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Abstract: We analyze the time evolution of a one-dimensional quantum system with
an attractive delta function potential whose strength is subjected to a time periodic (zero
mean) parametric variatiof(¢). We show that for generig(z), which includes the sum

of any finite number of harmonics, the system, started in a bound state will get fully
ionized ag — oo. This is irrespective of the magnitude or frequency (resonant or not)
of n(z). There are however exceptional, very non-geng(ig, that do not lead to full
ionization, which include rather simple explicit periodic functions. For thgsg the
system evolves to a nontrivial localized stationary state which is related to eigenfunctions
of the Floquet operator.

1. Introduction and Results

We are interested in the qualitative long time behavior of a quantum system evolving
under a time dependent Hamiltonidh(t) = Hp + Hi(t), i.e. in the nature of the
solutions of the Schroédinger equation

ihd;y = [Ho+ H1()]y. )

Hereys is the wavefunction of the system, belonging to some Hilbert shaé# andH,

are Hermitian operators and Eq. (1) is to be solved subject to some initial conglition
Such questions about the solutions of (1) belong to what Simon [1] calls “second level
foundation” problems of quantum mechanics. They are of particular practical interest for
the ionization of atoms and/or dissociation of molecules, in the case Whéas both

a discrete and a continuous spectrum corresponding respectively to spatially localized
(bound) and scattering (free) statesRf. Starting at time zero with the system in a
bound state and then “switching on”zat= 0 an external potentialt{,(r), we want to

know the “probability of survival”,P (¢), of the bound states, at times> 0: P(t) =

Zj [{¥ (1), uj)|2, where the sum is over all the bound state$2—6, 8,9].
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This problem has been investigated both analytically and numerically for the case
Hi(t) = n(®)Vi(x) with n(r) = rsin(wt + ) and V1 a time independent potential,
x € RY. Whenw is sufficiently large for “one photon” ionization to take place, i.e.,
wheniw > —Eg, Eg the energy of the bound (e.g. ground) statégfandr is “small
enough” forH; to be treated as a perturbation 8§ then this is a problem discussed
extensively in the literature ([8,9]). Starting with the system in its ground state the long
time behavior of P(¢) is there asserted to be given by tRér) ~ exp—I'rt]. The
rate constanf i is computed from first order perturbation theory according to Fermi’s
golden rule. It is proportional to the square of the matrix element between the bound
and free states, multiplied by the appropriate density of continuum states in the vicinity
of the final state which will have energy» — Eg [6,8-10].

Going from perturbation theory to an exponential decay involves heuristics based
on deep physical insights requiring assumptions which seem very hard to prove. It is
therefore very gratifying that many features of this scenario have been recently made
mathematically rigorous by Soffer and Weinstein [6] (their analysis was generalized by
Soffer and Costin [7]). They considered the case wHgn= —V?2 + Vp(x), x € RS,

Vo compactly supported and such that there is exactly one bound state with engygy
(from now on we use units inwhigh= 2m = 1) and a continuum of quasi-energy states
with energiesk? for all k € R3. The perturbing potential i&/1(r) = r cowt) V1(x)

with V1 (x) also of compact support and satisfying some technical conditions. They then
showed that fow > wg andr small enough there is indeed an intermediate time regime
whereP(¢) has a dominant exponential form with the Fermi exporigntThis regime

is followed for longer times by an inverse power law decay. Some of these restrictions
can presumably be relaxed but the requirementthatsmall is crucial to their method
which is essentially perturbative.

The behavior ofP (+) becomes much more difficult to analyze when the strength of
Hj(¢) is not small and perturbation theory is no longer a useful guide. This became clear
in the seventies with the beautiful experiments by Bayfield and Koch, cf. [11] for areview,
on the ionization of highly excited Rydberg (e.g. hydrogen atoms) by intense microwave
electric fields. These experiments showed quite unexpected nonlinear behaRioy of
as a function of the initial state, field strengihand the frequency. These results as
well as other multiphoton ionizations of hydrogen atoms have been (and continue to
be) analyzed by various authors using a variety of methods. Prominent among these are
semi-classical phase-space analysis, numerical integration of the Schrédinger equation,
Floquet theory, complex dilation, etc. While the results obtained so far are not rigorous,
they do give physical insights and quite good agreement with experiments although
many questions still remain open even on the physical level [11-15].

In addition to the above experiments on Rydberg atoms there are also many exper-
iments which use strong laser fields to produce multiphotor:(— Eg) ionization of
multielectron atoms and/or dissociation of molecules [16,17]. These systems are more
complex than Rydberg atoms and their analysis is correspondingly less developed. One
unexpected result of certain studies is that an increase in the intensity of the field may
reduce the degree of ionization, i.€.(r) can be non-monotone in the field strendth
at large values ofF. This phenomenon, which is often called “stabilization”, can be
observed in some numerical simulations, analyzed rigorously in some models and is
claimed to have been seen experimentally cf. [5] and [18-21].

It turns out that many features observed for Rydberg atoms and also stabilization are
already present in a simple model system which we have recently begun to investigate
analytically [22—24]. This somewhat surprising finding is based on comparisons between
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experimental and model results described in detail in [23]. In fact the phenomenon of
ionization by periodic fields is very complex indeed once one goes beyond the perturba-
tive regime even in the most simple model. This will become clear from the new results

about this model presented here.

2. The Model

We consider a very simple quantum system where we can analyze rigorously many of
the phenomena expected to occur in more realistic systems described by (1). This is
a one dimensional system with an attractive delta function potential. The unperturbed
HamiltonianHgp has, in suitable units, the form

2
Hoy=———5 —28(x), —00o<x<o0. (2)
dx2
The zero range (delta-function) attractive potential is much used in the literature to model
short range attractive potentials [25-28]. It belongs, in one dimension, to thektlass
[2]. Ho has a single bound statg (x) = ¢! with energy—wo = —1. It also has
continuous uniform spectrum on the positive real line, with generalized eigenfunctions

1

1 .
k - = ikx &
k0= (6 T+ k]

eilk”) , —oo<k<oo

and energies?.
Beginning atr = 0, we apply a parametric perturbing potential, i.e.fos 0 we
have

H (1) = Ho — 2n(1)é(x) ®3)

and solve the time dependent Schrédinger equation (1yfar, ¢), with ¥ (x,0) =
Yo(x). Expandingy in eigenstates offy we write

Y(x, 1) = 0(up(x)e'’

00 . 4
+/ O, Hu(k, x)e"*1dk (1 > 0) @)
—00
with initial values6(0) = g, ©(k, 0) = ®g(k) suitably normalized,
o0
(Yo. Vo) = I6ol? + / 1©0(k) 2k = 1. (5)
—0Q

We then have that the survival probability of the bound staf&(i3 = |6(¢)|2, while
|©(k, 1)|2dk gives the “fraction of ejected particles” with (quasi-) momentum in the
intervaldk.

