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Abstract: The norm convergence of the Trotter—Kato product formula is established
with ultimateoptimal error bound for the selfadjoint semigroup generated by the operator
sum of two selfadjoint operators. A generalization is also given to the operator sum of
several selfadjoint operators.

1. Introduction

The present note is an addendum to the recent paper [1] by the first two authors. The aim
is to prove the norm convergence of the Trotter—Kato product formula for the selfadjoint
semigroup withultimate error bound.

To refer to some items in that paper we shall write, for instance, Lemma 2.1 in [1] as
Lemmal.2.1, Eq. (3.2) in [1] as (1.3.2), Ref. [4] in [1] as [l 4], and so on.

To formulate our new theorems, again consider real-valued, Borel measurable func-
tions f on [0, co) satisfying

0<f»=<1 fO=1 [fO=-1 1.1
Some examples of functions satisfying (1.1) are
f)=e*, f&=QA+k17* k>o0. (1.2)

We are interested in those functiofisvhich satisfy not only (1.1) but also that for
every smalk > 0 there exists a positive constant §(¢) < 1 such that

f)<1-46(), s=e¢, 1.3
and that for some fixed constanwith 1 < « < 2,
[f(s) — 14|
p————— < ©

SK

[f]c :=su (L4

s>0
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Afunction f (s) satisfying (1.1) has property (1.3), if it is non-increasing. Of course, the
functions in (1.2) have properties (1.3) and (1.4). Condition (1.3) is necessary. For this
account and some further remarks on conditions (1.3) and (1.4) we refer to [1].

Then we can show the following theorem.

Theorem 1. Let f and g be functions having properties (1.3) and (1.4) withx = 2 as
well as (1.1). If A and B are nonnegative selfadjoint operators in a Hilbert space H
with domains D[A] and D[ B] such that the operator sum C := A + B isselfadjoint on
D[C] = D[A] N D[B], thenit holdsin operator norm that

Ig(tB/2n) f(tA/m)g(tB/2m)]" —e~'C|| = O(n™Y),

n —tC -1 )

I[f(tA/n)gB/m)]" —e™ " || = O0(®n™7), n— oo.
The convergence is uniform on each compact ¢-interval in the closed half line [0, co),
and further, if C isstrictly positive, i.e. C > n for some constant n > 0, uniformon the
whole closed half line [0, co).

Taking, for instancef (s) = g(s) = ¢~* in (1.2), we have the following

Corollary 1. For nonnegative selfadjoint operators A and B whose operator sumC :=
A + B issdfadjoint on D[C] = D[A] N D[B] it holdsin operator norm that

”(e—zB/Zne—zA/ne—tB/Zn)n _ e—lC” — O(l’l_l), (1 6)
e/ meBImr — eI = 0™, n— oo, '

uniformly on each compact ¢-interval in [0, co), and further, if C is strictly positive,
uniformly on [0, o).

It is with error boundo (n~1/2) that this theorem has first been proved in [1] when
andg satisfy (1.4) with 32 < « < 2 aswellas (1.1) and (1.3), though with convergence
uniform on each compactinterval in(0, co), and further, foiC strictly positive, on the
half line [T, oo) for everyT > 0. The error bound (n~1) obtained in Theorem 1 turns
out to be optimal and ultimate, though with= 2.

Therefore Theorem #oes properly extend and contain, now with optimal error
bound, all the known related results, not only in the abstract case such as in Ro-
gava [l 21], Ichinose-Tamura [l 11, 113] and Neidhardt—Zagrebnov [l 16, 117, 118],
but also for the Schrédinger operators such as in Helffer [I 6], Dia—Schatzman [l 3],
Ichinose—Takanobu [l 7, | 8], Doumeki—Ichinose—Tamura [l 4], Ichinose—Tamura [| 12]
and Ichinose—Takanobu [19, 110]. Indeed, in all these cases, the operator sum of two
selfadjoint operators concerned there is selfadjoint. A little more detailed account of
these facts is referred to in the Introduction in [1].

