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Abstract: LetA3 be the product of the automorphism
(

2 1
1 1

)
of T2 and of the identity on

T1.A small perturbationg ofA3 among volume preserving diffeomorphisms will have an
invariant family of smooth circles� forming a continuous foliation ofT3. Corresponding
to the vector bundle tangent to the circles� there is a “central” Lyapunov exponent of
(g, volume), which isnonzero for an open set of ergodicg’s. This surprising result of
Shub and Wilkinson is complemented here by showing that the volume onT3 hasatomic
conditional measures on the�’s: there is a finitek such that almost every� carriesk
atoms of mass 1/k.

Introduction

LetA2 be the automorphism of the 2-torus,T2 = R2/Z2, given by
(

2 1
1 1

)
. LetA3 be the

automorphism of the 3-torusT3 = R3/Z3 given by
(
A2 0
0 1

)
. Let Diff 2

µ(T
3) be the set of

C2 diffeomorphisms ofT3 that preserve Lebesgue-Haar measureµ.
In [SW1], M. Shub and A. Wilkinson prove the following theorem.

Theorem. Arbitrarily close to A3 there is a C1-open set U ⊂ Diff 2
µ(T

3) such that for
each g ∈ U ,

1. g is ergodic.
2. There is an equivariant fibration π : T3 → T2 such that πg = A2π . The fibers of
π are the leaves of a foliation W c

g of T3 by C2 circles. The 2-jets along the fibers
of π vary continuously inM .

3. There exists λc > 0 such that, for µ-almost every w ∈ T3, if v ∈ TwT3 is tangent to
the leaf of W c

g containing w, then

lim
n→∞

1

n
log‖Twgnv‖ = λc.
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4. Consequently, there exists a set S ⊆ T3 of full µ-measure that meets every leaf of
Wc
g in a set of leaf-measure 0. The foliation Wc

g is not absolutely continuous.

Additionally, it is shown that the diffeomorphisms inU are nonuniformly hyperbolic
and Bernoullian. In this note, we prove:

Theorem I. Let g satisfy conclusions 1–3 of the previous theorem. Then there exist
S ⊆ T3 of full µ-measure and k ∈ N such that S meets every leaf of Wc

g in exactly k
points. The foliation Wc

g is absolutely singular.

Remark. Theorem I was also proved several years ago by Anatole Katok, as a first step
in an attempt to show that examples such as those later constructed in [SW1] cannot
exist (since the full argument turned out not to be valid, this work remains unpublished).
We are indebted to Katok for useful conversations, and for pointing out the argument
that shows that the numberk in Theorem I might necessarily be greater than 1. We also
thank Michael Shub for useful conversations.

In Katok’s example of an absolutely singular foliation in [Mi], the leaves of the
foliation meet the set of full measure in one point. In the [SW1] examples, the setS

may necessarily meet leaves ofW c
g in more than one point, as the following argument

of Katok’s shows.
It follows from Theorem II in [SW2] that fork ∈ Z+ and for smalla, b > 0, the map

g = ja,k ◦ hb satisfies the hypotheses of Theorem I, where

hb(x, y, z) = (2x + y, x + y, x + y + z+ b sin 2πy),

and

ja,k(x, y, z) = (x, y, z)+ a cos(2πkz) · (1 + √
5,2,0).

Fork ∈ N, letρk be the vertical translation that sends(x, y, z) to (x, y, z+ 1
k
). Note

thathb ◦ ρk = ρk ◦ hb andja,k ◦ ρk = ρk ◦ ja,k. Thusg ◦ ρk = ρk ◦ g.
The fibrationπ : T3 → T2 was obtained in [SW1] by using the persistence of nor-

mally hyperbolic submanifolds under perturbations. In the present case the symmetries
ρk preserve the fibers of the trivial fibrationP : T3 → T2 from which one starts, and
also the mapsg. Therefore the fibers ofπ : T3 → T2 (i.e., the leaves of center foliation
W c
g ) are invariant under the action of the finite group< ρk >.
LetS be the (full measure) set of points inT3 for which the center direction is a positive

Lyapunov direction (i.e. for which conclusion 3 holds). Sinceρk(W c
g ) = W c

g , it follows
thatρkS = S. If p ∈ S ∩ W c(p), thenρk(p) ∈ ρk(S) ∩ ρk(W c(p)) = S ∩ W c(p);
that is,S ∩ W c(p) contains at leastk points.

Thus Theorem I is “sharp” in the sense that we cannot say more about the value ofk

in general.
Theorem I has an interesting interpretation. Recall that aG-extension of a dynamical

systemf : X → X is a mapfρ : X×G→ X×G, whereG is a compact group, of the
form (x, y) �→ (f (x), ρ(x)y). If f preservesν, andρ : X → G is measurable, thenfρ
preserves the product ofν with Haar measure onG. A Z/kZ-extension is also called a
k-point extension.