This problem can be reduced to the solution of an integral equation in a single variable
[22,23]. Setting

Y(t) = ¢(x =0, 0)n(r)e" (6)



4 O. Costin, R. D. Costin, J. L. Lebowitz, A. Rokhlenko

we have

t

0(t) =6+ 2i / Y (s)ds, @)
0
t
Ok, t) = Oo(k) + 2k|/[v2m (1 - ilkl)]/ Y (5)el G g, (8)
0

Y (¢) satisfies the integral equation

t
Y(@) =n() {I(t) +/ [2i + M — t/)]Y(t’)dt/}
0 9)

= n(t)(l(t) + (2 + M) Y),

where the inhomogeneous term is

Oo(k) + Oo(—k) e_i(k2+1)tdk,

l' o
’(t):9°+@/(3 1+ ik
and 2i o) MZe—is(l+u2) 14 0 ,—iu
with

t
frg= /0 F$)g(t — )ds.

In our previous works we considered the case wltggé) = 0 and»n(z) is a finite
sum of harmonics with period2o 2. In particular, we showed in [23] how to compute
the survival probabilityP () as a function of the strength and frequencyw when
n(t) = r sinwt. Here we study the general periodic case and write

9]

= Z (Cjeicujt + C_jefiwjt)'

Jj=0
Our assumptions on the; are
(@ 0#nelL®),
(b) Co=0,
(C) C_j = Cj.
Genericity condition (g). Consider the right shift operat@r on/>(N) given by
T(C1,Co,...,Cp,...)=(C2,C3,...,Cps1,...).

We say thaC e I>(N) is generic with respect to T if the Hilbert space generated by
all the translates of contains the vectar; = (1,0, 0...,) (which is the kernel of"):

o
ere \/ T"C (10)
n=0

(where the right side of (10) denotes the closure of the space generated BYGhe
with n > 0). This condition is generically satisfied, and is obviously weaker than the
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“cyclicity” condition I2(N) & \/o2, T"C = {0}, which is also generic [29] (Appendix B
discusses in more detail the rather subtle cyclicity condition).

An important case, which satisfies (10), (but fails the cyclicity condition) corresponds
to n being a trigonometric polynomial, namety # 0 but C,, = 0 for all large enough
n. (We can in fact replace; in (10) by e, with anyk > 1.) A simple example which
fails (10) is

A — coqwt)
14 A2 — 2% coSwt)

for somex € (0, 1), for whichC,, = —rA" for n > 1. In this case the space generated
by T"C is one-dimensional. We will prove that there are valuesarida for which the
ionization is incomplete, i.&.(¢t) does not go to zero for large

n(t) = 2ri

(11)

3. Results and Remarks

Theorem 1. Under assumptions(a) ... (c) and (g), the survival probability P (¢) of the
bound state uy, |0(¢)|? tendsto zero ast — oo.

Theorem 2. For ¥o(x) = up(x) there exist values of A, w and r in (11), for which
|0()| 4 0ast — oo.

Remarks. 1. Theorem 1 can be extended to show tf}g\tlp(x, 1)|%dx — 0 for any
compact intervaD C R. This means that the initially localized particle really wanders
off to infinity since by unitarity of the evolutioriy | (x, 1)|%dx = 1. Theorem 2 can
be extended to show that for some fixeéndw in (11) there are infinitely many,
accumulating at 1, for which(r) 4 0. In these cases, it can also be shown that for
larget, 6 approaches a quasiperiodic function.

2. While Theorem 1 holds for arbitrati, care has to be taken with the initial conditions
for Theorem 2. In particular we cannot have an initial state such that in({9)= 0 for

all 7. This would occur, for example, ibp(x) is an odd function ok. In that case the
evolution takes place as if the particle was entirely free — never feeling the delta function
potential. There may also be other spedgigifor which 6y £ 0 but for whichg(z) — 0

ast — oo. We have therefore stated Theorem 2 for the agase= u;. We shall also,

for simplicity, use this choice afg in the proofs of Theorem 1. For this case, which is
natural from the physical point of view,(r) = 1 in (9). The extension to generab is
immediate and is given at the end of Sect. 5.

3. In[23] we gave a detailed picture of how the decay @f depends om andw when
n(r) = rsin(wt), o = 1. For smallr andw~! not too close to an integer we get an
exponential decay with a decay rdtér, w) ~ r23+9™'D) where|w™1] is the integer
part ofw~1. (Forw > 1, this corresponds tb ~ I'r). At times large compared 1,
16(1)| decays as~%/2. The picture becomes much more complicated whéslarge
and/oro~1 is an integer. In particular there is no monotonicitydxr)| as a function of
r. In [24] we proved complete ionization for the case wh€ge= 0 forn > N, N > 1.

4. We note here that Pillet [3] proved complete ionization for quite gerfésainder

the assumption that/1 () is “very random”, in fact a Markov process. Our results
are not only consistent with this but support the expectation that generic perturbations
will lead to complete ionization for generaly. This is what we expect from entropic
considerations — there is just too much phase space “out there”. The surprising thing is
that even for our simple example one can readily find exceptions to the rule.
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We should also mention here the work of Martin et al. [31, 32] who consider the case
where Hp has an isolated eigenvalugy plus an absolutely continuous spectrum in the
interval[0, Emax]. They show that if the frequeneyof the periodic, small, perturbation
Hj(¢) is larger thanEg then the bound state is stable. This can be understood in terms
of Fermi’s golden rule by noting that the density of states at the enéggyw > Ejqx
is zero so thal'r would be zero.

5. There is a direct connection between our results and Floquet theory where, for a
time-periodic HamiltoniarH (¢) with periodT = 27 /w, one constructs a quasienergy
operator (QEO) [2,33,34]
ad
K=—i—+ H(9).
v + H(9)

K acts on functions af andé , periodic ing, i.e. on the extended Hilbert spate®
Lo(S, T~1do). Let nowg (x, 6) be an eigenfunction satisfying

K¢ =npd, ¢(x,0+T)=0¢(x,0) 12)

then, ‘
vix,t)=e"Mex, 1)

is a solution of the Schrodinger equatidgﬁ =H@®)y.

The existence of a real eigenvalueof the QEO with an associatepl(x, §) <
L2(R? ® S) is thus seen to imply the existence of a solution of the time-dependent
Schrédinger equation which is, in absolute value, periodic. This shows that for appropri-
ate initial conditions, the particle has a nonvanishing probability of staying in a compact
domain and thus, for the case considered here, that ionization is incomplete. We also
note that for each sucgh there is actually a whole set, = 1 + nw of eigenvalues of
K.

