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Abstract: We analyze the time evolution of a one-dimensional quantum system with
an attractive delta function potential whose strength is subjected to a time periodic (zero
mean) parametric variationη(t). We show that for genericη(t), which includes the sum
of any finite number of harmonics, the system, started in a bound state will get fully
ionized ast → ∞. This is irrespective of the magnitude or frequency (resonant or not)
of η(t). There are however exceptional, very non-genericη(t), that do not lead to full
ionization, which include rather simple explicit periodic functions. For theseη(t) the
system evolves to a nontrivial localized stationary state which is related to eigenfunctions
of the Floquet operator.

1. Introduction and Results

We are interested in the qualitative long time behavior of a quantum system evolving
under a time dependent HamiltonianH(t) = H0 + H1(t), i.e. in the nature of the
solutions of the Schrödinger equation

ih̄∂tψ = [H0 + H1(t)]ψ. (1)

Hereψ is the wavefunction of the system, belonging to some Hilbert spaceH,H0 andH1
are Hermitian operators and Eq. (1) is to be solved subject to some initial conditionψ0.
Such questions about the solutions of (1) belong to what Simon [1] calls “second level
foundation” problems of quantum mechanics. They are of particular practical interest for
the ionization of atoms and/or dissociation of molecules, in the case whenH0 has both
a discrete and a continuous spectrum corresponding respectively to spatially localized
(bound) and scattering (free) states inR

d . Starting at time zero with the system in a
bound state and then “switching on” att = 0 an external potentialH1(t), we want to
know the “probability of survival”,P(t), of the bound states, at timest > 0: P(t) =∑

j |〈ψ(t), uj 〉|2, where the sum is over all the bound statesuj [2–6,8,9].
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This problem has been investigated both analytically and numerically for the case
H1(t) = η(t)V1(x) with η(t) = r sin(ωt + θ) andV1 a time independent potential,
x ∈ R

d . Whenω is sufficiently large for “one photon” ionization to take place, i.e.,
whenh̄ω > −E0, E0 the energy of the bound (e.g. ground) state ofH0 andr is “small
enough” forH1 to be treated as a perturbation ofH0 then this is a problem discussed
extensively in the literature ([8,9]). Starting with the system in its ground state the long
time behavior ofP(t) is there asserted to be given by theP(t) ∼ exp[−�F t]. The
rate constant�F is computed from first order perturbation theory according to Fermi’s
golden rule. It is proportional to the square of the matrix element between the bound
and free states, multiplied by the appropriate density of continuum states in the vicinity
of the final state which will have energyh̄ω − E0 [6,8–10].

Going from perturbation theory to an exponential decay involves heuristics based
on deep physical insights requiring assumptions which seem very hard to prove. It is
therefore very gratifying that many features of this scenario have been recently made
mathematically rigorous by Soffer and Weinstein [6] (their analysis was generalized by
Soffer and Costin [7]). They considered the case whenH0 = −∇2 + V0(x), x ∈ R

3,
V0 compactly supported and such that there is exactly one bound state with energy−ω0
(from now on we use units in which̄h = 2m = 1) and a continuum of quasi-energy states
with energiesk2 for all k ∈ R

3. The perturbing potential isH1(t) = r cos(ωt)V1(x)

with V1(x) also of compact support and satisfying some technical conditions. They then
showed that forω > ω0 andr small enough there is indeed an intermediate time regime
whereP(t) has a dominant exponential form with the Fermi exponent�F . This regime
is followed for longer times by an inverse power law decay. Some of these restrictions
can presumably be relaxed but the requirement thatr be small is crucial to their method
which is essentially perturbative.

The behavior ofP(t) becomes much more difficult to analyze when the strength of
H1(t) is not small and perturbation theory is no longer a useful guide. This became clear
in the seventies with the beautiful experiments by Bayfield and Koch, cf. [11] for a review,
on the ionization of highly excited Rydberg (e.g. hydrogen atoms) by intense microwave
electric fields. These experiments showed quite unexpected nonlinear behavior ofP(t)

as a function of the initial state, field strengthE and the frequencyω. These results as
well as other multiphoton ionizations of hydrogen atoms have been (and continue to
be) analyzed by various authors using a variety of methods. Prominent among these are
semi-classical phase-space analysis, numerical integration of the Schrödinger equation,
Floquet theory, complex dilation, etc. While the results obtained so far are not rigorous,
they do give physical insights and quite good agreement with experiments although
many questions still remain open even on the physical level [11–15].

In addition to the above experiments on Rydberg atoms there are also many exper-
iments which use strong laser fields to produce multiphoton (ω < −E0) ionization of
multielectron atoms and/or dissociation of molecules [16,17]. These systems are more
complex than Rydberg atoms and their analysis is correspondingly less developed. One
unexpected result of certain studies is that an increase in the intensity of the field may
reduce the degree of ionization, i.e.,P(t) can be non-monotone in the field strengthE
at large values ofE. This phenomenon, which is often called “stabilization”, can be
observed in some numerical simulations, analyzed rigorously in some models and is
claimed to have been seen experimentally cf. [5] and [18–21].

It turns out that many features observed for Rydberg atoms and also stabilization are
already present in a simple model system which we have recently begun to investigate
analytically [22–24]. This somewhat surprising finding is based on comparisons between
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experimental and model results described in detail in [23]. In fact the phenomenon of
ionization by periodic fields is very complex indeed once one goes beyond the perturba-
tive regime even in the most simple model. This will become clear from the new results
about this model presented here.

2. The Model

We consider a very simple quantum system where we can analyze rigorously many of
the phenomena expected to occur in more realistic systems described by (1). This is
a one dimensional system with an attractive delta function potential. The unperturbed
HamiltonianH0 has, in suitable units, the form

H0 = − d2

dx2 − 2δ(x), −∞ < x < ∞. (2)

The zero range (delta-function) attractive potential is much used in the literature to model
short range attractive potentials [25–28]. It belongs, in one dimension, to the classK1
[2]. H0 has a single bound stateub(x) = e−|x| with energy−ω0 = −1. It also has
continuous uniform spectrum on the positive real line, with generalized eigenfunctions

u(k, x) = 1√
2π

(
eikx − 1

1 + i|k|e
i|kx|

)
, −∞ < k < ∞

and energiesk2.
Beginning att = 0, we apply a parametric perturbing potential, i.e. fort > 0 we

have

H(t) = H0 − 2η(t)δ(x) (3)

and solve the time dependent Schrödinger equation (1) forψ(x, t), with ψ(x,0) =
ψ0(x). Expandingψ in eigenstates ofH0 we write

ψ(x, t) = θ(t)ub(x)e
it

+
∫ ∞

−∞
!(k, t)u(k, x)e−ik2t dk (t ≥ 0)

(4)

with initial valuesθ(0) = θ0, !(k,0) = !0(k) suitably normalized,

〈ψ0, ψ0〉 = |θ0|2 +
∫ ∞

−∞
|!0(k)|2dk = 1. (5)

We then have that the survival probability of the bound state isP(t) = |θ(t)|2, while
|!(k, t)|2dk gives the “fraction of ejected particles” with (quasi-) momentum in the
intervaldk.

