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Abstract: We consider a smooth groupoid of the fobinx I', whereX is a Riemann
surface and" a discrete pseudogroup acting Brby local conformal diffeomorphisms.
After defining aK -cycle on the crossed produ€ () x I' generalising the classical
Dolbeault complex, we compute its Chern character in cyclic cohomology, using the
index theorem of Connes and Moscovici. This involves in particular a generalisation of
the Euler class constructed from the modular automorphism group of the von Neumann
algebraL®>°(X) x I'.

1. Introduction

In a series of papers [4,5], Connes and Moscovici proved a general index theorem
for transversally (hypo)elliptic operators on foliations. After constructihgycles on
the algebra crossed producg(M) x I', whereT is a discrete pseudogroup acting on
the manifoldM by local diffeomorphisms [4], they developed a theory of characteristic
classes for actions of Hopf algebras that generalise the usual Chern—Weil construction to
the non-commutative case [5, 6]. The Chern character of the conckrogdles is then
captured in the periodic cyclic cohomology of a particular Hopf algebra encoding the
action of the diffeomorphisms a¥1. The nice thing is that this cyclic conomology can be
completely exhausted as Gelfand—Fuchs cohomology and renders the index computable.
We shall illustrate these methods with a specific example, namely the crossed product
of a Riemann surfac® by a discrete pseudogrouipof local conformal mappings. We
find that the relevant characteristic classes are the fundamental Elpasd a cyclic
2-cocycle orC° (%) x I' generalising the (Poincaré dual of the) usual Euler class. When
applied to theK -cycle represented by the Dolbeault operatozok I', this yields a
non-commutative version of the Riemann—Roch theorem. Throughout the text we also
stress the crucial role played by the modular automorphism group of the von Neumann
algebraL*>°(X) x T'.

* Allocataire de recherche MENRT.
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2. The DolbeaultK-Cycle

Let  be a Riemann surface without boundary &hd pseudogroup of local conformal
mappings ofX into itself. We want to define & -cycle on the algebr&o(X) x I’
generalising the classical Dolbeault complex. Following [4], the first step consists in
lifting the action ofl" to the bundleP over X, whose fiber at point is the set of K&hler
metrics corresponding to the complex structurEaftx. By the obvious correspondence
metric< volume form,P is theR* -principal bundle of densities ab. The pseudogroup
I acts canonically o® and we consider the crossed proddgtP) x I'.

Letv be a smooth volume form db. As in [2], this gives aweight on the von Neumann
algebral.>°(X) x I together with a representativeof its modular automorphism group.
Moreovero leavesCo(X) x I' globally invariant and one has

Co(P) X TI'=(Co(X) xT) x5 R, ()

where the space is identified withX x R thanks to the choice of the global sectian
Therefore one has a Thom-Connes isomorphism [1]

Ki(Co(%2) x ') — Kip1(Co(P) xT'), =01, )

and we shall obtain the desir&@homology class of'g(P) x I". The reason for working
on P rather thanx is that P carries quasl-invariant metric structures, allowing the
construction ofK -cycles represented by differential hypoelliptic operators [4].

More precisely, consider the prodult x R, viewed as a bundle ovex with 2-
dimensional fiber. The action dfextends taP x R by makingR invariant. Up to another
Thom isomorphism, th& -cycle may be defined ofig(P x R) xI' = (Co(P) x ') ®
Co(R). By achoice of horizontal subspaces on the bueR, one can lift the Dolbeault
operatom of . This yields the horizontal operat@ = 9+9", where the adjoird” is
taken relative to thé&2-norm given by the canonical invariant measureor R (see [4]
for details). Finally, consider the signature operator of the fib@is= dy dy, — dy dy,
wheredy is the vertical differential. Then the su® = Qg + Qv is a hypoelliptic
operator representing our Dolbeakltcycle.

This construction ensures that the principal symbobDois completely canonical,
because itis related only to the fibration®k R overx, and hence is invariant under
Another choice of horizontal subspaces does not change the leading term of the symbol
of Q. This is basically the reason why allows one to construct a spectral triple (of
even parity) for the algebr&°(P x R) x I'.

If ' = Id, thenCo(P x R) x I' = Co(T) ® Co(R?) and the addition oDy to Oy
is nothing else but a Thom isomorphismArhomology

K*(Co(X)) — K*(Co(P x R)) 3)

sending the classical Dolbeault elliptic operaior 3" t0 0.

Now we want to compute the Chern characte@dh the periodic cyclic cohomology
H*(C°(P x R) x I') using the index theorem of [5]. We need first to construct an
odd cycle by tensoring the Dolbeault complex with the spectral triple of the real line
(CX(R), L%(R), i%). In this way we get a differential operatgy = Q + i% whose
Chern character lives in the cyclic cohomology(6£°(P) x T') ® C*° (R?). By Bott
periodicity it is just the cup product

ch.(Q') = p#(R?] @
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of a cyclic cocyclep € HC*(C°(P) » I') by the fundamental class &f. The main
theorem of [5] states that can be computed from Gelfand—Fuchs cohomology, after
transiting through the cyclic cohomology of a particular Hopf algebra. We perform the
explicit computation in the remainder of the paper.

