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Abstract: We prove a smoothing property for one dimensional time dependent Schrö-
dinger equations with potentials which satisfyV (x) ∼ C|x|k at infinity, k > 2. As an
application, we show that the initial value problem for certain nonlinear Schrödinger
equations with such potentials isL2 well-posed. We also prove a sharp asymptotic
estimate of theLp-norm of the normalized eigenfunctions ofH = −� + V for large
energy.

1. Introduction

We consider the initial value problem for a Schrödinger equation on the lineR:i
∂u

∂t
= (D2+ V (x))u, x ∈ R

1, t ∈ R,

u(0, x) = u0(x), x ∈ R
1,

(1.1)

whereD = −i∂/∂x. We assume thatV (x) satisfies the following assumption. Let

V (j)(x) be thej th derivative ofV (x) and 〈A〉 = (1 + |A|2) 1
2 for a self-adjoint op-

eratorA.

Assumption 1.1.The potential V (x) is real valued and of C3-class. There exists a con-
stant R > 0 such that the following conditions are satisfied for |x| ≥ R:

(1) V (x) is convex.
(2) For j = 1,2,3, |V (j)(x)| ≤ Cj 〈x〉−1|V (j−1)(x)| for some constants Cj .
(3) For k > 2, D1〈x〉k ≤ V (x) ≤ D2〈x〉k , where 0< D1 ≤ D2 <∞.
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We say that V is superquadratic (at infinity) if it satisfies (1), (2)and (3).

Under Assumption 1.1 the operatorD2 + V (x) defined onC∞0 (R) is essentially
self-adjoint inL2(R) and we denote its closure byH . Thus,H is self-adjoint with
the domainD(H) = {u ∈ L2(R) : D2u + V u ∈ L2(R)} and the solution inL2(R)

of (1.1) is given byu(t, x) = e−itH u0(x) in terms of the exponential function ofH .
In this paper, we prove a smoothing property for Eq. (1.1). We then apply it to prove
that the initial value problem for nonlinear Schrödinger equations with superquadratic
potentials is time locallyL2 well-posed, if the nonlinearities are suffciently mild and
spatially localized. We defineθ(k, p) as follows, for 2≤ p ≤ ∞ and 2< k <∞:

θ(k, p) =



1

k

(
1

2
− 1

p

)
, if 2 ≤ p < 4;(

1

4k

)
−
, if p = 4;

1

4
− 1

3

(
1− 1

p

)(
1− 1

k

)
, if 4 < p ≤ ∞,

wherea− denotes any number< a. We writeBs(R) for the Besov spaceBs2,1(R).

Theorem 1.2.Let V satisfy Assumption 1.1. Let 2 ≤ p ≤ ∞ and let α, β ∈ R be such
that α + β ≤ θ(k, p). Then, there exists a constant C > 0 such that

‖g(t)〈i∂/∂t〉α〈H 〉βe−itH u0(x)‖Lp(Rx ,L2(Rt ))
≤ C‖g‖

B
1
4+ 1

2k (R)
‖u0‖L2(Rx)

, (1.2)

for any g ∈ B 1
4+ 1

2k (R) and u0 ∈ L2(R).

The next theorem shows that the orderθ(k, p) of Theorem 1.2 may be replaced by
1

2k
for all 2≤ p ≤ ∞ if the spatial variablex is restricted to a compact interval ofR.

Theorem 1.3.Let V satisfy Assumption 1.1. Let K ⊂ R be compact and let α, β ∈ R

be such that α + β ≤ 1

2k
. Then, there exists a constant C > 0 such that

sup
x∈K

‖g(t)〈i∂/∂t〉α〈H 〉βe−itH u0(x)‖L2(Rt )
≤ C‖g‖

B
1
4+ 1

2k (Rt )
‖u0‖L2(Rx)

(1.3)

for any g ∈ B 1
4+ 1

2k (R) and u0 ∈ L2(R).

Note that〈i∂/∂t〉α〈H 〉βe−itH = 〈i∂/∂t〉α+βe−itH = 〈H 〉α+βe−itH in (1.2) and (1.3).
The following corollary is readily obtained from Theorem 1.2 and Theorem 1.3 with the
help of elliptic estimates and interpolation theory.

Corollary 1.4. Suppose V satisfies Assumption 1.1. Let 2 ≤ p < ∞ and K ⊂ R be a
compact interval. Then, there exists a constant C > 0 such that the following estimates
are satisfied:

‖〈Dx〉2θ(k,p)e−itH u0‖Lp(Rx ,L2((−T ,T )t ))
+ ‖〈x〉kθ(k,p)e−itH u0‖Lp(Rx ,L2((−T ,T )t )) ≤ C‖u0‖L2(Rx)

. (1.4)

‖〈Dx〉1/ke−itH u0‖L2((−T ,T )t ,L2(Kx))
≤ C‖u0‖L2(R). (1.5)
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One consequence of (1.5) is thate−itH u0(·) ∈ H 1/k
loc (R), a.e.t foru0 ∈ L2(R)and the

solutionu(t, x)of (1.1) is smoother than the initial functionu0 by the order 1/k for almost
all t . This is a manifestation of the smoothing property of Eq. (1.1). We remark that we
may obtain a series of estimates of the form‖g(t)e−itH u0(x)‖Lp(Rx ,Lq(Rt )) ≤ C‖u0‖2
from (1.2) with the help of the Sobolev embedding theorem and elliptic estimates. In
this case we always needq < p.

Since Kato’s remarkable discovery ([K1] and [K2]), the smoothing property of linear
and nonlinear dispersive equations has been intensively studied by many authors in
conjunction with applications mainly to the convergence problem and to the initial
value problem for nonlinear equations. There is a large number of references, e.g. [St,
P,Br,GV1,Y1,V,CS,KY,Sj,KPV,BAD,GV2,BT,HK,Su,H]. Most of these papers are
concerned with equations with coefficients which are either constant or asymptotically
constant at spatial infinity.

