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Abstract: We define the notion of a “regular tube”, and prove that a regular tube con-
vected by a 3D incompressible flow cannot collapse to zero thickness in finite time.

0. Introduction

The 3-dimensional incompressible Euler equation (“3D Euler”) is as follows:(
∂

∂t
+ u · ∇x

)
u = − ∇xp

(
x ∈ R

3, t ≥ 0
)
,

∇x · u = 0
(
x ∈ R

3, t ≥ 0
)
,

u(x,0) = u0(x)
(
x ∈ R

3
)
,

with u0 a given, smooth, divergence-free, rapidly decreasing vector field onR
3. Here,

u(x, t) andp(x, t) are the unknown velocity and pressure for an ideal, incompressible
fluid flow at zero viscosity. An outstanding open problem is to determine whether a 3D
Euler solution can develop a singularity at a finite timeT . A classic result of Beale–
Kato–Majda [1] asserts that, if a singularity forms at timeT , then the vorticityω(x, t) =
∇x × u(x, t) grows so rapidly that

T∫
0

sup
x

|ω(x, t)|dt = ∞.

In [2], Constantin–Fefferman–Majda showed that, if the velocity remain bounded up to
the timeT of singularity formation, then the vorticity directionω(x, t)/|ω(x, t)| cannot
remain uniformly Lipschitz continuous up to timeT .
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One scenario for possible formation of a singularity in a 3D Euler solution is a
constricting vortex tube. Recall that avortex line in a fluid is an arc on an integral curve
of the vorticityω(x, t) for fixed t , and avortex tube is a tubular neighborhood inR3

arising as a union of vortex lines. In numerical simulations of 3D Euler solutions, one
routinely sees that vortex tubes grow longer and thinner, while bending and twisting.
If the thickness of a piece of a vortex tube becomes zero in finite time, then one has a
singular solution of 3D Euler. It is not known whether this can happen.

Our purpose here is to adapt our work [3, 4] on two-dimensional flows to three
dimensions, for application to 3D Euler. We introduce below the notion of a “regular
tube”. Under the mild assumption that

T∫
0

sup
x

|u(x, t)|dt < ∞,

we show that a regular tube cannot reach zero thickness at timeT . In particular, for 3D
Euler solutions, a vortex tube cannot reach zero thickness in finite time, unless it bends
and twists so violently that no part of it forms a regular tube. This significantly sharpens
the conclusion of [2] for possible singularities of 3D Euler solutions arising from vortex
tubes. On the other hand, [2] applies to arbitrary singularities of 3D Euler solutions,
while our results apply to “regular tubes”.

Although we are mainly interested in 3D Euler solutions, our result is stated for
arbitrary incompressible flows in 3 dimensions. The proof is simple and elementary.
The main novelty for readers familiar with [3, 4] is that we can adapt the ideas of [3] to
three dimensions, even though there is no scalar that plays the rôle of the stream function
onR

2.

1. Regular Tubes

LetQ = I1 × I2 × I3 ⊂ R
3 be a closed rectangular box (withIj a bounded interval),

and letT > 0 be given.
A regular tube is a relatively open set�t ⊂ Q parametrized by timet ∈ [0, T ),

having the form

�t = {(x1, x2, x3) ∈ Q : θ (x1, x2, x3, t) < 0} (1)

with

θ ∈ C1(Q× [0, T )), (2)

and satisfying the following properties:

|∇x1,x2θ | �= 0 for (x1, x2, x3, t) ∈ Q× [0, T ), θ(x1, x2, x3, t) = 0; (3)

�t(x3) : = {(x1, x2) ∈ I1 × I2 : (x1, x2, x3) ∈ �t } is non-empty, (4)

for all x3 ∈ I3, t ∈ [0, T );
closure(�t (x3)) ⊂ interior (I1 × I2) (5)

for all x3 ∈ I3, t ∈ [0, T ).
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For example,�t for a fixed timet might be a thin tubular neighborhood of a curve
� ⊂ Q. To meet the conditions for a regular tube,� would have to enterQ through the
face{x3 = min I3} and exitQ through the face{x3 = maxI3}, with the tangent vector
�′ always transverse to the(x1, x2) plane.

Let u(x, t) = (uk(x, t))1≤k≤3 be aC1 velocity field defined onQ× [0, T ). We say
that the regular tube�t moves with the velocity field u, if we have

(
∂

∂t
+ u · ∇x

)
θ = 0 whenever(x, t) ∈ Q× [0, T ), θ(x, t) = 0. (6)

It is well-known that a vortex tube arising from a 3D Euler solution moves with the
fluid velocity.

2. Statement of the Main Result

Theorem. Let �t ⊂ Q(t ∈ [0, T )) be a regular tube that moves with a C1, divergence
free velocity field u(x, t).