3. The Hopf Algebra and Its Cyclic Cohomology

First we reduce to the case of a flat Riemann surface, since for any graupoid one
can find a flat surfac&’ and a pseudogroup’ acting by conformal transformations on
¥’ such thatCo(X’) x I'" is Morita equivalent t@o(X) x I (see [5] and Sect. 5 below).

Let thenX be a flat Riemann surface angd z) a complex coordinate system corre-
sponding to the complex structure Bf Let F be theGI(1, C)-principal bundle over
¥ of frames corresponding to the conformal structurds gifted with the coordinate
system(z,z, y,¥), ¥,y € C*. A point of F is the frame

(y9z,y9z) at(z,2). (5)

The action of a discrete pseudogrdupf conformal transformations an can be lifted to
an action or¥ by pushforward on frames. More precisely, a holomorphic transformation
Y € I acts on the coordinates by

7z — ¥ (2), Domyr C F, (6)

y=> ¥ @y, ¥'(@)=89@). 7)
Let C2°(F) be the algebra of smooth complex-valued functions with compact support
on F, and consider the crossed produtt= C°(F) x I'. A is the associative algebra
linearly generated by elements of the fopfﬁlz with € T, f € C°(F), suppf C
Domy. We adopt the notatiolVy, = U:;,l for the inverse in;;. The multiplication
rule

AU f2US, = fi(f20 DU, ®)

makes good sense thanks to the condition gupp Domy;. We introduce now the
differential operators

X =yd, Y=ydy, X=30 Y=73d, 9)

forming a basis of the set of smooth vector fields viewed as a module@VeEF).
These operators act ofin a natural way:

X.(fUS) = (X.HU},  Y.(fU)) = Y.HU; (10)

and similquy forX, Y. We remark that the systern, 7) determines a smooth volume
form dZZLidZ on X. This in turn gives a representativeof the modular automorphism
group of L*°(X) x I', whose action ol€'°(X) x I'reads (cf. [3] chap. III)

o (fUy) = W' 1P fU;, teR. (11)

We let D be the derivation corresponding to the infinitesimal actioa of

d !/ *
D=—i—oli=o D(fU})=Inly'?fUy. (12)
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The operators,, 8,, n > 1 are defined recursively
Sy =

[X,...[X,D]...] 8,=I[X,...[X,D]...]. (13)
——— ———
Their action onA are explicitely given by
8u(fUy) = Yl (ny") fUS,  8,(fU) =yl (Iny/) fU},. (14)

Thuss,, 8, represent in some sense the Taylor expansidn. &fll these operators fulfill
the commutation relations

[Y7X]=X7 [Yaan]znan,

15
[X,d,]= 8n+lv [6n,0m] = 0» ( )

and similarly for the conjugatex, Y, §,,. Thus{X, Y, 8,, X, Y, 8,},>1 form a basis of
a (complex) Lie algebra. L&t be its enveloping algebra. The remarkable fact is that
is a Hopf algebra. First, the coprodutt: H — H ® H is determined by the action of
HonA:

Ah(a1 ® ap) = h(arap) Yh e H,a; € A. (16)

One has

AX =1 X+X®1+561RY,

AY =1QY+YR®1 A1 =16 +561Q1.
A8, for n > 1 is obtained recursively from (13) using the fact tiaais an algebra
homomorphismA (h1h2) = Ah1Ah». Similarly for the conjugate elements.
The counite : H — C satisfies simply(1) = 1,e(h) = 0Vh # 1. Finally, H has
an antipodeS : ‘H — 7, determined uniquely by the conditiomo S ® Ido A =

mold® SoA = ne, wherem : H® H — H is the multiplication andy : C — # the
unit of 7. One finds

S(X)=-X+48Y, SF)=-Y, 81 =—061. (18)

SinceS is an antiautomorphisn(h1h2) = S(h2)S(h1), the values of5(5,),n > 1
follow.

We are interested now in the cyclic cohomologytf5, 6]. As a space, the cochain
complexC*(#H) is the tensor algebra oveét:

17)

o]

C*(H) = PH™" (19)

n=0
The crucial step is the construction of a characteristic map
Y HE" - C"(A, AY) (20)

from the cochain complex @i to the Hochschild complex ofl with coefficients in4*

[3]. First F has a canonicdrl-invariant measurév = dzdz@z. This yields a trace
onA:
= [ fdv fec,
F

T(fUL =0 ify #1.

