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Abstract: Let A3 be the product of the automorphigrh }) of T2 and of the identity on
T1. Asmall perturbatiorg of A3 among volume preserving diffeomorphisms will have an
invariant family of smooth circleE forming a continuous foliation of 2. Corresponding

to the vector bundle tangent to the circléshere is a “central” Lyapunov exponent of
(g, volume), which isnonzero for an open set of ergodig’s. This surprising result of
Shub and Wilkinson is complemented here by showing that the voluriié basatomic
conditional measures on thé&s: there is a finitek such that almost everly carriesk
atoms of mass /.

Introduction

Let A, be the automorphism of the 2-tor(&, = R?/Z2, given by(% }). Let A3 be the
automorphism of the 3-toruE® = R3/Z3 given by( %2 9). Let Diff 2 (T®) be the set of

C? diffeomorphisms off 3 that preserve Lebesgue-Haar meagure
In [SW1], M. Shub and A. Wilkinson prove the following theorem.

Theorem. Arbitrarily close to A3 thereisa Ct-open set U c Diff IZL(T3) such that for
eachg e U,

1. gisergodic.

2. Thereisan equivariant fibration = : T3 — T2 such that 7g = A,x. The fibers of
m are the leaves of a foliation W, of T3 by C2 circles. The 2-jets along the fibers
of 7 vary continuously in M.

3. Thereexists A¢ > 0 such that, for u-almost every w € T3, if v € T, T3 istangent to
the leaf of W, containing w, then

.1
lim —log||Tyg"v| = A°.
n—-oon
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4. Consequently, there exists a set § C T3 of full u-measure that meets every leaf of
Wy ina set of leaf-measure 0. The foliation Vg is not absolutely continuous.

Additionally, it is shown that the diffeomorphisms ih are nonuniformly hyperbolic
and Bernoullian. In this note, we prove:

Theorem |. Let g satisfy conclusions 1-3 of the previous theorem. Then there exist
S < T3 of full u-measure and k € N such that S meets every leaf of Wy in exactly k
points. The foliation W is absolutely singular.

Remark. Theorem | was also proved several years ago by Anatole Katok, as a first step
in an attempt to show that examples such as those later constructed in [SW1] cannot
exist (since the full argument turned out not to be valid, this work remains unpublished).
We are indebted to Katok for useful conversations, and for pointing out the argument
that shows that the numbéiin Theorem | might necessarily be greater than 1. We also
thank Michael Shub for useful conversations.

In Katok's example of an absolutely singular foliation in [Mi], the leaves of the
foliation meet the set of full measure in one point. In the [SW1] examples, th& set
may necessarily meet leaves)of; in more than one point, as the following argument
of Katok’s shows.

It follows from Theorem Il in [SW2] that fok € Z_ and for smalk, b > 0, the map
g = Ja.k © hp satisfies the hypotheses of Theorem I, where

hp(x,y,2) = (2x+y,x+y,x +y+z+bsin2ry),
and
Jak(x,y,2) = (x,y,2) +aco2rkz) - (1+ \/E, 2,0).

Fork € N, let p; be the vertical translation that sends y, z) to (x, y, z + %). Note
thathy, o px = pr o hp and j, x o px = Pk © jax- THUSg 0 P = pr 0 &.

The fibrationz : T3 — T2 was obtained in [SW1] by using the persistence of nor-
mally hyperbolic submanifolds under perturbations. In the present case the symmetries
o preserve the fibers of the trivial fibratioh : T2 — T2 from which one starts, and
also the mapg. Therefore the fibers of : T3 — T2 (i.e., the leaves of center foliation
Wy ) are invariant under the action of the finite groupo; >.

Let S be the (full measure) set of pointsis for which the center direction is a positive
Lyapunov direction (i.e. for which conclusion 3 holds). Sipg@/V,) = Wy, it follows
thatpeS = S. If p € SNW<(p), thenpi(p) € pr(S) N (W <(p)) = SN W (p);
that is,S N W*€(p) contains at least points.

Thus Theorem | is “sharp” in the sense that we cannot say more about the value of
in general.

