
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where¢1 € Hy and¢y € H_, makesH, and?_ conjugate duals to each other.
By 0T we will denote the adjoint of an operat@r with respect to this duality. By
constructionH, C H C H_, the natural injections;. : Hy — H and:_ : H —

‘H_ being continuous with dense range, wifp = 1_. The operator9’; : Hy —
HandT_- : H — H_, defined byTy = Ty, T- = 1T on D(T), are unitary
with T_ = T!. The mapr : B(H) — B(Hy,H_), with ©(C) = T_CTy, is a
Banach space isomorphism,Tasare unitary operatorsi3(#1, H2) denotes the Banach
space of bounded operators frai to Ho, B(H) = B(H,H).) If 1 < g < oo, we
define7,(H+, H-) =< (Tq (H)), whereT7, (H) denotes the Banach space of bounded

operatorss onH with || S|, = (tr |S|q)% < oo. By construction7, (H, H_), equipped
with the norm|| B, = ||r*l(B)||q, is a Banach space isomorphic 19(#), with
T2(H+, H-) being the usual Hilbert space of Hilbert—Schmidt operators ffomto
H_.

Note that

ez, = ez lia m < Coo(@ 4 1x%)” (2.22)

forallx € RY andL > 0, withCy , afinite constant depending only érandv. (Given
an operatoB : H1 — Ha, || Bllx,. 2, Will denote its operator norm.)

The following assumption guarantees the existence of a generalized eigenfunction
expansion (GEE) with the right properties (see [44] for details). RecallH}ja’ls the
orthogonal projection on the orthogonal complement of the kernél of the case of
classical waves; for convenience we let it be the identity operator in the case of the
Schrddinger equation. Note also that wexfix d/4 and use the corresponding operator
T and weighted spacég.. as in (2.20).

Assumption GEE. Fixv > d/4. Theset D? := {¢ € D(H,) N H4, Hyop € Hitlis

densein . and an operator corefor H,,, with probability one. There exists a bounded,
continuous function £, strictly positive on the spectrum of H,,, such that

try (T4 (o) P, T7Y) < 00 (2.23)

with probability one.

A measurable functiony : R — C” is said to be ayeneralized eigenfunction of
H,, with generalized eigenvalue if ¥ € H_ and

(Hot, V)1, H_ = M, ¥)n, 3 forallg e DY.
It follows from GEE that if a generalized eigenfunction is#f then it is a bona fide
eigenfunction.
If GEE holds, for almost every we have
try, (T_lEHw(J)PﬁwT_l) < foo (2.24)

for all bounded Borel set$. Thus, with probability one,

HolD) = tryy (T72En, (1) Py, T7) (2.25)
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is a spectral measure for the restrictionHyf to the Hilbert spacé’ﬁv)?—[, with

nw(J) < oo for J bounded. (2.26)

In particular, we have a generalized eigenfunction expansiomforwith probabil-
ity one, there exists a,-locally integrable functionP, (1) from the real line into
Ti(H+, H-), with

Pu(}) = Po()' 2.27)
and
try, (T:lpw(x)rgl) —1 forp, —aen, (2.28)
such that
1_Ep,(J)Py 14 = fJ P,(M) due(r) for bounded Borel sets, (2.29)

where the integral is the Bochner integratiai# ., H_)-valued functions. Moreover,
if ¢ € Hy,thenP, ()¢ € H_ is a generalized eigenfunction &f, with generalized
eigenvalue,, for u,, almost every..

The following lemma will play an important role in our proof of strong HS-dynamical
localization. Note that the constafitin (2.30) is independent &f, and thaf ||1 denotes
the trace norm irH.

Lemma 2.5.Under Assumption GEE, we have, with probability one, that for .., almost
every A,

1t Po M)y llz < CA+ X127 A+ [y D) (2.30)
for all x, y € R?, with C afinite constant independent of A and w.
Proof. Since

0 Po (M) xylle = el 211 Po 73 1) DXy 194,744 (2.31)
(2.30) follows from (2.22) and (2.28).0

Assumption GEE suffices for proofs of localization [27,20] and (almost sure) dynam-
ical localization [29, 28]. But for strong HS-dynamical localization we need to strengthen
(2.23), as we will use (2.34) below.

Assumption SGEE. Assumption GEE holds with
E [trH (T’lf(Hw)PﬁwT’l)]z < 0. (2.32)
It follows that
E [ty (T’lEHw(J)PéwT’l)]Z < 400 (2.33)
for all bounded Borel set$, so we have a stronger version of (2.26):

E[ue(J)]? < oo for J bounded. (2.34)
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Remark 2.6. Estimate (2.32) is true for the usual random operators. We could have re-
quired either the weaker

E [trH (T—l f(Hw)P;wT—l)] < 0, (2.35)

or the stronger
HtrH (T_lf(Hw)PﬁwT_l) H < 0. (2.36)
oo

If we assume (2.35) instead of (2.32), Theorem 3.8 yields strong operator dynamical
localization instead of strong HS-dynamical localization. One usually proves the stronger
(2.36) (e.g., [44,43]), which was one of the assumptions in [14].

3. Statement of the Main Results

In order to state our results we need first to charactgoad boxes for random operators.
We start with two definitions of good boxes. Note that these are deterministic; we omit
o from the notation when not necessary.

Definition 3.1. Given# > 0, E € R, x € Z¢, and L € 6N, we say that the box A (x)
is (0, E)-suitableif E ¢ o (H, 1) and

1
1T, LR, L(E) Xx,L/3llx,L < 7o (3.1)

Definition 3.2. Givenm > 0, E € R, x € Z4, and L € 6N, we say that the box A (x)
is(m, E)-regular if E ¢ o (H, 1) and

L
ITx, LR, L (E)xx,L/3llx,L <€ ™2. (3.2)

Remark 3.3. Note that a boxA; (x) is (0, E)-suitable if and only if it is(m, E)-regular,
with m = 29'0%. The difference between the two definitions is the point of view. In
Definition 3.1 we require only polynomial decay in the schlavhile in Definition 3.2
we want exponential decay ib.

We fix a compact interval and an open intervdh > Io (Ip C (0, oo) for Eq. (1.2)).
Throughout this paper, b¢ = C(a,b,...) we mean a positive finite constaat,
dependingnly on the parameteis b, . ...

The following theorem provides our enhancement of the multiscale analysis.

Theorem 3.4 Bootstrap Multiscale AnalysjsLet H,, be a random operator satisfying
assumptions SLI, IAD, NE and Win the compact interval Io. Given 6 > bd, there exists
afinitescale £ = £(d, 0, Q1y, V1o, b, 0), such that, if for some Eq € Iy we can verify
at some finite scale £ > £ that

P{A (0) is (0, Eq)-suitable} > 1 — (3.3)

1
841d°
then there exists 8o = do(d, 0, Q1y Cip» V19,6, £) > 0, such that, given any ¢,
0<¢<landa,1<a < ¢ L thereisalength scale

LO = Lo(ds Qs QIov C]os y[07 91 £9 ;-7 a) < 00,
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andamassm; = m(¢, Lo) > 0,s0ifweset L1 = [L{len, £ =0, 1, ..., wehave
P [R (me. Li. 1(0). %, y)] = 1— e X (3.4)
for all kx = 0,1,..., and x,y € 74 with lx — y| > Li + o, where

1(80) = [Eo — 80, Eo + 0] N Ip, and
R(m,L,I,x,y) {forevery E € I, either Ay (x) or Ap(y)is(m, E)-regular}. (3.5)

Remark 3.5. If we have the expected volume factor in (2.18), ite= 1, we need only
6 > d, hence (3.3) is an estimate on the probability that the finite volume resolvent
decays faster than the inverse of the volume.