This problem can be reduced to the solution of an integral equation in a single variable
[22,23]. Setting

Y (t) = ψ(x = 0, t)η(t)eit (6)
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we have

θ(t) = θ0 + 2i
∫ t

0
Y (s)ds, (7)

!(k, t) = !0(k) + 2|k|/[√2π(1 − i|k|)] ∫ t

0
Y (s)ei(1+k2)sds. (8)

Y (t) satisfies the integral equation

Y (t) = η(t)

{
I (t) +

∫ t

0
[2i + M(t − t ′)]Y (t ′)dt ′

}

= η(t)
(
I (t) + (2i + M) ∗ Y

)
,

(9)

where the inhomogeneous term is

I (t) = θ0 + i√
2π

∫ ∞

0

!0(k) + !0(−k)
1 + ik

e−i(k2+1)t dk,

and

M(s) = 2i

π

∫ ∞

0

u2e−is(1+u2)

1 + u2 du = 1 + i

2
√

2π

∫ ∞

s

e−iu

u3/2 du

with

f ∗ g =
∫ t

0
f (s)g(t − s)ds.

In our previous works we considered the case where!0(k) = 0 andη(t) is a finite
sum of harmonics with period 2πω−1. In particular, we showed in [23] how to compute
the survival probabilityP(t) as a function of the strengthr and frequencyω when
η(t) = r sinωt . Here we study the general periodic case and write

η =
∞∑
j=0

(
Cje

iωjt + C−j e−iωjt).
Our assumptions on theCj are

(a) 0 �≡ η ∈ L∞(T),
(b) C0 = 0,
(c) C−j = Cj .

Genericity condition (g). Consider the right shift operatorT on l2(N) given by

T (C1, C2, . . . , Cn, . . . ) = (C2, C3, . . . , Cn+1, . . . ).

We say thatC ∈ l2(N) is generic with respect to T if the Hilbert space generated by
all the translates ofC contains the vectore1 = (1,0,0 . . . , ) (which is the kernel ofT ):

e1 ∈
∞∨
n=0

T nC (10)

(where the right side of (10) denotes the closure of the space generated by theT nC
with n ≥ 0). This condition is generically satisfied, and is obviously weaker than the
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“cyclicity” condition l2(N)�∨∞
n=0 T

nC = {0}, which is also generic [29] (Appendix B
discusses in more detail the rather subtle cyclicity condition).

An important case, which satisfies (10), (but fails the cyclicity condition) corresponds
to η being a trigonometric polynomial, namelyC �≡ 0 butCn = 0 for all large enough
n. (We can in fact replacee1 in (10) byek with anyk ≥ 1.) A simple example which
fails (10) is

η(t) = 2rλ
λ − cos(ωt)

1 + λ2 − 2λ cos(ωt)
(11)

for someλ ∈ (0,1), for whichCn = −rλn for n ≥ 1. In this case the space generated
by T nC is one-dimensional. We will prove that there are values ofr andλ for which the
ionization is incomplete, i.e.θ(t) does not go to zero for larget .

3. Results and Remarks

Theorem 1. Under assumptions (a) . . . (c) and (g), the survival probability P(t) of the
bound state ub, |θ(t)|2 tends to zero as t → ∞.

Theorem 2. For ψ0(x) = ub(x) there exist values of λ, ω and r in (11), for which
|θ(t)| �→ 0 as t → ∞.

Remarks. 1. Theorem 1 can be extended to show that
∫
D

|ψ(x, t)|2dx → 0 for any
compact intervalD ⊂ R. This means that the initially localized particle really wanders
off to infinity since by unitarity of the evolution

∫
R

|ψ(x, t)|2dx = 1. Theorem 2 can
be extended to show that for some fixedr andω in (11) there are infinitely manyλ,
accumulating at 1, for whichθ(t) �→ 0. In these cases, it can also be shown that for
larget , θ approaches a quasiperiodic function.
2. While Theorem 1 holds for arbitraryψ0, care has to be taken with the initial conditions
for Theorem 2. In particular we cannot have an initial state such that in (9)I (t) = 0 for
all t . This would occur, for example, ifψ0(x) is an odd function ofx. In that case the
evolution takes place as if the particle was entirely free – never feeling the delta function
potential. There may also be other specialψ0 for whichθ0 �= 0 but for whichθ(t) → 0
ast → ∞. We have therefore stated Theorem 2 for the caseψ0 = ub. We shall also,
for simplicity, use this choice ofψ0 in the proofs of Theorem 1. For this case, which is
natural from the physical point of view,I (t) = 1 in (9). The extension to generalψ0 is
immediate and is given at the end of Sect. 5.
3. In [23] we gave a detailed picture of how the decay ofθ(t) depends onr andω when
η(t) = r sin(ωt), θ0 = 1. For smallr andω−1 not too close to an integer we get an
exponential decay with a decay rate�(r, ω) ∼ r2(1+�ω−1�), where�ω−1� is the integer
part ofω−1. (Forω > 1, this corresponds to� ∼ �F ). At times large compared to�−1,
|θ(t)| decays ast−3/2. The picture becomes much more complicated whenr is large
and/orω−1 is an integer. In particular there is no monotonicity in|θ(t)| as a function of
r. In [24] we proved complete ionization for the case whereCn = 0 for n > N ,N ≥ 1.
4. We note here that Pillet [3] proved complete ionization for quite generalH0 under
the assumption thatH1(t) is “very random”, in fact a Markov process. Our results
are not only consistent with this but support the expectation that generic perturbations
will lead to complete ionization for generalH0. This is what we expect from entropic
considerations – there is just too much phase space “out there”. The surprising thing is
that even for our simple example one can readily find exceptions to the rule.
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We should also mention here the work of Martin et al. [31,32] who consider the case
whereH0 has an isolated eigenvalueE0 plus an absolutely continuous spectrum in the
interval[0, Emax]. They show that if the frequencyω of the periodic, small, perturbation
H1(t) is larger thanE0 then the bound state is stable. This can be understood in terms
of Fermi’s golden rule by noting that the density of states at the energyE0 +ω > Emax
is zero so that�F would be zero.

5. There is a direct connection between our results and Floquet theory where, for a
time-periodic HamiltonianH(t) with periodT = 2π/ω, one constructs a quasienergy
operator (QEO) [2,33,34]

K = −i ∂
∂θ

+ H(θ).

K acts on functions ofx andθ , periodic inθ , i.e. on the extended Hilbert spaceH ⊗
L2(S, T

−1dθ). Let nowφ(x, θ) be an eigenfunction satisfying

Kφ = µφ, φ(x, θ + T ) = φ(x, θ) (12)

then,
ψ(x, t) = e−iµtφ(x, t)

is a solution of the Schrödinger equationi ∂ψ
∂t

= H(t)ψ .
The existence of a real eigenvalueµ of the QEO with an associatedφ(x, θ) ∈

L2(R
d ⊗ S) is thus seen to imply the existence of a solution of the time-dependent

Schrödinger equation which is, in absolute value, periodic. This shows that for appropri-
ate initial conditions, the particle has a nonvanishing probability of staying in a compact
domain and thus, for the case considered here, that ionization is incomplete. We also
note that for each suchµ there is actually a whole setµn = µ + nω of eigenvalues of
K.

For the specific model considered here, (12) takes the form

Kφ = −∂2φ(x, θ)

∂x2 − 2(1 + η(θ))δ(x)φ − i
∂φ

∂θ
= µφ. (13)

We can now look for solutions of (13) in the form

φµ(x, θ) =
∑
n∈Z

yne
inωθ eαnx

with α±
n = ±√

µ − nω. Such a solution is inL2 only if �(αnx) < 0, a condition
which obviously selects different rootsλn depending on whetherx > 0 or x < 0. The
requirement thatφµ be inL2(R) leads to a set of matching conditions which determine
whether such eigenvaluesµ can exist. It is easy to see thatφµ has to be continuous at
zero and satisfy the condition

2φµ(0
−, θ) − φµ(0

+, θ) = 2(1 + η(θ))φµ(0, θ).