Theorem | has an interesting interpretation. Recall ti@textension of a dynamical
systemf : X — X isamapf, : X x G — X x G, whereG is a compact group, of the
form (x, y) = (f(x), p(x)y). If f preserves, andp : X — G is measurable, theyj,
preserves the product ofwith Haar measure o6. A Z/kZ-extension is also called a
k-point extension.

Let 1 be an invariant probability measure fokégoint extension off : X — X,
and{x, } the family of conditional measures associated with the part{fiohx G}. We
remark that ifs is ergodic, then each atom bf must have the same weightA (up to
a set ofA-measure 0).



Absolutely Singular Dynamical Foliations 483

Now takeg € U. Choose a coherent orientation on the leavegof ()}, .r2. Take
h : T3 > T2 x T to be any continuous change of coordinates such/thastricted
to 7 ~1(x) is smooth and orientation preserving{to, x T. We may then writeF =
hogoh™1:T?2x T — T2 x T inthe form

F(x, p) = (A2x, ¢x(p)),

whereg, : T — T is smooth and orientation preserving.Af: T2 x T — T2 s the
projection on the first factor of the product, we haRe h = 7. Therefore, writing

A = h*u, we haveP*1 = n*u. Let {1, } be the disintegration of the measuralong

the fibers{x} x T. By a further measurable change of coordinates, smooth along each
{x} x T fiber, we may assume thatalmost everywhere, the atoms of are at//k,

forl = 0,...,k — 1. But theng, permutes the atoms cyclically, and we obtain the
following corollary.

Corollary. For every g € U thereexistsk € N suchthat (T2, i, g) isisomorphicto an
(ergodic) k-point extension of (T2, 7%, A2).

M. Shub has observed thagif= j, xohy, then entropy considerations imply theiti
is actually Lebesgue measureh Hence, for thig, 7 is a finite-to-one semiconjugacy
betweerg andA», sending Lebesgue measurehto Lebesgue measure an.

1. Proof of Theorem |

The proof of Theorem | follows from a more general result about fibered diffeomor-

phisms. Before stating this result, we describe the underlying setup and assumptions.
Let (X, v) be a probability space, and I¢t: X — X be invertible and ergodic with

respect to. It is convenient to assume thatis in fact a Polish topological space since

this assumption is made in the study of random smooth dynamical systems i [BL]

Let M be a compact Riemannian manifold apiéh mapX — Diff 1t%(M). Consider

the skew-product transformatidn: X x M — X x M given by

F(x,p)=(f(x), ox(p))

and assume thatitis (Borel) measurable. Alsqylbé anF-invariant ergodic probability
measure orX x M such thatr,u = v, whererr : X x M — X is the projection onto
the first factor.
Forx € X, let <p§0) be the identity map oW and fork € Z, definega,(ck) by

)(ck+1) = @rk(x) © (0)(ck)-
Since the tangent bundle i is measurably trivial, the derivative map @falong the
M direction gives a cocycl& x M x Z — GL(n, R), wheren = dim(M):

(x, p, k) > D).
Iflog* | Dg| € LY(X x M, u), then Oseledec’s Theorem and ergodicity imply that

the Lyapunov exponents; < Az2--- < A; of this cocycle exist and are constant for
u-a.e.(x, p). We call these théberwise exponents of F.

1 A Polish space is a separable topological space with topology given by a complete metric. We use only
the Borel structure defined by the topology.
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The next result, Theorem I, states that if these exponents are negative, tren
atomic disintegration alongy-fibers ofX x M. The proof of Theorem Il uses a fibered
Pesin stable manifold theorem, which requires a stronger hypothesikan integrabil-
ity of log™ || Dg||. Namely, we asssume that for some- 0, log" | D¢ ||, € LY(X, v),
where| - ||, is thea-Hblder norm.

Theorem |1. Supposethat A; < 0. Thenthere existsaset S C X x M and an integer
k > 1suchthat

o u(S) =1,
e For every (x, p) € S,wehave#(S N {x} x M) = k.

This has the immediate corollary:

Corollary. Let f e Diff 2% (M). If u is an ergodic measure with all of its exponents
negative, then it is concentrated on the orbit of a periodic sink.