For Schrödinger equations, the smoothing property has been extended to the case
when potentials increase at most quadratically at infinity ([K3,Y2]) viz.|DβV (x)| ≤ Cβ
for |β| ≥ 2, and the following estimates:

‖e−itH u0‖Lθ ((−T ,T )t ,Lp(Rnx)) ≤ C‖u0‖L2(Rnx)
, (1.6)

‖%(x)(1−�)α/2e−itH u(x)‖Lθ ((−T ,T )t ,Lp(Rnx)) ≤ C‖u‖L2(Rnx)
(1.7)

have long been known ([Y2]) (see also [Y3] for Schrödinger equations with magnetic
potentials which increase at most linearly at infinity). HereT > 0 is any finite number,

% ∈ C∞0 (Rn) andp, θ ≥ 2 andα ≥ 0 are such that 0≤ 2

θ
= 2α + n

(
1

2
− 1

p

)
< 1

andp < ∞. Estimates of the type (1.6) are called theLp smoothing property as they
imply that u(t, ·) is smoother thanu0 ∈ L2(Rn) for almost allt in the senseu(t, ·)
belongs toLp(Rx) for p > 2. Estimates of the type (1.7) are called the differentiability
improving property by obvious reason. Note that (1.7) withp = θ = 2 andα = 1/2 is
equivalent to (1.5) withk = 2.

When potentials are superquadratic at infinity, however, no estimates of this kind can
be found in the literature to the best of the authors’ knowledge. This situation may be
related to the fact that the smoothness and boundedness properties of the distribution
kernelE(t, x, y) of e−itH , the fundamental solution or FDS for short, has a sharp
transition when the growth rate at infinity of the potential passes that ofC|x|2 ([Y4]):
E(t, x, y) is smooth and spatially bounded for allt �= 0 if V (x) = o(|x|2). If V (x) =
O(〈x〉2) these results hold for small|t | > 0. However, ifV (x) ≥ C〈x〉2+ε, ε > 0,
E(t, x, y) is nowhereC1 and can be unbounded at spatial infinity ([MY]). Recall that
(1.6) is a consequence of the bound|E(t, x, y)| ≤ C|t |−n/2 for small |t |, and (1.7)

of the fact that
∫ T

−T
%2(x(t))dt is a peudo-differential operator of order−1, where

x(t) = eitH xe−itH is the Heisenberg position operator. These two properties hold
for potentials with|V (x)| ≤ C|x|2 but not for superquadratic potentials. One of our
motivations to this work was to examine whether or not this transition is inherited by
the smoothing property of Eq. (1.1).

Recall thatE(t, x, y) under Assumption 1.1 satisfies, for arbitraryρ ∈ C∞0 (R3),

|ρ̂E(τ, ξ, η)| ≤ C(|τ | + |ξ |2+ |η|2)−1/k, (1.8)

where ˆ stands for the Fourier transform ([Y4], Remark 1.2). We should remember
here a celebrated theorem of Zygmund ([Z], see also [B]) that‖e−itH u0‖L4(T×T) ≤
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C‖u0‖L2(T) for H = D2 on the torusT = R/2πZ. Notice that the FDS for this

H , E0(t, x, y) = ∑∞
n=−∞ e−in

2t+in(x−y) is nowhere locally integrable with respect to
(t, x, y)and functions which satisfy (1.8) are smoother thanE0.This indicates, therefore,
that Schrödinger equations with superquadratic potentials satisfy a certain smoothing
property. Our result shows that this is indeed the case and, moreover, such a transition
as in the smoothness ofE(t, x, y) does not appear in the smoothing property. Note
that estimates (1.2) and (1.3) differ from (1.6) or (1.7) by the change of the order of
integrations byx andt , in particular. Nonetheless, we continue to refer to such estimates
as (1.2) and (1.3) as the smoothing property.

We mention that the estimate of the form (1.2) appears already in [K1] in a slightly
disguised form: ForM ∈ Ln+ε(Rn) ∩ Ln−ε(Rn), ε > 0,

‖Meit�u0‖L2(Rn+1
t,x )

≤ C(‖M‖Ln−ε(Rn) + ‖M‖Ln+ε(Rn))‖u0‖L2(Rnx)
,

(see also [KY] where the right side is replaced byC‖M‖Ln(Rn)‖u0‖L2(Rnx)
) and that

[KPV] elaborated and applied it to nonlinear Schrödinger equations. We also remark
that there is a micro-local version of (1.7) and the following is known: WhenH is
Schrödinger operators on certain Riemannian minifolds, (1.7) holds withα = 1/2 for
u0 ∈ L2 supported byU if all bicharacteristics starting fromU are non-trapping for all
t < 0 ([CKS]) and itdoes not hold if they are trapping ([D1,D2]).

It is well-known that the operatorH is bounded from below and its spectrum consists
of simple eigenvaluesλ1 < λ2 < · · · → ∞. We denote the corresponding normalized
eigenfunctions byψ1, ψ2 . . . . The proof of Theorem 1.2 and Theorem 1.3 heavily de-
pends upon the following theorem on the asymptotic behavior asλn→∞ of Lp norm
of ψn which we think is of interest in its own right. For the quantitiesA andB, we write
A ∼ B if there exist two positive constantsc1 andc2 such thatc1A ≤ B ≤ c2A.

Theorem 1.5.Let Assumption 1.1be satisfied. Let ψ(x,E) be the normalized eigen-
function of H = −�+ V (x) with the eigenvalue E. Then:

(1) For 1≤ p ≤ ∞, we have

‖ψ(x,E)‖Lp ∼
{
CpE

−θ(k,p), if p �= 4;
CE−

1
4k (logE)

1
4 , if p = 4,

(1.9)

for large E, where Cp can be taken independent of p, p �∈ (4− ε,4+ ε), ε > 0.

(2) For compact interval K ⊂ R, sup
x∈K

|ψ(x,E)| ∼ E− 1
2k for large E.

Remark 1.1. If we setu0(x) = ψn(x) in (1.2), we have

‖g(t)〈i∂/∂t〉α〈H 〉βe−itH u0(x)‖Lp(Rx ,L2(Rt ))
= ‖g‖L2〈λn〉θ(k,p)‖ψn‖Lp(R).