Remark 3.6. The initial probability 1— o= in the starting hypothesis (3.3) of Theo-

rem 3.4 does not depend on the initial scAlét suffices to verify (3.3) for somé > L,
with £ large enough depending @ho, Q,, v1,, b, 6. This is not the case in the usual
MSA where the required initial probability behaves like-1£~7 [20]. Estimates oI,
as well as better numbers for the required initial probability, will be given in [31].

Remark 3.7. In some cases one may verify the starting hypothesis (3.3) by proving the
stronger condition:

1
lim supP{A ~(0) is (6, Ep)-suitablg¢ > 1 — —— for somed > bd. (3.6)
L—00 8414

In such cases one usually shows that the lim sup is actually equal to one (e.qg., [24,25]).

The following result combines Theorem 3.4 and the generalized eigenfunction ex-
pansion presented in Sect. 2.3. Under the hypotheses of Theorem 3.4, we show that one
can get any sub-exponential decay of the (averaged) “kernel” of a bounded function of
H,.

Theorem 3.8 Decay of the Kerngl Let H,, be a random operator satisfying assump-
tions 9LI, IAD, NE and W in the compact interval Iy as in Theorem 3.4, plus assump-
tions EDI and SGEE. Suppose (3.3) holds at Eq € Ip for some 6 > bd, and let &g
and 1 (8p) be asin Theorem 3.4. Then for any 0 < ¢ < 1 there exists a finite constant
C,=C(,d, 0, Qly Vio Vig: 0, V), such that

E <|?ﬁjp1 | xx f (H) E 1, (1 (80)) xy Hé) < Coe Wl 3.7)

for all x,y € Z4. (The supremum is taken over bounded Borel functions f of a real
variable, with || f|| = super | f(0)].)

Remark 3.9. The initial probabilistic estimate (3.3) or (3.6) may be shown to be satisfied
either at the edge of a gap in the spectrum, or at low energy, or for sufficiently high
disorder in a pre-specified energy interval, e.g., [20,9] in the Schrédinger case, [24,
25,43] for classical waves. But, in contrast with the results from the usual MSA, the
region where Theorems 3.4 and 3.8 apply (in the diagram enerdisorder) is not
conditioned to the final estimate of the probability of bad events; one alwaysmets
sub-exponential decay on a fixed interyébp), as shown in (3.7).
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An important application of Theorem 3.8 concestreng HS-dynamical localization,
as defined by (1.7).

Corollary 3.10 (Strong HS-Dynamical LocalizatiQnConsider the wave equation (ei-
ther (1.1) or (1.2)) in a random medium, and assume that the corresponding random
operator H,, satisfiesthe hypotheses of Theorem 3.8 in the compact interval Ip. Suppose
(3.3) holds at Eg € Ip for some 6 > bd, and let g and I (§p) be as in Theorem 3.4.
Then the wave equation exhibits strong HS-dynamical localization in the energy interval
1(80).

Related results have been obtained for the almost Mathieu model, a one-dimensional
guasi-periodic model: dynamical localization [34, 28], and more recently strong dynam-
ical localization [30] (for the optimal set of coupling constants).

Another measure of localization is “how localized are the eigenfunctions around their
center of localization”. The criterion SULE [17,18] deals with this question. Thanks to
the sub-exponential decay of the probability in Theorem 3.4, we are able to improve the
control on the behavior of the eigenfunctions given in [29].

Theorem 3.11 SULE). Let H,, bearandom operator satisfying assumptions SLI, EDI,
GEE, IAD, NEand W in the compact interval . Suppose (3.3) holds at Eq € Ip for
some § > bd, and let 5o and I (8g) be as in Theorem 3.4. Then H,, exhibits Anderson
localization (pure point spectrum) intheinterval I (8p). In addition, one getsthe follow-
ing form of SULE: for any ¢ > 0, there existsa massm, > 0, and for a.e. w thereisa
constant C, ., < 0o, such that, if welet {¢, . }»en be the normalized eigenfunctions of
H,, with energy E, ., in I (80), there exist {x,,.,}nen, SO for anyn € Nand x € Z¢, we
have

1+e
1XxPn.oll < Cew @109 lun.o ™ grmelx—xnol (3.8)

Moreover, the centers of localization x, , can be reordered in such a way that |x, |
increases with n, and

|xn,w| > éwn‘Tl” (39)
for some finite constant C,, > O for a.e. w, where v > % isasin GEE.

This improves the result obtained in [29]. First, because the intdr¢fl) does
not depend anymore on the chosen- 0, and second, because the control of the
eigenfunctions in terms of the centers of localization,, },en, givenin (3.8), is almost

polynomial (we get#:(091%.0D™* instead of &:r.I° as in [29]). Note that exponential
decay of the probability of bad events in Theorem 3.4 (i.e., in (3.4)) would provide right
away polynomial behavior ifw, .|, as expected. In the discrete case, the Aizenman—
Molchanov [1,3] approach supplies that polynomial behavior [18].

If one is interested in proving localization in a specified interval, then sometimes it
suffices to take sufficiently large disorder to satisfy the starting hypothesis (3.3) for ev-
ery energy in the interval. The following corollary re-states Theorem 3.4, Theorem 3.8,
Corollary 3.10 and Theorem 3.11 in this case. The proof is a simple compactness ar-
gument. Here again, as in Remark 3.9, we improve on former results, since how large
the disorder has to be is not anymore conditioned by how good one wants the final
probabilistic estimates to be.
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Corollary 3.12. If for some 6 > bd we have (3.3) for every energy E in the compact
interval Ip, then Theorem 3.4, Theorem 3.8, Corollary 3.10, and Theorem 3.11 arevalid
with the whole interval Iy substituted for 7 (8g) in the conclusions.

Remark 3.13. We note that our results apply to the one-dimensional, discrete Anderson
model with a singular potential, like a Bernoulli or alloy potential [7,36] (for the one-
dimensional continuous case see the very recent work [15]). The Wegner estimate proved
in [7,36] for this case is slightly weaker than our Assumption W, since it holds only for
sub-exponentially small distances to the spectrum rather than for any0. (The

fact it only holds for scaled. large enough, uniformly in the intervdp, does not
affect the results.) But in this case one can also prove a starting hypothesis with sub-
exponentially decaying probabilities of bad events [7,36], i.e., the starting hypothesis
(5.9) of Theorem 5.7. The proof of this theorem only requires this weaker Assumption
W, so our results are also valid for Bernoulli or alloy potentials. Another application of
this work leads to strong dynamical localization for the random dimer model [16].

4. Decay of the Kernel and Dynamical Localization

In this section we assume Theorem 3.4 and prove Theorem 3.8, Corollary 3.10, and
Theorem 3.11. We start with a preliminary lemma which translates the exponential
decay of the resolvent of finite boxes at enexggs given by the multiscale analysis, in
terms of an exponential decay of the kernel of the “generalized eigenprojgtior)
defined before (2.27). We note that Lemma 2.5, with the uniform polynomial bound
(2.30) that it provides, is a crucial tool for Lemma 4.1 below.

Lemma 4.1.Let H, bearandomoperator satisfying assumptionsEDI and GEE in some
compact interval Io. GivenI C Ip,m > 0,L € 6N,andx, y € Z¢,let R(m, L, I, x, y)
beasin(3.5).Ifw € R(m, L, I, x, y), we have

| Po Gy [, < CEMHAA+ 1P @+ 191D, (4.1)
for pe-almost all A € I, withC = C(m, d, v, y1,) < +oo.
Proof. It follows from (2.27) that
[ Pyl = 0 PGt |

for u,-almost every, so the roles played by andy are symmetric.

