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Abstract: The norm convergence of the Trotter–Kato product formula is established
with ultimateoptimal error bound for the selfadjoint semigroup generated by the operator
sum of two selfadjoint operators. A generalization is also given to the operator sum of
several selfadjoint operators.

1. Introduction

The present note is an addendum to the recent paper [1] by the first two authors. The aim
is to prove the norm convergence of the Trotter–Kato product formula for the selfadjoint
semigroup withultimate error bound.

To refer to some items in that paper we shall write, for instance, Lemma 2.1 in [1] as
Lemma I.2.1, Eq. (3.2) in [1] as (I.3.2), Ref. [4] in [1] as [I 4], and so on.

To formulate our new theorems, again consider real-valued, Borel measurable func-
tionsf on [0,∞) satisfying

0 ≤ f (s) ≤ 1, f (0) = 1, f ′(0) = −1. (1.1)

Some examples of functions satisfying (1.1) are

f (s) = e−s , f (s) = (1 + k−1s)−k, k > 0. (1.2)

We are interested in those functionsf which satisfy not only (1.1) but also that for
every smallε > 0 there exists a positive constantδ = δ(ε) < 1 such that

f (s) ≤ 1 − δ(ε), s ≥ ε, (1.3)

and that for some fixed constantκ with 1 < κ ≤ 2,

[f ]κ := sup
s>0

|f (s) − 1 + s|
sκ

< ∞. (1.4)
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A functionf (s) satisfying (1.1) has property (1.3), if it is non-increasing. Of course, the
functions in (1.2) have properties (1.3) and (1.4). Condition (1.3) is necessary. For this
account and some further remarks on conditions (1.3) and (1.4) we refer to [1].

Then we can show the following theorem.

Theorem 1. Let f and g be functions having properties (1.3) and (1.4) with κ = 2 as
well as (1.1). If A and B are nonnegative selfadjoint operators in a Hilbert space H
with domains D[A] and D[B] such that the operator sum C := A+B is selfadjoint on
D[C] = D[A] ∩ D[B], then it holds in operator norm that

‖[g(tB/2n)f (tA/n)g(tB/2n)]n − e−tC‖ = O(n−1),

‖[f (tA/n)g(tB/n)]n − e−tC‖ = O(n−1), n → ∞.
(1.5)

The convergence is uniform on each compact t-interval in the closed half line [0,∞),
and further, if C is strictly positive, i.e. C ≥ η for some constant η > 0, uniform on the
whole closed half line [0,∞).

Taking, for instance,f (s) = g(s) = e−s in (1.2), we have the following

Corollary 1. For nonnegative selfadjoint operators A and B whose operator sum C :=
A + B is selfadjoint on D[C] = D[A] ∩ D[B] it holds in operator norm that

‖(e−tB/2ne−tA/ne−tB/2n)n − e−tC‖ = O(n−1),

‖(e−tA/ne−tB/n)n − e−tC‖ = O(n−1), n → ∞,
(1.6)

uniformly on each compact t-interval in [0,∞), and further, if C is strictly positive,
uniformly on [0,∞).

It is with error boundO(n−1/2) that this theorem has first been proved in [1] whenf

andg satisfy (1.4) with 3/2 ≤ κ ≤ 2 as well as (1.1) and (1.3), though with convergence
uniform on each compactt-interval in(0,∞), and further, forC strictly positive, on the
half line [T ,∞) for everyT > 0. The error boundO(n−1) obtained in Theorem 1 turns
out to be optimal and ultimate, though withκ = 2.

Therefore Theorem 1does properly extend and contain, now with optimal error
bound, all the known related results, not only in the abstract case such as in Ro-
gava [I 21], Ichinose–Tamura [I 11, I 13] and Neidhardt–Zagrebnov [I 16, I 17, I 18],
but also for the Schrödinger operators such as in Helffer [I 6], Dia–Schatzman [I 3],
Ichinose–Takanobu [I 7, I 8], Doumeki–Ichinose–Tamura [I 4], Ichinose–Tamura [I 12]
and Ichinose–Takanobu [I 9, I 10]. Indeed, in all these cases, the operator sum of two
selfadjoint operators concerned there is selfadjoint. A little more detailed account of
these facts is referred to in the Introduction in [1].

