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Abstract: We prove a smoothing property for one dimensional time dependent Schro-
dinger equations with potentials which satigfyx) ~ C|x|* at infinity, k > 2. As an
application, we show that the initial value problem for certain nonlinear Schrodinger
equations with such potentials is> well-posed. We also prove a sharp asymptotic
estimate of the.”-norm of the normalized eigenfunctions Bf = —A + V for large
energy.

1. Introduction

We consider the initial value problem for a Schrédinger equation on th&line

3
ia—’Z — D2+ V@), xeRL reR, w1
u(0, x) = uo(x), x e R,

where D = —id/dx. We assume thaV (x) satisfies the following assumption. Let

V@ (x) be the j! derivative of V(x) and (4) = (1 + |A]2)? for a self-adjoint op-
eratorA.

Assumption 1.1.The potential V (x) isreal valued and of C3-class. There exists a con-
stant R > 0 such that the following conditions are satisfied for |x| > R:

(1) V(x) isconvex. , '
(2)For j =1,2,3, VY (x)| < C;(x)" 1 vU=D(x)] for some constants C;.
(3) For k > 2, D1(x)* < V(x) < Do(x)¥, where0 < Dy < D5 < oo.
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We say that V is superquadratic (at infinity) if it satisfies (1), (2)and (3).

Under Assumption 1.1 the operat®? + V (x) defined onC3°(R) is essentially
self-adjoint in L2(R) and we denote its closure biy. Thus, H is self-adjoint with
the domainD(H) = {u € L?(R) : D?u + Vu € L?(R)} and the solution in.?(R)
of (1.1) is given byu(r, x) = e "Hug(x) in terms of the exponential function &f.
In this paper, we prove a smoothing property for Eq. (1.1). We then apply it to prove
that the initial value problem for nonlinear Schrédinger equations with superquadratic
potentials is time locally.? well-posed, if the nonlinearities are suffciently mild and
spatially localized. We defing(k, p) as follows, for 2< p < oo and 2< k < oo:

1'<1'—£), if 2<p<4
2 p
0k, p) = <—) , if p=4

SR PR PR DRI R
473 P k) =P=%

wherea_ denotes any numbet a. We write B* (R) for the Besov spacﬁg’l(R).

Theorem 1.2.Let V satisfy Assumption 1.1Let 2 < p < oo and let «, 8 € R be such
that o + B8 < 6(k, p). Then, there exists a constant C > 0 such that

lg)(id/at)* (HYP e ™ ug() Lo g, 12w,y < Cligll 3+ 4 g 1ol 2@y (1.2)

for any ¢ € B3 (R) and uo € L2(R).
The next theorem shows that the ordek, p) of Theorem 1.2 may be replaced by
1 . . . . . .
% forall 2 < p < o if the spatial variable is restricted to a compact interval Bf

Theorem 1.3.Let V satisfy Assumption 1.1Let K C R be compact and let o, 8 € R
1 .
besuchthata + 8 < % Then, there exists a constant C > 0 such that

suplig)(id/an)* (HYP e " Hug(x) | 2w,y < Cllgll 1,1 luoll2w,  (1.3)
xekK B47 2 (Ry)

for any ¢ € BiT% (R) and uo € L2(R).

Note that(id/9r)* (H)Pe "H = (j3/01)*TPe~itH = (H)*+Pe=i'H jn (1.2) and (1.3).
The following corollary is readily obtained from Theorem 1.2 and Theorem 1.3 with the
help of elliptic estimates and interpolation theory.

Corollary 1.4. Suppose V satisfies Assumption 1.1Let2 < p < ccand K C R bea

compact interval. Then, there exists a constant C > 0 such that the following estimates

are satisfied:
||<Dx)29(k’p)eiitHM0||Lp(RX,L2((_T,T),))

+ ||(X)ke(k’p)e_itHMO||LP(R_X,L2((_T,T)t)) < Clluollz2(g,)- (1.4)

||(Dx>l/k€_itHM0||L2((_T,T),,L2(KX)) = C||MO||L2(R)- (1.5)
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One consequence of (1.5) is tkat’ 7 ug(-) € Hlé/ck(R), a.erforug € L2(R) and the

solutionu(z, x) of (1.1) is smoother than the initial functiag by the order 1k for almost

all r. This is a manifestation of the smoothing property of Eq. (1.1). We remark that we
may obtain a series of estimates of the faratt)e ' # uo(x)l Lr®,.Le®,)) < Clluoll2

from (1.2) with the help of the Sobolev embedding theorem and elliptic estimates. In
this case we always negd< p.

Since Kato’s remarkable discovery ([K1] and [K2]), the smoothing property of linear
and nonlinear dispersive equations has been intensively studied by many authors in
conjunction with applications mainly to the convergence problem and to the initial
value problem for nonlinear equations. There is a large number of references, e.g. [St,
P,Br,GV1,Y1,V,CS,KY,Sj,KPV,BAD, GV2,BT,HK, Su, H]. Most of these papers are
concerned with equations with coefficients which are either constant or asymptotically
constant at spatial infinity.