Letw € R(m, L, 1,x,y). Then for anyr € I, eitherAp(x) or Ar(y) is (m, A)-
regular forH,, let's sayA (x). Let¢ € . Since foru,-almost allx and ally € Z¢,
the vectorP,, (1) x,¢ is a generalized eigenfunction &, with generalized eigenvalue
A, it follows from the EDI (see (2.15)), using. = xx,1,3 xx, that

”Xxpw()‘))(y‘l’” < )710||Fx,LRx,L()¥)Xx,L/3”x,L ”Fx,LPw()\)Xy‘P”- (4-2)

SinceA (x) is (m, A)-regular, we have, using also Lemma 2.5 and the definition of the
HS norm, that

2>

”Xwa()\)Xy”Z = ?loe_mL/ZHFX,LPw()\)Xy”2 4.3)
< COPd L e ™2+ (Ix] + 52 L + 1P (4.9
< C(m,d,v, 7)€ "4 A+ 1x 2 A+ 1y1?)". (4.5)
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Remark 4.2. The estimate (4.1) may be compared to the criterion WULE introduced in
[28]. IndeedP,, (1) can be seen as the projection operator on the set of the generalized
eigenfunctionsy” in H_ with energyi. Hence (4.1) above provides, at a finite sdaje

the exponential decay of the key quantty|@%’ (x)¢(v)]. As in [28,30], the fact that

the eigenfunctiong$’ are uniformly polynomially bounded|&{’ |l < 1) is crucial

for our approach.

We are now in position to prove Theorem 3.8.

Proof of Theorem 3.8. Let 0 < & < 1. We will apply Theorem 3.4 together with the
generalized eigenfunction expansion (2.29) to show that

; (|?ﬁ|’p1 [ e f (Ho)En, 0 <So>>xo||§) < Cee T, (4.6)

for all x € Z?, wherel (59) C Ip is given by Theorem 3.4. Since our random operator
is Z“-ergodic, probabilities are translation invariant, so there is no loss of generality in
takingy = 0.

Given 0 < £ < 1, we pick¢ such that? < £ < ¢ < 1 (always possible) and set
a= % notea < ¢ 1. Theorem 3.4 then provides us with a scageand amass; > 0,
such that, if we seLi1 = [L{]en, k = 0, 1, ..., then for eaclt we have the estimate
(3.4) withy = 0 andx € Z¢ such thatx| > L; + o.

Let us now fixx € Z? andk such thatL;,1 + 0 > |x| > L + o. In this case
Lemma 4.1 asserts thatdf € R (m¢, L, I (80), x, 0), then

sup [lxe Po(Wxolly < Cre™L/4(1 4 112 < C1Coe7 1, 4.7)
rel (8p)

with C1 = Ci(m,d, v, 71,), C2 = C2(v, 0, ¢, &, m;). We split the expectation in
(4.6) in two pieces: where (4.7) holds, and over the complementary event, which has

probability less than € by (3.4). From (2.29) we have (no,, (1(80) Py, =
En, (I(80)) in the case of Eq. (1.2), since in this cdgeC (0, 00)),

Sup | xx f (Hw) En, (I(30))x0]

llfl<1
<sup [ SO PoMxoladia®)  (48)
1£1<1J1(80)
< / e Po (1) x0ll2 At (). (4.9)
1(80)

Thus, it follows from (4.7) that [WithE(F (w); A) = E(F (@) x4 (w))]

E (|§|u|o1 | xx £ (Hw)En, T(0) x0|| 35 Rme, L, 1(30), x, 0>)

< C2C3 B((uo (I G0))D €24 (4.10)
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To estimate the second term, note that using (2.25) we have

3 £ (Ho) Ent, (1 GoD xol|5 < 112 || Er, (T G0)) o] 2
< 2 f1Pno(I(0), (4.11)

s0, using the Schwarz’s inequality and (3.4),

IE( sup | xx f (Ho)En,1(30) xol

2
f 1 2,0)¢R(m{,Lk,I((SO),x,O)>
Ifll=<

< & [E((1o( (50))D)]2 e~ 2. (4.12)

SinceCs = C2C3 E((110 (1 (80)))?) + 4" [E((10, (I (30)))2)]2 < oo in view of (2.34),
we conclude from (4.10) and (4.12) that (recal= g)

E (@lfpl Hxxf<Hw)EHw(1(60>>XO||§>

_14¢ _1;8 _lavi—p)E 18 _11,4&
< Cse 2l < cgem 2l < Coem 2 M7 < Cer eI (4.13)

for all |x| = Lo + o. Thus (4.6) follows (for a slightly small€y), and Theorem 3.8 is
proved. O

Proof of Corollary 3.10. Letq > 0,y € Z¢. We have

2
H |X1% £ (Hy)En, (1(50) Xy

2

=tr [xyf(Ho)En,(I(80)|X|? f(Ho)En, (I(80) xy] (4.14)
< > (x4 D9t [xy f (Ho) En, (1 (80)) xa f (Ho) En, (1 (50)) xy ]
xezd
= 3wl + D |1 f (Ho) Eri, (1 G0ty [3- (4.15)
xezd

Corollary 3.10 now follows from (3.7). O

Remark 4.3. Note that we proved strong HS-dynamical localization, and hence strong
dynamicallocalization. without proving firstAnderson localization or resorting to centers
of localization (required in [29, 14]). This is because of our better use of the Assumption
GEE (with Lemma 2.5), as in [28,30], and Assumption SGEE. However, once Ander-
son localization is proven, one can use more refined properties of orthonormal sets of
eigenfunctions as in [53], and bypass the explicit use of the generalized eigenfunctions
as well as the discussion in [14] with the centers of localization. Nevertheless we point
out that: 1) Assumption GEE is needed anyway to establish Anderson localization; 2)
the analysis in this paper (and [28,30]) shows tRgti) enters the game in a natural
way.



Bootstrap Multiscale Analysis and Localization in Random Media 433

Proof of Theorem 3.11. The proof mimics the one in [29], taking into account the subex-
ponential decay of the probabilities of bad events. Giwen 0, we pick¢, such that

2 < 1461 < ¢ < 1 (always possible), and choosel < « < {(1+ ¢). (Note

o < ¢~ 1. Applying Theorem 3.4 yields a sequence of scales With; = [LF]en,
k=0,1,...,such that (3.4) holds. Following [29] and the notations therein, one de-
fines

Fy = U Ex(x0), (4.16)

1 -1
x0; \xolsexp(L,iff) )

whereEj (xp) is the complement of the eve@,txeALk L(x0) R(m¢, Ly, 1(80), x0, x), and
+

Ap,.,(x0) is an annulus as in [20, 294, , (xo) ~ A, (x0)\Ar,(x0)). Using (3.4),
one estimates the probability % as follows:

P(Fy) < C L&Y exp(—L; +dLF), (4.17)

where( is a finite constant. Sinag/(1 + ¢) < ¢, the Borel-Cantelli Lemma applies,
and proceeding as in [29], it follows that for any- 0, there exists a masgs. > 0, and
for a.e.w there is a constart, ,, < oo, such that, if we letg, },en be the normalized
eigenfunctions o, with energie§ E,, , }nen in I (80), there exisfx, ,}nen, SO for any
n € Nandx e Z¢, we have (3.8).