This implies, after taking the Fourier coefficients of both sides of the above equality,
the recurrence relation

yn(2 − α+
n + α−

n ) = 2
∑
j �=0

Cjyn−j (14)
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for which a (nontrivial) solutionyn ∈ l2 is sought. This is effectively the same equation
as (20) below which is at the core of our analysis. Complete ionization thus corresponds
to the absence of a discrete spectrum of the QEO operator and conversely stabilization
implies the existence of such a discrete spectrum. In fact, an extension of Theorem 2
shows that for the initial conditionψ0 = ub, ψt approaches such a function withµ =
−s0. More details about Floquet theory and stability can be found in [33,34].
6. We are currently investigating extensions of our results to the case whereH0 =
−∇2 +V0(x), x ∈ R

d , has a finite number of bound states and the perturbation is of the
form η(t)V1(x) and bothV0 andV1 have compact support. Preliminary results indicate
that, with much labor, we shall be able to generalize Theorem 1, to genericV1(x). The
definition of genericity will, however, depend strongly onV0.

The physically important case of an external electric dipole field,V1(x) = −Ex
can be transformed into the solution of a Schrödinger equation of the formH(t) =
−∇2 +V0(x−g(t)), see [2]. This should, in principle, also be amenable to our methods
but so far we have no results for that case.

Outline of the technical strategy. The method of proof relies on the properties of the
Laplace transform ofY , y(p) = LY (p) = ∫∞

0 e−ptY (t)dt .
Since the time evolution ofψ is unitary,|θ(t)| ≤ 1. This gives some a priori control

on Y . For our purposes however it is useful to characterize directly the solution of the
convolution equation (9). (We restrict ourselves to!0(k) = 0 andI (t) = 1 there.) We
show that this equation has a unique solution in suitable norms. This solution is Laplace
transformable and the Laplace transformy satisfies a linear functional equation.

The solution of the functional equation satisfied by the transform ofY is unique in
the right half plane provided it satisfies the additional property thaty(p0 + is) is square
integrable ins for anyp0 > 0. Any such solutiony transforms back (by the standard
properties of the inverse Laplace transform) into a solution of our integral equation with
no faster than exponential growth; however there is a unique locally integrable solution
of this equation, and this solution is exponentially bounded. This must thus be ourY .
We can thus use the functional equation to determine the analytic properties ofy(p).

This is done using (appropriately refined versions of) the Fredholm alternative. Af-
ter some transformations, the functional equation reduces to a linear inhomogeneous
recurrence equation inl2, involving a compact operator depending parametrically on
p, see e.g. (17). The dependence is analytic except for a finite set of poles and square-
root branch-points on the imaginary axis and we show that the associated homogeneous
equation has no nontrivial solution. We then show that the poles in the coefficients do not
create poles ofy, while the branch points are inherited byy. The decay ofy(p) when
|�(p)| → ∞, and the degree of regularity on the imaginary axis give us the needed
information about the decay ofY (t) for larget .

4. Behavior of y(p) in the Open Right Half Plane H

Lemma 3. (i) Equation (9) has a unique solution Y ∈ L1
loc(R

+) and |Y (t)| < KeBt

for some K , B ∈ R.
(ii) The function y(p) = LY exists and is analytic in HB = {p : �(p) > B}.
(iii) In HB , the function y(p) satisfies the functional equation

y =
∞∑

j=−∞
CjT j

(
h + by

)
(15)
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with(
T f

)
(p) = f (p + iω), h(p) = −p−1 and b(p) = − i

p

(
1 +√

1 − ip
)
.

The branch of the square root is such that for p ∈ H = {p : �(p) > 0}, the real part
of

√
1 − ip is nonnegative and the imaginary part nonpositive.

The straightforward proofs of this lemma are done in Appendix A. (Some of the
results can also be gotten directly from standard results on the Schrödinger operators
and on integral equations.)

Remark 4. It is clear that the functional equation (15) only links points on the one di-
mensional lattice{p + iZω}. It is convenient to takep0 such thatp = p0 + inω with
�(p0) = �(p) and

�(p0) ∈ [0, ω). (16)

The functionsy, h, b in (15) will now depend parametrically onp0. We sety =
{yj }j∈Z, h = {hj }j∈Z, b = {bj }j∈Z with yn = y(p0 + inω) = y(p) (and similarly for
h(p) andb(p)). It is convenient to define the operator(Ĥy)n = bnyn. Let(T y)n = yn+1
be the right shift onl2(Z) (which we denote for simplicity byl2) and rewrite (15) as

y =
∞∑

j=−∞
CjT j h +

∞∑
j=−∞

CjT j Ĥ y ≡ f + J y. (17)

Proposition 5. For �(p0) > 0 there exists a unique solution of (17) in l2. This solution
is analytic in p0,�(p0) > 0. Thus y(p) is analytic in p ∈ H and inverse Laplace
transformable there with L−1(y) = Y .

Proof. The proof uses the Fredholm alternative. We first prove the following results.

Lemma 6. The operator J is compact on l2 if p0 �= 0.

Proof. The proof uses standard compact operator results, see e.g. [30]. First note that the
operatorĤ is compact. This is straightforward: sincebj → 0 asj → ∞, it follows that
Ĥ is the norm limit asN → ∞ of the finite rank operators defined by(ĤNy)j = bjyj

for |j | ≤ N and(ĤNy)j = 0 otherwise, and thus is compact. The operatorJ is the
composition between the “convolution” operatorC given by (Cv)n := (C ∗ v)n :=∑

j∈Z
Cjvn+j , which is continuous onl2, and the compact operator̂H . ThusJ is

compact. "#
Remarks. 1. Note thatf ∈ l2 if p0 �= 0 (a straightforward consequence of the fact that
C andh in (17) are inl2).

2. The operatorJ is analytic inp0, except forp0 = 0, where the coefficients have
poles, and for an additional value on the imaginary axis (possibly also 0), where the
coefficients have square root branch points.



Ionization of Simple Model 9

Remark 7. Setting, forp0 �= 0,

yl = (
√

1 − i(p0 + ilω) − 1)zl (18)

the homogeneous equation

y = J y (19)

clearly has a (nontrivial)l2 solutiony only if

(√
1 − ip0 + lω − 1

)
zl = −

∞∑
k=1

(
Ckzl+k + Ckzl−k

)
(20)

has a (nontrivial)l2 solutionz with{(√
1 − ip0 + jω − 1

)
zj

}
j∈Z

∈ l2. (21)

Lemma 8. For any η under assumptions (a) to (c), if p0 ∈ H there is no nonzero l2
solution of (20) such that (21) holds.

Proof. To get a contradiction, assumez ∈ l2, z �≡ 0, satisfying (21), is a solution of
(20). Multiplying (20) byzl , and summing with respect tol from −∞ to +∞ we get

∞∑
l=−∞

(√
1 − ip0 + lω − 1

)
|z|2l = −

∞∑
l=−∞

∞∑
k=1

(
Ckzl+kzl + Ckzl−kzl

)

= −
∞∑

l=−∞

∞∑
k=1

(
Ckzlzl−k + Ckzl−kzl

)

= −
∞∑

l=−∞

∞∑
k=1

2�
(
Ckzlzl−k

)
.