For Schrddinger equations, the smoothing property has been extended to the case
when potentials increase at most quadratically at infinity ([K3,Y2)M2 V (x)| < Cg
for |8| > 2, and the following estimates:

le™  uoll Lo 1.7y, Ly < Clluoll 2. (1.6)
D)@ = A2 u) o 7.1y, Lo@ny < Cllull 2 (1.7)

have long been known ([Y2]) (see also [Y3] for Schrddinger equations with magnetic
potentials which increase at most linearly at infinity). H&re- 0 is any finite number,

2 1 1
® e Cg°(R") andp, 6 > 2 anda > O are such that & 7= 20 +n <§ — —) <1
p
andp < oo. Estimates of the type (1.6) are called th& smoothing property as they

imply thatu(z, -) is smoother thamg € L2(R") for almost allz in the sense(z, -)
belongs tal.” (R, ) for p > 2. Estimates of the type (1.7) are called the differentiability
improving property by obvious reason. Note that (1.7) with- 0 = 2 anda = 1/2 is
equivalent to (1.5) witkk = 2.

When potentials are superquadratic at infinity, however, no estimates of this kind can
be found in the literature to the best of the authors’ knowledge. This situation may be
related to the fact that the smoothness and boundedness properties of the distribution
kernel E(t, x, y) of ¢e~#H the fundamental solution or FDS for short, has a sharp
transition when the growth rate at infinity of the potential passes that.of ([Y4]):

E(t, x, y) is smooth and spatially bounded for aliz 0 if V(x) = o(|x|?). If V(x) =
0 ((x)?) these results hold for small| > 0. However, ifV(x) > C(x)%t¢, ¢ > 0,
E(t, x, y) is nowhereC! and can be unbounded at spatial infinity ((MY]). Recall that
(1.6) is a consequence of the boulz, x, y)| < C|t|~"/2 for small |z|, and (1.7)

T
of the fact that/ D2(x(1))dt is a peudo-differential operator of orderl, where
T

x(t) = e"Mxe~"H is the Heisenberg position operator. These two properties hold
for potentials with|V (x)| < C|x|? but not for superquadratic potentials. One of our
motivations to this work was to examine whether or not this transition is inherited by
the smoothing property of Eq. (1.1).

Recall thatE (¢, x, y) under Assumption 1.1 satisfies, for arbitrarg Cg° (R3),

IpE(t, &, )| < C(t| + €12 + [n?)~VE, (1.8)

where” stands for the Fourier transform ([Y4], Remark 1.2). We should remember
here a celebrated theorem of Zygmund ([Z], see also [B]) lqkaat’Hu0||L4(TxT) <
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Clluoll 2y for H = D? on the torusT = R/27Z. Notice that the FDS for this
H, Eot, x,y) = 3.0 ___e~in’+in=y) js nowhere locally integrable with respect to

(t,x,y)and functioﬁs Woﬁich satisfy (1.8) are smoother thgnThis indicates, therefore,
that Schrédinger equations with superquadratic potentials satisfy a certain smoothing
property. Our result shows that this is indeed the case and, moreover, such a transition
as in the smoothness @z, x, y) does not appear in the smoothing property. Note
that estimates (1.2) and (1.3) differ from (1.6) or (1.7) by the change of the order of
integrations byt andt, in particular. Nonetheless, we continue to refer to such estimates
as (1.2) and (1.3) as the smoothing property.

We mention that the estimate of the form (1.2) appears already in [K1] in a slightly
disguised form: FoM e L"*t¢(R") N L"¢(R"), ¢ > 0,

IMe" Ruol 2y < CUIM | pnms gy + | M| rve eny) ol 2

(see also [KY] where the right side is replaced (ByMHLn(Rn)||uo||Lz(Rn)) and that
[KPV] elaborated and applied it to nonlinear Schrédinger equations. We also remark
that there is a micro-local version of (1.7) and the following is known: Wheis
Schrodinger operators on certain Riemannian minifolds, (1.7) holdsawith1/2 for

uo € L? supported by if all bicharacteristics starting frol are non-trapping for all

t < 0 (JCKS]) and itdoes not hold if they are trapping ([D1,D2]).

Itis well-known that the operatdt is bounded from below and its spectrum consists
of simple eigenvalues; < A2 < --- — oo. We denote the corresponding normalized
eigenfunctions byjy1, ¥2. ... The proof of Theorem 1.2 and Theorem 1.3 heavily de-
pends upon the following theorem on the asymptotic behaviay, as oo of L” norm
of v, which we think is of interest in its own right. For the quantitieand B, we write
A ~ B if there exist two positive constants andcs such that1A < B < c2A.

Theorem 1.5.Let Assumption 1.1be satisfied. Let v (x, E) be the normalized eigen-
function of H = —A + V (x) with the eigenvalue E. Then:

(1) For 1 < p < oo, we have

C,E %P if 4
WG Bl ~ 1 27y o7 (1.9)
CE (IogE)4 if p=4,

for large E, where C,, can be taken independent of p, p ¢ (4—¢,4+¢),& > 0.