For the specific model considered here, (12) takes the form

2
Ko = _% — 201+ 1)) — ig—‘g = uo. (13)

We can now look for solutions of (13) in the form

Pulx.0) =Y yne" e

nez

with & = +./ — nw. Such a solution is ir.2 only if %(a,x) < 0, a condition
which obviously selects different roots depending on whether > 0 orx < 0. The
requirement thap,, be inL2(R) leads to a set of matching conditions which determine
whether such eigenvalugscan exist. It is easy to see that has to be continuous at
zero and satisfy the condition

2¢,,(07,0) — ¢,(07, 0) = 2(1+ 1(0))$. (0, 0).

This implies, after taking the Fourier coefficients of both sides of the above equality,
the recurrence relation

@=of o) =2 Ciya (14)
Jj#0
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for which a (nontrivial) solutiory, € 12 is sought. This is effectively the same equation

as (20) below which is at the core of our analysis. Complete ionization thus corresponds
to the absence of a discrete spectrum of the QEO operator and conversely stabilization
implies the existence of such a discrete spectrum. In fact, an extension of Theorem 2
shows that for the initial conditiogg = u;, ¥, approaches such a function with=

—sp. More details about Floguet theory and stability can be found in [33, 34].

6. We are currently investigating extensions of our results to the case \iere

—V2 4+ Vp(x), x € R?, has a finite number of bound states and the perturbation is of the
form 5 () V1(x) and bothVy and V1 have compact support. Preliminary results indicate
that, with much labor, we shall be able to generalize Theorem 1, to genigrig. The
definition of genericity will, however, depend strongly Ga

The physically important case of an external electric dipole fi€ldx) = —Ex
can be transformed into the solution of a Schrédinger equation of the fbmn =
—V24 Vo(x — g(1)), see [2]. This should, in principle, also be amenable to our methods
but so far we have no results for that case.

Outline of the technical strategy. The method of proof relies on the properties of the
Laplace transform of , y(p) = LY (p) = f0°° e PlY (t)dt.

Since the time evolution of is unitary,|0 ()| < 1. This gives some a priori control
onY. For our purposes however it is useful to characterize directly the solution of the
convolution equation (9). (We restrict ourselvesitg(k) = 0 and/ (t) = 1 there.) We
show that this equation has a unique solution in suitable norms. This solution is Laplace
transformable and the Laplace transfoymaatisfies a linear functional equation.

The solution of the functional equation satisfied by the transform @f unique in
the right half plane provided it satisfies the additional propertytlgg + is) is square
integrable ins for any po > 0. Any such solutiory transforms back (by the standard
properties of the inverse Laplace transform) into a solution of our integral equation with
no faster than exponential growth; however there is a unique locally integrable solution
of this equation, and this solution is exponentially bounded. This must thus bé. our
We can thus use the functional equation to determine the analytic properiigg)of

This is done using (appropriately refined versions of) the Fredholm alternative. Af-
ter some transformations, the functional equation reduces to a linear inhomogeneous
recurrence equation i, involving a compact operator depending parametrically on
p, see e.g. (17). The dependence is analytic except for a finite set of poles and square-
root branch-points on the imaginary axis and we show that the associated homogeneous
equation has no nontrivial solution. We then show that the poles in the coefficients do not
create poles of, while the branch points are inherited byThe decay ofy(p) when
|3(p)] — oo, and the degree of regularity on the imaginary axis give us the needed
information about the decay &f(z) for larger.

4. Behavior of y(p) in the Open Right Half Plane H

Lemma3. (i) Equation (9) has a unique solution Y € Llloc(RJ“) and Y (1)| < KeB?
for some K, B € R.

(i) Thefunction y(p) = LY existsandisanalyticinHg = {p : X(p) > B}.

(iii) InHp, thefunction y(p) satisfies the functional equation

y= i C; 79 (h+ by) (15)

j=—00
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with

(Tf)(p)=f(p+iw), h(p)=—-p~t andb(p) =

(1+ﬂ).

;
p
The branch of the squarerootissuch that for p € H = {p : R(p) > 0O}, thereal part

of /1 — ip isnonnegative and the imaginary part nonpositive.

The straightforward proofs of this lemma are done in Appendix A. (Some of the
results can also be gotten directly from standard results on the Schrédinger operators
and on integral equations.)

Remark 4. It is clear that the functional equation (15) only links points on the one di-
mensional lattice p + iZw}. It is convenient to takeg such thatp = pg + inw with
R(po) = R(p) and

3(po) € [0, w). (16)

The functionsy, &, b in (15) will now depend parametrically opg. We sety =
{vi}jez: h ={hj}jez, b = {b}}jez With y, = y(po + inw) = y(p) (and similarly for
h(p) andb(p)). Itis convenient to define the operatdt y), = by yn. Let(Ty)n = ypi1
be the right shift orix(Z) (which we denote for simplicity bjp) and rewrite (15) as

y= > CiT'h+ > CT/Hy=f+Jy. 17)

j=—00 j=—00

Proposition 5. For 9i(pg) > 0 there exists a unique solution of (17) in l2. This solution
is analytic in po, W(po) > 0. Thus y(p) is analytic in p € H and inverse Laplace
transformable there with £=1(y) = Y.

Proof. The proof uses the Fredholm alternative. We first prove the following results.
Lemma 6. The operator 7 iscompact on l» if pg # 0.

Proof. The proof uses standard compact operator results, see e.g. [30]. First note that the
operatorH is compact. This is straightforward: sinee— 0 asj — oo, it follows that

H is the norm limit asV — oo of the finite rank operators defined b)ley)j =bjy;

for |j| < N and (ﬁNy)j = 0 otherwise, and thus is compact. The opergfais the
composition between the “convolution” operatorgiven by (Cv), := (C * v), :=

>_jez Cjvn+j, Which is continuous ork, and the compact operatdf. Thus J is
compact. O

Remarks. 1. Note thatf € I if po # O (a straightforward consequence of the fact that
Candhin (17) are inlp).

2. The operator7 is analytic in pg, except forpg = 0, where the coefficients have
poles, and for an additional value on the imaginary axis (possibly also 0), where the
coefficients have square root branch points.
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Remark 7. Setting, forpg # 0,

yi=K1—i(po+ilw) -1z (18)
the homogeneous equation
y=Jy (19)

clearly has a (nontriviall, solutiony only if

(\/m - 1>z1 =- i (Ckzl+k + 6k217k) (20)

k=1

has a (nontrivial)2 solutionz with

[(Vizipotjo-1)z] et (21)

JEL

Lemma 8. For any n under assumptions (@) to (c), if po € H there is no nonzero I»
solution of (20) such that (21) holds.