Next, we wantto give a generalization to the case of the sumsaffadjoint operators
A1, Ag, ..., Ay in H. Then the product formula

lim (eflAl/neftAz/n L. eflAm/n)n — eftC, n — oo,
n—oo
in strong operator topology was already shown by Kato—Masuda [2], Whisneven
the form sum ofd1, Ao, ---, A,, which is selfadjoint.
In this note we content ourselves to show the following theorem, though it only deals
with the symmetric product case.
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Theorem 2. Let f1, ---, f,» befunctions having properties (1.3) and (1.4) withx = 2
aswellas(1.1).1f A1, - - - , A, arem nonnegative selfadjoint operatorsinaHilbert space
H with domains D[A1], - - - , D[A,,] such that the operator sumC := A1+ --- + Ay,

isselfadjoint on D[C] = D[A1] N --- N D[A,,], then it holds in operator norm that

ILfon (tAm/20) - -+ fo(tAz/2n) fr(tAr/n) fo(tAn/2n) - fru(tAp/20)]" — '€
=0n™Y, n—> 0. (1.7)

The convergence is uniform on each compact ¢-interval in the closed half line [0, c0),
and further, if C isstrictly positive, i.e. C > n for some constant » > 0, uniform on the
whole closed half line [0, co).

To prove our theorems we make essential use of Lemma 1.2.1, the operator-norm
version of Chernoff's theorem with error bound, proved in [1].

Theorems 1 and 2 are shown in Sects. 2 and 3. Section 4 remarks optimality of the
new error bound (n—1).

2. Proof of Theorem 1

(a) The symmetric product case. We are quickly jumping to the circumstances around
(1.3.6) in the proof of this case of the theorem in [1]. So recall the notasion=
=11 — F(@t)) with F(r) = g(tB/2) f(tA)g(tB/2) as well as (1.3.2).

By Lemma I.2.1 withw = 1, it suffices to show that

IA+S)t—a+0 Y =0@, ti0. .1

We have
A+ t—a+ot=a+snhc-sna+ot (2.2)

The new idea is to iterate this formula (2.2) with help of its adjoint form. Then we get
A+spt-a+ot
=((@+O T+ [A+ ST -A+ONC-sHa+ o)t
=1+0c-sHa+ot 2.3
+UC - SHA+ O A+ 85)7HC —-spa+0)?
= Ry(1) + R5(1).
First, for the second term in the last member of (2.3), we have, using (1.3.8),
Ry(1) = [K; 72(C = S+ O~ @+ 00 UK, VP (C - spa+ oL,
What is actually proved in Lemma 1.3.2 is
Ik, Y2(C = spa+ )Y = 0V,

By this bound and Lemma 1.3.1, we have the bound

IRZ()] = O®). (2.4
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Next, the first term can be represented (cf. (1.3.12)) as
RO =A+0O " A-A4)A+ O+ A+ O B - B A +0)7?
+(1+ O YEB 21— tA)Bij2 + 5(AiBej2 + Bij2An)(L+ C) 7t

= R1(t) + Ry5(t) + Ri3(1).
(2.5
In the next lemma we prove all the thrﬁgzj (1) inthe last member of (2.5) have norm
of orderO(¢).
Lemma 1.

IRl < a®[f1at, IR0l < 27 a%[glat, IR13(0)Il < da’t, (2.6)
with a constant d independent of r > 0.

Proof. I. Justinthe same way asin (1.3.1), sicés a selfadjoint and so closed operator,
by the closed graph theorem there is a positive conatanth that

A+ AA+O =110+ 07 A+ Al <a, 7
I+ B)A+O) 7 =1A+0O7 1+ B)| <a. '
ThereforeR’(?) is rewritten as
Ry =[AL+ O A+ DA+ O™ — A+ A2+ A)IA+ AL+ O,
so that by (2.7)

IR (DI < a®(L+ A7 — A+ A2+ A
On the other hand, we have by our assumptiorfon

A+ A) T — @+ 4) 721+ A =supl i

1— @A) 2
= <1+—; )/@+ 1)

A N2 fA) =141
) 12)2

=1tsu
)»ZO 1+)\.