(2) For compact interval K C R, sup|v¥ (x, E)| ~ E~Z for large E.
xekK

Remark 1.1. If we setug(x) = ¥, (x) in (1.2), we have

lg@)(ia/00)* (HYP e " ug() Lo g, 12,y = 18112 n)? PNl Lo ).

Hence, Theorem 1.5 (1) implies that the conditior- 8 < 6(k, p) in (1.2) cannot be
relaxed. Likewise Theorem 1.5 (2) implies that the expon¢@k bf Theorem 1.3 is
sharp. The exponent&k, p) and 1/2k are decreasing functions bfand this matches
the fact that the FDS is more singular for larggfY4]). With respect top on the other
hand,f(k, p) is increasing for 2< p < 4 and decreasing for & p. The proof of
Theorem 1.5 will show that the dependence af(k, p) is related to the behavior of
¥, (x) near the turning poins.
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As an application of Theorem 1.2 and Theorem 1.3, we show that the initial value
problem for nonlinear Schrédinger equations with superquadratic potentials and with
spatially localized mild nonlinearities

0
ia—ltl:—Au-l—V(x)u—l-f(x,u), x eR, reR, (1.10)
u(0, x) = up(x), xeR
is L2 well-posed. Define, for > 1 ands > 0,
X = L*Ry; L7 .(R,)) N C(R,, LA(Ry)),
X5 = L*Ry; L¥ ((=8,8)1)) N C((=8, 8);, LA(Ry));
Y = LZ (R, x R,) N C(R,, LA(R,)),
Ys = L% (=8, 8);, LZ_.(Ry)) N C((—8, 8), LA(R,)).
. . 2k
Theorem 1.6.Let V satisfy Assumption 1.1Let 1 <r < %1 and let ¢p(x) €

LTfr (R). Supposethat f(x, u) satisfies
|f (x, )] < Clo(x)|[ul”, xeR, ueC, (1.11)
If(x,u) — f(x,0)] < Clp@)|lu—v|(u" L+, xeR, u,veC. (1.12)

Then, the problem (1.10)islocally well-posed in X for any ug € L?(R), viz there exists
8 > Osuchthat (1.10)admitsauniquesolutionu(z, x) in Xs and L?(R) 3 ug — u € X5
iscontinuous. If f further satisfies

f(x,u)u isrealforx e R, u € C, (2.13)
then (1.10)is globally well-posed in X, viz. the solution u (¢, x) uniquely extends to the
wholereal lineR and L2(R) 3 ug — u € X7 iscontinuousfor all 7 > 0.

Theorem 1.7.Let V satisfy Assumption 1.1Let 1 <r < k%l and let KCR be a
compact interval. Suppose f satisfies f(x,u) = 0for x ¢ K and

|f(x, w)] < Clul", xekK, uecC, (1.14)

If e, u) — f,v)] < Clu—vl(ul 2+ ™, xek, u,veC. (1.15)

Then, (1.10)is locally well-posed in Y for any ug € L?(R). If f further satisfies (1.13)
then (1.10)is globally well-posed in Y.

We outline here the plan of the paper, briefly explaining how Theorem 1.2 may be
derived from Theorem 1.5. In Sect. 2, we prove Theorem 1.5 by applying Langer’s turning
point theory as presented in Titchmarsh’s monograph [T1]. Theorem 1.2 will be proved
in Sect. 3. We expand(z, x) = e~ yq in terms of the eigenfunctiongy, v, ... of
H in the formu(t, x) = 3021 do(n)e ™1y, (x), whereiig(n) = (uo, V) is then™
generalized Fourier coefficient. Then, the Plancherel formula implies

/R lg(u(t, x)|%dt = /R 1D Ao P ()G — An)IPdA.
n=1
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If ¢ is supported by a sufficiently small interval, then, for any fixed R, there is only
one eigenvalue such thatir — 1,) # 0 because., 1 — A, — oo asn — oo. Hence
the right-hand side becom@s’° ; |120(n)|2|1pn(x)|2||g||i2 and Minkowski’s inequality
implies

00 1/2
lg@e ™ uoG) Lo, 12w,y < llgllz2 (Z |ﬁo<n>|2||wn(x)||ip) :

n=1

B 1/2
The right hand side is bounded by(Z,‘jo:l lio(n) %A, 29(/‘”’)) = ||[H9%P)yg| by

virtue of Theorem 1.5, then, (1.2) follows for sughFor generag we use the standard
“cutting and pasting” by the dyadic decomposition of the unity. Theorem 1.3 is also
proved in Sect. 3 using a similar idea. We prove Theorem 1.6 and Theorem 1.7 in Sect. 4
via the standard contraction mapping theorem by applying Theorem 1.2 and Theorem
1.3, respectively.