Proof. To get a contradiction, assumec I, z # 0, satisfying (21), is a solution of
(20). Multiplying (20) byz;, and summing with respect tdrom —oo to +oco we get

o0

> (Vi—ipo+io—1)izf = -

I=—00

WK
M

(Ckzmﬁ + a{zszz_z)

N
I
|
3
~
I
N

(Ckzzﬂ + szszz_z) (22)

~

I
”M8
2 1]

—00 k=1

o0
_— sz(ckzzﬂ)
I=—00 k=1

If po € H the imaginary part of/1 — ipo + [w is negative (see Remark 24) and
thus, if somez; is nonzero then the left side of (22) has strictly negative imaginary part,
which is impossible since the right side is reats

Proof of Proposition 5. The existence of the analytic solution follows now immediately
from the analytic Fredholm alternative and the analyticity of the coefficientpgfer H.
The fact that{y,} € [» together with the stated analyticity imply that the function
L£~1y(p) exists and satisfies the integral equatiory ofind thus coincides with. 0

5. Behavior of y(p) in the Neighborhood of J(p) = 0in the Generic Case
Discussion of methods. We start again from relation (17). This has the form

Cj
=1 E B ——— E C; i ., Cop=0, 23
Yn =1 : Zipo+ (1 + o - jqn+jYn+j 0 (23)
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where

1+ /11
gu = LEY I o no] (24)
—ipo +nw
As the imaginary axii(pg) = 0 is approached, two types of potential singularities in
the coefficients need attention: the poles in the coefficients due to the presegnce of
and the square root singularities. It will turn out that by cancellation effects, the poles
play no role, generically. The square root singularities will be manifested in the solution
y. The study of these questions requires further regularization of the functional Eq. (23).
It is convenient to separate out the terms in (23) which are singujay 2t0. Using
(from now on) the notatiosy = —ipg we have

=G Qi Vitso) 3 ¢
= 50 T L Gt e
J#—n
— Z Ciqnyjyntj, n #0, (25)
J#n
. Cj
yo=i) o= Ciayi.
J#0 j#0

We break up the proof into two parts, the non-resonant and resonant case. We start
with the former.

5.1. The non-resonant case, w1 ¢ N.

Proposition 9. If condition (g) is satisfied, and =1 ¢ N, then the solution y of (25) is
analytic in a small neighborhood of sg = 0.

For the proof we writeyg = i/2 + souo, and forn # 0 we make the substitution
Y. = v, + dyuo, where we will choose,, according to (26) in order to eliminaig
from all equations with # O.

Lemma 10. (i) For so € R thereexistsa unique solution d € [2(Z \ {0}) of the system
dy = —C_(1+ V1+50) = Y Chonqrdi, n #0. (26)
k#0
This solution isanalytic at sg = 0.
(ii) With this choice of d, the system (25) becomes

Up = fu— Z Cr—nqr vk,

k40
SO+ZC/quj uo:fo—Zqujvj, 27)
j#0 Jj#0
where
i Cj o 1-V1+so . Cik—n
= —= , =iC_,————— _ 28
fo 2+1§)s0+ja) n l n 230 +l/§)so+kw ()
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(iii) For small so we have Zﬁéo Cjq;d; # 0, and the system (27) has a unique solution
withv € I2(Z \ {0}), and v, ug areanalyticat sop = 0.

Proof. (i) Equation (26) is of the form{I — J")d = ¢’ in [2(Z \ {0}), wherec), =
—(1+4 /I¥s0)C, and

(J'd)y == Ckongrds, (n#0).
k#0

We show first that Keill — 7’) = {0}. Indeed, assumé = 7'd and setD; = g;d.
Then we see that

Qn_an + Z Cik—nDy =0 (29)
k40

and, by multiplying withD,, and summing ovet we get

Z qn_l|Dn|2 + Z CkankD_n =0. (30)
n#0 n,k#0

Note that, becaus€_,, = C,,, the following quantity is real:

Z Ckanan = Z Cnka_an = Z Ck*l‘leBVlv (31)
n,k#0 n,k#0 n,k#0
implying that
Y a4, PP eR
n#0
with (cf. (24))
g7 =141+ 50+ no.
Let Ng = —(1+ sg)o ! € R. Obviouslyqn‘1 € R forn > Ng while forn < Ng we
have, by Remark 24
(g Y <o.

Thus itis necessary thd, = 0 foralln < Np.
AssumeD # 0. LetN € N be such thaD, = 0 foralln < N andDy # 0 (thus
No < N). Then from (29),

> CiaDy=0 foranyn <N
k>N:k#0
or, settingk = N — 1+ j,
> CjguDy-14j=0 forn=0. (32)
j=Lj#1-N

It is here that we use the genericity condition (Dnlnjact we will §how that (32)
impliesD = 0Oif condition (g) is satisfied. To see thisdefies [>(N)asD; = Dy_1;
if j>1,j#1—Nand,ifl—N > 1, D;_y = 0. Then by (32)D is orthogonal in
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Io(N) to all 7"C, n > 0. By the genericity condition (g) thea D,e; >= Dy = 0,
which is a contradiction. Thup = 0.

Since 7’ is analytic insg for small enoughsg, and compact by the same simple
arguments as in Lemma 6, it follows thét— 7/)~1 exists and is analytic ing at
so =0.
(ii) This partis an immediate calculation.
(iii) Note first thatf € I>(Z \ {0}), because

1/2
2
1-JV1+s Ci_

17 = | =2 el + | D0

2s0 nz0! k20 so + kw

1
<llel ) ———— < o0
pr |so + kw|

Also, formula (28) expresses in terms of a discrete measure integral with respect
to k of a function which depends analytically on the (small) paramsteand which is
uniformly in /1. Thereforef depends analytically os.

The rest of the proof of (iii) closely follows that of part (i), using the following result.

Lemma 11. For so = Owehave Y~ C,q;d; # 0.
Jj#0
Proof. Assume the contrary was true. At= 0, with DO = D, |;,—0 andg® = ¢, |s,=0,
relation (29), using (26), gives
Dy 0
O=—f=-) CiuD{—2C, (n#0). (33)
q}’l k#o

Multiplying with D and summing over 0 we would get

Y 1+ V14D =~ 3" CryDIDY - 2C., DY, (34)

n#0 k,n#0 n#0

and since we assumed,, Can,J = 0 then, as in the proof of Lemma 10 (i), it follows
that D% = O for alln < Ng = — L. This gives, using (33), that

> CiaDP+2C,=0. (35)
k>Ng:k£0

Denote byD! € I, the sequencd} = D? if k # 0 andD} = 2. As in the

proof of Lemma 10 (i), using the genericity condition (g), we {ét= 0, an obvious
contradiction. O

This concludes the proof of Proposition 9: for generithe solutiony of (17) has,
for =1 ¢ N, analytic components, whenp = 0.
Sguare root singularities. We now study the behavior at the square root singularities of
the coefficients of the equation of

Let ko be the unique integer such that for sospe [0, w) we have H-s, +kow = 0
(thens, is a branch point in the coefficien).

The following proposition describes the analytic structure(@f) near the imaginary
axis.
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Proposition 12. We have the decomposition y, = u, + (\/so — s»)v,, Wwhereu,, and v,
are analytic in sg in a complexneighborhood of the segment [0, w).