Next, we want to give a generalization to the case of the sum ofm selfadjoint operators
A1, A2, ..., Am in H. Then the product formula

lim
n→∞(e−tA1/ne−tA2/n · · · e−tAm/n)n = e−tC, n → ∞,

in strong operator topology was already shown by Kato–Masuda [2], whenC is even
the form sum ofA1, A2, · · · , Am which is selfadjoint.

In this note we content ourselves to show the following theorem, though it only deals
with the symmetric product case.
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Theorem 2. Let f1, · · · , fm be functions having properties (1.3) and (1.4) with κ = 2
as well as (1.1). IfA1, · · · , Am aremnonnegative selfadjoint operators in a Hilbert space
H with domains D[A1], · · · ,D[Am] such that the operator sum C := A1 + · · · + Am

is selfadjoint on D[C] = D[A1] ∩ · · · ∩ D[Am], then it holds in operator norm that

‖[fm(tAm/2n) · · · f2(tA2/2n)f1(tA1/n)f2(tA2/2n) · · · fm(tAm/2n)]n − e−tC‖
= O(n−1), n → ∞. (1.7)

The convergence is uniform on each compact t-interval in the closed half line [0,∞),
and further, if C is strictly positive, i.e. C ≥ η for some constant η > 0, uniform on the
whole closed half line [0,∞).

To prove our theorems we make essential use of Lemma I.2.1, the operator-norm
version of Chernoff’s theorem with error bound, proved in [1].

Theorems 1 and 2 are shown in Sects. 2 and 3. Section 4 remarks optimality of the
new error boundO(n−1).

2. Proof of Theorem 1

(a) The symmetric product case. We are quickly jumping to the circumstances around
(I.3.6) in the proof of this case of the theorem in [1]. So recall the notationSt =
t−1(1 − F(t)) with F(t) = g(tB/2)f (tA)g(tB/2) as well as (I.3.2).

By Lemma I.2.1 withα = 1, it suffices to show that

‖(1 + St )
−1 − (1 + C)−1|| = O(t), t ↓ 0. (2.1)

We have
(1 + St )

−1 − (1 + C)−1 = (1 + St )
−1(C − St )(1 + C)−1. (2.2)

The new idea is to iterate this formula (2.2) with help of its adjoint form. Then we get

(1 + St )
−1 − (1 + C)−1

= ((1 + C)−1 + [(1 + St )
−1 − (1 + C)−1])(C − St )(1 + C)−1

= (1 + C)−1(C − St )(1 + C)−1

+ [(C − St )(1 + C)−1]∗(1 + St )
−1(C − St )(1 + C)−1

≡ R′
1(t) + R′

2(t).

(2.3)

First, for the second term in the last member of (2.3), we have, using (I.3.8),

R′
2(t) = [K−1/2

t (C − St )(1 + C)−1]∗(1 + Qt)
−1[K−1/2

t (C − St )(1 + C)−1].
What is actually proved in Lemma I.3.2 is

‖K−1/2
t (C − St )(1 + C)−1‖ = O(t1/2).

By this bound and Lemma I.3.1, we have the bound

‖R′
2(t)‖ = O(t). (2.4)
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Next, the first term can be represented (cf. (I.3.12)) as

R′
1(t) = (1 + C)−1(A − At)(1 + C)−1 + (1 + C)−1(B − Bt/2)(1 + C)−1

+ (1 + C)−1( t
4Bt/2(1 − tAt )Bt/2 + t

2(AtBt/2 + Bt/2At)
)
(1 + C)−1

≡ R′
11(t) + R′

12(t) + R′
13(t).