2. L? Estimate of Eigenfunctions
In this section we prove Theorem 1.5. We denote/tgy, E) the eigenfunction of
—¢" () + V()Y (x) = EY(x) (2.1)

such thatl|y (-, E)|l 2, = 1. We use the following estimates (2.3) and (2.4) due to
Titchmarsh ([T1,T2]). Forlarg&€ > 0, we writeX for the positive roo of V(X) = E.
We haveV (x) > Eforx > X andV(x) < E for0 < x < X. We set

r(x) = / VE = V(ndt, (2.2)
X

where the branch of the square root is chosen in such a way thatarg= 7/2 for
x> X,andargg (x) = —x forx < X.

Lemma 2.1.Let the notation be as above. Then, there exists a constant Cg such that

E—§X—18—|m;|§|1/6>}

Y(x, E) = Cp [E-V(x)]? {W/Z)ZHl(/l%@) +0 ( 1+ [¢|%/6

(2.3)
as E — oo uniformly with respect to x > 0. \We have the estimate
Cpi~ (XE™2)2. (2.4)
Smilar statement holdsfor x < O.

Outline of the proof. For the readers’ convenience, we outline the proof here. It is based
upon Langer’s turning point theory as presented in Chapter 22.27 of [T2]. We make a
change of independent variable— ¢(x) and dependent variable — G in (2.1),
where

Yx) = [E — V()] 1G6(@). (2.5)
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We sometimes writ& (x) for G(¢(x)). ThenG(¢) satisfies

d%G 5
d_{z + (1 36§ ) G = f(x)G (2.6)
where f(x) is defined by
5 V" (x) 5V’ (x)2

fx) =

3602 AE—V(x)2 16(E — V(x))3

We then transform Eg. (2.6) into the integral equation of the form

G(x)—(—) H{/lé(g“)Jr—/ {H3©)11/30) = 3@ B30 | x 2.7)
L xgM20N2 () (E — V() Y2G (.

HereJ,(¢) andH‘fj) (¢) arethe Bessel and Hankel functions, respectively, and we wrote

= {(x) andd = ¢(1). ( )2J1/3(§) and( )2H1(/3(§) are linearly independent
solutions of the associate homogeneous equatlon

d%G 5
—_ 1 G =0,
d;2+< " 32 )

and the inhomonegenous term is chosen in such a way that the solution of (2.7) decays

asx — oo. The functlonsg2H(/1)(§)e'mZ and;zjl/g(g)e"mf are bounded fox e

(0, ), and Im (¢ — 6) > 0 in the integrand of (2.7). It can be proven ([T2, Lemma
22.27]) that

/Oo|f(x)||E—V(x)|1/2dx—0<L) E o e

0 o xEL2 )’ ,
> 1

[ irene-vorta=o(Gim) xeo

It follows that (2.7) can be uniquely solved by iteration in the function space
G = {G : e *“®¥G(x) is bounded and continuous
and the solutiorG (x, E) satisfies, a¥ — oo,
Gx. E) = (/2 H{Y(0) + O(E~2X L M g Yo 4 |c[¥9))  (2.8)
uniformly with respect toc € (0, co) and that, for fixedt, asx — oo,
G, E) = (/2 H{Q ) A+ 0V (1) 7Y2)),

Since the linear space of solutions of (2.1) which decay as oo is one dimensional,
we havey (x, E) = Cgi[E — V(x)]‘?ltG(x, E) for a constanCg . Titchmarsh ([T1,
pp. 170-171]) show§ 4 ~ (XE~2)2. O
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We write the right side of (2.3) in the fordi; 1 v+ (x, E) and we lelC; 2~ (x, E)
be the corresponding expression foe (—oo, 0). It follows from Lemma 2.1 that
I x, E)lle@ry ~ ¥ (x, E)lpr+y + 19 (x, E) |l Lrr-)
1 1
~XT2EA([Y T (x, E)llpr@eny + 1¥ (& E)lle@—))- (2.9)

We estimate thé”-norm of '+ (x, E). The estimate fog ~ (x, E) is similar. We define
q(y) andQ(y) by

1
— [V1—=¢q(s)ds, if y<1;
om=9 5 (2.10)
i [Vq(s)—1ds, if y>1
1

o) = Yo%)

We have
¢(x) = E2XQ(x/X).

Under the assumptions, we havéx) ~ xV’(x) ~ |x|¥ for |x| > R.

Lemma 2.2.Let V satisfy Assumption 1.1and K > 1. Then there exists a constant L
such that the following estimates are satisfied uniformly with respect to | X| > L:

l1-g(y)~1-y, for 0<y=<1,
g(y)—1~y-1 for 1<y<K, (2.11)
q(y) —1~yk  for y>K,

and

—h

0(y) ~ —(L—y)¥? for 0<y<1,
—iQy) ~(-D1%,  for 1<y<K, (2.12)
—iQ(y) ~ yttk/2, for y > K.

