A Riemann–Roch Theorem for One-Dimensional Complex Groupoids

Denis Perrot*

Centre de Physique Théorique, CNRS-Luminy, Case 907, 13288 Marseille cedex 9, France. E-mail: perrot@cpt.univ-mrs.fr

Received: 1 February 2000 / Accepted: 3 December 2000

Abstract: We consider a smooth groupoid of the form $\Sigma \rtimes \Gamma$, where Σ is a Riemann surface and Γ a discrete pseudogroup acting on Σ by local conformal diffeomorphisms. After defining a *K*-cycle on the crossed product $C_0(\Sigma) \rtimes \Gamma$ generalising the classical Dolbeault complex, we compute its Chern character in cyclic cohomology, using the index theorem of Connes and Moscovici. This involves in particular a generalisation of the Euler class constructed from the modular automorphism group of the von Neumann algebra $L^{\infty}(\Sigma) \rtimes \Gamma$.

1. Introduction

In a series of papers [4,5], Connes and Moscovici proved a general index theorem for transversally (hypo)elliptic operators on foliations. After constructing *K*-cycles on the algebra crossed product $C_0(M) \rtimes \Gamma$, where Γ is a discrete pseudogroup acting on the manifold *M* by local diffeomorphisms [4], they developed a theory of characteristic classes for actions of Hopf algebras that generalise the usual Chern–Weil construction to the non-commutative case [5,6]. The Chern character of the concerned *K*-cycles is then captured in the periodic cyclic cohomology of a particular Hopf algebra encoding the action of the diffeomorphisms on *M*. The nice thing is that this cyclic cohomology can be completely exhausted as Gelfand–Fuchs cohomology and renders the index computable.

We shall illustrate these methods with a specific example, namely the crossed product of a Riemann surface Σ by a discrete pseudogroup Γ of local conformal mappings. We find that the relevant characteristic classes are the fundamental class [Σ] and a cyclic 2-cocycle on $C_c^{\infty}(\Sigma) \rtimes \Gamma$ generalising the (Poincaré dual of the) usual Euler class. When applied to the *K*-cycle represented by the Dolbeault operator of $\Sigma \rtimes \Gamma$, this yields a non-commutative version of the Riemann–Roch theorem. Throughout the text we also stress the crucial role played by the modular automorphism group of the von Neumann algebra $L^{\infty}(\Sigma) \rtimes \Gamma$.

^{*} Allocataire de recherche MENRT.

2. The Dolbeault K-Cycle

Let Σ be a Riemann surface without boundary and Γ a pseudogroup of local conformal mappings of Σ into itself. We want to define a *K*-cycle on the algebra $C_0(\Sigma) \rtimes \Gamma$ generalising the classical Dolbeault complex. Following [4], the first step consists in lifting the action of Γ to the bundle *P* over Σ , whose fiber at point *x* is the set of Kähler metrics corresponding to the complex structure of Σ at *x*. By the obvious correspondence metric \leftrightarrow volume form, *P* is the \mathbb{R}^*_+ -principal bundle of densities on Σ . The pseudogroup Γ acts canonically on *P* and we consider the crossed product $C_0(P) \rtimes \Gamma$.

Let ν be a smooth volume form on Σ . As in [2], this gives a weight on the von Neumann algebra $L^{\infty}(\Sigma) \rtimes \Gamma$ together with a representative σ of its modular automorphism group. Moreover σ leaves $C_0(\Sigma) \rtimes \Gamma$ globally invariant and one has

$$C_0(P) \rtimes \Gamma = (C_0(\Sigma) \rtimes \Gamma) \rtimes_{\sigma} \mathbb{R}, \tag{1}$$

where the space *P* is identified with $\Sigma \times \mathbb{R}$ thanks to the choice of the global section ν . Therefore one has a Thom-Connes isomorphism [1]

$$K_i(C_0(\Sigma) \rtimes \Gamma) \to K_{i+1}(C_0(P) \rtimes \Gamma), \quad i = 0, 1,$$
 (2)

and we shall obtain the desired *K*-homology class on $C_0(P) \rtimes \Gamma$. The reason for working on *P* rather than Σ is that *P* carries quasi Γ -invariant metric structures, allowing the construction of *K*-cycles represented by differential hypoelliptic operators [4].

More precisely, consider the product $P \times \mathbb{R}$, viewed as a bundle over Σ with 2dimensional fiber. The action of Γ extends to $P \times \mathbb{R}$ by making \mathbb{R} invariant. Up to another Thom isomorphism, the *K*-cycle may be defined on $C_0(P \times \mathbb{R}) \rtimes \Gamma = (C_0(P) \rtimes \Gamma) \otimes$ $C_0(\mathbb{R})$. By a choice of horizontal subspaces on the bundle $P \times \mathbb{R}$, one can lift the Dolbeault operator $\overline{\partial}$ of Σ . This yields the horizontal operator $Q_H = \overline{\partial} + \overline{\partial}^*$, where the adjoint $\overline{\partial}^*$ is taken relative to the L^2 -norm given by the canonical invariant measure on $P \times \mathbb{R}$ (see [4] for details). Finally, consider the signature operator of the fibers, $Q_V = d_V d_V^* - d_V^* d_V$, where d_V is the vertical differential. Then the sum $Q = Q_H + Q_V$ is a hypoelliptic operator representing our Dolbeault *K*-cycle.

This construction ensures that the principal symbol of Q is completely canonical, because it is related only to the fibration of $P \times \mathbb{R}$ over Σ , and hence is invariant under Γ . Another choice of horizontal subspaces does not change the leading term of the symbol of Q. This is basically the reason why Q allows one to construct a spectral triple (of even parity) for the algebra $C_c^{\infty}(P \times \mathbb{R}) \rtimes \Gamma$.

If $\Gamma = \text{Id}$, then $C_0(P \times \mathbb{R}) \rtimes \Gamma = C_0(\Sigma) \otimes C_0(\mathbb{R}^2)$ and the addition of Q_V to Q_H is nothing else but a Thom isomorphism in *K*-homology

$$K^*(C_0(\Sigma)) \to K^*(C_0(P \times \mathbb{R})) \tag{3}$$

sending the classical Dolbeault elliptic operator $\overline{\partial} + \overline{\partial}^*$ to Q.

Now we want to compute the Chern character of Q in the periodic cyclic cohomology $H^*(C_c^{\infty}(P \times \mathbb{R}) \rtimes \Gamma)$ using the index theorem of [5]. We need first to construct an *odd* cycle by tensoring the Dolbeault complex with the spectral triple of the real line $(C_c^{\infty}(\mathbb{R}), L^2(\mathbb{R}), i\frac{\partial}{\partial x})$. In this way we get a differential operator $Q' = Q + i\frac{\partial}{\partial x}$ whose Chern character lives in the cyclic cohomology of $(C_c^{\infty}(P) \rtimes \Gamma) \otimes C_c^{\infty}(\mathbb{R}^2)$. By Bott periodicity it is just the cup product

$$\operatorname{ch}_{*}(Q') = \varphi \#[\mathbb{R}^{2}] \tag{4}$$

of a cyclic cocycle $\varphi \in HC^*(C_c^{\infty}(P) \rtimes \Gamma)$ by the fundamental class of \mathbb{R}^2 . The main theorem of [5] states that φ can be computed from Gelfand–Fuchs cohomology, after transiting through the cyclic cohomology of a particular Hopf algebra. We perform the explicit computation in the remainder of the paper.