For the sake of completeness we now show that it follows from GEE and (3.8) that
the centers of localizatiofx, ,},<n can be reordered in such a way that,, | increases
with n and we have the lower bound (3.9). The spirit of the proof goes back to [18] (see
also [29,14]). GiveL > 0, if |x,.,| < L and|x| > 2L, we havelx — x,,| > 5 + £,
and it follows from (3.8) that for a.ev,

—me(L—(logL)*te) . lxl . Ixl
Dol < Coe " (57000D) om0 oomly (4.18)

if L > 3(log L)1+¢. Thus forL sufficiently large (depending erandw), if |x,, ,| < L we
have|| xo.22 ¢n.ol1° = % soif N(L) is the cardinal of the sét, E, ., € 1(80), |xn.o| <
L}, we conclude that

1
SN < 3 Ixozetnol’® = [xo2LEn, (160D |3
naEn.wEI(SO)

2
< (A+44L%? T~ Ey, (I1(50)) H ) (4.19)

— (1+4L%%try (T_lEHw (1(50))T—1)
= 1+ 4L e, (1(50))

wherep,, (1(80)) < oo for a.e.w by (2.26) (recallEg, (I (50)) = EHw(I(So))Pﬁm). It
follows thatN (L) < oo forall L > 0, so we may reorder the centeys,, in such a way
that|x, | increases witl, so we haveV (|x, ,|) > n. Thus, with probability one, for
n large enough, depending an(so that|x, ,,| > 1), we have

n < N(1xnwl) < 20 (160) 1+ 4x, 0% < 25 1y (1(50)) [xn.ol®,  (4.20)

and the lower bound (3.9) follows.o
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5. Multiscale Analyses

In this section we discuss the four multiscale analyses we will need for the bootstrap
multiscale analysis (i.e., for the proof of Theorem 3.4). They can be classified by either

the resulting estimate on the probabilities of bad events, or by the type of growth of

length scales. We will state them according to the first classification, and then present
the proofs conforming to the second.

5.1. Polynomially decaying probabilities. We use two multiscale analyses that yield
polynomially decaying probabilities for bad events.

Theorem 5.1 (24, Lemma 36). Let H,, be a random operator satisfying assumptions
9.1, 1AD andWin some compact interval Ip. Let Eg € Ipand6 > bd. Givenan odd inte-
ger Y > 11, for any p withO< p <0 —bd wecanfind Z2=2(d, o, Q1,. ¥15, b, 0, p, Y),
such that if for some Lo > Z, Lg € 6N, we have

P{AL,(0) is (8, Eg)-suitable} > 1 — (3Y — 4)~%, (5.1)
then, setting Lg+1 = YLy, k=0,1,2, ..., wehavethat

P{A,(0) is (0, Ep)-stitable} > 1 — L—lp (5.2)
k

for all k > IC, where = KC(p, Y, Log) < oc.

The value of Theorem 5.1 is that it requires a very weak starting hypothesis, in which
the probability of the bad event is independent of the scale, and its conclusion, in view
of Remark 3.3, gives the starting hypothesis of a modified form of the usual multiscale
analysis, as given in the following theorem. We stated Theorem 5.1 in a slightly different
form than in [24, Lemma 36]; it is adapted to our assumptions and definitions.

Theorem 5.2 (24, Theorem 32} Let H,, be arandom operator satisfying assumptions
9.1, IAD, NEandWinsomecompactinterval Ip.Let Eg € Ip,0 > bdand0 < p’ < p <

0 —bd.Thenforl <o < 1+ ﬁ,thereisl? = B(d, 0, Q1y, C1y, Y10, b, 0, p, P, @),
such that, if at some finite scale Lo > B we verify that

log Lo
Lo

P{A1,(0) is (20 , Eg)-regular} > 1 — Li (5.3)

0
thenthereexists 81 = 81(d, o, O1,. Y10, 0. P, P, &, Lo) > 0, suchthat if weset 7(§1) =
[Eo — 81, Eg + 61]1 N Ig, mg = 20 Iogé‘o, and Ly41 = [Lg]eN, k=0,1,...,wehave

1
P{Ay,(0) is(%, E)-regular} > 1— — forall E € 1(5y), (5.4)
Lk

and

1
P [R("% Li 16D, x.y)] 21— —- forx,y € 2 |x = y| > L+, (5.5)
L2
k

forallk =0,1,....
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Theorem 5.2 is quite close to the usual multiscale analysis result [20]. The crucial
difference is that Theorem 5.2 allows the mass to go to zero as the initiallscgtees
to infinity, which may seem very surprising at first sight. Indeed, in the usual versions of
the MSA (e.g., [26,27,19,20,9,45,38,29,52]), the nfasso be fixed first in order to
know how largel g has to be chosen. It turns out that one can handle a mass depending
on the scale, as in (5.3) above, i.e., a mass proportional tbdpho [24, Theorem 32].
Thus the starting hypothesis (5.3) only requires the decay of the resolvent on finite boxes
to be polynomially small in the scale (see Remark 3.3), not exponentially small. Note
also that by using the SLI as in (2.14), so we only move between cells, we only need to

requirep > 0 as in [38], notp > d as in [20] (we need to consider only t(@%)d cells

that are cores of boxes of sidénside the bigger box of side, instead ofL? boxes as
in [20]).

We will only need the weaker conclusion (5.4) for the bootstrap multiscale analysis;
we also stated (5.5) because it is the usual conclusion of this multiscale analysis.

Remark 5.3. In Theorem 5.2 the length scdfds increasing ip” € (0, p), and the half-
interval lengths; depends orp and p’. This should be compared with Theorem 3.4,
where the length scal€ and the half-interval lengthy, while depending o, are
independent of the parameters in the conclusion (3.4).

5.2. Sub-exponentially decaying probabilities. Previous multiscale analyses only
yielded polynomially decaying probabilities for bad events. We now provide new ver-
sions of two multiscale analyses that give sub-exponential decay for the probabilities of
bad events. We believe our method can yield any decay strictly slower than exponential.

Definition 5.4.Given ¢ € (0,1), E € R, x € Z¢, and L e 6N, we say that the box
Ap(x)is (¢, E)-sub-exponentially-suitable, if £ ¢ o (H,, 1) and

_ ¢
”Fx,LRx,L(E)Xx,L/BHx,L <e L . (56)

Remark 5.5. A box Ay (x) is (¢, E)-sub-exponentially-suitable if and only if it is
(2Lt~1, E)-regular.

The multiscale analysis with multiplicative growth of length scales has the following
sub-exponential version (compare with Theorem 5.1).

Theorem 5.6.Let H,, be a random operator satisfying assumptions SLI, IAD and Win
1
somecompactinterval Ip. Let Eg € Ipand g € (0, 1). Givenanoddinteger Y > 111-%,
for any ¢1 with 0 < ¢1 < gowe canfind Z = Z(d, o, Q1y, Y1y, b, 0, ¢1, Y), such that
if for some Lg > Z, Lo € 6N, we have
P{A1,(0) is (¢o, Eo)-sub-exponentially-suitable} > 1 — (3Y — 4)~%, (5.7)

then, setting Ly+1 = YLk, k =0,1, 2, ..., wehavethat

P{A[, (0) is (o, Eo)-sub-exponentially-suitable} > 1 — e‘Lli1 (5.8)

for all k > K, where K = K(¢o, ¢1, Y, Lo) < oo.
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The well known multiscale analysis with exponential growth of length scales has
the following sub-exponential version (compare with Theorem 5.2). In order to get sub-
exponential decay of probabilities, our proof allows the number of bad boxes to grow
with the scale.