Proof. Take sufficiently largd. > 2R, R being the constant of Assumption 1.1. Then,
we have for J2 < y < 1, uniformly with respect toX| > L,

_ VO -VeX) _

XV' X
1-q@y) = (1—y)#~

V(X) v Ty ys=fstl
LetO<y<1/2andR < yX.We have O< V(yX) < V(R) + y(V(X) — V(R)) <
yV(X) sinceV (x) isconvexforix| > R,and 1—g(y) > 1—y.If yX < R, |V(yX)| <
SUPy<r IV () < 10~1v(X)and 1- ¢(y) ~ 1— yis obvious fo X| > L and largeL.
This proves the first estimate. Estimatesgoy) — 1, y > 1, may be obtained similarly.
Estimates (2.12) foQ(y) may be obtained by integrating (2.11)o
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Hereafter we leE large enough such that the correspondihsgtisfies the condition
|X| > L of Lemma 2.2. Writingy* (x, E) in the form

YH(x, E) = E"3[1— q(x/X)] *G(EZXQ(x/X), E)

and changing variable, we have

fwf*(x,E)V’dx =XE‘%fIl—q(y)l‘%IG(E%XQ(y),E)I”dy-
0 0

We insert (2.8) folG (x, E). This produces two integrals, the one witt; /2) 2 Hl(/lg(g)

and the other with the remainder tedq. . .) in place ofG (¢, E). We estimate the latter
first as it is simpler. We define

4-p it p<4
5(p) = { log(E2X), if p=4
(p—BYEIX), if p>a

Lemma 2.3.There exists a constant C > 0 such that for large E > Eo,

o]

P 14 _ply |El/2XQ()’)|?15 8
f|1—q(y)|*Z ET2X et Am O o | dy
(1+EY2X Q)5

0
< CP(E2X)"Ps(p). (2.13)

Proof. We split the integral into three parts by using the consiamf Lemma 2.2,

1 K [e'9)
/+/+/...dy511~|—12+13.
0 1 K

By virtue of (2.11) and (2.12), we have

EY2x(1— y)3/2 :|p/6
y

1
L<CP|@-y) #EIX) P
vzor [a-yiain [HEl/ZX(l_y)g/z
0

1 2
(E2X)8

= CP(EIX)P(EEX)"S dy < CP(E2X)"P5(p).

(1+y32)r/6

Sincele XEYm2M| < 1for 1< y < K, we likewise have

K 1 P
1/2 3
Iz < C"/ ly—17% <E—%X—1 IEXO0)I® 1>
] 1+ |EY2X ()3

(2.14)

< CP(EZX)P5(p).
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kp
ForK <y < oo, we havell — q(y)| ™% ~ y~ % < CP, —iQ(y) ~ y**% > ¢y and
o0
I3 <CP / e PXEY2y gy < cPe=PEPX < cPs(p). (2.15)
K

Combining estimates (2.14) and (2.15), we obtain (2.18).

Recall that (! (¢) satisfies the following (cf. [T1, (7.1.8), (7.8.5) and (7.8.7))]:
3
(1) Wheng = —z <0, HY (¢) = ie—%”"{fl (z)+J_1(z)} and
- H V3 3 -3

) 227387 cosz — (/) + 0z H) (2 — o0),
cHP@ =128 oA , (@219
3 _— N .
NERCEN (t+ o =0

2 .
(2) When¢ = iw andw > 0, HP (¢) = —e_%’”l(%(w) and
3 T

1.1 O(e™) (w — 00),
H = 2.17
C2HE) {2%efls”n1r(1/3)w% +Oow?) (w—0). 2.17)
Lemma 2.4.There exists a constant C > 0 such that for large E > Ej,
o0
4 1
f|(1—q(y»r’ﬂc?H;”(;)Wdy <CPs(p). t=EY?XQ0(y).  (2.18)
0

Proof. We split the integral into four parts

1 K o0
/+/ +/ edy =g+ 14113
0 1 K

and estimate them separately. WherOy < 1,¢ = EY2XQ(y) ~ —EY2Xx(1 —
y)¥/2 < 0. We take largev > 0 and split the integral {linto two parts If = 1111+ 1112.
I111 is the integral over the part of the interv@l, 1) whereN < EY2X (1 — y)%? and
1112 over the complement. Applying the first relation of (2.16) tq lnd the second to
1112, we obtain

1—N%(E:2LX)_%
11 < CP / (- y)~hdy < CPa(p), (2.19)
0
N%(El/ZX)_%
ll1, < CP(EY2X)6 / vy
0

B

dy

= CPN3(EV2X)E < CPs(p). (2.20)
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When1l<y < K,wehave;(y)—1 ~ y—landw = —i¢ ~ EY2XQ(y)(y—1)%? > 0.
We split the integral

2\? _r 1
2= (=) [ =gl Fwikyirdy =z + iz
1

into the part 11 overw > 1 and lhp over 0< w < 1. We apply the first of (2.17) to
II21 and the second tod} and obtain

K
ll1 < CP[ (v = D%dy < C7 5(p). (2.21)
1+C(EY2x)-2/3

C(El/ZX)72/3
4 —4
llp2 < CP / Y E(EY2Xy¥?2)8dy < CP(EY2X)'T < CPS(p). (2.22)
0
FOrk <y <00,q(y) — 1~ y*, w~ E2Xy"*5 and (2.17) yields
® k
ll3 < CP / VR PEVIXT2 g op = EYPX g, (2.23)
K

Combining estimates (2.19), (2.20), (2.21), (2.22) and (2.23), we obtain (2.18).