Proof. The substitutiory,, = u, + (\/so — sr)v,, and

Ukg . _ Uko

Uk = quui; Vi = qeve (k # ko) - andUj, = 0+ koo 0 5o+ kow

leads to the following system of equations tgy andV,:

- Ck
4, Un :”Zso—i—kw —ch Ui = Ciro—n(50 = 5)Viy (1 # ko),

G Vo == CionVi = Chon(50 = ) Vi — Cho-nUsy (n # ko), (36)
k

Crk—k
(s0 + kow)Ugo = i Z ey

(s0 + kow) Viy = — Z Cr—ko Vi
k

We now letQy, = so + kow and, forn # ko, O, = ¢; 1 = -1+ I+ s0 + kw. We

use again the Fredholm alternative and, as in the previous proofs, we need only to show
the absence of a solution of the homogeneous equatign= s,. We thus multiply the
homogeneous equations associated to (36) in the following manner: the equatign for
byU_j and the equation foV; by V] then sum over aljj. As in the previous proofs,

from the reality of the r.h.s. and then from the genericity conditionl{g 0. Then,
similarly, V = 0. The rest is immediate.x

5.2. Theresonant case: w1 = M e N. In this case whesg = O there are poles in the
coefficients of (23) when + j = 0 and branch points when+ j = —M. The proof
is a combination of the two regularization techniques used in the previous case.

Proposition 13. We can set y(so) = A(so) + B(so)+/so With A and B analytic in a
complex neighborhood of the segment [0, w).

Proof. Special care is only needed near= 0. The system (26)—(28) now reads

1+ . /s0
dy =—C_,(14+ 1+ s0) — Z Ci—nqrdy — C_p—n so——\/l_dfM’

k¢{0,—M}

1+
Uy = fu— Z Cinqrvk — C_p—n \/— (37)

k¢{0,— M) -1
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We taked, = o, + /s08: andv, = y, + /508,. The system becomes

ap = — C_py(1+/1+50) — Z Cr—ngiok

k¢{0,—M}

1
—C_pm-n (a—M + SOIS—M)a
so—1

1
Bro=— D CiongiBi—Comn——(@m+pwm), (38)
kg (0.~ M) 50

1
Ya=fi— Y. Cion@i¥Vi — Comtn——7 (V=n + 500 -1),
k¢(0.-M) %0

1
8, = — Z Crnqibx — Copypn—— -y + Y—m). (39)
so—1
k¢{0,—M}
The system (38) is of the form

(5) =500 (5) + ().

wherea, 8, F1, F> are inl,. We prove that the homogeneous equation has no nontrivial
solutions:

Lemma 14. (I — S(0)) (;) = 0implies <§) =0.

Proof. Let O, = qn, Anw = quotn, By = quPp forn # 0,-M andQ_y = -1,
A_py = —a_py andB_y; = —B_p. The system (38) becomes

0, ', == CinAs,
k#0

0,18, = — Z Cr—nBr — C_py—nA_py.
k70

(40)

As in the proofs in Case |, multiplying the first equationy, summing oven we first
get from the reality of the r.h.s. that, = 0 forn < —M and then by the condition (g)
we get thatdA = 0. The conclusiorB = 0 now follows in the same way.O

End of proof of Proposition 13. The operatofs is compact o, & I> andS and(F1, F»)

are analytic in a complex neighborhood of 0. We saw in Lemma 14 that the kernel of
I — S(0) is trivial and by the analytic Fredholm alternative it follows tiiat- S(0))~1
exists and is analytic in a small neighborhoodsgf= 0. Hence(«, 8) are analytic.
Similarly, y, § are analytic in the same regiono

5.3. Proof of Theorem1 Combining the above results we have the following conclusion:

Proposition 15. If condition (g) is fulfilled, then y(p) isanalytic in a neighborhood of
iR\ {is, + iwZ}. For any j € Z, in aneighborhood of p = is, + ijw (s, € R) y has
theformy(p) = A;(p) + B;(p)v/—ip — s, —ijw, Where A; and B; are analytic. In
particular, y is Lipschitz continuous of exponent 1/2 in the closed right half plane. Thus
Y(t) = 0(t=3/?) for larger.
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Proof. All but the last claim has already been shown. The last statement is a standard
Tauberian theorem (note that ™ is the Fourier transform along the imaginary line).
O

Proposition 16. Wehave6(tr) — Oast — oo.
Proof. We can write (9) (with/ (r) = 1) as
Y=n@+MxY). (41)

It is easy to check, in view of the fact that andY are O(r=%/?), thatM « Y — O.
Furthermore & 2i [5 Y (s)ds is convergent as — oco. Thusf(¢) — const ast — oo.
Since now the l.h.s. of (9) converges to zero gndbes not, the equality (41) is only
consistenti®(r) —» 0. O

This completes the proof of Theorem 1 for the cdge= u, = eI,

The general case follows by noting that the inhomogeneous term does not affect the
main argument, using the Fredholm alternative. Hence we will still kavg] — 0 but
the rate of decay may be different.

6. A Nongeneric Example
Let  be given by (11), for which

C,=—-r\"forn>1, C,=C_,. (42)
As in Sect. 5 set-ipg = so and letg, be given by (24). Denote

11 1
a,,:an(so)z;q—:;(\/1+so+na)—l>. (43)

n

Forr € (0,1), » > 1,0~ ¢ N such thatl — r)?> < w — 1, lets, ands, be the
unique numbers 0, w) so that 14+ s, € wZ and 14 a_1(s,) = 0. We choose, w
such that, # s,.

6.1. The homogeneous eguation.

Lemmal7. Let sg0 be a point in (0, s,) U (s,, w). Consider so in a small enough
neighborhood of sg 0. The linear operator 7 = J(sp) of (17) depends analytically on
so, and is compact on I>. For sg # sp, (I — J(s0)) L existsand isanalytic.

Lemma 18. Denote for short Jo = J (s,).
Thereexistsavalue . = A; € (0, 1) such that

dimKer(I — J) = 1. (44)
Denote byA the diagonal (unbounded) operatdrz), = a,z, inlo; A~1is bounded.
Lemma 19. For A = A; asin Lemma 18 we have

Ker (I — Jo) = A[Ker (I — J5)]. (45)
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6.2. Proof of Lemma 17. The operatoy7 is compact by Lemma 6. To show thiat 7 is
invertible we prove this for any pointg € (0, w), so # s,, s-; by the analytic Fredholm
theorem it will follow that/ — 7 is invertible in a small enough neighborhood of any
such point, thus proving the lemma.