Hence, Theorem 1.5 (1) implies that the conditionα + β ≤ θ(k, p) in (1.2) cannot be
relaxed. Likewise Theorem 1.5 (2) implies that the exponent 1/2k of Theorem 1.3 is
sharp. The exponentsθ(k, p) and 1/2k are decreasing functions ofk and this matches
the fact that the FDS is more singular for largerk ([Y4]). With respect top on the other
hand,θ(k, p) is increasing for 2≤ p < 4 and decreasing for 4< p. The proof of
Theorem 1.5 will show that thep dependence ofθ(k, p) is related to the behavior of
ψn(x) near the turning pointS.
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As an application of Theorem 1.2 and Theorem 1.3, we show that the initial value
problem for nonlinear Schrödinger equations with superquadratic potentials and with
spatially localized mild nonlinearitiesi

∂u

∂t
= −�u+ V (x)u+ f (x, u), x ∈ R, t ∈ R,

u(0, x) = u0(x), x ∈ R

(1.10)

isL2 well-posed. Define, forr ≥ 1 andδ > 0,

X = L4(Rx;L2r
loc(Rt )) ∩ C(Rt , L2(Rx)),

Xδ = L4(Rx;L2r ((−δ, δ)t )) ∩ C((−δ, δ)t , L2(Rx));
Y = L2r

loc(Rt × Rx) ∩ C(Rt , L2(Rx)),

Yδ = L2r ((−δ, δ)t , L2r
loc(Rx)) ∩ C((−δ, δ)t , L2(Rx)).

Theorem 1.6.Let V satisfy Assumption 1.1. Let 1≤ r < 2k

2k − 1
and let φ(x) ∈

L
4

2−r (R). Suppose that f (x, u) satisfies

|f (x, u)| ≤ C|φ(x)||u|r , x ∈ R, u ∈ C, (1.11)

|f (x, u)− f (x, v)| ≤ C|φ(x)||u− v|(|u|r−1+ |v|r−1), x ∈ R, u, v ∈ C. (1.12)

Then, the problem (1.10)is locally well-posed inX for any u0 ∈ L2(R), viz. there exists
δ > 0such that (1.10)admits a unique solutionu(t, x) inXδ andL2(R) � u0 �→ u ∈ Xδ
is continuous. If f further satisfies

f (x, u)u is real forx ∈ R, u ∈ C, (1.13)

then (1.10)is globally well-posed in X, viz. the solution u(t, x) uniquely extends to the
whole real line R and L2(R) � u0 �→ u ∈ XT is continuous for all T > 0.

Theorem 1.7.Let V satisfy Assumption 1.1. Let 1≤ r ≤ k

k − 1
and let K⊂R be a

compact interval. Suppose f satisfies f (x, u) = 0 for x �∈ K and

|f (x, u)| ≤ C|u|r , x ∈ K, u ∈ C, (1.14)

|f (x, u)− f (x, v)| ≤ C|u− v|(|u|r−1+ |v|r−1), x ∈ K, u, v ∈ C. (1.15)

Then, (1.10)is locally well-posed in Y for any u0 ∈ L2(R). If f further satisfies (1.13),
then (1.10)is globally well-posed in Y .

We outline here the plan of the paper, briefly explaining how Theorem 1.2 may be
derived fromTheorem 1.5. In Sect. 2, we proveTheorem 1.5 by applying Langer’s turning
point theory as presented in Titchmarsh’s monograph [T1]. Theorem 1.2 will be proved
in Sect. 3. We expandu(t, x) = e−itH u0 in terms of the eigenfunctionsψ1, ψ2, . . . of
H in the formu(t, x) = ∑∞

n=1 û0(n)e
−itλnψn(x), whereû0(n) = (u0, ψn) is thenth

generalized Fourier coefficient. Then, the Plancherel formula implies∫
R

|g(t)u(t, x)|2dt =
∫

R

|
∞∑
n=1

û0(n)ψn(x)ĝ(λ− λn)|2dλ.
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If ĝ is supported by a sufficiently small interval, then, for any fixedλ ∈ R, there is only
one eigenvalue such thatĝ(λ − λn) �= 0 becauseλn+1 − λn → ∞ asn→ ∞. Hence
the right-hand side becomes

∑∞
n=1 |û0(n)|2|ψn(x)|2‖g‖2

L2 and Minkowski’s inequality
implies

‖g(t)e−itH u0(x)‖Lp(Rx ,L2(Rt ))
≤ ‖g‖L2

( ∞∑
n=1

|û0(n)|2‖ψn(x)‖2
Lp

)1/2

.

The right hand side is bounded byC
(∑∞

n=1 |û0(n)|2λ−2θ(k,p)
n

)1/2 = ‖H−θ(k,p)u0‖ by

virtue of Theorem 1.5, then, (1.2) follows for suchg. For generalg we use the standard
“cutting and pasting” by the dyadic decomposition of the unity. Theorem 1.3 is also
proved in Sect. 3 using a similar idea. We prove Theorem 1.6 and Theorem 1.7 in Sect. 4
via the standard contraction mapping theorem by applying Theorem 1.2 and Theorem
1.3, respectively.

2. Lp Estimate of Eigenfunctions

In this section we prove Theorem 1.5. We denote byψ(x,E) the eigenfunction of

−ψ ′′(x)+ V (x)ψ(x) = Eψ(x) (2.1)

such that‖ψ(·, E)‖L2(R) = 1. We use the following estimates (2.3) and (2.4) due to
Titchmarsh ([T1,T2]). For largeE > 0, we writeX for the positive rootX ofV (X) = E.
We haveV (x) > E for x > X andV (x) < E for 0 ≤ x < X. We set

ζ(x) =
x∫
X

√
E − V (t)dt, (2.2)

where the branch of the square root is chosen in such a way that argζ(x) = π/2 for
x > X, and argζ(x) = −π for x < X.

Lemma 2.1.Let the notation be as above. Then, there exists a constant CE+ such that

ψ(x,E) = C−1
E+[E − V (x)]−

1
4

{
(πζ/2)

1
2H

(1)
1/3(ζ )+O

(
E− 1

2X−1e−Imζ |ζ |1/6
1+ |ζ |1/6

)}
(2.3)

as E→∞ uniformly with respect to x > 0. We have the estimate

CE+ ∼ (XE− 1
2 )

1
2 . (2.4)

Similar statement holds for x < 0.