(2.5)
In the next lemma we prove all the threeR′

1j (t) in the last member of (2.5) have norm
of orderO(t).
Lemma 1.

‖R′
11(t)‖ ≤ a2[f ]2t, ‖R′

12(t)‖ ≤ 2−1a2[g]2t, ‖R′
13(t)‖ ≤ da2t, (2.6)

with a constant d independent of t > 0.

Proof. I. Just in the same way as in (I.3.1), sinceC is a selfadjoint and so closed operator,
by the closed graph theorem there is a positive constanta such that

‖(1 + A)(1 + C)−1‖ = ‖(1 + C)−1(1 + A)‖ ≤ a,

‖(1 + B)(1 + C)−1‖ = ‖(1 + C)−1(1 + B)‖ ≤ a.
(2.7)

ThereforeR′
11(t) is rewritten as

R′
11(t) = [(1 + C)−1(1 + A)][(1 + A)−1 − (1 + A)−2(1 + At)][(1 + A)(1 + C)−1],

so that by (2.7)

‖R′
11(t)‖ ≤ a2‖(1 + A)−1 − (1 + A)−2(1 + At)‖.

On the other hand, we have by our assumption onf

‖(1 + A)−1 − (1 + A)−2(1 + At)‖ = sup
λ≥0

∣∣∣∣ 1

1 + λ
−
(
1 + 1 − f (tλ)

t

)
/(1 + λ)2

∣∣∣∣
= t sup

λ≥0

( λ

1 + λ

)2 |f (tλ) − 1 + tλ|
t2λ2

≤ [f ]2t.
Thus we get the bound‖R′

11(t)‖ ≤ a2[f ]2t .
II. For R′

12(t), the proof is the same as forR′
11(t). We have only to note that

R′
12(t) = [(1+ C)−1(1+ B)][(1+ B)−1 − (1+ B)−2(1+ Bt/2)][(1+ B)(1+ C)−1].

III. For R′
13(t) we have

R′
13(t) = t

4
[(1 + C)−1(1 + B)][(1 + B)−1Bt/2]

· f (tA)[Bt/2(1 + B)−1][(1 + B)(1 + C)−1]
+ t

2
[(1+C)−1(1+A)][(1+A)−1At ][Bt/2(1+B)−1][(1+B)(1+C)−1]

+ t

2
[(1+C)−1(1+B)][(1+B)−1Bt/2]
· [At(1 + A)−1][(1 + A)(1 + C)−1].
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Then by (2.7) with the constantsa0, b0 introduced in (I.3.14), we get the bound

‖R′
13(t)‖ ≤ (a0b0 + b2

0/4)a2t.

This completes the proof of Lemma 1, ending the proof of the symmetric product
case. ��

(b) The non-symmetric product case. The proof in this case in [1] also is valid, as
mentioned at the beginning of the proof of this case there, because Lemma I.2.1 holds
for everyα with 0 < α ≤ 1.

This ends the proof of Theorem 1.

3. Proof of Theorem 2

Let
Cj = A1 + A2 + · · · + Aj , j = 1,2, · · · ,m. (3.1)

Here Cj may be understood simply as the operator sum ofj selfadjoint operators
A1, A2, · · · , Aj with domainD[Cj ] := D[A1] ∩ D[A2] ∩ · · · D[Aj ], which may
not be selfadjoint if 1< j < m, or as the form sum of thesej operators which is
selfadjoint. Note thatC1 = A1 andCm = C. Put, with the notations (I.3.2),

Aj,t = t−1[1 − fj (tAj )],
Cj,t = t−1[1 − fj (tAj/2) · · · f2(tA2/2)f1(tA1)f2(tA2/2) · · · fj (tAj/2)],
Kj,t = 1 + Cj−1,t + Aj,t/2 − t

4
A2

j,t/2

(3.2)

for j = 2,3, · · · ,m. There will be below noCt , whichCm,t differs from. Moreover, we
put

Qj,t = t2

4
K

−1/2
j,t Aj,t/2Cj−1,tAj,t/2K

−1/2
j,t

− t

2
K

−1/2
j,t (Cj−1,tAj,t/2 + Aj,t/2Cj−1,t )K

−1/2
j,t .