Lemma 2.5.There exists a constant C > 0 such that we have following lower bound

1
/ I(1— q(y)r%m%H?(;)Wdy > CPs(p), ¢ =EY?XQ(y)
0

for sufficiently large E > Ep.

Proof. Denote the integral on the left bysllas in the proof of the previous lemma. We
takeN large enough sothéd (1/z)| < 1/10inthe first of (2.16) for > N.Take alarge

C > Osuchthat = —¢ ~ E2X(1—y)? > NwhenCN¥3(EY2x)~2/3 < 1—y < 1.
Then, by virtue of (2.16), we have, f@ > Ej,
b4 1
cos(; — Z) +0 <E>

gy > CP/ (1— )
N2/3(EY2X)~2/3<1—y<1

> (C/2)” / (A= )Py > exCP8(p)
N2/3(EY2X)=2/3<1—y<1,| co¢—7/4)|>+/2/2

14
dy

with somesy > 0. O
Proof of Theorem 1.5. We first prove (1). We have

1
P
1

o0
1 _»r 1
IV (x, E)llLr©0.00) ~ X7 2 /Il—CI(y)I 51G(E2XQ(y). E)|Pdy
0
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It follows from (2.13) and (2.18) that

_l(l_l) .
L L CpoE 27 7p7, if p<4
i 1 i 1 .
¥ (x, E)llLr0.00) ~ X7 28(p)? ~ { CE~ % (log E)Y/4, if p =4 (2.24)
k=4 k-1
CpE &7 3k, if p>4,

whereC,, is taken independent gf for p ¢ (4 —¢,4 + ¢), ¢ > 0. An entirely similar
argument produces the corresponding estimatéfar, E)| . »r-) and we obtain the
upper bound of (1.9). The lower bound readily follows from Lemma 2.5.

For proving the second statement, we remark that the estimate (2.3) remains to hold
for x € K uniformly. It is obvious from (2.4) that

1
E7?X71 —Im¢,+11/6
e Il <CX3E"IX7Y).  (2.25)

_ _1
Cpi(E=V(x) 20 ( 1+ (|16

Since; = —z ~ —E%XforlargeE uniformly forx € K, we have from the first relation
of (2.16) that

CELLE = VO (e /22 HRe) ~ X3 feos(z = T ) + 0(E-2x D).
(2.26)

The second statement follows by combining (2.25) and (2.26) becaus&r. O

3. Smoothing Properties

In this section we prove Theorem 1.2 and Theorem 1.3 by using estimates obtained in
Sect. 2. We writg for the Fourier transform of. In terms of the eigenvalues < Ao <

... of H and the corresponding normalized eigenfunctignéx), v¥2(x), ..., we may
write
e Mug(x) =Y e riig(n) P (x), (3.2)
n=1
whereig(n) = [ uo(x)¥,(x)dx,n = 1,2, ... arethe generalized Fourier coefficients.

R
Under Assumption 1.1 we know that there exists a congfastO such that

k=2

Adop = Angd — dn = CAZE (3.2)
hencer, > Cn% forn =1,2,... (cf. e.g. [Y4]).

Lemma 3.1.Suppose ug € D(H*) for sufficiently large ¢, then

o
lg@®e M uo() 125, < C||g||z%+zlm) X;mo(n)wn(x)ﬁ VieR.  (33)
-
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Proof. By virtue of Theorem 1.5, (3.1) converges uniformly with respect t@). If the

; (1,1
support ofg has a diametet 2/, then, by virtue of (3.2), there exist at m(ﬁst](2+k)
number ofr,, such thag (A +1,) # O for every fixed\. It follows by Plancherel theorem
that for suchg,

[ 180 unoar = [ 1386+ it

n=1

< c2(3+1) Z / 60+ Aio(nyvn () Pdr (3-4)

< c2/(3 %)uganZ lao(m)¥n (02,

n=1

where in the second step we used Schwarz’ inequaligyisfnot compactly supported,
o0
we decompose it by using a dyadic decomposition of the ulty /(%) = 1 such
j=—00

that

supphoC{r : |Al < 1}, supphe;cir:£2V172 < p <2y j=12 ...

o
in the formg = )~ g; so thatg; = gh; has a support whose diameter is less than
j=—00