Theorem 5.7.Let H,, be a random operator satisfying assumptions SLI, IAD, NE and
W in some compact interval Ip. Let Eg € Ip, 0 < &2 < {1 < ¢o < 1. Then for
1< < ¢o/¢1,thereisC =C(d, o, Qi Cig, Vig- b, C0, C1. &2, @), such that, if at some
finite scale Lo > C, Lo € 6N, we verify that

P{AL,(0) is(ZLéo_l, Ep)-regular} > 1 — e‘Lgl, (5.9)

thenthereexistsé, = 82(d, 0, Q1ry, V1o €0, {1, {2, @, Lo) > Osuchthat, ifweset 7(87) =
[Eg — 82, Eo 4+ 621 N Ip, mg = 2Lgoil, and Ly41 = [Lz]eN, k=0,1,...,wehave
3
P [R (@,Lk,z(az),x,y)] >1-e L (5.10)
4
forallk=0,1,2,... andx, y € Z¢ with |x — y| > L + o.

We took %2 in (5.10) for convenience; we may take any mass= gBmg with
0 < B < 1, butC ands; will also depend org. Note also that we allow the magg) in
the starting hypothesis (5.9) to decay with the sdaje
The equivalent to (5.4) holds in the context of Theorem 5.7, but it will not be needed.

5.3. Multiplicative growth of length scales: Proofs. We now prove Theorems 5.1 and
5.6, along the lines of [24, Proof of Lemma 36].

We start by introducing some notations to facilitate the simultaneous proof of both
theorems. For Theorem 5.1, we will say that a box is good if(fisFg)-suitable. Pick
s such that

p+bd <s <0, (5.11)
and set
qgr=L7?, tp=L"" up= LY. (5.12)

For Theorem 5.6, we say that a box is good if it§s, Eo)-sub-exponentially-suitable.
Pick & such that

{1 <§ <o, (5.13)
and set
=t g =eltf oy =el® (5.14)

In both casesy; is the decay of the finite volume resolvent we want to propagate,

or tL_l is a control term to be used with Assumption W (the Wegner estimate)yand

is the probability decay of a bad event we want to end up with. A box is bad if it is not
good. We sep, to be the probability of a bad box at scdlei.e.,

pL =P{AL(0) is bad. (5.15)



Bootstrap Multiscale Analysis and Localization in Random Media 437

Note that the conclusions (5.2) and (5.8) may now be restatpd,as ¢, for k > K.
The proof will proceed by induction. For the induction step,fet 6N, ¢ > 3p,
Y € Nodd, andL = Y¢. Knowing p,, we will estimatep; .

We set
- t,a d = -
Bre@x)=Ar(x)N §Z CZ", EBre=E8r.0), (5.16)
Cre(x) ={A¢(y); y€ELe(x), Ae(y) T AL(x)}, Cre=Cr ¢(0), (5.17)
V4
E) () =Az(x)N gzd cz?, &) ,=8],0). (5.18)

Note |E..¢| = (3Y)4, |E] ¢ = 6Y), ELy C E} .- By acell we will now mean
a closed bOX/_\g/g(y) with y € B ¢, thecore of the boxA,(y). ThusCp ((x) is the

collection of boxes of sidé whose core is a cell and are inside the boundary beit)
of the big boxA 1 (x); we havelCy, ¢| = (3Y — 4)4 . Note that the big box is divided into
cells: Az (0) = Uxesu Ags3(x).

The induction step proceeds as in [24, Lemma 36], it is based on the SLI, but only
boxesirC; . are allowed. The basic idea is that, if all boxe€ in, were good in scalé,
then it would follow from applying the SLI (2.14) repeatedly that the big box is also good
in scaleL. To obtain an improvement in the probability of having a good box, we need
to admit the possibility of the existence of bad boxes, to be controlled by Assumption
W, but we only need to allow for a fixed nhumber of bad boxes [19, 20].

One starts in a cell inside the core of the big box(0), i.e., in Ay ,3(0), apply the
SLI (2.14) repeatedly, and stops just before hitting the boundary belt. Each time the SLI
is performed with a good box of size one gains the small factay, and moves to an
adjacent cell (see Remark 2.2). Each time we must perform the SLI with a bad box, we
enlarge the box slightly, so the SLI moves us to the core of a good box, where we also
perform the SLI. The small factor from the latter SLI is used to control the bad factor
(estimated by (2.18)) coming from the former SLI (see (5.24) below).

To make this discussion rigorous, I§tdenote be the maximum number of
nonoverlapping bad boxes @y , that we shall allow. Thus at most boxes, which
must bep-nonoverlapping, may be bad, out of a totak87 — 4)¢ boxes, and we will
control the probability of such an event. The bad boxes produce bad regions, such that
any boxinC;, , outside these bad regions must be good. If one has one bad box, then to
be sure that another box of sizés p-nonoverlapping, it suffices to add to the bad box an
exterior belt of size 2/3 (recall¢ > 3p), and consider boxes of siZzevith cores outside
this region. So the bad region will have size- 4¢/3 = 7¢/3. If one hasj, j < S, bad
boxes which are clustered in the worst possible way (their exterior belts of&i2¢uat
touch), then the size of the bad region will b@2/3) + j ¢+ (j —1)4¢/3 = 7j¢/3. Note
that the bad region has center eithe@p, ¢, if j is odd, or in&} ,, if j is even. Since
after using the SLI with a box ;s one ends upnside this box, on its boundary belt, we
shall use slightly bigger boxes of sige= 7;¢/3+2¢/3 = (7j +2)¢/3,j < S, soone
gets out of the bad region after executing this procedure. The bad regions are inside the
big box, so we requir€7s + 2)¢/3 < L, i.e.,

Y > (75 + 2)/3. (5.19)

Now let F; , denote the event that either there are at I§astl o-nonoverlapping
bad boxes irCy ¢, or dis{o (Hy ¢, Eo)) < t1. for somex € E/L,é and ¢’ of the form
(7j+2)¢/3,withj =1,2,---, S8, ordisto(Ho,, Eo)) < tr.If B(Y, S + 1) denotes
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the number of possible choices$#- 1 o-nonoverlapping boxes ify, ,, andS > 1, we
have
3y — 446+ 1 4
Y,S+1) < —— " < Z(3Y — 446+, 5.20
BY,S+1) < ST _2( ) (5.20)
As in [24, Lemma 36], we will show that, fat andY large (in a sense to be specified
later),

{AL(0) isbad C FL ., (5.21)

SO
1
pL = P(FLe) = 5@ =4 pit 4 [s@r) +1] 0" (522)

< @Y — @Iy 2y, (529)
where we used (2.18) to obtain the last term in (5.22). To obtain (5.23), weltake
large enoughi > Z1, for someZ; = 21(d, Qy,, b, S, Y, p, s) for Theorem 5.1, and
21 =21, Q1,, b, S, 7, ¢1, &) for Theorem 5.6.