Then we have the identity

1 + Cj,t = K
1/2
j,t (1 + Qj,t )K

1/2
j,t , (3.3)

and the following estimate may be proved by the same reasoning as in the proof of
Lemma I.3.1:

‖(1 + Qj,t )
−1‖ ≤ 2/(3 − √

5). (3.4)

Similar to the proof of our Theorem 1, all we have to do now is to show the following
two estimates:

‖(1 + C)−1(C − Cm,t )(1 + C)−1‖ = O(t),

and
‖K−1/2

m,t (C − Cm,t )(1 + C)−1‖ = O(t1/2).
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To this end, we prove for eachj = 1,2, · · · ,m the following estimates:

(a)j ‖(1 + C)−1(Cj − Cj,t )(1 + C)−1‖ = O(t),

(b)j ‖K−1/2
j,t (Cj − Cj,t )(1 + C)−1‖ = O(t1/2),

(c)j ‖Cj,t (1 + C)−1‖ = O(1).

The proof is done by induction onj . Notice that for each inductive stepj , we have,
similarly to (I.3.8) and (I.3.12), the following identity:

Cj+1 − Cj+1,t = (Cj − Cj,t ) + (Aj+1 − Aj+1,t/2)

+ t

4
Aj+1,t/2(1 − tCj,t )Aj+1,t/2

+ t

2
(Cj,tAj+1,t/2 + Aj+1,t/2Cj,t )

(3.5)

as operators onD[C] and the estimate

‖K−1/2
j,t K

1/2
j−1,t‖ ≤

√
2/(3 − √

5). (3.6)

Here we can see (3.6) from (3.3), (3.4) with definitions (3.1) and (3.2) forj = 2, · · ·m,
notingKj,t ≥ 1 + Cj−1,t and settingK1,t = 1 + C1,t = 1 + A1,t . As in the proof of
Theorem 1, sinceC is a selfadjoint and so closed operator, we have again by the closed
graph theorem

‖(1 + Aj)(1 + C)−1‖ ≤ a, j = 1,2, · · · ,m, (3.7)

with some positive constanta.
For j = 1, the estimates (a)1 and (b)1 are trivial. The estimate (c)1 is also obvious.

Assume that the estimates (a)j , (b)j and (c)j are valid. Then we use

Cj+1,t (1 + C)−1 = Cj+1(1 + C)−1 + (Cj+1,t − Cj+1)(1 + C)−1 (3.8)

to show the estimate (c)j+1. The first term on the right-hand side of (3.8) is bounded
in view of (3.7) and by induction hypothesis (c)j . We use (3.5) and (c)j to estimate the
second term. By analogous arguments used to prove our Theorem 1, the identity (3.5)
gives us the estimate (a)j+1 and, together with (3.6), the estimate (b)j+1. Details of these
estimates are now some routine calculations. Thus we have proved the estimates (a)j ,
(b)j and (c)j for all j = 1,2, · · · ,m, ending the proof of Theorem 2.

4. Optimality of the Error Bound

In this section, we want to note that the new error boundO(n−1) in Theorem 1 is optimal.
We consider withf (s) = g(s) = e−s first the non-symmetric and next symmetric
product case.

(a)The non-symmetric product case. For the time being, letA andB be simply bounded
operators. Then by the Baker–Campbell–Hausdorff formula (e.g. [5, 3]) we have for
small|t |
e−tAe−tB = exp

[−t (A + B) + t2

2 [A,B] − t3

6 [A − B, 1
2[A,B]] + Op(|t |4)

]
, (4.1)
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with [A,B] = AB − BA, where and belowOp(|t |k), for k > 0, means some bounded
operator with norm of orderO(|t |k). Then

N(t) := (e−tAe−tB)1/t = exp
[−(A + B) + t

2[A,B] + Op(|t |2)
]
.