21/, Then, (3.4) implies

2
. J(iq1 ad
le@e "M uo) |72, < € (Z ||gj||Lz<R>22<2 k)) Z|ﬁo<n>wn(x>|2

<C||g|| oy Duo(n)wn(xnz a

By virtue of Minkowski inequality we have

00 1/2
(Z lio(n) ¥ <x>|2) =

n=1 Lp

1/2

> laom) P ()

n=1

Lpr/2

00 1/2
(Zmo(nnzuwn(mu%p) :
n=1

The right-hand side may be estimated by using Theorem 1.5 by

IA

o 1/2
~ —20(k, —
Cp <Z|uo<n>|2xn ( ”) = Cpll H®Pug|| 2. (35)

n=1
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Combination of (3.3) and (3.5) yields

—itH

lig(t)e IH P ug|l 2y, (3.6)

uo)llLr @, 2@y = Cpligll 144 ®)

where the constard,, is taken uniformly with respect tp outside(4 — ¢, 4+ ¢). Since

D(HY) is dense inL2(R), (3.6) holds for allu € L2(R). Theorem 1.2 follows from
(3.6). O

Proof of Theorem 1.3. Theorem 1.5 (2) implies that

o o 1 1
sup _ liaom Py (0)? < C Y hy Fiom)|? = CIlH Fuoll2,p). (37

xek n=1 n=1

Thus, Theorem 1.3 follows by combining (3.3) with (3.7)a

4. Applications to Nonlinear Equations

In this section we prove Theorem 1.6 and Theorem 1.7. Since the proofs are quite similar,
we prove Theorem 1.7, and only indicate the modifications necessary for the proof of
Theorem 1.6. Hereafter, we often omit some of the variables of funetiornx) and

write u(¢) or simplyu for u(z, x), if no confusions are feared. By takiggsuch that

g(t) = 1for|t|] < §in Theorem 1.2 and Theorem 1.3, we have

IKia/00)* (HYP e "M uoll pw, 12551, < Cslluoll 2. a+p =0k p), p=2

(4.1)

supll(id/an) Y e Hug| 2 _s.61,) < Cslluoll 2. (4.2)
xeK

Proof of Theorem 1.7. We prove Theorem 1.7 far> 0 only. The argument far < O is

similar. We consider the equivalent integral equation

u() =e MMyy—i / e = £(x u(s))ds. (4.3)
0
Fors > 0, we writeKs = [0, §] x K and define the Banach spatg K) by

Y5(K) = C([0, 8], LAR) N LZ (Ky), Nullysik) = llull Loo.s1.2my) + el 2 k) -
We define a nonlinear map : Y5(K) — Ys5(K) by

t
W) =e Hyg—idw), ) = / e =M £ (x u(s))ds. (4.4)
0
Write By = {u € Ys(K) : leellys k) < M}.

Lemma 4.1.The map V¥ is well defined on Y5(K). There exiss M > Oand § > O
depending only on [lug|l 12z, Such that W maps B, into itself and

1
W) —Y)llysk) < s llu —vllysk), u,v € By. (4.5)
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Proof. Forug € L%(R), we havee ""uy € C(R, L?(R)). By virtue of (4.2) and
the Sobolev embedding theoreami " ug € L°(K,, L% ([0, 5];)). Hencee Huq
Ys(K) and

le™ "  uolly,x)y < calluoll 2 (4.6)

Let x(s < t) besuchthay(s <t) =1if0 <s <, andy(s < r) = 0 otherwise.
If u € Ys(K), then, the assumptions th@ix, u) = 0 for x ¢ K and (1.14) imply
S, u, x) € L3([0, 8], x R,) and

ILf Gy e, )20k < Cllel o g, - (4.7)
It then easily follows that> (1) € C([0, 8], L2(R)) and by Schwarz’ inequality and
1
1Pl L jo,51:L2@)) < CO2 [lully2r (x,)- (4.8)

By Minkowski’s inequality, (4.2) and (4.7), we have

B ) N
D @)l L2 x5y < /0 Hx (s < e e ™ fx, uls, X)) 2k, ds

s 1 (4.9)
<C A If e uls, X))l p2gyds < CO2 |1 f (x, u)ll 12k

1 r
S C(Sz ”u”LZ’(Kg)’

which with (4.6) and (4.8) implies thal is well-defined orts(K).
It follows also from (4.6), (4.8) and (4.9) that, with constantandc, which can be
taken independent of smal|

i 1
IWully, k) < e Puollysx) + 1f @ llysky < calluollpz + 282 lully, k) (4.10)

Thus, if we takeM such thatM > 2c1lugll 2, 8 < (2coM™~1)2, then||Wu|ly,(x) <
2cq|luoll;2 < M whenevet|u|y,xy < M andW¥ mapsBy, into itself. To show thatV
satisfies (4.5), we estimate

t .
W(uy) — W(ug) = —i /0 eI £(x ua(s)) — fx, ua(s))lds.