3. The Hopf Algebra and Its Cyclic Cohomology

First we reduce to the case of a flat Riemann surface, since for any groupoid $\Sigma \rtimes \Gamma$ one can find a flat surface Σ' and a pseudogroup Γ' acting by conformal transformations on Σ' such that $C_0(\Sigma') \rtimes \Gamma'$ is Morita equivalent to $C_0(\Sigma) \rtimes \Gamma$ (see [5] and Sect. 5 below).

Let then Σ be a flat Riemann surface and (z, \overline{z}) a complex coordinate system corresponding to the complex structure of Σ . Let *F* be the $Gl(1, \mathbb{C})$ -principal bundle over Σ of frames corresponding to the conformal structure. *F* is gifted with the coordinate system $(z, \overline{z}, y, \overline{y}), y, \overline{y} \in \mathbb{C}^*$. A point of *F* is the frame

$$(y\partial_z, \overline{y}\partial_{\overline{z}})$$
 at (z, \overline{z}) . (5)

The action of a discrete pseudogroup Γ of conformal transformations on Σ can be lifted to an action on *F* by pushforward on frames. More precisely, a holomorphic transformation $\psi \in \Gamma$ acts on the coordinates by

$$z \to \psi(z), \qquad \operatorname{Dom} \psi \subset F,$$
 (6)

$$y \to \psi'(z)y, \quad \psi'(z) = \partial_z \psi(z).$$
 (7)

Let $C_c^{\infty}(F)$ be the algebra of smooth complex-valued functions with compact support on *F*, and consider the crossed product $\mathcal{A} = C_c^{\infty}(F) \rtimes \Gamma$. \mathcal{A} is the associative algebra linearly generated by elements of the form fU_{ψ}^* with $\psi \in \Gamma$, $f \in C_c^{\infty}(F)$, $\operatorname{supp} f \subset$ Dom ψ . We adopt the notation $U_{\psi} \equiv U_{\psi^{-1}}^*$ for the inverse of U_{ψ}^* . The multiplication rule

$$f_1 U_{\psi_1}^* f_2 U_{\psi_2}^* = f_1 \left(f_2 \circ \psi_1 \right) U_{\psi_2 \psi_1}^* \tag{8}$$

makes good sense thanks to the condition $\operatorname{supp} f_i \subset \operatorname{Dom} \psi_i$. We introduce now the differential operators

$$X = y\partial_z, \quad Y = y\partial_y, \quad \overline{X} = \overline{y}\partial_{\overline{z}}, \quad \overline{Y} = \overline{y}\partial_{\overline{y}}, \tag{9}$$

forming a basis of the set of smooth vector fields viewed as a module over $C^{\infty}(F)$. These operators act on \mathcal{A} in a natural way:

$$X.(fU_{\psi}^{*}) = (X.f)U_{\psi}^{*}, \quad Y.(fU_{\psi}^{*}) = (Y.f)U_{\psi}^{*}$$
(10)

and similarly for \overline{X} , \overline{Y} . We remark that the system (z, \overline{z}) determines a smooth volume form $\frac{dz \wedge d\overline{z}}{2i}$ on Σ . This in turn gives a representative σ of the modular automorphism group of $L^{\infty}(\Sigma) \rtimes \Gamma$, whose action on $C_c^{\infty}(\Sigma) \rtimes \Gamma$ reads (cf. [3] chap. III)

$$\sigma_t(fU^*_{\psi}) = |\psi'|^{2it} fU^*_{\psi}, \quad t \in \mathbb{R}.$$
(11)

We let *D* be the derivation corresponding to the infinitesimal action of σ :

$$D = -i\frac{d}{dt}\sigma_t|_{t=0} \quad D(fU_{\psi}^*) = \ln|\psi'|^2 fU_{\psi}^*.$$
(12)

The operators δ_n , $\overline{\delta}_n$, $n \ge 1$ are defined recursively

$$\delta_n = \underbrace{[X, \dots [X], D] \dots]}_{n} \quad \overline{\delta}_n = \underbrace{[\overline{X}, \dots [\overline{X}, D] \dots]}_{n}.$$
(13)

Their action on \mathcal{A} are explicitly given by

$$\delta_n(fU_{\psi}^*) = y^n \partial_z^n(\ln\psi') fU_{\psi}^*, \quad \overline{\delta}_n(fU_{\psi}^*) = y^n \partial_z^n(\ln\overline{\psi'}) fU_{\psi}^*.$$
(14)

Thus δ_n , $\overline{\delta}_n$ represent in some sense the Taylor expansion of *D*. All these operators fulfill the commutation relations

$$[Y, X] = X, \qquad [Y, \delta_n] = n\delta_n,$$

$$[X, \delta_n] = \delta_{n+1}, \qquad [\delta_n, \delta_m] = 0,$$
(15)

and similarly for the conjugates \overline{X} , \overline{Y} , $\overline{\delta}_n$. Thus $\{X, Y, \delta_n, \overline{X}, \overline{Y}, \overline{\delta}_n\}_{n \ge 1}$ form a basis of a (complex) Lie algebra. Let \mathcal{H} be its enveloping algebra. The remarkable fact is that \mathcal{H} is a Hopf algebra. First, the coproduct $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is determined by the action of \mathcal{H} on \mathcal{A} :

$$\Delta h(a_1 \otimes a_2) = h(a_1 a_2) \quad \forall h \in \mathcal{H}, a_i \in \mathcal{A}.$$
(16)

One has

$$\Delta X = 1 \otimes X + X \otimes 1 + \delta_1 \otimes Y,$$

$$\Delta Y = 1 \otimes Y + Y \otimes 1, \quad \Delta \delta_1 = 1 \otimes \delta_1 + \delta_1 \otimes 1.$$
(17)

 $\Delta \delta_n$ for n > 1 is obtained recursively from (13) using the fact that Δ is an algebra homomorphism, $\Delta(h_1h_2) = \Delta h_1 \Delta h_2$. Similarly for the conjugate elements.

The counit $\varepsilon : \mathcal{H} \to \mathbb{C}$ satisfies simply $\varepsilon(1) = 1$, $\varepsilon(h) = 0 \forall h \neq 1$. Finally, \mathcal{H} has an antipode $S : \mathcal{H} \to \mathcal{H}$, determined uniquely by the condition $m \circ S \otimes \text{Id} \circ \Delta =$ $m \circ \text{Id} \otimes S \circ \Delta = \eta \varepsilon$, where $m : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ is the multiplication and $\eta : \mathbb{C} \to \mathcal{H}$ the unit of \mathcal{H} . One finds

$$S(X) = -X + \delta_1 Y, \quad S(Y) = -Y, \quad S(\delta_1) = -\delta_1.$$
 (18)

Since S is an antiautomorphism: $S(h_1h_2) = S(h_2)S(h_1)$, the values of $S(\delta_n)$, n > 1 follow.