Let λ be an invariant probability measure for ak-point extension off : X → X,
and{λx} the family of conditional measures associated with the partition{{x}×G}. We
remark that ifλ is ergodic, then each atom ofλx must have the same weight 1/k (up to
a set ofλ-measure 0).
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Now takeg ∈ U . Choose a coherent orientation on the leaves of{π−1(x)}x∈T 2. Take
h : T3 → T2 × T to be any continuous change of coordinates such thath restricted
to π−1(x) is smooth and orientation preserving to{x} × T. We may then writeF =
h ◦ g ◦ h−1 : T2 × T → T2 × T in the form

F(x, p) = (A2x, ϕx(p)),

whereϕx : T → T is smooth and orientation preserving. IfP : T2 × T → T2 is the
projection on the first factor of the product, we haveP ◦ h = π . Therefore, writing
λ = h∗µ, we haveP ∗λ = π∗µ. Let {λx} be the disintegration of the measureλ along
the fibers{x} × T. By a further measurable change of coordinates, smooth along each
{x} × T fiber, we may assume thatλ-almost everywhere, the atoms ofλx are atl/k,
for l = 0, . . . , k − 1. But thenϕx permutes the atoms cyclically, and we obtain the
following corollary.

Corollary. For every g ∈ U there exists k ∈ N such that (T3, µ, g) is isomorphic to an
(ergodic) k-point extension of (T2, π∗µ,A2).

M. Shub has observed that ifg = ja,k◦hb, then entropy considerations imply thatπ∗µ
is actually Lebesgue measure onT2. Hence, for thisg,π is a finite-to-one semiconjugacy
betweeng andA2, sending Lebesgue measure onT3 to Lebesgue measure onT2.

1. Proof of Theorem I

The proof of Theorem I follows from a more general result about fibered diffeomor-
phisms. Before stating this result, we describe the underlying setup and assumptions.

Let (X, ν) be a probability space, and letf : X → X be invertible and ergodic with
respect toν. It is convenient to assume thatX is in fact a Polish topological space since
this assumption is made in the study of random smooth dynamical systems in [BL]1.
LetM be a compact Riemannian manifold andφ a mapX → Diff 1+α(M). Consider
the skew-product transformationF : X ×M → X ×M given by

F(x, p) = (f (x), ϕx(p))
and assume that it is (Borel) measurable.Also, letµbe anF -invariant ergodic probability
measure onX ×M such thatπ∗µ = ν, whereπ : X ×M → X is the projection onto
the first factor.

Forx ∈ X, letϕ(0)x be the identity map onM and fork ∈ Z, defineϕ(k)x by

ϕ(k+1)
x = ϕf k(x) ◦ ϕ(k)x .

Since the tangent bundle toM is measurably trivial, the derivative map ofϕ along the
M direction gives a cocycleX ×M × Z → GL(n,R), wheren = dim(M):

(x, p, k) �→ Dpϕ
(k)
x .

If log+ ‖Dϕ‖ ∈ L1(X×M,µ), then Oseledec’s Theorem and ergodicity imply that
the Lyapunov exponentsλ1 < λ2 · · · < λl of this cocycle exist and are constant for
µ-a.e.(x, p). We call these thefiberwise exponents of F .

1 A Polish space is a separable topological space with topology given by a complete metric. We use only
the Borel structure defined by the topology.
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The next result, Theorem II, states that if these exponents are negative, thenµ has
atomic disintegration alongM-fibers ofX×M. The proof of Theorem II uses a fibered
Pesin stable manifold theorem, which requires a stronger hypothesis onϕ than integrabil-
ity of log+ ‖Dϕ‖. Namely, we asssume that for someα > 0, log+ ‖Dϕ‖α ∈ L1(X, ν),
where‖ · ‖α is theα-Hölder norm.

Theorem II. Suppose that λl < 0. Then there exists a set S ⊆ X ×M and an integer
k ≥ 1 such that

• µ(S) = 1,
• For every (x, p) ∈ S, we have #(S ∩ {x} ×M) = k.

This has the immediate corollary:

Corollary. Let f ∈ Diff 1+α(M). If µ is an ergodic measure with all of its exponents
negative, then it is concentrated on the orbit of a periodic sink.