(21)



Riemann—Roch Theorem for One-Dimensional Complex Groupoids 377

Then the characteristic map sends#heochaini; ® - - - ® h,, € H®" to the Hochschild
cochainy (h1 ® - -- ® h,) € C"(A, A*) given by

y(h1®---®hy)(ao, ...,a,) = t(aohi(ar) ... hy(an)), a; € A. (22)

The cyclic cohomology of{ is defined such that is a morphism of cyclic complexes.
One introduces the face operatéts #®"—D — 24® for0 <i < n:

@ @hy1)=10h & @ hy_1,
S (h® - @hy_) =h1® @Al @ - @hy_1, 1l<i<n-1  (23)
"1 ®-- @hp1) =h1®--- @hp1® 1,
as well as the degeneracy operatgrs H®"+D — &
Ui(hl®"'®hn+l)Zhl®-~-8(hi+l)"‘®hn+l7 0<i<n. (24)

Next, the cyclic structure is provided by the antipafiand the multiplication ofH.
Consider the twisted antipode= (§ ® S) o A, wheres : H — C is a character such
that

t(h(a)b) = 1(@S(h)(b)) Va,b e A. (25)
This last formula plays the role of ordinary integration by parts. One finds:
=1, 8Y)=8(Y)=1
€y B (¥Y)=4(Y) - (26)
3(X)=8(X)=68(n)=68,)=0 Vn=1

The definition impliess? = 1. Connes and Moscovici proved in [6] that the latter identity
is sufficient to ensure the existence of a cyclicity operatarH®* — H®",

T (h1 ® - ®hy) = (A" 18S(h1) - h2® - @ h, ® 1, (27)

with (1,)"*1 = 1. Now C*(H) endowed withs, o;, 7, defines a cyclic complex. The
Hochschild coboundary operatbr H®" — H®"+D js

n+1 o
b= ()& (28)
i=0
and Connes’ operatd® : H®+D — H®n s
n . .
B = Z(_)m (ta)'Bo  Bo = OnTn+1 + (—)"on. (29)
i=0

They fulfill the usual relation®? = b? = bB + Bb = 0, so thatC*(H, b, B) is

a bicomplex. We define the cyclic cohnomologfC*(#) as theb-cohomology of the
subcomplex of cyclic cochains. The corresponddagodic cyclic conomologyH * ()

is isomorphic to the cohomology of the bicompl€X(#, b, B) [3]. Furthermore, the
definitions ofé’, o;, 7, imply thaty is a morphism of cyclic complexes. Consequently,
y passes to cyclic cohomology

y : HC*(H) — HC*(A), (30)
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as well as to periodic cyclic cohomology
y: H"(H) — H*(A). (31)

In fact we are not interested in the frame bungldut rather in the bundle of metrics
P = F/SO(2), whereSO(2) c GI(1,C) is the group of rotations of frameg. is
gifted with the coordinate cha¢t, z, r), where the radial coordinatels obtained from
the decomposition

y=e % recR, 0 €0, 2n] (32)
The pseudogroup still acts onP by
2> Y@, 7z ¥,

1., (33)
r—>r—§|n|1p(z)|.

DefineA; = AS9@ < A the subalgebra of elements dfinvariant under the (right)
action ofSO(2) on F. Az is canonically isomorphic to the crossed proddgt(P) x T".
P carries d -invariant measurév, = ¢ dzdzdr, so that there is a trace oty, namely

u(f) = /P fdvi. feCE(P).
n(fUD =0 ify 1

Thus passing t6 O (2)-invariants yields an induced characteristic map from the relative
cyclic cohomology ofH [5]

(34)

yi: HC*(H, SO(2)) — HC*(Ay) (35)

given byy1(h1 ® --- ® hy)(ao, ..., a,) = t1(aghi(al)...hi(ay)), a; € A1, where

h1 ® --- ® h, represents an element &fC*(#, SO (2)). The mapy; generalises the
classical Chern-Weil construction of characteristic classes from connections and cur-
vatures. In the crossed product case« I', these classes are captured by the periodic
cyclic cohomology ofH. Connes and Moscovici computed the latter as Gelfand—Fuchs
cohomology. This is the subject of the next section.

4. Gelfand—Fuchs Cohomology

Let G be the group of complex analytic transformation€ofG has a unique decom-
positionG = G1G2, whereG1 is the group of affine transformations

x—ax+b, xeC,abeC (36)
andG3 is the group of transformations of the form
x = x4+ o(x). 37)

Any element ofG is then the compositiok o ¥ for k € G1, ¥ € G». SinceGy is the
left quotient of G by G1, G1 acts onG2 from the right: fork € G1, ¥ € G2, one has
¥ <k € G. Similarly, G2 acts onG1 from the left:y > k € G1.
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We remark that 1 is the crossed produ€t x GI(1, C). The spac€ x GI(1,C)isa
prototype for the frame bundIE of a flat Riemann surface. This motivates the notation
a =y, b = z for the coordinates or1. Under this identification, the left action 6f;
on G1 corresponds to the action 6% on F': for a holomorphic transformatioy € Go,
one has

2= v@), y—> v @y, (38)

with ¥ (0) = 0, ¥/(0) = 1. Furthermore, the vector fields, X, Y, Y form a basis of
invariant vector fields for the left action 6f; on itself, i.e. a basis of the (complexified)
Lie algebra ofG1. Its dual basis is given by the left-invariant 1-forms (Maurer—Cartan
form)

w_1=y Yz, ®_1=7y 'z, (39)
wo = yildy, wo = ifld?