We are interested now in the cyclic cohomology of \mathcal{H} [5,6]. As a space, the cochain complex $C^*(\mathcal{H})$ is the tensor algebra over \mathcal{H} :

$$C^*(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}.$$
 (19)

The crucial step is the construction of a characteristic map

$$\gamma: \mathcal{H}^{\otimes n} \to C^n(\mathcal{A}, \mathcal{A}^*) \tag{20}$$

from the cochain complex of \mathcal{H} to the Hochschild complex of \mathcal{A} with coefficients in \mathcal{A}^* [3]. First *F* has a canonical Γ -invariant measure $dv = dz d\overline{z} \frac{dy d\overline{y}}{(y\overline{y})^2}$. This yields a trace τ on \mathcal{A} :

$$\tau(f) = \int_{F} f \, dv, \quad f \in C_{c}^{\infty}(F),$$

$$\tau(fU_{\psi}^{*}) = 0 \quad \text{if } \psi \neq 1.$$
(21)

Then the characteristic map sends the *n*-cochain $h_1 \otimes \cdots \otimes h_n \in \mathcal{H}^{\otimes n}$ to the Hochschild cochain $\gamma(h_1 \otimes \cdots \otimes h_n) \in C^n(\mathcal{A}, \mathcal{A}^*)$ given by

$$\gamma(h_1 \otimes \cdots \otimes h_n)(a_0, \dots, a_n) = \tau(a_0 h_1(a_1) \dots h_n(a_n)), \quad a_i \in \mathcal{A}.$$
(22)

The cyclic cohomology of \mathcal{H} is defined such that γ is a morphism of cyclic complexes. One introduces the face operators $\delta^i : \mathcal{H}^{\otimes (n-1)} \to \mathcal{H}^{\otimes n}$ for $0 \le i \le n$:

$$\delta^{0}(h_{1} \otimes \cdots \otimes h_{n-1}) = 1 \otimes h_{1} \otimes \cdots \otimes h_{n-1},$$

$$\delta^{i}(h_{1} \otimes \cdots \otimes h_{n-1}) = h_{1} \otimes \cdots \otimes \Delta h_{i} \otimes \cdots \otimes h_{n-1}, \quad 1 \le i \le n-1, \quad (23)$$

$$\delta^{n}(h_{1} \otimes \cdots \otimes h_{n-1}) = h_{1} \otimes \cdots \otimes h_{n-1} \otimes 1,$$

as well as the degeneracy operators $\sigma_i : \mathcal{H}^{\otimes (n+1)} \to \mathcal{H}^{\otimes n}$,

$$\sigma_i(h_1 \otimes \cdots \otimes h_{n+1}) = h_1 \otimes \ldots \varepsilon(h_{i+1}) \cdots \otimes h_{n+1}, \quad 0 \le i \le n.$$
(24)

Next, the cyclic structure is provided by the antipode *S* and the multiplication of \mathcal{H} . Consider the twisted antipode $\tilde{S} = (\delta \otimes S) \circ \Delta$, where $\delta : \mathcal{H} \to \mathbb{C}$ is a character such that

$$\tau(h(a)b) = \tau(a\tilde{S}(h)(b)) \quad \forall a, b \in \mathcal{A}.$$
(25)

This last formula plays the role of ordinary integration by parts. One finds:

$$\delta(1) = 1, \quad \delta(Y) = \delta(Y) = 1,$$

$$\delta(X) = \delta(\overline{X}) = \delta(\delta_n) = \delta(\overline{\delta}_n) = 0 \quad \forall n \ge 1.$$
(26)

The definition implies $\tilde{S}^2 = 1$. Connes and Moscovici proved in [6] that the latter identity is sufficient to ensure the existence of a cyclicity operator $\tau_n : \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$,

$$\tau_n(h_1 \otimes \cdots \otimes h_n) = (\Delta^{n-1} \tilde{S}(h_1)) \cdot h_2 \otimes \cdots \otimes h_n \otimes 1,$$
(27)

with $(\tau_n)^{n+1} = 1$. Now $C^*(\mathcal{H})$ endowed with $\delta^i, \sigma_i, \tau_n$ defines a cyclic complex. The Hochschild coboundary operator $b : \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes (n+1)}$ is

$$b = \sum_{i=0}^{n+1} (-)^i \delta^i$$
 (28)

and Connes' operator $B: \mathcal{H}^{\otimes (n+1)} \to \mathcal{H}^{\otimes n}$ is

$$B = \sum_{i=0}^{n} (-)^{ni} (\tau_n)^i B_0 \quad B_0 = \sigma_n \tau_{n+1} + (-)^n \sigma_n.$$
(29)

They fulfill the usual relations $B^2 = b^2 = bB + Bb = 0$, so that $C^*(\mathcal{H}, b, B)$ is a bicomplex. We define the cyclic cohomology $HC^*(\mathcal{H})$ as the *b*-cohomology of the subcomplex of cyclic cochains. The corresponding *periodic* cyclic cohomology $H^*(\mathcal{H})$ is isomorphic to the cohomology of the bicomplex $C^*(\mathcal{H}, b, B)$ [3]. Furthermore, the definitions of δ^i , σ_i , τ_n imply that γ is a morphism of cyclic complexes. Consequently, γ passes to cyclic cohomology

$$\gamma: HC^*(\mathcal{H}) \to HC^*(\mathcal{A}), \tag{30}$$

as well as to periodic cyclic cohomology

$$\gamma: H^*(\mathcal{H}) \to H^*(\mathcal{A}). \tag{31}$$

In fact we are not interested in the frame bundle *F* but rather in the bundle of metrics P = F/SO(2), where $SO(2) \subset Gl(1, \mathbb{C})$ is the group of rotations of frames. *P* is gifted with the coordinate chart (z, \overline{z}, r) , where the radial coordinate *r* is obtained from the decomposition

$$y = e^{-r+i\theta}, \quad r \in \mathbb{R}, \theta \in [0, 2\pi[.$$
 (32)

The pseudogroup Γ still acts on *P* by

$$z \to \psi(z), \quad \overline{z} \to \overline{\psi(z)},$$

$$r \to r - \frac{1}{2} \ln |\psi'(z)|^2.$$
 (33)

Define $\mathcal{A}_1 = \mathcal{A}^{SO(2)} \subset \mathcal{A}$ the subalgebra of elements of \mathcal{A} invariant under the (right) action of SO(2) on F. \mathcal{A}_1 is canonically isomorphic to the crossed product $C_c^{\infty}(P) \rtimes \Gamma$. P carries a Γ -invariant measure $dv_1 = e^{2r} dz d\overline{z} dr$, so that there is a trace on \mathcal{A}_1 , namely

$$\tau_1(f) = \int_P f \, dv_1, \quad f \in C_c^\infty(P),$$

$$\tau_1(f U_{\psi}^*) = 0 \quad \text{if } \psi \neq 1.$$
(34)

Thus passing to SO(2)-invariants yields an induced characteristic map from the relative cyclic cohomology of \mathcal{H} [5]

$$\gamma_1 : HC^*(\mathcal{H}, SO(2)) \to HC^*(\mathcal{A}_1)$$
(35)

given by $\gamma_1(h_1 \otimes \cdots \otimes h_n)(a_0, \ldots, a_n) = \tau_1(a_0h_1(a_1) \ldots h_1(a_n))$, $a_i \in \mathcal{A}_1$, where $h_1 \otimes \cdots \otimes h_n$ represents an element of $HC^*(\mathcal{H}, SO(2))$. The map γ_1 generalises the classical Chern-Weil construction of characteristic classes from connections and curvatures. In the crossed product case $\Sigma \rtimes \Gamma$, these classes are captured by the periodic cyclic cohomology of \mathcal{H} . Connes and Moscovici computed the latter as Gelfand–Fuchs cohomology. This is the subject of the next section.