< [flat.

Thus we get the bounglR} ()| < a®[ fot.
Il. For R,(1), the proof is the same as f@ ;(r). We have only to note that

R0 =11+ 0O) 1A+ BIA+B) ™ =1+ B) 2L+ B )Ill(L+BA+ 0.
lll. For R4(t) we have

Ri5(t) = 3[(1 + 07T+ BIA+ B) B2

CfEAB 2L+ B+ BA+ )Y
[(14+0) " A+ AA+A) LANB 21+ B) M+ B)A+0)

[(14+0) XA+ B+ B) 1B, 2]

I\JI“*I\)IN

JAA+ ATIA+ A+ 0.
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Then by (2.7) with the constantg, bg introduced in (1.3.14), we get the bound
IR (DI < (aoho + b§/Ha?t.

This completes the proof of Lemma 1, ending the proof of the symmetric product
case. O

(b) The non-symmetric product case. The proof in this case in [1] also is valid, as
mentioned at the beginning of the proof of this case there, because Lemma 1.2.1 holds
for everya with 0 < « < 1.

This ends the proof of Theorem 1.

3. Proof of Theorem 2
Let
Ci=A1+Az+---+Aj, j=12---,m. 3.1

Here C; may be understood simply as the operator suny afelfadjoint operators
Az, Ap, ---, Aj with domainD[C;] := D[A1] N D[A2] N --- D[A;], which may
not be selfadjoint if 1< j < m, or as the form sum of thesg operators which is
selfadjoint. Note tha€1 = A; andC,, = C. Put, with the notations (1.3.2),

Aj=t"H1— fi(tA)],
Cj’t _ t_l[]_ _ fj([AJ/Z) . fz(fAZ/z)fl(tAl)f2(tA2/2) e f] (IAJ/Z)]’ (32)
Ki;=1+Cj 1+ Aj2— LAif/z

4
for j =2,3,---, m. There will be below n&;, whichC,, ; differs from. Moreover, we
put
2 1/ ~172
Qji = 7K, ""Aj12Cj-1.A 112K,
o 172 -1/2
- EK-/"/ (Cj-11Aj2+ Aj,z/zcj—l,z)l(j,,/

Then we have the identity

1/2

SR+ 00K 3.3)

gt

1+Cj’[ ZK

and the following estimate may be proved by the same reasoning as in the proof of
Lemma [.3.1:

I+ Q;07Y <2/B3-+5). (3.4

Similar to the proof of our Theorem 1, all we have to do now is to show the following
two estimates:

L+ C)"HC = Cu)X+CO)7H = 0a),

and
—1/2

1Ky ! S(C = Cond)A+O)7Y = 0(Y?).
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To this end, we prove for eagh= 1, 2, - - - , m the following estimates:
(@); IA+C)"HC; = CjnA+O)7H = 0(),
(b); IK;2(Cj = Cin@+O)7Y = 0¥,
(©); IC;. 1+ O = 0.

The proof is done by induction oh Notice that for each inductive stgpwe have,
similarly to (1.3.8) and (1.3.12), the following identity:

Civi1—Cjt1,=(C; —Cj )+ (Ajy1— Aji14/2)

t
+ ZAj+l,t/2(1 —tCj)Ajy11)2 (3.5)

t
+ E(Cj,tAj+1,t/2 + Ajy1,/2C) 1)
as operators of[C] and the estimate

-1/2

1K 2K < V23— V). (3.6)

Here we can see (3.6) from (3.3), (3.4) with definitions (3.1) and (3.2) fer2, - - - m,
notingK;; > 1+ Cj_1, and settingky; = 1+ C1; = 1+ Az;. As in the proof of
Theorem 1, sinc€ is a selfadjoint and so closed operator, we have again by the closed
graph theorem