(22)

If p0 ∈ H the imaginary part of
√

1 − ip0 + lω is negative (see Remark 24) and
thus, if somezl is nonzero then the left side of (22) has strictly negative imaginary part,
which is impossible since the right side is real."#
Proof of Proposition 5. The existence of the analytic solution follows now immediately
from the analytic Fredholm alternative and the analyticity of the coefficients, forp0 ∈ H.
The fact that{yn} ∈ l2 together with the stated analyticity imply that the function
L−1y(p) exists and satisfies the integral equation ofY , and thus coincides withY . "#

5. Behavior of y(p) in the Neighborhood of �(p) = 0 in the Generic Case

Discussion of methods. We start again from relation (17). This has the form

yn = i
∑
j

Cj

−ip0 + (n + j)ω
−
∑
j

Cjqn+j yn+j , C0 = 0, (23)
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where

qn =
[
1 + √

1 − ip0 + nω
]

−ip0 + nω
. (24)

As the imaginary axis�(p0) = 0 is approached, two types of potential singularities in
the coefficients need attention: the poles in the coefficients due to the presence ofp−1,
and the square root singularities. It will turn out that by cancellation effects, the poles
play no role, generically. The square root singularities will be manifested in the solution
y. The study of these questions requires further regularization of the functional Eq. (23).

It is convenient to separate out the terms in (23) which are singular atp0 = 0. Using
(from now on) the notations0 = −ip0 we have

yn = i
C−n
s0

− C−n(1 + √
1 + s0)

s0
y0 + i

∑
j �=−n

Cj

s0 + (n + j)ω

−
∑
j �=−n

Cjqn+j yn+j , n �= 0,

y0 = i
∑
j �=0

Cj

s0 + jω
−
∑
j �=0

Cjqjyj .

(25)

We break up the proof into two parts, the non-resonant and resonant case. We start
with the former.

5.1. The non-resonant case, ω−1 �∈ N.

Proposition 9. If condition (g) is satisfied, and ω−1 �∈ N, then the solution y of (25) is
analytic in a small neighborhood of s0 = 0.

For the proof we writey0 = i/2 + s0u0, and forn �= 0 we make the substitution
yn = vn + dnu0, where we will choosedn according to (26) in order to eliminateu0
from all equations withn �= 0.

Lemma 10. (i) For s0 ∈ R there exists a unique solution d ∈ l2(Z \ {0}) of the system

dn = −C−n(1 +√
1 + s0) −

∑
k �=0

Ck−nqkdk, n �= 0. (26)

This solution is analytic at s0 = 0.
(ii) With this choice of d , the system (25) becomes

vn = fn −
∑
k �=0

Ck−nqkvk,


s0 +

∑
j �=0

Cjqjdj


 u0 = f0 −

∑
j �=0

Cjqjvj , (27)

where

f0 = − i

2
+ i

∑
j �=0

Cj

s0 + jω
, fn = iC−n

1 − √
1 + s0

2s0
+ i

∑
k �=0

Ck−n
s0 + kω

. (28)
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(iii) For small s0 we have
∑

j �=0Cjqjdj �= 0, and the system (27) has a unique solution
with v ∈ l2(Z \ {0}), and vn, u0 are analytic at s0 = 0 .

Proof. (i) Equation (26) is of the form(I − J ′)d = c′ in l2(Z \ {0}), wherec′
n =

−(1 + √
1 + s0)Cn and

(J ′d)n = −
∑
k �=0

Ck−nqkdk, (n �= 0).

We show first that Ker(I − J ′) = {0}. Indeed, assumed = J ′d and setDk = qkdk.
Then we see that

qn
−1Dn +

∑
k �=0

Ck−nDk = 0 (29)

and, by multiplying withDn and summing overn we get∑
n�=0

q−1
n |Dn|2 +

∑
n,k �=0

Ck−nDkDn = 0. (30)

Note that, becauseC−n = Cn, the following quantity is real:

∑
n,k �=0

Ck−nDkDn =
∑
n,k �=0

Cn−kDkDn =
∑
n,k �=0

Ck−nDkDn, (31)

implying that ∑
n�=0

q−1
n |Dn|2 ∈ R

with (cf. (24))
q−1
n = −1 +√

1 + s0 + nω.

Let N0 = −(1 + s0)ω
−1 ∈ R. Obviouslyq−1

n ∈ R for n ≥ N0 while for n < N0 we
have, by Remark 24

�(q−1
n ) < 0.

Thus it is necessary thatDn = 0 for all n < N0.
AssumeD �= 0. LetN ∈ N be such thatDn = 0 for all n < N andDN �= 0 (thus

N0 ≤ N ). Then from (29),∑
k≥N;k �=0

Ck−nDk = 0 for anyn < N

or, settingk = N − 1 + j ,∑
j≥1,j �=1−N

Cj+nDN−1+j = 0 for n ≥ 0. (32)

It is here that we use the genericity condition onC. In fact we will show that (32)
impliesD = 0 if condition (g) is satisfied.To see this defineD̃ ∈ l2(N)asD̃j = DN−1+j
if j ≥ 1, j �= 1 − N and, if 1− N ≥ 1, D̃1−N = 0. Then by (32)D̃ is orthogonal in
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l2(N) to all T nC, n ≥ 0. By the genericity condition (g) then< D̃, e1 >= DN = 0,
which is a contradiction. ThusD = 0.

SinceJ ′ is analytic ins0 for small enoughs0, and compact by the same simple
arguments as in Lemma 6, it follows that(I − J ′)−1 exists and is analytic ins0 at
s0 = 0.
(ii) This part is an immediate calculation.
(iii) Note first thatf ∈ l2(Z \ {0}), because

‖f ‖ ≤
∣∣∣∣1 − √

1 + s0

2s0

∣∣∣∣ ‖c‖ +

∑
n�=0

∣∣∣∣∑
k �=0

Ck−n
s0 + kω

∣∣∣∣
2



1/2

≤ ‖c‖
∑
k �=0

1

|s0 + kω|2 < ∞.

Also, formula (28) expressesf in terms of a discrete measure integral with respect
to k of a function which depends analytically on the (small) parameters0, and which is
uniformly in l1. Thereforef depends analytically ons0.

The rest of the proof of (iii) closely follows that of part (i), using the following result.

Lemma 11. For s0 = 0 we have
∑
j �=0

Cjqjdj �= 0.

Proof. Assume the contrary was true. Ats0 = 0, withD0
n = Dn|s0=0 andq0

n = qn|s0=0,
relation (29), using (26), gives

0 = D0
n

q0
n

= −
∑
k �=0

Ck−nD0
k − 2C−n (n �= 0). (33)

Multiplying with D0
n and summing overn �= 0 we would get∑

n�=0

(−1 + √
1 + nω)|D0

n|2 = −
∑
k,n�=0

Ck−nD0
kD

0
n −

∑
n�=0

2C−nD0
n, (34)

and since we assumed
∑

n CnD
0
n = 0 then, as in the proof of Lemma 10 (i), it follows

thatD0
n = 0 for all n < N0 = −ω−1. This gives, using (33), that∑

k≥N0;k �=0

Ck−nD0
k + 2C−n = 0. (35)

Denote byD1 ∈ l2 the sequenceD1
k = D0

k if k �= 0 andD1
0 = 2. As in the

proof of Lemma 10 (i), using the genericity condition (g), we getD1 = 0, an obvious
contradiction. "#

This concludes the proof of Proposition 9: for genericη the solutiony of (17) has,
for ω−1 /∈ N, analytic componentsyn whenp = 0.
Square root singularities. We now study the behavior at the square root singularities of
the coefficients of the equation ofy.

Let k0 be the unique integer such that for somesr ∈ [0, ω)we have 1+ sr + k0ω = 0
(thensr is a branch point in the coefficientq).

The following proposition describes the analytic structure ofy(p) near the imaginary
axis.



Ionization of Simple Model 13

Proposition 12. We have the decomposition yn = un + (
√
s0 − sr )vn, where un and vn

are analytic in s0 in a complexneighborhood of the segment [0, ω).