If

T∫
0

sup
x∈Q

|u(x, t)|dt < ∞, (7)

then

lim inf
t→T− Vol(�t ) > 0. (8)

3. Calculus Formulas for Regular Tubes

Let�t be a regular tube, as in (1)· · · (5). Recall that

�t(x3) = {(x1, x2) ∈ I1 × I2 : θ(x1, x2, x3, t) < 0} . (9)

Define also

St (x3) = {(x1, x2) ∈ interior (I1 × I2) : θ(x1, x2, x3, t) = 0}
for x3 ∈ I3, t ∈ [0, T ). (10)

Also, for intervalsI ⊂ I3, and fort ∈ [0, T ), define

�t(I ) = {(x1, x2, x3) ∈ Q : x3 ∈ I andθ(x1, x2, x3, t) < 0}, and (11)

St (I ) = {(x1, x2, x3) ∈ Q : x3 ∈ I and(x1, x2) ∈ St (x3)}. (12)

Let ν denote the outward-pointing unit normal toSt (I3), and letν̃ = (ν̃1, ν̃2,0), where
(ν̃1, ν̃2) is the outward-pointing unit normal toSt (x3). Thus,ν and ν̃ are continuous
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vector-valued functions, defined onS = {(x1, x2, x3, t) ∈ Q × [0, T ) : (x1, x2, x3) ∈
St (I3)}. Define also scalar-valued functionsσ, σ̃ onS by requiring that(

∂

∂t
+ σν · ∇x

)
θ =

(
∂

∂t
+ σ̃ ν̃ · ∇x

)
θ = 0 for x ∈ St (I3). (13)

Again,σ andσ̃ are well-defined and continuous onS, thanks to (3). We write
∫
�

f ds for

the integral of a functionf over a curve� with respect to arclength. We write
∫
Y

gdA for

the integral of a functiong over a surfaceY with respect to area. LetF be a continuous
function onQ. Then we have the formulas

d

dt




∫
�t (x3)

FdA


 =

∫
St (x3)

F σ̃ ds for fixed x3, and (14)

∫
St (I )

FσdA =
∫
x3∈I




∫
St (x3)

F σ̃ ds


 dx3. (15)

The proofs of (14) and (15) consist merely of elementary calculus, and may be omitted.

4. Proof of the Theorem

We retain the notation of the previous sections. We will define a time-dependent interval

Jt = [A(t), B(t)] ⊂ I3 (16)

and establish an obvious formula for the time derivative of Vol�t(Jt ). We assume that
the endpointsA(t), B(t) areC1 functions oft . We have

Vol�t(Jt ) =
∫

x3∈Jt
Area�t(x3)dx3, so that

d

dt
Vol�t(Jt ) = B ′(t)Area�t(B(t))

− A′(t)Area�t(A(t))+
∫

x3∈Jt

∂

∂t
Area�t(x3)dx3.

Applying (14) withF ≡ 1, we find that

d

dt
Vol�t(Jt ) = B ′(t)Area�t(B(t))

− A′(t)Area�t(A(t))+
∫

x3∈Jt




∫
St (x3)

σ̃ ds


 dx3.



Collapse of Tubes Carried by 3D Incompressible Flows 297

In view of (15) (withF ≡ 1 onS), this is equivalent to

d

dt
Vol�t(Jt ) = B ′(t)Area�t(B(t))− A′(t)Area�t(A(t))+

∫
St (Jt )

σdA. (17)

Now we bring in the hypothesis that�t moves with a divergence-freeC1 velocity fieldu.
From (6) and (13), we see that(σν−u) ·∇xθ = 0 onSt (Jt ). Thus(σν−u) is orthogonal
to ν, so thatσ = u · ν onSt (Jt ), and (27) may be rewritten as

d

dt
Vol�t(Jt ) = B ′(t)Area�t(B(t))− A′(t)Area�t(A(t))+

∫
St (Jt )

u · νdA. (18)

On the other hand, sinceu = (u1, u2, u3) is divergence-free, the divergence theorem
yields

0 =
∫

�t (Jt )

(∇x · u)dV =
∫

St (Jt )

u · νdA+
∫

�t (B(t))

u3dA−
∫

�t (A(t))

u3dA,

where
∫
dV denotes a volume integral.

Hence, (18) may be rewritten in the form

d

dt
Vol�t(Jt ) =

∫
�t (B(t))

[B ′(t)− u3(x, t)]dA−
∫

�t (A(t))

[A′(t)− u3(x, t)]dA. (19)

This is our final formula for the time derivative of Vol�t(Jt ). It is intuitively clear.
We now pick the time-dependent intervalJt = [A(t), B(t)] ⊂ I3. Let I3 = [a, b],

and lett0 ∈ (0, T ) be a time to be picked below. We define

B(t) = b −
T∫
t

max
x∈Q |u(x, τ )|dτ, (20)

and

A(t) = a +
T∫
t

max
x∈Q |u(x, τ )|dτ. (21)

We are assuming thatu(x, τ ) is continuous onQ×[0, T ), and that
T∫
0

max
x∈Q |u(x, τ )|dτ <

∞. It follows thatA(t), B(t) areC1 functions on[0, T ), and that

a ≤ A(t) < B(t) ≤ b for t ∈ [t0, T ), (22)

provided we pickt0 close enough toT . We pickt0 so that (22) holds. Thus,�t(Jt ) ⊂ Q

for t ∈ [t0, T ). Immediately from (20), (21), we obtain

B ′(t) = −A′(t) = max
x∈Q |u(x, t)| ≥ max

x∈�t (A(t))∪�t (B(t))
|u3(x, t)| (23)

(recallu = (u1, u2, u3)).
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From (19) and (23) we see at once that

d

dt
Vol�t(Jt ) ≥ 0 for t ∈ [t0, T ). (24)

On the other hand, (4) and (22) show that Vol�t0(Jt0) > 0. Consequently,

lim inf
t→T− Vol�t ≥ lim inf

t→T− Vol�t(Jt ) ≥ Vol�t0(Jt0) > 0.

The proof of our theorem is complete.��
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