IA+ADA+C) N <a, j=12--,m, (3.7)

with some positive constant
For j = 1, the estimates (aand (b) are trivial. The estimate (¢)s also obvious.
Assume that the estimates (afb); and (c) are valid. Then we use

Cirt1+ 0O 1=CiaQ+0O) 1+ (Cj1s — CirA+ 072 (3.8)

to show the estimate (g)1. The first term on the right-hand side of (3.8) is bounded

in view of (3.7) and by induction hypothesis {cWVe use (3.5) and (¢)to estimate the
second term. By analogous arguments used to prove our Theorem 1, the identity (3.5)
gives us the estimate () and, together with (3.6), the estimate (b). Details of these
estimates are now some routine calculations. Thus we have proved the estimates (a)
(b); and (c) forall j = 1,2, ---, m, ending the proof of Theorem 2.

4. Optimality of the Error Bound

In this section, we want to note that the new error boarid—1) in Theorem 1 is optimal.
We consider withf (s) = g(s) = e™* first the non-symmetric and next symmetric
product case.

(a) The non-symmetric product case. For the time being, leA andB be simply bounded
operators. Then by the Baker—Campbell-Hausdorff formula (e.g. [5, 3]) we have for
small|z|

e o8 = exp[—1(A+ B) + S[A, Bl — 5[A — B, 3[A, BIl + 0,(11%], (4.1
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with [A, B] = AB — BA, where and beIoW),,(|t|k), for k > 0, means some bounded
operator with norm of orde® (|¢|*). Then

N@) := (e e BYY! = exp[—(A + B) + 5[A, B1 + 0,(119)].
We understan@/ (0) = ¢~ (4*8) and have

d 1
E1(A; B) i= - N(Ol=o= 3>

(—pr-t K - »
—— [[A+B/7HA, BlA+ B, (42)

k=1 j=1

of which the right-hand side is norm-convergent and can be a non-zero operator with
bound 2°1|/[A, B]|le!A* 2!, if A andB do not commute with each other.
It follows that

N@t) = e “+B) L 1E1(A; B) 4 0,1,

so that witht = 1/n,
(e Ame™PIMt = N/ = e WD 407 E1(A; B) + 0,(n %), (43)

Thus we have seen that, in the non-symmetric case, the error lgund) is optimal.
(b) The symmetric product case. We have from (4.1),

¢1B/2g—1A,~1B/2 _ eXp[—t(A +B) — 5124 + B, [A, BI] + 0,,(|t|4)]. (4.4)

Similarly it follows that
S(t) == (e—tB/Ze—tAe—tB/Z)l/t

= exg—(A + B) — 4[24 + B.[A, BI] + 0,(I[%)].
Here we understangi(0) = ¢~ A*8) and havelS(r)/dt|;,—o = 0, so that withr = 1/n,
(e—B/Zne—A/ne—B/Zn)n — S(l/l’l)n — ¢ (A+B) + Op(n—Z). (4.5)

Hence, in the symmetric case, the optimal error bound would appear to be of order
O(n—2). Butitis not.

In fact, in this case also the optimal error bounsljust of orderO(n~1). In the
following example we shall see that there exist unbounded nonnegative selfadjoint op-
eratorsA andB in a Hilbert spacé{ such that the operator sus+ B is selfadjoint on
D[A] N D[B] and the following lower estimate holds fedarge:

e~/ A+B) _ (omtB/21,tA/n,=tB[2myn ) > [ (1)~

’

whereL(t) is a positive continuous function of> 0, independent of.
We are using the same idea as in [4].
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Example. Let H = @72, H, be the direct sum of a countable family of Hilbert spaces
Hy := R? with inner product(-, -);. It has the inner product, w) = 322 ; (zk, i)k,
for z = (zx)ken @aNdw = (wy)ken in H.