The corollary has a simple proof using regular neighborhoods. Our proof is a fibered
version. Theorem | is also a corollary of Theorem Il. For this, the argument is actually
applied to the inverse of, which has negative fiberwise exponents, rather than to
itself, whose fiberwise exponents are positive. As we described in the previous remarks,
there is a continuous change of coordinates, smooth along the fiberimefhich g1
is expressed as a skew produciléfx T:

F(x, p) = (A2x, ox(p)).

Since the 2-jets of the fibers af vary continuously, (by Assumption 2), the maps
x — @, can be chosen to vary continuously in i&-norm on Diff?(M). This implies
that log" | Dg|le € L1(X, v), fora = 1.

Remark. Without the assumption that is invertible, Theorem Il is false. An example

is described by Y. Kifer [Ki], which we recall here. Lgt: T — T be ac'* diffeo-
morphism with exactly two fixed points, one attracting and one repelling. Consider the
following random diffeomophism of : with probability p € (0, 1), apply f, and with
probability 1— p, rotate by an angle chosen randomly from the intefvail, €].

Let X = ({0,1} x T)N. To generate a sequence of diffeomorphisfgsfi, ...
according to the above rule, we first defipe X — Diff 1+ (T) by

() = f ifw0 =(0,0),
P =Ry if w(0) = (1,6),

where Ry is rotation through anglé. Next, we letv. be the product ofp, 1 — p-
measure o0, 1} with the measure om that is uniformly distributed ofi—¢, €]. Then
corresponding tmy-almost every element € X is the sequencgfy = (p(ak(a)))}]?ozo,
wheres : X — X is the one-sided shift (w)(n) = w(n + 1).

Put another way, the random diffeomorphism is generated by the (noninvertible)
skew productr : X x T — X x T, wheret(w, x) = (o (w), ¢(w)(x)). An ergodic
ve-Stationary measure for this random diffeomorphism is a measumn T such that
He X "2‘ is t-invariant and ergodic. Such measures always exist ([Ki], Lemma 1.2.2),
but, for this example, there is an ergodic stationary measure with additional special
properties.
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Specifically, for every > 0, there exists an ergodi¢-stationary measurg,. on
T such that, ag — 0, ue — 8y,, in the weak topology, wherg&,, is Dirac measure
concentrated on the sinlg for f. From this, it follows that, as — 0, the fiberwise
Lyapunov exponent fqu. approaches lopf’ (xg)| < 0, whichisthe Lyapunov exponent
of §x,. Thus, fore sufficiently small, the fiberwise exponent fowith respect tqu. is
negative. Nonetheless, it is easy to see thdbr ¢ > 0 cannot be uniformly distributed
onk atoms; ifu. were atomic, them-invariance ofu,. x vN would imply that, for every
xeT,

€

(X)) = puefON+ A= p) | pe({Ro(x)}hdo

= pre({f 10D,

which is impossible ifue has finitely many atoms. In facy. can be shown to be
absolutely continuous with respect to Lebesgue measure (see [Ki], p. 173ff. and the
references cited therein). Hence invertibility is essential, and we indicate in the proof of
Theorem Il where it is used.

Proof of Theorem I1. We first establish the existence of fiberwise “stable manifolds”
for the skew product'. A general theory of stable manifolds for random dynamical
systems is worked out in ([Ki], Theorem V.1.6 and more explicitly in [BL]). Since we
are assuming that all of the fiberwise exponentsfare negative, we are faced with the
simpler task of constructing fiberwise regular neighborhood#f¢see the Appendix
by Katok and Mendoza in [KH]). We outline a proof, following closely [KH].

Theorem 1.1 (Existence of Regular Neighborhodd$here existsaset Ag € X x M
of full measure such that for ¢ > 0:

e There exists a measurable function r : Ag — (0, 1] and a collection of embed-
dings ¥, ;) : B(0,q(x,p)) — M such that ¥ ,)(0) = p and exp(—e) <
r(F(x, p))/r(x, p) < exple).

o f o p) = \y;}x,p) o @r 0 W(r.p) : B(O, r(x, p)) — R", then Doy, satisfies

expir — €) < Doy 17" 1Dogie py | < €XPlA + €).