We understandN(0) = e−(A+B) and have

E1(A;B) := d

dt
N(t)|t=0 = 1

2

∞∑
k=1

(−1)k−1

k!
k∏

j=1

(A+B)j−1[A,B](A+B)k−j , (4.2)

of which the right-hand side is norm-convergent and can be a non-zero operator with
bound 2−1‖[A,B]‖e‖A+B‖, if A andB do not commute with each other.

It follows that

N(t) = e−(A+B) + tE1(A;B) + Op(t
2),

so that witht = 1/n,

(e−A/ne−B/n)n = N(1/n)n = e−(A+B) + n−1E1(A;B) + Op(n
−2). (4.3)

Thus we have seen that, in the non-symmetric case, the error boundO(n−1) is optimal.

(b) The symmetric product case. We have from (4.1),

e−tB/2e−tAe−tB/2 = exp
[
−t (A + B) − t3

24[2A + B, [A,B]] + Op(|t |4)
]
. (4.4)

Similarly it follows that

S(t) := (e−tB/2e−tAe−tB/2)1/t

= exp
[−(A + B) − t2

24[2A + B, [A,B]] + Op(|t |3)
]
.

Here we understandS(0) = e−(A+B) and havedS(t)/dt |t=0 = 0, so that witht = 1/n,

(e−B/2ne−A/ne−B/2n)n = S(1/n)n = e−(A+B) + Op(n
−2). (4.5)

Hence, in the symmetric case, the optimal error bound would appear to be of order
O(n−2). But it is not.

In fact, in this case also the optimal error boundis just of orderO(n−1). In the
following example we shall see that there exist unbounded nonnegative selfadjoint op-
eratorsA andB in a Hilbert spaceH such that the operator sumA+B is selfadjoint on
D[A] ∩ D[B] and the following lower estimate holds forn large:

‖e−t (A+B) − (e−tB/2ne−tA/ne−tB/2n)n‖ ≥ L(t)n−1,

whereL(t) is a positive continuous function oft > 0, independent ofn.
We are using the same idea as in [4].



506 T. Ichinose, H. Tamura, H. Tamura, V. A. Zagrebnov

Example. Let H = ⊕∞
k=1Hk be the direct sum of a countable family of Hilbert spaces

Hk := R2 with inner product(· , ·)k. It has the inner product(z, w) = ∑∞
k=1(zk, wk)k,

for z = (zk)k∈N andw = (wk)k∈N in H.
Let S, T andE be the matrices

S =
(

1 0

0 −1

)
, T =

(
0 1

1 0

)
, E =

(
1 0

0 1

)
. (4.6)

Note that
ST + T S = O, S2 = T 2 = E. (4.7)

For eachk, define two bounded nonnegative selfadjoint operators

Ak = k(S + E), Bk = k(S cosθk + T sinθk + E) (4.8)

onHk, where the parametersθk ∈ (0, π/2] are so chosen that

cosθk = 1 − εk, εk = 1/2k2. (4.9)

Then consider two unbounded nonnegative selfadjoint operators

A = (Ak)k∈N, B = (Bk)k∈N (4.10a)

in H with domains

D[A] =
{
z = (zk)k∈N;

∑
k

‖Akzk‖2 < ∞
}
,

D[B] =
{
z = (zk)k∈N;

∑
k

‖Bkzk‖2 < ∞
}
,

(4.10b)

and their operator sumA + B = (Ak + Bk)k∈N with domainD[A] ∩ D[B], which is
symmetric and nonnegative.

In the following two propositions we shall see that these operators constitute an
example where the lower error bound in the symmetric product case is also justL(t)n−1

with a positive continuous functionL(t) of t > 0.