Outline of the proof. For the readers’ convenience, we outline the proof here. It is based
upon Langer’s turning point theory as presented in Chapter 22.27 of [T2]. We make a
change of independent variablex → ζ(x) and dependent variableψ → G in (2.1),
where

ψ(x) = [E − V (x)]− 1
4G(ζ). (2.5)
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We sometimes writeG(x) for G(ζ(x)). ThenG(ζ) satisfies

d2G

dζ 2 +
(

1+ 5

36ζ 2

)
G = f (x)G, (2.6)

wheref (x) is defined by

f (x) = 5

36ζ 2 −
V ′′(x)

4(E − V (x))2 −
5V ′(x)2

16(E − V (x))3 .

We then transform Eq. (2.6) into the integral equation of the form

G(x) = (πζ
2
)

1
2H

(1)
1/3(ζ )+

πi

2

∫ ∞

x

{
H
(1)
1/3(ζ )J1/3(θ)− J1/3(ζ )H

(1)
1/3(θ)

}
×

×ζ 1/2θ1/2f (t)(E − V (t))1/2G(t)dt.
(2.7)

HereJν(ζ ) andH(j)ν (ζ ) are the Bessel and Hankel functions, respectively, and we wrote

ζ = ζ(x) and θ = ζ(t). (πζ2 )
1
2J1/3(ζ ) and (πζ2 )

1
2H

(1)
1/3(ζ ) are linearly independent

solutions of the associate homogeneous equation

d2G

dζ 2 +
(

1+ 5

36ζ 2

)
G = 0,

and the inhomonegenous term is chosen in such a way that the solution of (2.7) decays

asx → ∞. The functionsζ
1
2H

(1)
1/3(ζ )e

Im ζ andζ
1
2J1/3(ζ )e

−Im ζ are bounded forx ∈
(0,∞), and Im(ζ − θ) > 0 in the integrand of (2.7). It can be proven ([T2, Lemma
22.27]) that∫ ∞

0
|f (x)||E − V (x)|1/2dx = O

(
1

XE1/2

)
, E→∞,∫ ∞

x

|f (x)||E − V (x)|1/2dx = O
(

1

xV (x)1/2

)
, x →∞.

It follows that (2.7) can be uniquely solved by iteration in the function space

G = {G : e ζ(x)G(x) is bounded and continuous}
and the solutionG(x,E) satisfies, asE→∞,

G(x,E) = (πζ/2) 1
2H

(1)
1/3(ζ )+O(E−

1
2X−1e−Imζ |ζ |1/6/(1+ |ζ |1/6)) (2.8)

uniformly with respect tox ∈ (0,∞) and that, for fixedE, asx →∞,

G(x,E) = (πζ/2) 1
2H

(1)
1/3(ζ )(1+O(x−1V (x)−1/2)).

Since the linear space of solutions of (2.1) which decay asx →∞ is one dimensional,

we haveψ(x,E) = C−1
E+[E − V (x)]−

1
4G(x,E) for a constantCE+. Titchmarsh ([T1,

pp. 170–171]) showsCE+ ∼ (XE− 1
2 )

1
2 . ��
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We write the right side of (2.3) in the formC−1
E+ψ+(x, E) and we letC−1

E−ψ−(x, E)
be the corresponding expression forx ∈ (−∞,0). It follows from Lemma 2.1 that

‖ψ(x,E)‖Lp(R) ∼ ‖ψ(x,E)‖Lp(R+) + ‖ψ(x,E)‖Lp(R−)
∼ X− 1

2E
1
4 (‖ψ+(x, E)‖Lp(R+) + ‖ψ−(x, E)‖Lp(R−)). (2.9)

We estimate theLp-norm ofψ+(x, E). The estimate forψ−(x, E) is similar. We define
q(y) andQ(y) by

q(y) = V (yX)
V (X)

, Q(y) =


−

1∫
y

√
1− q(s)ds, if y < 1;

i
y∫
1

√
q(s)− 1ds, if y > 1.

(2.10)

We have

ζ(x) = E 1
2XQ(x/X).

Under the assumptions, we haveV (x) ∼ xV ′(x) ∼ |x|k for |x| ≥ R.

Lemma 2.2.Let V satisfy Assumption 1.1and K > 1. Then there exists a constant L
such that the following estimates are satisfied uniformly with respect to |X| ≥ L:

1− q(y) ∼ 1− y, for 0 ≤ y ≤ 1,

q(y)− 1∼ y − 1, for 1≤ y ≤ K,
q(y)− 1∼ yk, for y ≥ K,

(2.11)

and

Q(y) ∼ −(1− y)3/2, for 0 ≤ y ≤ 1,

−iQ(y) ∼ (y − 1)3/2, for 1≤ y ≤ K,
−iQ(y) ∼ y1+k/2, for y ≥ K.

(2.12)

Proof. Take sufficiently largeL > 2R, R being the constant of Assumption 1.1. Then,
we have for 1/2 ≤ y ≤ 1, uniformly with respect to|X| ≥ L,

1− q(y) = V (X)− V (yX)
V (X)

= (1− y)XV
′(θX)

V (X)
∼ 1− y, y ≤ θ ≤ 1.

Let 0≤ y ≤ 1/2 andR ≤ yX. We have 0< V (yX) ≤ V (R) + y(V (X) − V (R)) ≤
yV (X) sinceV (x) is convex for|x| ≥ R, and 1−q(y) ≥ 1−y. If yX ≤ R, |V (yX)| ≤
sup|x|≤R |V (x)| ≤ 10−1V (X) and 1−q(y) ∼ 1−y is obvious for|X| ≥ L and largeL.
This proves the first estimate. Estimates forq(y)−1,y > 1, may be obtained similarly.
Estimates (2.12) forQ(y) may be obtained by integrating (2.11).��
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Hereafter we letE large enough such that the correspondingX satisfies the condition
|X| ≥ L of Lemma 2.2. Writingψ+(x, E) in the form

ψ+(x, E) = E− 1
4 [1− q(x/X)]− 1

4G(E
1
2XQ(x/X),E)

and changing variable, we have

∞∫
0

|ψ+(x, E)|pdx = XE− p4
∞∫

0

|1− q(y)|− p4 |G(E 1
2XQ(y),E)|pdy.