e TheC? distance dc1(¢(x, p), Do@(x,p)) < € in B(O, r(x, p)).
e There exist a constant K > 0 and a measurable function A : Ag — R such that for
y7z e B(O’r(-x’ p)):

K_ld(\p(x,p)(Y)a lIJ()c,p) @) =<ly—-zll = A(x)d(‘lf(x,p)()’), lIJ()c,p) (2)),
withexp(—e) < A(F(x, p))/A(x, p) < expe).
Proof. See the proof of Theorem S.3.1 in [KH]O

Decomposeu into a system of fiberwise measur@g (x, p) = du,(p)dv(x). In-
variance ofu with respect taF implies that, fov-a.e.x € X,

DOxsxhx = M f(x)-

Corollary. Thereexistsaset A C X x M,andreal numbersR > 0,C > 0,andc < 1
such that
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(1) n(A) > .5,and, if (x, p) € A, then uy(Ay) > .5, where A, ={pe M|(x,p) €
A).
(2) If (x, p) € Aanddy(p,q) < R, then

du (@™ (p), 9™ (q)) < Cc™du(p, q),
for all m > 0.

Proof. This follows in a standard way from the Mean Value Theorem and Lusin’s The-
orem. O

To prove Theorem Il, it suffices to show that there is a positiveeasure sef C X,
such that forr € B, the measurg, has an atom, as the following argument shows. For
x € X, letd(x) = sup,cy ix(p). Clearlyd is measurablef-invariant, and positive
on B. Ergodicity of f implies thatd(x) = d > 0 is positive and constant for almost
allx € X.LetS = {(x,p) € X x M| u,(p) > d}. Observe that is F-invariant,
has measure at leastand hence has measure 1. The conclusions of Theorem Il follow
immediately.

LetA, R > 0,C > 0, andc < 1 be given by Corollary 1, and lé&t = 7 (A). LetN
be the number ok /10-balls needed to coved. We now show that for-almost every
x € B, the measurg, has at least one atom.

Forx € X, let

m(x) = inf Zdiam(Uj),
where the infimum is taken over all collections of closed béls. .. , U in M such

thatk < N andu. (5, U;) > 5. Letm = esssupepm(x).
We now show that: = 0. If m > 0, then there exists an integérsuch that

CAc'N <m)2, 0
where A is the diameter ofM. Let U/ be a cover ofM by N closed balls of radius

R/10. Forx € B, let Ui(x), ..., Uk (x) be those balls i/ that meetA,. Since
these balls coven,, andu,(A,) > .5, it follows thatux(U';.g U;j(x)) = .5. But

goff) «Mx = [4 si(y), @nd so it's also true that

k(x)
i (o W;))) = 5, )
j=1
forall ;. ‘
We now use the fact th ,(f) contracts regular neighborhoods to derive a contradic-

tion. The ball€U; (x) meetA, and have diameter less th&r10, and so by Corollary 1,
(2), we have

diam (¢ (U;(x))) < CAC'. €)

Lett : B — N be the first-return time off’ to B, so thatf/*™)(x) € B, and
flix) ¢ B,fori e {1,...,t(x) — 1}. Decompose the sé according to these first
return times:

B = DB,- (mod 0,

i=1
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whereB; = t~1(i). Because f isinvertibleand f~1 preserves measure, we also have
the mod 0 equivalence:

B :=|Jf/"(B)=8B (modo.

i=1

Lety € B’. Theny = f/i(x), wherex € B; C B, for somei > 1. It follows from
the definition ofin(y) and inequalities (2), (3) and (1) that

k(x)
m(y) < diam(p!'?(U;(x)))

j=1
< Ck(x)Ac’!
<CNAc!
<m/2.

But then

m = €SS SURecpm(x)
= esSSURecpm(y)
<m/2,

contradicting the assumptiom > 0.

Thusm = 0, and, forv-almost every € B, we haven(x) = 0. If m(x) = 0, then
there is a sequence of closed bdll$(x), U?(x), - - - with lim;_ o diam(Ui(x)) = 0
andu, (U (x)) > .5/N, for all i. Take p; € U'(x); any accumulation point ofp;} is
an atom foru,. Since we have shown that, has an atom, for-a.e.x € B, the proof
of Theorem Il is complete. O
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