The left actionG, > G1 implies a right action of5, on forms by pullback. One has in
particular, forys € G,

w_10Y =w_1, woo¥ =wo+yd;Iny'w_1 andc.c. (40)

Consider now the discrete crossed proddgt= C>°(G1) x G2, whereG; acts on
C°(G1) by pullback. As a coalgebrd{ is dual to the algebrd{... One has a natural

action of H onH,:
X.(fo;) = X.ij;, feCX(Gr), ¢ € Gy, 41)
5n(fo£) =y"3"Iny’ foZ,

and so on withr, X .. .. The operators,, 8, have in fact an interpretation in terms of
coordinates on the groug,: for ¢ € G2, 8, () is by definition the value of the function
Sn(U;;)Uw at 1€ G1. For anyk € G4, one has

[8, (U Uy 1(k) = 8, (W k). (42)
Note that (40) rewrites
woo Y =wo+81(Y <k)w—1 atk € Gi. (43)

The Hopf subalgebra of generated by,, 8,, n > 1, corresponds to the commutative
Hopf algebra of functions o', which arepolynomial in these coordinates.

Let A be the complexification of the formal Lie algebra®f It coincides with the
jets of holomorphic and antiholomorphic vector fields of any orde€on

ax,fax,..., f:ax x € C, (a4)
O, X0%, ooy X OF, ...
The Lie bracket between the elements of the above basis is thus
[x" 9y, x"3,] = (m —n)x"t" 15, andc.c, 45)

[x" 0y, ¥" d¢] = 0.
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Define the generator of dilatatiorf$ = xd, + x5 and of rotations/ = xd, — x0%.
They fulfill the properties

[H,x"3x] = (n — Dx"dx; [H,X"3¢] = (n — DX" 0%,

[J,x"3,] = (n — Dx"dy, [J,¥"5] = —(n — X" . (46)

We are interested in the Lie algebra conomologydgee [7]). The complex*(A) of
cochains is the exterior algebra generated by the dual pasi®"},>_1:

" (") = 8q, @' (") =0,
—n m —Nn —m m (47)
" (x"d,) =0, 0" (X" 0%) = 8, 1, Vn>-1,m>0,

and the coboundary operator is uniquely defined by its action on 1-cochains
do(X,Y)=—-w(X,Y]) VX,Y €A. (48)

From [5] we know that theeriodic cyclic cohomologyH* (#H, SO (2)) is isomorphic
to the relative Lie algebra cohomolo@¥*(A, SO(2)), i.e. the cohomology of the basic
subcomplex of cochains ofi relative to the Cartan operati@gi, i) of J:

Ljw=(ijd+dij)o YoweC*(A). (49)
We say that a cochaih € C*(A) is of weightr if Lyw = —rw. Remark that
Lyo" = —no", Lpo" =-no" VYn> -1, (50)

so thatC*(A) is the direct sum, for > —2, of the space€(A) of weightr. Since
[H, J]=0,C}(A) is stable under the Cartan operatiorvaind we noteC (A, SO (2))
the complex of basic cochains of weightThen we have

oo
C*(A,50(2) = @ C(A,S0(2). (51)
r=—2
For any cocycles € C} (A, SO(2)),
Lyw=digw = —ro, (52)

so thatC) (A, SO(2)) is acyclic whenever = 0. HenceH*(A, SO(2)) is equal to the
cohomology of the finite-dimensional subcompl&i(A, SO (2)). The direct computa-
tion gives

HO(A, SO(2)) = C with representative 1

H2%(A,S0(2)) =C " o twl, (53)
H3(A,50(2)=C " (0 o — o @Y (° + @2,
H%(A,50(2) =C " oo oo 10 + @0).

The other cohomology groups vanish.

Next we construct a mag from C*(A) to the bicomplex(C™™, d1, d2), mez Of
[3] chap. 111.25. Let Q™ (G1) be the space:-forms onG;. C™™ is the space of totally
antisymmetric mapg : G2"t1 — Q" (G1) such that

V(gOg»n-agng)ZV(gO’---sgn)Ogv giEG27gEG7 (54)
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whereg; g is given by the right action off on G2, andG acts onQ2*(G1) by pullback
(left action of G on G1).
The first differentiald, : ¢ — c"tlm s

n+1

(d17)(80. - 8041) = ()" D (=) V(80 - 8iv-- - 8us1). (55)
i=0

andd, : €™ — "™+l s just the de Rham coboundary & (G1):
(d2y)(go, ..., 8n) =d(¥(gos .- &n))- (56)

Of coursedi? = do? = didy + dady = 0. We remark that fop € €™, the invariance
property (54) implies

v(g0,...,8n) 0k =y(go<k,...,gn<k) VkeGy, (57)

in other words the value of(go, ..., g») € " (G1) atk is deduced from its value at 1.