We have by Minkowski’s inequality and Holder’s inequality that

W (1) — W W2l o 051 L2 )y < / 1L e un(s)) — fc, ua(s))ll g2 ds
0

8

< C/ g — w2l (ueal ™ + w2l D)l 2 ds (4.11)

< / 03() = w2l 2o (sl 3L, + Nzl 5L )

= C52(||u1IILzr(K )T ||u2||Lzr(K Plur = uzll g2 (k)
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Likewise, by virtue of (4.6), we have by Minkowski’s inequality and Holder’s inegaulity

5 . .
W (u1) — W)l 2 k) < /0 Ilx (s < e e M f(x, ur) — f(x, u2)lll 2k, ds

b
e / £ G a5, x)) — £ e uls, )l 2 ds

< C52(||u1||Lzr(K )T ||u2||L2r(K Pl = uzll 2 k)
(4.12)

Combining (4.11) with (4.12), we obtain

1
W (u1) — W (u2)llysx) < 6332(||M1||Y5(K) + ||M2||y5(1K))||M1 —uzllyyxy,  (4.13)
and (4.5) follows if we choos&such that < min{(2coM" 1) =2, (4caM’~1)=2}. 1

Continuation of Proof of Theorem1.7. By virtue of Lemma 4.1, the contraction mapping
theorem implies tha¥ has a unique fixed point € B; and (4.3) has a unique solution
u in Ys(K). To prove that the solution depends on the initial dajaontinuously as
described in the theorem, we take, iip € L2(R) and letx andii be the corresponding
solutions. Then, the preceding estimates (4.6) and (4.13) show

~ ~ 1 ~
llu —itllysx) < clluo —wollz2 + 0352(|IMIIYA(K) + IIMIIYS(,Q)IIM — ity (k)

and|lu — illy;x) < cllug — tigll 2 for smalls > 0. This shows the desired continuous
dependence.

When satisfies the additional assumption (1.13), we will sfie\@) || ;2 = |luoll . 2-
Once this is shown, the solution(r) extends uniquely t§0, co) since the lengtld of
the interval on which the solution exists depends only@gi| ;2 ) as has been shown
above. Also the mag.2(R) 5 ug — u € C([0,T], L3(R)) N L% ([0, T, x K) is
continuous for anyl’" > 0 because(t, -) is L%(Ry) valued continuous and we will
be done. To showWu(#)| ;2 = |luoll .2, we computg| - ||L2(R ) of both sides of (4.3).

Denoting the inner product and the norm/cf(R,) by (-, -) and| - ||, respectively, and
writing f (¢, x) = f(z, u(t, x)), we have
t 2
lu@l = e~ ug—i / eI (s, x)ds
0
t
= ||u0||iz — 2Re<u0, i/ eiSHf(s,x)ds)
0

t t
+/ / " £ (s, x), ¢ £(r, x))dsdr.
0 Jo

The last two terms on the right cancel each other because the last integral is equal to

t Ky t r
/ <f(s,x),/ ei(sr)Hf(r,x)dr> ds—i—/ (/ eii(rfs)Hf(s,x)ds, f(r, x)) dr
0 0

/ (f(s,x),iu(s) — ”Huo))der/ (iu(r) —ie" "™ ug, f(r,x))dr

= 2Re<uo, i/ ei‘YHf(s, x)ds) ,
0
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where we used the fact thais a solution in the first step and (1.13) in the second. This
completes the proof. o

Proof of Theorem 1.6. The proof is very similar to that of Theorem 1.7 and we only
indicate the necessary modifications. Instea@l;gK ), we use now the Banach space

X5 = C([0, 81,5 L2(R,)) N LA(R,; L ([0, 81,))

with the norm

lullxs = lull oo qo,81,: 2R, + MUl Lo, L2 (0,51,))-

(This notation is slightly different from that in the theorem, but no confusion should
occur.) We define the nonlinear operatérand¥ by (4.4) as previously and sBt, =

{u € Xs : llullx; < M}. We show that, for anyg € L2(R), ¥ is a contraction map from
By into By, if the parameters > 0 andM are chosen suitably. To shaw/'# ug € X;

and|le= " ug||x, < Clluoll 2, we use (4.1) instead of (4.2) and Sobolev embedding
theorem which implieg=""ug € L*R,; LZ ([0, 8],)). By the assumption orf, we
have

8

)
1PNl Lo (j0.6),: 2R, ) 5/0 ILf G, u(s)ll2ds < C/o e Clu ()" [l 2ds

{ / |¢<x>|2|u(r,x)|2"drdx}
[0,6]xR

1 2 2r 3
:Caz{/R ¢ = llulr, )72 g0.67,,4% )2

NI

<C$§

1 r 1 r
< (Cé2 ”¢”L2;i’(R) ||u||L4(RX;L2’([O,8],)) < (Cé2 ”u“X';'
(4.14)

As in the proof of Theorem 1.7, (4.1) and (4.14) imply

1
1P @)l Lar,: L2 0,61,y < C2llully,- (4.15)

It follows thatWw mapsB,, into By, for suitableM ands which depend only offuo|| 2.
The rest of the proof may be done by repeating the argument of the proof of Theorem
1.7 by using these estimates. We omit the detaits.
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