4. Gelfand–Fuchs Cohomology

Let G be the group of complex analytic transformations of \mathbb{C} . G has a unique decomposition $G = G_1G_2$, where G_1 is the group of affine transformations

$$x \to ax + b, \quad x \in \mathbb{C}, \ a, b \in \mathbb{C}$$
 (36)

and G_2 is the group of transformations of the form

$$x \to x + o(x). \tag{37}$$

Any element of *G* is then the composition $k \circ \psi$ for $k \in G_1$, $\psi \in G_2$. Since G_2 is the left quotient of *G* by G_1 , G_1 acts on G_2 from the right: for $k \in G_1$, $\psi \in G_2$, one has $\psi \triangleleft k \in G_2$. Similarly, G_2 acts on G_1 from the left: $\psi \triangleright k \in G_1$.

We remark that G_1 is the crossed product $\mathbb{C} \rtimes Gl(1, \mathbb{C})$. The space $\mathbb{C} \times Gl(1, \mathbb{C})$ is a prototype for the frame bundle *F* of a flat Riemann surface. This motivates the notation a = y, b = z for the coordinates on G_1 . Under this identification, the left action of G_2 on G_1 corresponds to the action of G_2 on *F*: for a holomorphic transformation $\psi \in G_2$, one has

$$z \to \psi(z), \quad y \to \psi'(z)y,$$
 (38)

with $\psi(0) = 0$, $\psi'(0) = 1$. Furthermore, the vector fields $X, \overline{X}, Y, \overline{Y}$ form a basis of invariant vector fields for the left action of G_1 on itself, i.e. a basis of the (complexified) Lie algebra of G_1 . Its dual basis is given by the left-invariant 1-forms (Maurer–Cartan form)

$$\omega_{-1} = y^{-1} dz, \quad \overline{\omega}_{-1} = \overline{y}^{-1} d\overline{z},$$

$$\omega_0 = y^{-1} dy, \quad \overline{\omega}_0 = \overline{y}^{-1} d\overline{y}.$$
(39)

The left action $G_2 \triangleright G_1$ implies a right action of G_2 on forms by pullback. One has in particular, for $\psi \in G_2$,

$$\omega_{-1} \circ \psi = \omega_{-1}, \quad \omega_0 \circ \psi = \omega_0 + y \partial_z \ln \psi' \omega_{-1} \quad \text{and c.c.}$$
(40)

Consider now the discrete crossed product $\mathcal{H}_* = C_c^{\infty}(G_1) \rtimes G_2$, where G_2 acts on $C_c^{\infty}(G_1)$ by pullback. As a coalgebra, \mathcal{H} is dual to the algebra \mathcal{H}_* . One has a natural action of \mathcal{H} on \mathcal{H}_* :

$$X.(fU_{\psi}^*) = X.fU_{\psi}^*, \quad f \in C_c^{\infty}(G_1), \, \psi \in G_2,$$

$$\delta_n(fU_{\psi}^*) = y^n \partial_z^n \ln \psi' fU_{\psi}^*, \qquad (41)$$

and so on with $Y, \overline{X} \dots$ The operators $\delta_n, \overline{\delta_n}$ have in fact an interpretation in terms of coordinates on the group G_2 : for $\psi \in G_2$, $\delta_n(\psi)$ is by definition the value of the function $\delta_n(U_{\psi}^*)U_{\psi}$ at $1 \in G_1$. For any $k \in G_1$, one has

$$[\delta_n(U_{\psi}^*)U_{\psi}](k) = \delta_n(\psi \triangleleft k).$$
(42)

Note that (40) rewrites

$$\omega_0 \circ \psi = \omega_0 + \delta_1(\psi \triangleleft k)\omega_{-1} \quad \text{at } k \in G_1.$$
(43)

The Hopf subalgebra of \mathcal{H} generated by δ_n , $\overline{\delta_n}$, $n \ge 1$, corresponds to the commutative Hopf algebra of functions on G_2 which are *polynomial* in these coordinates.

Let *A* be the complexification of the formal Lie algebra of *G*. It coincides with the jets of holomorphic and antiholomorphic vector fields of any order on \mathbb{C} :

$$\begin{aligned} \partial_x, x \, \partial_x, \dots, & x^n \, \partial_x, \dots, & x \in \mathbb{C}, \\ \partial_{\overline{x}}, \overline{x} \, \partial_{\overline{x}}, \dots, & \overline{x}^n \, \partial_{\overline{x}}, \dots. \end{aligned}$$

$$(44)$$

The Lie bracket between the elements of the above basis is thus

$$[x^{n}\partial_{x}, x^{m}\partial_{x}] = (m-n)x^{n+m-1}\partial_{x} \text{ and c.c.,}$$

$$[x^{n}\partial_{x}, \overline{x}^{m}\partial_{\overline{x}}] = 0.$$
(45)

Define the generator of dilatations $H = x \partial_x + \overline{x} \partial_{\overline{x}}$ and of rotations $J = x \partial_x - \overline{x} \partial_{\overline{x}}$. They fulfill the properties

$$[H, x^n \partial_x] = (n-1)x^n \partial_x; \quad [H, \overline{x}^n \partial_{\overline{x}}] = (n-1)\overline{x}^n \partial_{\overline{x}}, [J, x^n \partial_x] = (n-1)x^n \partial_x, \quad [J, \overline{x}^n \partial_{\overline{x}}] = -(n-1)\overline{x}^n \partial_{\overline{x}}.$$

$$(46)$$

We are interested in the Lie algebra cohomology of A (see [7]). The complex $C^*(A)$ of cochains is the exterior algebra generated by the dual basis $\{\omega^n, \overline{\omega}^n\}_{n \ge -1}$:

$$\omega^{n}(x^{m}\partial_{x}) = \delta^{m}_{n+1}, \quad \omega^{n}(\overline{x}^{m}\partial_{\overline{x}}) = 0,$$

$$\overline{\omega}^{n}(x^{m}\partial_{x}) = 0, \qquad \overline{\omega}^{n}(\overline{x}^{m}\partial_{\overline{x}}) = \delta^{m}_{n+1}, \quad \forall n \ge -1, m \ge 0,$$
(47)

and the coboundary operator is uniquely defined by its action on 1-cochains

$$d\omega(X,Y) = -\omega([X,Y]) \quad \forall X,Y \in A.$$
(48)