The corollary has a simple proof using regular neighborhoods. Our proof is a fibered
version. Theorem I is also a corollary of Theorem II. For this, the argument is actually
applied to the inverse ofg, which has negative fiberwise exponents, rather than tog

itself, whose fiberwise exponents are positive. As we described in the previous remarks,
there is a continuous change of coordinates, smooth along the fibers ofπ in whichg−1

is expressed as a skew product ofT2 × T:

F(x, p) = (A2x, ϕx(p)).

Since the 2-jets of the fibers ofπ vary continuously, (by Assumption 2), the maps
x �→ ϕx can be chosen to vary continuously in theC2-norm on Diff2(M). This implies
that log+ ‖Dϕ‖α ∈ L1(X, ν), for α = 1.

Remark. Without the assumption thatf is invertible, Theorem II is false. An example
is described by Y. Kifer [Ki], which we recall here. Letf : T → T be aC1+α diffeo-
morphism with exactly two fixed points, one attracting and one repelling. Consider the
following random diffeomophism ofT: with probabilityp ∈ (0,1), applyf , and with
probability 1− p, rotate by an angle chosen randomly from the interval[−ε, ε].

Let X = ({0,1} × T)N. To generate a sequence of diffeomorphismsf0, f1, . . .

according to the above rule, we first defineϕ : X → Diff 1+α(T) by

ϕ(ω) =
{
f if ω(0) = (0, θ),
Rθ if ω(0) = (1, θ),

whereRθ is rotation through angleθ . Next, we letνε be the product ofp,1 − p-
measure on{0,1} with the measure onT that is uniformly distributed on[−ε, ε]. Then
corresponding toνN

ε -almost every elementω ∈ X is the sequence{fk = ϕ(σ k(ω))}∞k=0,

whereσ : X → X is the one-sided shiftσ(ω)(n) = ω(n+ 1).
Put another way, the random diffeomorphism is generated by the (noninvertible)

skew productτ : X × T → X × T, whereτ(ω, x) = (σ (ω), ϕ(ω)(x)). An ergodic
νε-stationary measure for this random diffeomorphism is a measureµε on T such that
µε × νN

ε is τ -invariant and ergodic. Such measures always exist ([Ki], Lemma I.2.2),
but, for this example, there is an ergodic stationary measure with additional special
properties.
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Specifically, for everyε > 0, there exists an ergodicνε-stationary measureµε on
T such that, asε → 0, µε → δx0, in the weak topology, whereδx0 is Dirac measure
concentrated on the sinkx0 for f . From this, it follows that, asε → 0, the fiberwise
Lyapunov exponent forµε approaches log|f ′(x0)| < 0, which is the Lyapunov exponent
of δx0. Thus, forε sufficiently small, the fiberwise exponent forτ with respect toµε is
negative. Nonetheless, it is easy to see thatµε for ε > 0 cannot be uniformly distributed
onk atoms; ifµε were atomic, thenτ -invariance ofµε×νN

ε would imply that, for every
x ∈ T,

µε({x}) = pµε({f−1(x)})+ (1 − p)
∫ ε

−ε
µε({Rθ(x)})dθ

= pµε({f−1(x)}),
which is impossible ifµε has finitely many atoms. In fact,µε can be shown to be
absolutely continuous with respect to Lebesgue measure (see [Ki], p. 173 ff. and the
references cited therein). Hence invertibility is essential, and we indicate in the proof of
Theorem II where it is used.

Proof of Theorem II. We first establish the existence of fiberwise “stable manifolds”
for the skew productF . A general theory of stable manifolds for random dynamical
systems is worked out in ([Ki], Theorem V.1.6 and more explicitly in [BL]). Since we
are assuming that all of the fiberwise exponents forF are negative, we are faced with the
simpler task of constructing fiberwise regular neighborhoods forF (see the Appendix
by Katok and Mendoza in [KH]). We outline a proof, following closely [KH].

Theorem 1.1 (Existence of Regular Neighborhoods). There exists a set 50 ⊆ X ×M
of full measure such that for ε > 0:

• There exists a measurable function r : 50 → (0,1] and a collection of embed-
dings 7(x,p) : B(0, q(x, p)) → M such that 7(x,p)(0) = p and exp(−ε) <
r(F (x, p))/r(x, p) < exp(ε).

• If ϕ(x,p) = 7−1
F(x,p) ◦ ϕx ◦7(x,p) : B(0, r(x, p))→ Rn, then D0ϕ(x,p) satisfies

exp(λ1 − ε) ≤ ‖D0ϕ
−1
(x,p)‖−1, ‖D0ϕ(x,p)‖ ≤ exp(λl + ε).