Letso € (0, w), so # sp, sr. As in Remark 7 in Sect. 5, the substitutioh = a,z,
(n € Z) transforms the homogeneous equation (19) to

00
anZn = Z)»j (Zn+j + Zn_j) , necz. (46)
i=1

Note that3a, < O forn < —1forsg € [w — 1, w) andJa, < 0 forn < O for
s0 € (0, w — 1). We will discuss only the first case > o — 1, since the second one is
completely analogous.

As in the proof of Lemma 8, it follows that

zp =0 forn < -1 (47)
Then Egs. (46) for < —1 become

o
Z Ao =0. (48)
k=1
Forn = —1 (46) gives
(a_1+Dz_1=0, (49)

and forn > 0, using (48), we get

n+1
A+anz =Y W =2 Nzpj, n>-1 (50)
j=1

Sincesp # s,, (49) givex_1 = 0, and it follows by induction, from (50), that = 0
for all n. By the Fredholm alternative theorem thEr- 7 (so) is invertible.

6.3. Proof of Lemma 18. In what followssg = s,.

6.3.1. An auxiliary lemma. We show that i € I then Eq. (48) is redundant.

Lemma 20. If z isan I solution of (50) with z, = Ofor n < —1 then z satisfies (48).

Proof. Letz € I be a solution of (50). Then
n
zhtl = Z)»ka—z (51)
k=1

is the truncation of a convergent series, since there is a congtavith |z,,| < M for
all n. Note that
n+1
1+ a,)z, = Z)V]Zn—j _ )\fn72Z[n+l]’

j=1
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hence 1
n+
ZH = 2N Nz = AR+ )z,
j=1
so that
M
‘Z[”Jrl]‘ < )”Hzﬁ 4 ant2py (1+ constyn) — 0 asn — oo. (52)

Since (51) are truncations of the series in the LHS of (48), then (52) implies (48).

6.3.2. Behavior of the general solution of (50). A direct calculation shows that the
sequence, satisfying the infinite order recurrence (50) and the initial condiion= 1
satisfies, in fact, the three step recurrence

L+ ansDzni1 + Q4+ an-1)zn-1= ML+ an) + A + a2 Yz, (0 =0)  (53)
with the initial condition

r—2r1
_1=1, = . 54
Z-1 0= (54)
Denote
r—2r1
= V,—1, 55
Zn 1+an n—1 ( )
then (53) becomes
A2+an
\% Veoo=|[A4+——1V,_ > 1. 56
n+ V2 |:+A(1+an):| n—-1 n= ( )

We are looking foi> solutions. Recent rigorous WKB estimates (see e.g. [35]) would
imply there are solutions of the discrete equation (56) behaving fike~v"/® and like

Aev/@ We will prove this in our context and find special valuesidbr which the
solution decaying for largesatisfies the initial condition. We will show that this solution
is obtained by taking

Voo = gn—1Vu—1 (57)
in (56) and iterating:

1 . A +a
gn1=G, — — WwithG, =1+ 1

—, (58)
8n Al +ap)
i.e., go is given by the continued fraction:
1
Gyp— —.
2 Ga
which needs to match the initial condition (see (54):
1
8o = go(A) = (59)

A+A 14+ @Q+a) -2
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Lemma2l. (i) Letx € (0, 1). Therecurrence (58) hasa solution such that g, — A =1
asn — o0.

(ii) goismeromorphicin A on [0, 1) and has poles.

(i) Thereexists A € (0, 1) such that go(1,) satisfies (59).

(iv) Let» = A,. Tothesolution of (i) there corresponds a solution V15! of the recurrence
(56) such that V*! ~ A" asp — 0. The corresponding solution z[*1 of (50)
satisfiesz, — 0asn — oo.

(v) Let A = X. There exists a solution of (56) with the asymptotic behavior Vn[” ~
)L;nJro(n).

Thus, for A = Ay, there exists a unique (up to a multiplicative constant) “ small”
solution of (56), with the behavior V,*1 ~ A7 for large n, while the general solu-

tion behaves like V,, ~ A; "™ As a consequence, a similar statement holds for the
recurrence (53).

Remark. The proof of (iii) can be refined to show that, in fact, there is a countable set
of pointsa for which gg satisfies the initial condition, and that these values accumulate
to 1.

Proof. (i) With the substitution
gn = Gpy1 — A+ 4y, (60)
the recurrence (58) becomes

1
= h— — = —(88),, n=>0. (61)
Guio—A+8,11

Forng > 0 ande small, positive, defin.,, = an12 (2+ angr2) - — €. Let Ny

be a small neighborhood of the intervgl, = [0, A,,]. Consider the Banach space
B,, of sequence$s, },>,, With 5, = 5, (1) analytic on\,, and continuous up to the
boundary, with the nornfis|| = sup,-,, SURLeN,, |8, (1)|. Direct estimates show that

the operatoiS defined by (61) takes the ball of radivg, = 2/(2 + a,,+2) + € In
B,, into itself (if €, ¢’ and \V,, are small enough), and is a contraction in this ball.
Therefore the equatioh = S(§) has a unique solution if8,,,, of norm less tham,,.
Then|s,(1)| < constn + 2)~ /2 for all » € I, and alln > 0. Since the sequenag
increases to 1, (i) follows.

(i) Sep I: All g, are meromorphic on [0, 1). Sinces§, is analytic onl,, then from
(60), g, is analytic onl, \ {0}, having a pole at = 0: g, ~ A Ya, 1(1 + ay41) "t
(A — 0). Iterating (58) it follows thag,,—1, g,—2, - . . , go are meromorphic o#,. Since
the intervalgl, increase towarg, 1) it follows thatgo, g1, ... g, ... are meromorphic
on[0, 1).

Step I1: Thereexistsny and Ag € (0, 1) suchthat g,, (Ao) < 0. Definee, = (1+ P
we have (see (43))

—1/2

€ng ~ F(now) ng — oo. (62)

Let ng be large and denotey = 1 — ¢,,. Let Ng be large enough so thap is in the
domain of analyticity og . Iterating (58) starting frono (and decreasing indices) we
get the value,,(ro). If for somen € {ng,no + 1, ..., No} we getg,(ro) < 0, Sepll

is proved. Then assume tha, (Ao) > 0.
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Consider the recurrence
- 1 -
'n—1= Gno()\O) - }7_ forn < ng, 'ng = gno()\O)’ (63)
n

where, in factG, (o) = 2 — €2,.

The recurrence (63) can be solved explicitly (it is a discrete Riccati equation and
a substitution?,_1 = x,_1/x, transforms it into a linear recurrence with constant
coefficients). It has the solution

s _ cos((n —no)¢ +0)
" cos((n+1—no)p +6)’
where cog = 1—630/2, sing > 0,andtar® = (cos¢ —A)/sing sothat) ~ % —%eno

(€ng — 0).
We assume, to get a contradiction, thatrg) > Oforalln =0, 1, ...,n1. Then

(64)

gn(ho) <7, forn <no, (65)

which follows immediately by induction using (58), (63), noting tlaat is increasing
inn.
Note that thereisani € {1, 2, ..., no — 1} so that

fn>0 forne{ni+1,...,n0} andr,, <O. (66)

Indeed (from (62)) when decreases fromg the numerator and denominator in (64)
increase up to 1, then decrease, until the numerator becomes negative; etpeals
n1 = ng — k1, wherek; is the integer wittky — 1 < (/24 0) /¢ < k1. Sincep ~ €y,
(€np — 0) thenky ~ (3m)/(4e,,), and, using (62), clearly, € {1,...,no — 1} (if no
is sufficiently large).