To prove (5.21), note that if the evef, , does not happen (i.ey ¢ Fr ), we
can findo-nonoverlapping boxea,,, i = 1,...,r < S, with ¢; € {7j¢/3; j =
1,2,---,S},and)_; ¢; < 75¢/3, such thatifx € 1, x ¢ J;_; Ay, the box
Ag(x) is good. We control the “bad regiomi,, as follows: we apply the SLI (2.14)
twice as in [20, Lemma 4.2], first with the extended bb@[_( (€; = ¢; +2¢/3), followed
by a good box irC;, .. We require that the product of these two factors gives rise to
a number strictly smaller than one, so that if one keeps visiting a bad region infinitely
often, it yields zero. In other words, taking into account that ;. ,, we require

[y1o(7S + 2091, ly1p3uel < 1, (5.24)

which is true for¢ large enough (how large dependingjap, Y, S, and on eitheé, s or
o, ). Thus repeated use of the SLI (2.14) yields

ITo.LRo.L(E))xrssllor < Y IITo.LRoL(E0)xx.e3ll0.L

XEEL/3¢

L d
5(2) sup [ITo.LRor(Eo)xxesallor (529

XEEL/g,g
N(Y)
<v? [y103due] it

where N(Y) is the number of times we are able to perform the SLI on good boxes,
without using the result for the control of a “bad region” as in (5.24). (We cannot get
trapped in the bad regions; if we keep getting back to a bad region after performing
the SLI to control a bad region, the estimate (5.24) would drive the left-hand-side of
(5.25) to zero.) To estimat®¥ (Y), note that one goes from a catkide the core of the

big box A1 (0) to its boundary. Each time we perform the SLI on a good bo&;in,

one moves to an adjacent cell. The last good box that can be used has its core cell two
cells away from the boundary af; (0) (because of the boundary belt of siz&3of

the latter); the shortest (thus the worst for our purposes) possible way is then made of



Bootstrap Multiscale Analysis and Localization in Random Media 439

(L/3)/(¢/3) — 1 =Y — 1 cells. In addition to that one has to subtract the number of
cells where one did not gain anything due to the bad regions, which is, in the worst case,
(7+ 1)S = 85 cells. We thus have

N(Y)>Y —85—1. (5.26)

Thus forA (0) to be good, it suffices, in view of (5.25), to require

:|Y78S71

yd |:y103dug <, (5.27)

which is true if we fixY such that
Yy-85-1>2 for Theorem 5.1

(5.28)
Y —85—1>2Y% for Theorem5.6

and then také large enough, large enough depending/gnY and on eithe#, s or ¢,
&. Thus (5.21) is proven.

So far we did not specify the value 6f Roughly,S has to be large enough so that
the termpzngl in (5.23) can be converted infg . It turns out thatS = 1 is sufficient
for Theorem 5.1, as in [24, Proof of Lemma 36]. For Theorem 5.6 we Sake[Y%°],
where[M] denotes the largest integerM.

We now set

Y =11 forTheorem5.1
L (5.29)
Y =11%% for Theorem 5.6

We now requireY to be an odd integer such th#t > ), so with our choice ofS
conditions (5.19) and (5.28) are satisfied, and we require/tisdarge enough to obtain
(5.27).

So if we pickLg > Z, whereZ; is chosen s&Z, > Z; and is large enough so
(5.27), and hence (5.21), holds, and Bgt1 = YLy, k =0,1,2,---, pr = pr, and
gk = q1,, it follows from (5.23) that

1 S+1 1
Pre1 < 5 ((3Y _ 4yl pk> +5gie for k=012.... (530

We are now in position to finish the argument. Notice first thab;if < ¢z, then
((3Y — 4)”1pk)SJrl < gx+1 for Z; large enough (depending on the constantnd on
p for Theorem 5.1, ¢1 for Theorem 5.6). This is clear in the first case. In the second,
it comes from the choice of, which satisfiess + 1 > Y% > Y¢1, With this choice of
Z, pr < qx leads to

1 1

Pl = 54k+1 T 5041 = G- (5.31)

It thus suffices to show that, < gx must occur at some scale. SUppPse1 > gr+1
fork =0,1,2,...,n—1.Itthenfollows from (5.30) that we ha\(GSY - 4)dpk)s+l >
gik+1 for k = 0,1,2,... ,n — 1, so, using again (5.30), we conclude that.; <

(Y — 4)‘1pk)SJrl fork=0,1,...,n — 1, obtaining

d(S+1) )(S+1)” (5.32)

_d(S+))
Gn =P = @Y =475 (@BY =45 po
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(S+1 .
5 >p0 < 1. Note that in both cases

@Y — 45" < @y — 4%, (5.33)
Thus takingpg so that
po < (3Y — 47, (5.34)

the right-hand side of (5.32) decays much faster fhaiso we get a contradiction. This
is clear inthe case of Theorem 5.1, whefelecays exponentially im. For Theorem 5.6,
we have

qn = exp(—(Y“)"Lél) . (5.35)

and the contradiction comes from having choses: [Y*°] and¢g > ¢1. Thus there
must belC depending orY, Lo, d, and on eithep or &g, ¢1, SOpi < gi forall k > K.
Theorems 5.1 and 5.6 are prover

5.4. Exponential growth of length scales: Proofs. The proofs of Theorems 5.2 and 5.7
may be done simultaneously, as we did for Theorems 5.1 and 5.6. For simplicity, we will
only give the proof of Theorem 5.7, adapting the methods of [20] to get sub-exponential
decay of the probabilities of bad events, rather than the usual polynomial decay. The
modifications in the proof to obtain Theorem 5.2 will be apparent to the reader. (We
refer to [20] and [24, Theorem 32] for the proof of Theorem 5.2.)

We start by deriving from (5.9) the initial step of the inductive process, i.e., (5.10)
with & = 0, but with =2 substituted for72. We recall 0< ¢ < ¢1 < o < 1,

mo = 2L6°_1, and picks < €1 < ¢1. Asin [20, p. 287], ifA1,(0) is (mo, Eg)-regular,
dist(o (Ho, 1), Eo) > e‘Lgl, and we set

—2Lgt
2 [e

it follows from the resolvent identity that; ,(0) is(%, E)-regular forallE € 1(82) =
[Eg — 82, Eg + 82] N Ip. Thus, it is a consequence of (5.9) and (2.18) that

N\o

82 = 82(mo, Lo, &1) =

P _ e""OLTO] , (5.36)

P{for everyE € 1(82), Ar,(0) |s( E) regulas (5.37)
>1-— eLo_QILbd L0>1 Léz,

providedLg is large enough (depending only on the paramet&r®) ., b, ¢1, ¢2, £1).
Combining with Assumption IAD, we get that

P [R (", Lo 1(52).x.y)] = 1— e Lo (5.38)

forall x, y € Z¢ with |x — y| > Lo + o.

Thetheoremis now proven by induction. The induction step goes fromé&ealeg to
scaleL = [£*]en, With1 < & < ¢o/¢1. We assume that for some mass72 < m < =2,
we have

P [R(m, €, 1(52),x,y)] > 1—e*? (5.39)
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forall x,y € Z¢ with [x — y| > L; + 0. We will show that, if¢ is large enough (in a
sense to be specified), the same statement holds atZsedte a new mass:’, and we
will estimatem — m’'.

We proceed as in the proof of Theorems 5.1 and 5.6; the basic idea is the same. But
in order to propagate such a strong decay of the bad probabilities as in (5.39), it does
not suffice to allow for dixed number of bad (i.e., non-regular) boxes of sizaside a
bigger boxA 1 (x) of size L. We must allow the number of bad boxes to grow with the
scale. We fixz < ¢’ < ¢1, and allow at most

Sp=2[@ V1 (5.40)

e-nonoverlapping bad boxes. That will produce, as in the proof of Theorems 5.1 and
5.6, bad regions\gi,i =1...,r < Sp,with¢; € {7j¢/3, j =1,2,---, 8}, with
centers |nuL ,(x) (see (5.18)). Note that

ZE < £1+(a g 5@01—(0!—1)(1_{1)’ (541)

aol?d(o; — 11— 1) > 0, so the sum of the sizes of the bad regions grows slower than
‘ 'The effect of the bad regions will be controlled as follows. We gick

{2 <& <1,
and require that in a bad region of siZe= ¢; 4 2¢/3 we have dis(b(HZ;), E) > e*LE,

so the corresponding resolvent will be estimated by a factor @he price we will
have to pay, in terms of probabilities, is then given by (2.18) in Assumption W, with

n= e‘LE.) By the same reasoning that lead us to (5.24) (we also spécifiBp), we
require

[y1o (7S¢ + 2% [V103d67%€] <1 (5.42)
We have
[0 (7S¢ + 2)%€-°] [y,osde—%f] = y2[3(7Se + 21" e Bl < i3t (5.43)

for £ (and thusLo) large enough, depending on,. d, «, &£ and ¢ (but not onmy),
provided

a < o, (5.44)
which is true since we picked < @. Moreover, recallingng = 2L6°_1, we have

> mo _ 1 {o }Ego_l,
4 2 2
so (5.42) follows from (5.43).