From [5] we know that the *periodic* cyclic cohomology $H^*(\mathcal{H}, SO(2))$ is isomorphic to the relative Lie algebra cohomology $H^*(A, SO(2))$, i.e. the cohomology of the basic subcomplex of cochains on A relative to the Cartan operation (L, i) of J:

$$L_J \omega = (i_J d + di_J) \omega \quad \forall \, \omega \in C^*(A).$$
⁽⁴⁹⁾

We say that a cochain $\omega \in C^*(A)$ is of weight r if $L_H \omega = -r\omega$. Remark that

$$L_H \omega^n = -n\omega^n, \quad L_H \overline{\omega}^n = -n\overline{\omega}^n \quad \forall n \ge -1,$$
 (50)

so that $C^*(A)$ is the direct sum, for $r \ge -2$, of the spaces $C_r^*(A)$ of weight r. Since $[H, J] = 0, C_r^*(A)$ is stable under the Cartan operation of J and we note $C_r^*(A, SO(2))$ the complex of basic cochains of weight r. Then we have

$$C^{*}(A, SO(2)) = \bigoplus_{r=-2}^{\infty} C_{r}^{*}(A, SO(2)).$$
(51)

For any cocycle $\omega \in C_r^*(A, SO(2))$,

$$L_H \omega = di_H \omega = -r\omega, \tag{52}$$

so that $C_r^*(A, SO(2))$ is acyclic whenever $r \neq 0$. Hence $H^*(A, SO(2))$ is equal to the cohomology of the finite-dimensional subcomplex $C_0^*(A, SO(2))$. The direct computation gives

$$H^{0}(A, SO(2)) = \mathbb{C} \text{ with representative } 1,$$

$$H^{2}(A, SO(2)) = \mathbb{C} \qquad " \qquad \omega^{-1}\omega^{1},$$

$$H^{3}(A, SO(2)) = \mathbb{C} \qquad " \qquad (\omega^{-1}\omega^{1} - \overline{\omega}^{-1}\overline{\omega}^{1})(\omega^{0} + \overline{\omega}^{0}),$$

$$H^{5}(A, SO(2)) = \mathbb{C} \qquad " \qquad \omega^{1}\omega^{-1}\overline{\omega}^{1}\omega^{-1}(\omega^{0} + \overline{\omega}^{0}).$$
(53)

The other cohomology groups vanish.

Next we construct a map C from $C^*(A)$ to the bicomplex $(C^{n,m}, d_1, d_2)_{n,m\in\mathbb{Z}}$ of [3] chap. III.2.8. Let $\Omega^m(G_1)$ be the space *m*-forms on G_1 . $C^{n,m}$ is the space of totally antisymmetric maps $\gamma : G_2^{n+1} \to \Omega^m(G_1)$ such that

$$\gamma(g_0g,\ldots,g_ng) = \gamma(g_0,\ldots,g_n) \circ g, \quad g_i \in G_2, g \in G,$$
(54)

where $g_i g$ is given by the right action of G on G_2 , and G acts on $\Omega^*(G_1)$ by pullback (left action of G on G_1).

The first differential $d_1 : C^{n,m} \to C^{n+1,m}$ is

$$(d_1\gamma)(g_0,\ldots,g_{n+1}) = (-)^m \sum_{i=0}^{n+1} (-)^i \gamma(g_0,\ldots,\overset{\vee}{g_i},\ldots,g_{n+1}),$$
(55)

and $d_2: C^{n,m} \to C^{n,m+1}$ is just the de Rham coboundary on $\Omega^*(G_1)$:

$$(d_2\gamma)(g_0,\ldots,g_n) = d(\gamma(g_o,\ldots,g_n)).$$
(56)

Of course $d_1^2 = d_2^2 = d_1d_2 + d_2d_1 = 0$. We remark that for $\gamma \in C^{n,m}$, the invariance property (54) implies

$$\gamma(g_0, \dots, g_n) \circ k = \gamma(g_0 \triangleleft k, \dots, g_n \triangleleft k) \quad \forall k \in G_1,$$
(57)

in other words the value of $\gamma(g_0, \ldots, g_n) \in \Omega^m(G_1)$ at k is deduced from its value at 1.

Let us describe now the construction of *C*. As a vector space, the Lie algebra *A* is just the direct sum $\mathbf{G}_1 \oplus \mathbf{G}_2$, \mathbf{G}_i being the (complexified) Lie algebra of G_i . The cochain complex $C^*(A)$ is then the exterior product $\Lambda A^* = \Lambda \mathbf{G}_1^* \otimes \Lambda \mathbf{G}_2^*$. One identifies \mathbf{G}_1^* with the cotangent space $T_1^*(G_1)$ of G_1 at the identity. Since G_2 fixes $1 \in G_1$, there is a right action of G_2 on $\Lambda \mathbf{G}_1^*$ by pullback. The basis { $\omega^{-1}, \omega^0, \overline{\omega}^{-1}, \overline{\omega}^0$ } of \mathbf{G}_1^* is represented by left-invariant one-forms on G_1 through the identification

$$\omega^{-1} \to -\omega_{-1} = -y^{-1}dz, \quad \overline{\omega}^{-1} \to -\overline{\omega}_{-1} = -\overline{y}^{-1}d\overline{z}, \omega^0 \to -\omega^0 = -y^{-1}dy, \quad \overline{\omega}^0 \to -\overline{\omega}^0 = -\overline{y}^{-1}d\overline{y},$$
(58)

and the right action of $\psi \in G_2$ reads (cf. (40))

$$\omega^{-1} \cdot \psi = \omega^{-1}, \quad \omega^0 \cdot \psi = \omega^0 + \delta_1(\psi)\omega^{-1}.$$
(59)

Next, we view a cochain $\omega \in C^*(A)$ as a cochain of the Lie algebra of G_2 with coefficients in the right G_2 -module $\Lambda \mathbf{G}_1^*$. It is represented by a $\Lambda \mathbf{G}_1^*$ -valued right-invariant form μ on G_2 . Then $C(\omega) \in C^{*,*}$ evaluated on $(g_0, \ldots, g_n) \in G_2^{n+1}$ is a differential form on G_1 whose value at $1 \in G_1$ is

$$C(\omega)(g_0,\ldots,g_n) = \int_{\Delta(g_0,\ldots,g_n)} \mu \quad \in \Lambda T_1^*(G_1), \tag{60}$$

where $\Delta(g_0, \ldots, g_n)$ is the affine simplex in the coordinates $\delta_i, \overline{\delta_i}$, with vertices (g_0, \ldots, g_n) . Let $\{\rho_j\}$ be a basis of left-invariant forms on G_1 . Then

$$C(\omega)(g_0,\ldots,g_n) = \sum_j p_j(g_0,\ldots,g_n)\rho_j \quad \text{at } 1 \in G_1,$$
(61)

where $p_j(g_0, \ldots, g_n)$ are polynomials in the coordinates $\delta_i, \overline{\delta_i}$. The invariance property (54) enables us to compute the value of $C(\omega)(g_0, \ldots, g_n)$ at any $k \in G_1$,

$$C(\omega)(g_0,\ldots,g_n)(k) = \sum_j p_j(g_0 \triangleleft k,\ldots,g_n \triangleleft k)\rho_j$$
(62)

because $\rho_j \circ k = \rho_j$.