Then (65) and (66) contradict the assumption ghatro) > 0, andStep 11 is proved.
Sep 11, The functiong,, is meromorphic oti0, 1), with g,, (0+) = +oo. There is a
smallest value of. in (O, 1g), whereg,, changes sign: this is either a zero, or a pole.

Assume itwas a pole. Let € (0, Ag) be the first pole og,,, . Theng,, is positive and
analytic on(0, p), andg,, (p—) = +00, gn, (p+) = —o0. Sincegp+1 = 1/(Gpi1—gn)
(see (58)) therg,,+1(p—) = 0—, henceg,,+1 changes sign i0, p). But g,,+1 has
no zero in(0, p) (otherwise at that zerg,, would have had a pole, from (58)). Then
gn,+1 has a pole, with a change of sign, freptto —, in (0, p). Now the argument can
be repeated. It follows that for amty> 0, g,,,+« has a pole in(0, p), which contradicts
the fact that the domain of analyticity @f increases t@0, 1) asn — oo.

Therefore, the first change of sign gf, is at a zero. Let; be the smallest value in
(0, 1) suchthag,, (¢1—) = 0+, gn, (¢1+) = 0—. Thenfrom (58) we havg,, —1(¢1—) =
—oo andg,,—1 changes sign i0, £1). Now the argument can be repeated. It follows
thatgo has a pole at a poingt,, with go(¢,,—) = —o0.

(iii) Since go(1) takes all the values when € (0, ¢,,) there exists. = A; € (0, 1)
such that (59) holds.

(iv) For = A, since the solution of (i) satisfies (1) = A~1+ 0 (n~Y/?) we have from
(57), with the notation’is! = Vv (i), that V¥ = [T1_g () "2V = oo™
and thusv,*! — vI'L = 0 ™); then from (55! = 0 to™).

(v) The substitution (variation of constants) = AN brings the recurrence (56) to

a first order one: with the notation,, = v,, — v,_1 we haveA,, = V,1[‘Y_]2/ V,,[S]A,,_l and
the rest of the argument consists of straightforward estimates.
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Fig. 1. Graph ofgg given by (58) (discontinuous graph) and by (59) in a region nearl, as functions of.

6.3.3. Proof of Lemma 18.

Proof. Lemma 21(v) shows that Eq. (53) has a unique (up to a multiplicative constant)
small solutionz!’! ~ A77°™ (n — o), while the general solution behaves like ~
A" H™  Sincey, ~ /nz, the uniqueness of thie solution is proven.

6.3.4. Examples of solutions. We will show next how concrete valugs satisfying
Lemma 21 (iii) are relatively straightforwardly, and rigorously, found. One method is as
follows. Note that the minimum/maximum of the functien- »/x, wherex varies in

an interval not containing zero is achieved at the endpoints. We thus take the recurrence

(58) with initial conditionsg,, = A~ + % and computegp from these. The actual

graph will be between these two, unless the condition mentioned is violated in between
no and 0. This graph is to be intersected with the graph of the initial condition (59).

We take for instance = 1.1, = 0.45,s, = 0.11,n¢ = 10, for which the rigorous
control is not too involved. The two graphs are very close to each other (within about
3.10 6 for A € (0.3, 0.4)) and cannot be distinguished from each-other in Fig. 1. A first
intersection is seen at~ 0.327; see Fig. 2.

6.4. Proof of Lemma 19. DenoteB = (I — Jo)A; we haveB = A — S. HenceB* =
A — S. Then Ke(B) = Ker(B*) (since Az = Sz implies (47), soAz = Az, and
similarly, Az = z implies Az = Az). So Kef(1 — Jp)A] = Ker[A(1 — Jo*)] so that
(sinceA is one-to-one 1 Ker(1 — Jo) = Ker(1 — Jo*), which proves the lemma.

6.5. Discussion of thesingularities of solutionsof (17). LetA = A;. We have thatl — 7
is invertible for%i pg > 0, and is not invertible gbo = is, (Lemma 18). By the analytic
Fredholm theorem (see e.g. [3@)) — 7)1 is meromorphic on a small neighborhood
of is,, therefore there exist > 1 and operators,,, ..., S1, R(po) so that:
1 1 1
=T =———mSm+ +——51+ R(po), (67)
(po — isp) po—is,
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1.24

119

0.91

A

0.3 0.32 0.34 0.36 0.38 0.4

0.8

Fig. 2. Graphs ofgg (steeper graph) and of the initial condition fgy (59)

whereR (po) is analytic ats,, ands,, # 0 (sincel — Jo is not invertible). Multiplying
(67) byl — 7 tothe left, respectively to the right, and writidh = Jo+ (po—is,) J1(po)
(whereJ1(po) is analytic atis,) we get that

Ri(po) = 7 (1= 70 S+ 0 ((po—is,) ™).

(po —isp)
. \—m+1

Ra(po) = ————8u (1 = Jo) + 0 ((po—isp) "),

(po —isp)

where Ry > are analytic apg = is,. By the uniqueness of the series of the analytic

functions (Banach space valuegl) » we must then have

(I =J0) Sm=0=8n U —J0). (68)

The first equality in (68) implies Raf,,) C Ker(I — Jo) = V/{yker} and since
Sm # 0then RaxsS,,) = \/{yker}, thereforeS,,y = (v, u)yker for someu < I \ {0}.
The second equality in (68) meams: Ran(I — Jo)* = Ker (I — J§).

By Lemma 19 then (up to a multiplicative constant: A‘lyKer = ZKer, Wherezger
satisfies (46), hence (53),(54). The solutioe= (I — 7)~* f of (17) is then singular
atpo = isp if ¢ =< f, zker ># 0. For the example of Sect. 6.3.4 this latter condition
can be checked by explicit calculation of the truncations to 10 terms and estimation of
the remainder based on the contractivity bounds in the previous section. The result is
¢ = —1.9534 0.001. Thus the inhomogeneous equation has poles.

Lemma 22. Let Y (¢) be analytic on [0, co), withlim;_, o, Y (t) = 0.
Lets € R. Then

o0 .
lim a / e~ @ty (1) dr = 0. (69)
al0  Jo

Corollary 23. Let Y (¢) beasin Lemma 22. Let y(p) = fa’o e P'Y (¢) dt. Assume that
y(p) isanalytic on iR, except for a set of isolated points. Then y(p) does not have
polesoniR,.