Once we have (5.42), and assume@isto 1), E) > e Lf , the same argument used

to derive (5.25) leads to

(5.45)

— _mpNe ¢
ITo.LRoz(Eo)xesallor = €40 [3yie %] " e, (5.46)
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whereN, is the number of times we are guaranteed to be able to perform the SLI on good
boxes, without using the result for the control of a “bad region” as in (5.42). Similarly
to (5.26), we have
L L ’
i — Z(1— (a=DH('-D)
Nez 7 -85 -1z (1 320 ) : (5.47)
if, say¢ > 12 (so 1- 6¢7* > 1/2; recallL = [£*]egn > £* — 6). Thus

L
ITo,z.Ro,..(Eo)xr/3llo, <€ 2, (5.48)

with, usingL > ¢* — 6 and (5.45),

v —Ddloge log(3¥y;,) 1
‘> om (1— 320@-DE-D) _ | @ 0
m—’"( ) w-6 ' ¢ tTle_ere

4 (@ —1d¢tloge ¢
% [—W 5 T109@" i) + = “

>m (1 - E) , (5.49)

for some finite constar@ = C(d, yy,, «) > 0 and

>m {1_ 32¢@—D('-1) _

T =min{go, (@ = DL -¢"), %0~ (@G -1 + 1)} > 0; (5.50)

notegp — (¢ — 1) +1) =a — 1+ ¢0 — aé > 0 by (5.44).
We still need to assure thg? < m’ < 2. This cannot be done in a single induction
step, because we would need to tdkiarge depending om. But we can do it in a
way that applies to all inductive steps. Givég large enough for the inductive step,
1 < o < £1/%0, we construct the sequence of length scdlgs; = LY,k =0,1,....
Applying the inductive step from scalg, to scalel.; 1, we obtain a decreasing sequence
of massesn;, with m = %2, satisfying (5.48) and (5.49) at scdlg. We then have
+00 C mo

pard L; 4

+o0 mo
/ /
0= (my —mpyy) < >
=0

providedL is large enough, depending @nyy,, «, ¢o, ¢’, &, but not onmg. (Note that
the fact that how largé. o has to be is independent b, possible in view of (5.45) and

(5.49), is quite important, since in (5.9) we haxvg = 2L6°_1.) It follows that

m m
20 oy <20
4 2

We now turn to the probability estimates of the inductive step; here we follow [20,
Lemma 4.1]. To apply the just discussed deterministic argument in a given pox,
for a fixed energyE € Iy, it suffices to require:

k=0,12,.... (5.52)

(i) dist(o(Ho 1), E)) > e L°.
(i) dist(o(Hy ), E)) > e X forall ¢ e {(7j +2)¢/3, j = 1,2,---, S} and

y € 8] ,(x).
(iii) There are at mos§, o-nonoverlapping bad boxes i ¢(x).
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It follows that
P [R(m',L,1(82),x,y)] >
P [foranyE € I(82), (i), (i) and (iii) hold for eitherA (x) or AL (y)].
Thus, to complete the inductive step, it suffices to show that the the right-hand-side of
(5.53) is bigger than - e L foranyx, y € Z4 with |x — y| > L + 0. )
Letlp D Ipbe the openintervalin Assumptions NE and W, andlgt) = o (A)N1p
for any operatod. If Ag,(x1) andAy,(x2) arep-nonoverlapping boxes, then it follows
from Assumptions IAD, NE and W that
P [diSt (5 (Huy,61), 6 (Hap 6,)) <] < Cro Qronti s’ (5.54)

by the same argumentasin [20, p. 293], using (2.18) and (2.17) (see [29] for an argument
using (2.19)). Thus, if we fix, y € Z¢ with |x — y| > L + o, we have

(5.53)

P[diSt(G (Hyy,0)), 6 (Hupep)) < 26 L* for some
x1€ 8] (), x2€ B (). L1, bo € (L, (Tj+2)£/3, j=1,2,---,5}]

2 (6L 2 (b+1)d o~ LS
<2C1Qr(Se+1) VA L e

<8. 36dCIOQlog(a—l)(§’+2d)+(b+1)ade—L§ < %e—le

’

(5.55)
for ¢ sufficiently large, depending ah Cy,, Q,, b, {2, , ¢, &.

Now, letE € I(82), and suppose there exigte E’M(x),zl e{L,(7j+2)¢/3, j=
1,2, .-, 8¢}, withdist(o (Hy,¢,), E)) < eL*If Lis large enough, depending only on
fo\Io, we must also have dig (Hy, ¢,), E)) < e~L* . If the event whose probability is
estimated in (5.55) does not occur, we must have®(@Hy,.¢,), E) > e‘LE, and hence

also disto (Hy,.¢,), E) > e*Ls, forallxa € 8] ,(y)andéz € {L,(7j +2)¢/3, j =
1,2,---,S¢}. Since we can interchangeandy in this argument, we can conclude that
if ¢ is large enough,

P [forany E € 1(82), (i) and (ii) hold for eitherA ., (x) or Az (y)]
>1-1el? (5.56)
On the other hand, since we cha%eto be an odd integer, and using Assumption
IAD, we have
P[for someE € I(82) there are at leasty + 1 p-nonoverlapping
bad boxes i€, ¢(0)]

<P [for someE € I(82) there are at least tw@-nonoverlapping
Sp+1

bad boxes i€y ¢(0)] 2

Sg+1

2d 2 (a=1)¢’
[(3_L> e_glz:| < [gdgz(a—l)de—z@][z R (5.57)

14

IA

1717 (5.58)
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where we used the induction hypothesis (5.39) to get (5.57). The final estimate (5.58)
holds for¢ sufficiently large, depending ah ¢2, «, ¢/, sincetz + (@ — 1)¢’ > alz as
¢’ > r». We can thus conclude that

P [for someE € I(82), (iii) does not hold for either ; (x) or A (y)]
< 1el?  (559)
Combining (5.53), (5.56) and (5.59), we get that

P[R(m', L,1(52),x,y)]>1—eL?, (5.60)

for ¢ sufficiently large, the desired result.

Thus, if Lo is large enough, how large depending only on the paramétersQ .
Cio: V1o» b, 0, £1, &2, &, We construct the sequence of length scdles; = LY, k =
0,1, ...,andwe may apply the inductive step from sdajeo scalel 1, starting from
(5.38) fork = 0, obtaining (5.60) with. = L; andm’ = m;, and hence, using (5.52),
the conclusion (5.10) forad = 0,1, 2, ....

This finishes the proof of Theorem 5.70

6. Bootstrap Multiscale Analysis

We now prove Theorem 3.4. This will be done by a bootstrapping argument, making
successive use of Theorems 5.1, 5.2, 5.6, and 5.7.
We start by giving an outline of the proof:

Prologue: Under the hypotheses of Theorem 3.4, we note that hypothesis (5.1) of The-
orem 5.1 is the same as hypothesis (3.3) for appropriate choices of the parameters.