Proof. The substitutionyn = un + (
√
s0 − sr )vn, and

Uk = qkuk; Vk = qkvk (k �= k0) andUk0 = uk0

s0 + k0ω
; Vk0 = vk0

s0 + k0ω

leads to the following system of equations forUn andVn:

q−1
n Un = ri

∑
k

Ck−n
s0 + kω

−
∑
k

Ck−nUk − Ck0−n(s0 − sr )Vk0 (n �= k0),

q−1
n Vn = −

∑
k

Ck−nVk − Ck0−n(s0 − sr )Vk0 − Ck0−nUk0 (n �= k0), (36)

(s0 + k0ω)Uk0 = i
∑
k

Ck−k0

s0 + kω
,

(s0 + k0ω)Vk0 = −
∑
k

Ck−k0Vk.

We now letQk0 = s0 + k0ω and, forn �= k0, Qn = q−1
n = −1 + √

1 + s0 + kω. We
use again the Fredholm alternative and, as in the previous proofs, we need only to show
the absence of a solution of the homogeneous equationat s0 = sr . We thus multiply the
homogeneous equations associated to (36) in the following manner: the equation forUj

by Uj and the equation forVj by Vj , then sum over allj . As in the previous proofs,
from the reality of the r.h.s. and then from the genericity condition (g)U ≡ 0. Then,
similarly,V ≡ 0. The rest is immediate."#

5.2. The resonant case: ω−1 = M ∈ N. In this case whens0 = 0 there are poles in the
coefficients of (23) whenn + j = 0 and branch points whenn + j = −M. The proof
is a combination of the two regularization techniques used in the previous case.

Proposition 13. We can set y(s0) = A(s0) + B(s0)
√
s0 with A and B analytic in a

complex neighborhood of the segment [0, ω).

Proof. Special care is only needed nears0 = 0. The system (26)–(28) now reads

dn = −C−n(1 +√
1 + s0) −

∑
k /∈{0,−M}

Ck−nqkdk − C−M−n
1 + √

s0

s0 − 1
d−M,

vn = fn −
∑

k /∈{0,−M}
Ck−nqkvk − C−M−n

1 + √
s0

s0 − 1
v−M. (37)
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We takedn = αn + √
s0βn andvn = γn + √

s0δn. The system becomes

αn = − C−n(1 +√
1 + s0) −

∑
k /∈{0,−M}

Ck−nqkαk

− C−M−n
1

s0 − 1
(α−M + s0β−M),

βn = −
∑

k /∈{0,−M}
Ck−nqkβk − C−M−n

1

s0 − 1
(α−M + β−M), (38)

γn = fn −
∑

k /∈{0,−M}
Ck−nqkγk − C−M−n

1

s0 − 1
(γ−M + s0δ−M),

δn = −
∑

k /∈{0,−M}
Ck−nqkδk − C−M−n

1

s0 − 1
(δ−M + γ−M). (39)

The system (38) is of the form(
α

β

)
= S(s0)

(
α

β

)
+
(
F1
F2

)
,

whereα, β, F1, F2 are inl2. We prove that the homogeneous equation has no nontrivial
solutions:

Lemma 14. (I − S(0))

(
α

β

)
= 0 implies

(
α

β

)
= 0.

Proof. Let Qn = qn, An = qnαn, Bn = qnβn for n �= 0,−M andQ−M = −1,
A−M = −α−M andB−M = −β−M . The system (38) becomes

Q−1
n An = −

∑
k �=0

Ck−nAk,

Q−1
n Bn = −

∑
k �=0

Ck−nBk − C−M−nA−M.
(40)

As in the proofs in Case I, multiplying the first equation byAn, summing overn we first
get from the reality of the r.h.s. thatAn = 0 for n < −M and then by the condition (g)
we get thatA ≡ 0. The conclusionB ≡ 0 now follows in the same way."#
End of proof of Proposition 13. The operatorS is compact onl2 ⊕ l2 andS and(F1, F2)

are analytic in a complex neighborhood of 0. We saw in Lemma 14 that the kernel of
I − S(0) is trivial and by the analytic Fredholm alternative it follows that(I − S(0))−1

exists and is analytic in a small neighborhood ofs0 = 0. Hence(α, β) are analytic.
Similarly, γ, δ are analytic in the same region."#

5.3. Proof of Theorem 1. Combining the above results we have the following conclusion:

Proposition 15. If condition (g) is fulfilled, then y(p) is analytic in a neighborhood of
iR \ {isr + iωZ}. For any j ∈ Z, in a neighborhood of p = isr + ijω (sr ∈ R) y has
the form y(p) = Aj(p) + Bj (p)

√−ip − sr − ijω, where Aj and Bj are analytic. In
particular, y is Lipschitz continuous of exponent 1/2 in the closed right half plane. Thus
Y (t) = O(t−3/2) for large t .
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Proof. All but the last claim has already been shown. The last statement is a standard
Tauberian theorem (note thatL−1 is the Fourier transform along the imaginary line).
"#
Proposition 16. We have θ(t) → 0 as t → ∞.

Proof. We can write (9) (withI (t) = 1) as

Y = η(θ + M ∗ Y ). (41)

It is easy to check, in view of the fact thatM andY areO(t−3/2), thatM ∗ Y → 0.
Furthermore 1+ 2i

∫ t
0 Y (s)ds is convergent ast → ∞. Thusθ(t) → const ast → ∞.

Since now the l.h.s. of (9) converges to zero andη does not, the equality (41) is only
consistent ifθ(t) → 0. "#

This completes the proof of Theorem 1 for the caseψ0 = ub = e−|x|.
The general case follows by noting that the inhomogeneous term does not affect the

main argument, using the Fredholm alternative. Hence we will still have|θ(t)| → 0 but
the rate of decay may be different.

6. A Nongeneric Example

Let η be given by (11), for which

Cn = −rλn for n ≥ 1, Cn = C−n. (42)

As in Sect. 5 set−ip0 = s0 and letqn be given by (24). Denote

an = an(s0) = 1

r

1

qn
= 1

r

(√
1 + s0 + nω − 1

)
. (43)

For r ∈ (0,1), ω > 1, ω−1 �∈ N such that(1 − r)2 < ω − 1, let sr andsp be the
unique numbers in(0, ω) so that 1+ sr ∈ ωZ and 1+ a−1(sp) = 0. We chooser, ω
such thatsr �= sp.

6.1. The homogeneous equation.

Lemma 17. Let s0,0 be a point in (0, sr ) ∪ (sr , ω). Consider s0 in a small enough
neighborhood of s0,0. The linear operator J = J (s0) of (17) depends analytically on
s0, and is compact on l2. For s0 �= sp, (I − J (s0))

−1 exists and is analytic.

Lemma 18. Denote for short J0 = J (sr ).
There exists a value λ = λs ∈ (0,1) such that

dim Ker(I − J0) = 1. (44)

Denote byA the diagonal (unbounded) operator(Az)n = anzn in l2;A−1 is bounded.

Lemma 19. For λ = λs as in Lemma 18 we have

Ker (I − J0) = A
[
Ker

(
I − J ∗

0

)]
. (45)
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6.2. Proof of Lemma 17. The operatorJ is compact by Lemma 6. To show thatI −J is
invertible we prove this for any pointss0 ∈ (0, ω), s0 �= sp, sr ; by the analytic Fredholm
theorem it will follow thatI − J is invertible in a small enough neighborhood of any
such point, thus proving the lemma.

Let s0 ∈ (0, ω), s0 �= sp, sr . As in Remark 7 in Sect. 5, the substitutionyn = anzn
(n ∈ Z) transforms the homogeneous equation (19) to

anzn =
∞∑
j=1

λj
(
zn+j + zn−j

)
, n ∈ Z. (46)

Note that�an < 0 for n < −1 for s0 ∈ [ω − 1, ω) and �an < 0 for n < 0 for
s0 ∈ (0, ω − 1). We will discuss only the first case,s0 ≥ ω − 1, since the second one is
completely analogous.