Let S, T andE be the matrices

(1 o) (o 1) (1 0)
S = , T= , E= : (4.6)
0 -1 1 0 01

ST+TS=0, $2=T?=E. 4.7
For eachk, define two bounded nonnegative selfadjoint operators

Note that

Ar =k(S+ E), B =k(Scost + T sinfx + E) (4.8)
onHy, where the parametefis € (0, /2] are so chosen that
costy =1— e, & = 1/2k>. (4.9)
Then consider two unbounded nonnegative selfadjoint operators

A = (Ap)keN, B = (Bi)reN (4.109

in H with domains

DIA] = {2 = @oken: Y lAxzil? < oo},
k

(4.10b)
DIBY = {2 = @oken: Y I Bezll? < o0,
k

and their operator sum + B = (A + Bi)ren With domainD[A] N D[B], which is
symmetric and nonnegative.

In the following two propositions we shall see that these operators constitute an
example where the lower error bound in the symmetric product case is algqjust !
with a positive continuous functioh(¢) of t > 0.

Proposition 1. A and B havethesamedomain, and the operator sum A+ B isselfadjoint
on D[A] N D[B] = D[A] = D[B].

Proof. For eachk we have

Ap = 2% (1 0)  Bi— 2% ( cosz(ek-/Z) cos(ek. /2) sin(6; /2)) |
00 cos(6; /2) sin(6y/2) Sin?(6¢/2)

so that
Ak + By = 2k[E + coS6/2)(S cos6/2) + T sin(6x/2))]. (4.11)

Ay + By has eigenvaluesk21+cog6/2)), and can be diagonalized with the orthogonal
matrix

b _ [ CoSO/A)  sinr/4)
~ \=sin6/4) cosb,/d)
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as

1 Or/2 0
Pk(Ak+Bk)Pkl=2k< co/2) )

0 1—co96;/2)

so that

PuAr + BO?PY = (4k)2 (cos“(ek/4) 0 )

0 sirf (6, /4)

To show Proposition 1, we have only to show that

IBzII? < 2| Az|I? + 2l|z||>, z € D[A], (4.129)

IAzI? < 31(A + B)zII® + 31zI%,  z e D[A]IN D[B], (4.12b)

for it also follows from (4.12ab) that
Azl < (V24 D(IBzl + llzI),  z € D[B].
To do so it suffices to show that fex = (x¢, yx) € R?,

I Bezicll2 < 2l AxzicllZ + 2l z 112, (4.13a)
1Akzell? < 311 (Ak + Bozell? + Llzel2. (4.13b)

We get (4.13a) for; = ' (xt, yx) € R as

. 2
I BezillZ = (zi, BEzik = (2k)?(xi COSBi/2) + yi SiN(Bi/2))
< 2(2k)%(x1)? + ek (2% () < 2 | AkzicllZ + 2 11z 1Z-

We get (4.13b) withvy = " (ug, vr) = Przi @s

I AkzellZ = (wi, PeAZPT wik < 20203 ((ui)? cof Gk /4) + (v)? sinP (G /4))
< 1((4k)? cod (@ /B + 1) (up)® + 3((4k)? sin (B /4) + 1) (vp)?
= S(wk, Pe(Ax + BOPP rwik + 3 (we, widk
= SI(Ac + Bzl + SllzelZ.

O

Proposition 2. Thereis a positive bounded continuous function L(¢) of + > 0 indepen-
dent of n such that the lower estimate

||e—t(A+B) _ (e—tB/Zne—tA/ne—lB/Zn)n” > L(t)n_l (414)

holdsfor everyr > Oandn > 1.
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Proof. Note that the inequalities

”efl(A‘i’B) _ (eftB/ZneftA/neftB/Zn)n ”

||e—t(An+Bn) _ (e—tB,,/Zne—tAn/ne—tBn/Zn)n”n (4.15)

v

v

3ITrle™ AntBu) — (¢=1Buf2ng=tAn/ng=tBa/2nyn))

hold, where the norm in the first member means the operator norm of bounded operators
on A, that in the second member the operator nornHgn= R? and Tr in the third
member the trace of 8 2 matrices.