Let us describe now the construction©f As a vector space, the Lie algebfais
just the direct sun®G1 @ Gy, G; being the (complexified) Lie algebra 6f;.. The cochain
complexC*(A) is then the exterior produgtA* = AG1* ® AG2*. One identifiess1*
with the cotangent spacg’(G1) of G at the identity. Sincé; fixes 1€ G, there
is a right action ofG, on AG1* by pullback. The basigw ™1, 0%, @1, @°} of G1* is
represented by left-invariant one-forms 6a through the identification

ot —w_ 1= —y_ldz, ol > o= -y Laz, (58)
o > —¥ = —y_ldy, 2’ > —a’= —y_ldi,
and the right action ofy € G, reads (cf. (40))
ot y=0t o y=+8sW)o " (59)

Next, we view a cochaim € C*(A) as a cochain of the Lie algebra 6% with coeffi-

cients in the rightG>-moduleAG1*. It is represented by AG;*-valued right-invariant
form 1 on G,. ThenC(w) € C** evaluated origo, . .., g,) € G2"1is a differential
form onG1 whose value at E G1 is

aw@m~$0=/ n e AT (G, (60)
A(go,---,&n)

where A(go, ..., g,) is the affine simplex in the coordinatés, §;, with vertices
(g0, - - ., gn). Let{p;} be a basis of left-invariant forms ai;. Then

C(@)(g0,---,8) =Y pj(go, .-, g)p; atle G, (61)
i
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wherep;(go, . . ., g») are polynomials in the coordinat&s &;. The invariance property
(54) enables us to compute the valuedgiv)(go, . - . , g») atanyk € Gy,

C@)(g0, -, &) k) =Y _ pj(go<k,.... e <k)p; (62)
J

because; o k = p;.

Connes and Moscovici showed in [5] th@tis a morphism fromC*(A, d) to the
bicomplex (C™™, d1, d2),.mez. In the relative case, it restricts to a morphism from
C*(A, SO(2),d) to the subcomplexCy.z, d1, d») of antisymmetric cochains 0G>
with values in thébasic de Rham cohomolog®*(P) = Q*(G1/S0(2)).

It remains to compute the imageBf (A, SO(2)) by C. We restrict ourselves to even
cocycles, i.e. the unit € H°(A, SO(2)) and the first Chern class € H?(A, SO(2)),
defined as the class

c1 = [20 Y0l (63)

One hagC(1) € CJ2. The immediate result is

C(D(go) =1 goe€Goa. (64)
For the first Chern class, we must transfafirinto a right-invariant form orG, with
values inAT; (G1). We already know thab~1 is represented by-w_1 = —y~dz,

which satisfieso_1 o v = w_1, V¢ € G2. Next, the Taylor expansion of an element
Y € G can be expressed in the coordinaigshanks to the obvious formula

Iny'(x)=>" %anw)x”, VxeC. (65)
n=1
One finds:
1 1
Y(x) =x+ Eal(wxz + 3 62(¥) + s1¥)%)x3 + 0 (xh. (66)

It shows that the cochain® € C*(A) is represented by the right-invariant 1-fogus;
onGy. Thus at 1e G1, C(cy) € Cg’als is given by

C(c1)(go, g1) = / —w_1dd;
A(g0.81) (67)

= —w-1(81(g1) — 81(go)) & € G2,
and atk € G1, the 1-formC(c1)(go, g1) is
C(c1)(go, 81) = —w—_1(81(g1 <k) — 81(go < k)). (68)

Sincew_1 = y~1dz andsi(g <k) = yd.Ing'(z), z andy being the coordinates df
one has explicitly

C(c1)(g0, g1) = —dz(9;In g1(z) — 9, In g0/ (2)). (69)

It is a basic form onG1 relative toSO(2), which then descends to a form dh =
G1/S0(2) as expected.
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The last step is to use the mdpof [3, Theorem 14, p. 220] fromdC"™™, d1, d2) to
the (b, B) bicomplex of the discrete crossed prodG¢€t (P) x G». Define the algebra
B = Q*(P)QAC(GY), (70)

where AC(GY) is the exterior algebra generated by the eleméptsyy € G2, with
8. = 0 for the identitye of G,. With the de Rham coboundady of Q*(P), B is a
differential algebra. Now form the crossed prodick G2, with multiplication rules

UjaUy =ao, a € QY(P), ¥ € Gy, 71)
Upp 8yaUyy = Sypoys — 8y, i € Ga.
EndowB x G2 with the differentiald acting on an eIemerbtU;/‘j as
d(bUy) = dbUj — (-)*’bsy Uy, (72)
wheredb comes from the de Rham coboundarysf(P). The map
@ : (C**,d1,d2) > (CZ(P) x G2, b, B) (73)
is constructed as follows. Let € C,"". It yields a linear formy on B x Go:
V(@ ®8,, ...8,,) =/ anyd, g1, ...,8q), acQP), g €Go,
P (74)
pbU;) =0 if ¥ #1.
Then®d(y) is the followingl/-cochain onC°(P) x G2,/ =dim P —m + n,
n! ! i)~ ~ 5 ~
@ (y)(x0, ..., x) = o jz_c:](—)f“—-/)f(dle...dx;xodxl...dx,-), 75)
xi € CX(P) X G2 C BxGa.
The essential tool is thak is a morphism of bicomplexes:
®(d1y) =b®(y), P(d2y) = BP(y). (76)

Moreover, ifdiy = doy = 0, ®(y) is a cyclic cocycle. This happens in our case. Since
P is a 3-dimensional manifold, the image©t1) under® is the cyclic 3-cocycle

o(C(D)(x0,...,x3) = / xodx1...dx3, Xx;€ CSO(P) x Go, 77
P

Whered(fU;;) = dej/j for f € C2°(P), ¥ € G, and the integration is extended over
Q*(P) x G2 by setting