As in the proof of Lemma 8, it follows that

zn = 0 for n < −1. (47)

Then Eqs. (46) forn < −1 become

∞∑
k=1

λkzk−2 = 0. (48)

Forn = −1 (46) gives

(a−1 + 1)z−1 = 0, (49)

and forn ≥ 0, using (48), we get

(1 + an)zn =
n+1∑
j=1

(λj − λ−j )zn−j , n ≥ −1. (50)

Sinces0 �= sp, (49) givesz−1 = 0, and it follows by induction, from (50), thatzn = 0
for all n. By the Fredholm alternative theorem thenI − J (s0) is invertible.

6.3. Proof of Lemma 18. In what followss0 = sr .

6.3.1. An auxiliary lemma. We show that ifz ∈ l2 then Eq. (48) is redundant.

Lemma 20. If z is an l2 solution of (50) with zn = 0 for n < −1 then z satisfies (48).

Proof. Let z ∈ l2 be a solution of (50). Then

Z[n+1] ≡
n∑

k=1

λkzk−2 (51)

is the truncation of a convergent series, since there is a constantM with |zn| < M for
all n. Note that

1 + an)zn =
n+1∑
j=1

λj zn−j − λ−n−2Z[n+1],
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hence

Z[n+1] = λn+2
n+1∑
j=1

λj zn−j − λn+2(1 + an)zn,

so that∣∣∣Z[n+1]
∣∣∣ ≤ λn+2 Mλ

1 − λ
+ λn+2M

(
1 + const

√
n
) −→ 0 asn → ∞. (52)

Since (51) are truncations of the series in the LHS of (48), then (52) implies (48)."#
6.3.2. Behavior of the general solution of (50). A direct calculation shows that the
sequencezn satisfying the infinite order recurrence (50) and the initial conditionz−1 = 1
satisfies, in fact, the three step recurrence

(1 + an+1)zn+1 + (1 + an−1)zn−1 = [λ(1 + an) + λ + anλ
−1]zn (n ≥ 0) (53)

with the initial condition

z−1 = 1, z0 = λ − λ−1

1 + a0
. (54)

Denote

zn = λ − λ−1

1 + an
Vn−1, (55)

then (53) becomes

Vn + Vn−2 =
[
λ + λ2 + an

λ(1 + an)

]
Vn−1 n ≥ 1. (56)

We are looking forl2 solutions. Recent rigorous WKB estimates (see e.g. [35]) would
imply there are solutions of the discrete equation (56) behaving likeλ−ne−√

n/ω and like
λne

√
n/ω. We will prove this in our context and find special values ofλ for which the

solution decaying for largen satisfies the initial condition.We will show that this solution
is obtained by taking

Vn−2 = gn−1Vn−1 (57)

in (56) and iterating:

gn−1 = Gn − 1

gn
with Gn = λ + λ2 + an

λ(1 + an)
, (58)

i.e.,g0 is given by the continued fraction:

g0 = G1 − 1

G2 − 1

G3
. . .

,

which needs to match the initial condition (see (54):

g0 = g0(λ) = 1

λ + λ−1 + (1 + a0)−1(λ − λ−1)
. (59)
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Lemma 21. (i) Let λ ∈ (0,1). The recurrence (58) has a solution such that gn → λ−1

as n → ∞.
(ii) g0 is meromorphic in λ on [0,1) and has poles.
(iii) There exists λs ∈ (0,1) such that g0(λs) satisfies (59).
(iv) Let λ = λs . To the solution of (i) there corresponds a solution V [s] of the recurrence

(56) such that V [s]
n ∼ λ

n+o(n)
s as n → ∞. The corresponding solution z[s] of (50)

satisfies zn → 0 as n → ∞.
(v) Let λ = λs . There exists a solution of (56) with the asymptotic behavior V [l]

n ∼
λ

−n+o(n)
s .

Thus, for λ = λs , there exists a unique (up to a multiplicative constant) “small”
solution of (56), with the behavior V [s]

n ∼ λ
n+o(n)
s for large n, while the general solu-

tion behaves like Vn ∼ λ
−n+o(n)
s . As a consequence, a similar statement holds for the

recurrence (53).

Remark. The proof of (iii) can be refined to show that, in fact, there is a countable set
of pointsλs for whichg0 satisfies the initial condition, and that these values accumulate
to 1.

Proof. (i) With the substitution

gn = Gn+1 − λ + δn, (60)

the recurrence (58) becomes

δn = λ − 1

Gn+2 − λ + δn+1
≡ (Sδ)n , n ≥ 0. (61)

For n0 ≥ 0 andε small, positive, defineλn0 = an0+2
(
2 + an0+2

)−1 − ε. Let Nn0

be a small neighborhood of the intervalIn0 = [0, λn0]. Consider the Banach space
Bn0 of sequences{δn}n≥n0 with δn = δn(λ) analytic onNn0 and continuous up to the
boundary, with the norm‖δ‖ = supn≥n0

supλ∈Nn0
|δn(λ)|. Direct estimates show that

the operatorS defined by (61) takes the ball of radiusρn0 = 2/(2 + an0+2) + ε′ in
Bn0 into itself (if ε, ε′ andNn0 are small enough), and is a contraction in this ball.
Therefore the equationδ = S(δ) has a unique solution inBn0, of norm less thanρn0.
Then|δn(λ)| < const(n + 2)−1/2 for all λ ∈ In and alln ≥ 0. Since the sequenceλn
increases to 1, (i) follows.

(ii) Step I: All gn are meromorphic on [0,1). Sinceδn is analytic onIn, then from
(60), gn is analytic onIn \ {0}, having a pole atλ = 0: gn ∼ λ−1an+1(1 + an+1)

−1

(λ → 0). Iterating (58) it follows thatgn−1, gn−2, . . . , g0 are meromorphic onIn. Since
the intervalsIn increase toward[0,1) it follows thatg0, g1, . . . gn . . . are meromorphic
on [0,1).

Step II: There exists n1 and λ0 ∈ (0,1) such that gn1(λ0) ≤ 0. Defineεn = (1 + an)
−1;

we have (see (43))

εn0 ∼ r(n0ω)
−1/2, n0 → ∞. (62)

Let n0 be large and denoteλ0 = 1 − εn0. LetN0 be large enough so thatλ0 is in the
domain of analyticity ofgN0. Iterating (58) starting fromN0 (and decreasing indices) we
get the valuegn0(λ0). If for somen ∈ {n0, n0 + 1, . . . , N0} we getgn(λ0) ≤ 0, Step II
is proved. Then assume thatgn0(λ0) > 0.
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Consider the recurrence

r̃n−1 = Gn0(λ0) − 1

r̃n
for n ≤ n0, r̃n0 = gn0(λ0), (63)

where, in fact,Gn0(λ0) = 2 − ε2
n0

.
The recurrence (63) can be solved explicitly (it is a discrete Riccati equation and

a substitutionr̃n−1 = xn−1/xn transforms it into a linear recurrence with constant
coefficients). It has the solution

r̃n = cos((n − n0)φ + θ)

cos((n + 1 − n0)φ + θ)
, (64)

where cosφ = 1−ε2
n0
/2, sinφ > 0, and tanθ = (cosφ−λ)/ sinφ so thatθ ∼ π

4 − 1
4εn0

(εn0 → 0).
We assume, to get a contradiction, thatgn(λ0) > 0 for all n = 0,1, . . . , n1. Then

gn(λ0) ≤ r̃n for n ≤ n0, (65)

which follows immediately by induction using (58), (63), noting thatGn is increasing
in n.