We insert (2.8) forG(x,E). This produces two integrals, the one with(πζ/2)
1
2H

(1)
1/3(ζ )

and the other with the remainder termO(. . . ) in place ofG(ζ,E). We estimate the latter
first as it is simpler. We define

δ(p) =


(4− p)−1, if p < 4;
log(E

1
2X), if p = 4;

(p − 4)−1(E
1
2X)

p−4
6 , if p > 4.

Lemma 2.3.There exists a constant C > 0 such that for large E ≥ E0,

∞∫
0

|1− q(y)|− p4
(
E−

1
2X−1e−E1/2XIm Q(y) |E1/2XQ(y)| 16

(1+ |E1/2XQ(y)|) 1
6

)p
dy

≤ Cp(E 1
2X)−pδ(p). (2.13)

Proof. We split the integral into three parts by using the constantK of Lemma 2.2,

1∫
0

+
K∫

1

+
∞∫
K

. . . dy ≡ I1+ I2+ I3.

By virtue of (2.11) and (2.12), we have

I1 ≤ Cp
1∫

0

(1− y)− p4 (E 1
2X)−p

[
E1/2X(1− y)3/2

1+ E1/2X(1− y)3/2
]p/6

dy

= Cp(E 1
2X)−p(E

1
2X)

p−4
6

(E
1
2X)

2
3∫

0

1

(1+ y3/2)p/6
dy ≤ Cp(E 1

2X)−pδ(p).

Since|e−XE1/2ImQ(y)| ≤ 1 for 1≤ y ≤ K, we likewise have

I2 ≤ Cp
K∫

1

|y − 1|− p4
(
E−

1
2X−1 |E1/2XQ(y)| 16

(1+ |E1/2XQ(y)|) 1
6

)p
dy

≤ Cp(E 1
2X)−pδ(p).

(2.14)
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ForK ≤ y <∞, we have|1− q(y)|− p4 ∼ y− kp4 ≤ Cp,−iQ(y) ∼ y1+ k2 ≥ cy and

I3 ≤ Cp
∞∫
K

e−cpXE1/2ydy ≤ Cpe−cpE1/2X ≤ Cpδ(p). (2.15)

Combining estimates (2.14) and (2.15), we obtain (2.13).��
Recall thatH(1)1

3
(ζ ) satisfies the following (cf. [T1, (7.1.8), (7.8.5) and (7.8.7))]:

(1) Whenζ = −z < 0,H(1)1
3
(ζ ) = 2√

3
e−

1
6πi{J 1

3
(z)+ J− 1

3
(z)} and

ζ
1
2H

(1)
1
3
(ζ ) =


2

3
2π−

1
2 e

1
3πi{cos(z− (π/4))+O(z−1)} (z→∞),

2
2
3√
3

e
1
3πi

F(2/3)
z

1
6 (1+O(z)) (z→ 0).

(2.16)

(2) Whenζ = iw andw ≥ 0,H(1)1
3
(ζ ) = 2

π
e−

2
3πiK 1

3
(w) and

ζ
1
2H

(1)
1
3
(ζ ) =

{
O(e−w) (w→∞),
2

1
3 e−

1
6ππ−1F(1/3)w

1
6 +O(w 3

2 ) (w→ 0).
(2.17)

Lemma 2.4.There exists a constant C > 0 such that for large E ≥ E0,

∞∫
0

|(1− q(y))|− p4 |ζ 1
2H

(1)
1
3
(ζ )|pdy ≤ Cpδ(p), ζ = E1/2XQ(y). (2.18)

Proof. We split the integral into four parts∫ 1

0
+
∫ K

1
+
∫ ∞

K

· · · dy = II 1+ II 2+ II 3

and estimate them separately. When 0≤ y ≤ 1, ζ = E1/2XQ(y) ∼ −E1/2X(1−
y)3/2 < 0. We take largeN > 0 and split the integral II1 into two parts II1 = II 11+ II 12.
II 11 is the integral over the part of the interval(0,1) whereN < E1/2X(1− y)3/2 and
II12 over the complement. Applying the first relation of (2.16) to II11 and the second to
II12, we obtain

II11 ≤ Cp
1−N 2

3 (E
1
2X)

− 2
3∫

0

(1− y)− p4 dy ≤ Cpδ(p), (2.19)

II12 ≤ Cp(E1/2X)
p
6

N
2
3 (E1/2X)

− 2
3∫

0

y−
p
4 y

p
4 dy

= CpN 2
3 (E1/2X)

p−4
6 ≤ Cpδ(p). (2.20)
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When 1≤ y ≤ K, we haveq(y)−1∼ y−1 andw = −iζ ∼ E1/2XQ(y)(y−1)3/2 > 0.
We split the integral

II 2 =
(

2

π

)p K∫
1

|1− q(y)|− p4 |w 1
2K 1

3
(w)|pdy = II 21+ II 22

into the part II21 overw ≥ 1 and II22 over 0≤ w ≤ 1. We apply the first of (2.17) to
II21 and the second to II22 and obtain

II21 ≤ Cp
∫ K

1+C(E1/2X)−2/3
(y − 1)−

p
4 dy ≤ Cp δ(p). (2.21)

II22 ≤ Cp
C(E1/2X)−2/3∫

0

y−
p
4 (E1/2Xy3/2)

p
6 dy ≤ Cp(E1/2X)

p−4
6 ≤ Cpδ(p). (2.22)

ForK ≤ y <∞, q(y)− 1∼ yk, w ∼ E 1
2Xy1+ k2 and (2.17) yields

II3 ≤ Cp
∞∫
K

y−
kp
4 e−cpE1/2Xy

1+ k2
dy ≤ Cpe−cpE1/2X ≤ Cpδ(p). (2.23)

Combining estimates (2.19), (2.20), (2.21), (2.22) and (2.23), we obtain (2.18).��
Lemma 2.5.There exists a constant C > 0 such that we have following lower bound

1∫
0

|(1− q(y))− p4 |ζ 1
2H

(1)
1
3
(ζ )|pdy ≥ Cpδ(p), ζ = E1/2XQ(y)

for sufficiently large E ≥ E0.