/ alUy, =0 ify #1, a e Q*(P). (78)
P
The image ofy = C(c1) is more complicated to compute. One has

Y@ ®8y) = —/ any tdzdi(gak), aeQ*(P), g€ Gy, (79)
P
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wherey~1dz81(g <k) = dzd.Ing'(z) is, of course, a 1-form o®. ®(y) is the cyclic
3-cocycle
Q(y)(foUyys - - f3Uy,)
= — y(foUy,df1Uy, df2Uy, f38y,Uy,
+ foUyodfiUy, f234,Uy,d f3U 5,
+ foUyy 18y, U, d U, df3U}) (80)
= y(fo (df1 0 ¥o) (df2 0 Y10) (f3 0 Y2r1%0)8ymyive

+ fo(df1 0o vo) (f2 0 Y1v0) (df3 o Y2¥r1¥0) (Symyryo — Syavo)
— fo(f10vo0) (df2 0 Y1vo) (df3 o Y2ur1yo) (Byiye — Syo)),

upon assuming thats 21y = Id. Using the relation
1y <k) = 81U Uy 1K), Yk € G1, ¥ € Go, (81)
the computation gives
@ (y)(xo0,...,x3) = / x0(dx1dx281(x3) + dx181(x2)dx3 + 81(x1)dxadx3)y dz.
P
(82)
Now recall thatP has an invariant volume foriaw, = ezrdziZdr. The differential
df of a function onP makes use of the horizontal = yo,, X = yd; and vertical
Y + Y = —0, vector fields:
df =y YzX. f +y YzX.f —dr(Y +7).f. (83)

Then using the relations (40) one sees &€ (c1)) is a sum of terms involving the
Hopf algebra

(Ce) o, x0) = 3 [ oban). Hixaddon, (84)
—~Jp
where the sun}_; k] ® h), ® hj is a cyclic 3-cocycle ofH relative toSO(2). This
follows from the existence of a characteristic map
HC*(H,S0(2)) - HC*(CZ(P) x G2) (85)
and the duality betweeH andH.. = C°(G1) x G2 (cf. [5]).
Returning to the initial situation, wherE is the frame bundle of a flat Riemann

surfacex, andP = F/S0(2) the bundle of metrics, the above computation shows that
the cyclic 3-cocycle otd; = C°(P) x T,

[c1](ao, ..., a3) = Z /;D aohil(al) . hé(ag)dvl, a; € A, (86)
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is the image ofC(c1) by the characteristic maff C*(H, SO(2)) — HC*(Aj1). Also
the fundamental class

[Pl(ag, ...,a3) = / apdaidazdas (87)
P

is in the range of the characteristic map.

Since Connes and Moscovici showed that the Gelfand—Fuchs cohomology
H*(A, §O(2)) is isomorphic to the periodic cyclic cohomology #&f, we have com-
pletely determined the odd part of the range of the characteristic map. We can summarize
the result in the following

Proposition 1. Under the characteristic map
H*(A,S0(12) >~ H*(H,S50(2) - H*(Ay), (88)
theunit1 € H%(A, SO(2)) mapsto the fundamental class[P] represented by the cyclic
3-cocycle,
[Pl(ao, ...,a3) = / aodardardas, a; € Az, (89)
P

and thefirst Chern classc1 € H%(A, SO (2)) givesthe cocycle [c1] € HC3(Ay):

[c1l(ao, ..., a3) = / ao(dardaz8y(as) + dai81(az)daz + 81(ar)dazdas)y ™ *dz.
P
(90)
In Sect. 2 we considered an odd-cycle onCo(P x R?) x I represented by a
differential operatorQ’, which is equivalent, up to Bott periodicity, to an o&dcycle

onCo(P) xT. Q' is amatrix-valued polynomial in the vector fieldfs X, ¥ +Y and the
partial derivatives along the two directionsf. Its Chern character is the cup product

ch.(Q') = ¢#[R?] (91)

of a cyclic cocyclep € HCOdd(C§°(P) x ') by the fundamental class &?. The
index theorem of Connes and Moscovici states ¢hiatin the range of the characteristic
map (we have to assume that the actiol'odn = has no fixed point). Hence it is a
linear combination of the characteristic clas§€$ and[c1]. We shall determine the
coefficients by using the classical Riemann—Roch theorem.

5. A Riemann—-Roch Theorem for Crossed Products
We shall first use the Thom isomorphismAntheory [1],
Ki(Co(%) X T) — K;11(Co(P) x I') (92)

to descend the characteristic clasg®$ and[c1] down to the cyclic cohomology of
CX(X) =« I'. Recall thatCo(P) x I is just the crossed product 6(X) x I' by the
modular automorphism group of the associated von Neumann algebra

Co(P) x T = (Co(X) x T) x5 R. (93)
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By homotopy we can deform continuously into the trivial action. For € [0, 1], let
ot)‘ =0y, YVt € R. Theno! = ¢, 0% = Id and

(Co(X) xT') xig R = Co(X) x I' ® Co(R). (94)