Note that there is ann1 ∈ {1,2, . . . , n0 − 1} so that

r̃n > 0 for n ∈ {n1 + 1, . . . , n0} andr̃n1 < 0. (66)

Indeed (from (62)) whenn decreases fromn0 the numerator and denominator in (64)
increase up to 1, then decrease, until the numerator becomes negative, whenn equals
n1 = n0 − k1, wherek1 is the integer withk1 − 1 < (π/2 + θ)/φ ≤ k1. Sinceφ ∼ εn0

(εn0 → 0) thenk1 ∼ (3π)/(4εn0), and, using (62), clearlyk1 ∈ {1, . . . , n0 − 1} (if n0
is sufficiently large).

Then (65) and (66) contradict the assumption thatgn1(λ0) > 0, andStep II is proved.
Step III. The functiongn1 is meromorphic on[0,1), with gn1(0+) = +∞. There is a
smallest value ofλ in (0, λ0), wheregn1 changes sign: this is either a zero, or a pole.

Assume it was a pole. Letp ∈ (0, λ0) be the first pole ofgn1. Thengn1 is positive and
analytic on(0, p), andgn1(p−) = +∞,gn1(p+) = −∞. Sincegn+1 = 1/(Gn+1−gn)

(see (58)) thengn1+1(p−) = 0−, hencegn1+1 changes sign in(0, p). But gn1+1 has
no zero in(0, p) (otherwise at that zerogn1 would have had a pole, from (58)). Then
gn1+1 has a pole, with a change of sign, from+ to −, in (0, p). Now the argument can
be repeated. It follows that for anyk > 0, gn1+k has a pole in(0, p), which contradicts
the fact that the domain of analyticity ofgn increases to(0,1) asn → ∞.

Therefore, the first change of sign ofgn1 is at a zero. Letζ1 be the smallest value in
(0,1) such thatgn1(ζ1−) = 0+,gn1(ζ1+) = 0−. Then from (58) we havegn1−1(ζ1−) =
−∞ andgn1−1 changes sign in(0, ζ1). Now the argument can be repeated. It follows
thatg0 has a pole at a pointζn1 with g0(ζn1−) = −∞.
(iii) Since g0(λ) takes all the values whenλ ∈ (0, ζn1) there existsλ = λs ∈ (0,1)
such that (59) holds.
(iv) Forλ = λs , since the solution of (i) satisfiesgn(λ) = λ−1+O(n−1/2)we have from
(57), with the notationV [s] = V (λs), thatV [s]

n = ∏n
k=0 gk(λs)

−1V
[s]
0 = O(λ

n+o(n)
s )

and thusV [s]
n − V

[s]
n−1 = O(λ

n+o(n)
s ); then from (55)z[s]

n = O(λ
n+o(n)
s ).

(v) The substitution (variation of constants)Vn = V
[s]
n vn brings the recurrence (56) to

a first order one: with the notationIn = vn − vn−1 we haveIn = V
[s]
n−2/V

[s]
n In−1 and

the rest of the argument consists of straightforward estimates."#
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Fig. 1. Graph ofg0 given by (58) (discontinuous graph) and by (59) in a region nearλ = 1, as functions ofλ

λ

6.3.3. Proof of Lemma 18.

Proof. Lemma 21(v) shows that Eq. (53) has a unique (up to a multiplicative constant)
small solution,z[s]

n ∼ λ
n+o(n)
s (n → ∞), while the general solution behaves likezn ∼

λ
−n+o(n)
s . Sinceyn ∼ √

nzn the uniqueness of thel2 solution is proven.

6.3.4. Examples of solutions. We will show next how concrete valuesλs satisfying
Lemma 21 (iii) are relatively straightforwardly, and rigorously, found. One method is as
follows. Note that the minimum/maximum of the functiona − b/x, wherex varies in
an interval not containing zero is achieved at the endpoints. We thus take the recurrence
(58) with initial conditionsgn0 = λ−1 ± 1−λ2√

nω
and computeg0 from these. The actual

graph will be between these two, unless the condition mentioned is violated in between
n0 and 0. This graph is to be intersected with the graph of the initial condition (59).

We take for instanceω = 1.1, r = 0.45,sp = 0.11,n0 = 10, for which the rigorous
control is not too involved. The two graphs are very close to each other (within about
3.10−6 for λ ∈ (0.3,0.4)) and cannot be distinguished from each-other in Fig. 1. A first
intersection is seen atλ ≈ 0.327; see Fig. 2.

6.4. Proof of Lemma 19. DenoteB = (I − J0)A; we haveB = A − S. HenceB∗ =
A − S. Then Ker(B) = Ker(B∗) (sinceAz = Sz implies (47), soAz = Az, and
similarly,Az = z impliesAz = Az). So Ker[(1 − J0)A] = Ker[A(1 − J0

∗)] so that
(sinceA is one-to-one)A−1 Ker(1 − J0) = Ker(1 − J0

∗), which proves the lemma.

6.5. Discussion of the singularities of solutions of (17). Letλ = λs . We have thatI −J
is invertible for�p0 > 0, and is not invertible atp0 = isp (Lemma 18). By the analytic
Fredholm theorem (see e.g. [30])(I − J )−1 is meromorphic on a small neighborhood
of isp, therefore there existm ≥ 1 and operatorsSm, . . . , S1, R(p0) so that:

(I − J )−1 = 1(
p0 − isp

)m Sm + · · · + 1

p0 − isp
S1 + R(p0), (67)
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Fig. 2. Graphs ofg0 (steeper graph) and of the initial condition forg0 (59)

λ

whereR(p0) is analytic atisp, andSm �= 0 (sinceI − J0 is not invertible). Multiplying
(67) byI−J to the left, respectively to the right, and writingJ = J0+(p0−isp)J1(p0)

(whereJ1(p0) is analytic atisp) we get that

R1(p0) = 1(
p0 − isp

)m (I − J0) Sm + O
((
p0 − isp

)−m+1
)
,

R2(p0) = 1(
p0 − isp

)m Sm (I − J0) + O
((
p0 − isp

)−m+1
)
,

whereR1,2 are analytic atp0 = isp. By the uniqueness of the series of the analytic
functions (Banach space valued)R1,2 we must then have

(I − J0) Sm = 0 = Sm (I − J0) . (68)

The first equality in (68) implies Ran(Sm) ⊂ Ker (I − J0) = ∨{yKer} and since
Sm �= 0 then Ran(Sm) = ∨{yKer}, thereforeSmy = 〈y, u〉yKer for someu ∈ l2 \ {0}.
The second equality in (68) meansu ∈ Ran(I − J0)

⊥ = Ker
(
I − J ∗

0

)
.

By Lemma 19 then (up to a multiplicative constant)u = A−1yKer = zKer, wherezKer
satisfies (46), hence (53),(54). The solutiony = (I − J )−1 f of (17) is then singular
atp0 = isp if c =< f, zKer >�= 0. For the example of Sect. 6.3.4 this latter condition
can be checked by explicit calculation of the truncations to 10 terms and estimation of
the remainder based on the contractivity bounds in the previous section. The result is
c = −1.953± 0.001. Thus the inhomogeneous equation has poles.