Proposition 1. A andB have the same domain, and the operator sumA+B is selfadjoint
on D[A] ∩ D[B] = D[A] = D[B].
Proof. For eachk we have

Ak = 2k

(
1 0

0 0

)
, Bk = 2k

(
cos2(θk/2) cos(θk/2) sin(θk/2)

cos(θk/2) sin(θk/2) sin2(θk/2)

)
,

so that
Ak + Bk = 2k[E + cos(θk/2)(S cos(θk/2) + T sin(θk/2))]. (4.11)

Ak +Bk has eigenvalues 2k(1±cos(θk/2)), and can be diagonalized with the orthogonal
matrix

Pk =
(

cos(θk/4) sin(θk/4)

− sin(θk/4) cos(θk/4)

)
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as

Pk(Ak + Bk)P
−1
k = 2k

(
1 + cos(θk/2) 0

0 1− cos(θk/2)

)
,

so that

Pk(Ak + Bk)
2P−1

k = (4k)2

(
cos4(θk/4) 0

0 sin4(θk/4)

)
.

To show Proposition 1, we have only to show that

‖Bz‖2 ≤ 2‖Az‖2 + 2‖z‖2, z ∈ D[A], (4.12a)

‖Az‖2 ≤ 1
2‖(A + B)z‖2 + 1

2‖z‖2, z ∈ D[A] ∩ D[B], (4.12b)

for it also follows from (4.12ab) that

‖Az‖ ≤ (
√

2 + 1)(‖Bz‖ + ‖z‖), z ∈ D[B].

To do so it suffices to show that forzk = t (xk, yk) ∈ R2,

‖Bkzk‖2
k ≤ 2‖Akzk‖2

k + 2‖zk‖2
k, (4.13a)

‖Akzk‖2
k ≤ 1

2‖(Ak + Bk)zk‖2
k + 1

2‖zk‖2
k. (4.13b)

We get (4.13a) forzk = t (xk, yk) ∈ R2 as

‖Bkzk‖2
k = (zk, B

2
k zk)k = (2k)2(xk cos(θk/2) + yk sin(θk/2)

)2
≤ 2(2k)2(xk)

2 + εk(2k)
2(yk)

2 ≤ 2‖Akzk‖2
k + 2‖zk‖2

k.

We get (4.13b) withwk = t (uk, vk) = Pkzk as

‖Akzk‖2
k = (wk, PkA

2
kP

−1
k wk)k ≤ 2(2k)2((uk)

2 cos2(θk/4) + (vk)
2 sin2(θk/4)

)
≤ 1

2

(
(4k)2 cos4(θk/4) + 1

)
(uk)

2 + 1
2

(
(4k)2 sin4(θk/4) + 1

)
(vk)

2

= 1
2(wk, Pk(Ak + Bk)

2P−1
k wk)k + 1

2(wk,wk)k

= 1
2‖(Ak + Bk)zk‖2

k + 1
2‖zk‖2

k.

��
Proposition 2. There is a positive bounded continuous function L(t) of t > 0 indepen-
dent of n such that the lower estimate

‖e−t (A+B) − (e−tB/2ne−tA/ne−tB/2n)n‖ ≥ L(t)n−1 (4.14)

holds for every t > 0 and n ≥ 1.
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Proof. Note that the inequalities

‖e−t (A+B) − (e−tB/2ne−tA/ne−tB/2n)n‖
≥ ‖e−t (An+Bn) − (e−tBn/2ne−tAn/ne−tBn/2n)n‖n

≥ 1
2|Tr[e−t (An+Bn) − (e−tBn/2ne−tAn/ne−tBn/2n)n]|

(4.15)

hold, where the norm in the first member means the operator norm of bounded operators
on H, that in the second member the operator norm onHn = R2 and Tr in the third
member the trace of 2× 2 matrices.

For later use, let us note for2 = S cosθ + T sinθ the following formulas:

e−s2 = E coshs − 2 sinhs, Tre−s2 = 2 coshs. (4.16)

To get the first formula in (4.16), expand the exponential and use22 = E , a conse-
quence of (4.7). The second formula follows from the first one and Tr2 = 0.