• The C1 distance dC1(ϕ(x,p),D0ϕ(x,p)) < ε in B(0, r(x, p)).
• There exist a constant K > 0 and a measurable function A : 50 → R such that for
y, z ∈ B(0, r(x, p)),

K−1d(7(x,p)(y),7(x,p)(z)) ≤ ‖y − z‖ ≤ A(x)d(7(x,p)(y),7(x,p)(z)),
with exp(−ε) < A(F(x, p))/A(x, p) < exp(ε).

Proof. See the proof of Theorem S.3.1 in [KH].��
Decomposeµ into a system of fiberwise measuresdµ(x, p) = dµx(p)dν(x). In-

variance ofµ with respect toF implies that, forν-a.e.x ∈ X,

ϕx∗µx = µf (x).
Corollary. There exists a set5 ⊆ X×M , and real numbers R > 0, C > 0, and c < 1
such that
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(1) µ(5) > .5, and, if (x, p) ∈ 5, then µx(5x) > .5, where 5x = {p ∈ M | (x, p) ∈
5}.

(2) If (x, p) ∈ 5 and dM(p, q) ≤ R, then

dM(ϕ
(m)
x (p), ϕ(m)x (q)) ≤ CcmdM(p, q),

for all m ≥ 0.

Proof. This follows in a standard way from the Mean Value Theorem and Lusin’s The-
orem. ��

To prove Theorem II, it suffices to show that there is a positiveν-measure setB ⊆ X,
such that forx ∈ B, the measureµx has an atom, as the following argument shows. For
x ∈ X, let d(x) = supp∈M µx(p). Clearlyd is measurable,f -invariant, and positive
onB. Ergodicity off implies thatd(x) = d > 0 is positive and constant for almost
all x ∈ X. Let S = {(x, p) ∈ X × M |µx(p) ≥ d}. Observe thatS is F -invariant,
has measure at leastd, and hence has measure 1. The conclusions of Theorem II follow
immediately.

Let5, R > 0,C > 0, andc < 1 be given by Corollary 1, and letB = π(5). LetN
be the number ofR/10-balls needed to coverM. We now show that forν-almost every
x ∈ B, the measureµx has at least one atom.

Forx ∈ X, let
m(x) = inf

∑
diam(Uj ),

where the infimum is taken over all collections of closed ballsU1, . . . , Uk in M such
thatk ≤ N andµx(

⋃k
j=1Uj) ≥ .5. Letm = ess supx∈Bm(x).

We now show thatm = 0. If m > 0, then there exists an integerJ such that

C>cJN < m/2, (1)

where> is the diameter ofM. Let U be a cover ofM by N closed balls of radius
R/10. Forx ∈ B, let U1(x), . . . , Uk(x)(x) be those balls inU that meet5x . Since

these balls cover5x , andµx(5x) > .5, it follows thatµx(
⋃k(x)
j=1Uj(x)) ≥ .5. But

ϕ
(i)
x ∗µx = µf i(x), and so it’s also true that

µf i(x)(

k(x)⋃
j=1

ϕ(i)x (Uj (x))) ≥ .5, (2)

for all i.
We now use the fact thatϕ(i)x contracts regular neighborhoods to derive a contradic-

tion. The ballsUj(x)meet5x and have diameter less thanR/10, and so by Corollary 1,
(2), we have

diam(ϕ(i)x (Uj (x))) ≤ C>ci. (3)

Let τ : B → N be the first-return time off J to B, so thatf Jτ(x)(x) ∈ B, and
f J i(x) /∈ B, for i ∈ {1, . . . , τ (x) − 1}. Decompose the setB according to these first
return times:

B =
∞⋃
i=1

Bi (mod 0),
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whereBi = τ−1(i). Because f is invertible and f−1 preserves measure, we also have
the mod 0 equivalence:

B ′ :=
∞⋃
i=1

f J i(Bi) = B (mod 0).

Let y ∈ B ′. Theny = f J i(x), wherex ∈ Bi ⊆ B, for somei ≥ 1. It follows from
the definition ofm(y) and inequalities (2), (3) and (1) that

m(y) ≤
k(x)∑
j=1

diam(ϕ(J i)x (Uj (x)))

≤ Ck(x)>cJ i
≤ CN>cJ
< m/2.

But then

m = ess supx∈Bm(x)
= ess supy∈B ′m(y)

< m/2,

contradicting the assumptionm > 0.
Thusm = 0, and, forν-almost everyx ∈ B, we havem(x) = 0. If m(x) = 0, then

there is a sequence of closed ballsU1(x), U2(x), · · · with lim i→∞ diam(Ui(x)) = 0
andµx(Ui(x)) ≥ .5/N , for all i. Takepi ∈ Ui(x); any accumulation point of{pi} is
an atom forµx . Since we have shown thatµx has an atom, forν-a.e.x ∈ B, the proof
of Theorem II is complete. ��
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