For later use, let us note fak = S cosd + T sind the following formulas:

e N = Ecoshs — A sinhs, Tre™*” = 2 cosh. (4.16)
To get the first formula in (4.16), expand the exponential andAse- E , a conse-

quence of (4.7). The second formula follows from the first one and +r0.
Thanks to (4.11) and the above formulas, we get

Tre ™ (AntBu) = 2,72 cosh(2nt c096,/2)). (4.17)

for n large. On the other hand, the second trace in the last member of (4.15) is, by (4.16),
equal to

Tr(eftAn/ZneftB,,/neftA,l/Zn)" — efznzTr(eftS/Zeft(S cost,+T sine,,)eftS/Z)n
= efz’llTr(a,,E —b,S — ch)n,
wherea,, b, andc, are positive numbers defined by

a, = costf ¢ + sintf t coss, = cosh 2 — &, sink? ¢,
b, = sinht coshr (1 + cosb,), (4.18)
¢, = sinhz sing,,.

Since they satisfy the identity
as - b,zl - c,f =1,
there exist positive numbe#$, and®,, such that
a, = coshk,, b, =sinhkK, cos®,, ¢, =sinhK, sin®,. (4.19
Settings = K,, and 6 = ©,, in (4.16), we have
Tr(e_tB”/Z"e_tA”/"e_tB"/Z")n — €—2nt-|-r(e—Kn(S cos®,+T sin(-),,))"
) (4.20)
= 2¢~ " coshmK,,.

Now, with 8, or g, in (4.9) let us introduce positive numbe¥ssuch that

8y =2—2C0460,/2), OF &, =28, — 382, (4.21)
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Note thats, /2 < §, < ¢,. By (4.18) and (4.19) we have
coshk,, — cosh2 — §,)t

=(1— 3e,)cosh2 + e, — cosh2 — §,)t

t
=/ (t — s);’%[(l — 2e4) cOSh 2 + 3¢, — cos2 — §,)s]ds
0 ‘ (4.22)

t
=f (t — 5)[4(1 — %e,) cosh2 — (2 — §,)% cos2 — 8,)sds
0
t
> (28, — 282 + %5,?)/ (t — s)(cosh 3 — 1)ds.
0

Here the last step is due to the convexity of the function sosh
cosh((1 — 36,)2s + 38,0s) < (1 — 38,) cosh 2 + 38, cosh G.
We see from (4.9) and (4.21),
26, — 262 + 383 = 8,(2— ,) = ea(1 — 3e,) > 3/8n2,
and

t
f (t — s)(cosh 3 — 1)ds = }(cosh2 — 1 — 2r?).
0

We are about to use the mean value theorembLeta. Then for real-valued smooth
functionse(s) andy (s) there existg with a < & < b such that
@(b) — p(a) _ @'&)
V(b)) —ya) Y&

Note (4.22) implies thak, > (2 — §,)t for > 0. Then we get with (4.17) and (4.20)
that, for someV,, with (2 — §,,)r < M,, < K,,,

%Tr[(e—tBn/Zne—tA,,/ne—tB,,/Zn)"_e—t(A,,+B,,)]

_ e—z'”(coshnKn —coshn(2 — 8,)1)
_ont Sll’lhnMn
_ ———"(coshk, — cosh2 — §,)t
€ " sinhM,, ( " ; & )

> ¢ 2= DMn 2 (cosh 2 — 1 — 21%),
where we have used (4.22) and the inequality sintsinhs > ¢~ Since
m-—IOM,>n—-10D2-5)t>m—12— 1/2n2)t >2(n — 1)t —t/8,

we have proved (4.14) with(r) = 3§2e_17’/8(cosh 2 — 1 — 2r%). This ends the proof
of Proposition 2. O
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