Proof. Denote the integral on the left by II11 as in the proof of the previous lemma. We
takeN large enough so that|O(1/z)| ≤ 1/10 in the first of (2.16) forz ≥ N . Take a large

C > 0 such thatz = −ζ ∼ E 1
2X(1−y) 3

2 ≥ N whenCN2/3(E1/2X)−2/3 < 1−y < 1.
Then, by virtue of (2.16), we have, forE ≥ E0,

II 11 ≥ Cp
∫
N2/3(E1/2X)−2/3<1−y<1

(1− y)−p/4
∣∣∣∣cos

(
ζ − π

4

)
+O

(
1

ζ

)∣∣∣∣p dy
≥ (C/2)p

∫
N2/3(E1/2X)−2/3<1−y<1,| cos(ζ−π/4)|>√2/2

(1− y)−p/4dy ≥ εNCpδ(p)

with someεN > 0. ��
Proof of Theorem 1.5. We first prove (1). We have

‖ψ(x,E)‖Lp(0,∞) ∼ X
1
p
− 1

2

 ∞∫
0

|1− q(y)|− p4 |G(E 1
2XQ(y),E)|pdy


1
p

.
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It follows from (2.13) and (2.18) that

‖ψ(x,E)‖Lp(0,∞) ∼ X
1
p
− 1

2 δ(p)
1
p ∼


CpE

− 1
k
( 1

2− 1
p
)
, if p < 4;

CE− 1
4k (logE)1/4, if p = 4;

CpE
k−4
12k − k−1

3pk , if p > 4,

(2.24)

whereCp is taken independent ofp for p �∈ (4− ε,4+ ε), ε > 0. An entirely similar
argument produces the corresponding estimate for‖ψ(x,E)‖Lp(R−) and we obtain the
upper bound of (1.9). The lower bound readily follows from Lemma 2.5.

For proving the second statement, we remark that the estimate (2.3) remains to hold
for x ∈ K uniformly. It is obvious from (2.4) that∣∣∣∣∣C−1

E+(E − V (x))−
1
4O

(
E− 1

2X−1e−Imζ |ζ |1/6
1+ |ζ |1/6

)∣∣∣∣∣ ≤ CX− 1
2 (E−

1
2X−1). (2.25)

Sinceζ = −z ∼ −E 1
2X for largeE uniformly forx ∈ K, we have from the first relation

of (2.16) that

C−1
E+[E − V (x)]−

1
4 (πζ/2)

1
2H

(1)
1/3(ζ ) ∼ X−

1
2

{
cos

(
z− π

4

)
+O(E− 1

2X−1)
}
.

(2.26)

The second statement follows by combining (2.25) and (2.26) becauseX ∼ E 1
k . ��

3. Smoothing Properties

In this section we prove Theorem 1.2 and Theorem 1.3 by using estimates obtained in
Sect. 2. We writêg for the Fourier transform ofg. In terms of the eigenvaluesλ1 < λ2 <

. . . of H and the corresponding normalized eigenfunctionsψ1(x), ψ2(x), . . . , we may
write

e−itH u0(x) =
∞∑
n=1

e−itλn û0(n)ψn(x), (3.1)

whereû0(n) =
∫

R

u0(x)ψn(x)dx,n = 1,2, . . . are the generalized Fourier coefficients.

Under Assumption 1.1 we know that there exists a constantC > 0 such that

�λn ≡ λn+1− λn ≥ Cλ
k−2
2k
n , (3.2)

henceλn ≥ Cn 2k
k+2 for n = 1,2, . . . (cf. e.g. [Y4]).

Lemma 3.1.Suppose u0 ∈ D(HI) for sufficiently large I, then

‖g(t)e−itH u0(x)‖2
L2(Rt )

≤ C‖g‖2

B
1
4+ 1

2k (R)

∞∑
n=1

|û0(n)ψn(x)|2, ∀x ∈ R. (3.3)



Smoothing Property for Schrödinger Equations 585

Proof. By virtue of Theorem 1.5, (3.1) converges uniformly with respect to(t, x). If the

support ofĝ has a diameter< 2j , then, by virtue of (3.2), there exist at mostC2
j
(

1
2+ 1

k

)
number ofλn such that̂g(λ+λn) �= 0 for every fixedλ. It follows by Plancherel theorem
that for suchg,

∞∫
−∞

|g(t)e−itH u0(x)|2dt =
∞∫

−∞
|
∞∑
n=1

ĝ(λ+ λn)û0(n)ψn(x)|2dλ

≤ C2
j
(

1
2+ 1

k

) ∞∑
n=1

∞∫
−∞

|ĝ(λ+ λn)û0(n)ψn(x)|2dλ

≤ C2
j
(

1
2+ 1

k

)
‖ĝ‖2

L2

∞∑
n=1

|û0(n)ψn(x)|2,

(3.4)

where in the second step we used Schwarz’ inequality. Ifg is not compactly supported,

we decompose it by using a dyadic decomposition of the unity
∞∑

j=−∞
ĥj (λ) = 1 such

that

suppĥ0⊂{λ : |λ| < 1}, suppĥ±j⊂{λ : ±2|j |−2 < λ < ±2|j |}, j = 1,2, . . . .

in the formg =
∞∑

j=−∞
gj so thatĝj = ĝĥj has a support whose diameter is less than

2|j |. Then, (3.4) implies

‖g(t)e−itH u0(x)‖2
L2(Rt )

≤ C
 ∞∑
j=0

‖ĝj‖L2(R)2
j
2

(
1
2+ 1

k

)2 ∞∑
n=1

|û0(n)ψn(x)|2

≤ C‖g‖2

B
1
4+ 1

2k (R)

∞∑
n=1

|û0(n)ψn(x)|2. ��

By virtue of Minkowski inequality we have∥∥∥∥∥∥
( ∞∑
n=1

|û0(n)ψn(x)|2
)1/2

∥∥∥∥∥∥
Lp

=
∥∥∥∥∥
∞∑
n=1

|û0(n)ψn(x)|2
∥∥∥∥∥

1/2

Lp/2

≤
( ∞∑
n=1

|û0(n)|2‖ψn(x)‖2
Lp

)1/2

.