Connes and Moscovici showed in [5] that *C* is a morphism from $C^*(A, d)$ to the bicomplex $(C^{n,m}, d_1, d_2)_{n,m\in\mathbb{Z}}$. In the relative case, it restricts to a morphism from $C^*(A, SO(2), d)$ to the subcomplex $(C^{n,m}_{bas.}, d_1, d_2)$ of antisymmetric cochains on G_2 with values in the *basic* de Rham cohomology $\Omega^*(P) = \Omega^*(G_1/SO(2))$.

It remains to compute the image of $H^*(A, SO(2))$ by C. We restrict ourselves to even cocycles, i.e. the unit $1 \in H^0(A, SO(2))$ and the first Chern class $c_1 \in H^2(A, SO(2))$, defined as the class

$$c_1 = [2\omega^{-1}\omega^1]. {(63)}$$

One has $C(1) \in C_{\text{bas.}}^{0,0}$. The immediate result is

$$C(1)(g_0) = 1, \quad g_0 \in G_2. \tag{64}$$

For the first Chern class, we must transform c_1 into a right-invariant form on G_2 with values in $\Lambda T_1^*(G_1)$. We already know that ω^{-1} is represented by $-\omega_{-1} = -y^{-1}dz$, which satisfies $\omega_{-1} \circ \psi = \omega_{-1}$, $\forall \psi \in G_2$. Next, the Taylor expansion of an element $\psi \in G_2$ can be expressed in the coordinates δ_n thanks to the obvious formula

$$\ln \psi'(x) = \sum_{n=1}^{\infty} \frac{1}{n!} \delta_n(\psi) x^n, \quad \forall x \in \mathbb{C}.$$
 (65)

One finds:

$$\psi(x) = x + \frac{1}{2}\delta_1(\psi)x^2 + \frac{1}{3!}(\delta_2(\psi) + \delta_1(\psi)^2)x^3 + O(x^4).$$
 (66)

It shows that the cochain $\omega^1 \in C^*(A)$ is represented by the right-invariant 1-form $\frac{1}{2}d\delta_1$ on G_2 . Thus at $1 \in G_1$, $C(c_1) \in C_{\text{bas.}}^{1,1}$ is given by

$$C(c_1)(g_0, g_1) = \int_{\Delta(g_0, g_1)} -\omega_{-1} d\delta_1$$

= $-\omega_{-1}(\delta_1(g_1) - \delta_1(g_0)) \quad g_i \in G_2,$ (67)

and at $k \in G_1$, the 1-form $C(c_1)(g_0, g_1)$ is

$$C(c_1)(g_0, g_1) = -\omega_{-1}(\delta_1(g_1 \triangleleft k) - \delta_1(g_0 \triangleleft k)).$$
(68)

Since $\omega_{-1} = y^{-1}dz$ and $\delta_1(g \triangleleft k) = y\partial_z \ln g'(z)$, z and y being the coordinates of k, one has explicitly

$$C(c_1)(g_0, g_1) = -dz(\partial_z \ln g_1'(z) - \partial_z \ln g_0'(z)).$$
(69)

It is a basic form on G_1 relative to SO(2), which then descends to a form on $P = G_1/SO(2)$ as expected.

The last step is to use the map Φ of [3, Theorem 14, p. 220] from $(C^{n,m}, d_1, d_2)$ to the (b, B) bicomplex of the discrete crossed product $C_c^{\infty}(P) \rtimes G_2$. Define the algebra

$$\mathcal{B} = \Omega^*(P) \hat{\otimes} \Lambda \mathbb{C}(G_2'), \tag{70}$$

where $\Lambda \mathbb{C}(G'_2)$ is the exterior algebra generated by the elements $\delta_{\psi}, \psi \in G_2$, with $\delta_e = 0$ for the identity *e* of G_2 . With the de Rham coboundary *d* of $\Omega^*(P)$, \mathcal{B} is a differential algebra. Now form the crossed product $\mathcal{B} \rtimes G_2$, with multiplication rules

$$U_{\psi}^* \alpha U_{\psi} = \alpha \circ \psi, \qquad \alpha \in \Omega^*(P), \ \psi \in G_2,$$

$$U_{\psi_1}^* \delta_{\psi_2} U_{\psi_1} = \delta_{\psi_2 \circ \psi_1} - \delta_{\psi_1}, \quad \psi_i \in G_2.$$
 (71)

Endow $\mathcal{B} \rtimes G_2$ with the differential \tilde{d} acting on an element bU_{ψ}^* as

$$\tilde{d}(bU_{\psi}^{*}) = dbU_{\psi}^{*} - (-)^{\partial b}b\delta_{\psi}U_{\psi}^{*},$$
(72)

where *db* comes from the de Rham coboundary of $\Omega^*(P)$. The map

$$\Phi: (C^{*,*}, d_1, d_2) \to (C_c^{\infty}(P) \rtimes G_2, b, B)$$
(73)

is constructed as follows. Let $\gamma \in C_{bas.}^{n,m}$. It yields a linear form $\tilde{\gamma}$ on $\mathcal{B} \rtimes G_2$:

$$\tilde{\gamma}(\alpha \otimes \delta_{g_1} \dots \delta_{g_n}) = \int_P \alpha \wedge \gamma(1, g_1, \dots, g_n), \quad \alpha \in \Omega^*(P), g_i \in G_2,$$

$$\tilde{\gamma}(bU_{\psi}^*) = 0 \quad \text{if } \psi \neq 1.$$
(74)

Then $\Phi(\gamma)$ is the following *l*-cochain on $C_c^{\infty}(P) \rtimes G_2$, $l = \dim P - m + n$,

$$\Phi(\gamma)(x_0,\ldots,x_l) = \frac{n!}{(l+1)!} \sum_{j=0}^{l} (-)^{j(l-j)} \tilde{\gamma}(\tilde{d}x_{j+1}\ldots\tilde{d}x_l x_0 \tilde{d}x_1\ldots\tilde{d}x_j),$$

$$x_i \in C_c^{\infty}(P) \rtimes G_2 \subset \mathcal{B} \rtimes G_2.$$
(75)

The essential tool is that Φ is a morphism of bicomplexes:

$$\Phi(d_1\gamma) = b\Phi(\gamma), \quad \Phi(d_2\gamma) = B\Phi(\gamma). \tag{76}$$

Moreover, if $d_1\gamma = d_2\gamma = 0$, $\Phi(\gamma)$ is a cyclic cocycle. This happens in our case. Since *P* is a 3-dimensional manifold, the image of *C*(1) under Φ is the cyclic 3-cocycle

$$\Phi(C(1))(x_0, \dots, x_3) = \int_P x_0 dx_1 \dots dx_3, \quad x_i \in C_c^{\infty}(P) \rtimes G_2,$$
(77)

where $d(fU_{\psi}^*) = dfU_{\psi}^*$ for $f \in C_c^{\infty}(P)$, $\psi \in G_2$, and the integration is extended over $\Omega^*(P) \rtimes G_2$ by setting

$$\int_{P} \alpha U_{\psi}^{*} = 0 \quad \text{if } \psi \neq 1, \ \alpha \in \Omega^{*}(P).$$
(78)