Act 1: We apply Theorem 5.1, obtaining a sequence of length scales satisfying conclu-
sion (5.2), with its polynomial decay estimate of the probability of bad events.

Act 2: In view of Remark 3.3, it follows that hypothesis (5.3) of Theorem 5.2 is now
satisfied at suitably large scale. (We have bootstrapped from hypothesis (3.3) to
hypothesis (5.3)!). Thus we can apply Theorem 5.2 with appropriate parameters,
gettingd1 > 0 and a sequence of length scales satisfying conclusion (5.4) for all
E € 1(61). We setfg = 41.

Act 3: We fix ¢ anda as in Theorem 3.4, and pidjg, ¢1, 2 suchthatO< ¢ < &2 <
< <1l<a<gt <yt < ¢ We note that we have bootstrapped
again: hypothesis (5.7) of Theorem 5.6 is satisfied at all enetgies I (5g) at
appropriately large scale (the same for B)l Applying Theorem 5.6, we obtain a
sequence of length scales for which conclusion (5.8) holds fdt &l 7 (80), with
its sub-exponential decay estimate of the probability of bad events.

Act 4: Using Remark 5.5, we can see that we have bootstrapped to Theorem 5.7: for
any 0< ¢2 < ¢1 < ¢o < 1, hypothesis (5.9) is satisfied at all energies 1(51)
at sufficiently large scale (depending &) ¢1, ¢2 but independent of). We apply
Theorem 5.7, obtainind, > 0 and an exponentially growing sequence of length
scales, depending ap, ¢1, ¢2, but independent of, such that conclusion (5.10)
holds for allE € I(51).

Epilogue: We have constructed in 8¢ a sequence of length scales for which (5.10)
holds for allE € 1(8p). Since the interval (§p) (which is independent af) can be
covered by{g—g] + 1 closed intervals of leng#p, we note that the desired conclusion
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(3.4) now follows from (5.10), at the energies that are the centers c{%ﬂ& 1
covering intervals, if we také&g appropriately large.

We now give the detailed proof of Theorem 3.4: Given- bd, we pick p, 0 <
p < 0 — bd; to fixate ideas we takp = “=P¢. We chooser = 11, and letZ =
2, o0, Q1y, YIp- b, 0, p, Y = 11) be as in Theorem 5.1. We take

L=1L(d, 0 Qs Vip:b,0)=Z

and note that hypothesis (5.1) of Theorem 5.1 is now the same as hypothesis (3.3) with
Lo = L and(3Y — 4% =841,

We now fix Eg € Ip and assume (3.3) for thigy with £ > £. We setL(l) L, and
define a sequence of length scalq&é) by L,(:gl = YL,(cl), k=0,1,2,.... We apply

Theorem 5.1, and conclude that (5.2) holds for these length scales toga!tm =
KN, yiy, b, 6, L£). In view of Remark 3.3, we have that

ogL;” 1
IP[ Lo ©O) is (29 (1) Eo)—regular} >1-— W (6.1)

k

forallk > KD,
Note that we have bootstrapped to hypothesis (5.3) of Theorem 5.2, since (6.1) is

the same as (5.3) at scald”. We takep’ = 2524 anda; = 1+ 25rran » @nd take
B =8Bd,o, Qi Ciy, Vi, b, 0, p, p', 1) @sin Theorem5 2. Lettingy be the smallest

o
k> K® suchthai (" > B, we define length scalds” = L"), L), = [(L,((z)) l]GN

fork=0,1,2,.... We apply Theorem 5.2 withg = L(()Z) in (5.3), and conclude that

(5.4) holds for these length scales with= 31(d, 0, Q1,, v15- 0, P, P', @1, L(()Z)) > 0.
Letting

80 = 80(d. 0. Q1. Cry. Vi 0. £) = 81(d. 0. Q1o V1. 0. p. .01, LY) > 0, (6.2)
we proved that foralk = 0,1, 2, ... we have
. 1
IE”{AL@ (0) is (m1, E)-regulag > 1 — — forall E € I(8p), (6.3)
k (2
(1)

. IogL(z)
with 7(8g) = (Eg — 80, Eo + 80) N Ip andmy = 0 =2 (2) .

Now let us fix¢ anda as in Theorem 3.4, so @ ; <1< a < ¢~ L To be definite,
we take

=+t l, n=val o=, (6.4)

so we have

O<§<§2<§1<§‘o<1<a<§0{1_1<§2_l<§7l. (6.5)
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1
Next, we apply Theorem 5.6. To do so, Yatbe the first odd integer bigger thant®
and letZ1 = 2, 0, Q1. Y10, b, {0, {1, Y1) be as in Theorem 5.6. Ldtg’) = L,g),
whereks is the smallest integér such that:

/ fo—1
L? >z, (L,(f’)p > (31 — HH, 2(L,§2)) e my (6.6)

Then, recalling Remark 5.5, it follows from (6.3) that for &lle 7 (59) we have
P{A, o (0) is (2o, E)-sub-exponentially-suitabje- 1 — (3¥; — 4y~ (6.7)
0

and we have bootstrapped to hypothesis (5.7) of Theorem 5.6 fér alll (§p), uni-
formly in E € 1(5p). We now setLg1 = YlL,({s), k=0,12,...,soitfollows from
Theorem 5.6 that for al£ € I (o),

(1 @)1
P{A; 3 (0) is (¢o, E)-sub-exponentially-suitable> 1 — e (Lk ) (6.8)
k

forall k > K@, whereK® = K(¢1, Y1, L(()S)) < 0.
To complete our final bootstrap, we use Remark 5.5 to rewrite (6.8) as

Zo—1 (7 51
P {AL;{@(O) is (2 (L,(f)) ’ ,E)-regular} >1—e (Lk ) (6.9)

forall E € 1(80) andk > K. Note that (6.9) is just a hypothesis (5.9) of Theorem 5.7
3 4

at scaleL,” for eachE e I(5p). Thus we setL,” = L,(ci), whereks is the smallest
integerk > K® such thatl.> > ¢, where the constant
C = C(da Qa QI()? CIO? y]os b? §0a é‘ls ;27 O{)

is as in Theorem 5.7, with the parameters from (6.4). Note the crucial faciéﬂais
the same for alE € I(8g). Theorem 5.7 provides us with

82 = 82(d, 0, Qo> Vi C0» 1, L2, @, LY) > 0,

so, settingl (52, E) = [E — 82, E + 81 N Io, m; = (L)%, and L/(:il _
o
[(L1(<4)> ] ,k=0,1,..., we have
6N

(1 ®\*2
B[R (me. 1", 162, B, x.y) | 2 1—e (+7) (6.10)
forall E € 1(80), k =0,1,2,...,andx, y € Z¢ with |x — y| > L\ + 0. Sincel ()

can be covered by intervalgs,, E;),i =1,2,..., [g—g] + 1, with eachk; € I(8g), we
can conclude from (6.10) that

(6.11)
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forall x, y € Z¢ with |x — y| > L,(f') + 0, andk > ka, Whereky is the smallest such

that the last inequality in (6.11) holds. Noﬁéj) depends only 0#g, J2, «, Lg‘), Z, o,
and hence only od, ¢, Oy, C1q. ¥1o. 9, ¢, a, L. To conclude the proof of Theorem 3.4,

we setlLg = L,(:), soL, =1L

(4

katrio K =0,1,..., and note that (3.4) now follows from

(6.11).

The proof of Theorem 3.4 is completen
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