Next, the coordinate systefn, z) of X gives a smooth volume for##54< together with
a representative ef, whose action on the subalgelff@ (%) x T' is

o (fU}) = flY'1#'Us,  feCX(Z).y e, (95)
and accordingly
ol (fU}) = fIV17HU;. (96)

We remark that the algeb(@o(X) xI') x 2 R is equal to the crossed proddi(P) <, I’
obtained from the following deformed action Bfon P:

1> ¥@, 7 - Y@,

1 oo (97)
r—>r—§)»|n|1/f(z)| , yel.
Hence for any. € [0, 1], one has a Thom isomorphism
" Ko(Co(2) x ) — K1(Co(P) x;, T, (98)

and®? s just the connecting makio(Co(T) xT') — K1(S(Co(X) x T)). We introduce
also the family{[ P]*},¢[0.17 of cyclic cocycles

[P1*d}, ... a%) = / aydal ...day, Vale CX(P)x;T. (99)
P
One hagP]* = [P]and[P]° = [Z#[R] € (CX(Z) x ') ® CZ(R), where
[Z]1(ag, a1, a2) =/ apdaidaz Va; € CO(X) xT. (100)
p))

Moreover for any elemerit] € Ko(Co(X) x I') such thakb*([e]) is in the domain of
definition of[P]*, the pairing
(@*([e]), [P1") (101)

depends continuously upon Next for anyi €]0, 1], consider the vertical diffeomor-
phism of P whose action on the coordinates z, r) reads

M=z, 2D =7, A(r)=rn (102)
Thus fori # 0 one has an algebra isomorphism

X0 i CO(P) x; T — CP(P)x T (103)
by setting

x.(fUS) = fodU; VfeCP(P).yerl. (104)
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For anyx # 0O,

(X3)x 0 D* = @1, (105)
O IPT = (P11 (106)

Equation (105) comes from the unicity of the Thom map (cf. [1]), and (106) is obvious.
Thus(®*([e]), [P]*) is constant foi. # 0, and by continuity at 0,

(@([e]), [P1) = (le], [Z]). (107)

This shows that the image ¢P] by Thom isomorphism is the cyclic 2-cocyd&]
corresponding to the fundamental clas&ofin exactly the same way we show that the
image offc1] is the cyclic 2-cocycle defined, fora; = f,-U;;l_ e CX(X)« T, by

7(ag, a1, az) = / ao(da1d Inyyaz + 0 In Y arday), (108)
>

with = dzd,. Note that in the decomposition of the differential bnd = 9 + 9, both
d andd commute with the pullbacks by the conformal transformatigns I".

So far we have consideredflat Riemann surface and the constructions we made
were relative to a coordinate systém?z). We shall now remove this unpleasant feature
by using the Morita equivalence [5]. In order to understand the general situation, let us
first treat the particular case of the Riemann splsére- C U {oo}. We consider an open
covering of the sphere by two plane®: = Uy U Uy, Uy = C, U, = C, together with
the glueing functiory:

g - U1\{0} — U2\{0},

1 (109)
k= —.
Z

The pseudogroup of conformal transformatidfissgenerated byU;, U, } acts on the

disjoint unionE = U L1 U, which is flat. Thers? is described by the groupold x I'g.

If I' is a pseudogroup of local transformationsS3t there exists a pseudogroy
containingl'o, acting onX and such that the crossed proddc®(52) x I' is Morita
equivalent toC2°(X) x I'". The latter splits into four parts: it is the direct sum, for
i, j =1, 2, of elements of the forng;; U;;i/ with

Vi Ui — U;j and supyi; C Domy;;. (110)

For convenience, we adopt a matricial notation for any generic eldmeidt>° (X) x I'':

_ (b1 b1z P
b= <b21 b22> » bip = fijUy (111)

Now the Morita equivalence is explicitly realized through the following idempotent
e CX(X) x I

2 *
01 p1p2U, 2
e = , e“=e, 112

(UgPZ,Ol ngzzU§‘> (112)
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where{p;}i=1.2 is a partition of unity relative to the coverifd;}:

p1€ CX(WU1). p1®+ p2® =10nS% = U1 U {oo}. (113)
The reduction ofC°(X) x I'” by e is the subalgebra

(CEE)®T)e=1{be CX(E) xT'/b=be = eb}. (114)

Its elements are of the form

_( picpr prcp2Ug
ebe = (UgPZCPl UgPZszU;‘) (115)

withc = p1b11p1+ p2U g b21p1+ p1b12Ug p2+ p2U g 622U p2. Thenc can be considered
as an element afoo(Sz) x I under the |dent|f|cat|062 U1 U{oo}. (CX(X) x IM),
andC>(5?) x I are isomorphic through the map

6:C®(S?) 1T — (CX(T) xT),

( prap1  piap2U; > (116)

—
“ Ugp2ap1 Ugp2ap2Uy

We are ready to compute the pullbacks[af] andz € HCZ(CSO(E) x ') by 6.
This yields the following cyclic 2-cocycles afi™($2) x I':