The image of $\gamma = C(c_1)$ is more complicated to compute. One has

$$\tilde{\gamma}(\alpha \otimes \delta_g) = -\int_P \alpha \wedge y^{-1} dz \delta_1(g \triangleleft k), \quad \alpha \in \Omega^2(P), g \in G_2,$$
(79)

where $y^{-1}dz\delta_1(g \triangleleft k) = dz\partial_z \ln g'(z)$ is, of course, a 1-form on *P*. $\Phi(\gamma)$ is the cyclic 3-cocycle

$$\Phi(\gamma)(f_{0}U_{\psi_{0}}^{*}, \dots, f_{3}U_{\psi_{3}}^{*}) = -\tilde{\gamma}(f_{0}U_{\psi_{0}}^{*}df_{1}U_{\psi_{1}}^{*}df_{2}U_{\psi_{2}}^{*}f_{3}\delta_{\psi_{3}}U_{\psi_{3}}^{*} + f_{0}U_{\psi_{0}}^{*}df_{1}U_{\psi_{1}}^{*}f_{2}\delta_{\psi_{2}}U_{\psi_{2}}^{*}df_{3}U_{\psi_{3}}^{*} + f_{0}U_{\psi_{0}}^{*}f_{1}\delta_{\psi_{1}}U_{\psi_{1}}^{*}df_{2}U_{\psi_{2}}^{*}df_{3}U_{\psi_{3}}^{*})$$

$$= \tilde{\gamma}(f_{0}(df_{1}\circ\psi_{0})(df_{2}\circ\psi_{1}\psi_{0})(f_{3}\circ\psi_{2}\psi_{1}\psi_{0})\delta_{\psi_{2}\psi_{1}\psi_{0}} + f_{0}(df_{1}\circ\psi_{0})(f_{2}\circ\psi_{1}\psi_{0})(df_{3}\circ\psi_{2}\psi_{1}\psi_{0})(\delta_{\psi_{2}\psi_{1}\psi_{0}} - \delta_{\psi_{1}\psi_{0}}) - f_{0}(f_{1}\circ\psi_{0})(df_{2}\circ\psi_{1}\psi_{0})(df_{3}\circ\psi_{2}\psi_{1}\psi_{0})(\delta_{\psi_{1}\psi_{0}} - \delta_{\psi_{0}})),$$
(80)

upon assuming that $\psi_3 \psi_2 \psi_1 \psi_0 = \text{Id.}$ Using the relation

$$\delta_1(\psi \triangleleft k) = [\delta_1(U_{\psi}^*)U_{\psi}](k), \quad \forall k \in G_1, \psi \in G_2,$$
(81)

the computation gives

$$\Phi(\gamma)(x_0,\ldots,x_3) = \int_P x_0(dx_1dx_2\delta_1(x_3) + dx_1\delta_1(x_2)dx_3 + \delta_1(x_1)dx_2dx_3)y^{-1}dz.$$
(82)

Now recall that *P* has an invariant volume form $dv_1 = e^{2r} dz d\overline{z} dr$. The differential df of a function on *P* makes use of the horizontal $X = y\partial_z$, $\overline{X} = \overline{y}\partial_{\overline{z}}$ and vertical $Y + \overline{Y} = -\partial_r$ vector fields:

$$df = y^{-1}dzX.f + \overline{y}^{-1}d\overline{z}\overline{X}.f - dr(Y + \overline{Y}).f.$$
(83)

Then using the relations (40) one sees that $\Phi(C(c_1))$ is a sum of terms involving the Hopf algebra

$$\Phi(C(c_1))(x_0,\ldots,x_3) = \sum_i \int_P x_0 h_1^i(x_1)\ldots h_3^i(x_3) dv_1,$$
(84)

where the sum $\sum_i h_1^i \otimes h_2^i \otimes h_3^i$ is a cyclic 3-cocycle of \mathcal{H} relative to SO(2). This follows from the existence of a characteristic map

$$HC^*(\mathcal{H}, SO(2)) \to HC^*(C_c^{\infty}(P) \rtimes G_2)$$
 (85)

and the duality between \mathcal{H} and $\mathcal{H}_* = C_c^{\infty}(G_1) \rtimes G_2$ (cf. [5]).

Returning to the initial situation, where *F* is the frame bundle of a flat Riemann surface Σ , and P = F/SO(2) the bundle of metrics, the above computation shows that the cyclic 3-cocycle on $\mathcal{A}_1 = C_c^{\infty}(P) \rtimes \Gamma$,

$$[c_1](a_0,\ldots,a_3) = \sum_i \int_P a_0 h_1^i(a_1)\ldots h_3^i(a_3) dv_1, \quad a_i \in \mathcal{A}_1,$$
(86)

is the image of $C(c_1)$ by the characteristic map $HC^*(\mathcal{H}, SO(2)) \to HC^*(\mathcal{A}_1)$. Also the fundamental class

$$[P](a_0, \dots, a_3) = \int_P a_0 da_1 da_2 da_3$$
(87)

is in the range of the characteristic map.

Since Connes and Moscovici showed that the Gelfand–Fuchs cohomology $H^*(A, SO(2))$ is isomorphic to the periodic cyclic cohomology of \mathcal{H} , we have completely determined the odd part of the range of the characteristic map. We can summarize the result in the following

Proposition 1. Under the characteristic map

$$H^*(A, SO(2)) \simeq H^*(\mathcal{H}, SO(2)) \to H^*(\mathcal{A}_1), \tag{88}$$

the unit $1 \in H^0(A, SO(2))$ maps to the fundamental class [P] represented by the cyclic 3-cocycle,

$$[P](a_0, \dots, a_3) = \int_P a_0 da_1 da_2 da_3, \quad a_i \in \mathcal{A}_1,$$
(89)

and the first Chern class $c_1 \in H^2(A, SO(2))$ gives the cocycle $[c_1] \in HC^3(\mathcal{A}_1)$:

$$[c_1](a_0,\ldots,a_3) = \int_P a_0(da_1da_2\delta_1(a_3) + da_1\delta_1(a_2)da_3 + \delta_1(a_1)da_2da_3)y^{-1}dz.$$
(90)

In Sect. 2 we considered an odd *K*-cycle on $C_0(P \times \mathbb{R}^2) \rtimes \Gamma$ represented by a differential operator Q', which is equivalent, up to Bott periodicity, to an odd *K*-cycle on $C_0(P) \rtimes \Gamma$. Q' is a matrix-valued polynomial in the vector fields $X, \overline{X}, Y + \overline{Y}$ and the partial derivatives along the two directions of \mathbb{R}^2 . Its Chern character is the cup product

$$\operatorname{ch}_{*}(Q') = \varphi \#[\mathbb{R}^{2}] \tag{91}$$

of a cyclic cocycle $\varphi \in HC^{\text{odd}}(C_c^{\infty}(P) \rtimes \Gamma)$ by the fundamental class of \mathbb{R}^2 . The index theorem of Connes and Moscovici states that φ is in the range of the characteristic map (we have to assume that the action of Γ on Σ has no fixed point). Hence it is a linear combination of the characteristic classes [P] and $[c_1]$. We shall determine the coefficients by using the classical Riemann–Roch theorem.