Lemma 22. Let Y (t) be analytic on [0,∞), with lim t→∞ Y (t) = 0.
Let s ∈ R. Then

lim
a↓0

a

∫ ∞

0
e−(a+is)tY (t) dt = 0. (69)

Corollary 23. Let Y (t) be as in Lemma 22. Let y(p) = ∫∞
0 e−ptY (t) dt . Assume that

y(p) is analytic on iR+, except for a set of isolated points. Then y(p) does not have
poles on iR+.
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Proof. I. We first show (69) fors = 0.
Separating the positive and negative parts of�Y (t), �Y (t) write Y (t) = Y [1](t) −

Y [2](t) + iY [3](t) − iY [4](t) with Y [k](t) nonnegative, continuous, nonanalytic only
on a discrete set, where the left and right derivatives exist, with limt→∞ Y [k](t) =
0. It is enough to show (69) for eachY [k]. Let thenY be one of theY [k]’s. Denote
H(t) = supτ≥t Y (τ ). The functionH on [0,∞) has the same properties asY and in
addition is decreasing. ThenH ′ exists a.e. andH ′ ∈ L1[0,∞), since

∫∞
0 |H ′(τ )| dτ =

− lim t→∞
∫ t

0 H
′(τ ) dτ = lim t→∞ −H(t) + H(0) = H(0).

Then

a

∫ ∞

0
e−atY (t) dt ≤ a

∫ ∞

0
e−atH(t) dt = −

∫ ∞

0

d

dt

(
e−at)H(t) dt

= H(0) +
∫ ∞

0
e−atH ′(t) dt,

therefore

lim
a↓0

a

∫ ∞

0
e−atY (t) dt ≤ H(0) + lim

a↓0

∫ ∞

0
e−atH ′(t) dt = 0,

which proves the lemma in this case.

II. Let now s ∈ R arbitrary. Then (69) follows from the result fors = 0 applied to the
functionỸ (t) = e−istY (t). "#
Proof of Theorem 2. In conclusionY (t) cannot tend to zero ast → ∞ and complete
ionization fails. "#
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Appendix A. Proof of Lemma 3

(i) ConsiderL1
loc[0, A] endowed with the norm‖F‖ν := ∫ A

0 |F(s)|e−νsds, where
ν > 0. If f is continuous andF,G ∈ L1

loc[0, A], a straightforward calculation shows
that

‖fF‖ν < ‖F‖ν sup
[0,A]

|f |, (A1)

‖F ∗ G‖ν < ‖F‖ν‖G‖ν, (A2)

‖F‖ν → 0 as ν → ∞, (A3)

where the last relation follows from the Riemann–Lebesgue lemma.
The integral equation (9) can be written as

Y = η + J Y whereJF := η(2i + M) ∗ F. (A4)

SinceM is locally inL1 and bounded for largex it is clear that for large enoughB2, (9)
is contractive ifν > B2, for anyA.



Ionization of Simple Model 23

(ii) This is an immediate consequence of Lemma 3 and of elementary properties of the
Laplace transform.

(iii) We have inH,

LM = lim
a↓0

2i

π

∫ ∞

0
dxe−px

∫ ∞

0

u2e−i(x−ia)(1+u2)

1 + u2 du (A5)

= i

π

∫ ∞

−∞
u2

(1 + u2)(p + i(1 + u2))
du. (A6)

For �(p) > 0 we push the integration contour through the upper half plane. At the
two poles in the upper half planeu2 + 1 equals 0 andip respectively, so that

i

π

∫ ∞

−∞
u2

(1 + u2)(p + i(1 + u2))
du

= i

π

(
(−1)

(2i)(p)

∮
ds

s
+ u2

0

(ip)(2iu0)

∮
ds

s

)
= − i

p
+ u0

p
, (A7)

whereu0 is the root ofp + i(1 + u2) = 0 in theupper half plane. Thus

LM = − i

p
+ i

√
1 − ip

p
(A8)

with the branch satisfying
√

1 − ip → 1 asp → 0 in H.
Thus, the analytic continuation of

√
1 − ip in H∪∂H in our calculations is as follows:

Remark 24. Asp varies inH, 1−ip belongs to the lower half plane−iH so that
√

1 − ip

varies in the fourth quadrant, and in particular�√
1 − ip < 0. If p ∈ iR and−ip ≥ −1

then
√

1 − ip is real and nonnegative, while if−ip < −1 and
√

1 − ip has zero real
part and negative imaginary part.

To show (15) note that for�(p) > 0, ω > 0 we have

L
(
e±iωM

)
= − i

p ∓ iω
+ i

√
1 − ip ∓ ω

p ∓ iω
,

(with
√

1 − ip − ω = −i√ω − 1 + ip if ω > 1)

(A9)

The branch of the square root was discussed in Remark 24. This concludes the proof of
Lemma 3 (iii).

Appendix B. Discussion of the Genericity Condition (g)

A thorough analysis of the properties of the shift operator is provided by the treatise [29].
We provide here an independent discussion, meant to give an insight on the interesting
analytic properties involved in this condition.

Let C = (C0, C1, . . . , Cn, . . . ) ∈ l2(N) and the operatorT defined as before by
T C = (C1, C2, . . . ). We want to see for which such vectors, the system of equations

(z, T jC) = 0, j = 0,1, . . . (B1)
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has nontrivial solutionsz in l2. We can associate toz andC analytic functions in the unit
disk,Z(x) andC(x) by

C(x) =
∞∑
k=0

Ckx
k Z(x) =

∞∑
k=0

zkx
k. (B2)

These functions, extend toL2 functions on the unit circle. The system of equations (B1)
can be written as

z0C(x) + z1x
−1(C(x)C(0)) + . . .

+ zn

[
x−nC(x) − x−n

n−1∑
k=0

xk

k! C
(k)(0)

]
+ · · · = 0. (B3)

Using Cauchy’s formula, we can the difference in square brackets in (B3) as

1

2πi

∮
|s|=1

C(s)

sn(s − x)
ds, (B4)

and thus (B1) becomes ∮
|s|=1

C(s)Z(1/s)

s − x
ds = 0. (B5)

The functionsC for which this equation has nontrivial solutionsZ relate to the
Beurling inner functions [29] and are very “rare”.

Examples. (i) Let |λ| < 1 andCn = λn, i.e.C(x) = (1 − λx)−1. This is related to the
function (11). Taking advantage of the analyticity ofZ outside the unit circle, we can
push the contour of integration towardss = ∞, collecting the residue atx = λ−1; we see
that Eq. (B5) holds iffZ(λ) = 0, i.e., for a space of analytic functions of codimension
one.

(ii) Let λn = 1/n. ThenC(x) = ln(1 − x), and by takings = 1/t in (B5) we get

1

x

∮
|t |=1

Z(t) ln(t − 1)

(t − x−1)t
dt − 1

x

∮
|t |=1

ln(t)Z(t)

t (t − x−1)
dt = 0. (B6)

By making a cut on[1,∞) for the log we see that the integrand in the first integral
is analytic in the unit circle and thus the integral vanishes. We decompose the second
integral by partial fractions and we get∮

|t |=1

ln(t)Z(t)

t
dt −

∮
|t |=1

ln(t)Z(t)

(t − y)
dt = 0, (B7)

wherey = x−1. The first integral is a constant,C. By pushing the contour of integration
inwards, we see that the second integral extends analytically for smally �= 0. For such
y we thus have∮

|t |=1

ln(t)(Z(t) − Z(y))

(t − y)
dt + Z(y)

∮
|t |=1

ln(t)

(t − y)
dt = −C. (B8)
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Now the contour of integration can be pushed to the sides of the interval[0,1] collecting
the difference between the branches of the log. We get∫ 1

0

Z(t) − Z(y)

t − y
dt + Z(y)

∫ 1

0

1

t − y
dt = 0. (B9)

Thusφ(y) + Z(y) ln(−y) = C with φ andZ analytic in the unit circle, thus ln(−y) is
analytic unlessZ = 0. This showsCn = 1/n is generic.
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