0*[2] = [$2],

(0™ 1) (ao, a1, az) = fz ag (dal(a In b az + [az, p229In g'])
S
, (117)
+ (@Inyia1 + a1, p2°9In g’]))
— /2 asapard(p2?)dIn g,
s

with a; = f;Us € C®(5?) x T'. In formula (117),52 = U1 U {oo} is gifted with
the coordinate chaxt, z) of Uz, which makes sense 10/(z) = 3,v;(z) andg’(z) =
9.¢(z) = —1/z2, but gives singular expressions at 0 ard We can overcome this
difficulty by introducing a smooth volume form= p(z, Z)"ZZLI.dZ on $2. The associated

modular automorphism grouyp’ leavesC > (52) x " globally invariant and is expressed
in the coordinategz, 7) by

(e} ' it
ol (fUL) = (%) fUs = (uw vl ) fU;, YieR. (118)
Define the derivatiod” on C®(52) x T,
d
8" (fUy) = —ilo, —U”](fo/k,)lt:o

=[a,|n('0 °¥

|0y | )](fU?Z) (119)
=dln w’wa ~[@Inp, fUS. (120)
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One has
dIny’ fUS +1fU;. p220Ing'1=8"(fUS) +[3Inp — p2®dIng’. fU;]  (121)

where the 1-formw = dlnp — 0229 In g’ is globally defined, nowhere singular 68.
Let R¥ = 39 In p be the curvature 2-form associated to the Kéhler meigdig ® dz.
One has the commutation rule

(08" +8"3)a = [R",a] Yae C®(S? xT. (122)

Simple algebraic manipulations show that the following 2-cochain:
¥ (ag, a1, a2) :/ ao(dai8’ay + 8'arda?) +/ asapa1 R’ (123)
52 52

is a cyclic cocycle. Moreovet,’ is cohomologous t6*t. To see this, lep be the cyclic
1-cochain

¢(ag, a1) = /Z(aodal — ardag)w. (124)
s
Then for allg; € C*®(5%) x T,

(t¥ — 6% 1)(ao, a1, az) = —/ (aodaraz + azxdapay + ardazap)w
52 (125)

= by(ao, a1, a2).

It is clear now that the construction of characteristic classes for an arbitrary (non
flat) Riemann surfac& follows exactly the same steps as in the above example. Using
an open cover with partition of unity, one gets the desired cyclic cocycles by pullback.
Choose a smooth measuren X, then the associated modular group is

it
ol (fUL) = (%) fUL. fUL € CR() uT. (126)
The corresponding derivation

D'(fU}) =1n (@) 1u; (127)

allows one to define the noncommutative differential

8" =1[a, D"]. (128)
Then the characteristic classes of the groupdick I" are given by[X] and[z"] €
HC?(C>(%) x '), wherer" is given by Eq. (123) witts? replaced byx.

In the casd” = Id, the crossed product reduces to the commutative algebre)
for which (8V = 0)

t"(ag, a1, az) = / apaiazR” (129)
=
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is just the image of the cyclic 0-cocycle

75 (a) :/ aR’ (130)
P
by the suspension map in cyclic cohomology
S: HC*(CX (%)) - HC*3(CX(D)).

Thus the periodic cyclic cohomology classwfcorresponds in de Rham homology to
the cap product

1
g[f”] =c1k) N[E] € Ho(%) (131)
1
of the first Chern class of the holomorphic tangent burdly the fundamental class.
This motivates the following definition:

Definition 2. Let ¥ be a Riemann surface without boundary and I" a discrete pseu-
dogroup acting on X by local conformal transformations. Let v be a smooth volume
formon X, and ¢ the associated modular automorphism group leaving C2°(X) x T’
globally invariant. Then the Euler class e(X x I') is the class of the following cyclic
2-cocycleon C°(X) x T

1 1
—1"(ag, a1, az) = — / (azapa1R" + ao(da18”az + 8" arday)), (132)
2mi 27i Jx

where§” isthederivation —i[0, %a,”l,:o], and R” isthe curvature of the Kahler metric

determined by v and the complex structure of X. Moreover, this cohomology class is
independent of v.

Now if I' = Id, the operatoQ of Sect. 2 defines an element of tkehomology of
¥ x R2. It corresponds to the tensor product of the classical Dolbeault corfiplet
¥ by the signature compleis ] of the fiberR?2, so that its Chern character in de Rham
homology is the cup product

ch.(Q) = ch.([a])#ch.([o])

133
= ([Z]+ %cm N[SH#2AR?] € Hi (T x R?) (133)

which yields, by Thom isomorphism, the homology classSbn
2[Z]+ k) N[Z] € Hy(2). (134)

Nextforanyl’, we know from the last section that the Chern character of the DolbEault
cycle, expressed in the periodic cyclic cohomologg8f(X) x T, is alinear combination

of [X]ande(Z x I'). Thus we deduce immediately the following generalisation of the
Riemann—Roch theorem:

Theorem 3. Let X beaRiemann surfacewithout boundaryand I" a discrete pseudogroup
acting on X by local conformal mappings without fixed point. The Chern character of
the Dolbeault K -cycleis represented by the following cyclic 2-cocycleon C°(X) x I':

che(Q) = 2[2] + (T x I). (135)

Acknowledgements. | am very indebted to Henri Moscovici for having corrected an erroneous factor in the
final formula.
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