Thanks to (4.11) and the above formulas, we get

Tre−t (An+Bn) = 2e−2nt cosh
(
2nt cos(θn/2)

)
. (4.17)

for n large. On the other hand, the second trace in the last member of (4.15) is, by (4.16),
equal to

Tr
(
e−tAn/2ne−tBn/ne−tAn/2n)n = e−2ntTr

(
e−tS/2e−t (S cosθn+T sinθn)e−tS/2)n

= e−2ntTr
(
anE − bnS − cnT

)n
,

wherean, bn andcn are positive numbers defined by

an = cosh2 t + sinh2 t cosθn = cosh 2t − εn sinh2 t,

bn = sinht cosht (1 + cosθn),

cn = sinht sinθn.

(4.18)

Since they satisfy the identity

a2
n − b2

n − c2
n = 1,

there exist positive numbersKn and4n such that

an = coshKn, bn = sinhKn cos4n, cn = sinhKn sin4n. (4.19)

Setting s = Kn and θ = 4n in (4.16), we have

Tr
(
e−tBn/2ne−tAn/ne−tBn/2n)n = e−2ntTr

(
e−Kn(S cos4n+T sin4n)

)n
= 2e−2nt coshnKn.

(4.20)

Now, with θn or εn in (4.9) let us introduce positive numbersδn such that

δn = 2 − 2 cos(θn/2), or εn = 2δn − 1
2δ

2
n. (4.21)
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Note thatεn/2 ≤ δn ≤ εn. By (4.18) and (4.19) we have

coshKn − cosh(2 − δn)t

=(1 − 1
2εn) cosh 2t + 1

2εn − cosh(2 − δn)t

=
∫ t

0
(t − s) d2

ds2 [(1 − 1
2εn) cosh 2s + 1

2εn − cosh(2 − δn)s]ds

=
∫ t

0
(t − s)[4(1 − 1

2εn) cosh 2s − (2 − δn)
2 cosh(2 − δn)s]ds

≥(2δn − 2δ2
n + 1

2δ
3
n)

∫ t

0
(t − s)(cosh 2s − 1)ds.

(4.22)

Here the last step is due to the convexity of the function coshs:

cosh
(
(1 − 1

2δn)2s + 1
2δn0s

) ≤ (1 − 1
2δn) cosh 2s + 1

2δn cosh 0s.

We see from (4.9) and (4.21),

2δn − 2δ2
n + 1

2δ
3
n = δn(2 − εn) ≥ εn(1 − 1

2εn) ≥ 3/8n2,

and ∫ t

0
(t − s)(cosh 2s − 1)ds = 1

4(cosh 2t − 1 − 2t2).

We are about to use the mean value theorem: Letb > a. Then for real-valued smooth
functionsϕ(s) andψ(s) there existsξ with a < ξ < b such that

ϕ(b) − ϕ(a)

ψ(b) − ψ(a)
= ϕ′(ξ)

ψ ′(ξ)
.

Note (4.22) implies thatKn > (2 − δn)t for t > 0. Then we get with (4.17) and (4.20)
that, for someMn with (2 − δn)t < Mn < Kn,

1
2Tr

[(
e−tBn/2ne−tAn/ne−tBn/2n)n−e−t (An+Bn)

]
= e−2nt(coshnKn − coshn(2 − δn)t

)
= e−2ntn

sinhnMn

sinhMn

(
coshKn − cosh(2 − δn)t

)
≥ e−2nt e(n−1)Mn 3

32n (cosh 2t − 1 − 2t2),

where we have used (4.22) and the inequality sinhns/ sinhs ≥ e(n−1)s . Since

(n − 1)Mn ≥ (n − 1)(2 − δn)t ≥ (n − 1)(2 − 1/2n2)t ≥ 2(n − 1)t − t/8,

we have proved (4.14) withL(t) = 3
32e

−17t/8(cosh 2t − 1 − 2t2). This ends the proof
of Proposition 2. ��
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