The right-hand side may be estimated by using Theorem 1.5 by

Cp

( ∞∑
n=1

|û0(n)|2λ−2θ(k,p)
n

)1/2

= Cp‖H−θ(k,p)u0‖L2. (3.5)
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Combination of (3.3) and (3.5) yields

‖g(t)e−itH u0(x)‖Lp(Rx ,L2(Rt ))
≤ Cp‖g‖

B
1
4+ 1

2k (R)
‖H−θ(k,p)u0‖L2(R), (3.6)

where the constantCp is taken uniformly with respect top outside(4− ε,4+ ε). Since
D(HI) is dense inL2(R), (3.6) holds for allu ∈ L2(R). Theorem 1.2 follows from
(3.6). ��
Proof of Theorem 1.3. Theorem 1.5 (2) implies that

sup
x∈K

∞∑
n=1

|û0(n)|2|ψn(x)|2 ≤ C
∞∑
n=1

|λ−
1
2k

n û0(n)|2 = C‖H− 1
2k u0‖2

L2(R)
. (3.7)

Thus, Theorem 1.3 follows by combining (3.3) with (3.7).��

4. Applications to Nonlinear Equations

In this section we prove Theorem 1.6 and Theorem 1.7. Since the proofs are quite similar,
we prove Theorem 1.7, and only indicate the modifications necessary for the proof of
Theorem 1.6. Hereafter, we often omit some of the variables of functionu(t, x) and
write u(t) or simplyu for u(t, x), if no confusions are feared. By takingg such that
g(t) = 1 for |t | ≤ δ in Theorem 1.2 and Theorem 1.3, we have

‖〈i∂/∂t〉α〈H 〉βe−itH u0‖Lp(Rx ,L2([−δ,δ]t )) ≤ Cδ‖u0‖L2, α + β = θ(k, p), p ≥ 2;
(4.1)

sup
x∈K

‖〈i∂/∂t〉1/2ke−itH u0‖L2([−δ,δ]t ) ≤ Cδ‖u0‖L2. (4.2)

Proof of Theorem 1.7. We prove Theorem 1.7 fort ≥ 0 only. The argument fort ≤ 0 is

similar. We consider the equivalent integral equation

u(t) = e−itH u0 − i
∫ t

0
e−i(t−s)H f (x, u(s))ds. (4.3)

For δ > 0, we writeKδ = [0, δ] ×K and define the Banach spaceYδ(K) by

Yδ(K) = C([0, δ], L2(R)) ∩ L2r (Kδ), ‖u‖Yδ(K) ≡ ‖u‖L∞([0,δ],L2(R)) + ‖u‖L2r (Kδ)
.

We define a nonlinear mapK : Yδ(K)→ Yδ(K) by

K(u) = e−itH u0 − i%(u), %(u) =
∫ t

0
e−i(t−s)H f (x, u(s))ds. (4.4)

WriteBM = {u ∈ Yδ(K) : ‖u‖Yδ(K) ≤ M}.

Lemma 4.1.The map K is well defined on Yδ(K). There exist M > 0 and δ > 0
depending only on ‖u0‖L2(R) such that K maps BM into itself and

‖K(u)−K(v)‖Yδ(K) ≤
1

2
‖u− v‖Yδ(K), u, v ∈ BM. (4.5)
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Proof. For u0 ∈ L2(R), we havee−itH u0 ∈ C(R, L2(R)). By virtue of (4.2) and
the Sobolev embedding theorem,e−itH u0 ∈ L∞(Kx, L2r ([0, δ]t )). Hence,e−itH u0 ∈
Yδ(K) and

‖e−itH u0‖Yδ(K) ≤ c1‖u0‖L2. (4.6)

Let χ(s < t) be such thatχ(s < t) = 1 if 0 < s < t , andχ(s < t) = 0 otherwise.
If u ∈ Yδ(K), then, the assumptions thatf (x, u) = 0 for x �∈ K and (1.14) imply
f (x, u(t, x)) ∈ L2([0, δ]t × Rx) and

‖f (x, u(t, x))‖L2(Kδ)
≤ C‖u‖r

L2r (Kδ)
. (4.7)

It then easily follows that%(u) ∈ C([0, δ], L2(R)) and by Schwarz’ inequality and

‖%(u)‖L∞([0,δ];L2(R)) ≤ Cδ
1
2‖u‖r

L2r (Kδ)
. (4.8)

By Minkowski’s inequality, (4.2) and (4.7), we have

‖%(u)‖L2r (Kδ)
≤
∫ δ

0
|‖χ(s < t)e−itH {eisH f (x, u(s, x))}‖L2r (Kδ)

ds

≤ C
∫ δ

0
‖f (x, u(s, x))‖L2(K)ds ≤ Cδ

1
2‖f (x, u)‖L2(Kδ)

≤ Cδ 1
2‖u‖r

L2r (Kδ)
,

(4.9)

which with (4.6) and (4.8) implies thatK is well-defined onYδ(K).
It follows also from (4.6), (4.8) and (4.9) that, with constantsc1 andc2 which can be

taken independent of smallδ,

‖Ku‖Yδ(K) ≤ ‖e−itH u0‖Yδ(K) + ‖f (u)‖Yδ(K) ≤ c1‖u0‖L2 + c2δ 1
2‖u‖rYδ(K). (4.10)

Thus, if we takeM such thatM > 2c1‖u0‖L2, δ < (2c2Mr−1)−2, then‖Ku‖Yδ(K) ≤
2c1‖u0‖L2 < M whenever‖u‖Yδ(K) ≤ M andK mapsBM into itself. To show thatK
satisfies (4.5), we estimate

K(u1)−K(u2) = −i
∫ t

0
e−i(t−s)H [f (x, u1(s))− f (x, u2(s))]ds.

We have by Minkowski’s inequality and Hölder’s inequality that

‖K(u1)−K(u2)‖L∞([0,δ]t ;L2(Rx))
≤

δ∫
0

‖f (x, u1(s))− f (x, u2(s))‖L2(K)ds

≤ C
δ∫

0

‖|u1− u2|(|u1|r−1+ |u2|r−1)‖L2(K)ds

≤ C
δ∫

0

‖u1(s)− u2(s)‖L2r (K)(‖u1‖r−1
L2r (K)

+ |u2‖r−1
L2r (K)

)ds

≤ Cδ 1
2 (‖u1‖r−1

L2r (Kδ)
+ ‖u2‖r−1

L2r (Kδ)
)‖u1− u2‖L2r (Kδ)

.