22 O. Costin, R. D. Costin, J. L. Lebowitz, A. Rokhlenko

Proof. 1. We first show (69) fos = 0.

Separating the positive and negative part8iaf(r), JY (1) write Y (r) = YU (1) —
Y21y + iYBl#) — iY¥(r) with Y*I(r) nonnegative, continuous, nonanalytic only
on a discrete set, where the left and right derivatives exist, with JinY™*1(r) =
0. It is enough to show (69) for eadH*!. Let thenY be one of ther*I’s. Denote
H(t) = sup.~, Y (7). The functionH on [0, co) has the same properties HEsand in
addition is decreasing. Thei’ exists a.e. andl’ € L1[0, o), sincefoOQ |H ()| dt =
—1liM— 00 fo H'(x)dt = lim;_oo —H(t) + H(0) = H(0).

Then

o0 o0 0 d
a/ Y @)dt < a/ e H(t)dt = —/ — (") H(t)dt
0 0 o dit

o0
= H(O)+/ e " H'(t) dt,
0
therefore

o0 o0
lim a/ e "Y(t)dt < HO) + Iim/ e “"H'(t)dt =0,
al0 0 al0 Jo

which proves the lemma in this case.

Il. Letnows € R arbitrary. Then (69) follows from the result fer= 0 applied to the
functionY () = e 'Y (¢). O

Proof of Theorem 2. In conclusionY (¢) cannot tend to zero as— oo and complete
ionization fails. O
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Appendix A. Proof of Lemma 3

() ConsiderL! [0, A] endowed with the norni F|, := fOA |F(s)|e”"*ds, where

loc
v > 0. If fis continuous and, G € L}OC[O, A], a straightforward calculation shows
that

IfFllv < IFllv suplfl, (A1)
[0.A]

IF+Glly < IFlulGlv, (A2)

IFllL, >0 asv— oo, (A3)

where the last relation follows from the Riemann—Lebesgue lemma.
The integral equation (9) can be written as
Y=n+JY whereJF :=n(2i+ M)xF. (A4)

SinceM is locally in L and bounded for largeit is clear that for large enoughy, (9)
is contractive ifv > By, for any A.
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(i) This is an immediate consequence of Lemma 3 and of elementary properties of the
Laplace transform.

(iii) We have inH,

MZefi(xfia)(lJruz)
_ i px 2 0
LM = lc!?(‘) - / dxe™ / T2 du (A5)
u
= _ . A6
/oo(1+u2)(p+z(1+u2)) (A6)

For%i(p) > 0 we push the integration contour through the upper half plane. At the
two poles in the upper half plan& + 1 equals 0 andp respectively, so that

L/oo u2 i
7 J oo A+ u?)(p+i(1+u?)

=D ds u3 ds i uog
0 =—+—, (A7
<<2z>(p> 5 T Gp)@ing) ) p T B

whereug is the root ofp + i (1 + u?) = 0 in theupper half plane. Thus

i iv1—i
M =2 TP
p p

with the branch satisfying/1 — ip — 1asp — 0 in H.
Thus, the analytic continuation gf1 — ip in HHU3H in our calculations is as follows:

Remark 24. As p varies inH, 1—ip belongs to the lower half plane;H so thaty/1 — ip
varies in the fourth quadrant, and in particutay1 — ip < 0. If p € iRand—ip > -1
then,/1 —ip is real and nonnegative, while #ip < —1 and./1 — ip has zero real
part and negative imaginary part.

To show (15) note that fdk(p) > 0, @ > 0 we have
E(eii“’M) _ i _ i«/l—iI.JZFw’
pFio PFio (A9)
with /1 —ip —w = —i\Jo—1+ip if 0> 1)

(A8)

The branch of the square root was discussed in Remark 24. This concludes the proof of
Lemma 3 (iii).

Appendix B. Discussion of the Genericity Condition (g)

Athorough analysis of the properties of the shift operator is provided by the treatise [29].
We provide here an independent discussion, meant to give an insight on the interesting
analytic properties involved in this condition.
LetC = (Co, C1,...,Cy,...) € [2(N) and the operatol' defined as before by
= (C1, C2, ...). We want to see for which such vectors, the system of equations

(z,T/C)=0, j=0,1,... (B1)
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has nontrivial solutiong in I. We can associate toandC analytic functions in the unit
disk, Z(x) andC (x) by

Cx)y=Y Cx* Zx)=) zx*. (B2)
k=0 k=0

These functions, extend 1c? functions on the unit circle. The system of equations (B1)
can be written as

20C(x) 4+ z1x " HC(x)C(0)) + ...
n—=1
+ Zn |:x_”C(x) —x"y X—C(")(O)} 4+...=0. (B3)
k!
k=0
Using Cauchy’s formula, we can the difference in square brackets in (B3) as

1 C(s)

— ———ds, B4
2mi Jig=1 8" (s — x) g (B4)

and thus (B1) becomes

f COZAS) oo, (B5)
ls|=1

S —X

The functionsC for which this equation has nontrivial solutio¥s relate to the
Beurling inner functions [29] and are very “rare”.

Examples. (i) Let |A| < 1 andC, = A", i.e.C(x) = (1 — ax)~ L. This is related to the
function (11). Taking advantage of the analyticity &foutside the unit circle, we can
push the contour of integration towards- oo, collecting the residue at= A~1; we see
that Eqg. (B5) holds ifiZ(x) = 0, i.e., for a space of analytic functions of codimension
one.

(i) Let A, = 1/n. ThenC(x) = In(1 — x), and by taking = 1/¢ in (B5) we get
1% Z@®)In( — 1)d B 1y§ In(t)Z (1) gt —
|t]=1

X t —xDy X Jy=1 1t = x~H

0. (B6)

By making a cut orf1, co) for the log we see that the integrand in the first integral
is analytic in the unit circle and thus the integral vanishes. We decompose the second
integral by partial fractions and we get

y{ In(t)Z(t)dt_?g In(t)z(t)dt:O, (B7)
lr=1 t t=1 (¢ —Yy)

wherey = x~L. The first integral is a constant, By pushing the contour of integration
inwards, we see that the second integral extends analytically for sraald. For such
y we thus have

yg In)(Z(1) — Z(y)) In(z) dr —
|t]=1

dt +Z =—C. B8
(t—y) FHZ0) ltI=1 (¢ —¥) (B8)
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Now the contour of integration can be pushed to the sides of the inf@nalcollecting
the difference between the branches of the log. We get

/l Z(t)— Z(y)
0

1

1

a’t—i—Z(y)/ —— dr =0. (B9)
or—Yy

Thus¢ (y) + Z(y) In(—y) = C with ¢ andZ analytic in the unit circle, thus [r-y) is
analytic unlesZ = 0. This shows”,, = 1/n is generic.
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