(4.11)
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Likewise, by virtue of (4.6), we have by Minkowski’s inequality and Hölder’s ineqaulity

‖K(u1)−K(u2)‖L2r (Kδ)
≤
∫ δ

0
‖χ(s < t)e−itH eisH [f (x, u1)− f (x, u2)]‖L2r (Kδ)

ds

≤ C
∫ δ

0
‖f (x, u1(s, x))− f (x, u2(s, x))‖L2(Rx)

ds

≤ Cδ 1
2 (‖u1‖r−1

L2r (Kδ)
+ ‖u2‖r−1

L2r (Kδ)
)‖u1− u2‖L2r (Kδ)

.

(4.12)

Combining (4.11) with (4.12), we obtain

‖K(u1)−K(u2)‖Yδ(K) ≤ c3δ
1
2 (‖u1‖r−1

Yδ(K)
+ ‖u2‖r−1

Yδ(K)
)‖u1− u2‖Yδ(K), (4.13)

and (4.5) follows if we chooseδ such thatδ < min{(2c2Mr−1)−2, (4c3Mr−1)−2}. ��
Continuation of Proof of Theorem 1.7. By virtue of Lemma 4.1, the contraction mapping
theorem implies thatK has a unique fixed pointu ∈ BM and (4.3) has a unique solution
u in Yδ(K). To prove that the solution depends on the initial datau0 continuously as
described in the theorem, we takeu0, ũ0 ∈ L2(R) and letu andũ be the corresponding
solutions. Then, the preceding estimates (4.6) and (4.13) show

‖u− ũ‖Yδ(K) ≤ c1‖u0 − ũ0‖L2 + c3δ 1
2 (‖u‖r−1

Yδ(K)
+ ‖ũ‖r−1

Yδ(K)
)‖u− ũ‖Yδ(K)

and‖u− ũ‖Yδ(K) ≤ c‖u0 − ũ0‖L2 for smallδ > 0. This shows the desired continuous
dependence.

Whenf satisfies the additional assumption (1.13), we will show‖u(t)‖L2 = ‖u0‖L2.
Once this is shown, the solutionu(t) extends uniquely to[0,∞) since the lengthδ of
the interval on which the solution exists depends only on‖u0‖L2(Rx)

as has been shown
above. Also the mapL2(R) � u0 �→ u ∈ C([0, T ], L2(R)) ∩ L2r ([0, T ]t × K) is
continuous for anyT > 0 becauseu(t, ·) is L2(Rx) valued continuous and we will
be done. To show‖u(t)‖L2 = ‖u0‖L2, we compute‖ · ‖2

L2(Rx)
of both sides of (4.3).

Denoting the inner product and the norm ofL2(Rx) by (·, ·) and‖ · ‖, respectively, and
writing f (t, x) = f (t, u(t, x)), we have

‖u(t)‖ =
∥∥∥∥e−itH u0 − i

∫ t

0
e−i(t−s)H f (s, x)ds

∥∥∥∥2

= ‖u0‖2
L2 − 2Re

(
u0, i

∫ t

0
eisH f (s, x)ds

)
+
∫ t

0

∫ t

0
(eisH f (s, x), eirH f (r, x))dsdr.

The last two terms on the right cancel each other because the last integral is equal to∫ t

0

(
f (s, x),

∫ s

0
e−i(s−r)H f (r, x)dr

)
ds+

∫ t

0

(∫ r

0
e−i(r−s)H f (s, x)ds, f (r, x)

)
dr

=
∫ t

0
(f (s, x), iu(s)− ie−isH u0))ds +

∫ t

0
(iu(r)− ie−irH u0, f (r, x))dr

= 2Re

(
u0, i

∫ t

0
eisH f (s, x)ds

)
,
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where we used the fact thatu is a solution in the first step and (1.13) in the second. This
completes the proof. ��

Proof of Theorem 1.6. The proof is very similar to that of Theorem 1.7 and we only
indicate the necessary modifications. Instead ofYδ(K), we use now the Banach space

Xδ = C([0, δ]t ;L2(Rx)) ∩ L4(Rx;L2r ([0, δ]t ))
with the norm

‖u‖Xδ = ‖u‖L∞([0,δ]t ;L2(Rx))
+ ‖u‖L4(Rx ;L2r ([0,δ]t )).

(This notation is slightly different from that in the theorem, but no confusion should
occur.) We define the nonlinear operators% andK by (4.4) as previously and setBM =
{u ∈ Xδ : ‖u‖Xδ ≤ M}. We show that, for anyu0 ∈ L2(R),K is a contraction map from
BM intoBM if the parametersδ > 0 andM are chosen suitably. To showe−itH u0 ∈ Xδ
and‖e−itH u0‖Xδ ≤ C‖u0‖L2, we use (4.1) instead of (4.2) and Sobolev embedding
theorem which impliese−itH u0 ∈ L4(Rx;L2r ([0, δ]t )). By the assumption onf , we
have

‖%(u)‖L∞([0,δ]t ;L2(Rx))
≤
∫ δ

0
‖f (x, u(s))‖L2ds ≤ C

∫ δ

0
‖|φ(x)||u(s)|r‖L2ds

≤ Cδ 1
2

{∫
[0,δ]×R

|φ(x)|2|u(t, x)|2rdtdx
} 1

2

= Cδ 1
2 {
∫

R

|φ(x)|2‖u(t, x)‖2r
L2r ([0,δ]t )dx}

1
2

≤ Cδ 1
2‖φ‖

L
4

2−r (R)
‖u‖r

L4(Rx ;L2r ([0,δ]t )) ≤ Cδ
1
2‖u‖rXδ .

(4.14)

As in the proof of Theorem 1.7, (4.1) and (4.14) imply

‖%(u)‖L4(Rx ;L2r ([0,δ]t )) ≤ Cδ
1
2‖u‖rXδ . (4.15)

It follows thatK mapsBM intoBM for suitableM andδ which depend only on‖u0‖L2.
The rest of the proof may be done by repeating the argument of the proof of Theorem
1.7 by using these estimates. We omit the details.��
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