5. A Riemann-Roch Theorem for Crossed Products

We shall first use the Thom isomorphism in K-theory [1],

$$K_i(C_0(\Sigma) \rtimes \Gamma) \to K_{i+1}(C_0(P) \rtimes \Gamma)$$
(92)

to descend the characteristic classes [P] and $[c_1]$ down to the cyclic cohomology of $C_c^{\infty}(\Sigma) \rtimes \Gamma$. Recall that $C_0(P) \rtimes \Gamma$ is just the crossed product of $C_0(\Sigma) \rtimes \Gamma$ by the modular automorphism group σ of the associated von Neumann algebra

$$C_0(P) \rtimes \Gamma = (C_0(\Sigma) \rtimes \Gamma) \rtimes_{\sigma} \mathbb{R}.$$
(93)

By homotopy we can deform σ continuously into the trivial action. For $\lambda \in [0, 1]$, let $\sigma_t^{\lambda} = \sigma_{\lambda t}, \forall t \in \mathbb{R}$. Then $\sigma^1 = \sigma, \sigma^0 = \text{Id}$ and

$$(C_0(\Sigma) \rtimes \Gamma) \rtimes_{\mathrm{Id}} \mathbb{R} = C_0(\Sigma) \rtimes \Gamma \otimes C_0(\mathbb{R}).$$
(94)

Next, the coordinate system (z, \overline{z}) of Σ gives a smooth volume form $\frac{dz \wedge d\overline{z}}{2i}$ together with a representative of σ , whose action on the subalgebra $C_c^{\infty}(\Sigma) \rtimes \Gamma$ is

$$\sigma_t(fU_{\psi}^*) = f|\psi'|^{2it}U_{\psi}^*, \quad f \in C_c^{\infty}(\Sigma), \psi \in \Gamma,$$
(95)

and accordingly

$$\sigma_t^{\lambda}(fU_{\psi}^*) = f|\psi'|^{2i\lambda t}U_{\psi}^*.$$
(96)

We remark that the algebra $(C_0(\Sigma) \rtimes \Gamma) \rtimes_{\sigma^{\lambda}} \mathbb{R}$ is equal to the crossed product $C_0(P) \rtimes_{\lambda} \Gamma$ obtained from the following deformed action of Γ on *P*:

$$z \to \psi(z), \quad \overline{z} \to \psi(z),$$

$$r \to r - \frac{1}{2}\lambda \ln |\psi'(z)|^2, \quad \psi \in \Gamma.$$
(97)

Hence for any $\lambda \in [0, 1]$, one has a Thom isomorphism

$$\Phi^{\lambda}: K_0(C_0(\Sigma) \rtimes \Gamma) \to K_1(C_0(P) \rtimes_{\lambda} \Gamma), \tag{98}$$

and Φ^0 is just the connecting map $K_0(C_0(\Sigma) \rtimes \Gamma) \to K_1(S(C_0(\Sigma) \rtimes \Gamma))$. We introduce also the family $\{[P]^{\lambda}\}_{\lambda \in [0,1]}$ of cyclic cocycles

$$[P]^{\lambda}(a_0^{\lambda},\ldots,a_3^{\lambda}) = \int_P a_0^{\lambda} da_1^{\lambda}\ldots da_3^{\lambda}, \quad \forall a_i^{\lambda} \in C_c^{\infty}(P) \rtimes_{\lambda} \Gamma.$$
(99)

One has $[P]^1 = [P]$ and $[P]^0 = [\Sigma] # [\mathbb{R}] \in (C_c^{\infty}(\Sigma) \rtimes \Gamma) \otimes C_c^{\infty}(\mathbb{R})$, where

$$[\Sigma](a_0, a_1, a_2) = \int_{\Sigma} a_0 da_1 da_2 \quad \forall a_i \in C_c^{\infty}(\Sigma) \rtimes \Gamma.$$
(100)

Moreover for any element $[e] \in K_0(C_0(\Sigma) \rtimes \Gamma)$ such that $\Phi^{\lambda}([e])$ is in the domain of definition of $[P]^{\lambda}$, the pairing

$$\langle \Phi^{\lambda}([e]), [P]^{\lambda} \rangle \tag{101}$$

depends continuously upon λ . Next for any $\lambda \in]0, 1]$, consider the vertical diffeomorphism of *P* whose action on the coordinates (z, \overline{z}, r) reads

$$\tilde{\lambda}(z) = z, \quad \tilde{\lambda}(\overline{z}) = \overline{z}, \quad \tilde{\lambda}(r) = \lambda r.$$
 (102)

Thus for $\lambda \neq 0$ one has an algebra isomorphism

$$\chi_{\lambda}: C_{c}^{\infty}(P) \rtimes_{\lambda} \Gamma \to C_{c}^{\infty}(P) \rtimes \Gamma$$
(103)

by setting

$$\chi_{\lambda}(fU_{\psi}^{*}) = f \circ \tilde{\lambda} U_{\psi}^{*} \quad \forall f \in C_{c}^{\infty}(P), \psi \in \Gamma.$$
(104)

For any $\lambda \neq 0$,

$$(\chi_{\lambda})_* \circ \Phi^{\lambda} = \Phi^1, \tag{105}$$

$$(\chi_{\lambda})^{*}[P]^{1} = [P]^{\lambda}.$$
(106)

Equation (105) comes from the unicity of the Thom map (cf. [1]), and (106) is obvious. Thus $\langle \Phi^{\lambda}([e]), [P]^{\lambda} \rangle$ is constant for $\lambda \neq 0$, and by continuity at 0,

$$\langle \Phi^1([e]), [P] \rangle = \langle [e], [\Sigma] \rangle. \tag{107}$$

This shows that the image of [P] by Thom isomorphism is the cyclic 2-cocycle $[\Sigma]$ corresponding to the fundamental class of Σ . In exactly the same way we show that the image of $[c_1]$ is the cyclic 2-cocycle τ defined, for $a_i = f_i U_{\psi_i}^* \in C_c^{\infty}(\Sigma) \rtimes \Gamma$, by

$$\tau(a_0, a_1, a_2) = \int_{\Sigma} a_0(da_1 \partial \ln \psi_2' a_2 + \partial \ln \psi_1' a_1 da_2),$$
(108)

with $\partial = dz \partial_z$. Note that in the decomposition of the differential on Σ , $d = \partial + \overline{\partial}$, both ∂ and $\overline{\partial}$ commute with the pullbacks by the conformal transformations $\psi \in \Gamma$.

So far we have considered a *flat* Riemann surface and the constructions we made were relative to a coordinate system (z, \overline{z}) . We shall now remove this unpleasant feature by using the Morita equivalence [5]. In order to understand the general situation, let us first treat the particular case of the Riemann sphere $S^2 = \mathbb{C} \cup \{\infty\}$. We consider an open covering of the sphere by two planes: $S^2 = U_1 \cup U_2$, $U_1 = \mathbb{C}$, $U_2 = \mathbb{C}$, together with the glueing function g:

$$g: U_1 \setminus \{0\} \to U_2 \setminus \{0\},$$

$$z \mapsto \frac{1}{z}.$$
 (109)

The pseudogroup of conformal transformations Γ_0 generated by $\{U_g^*, U_g\}$ acts on the disjoint union $\Sigma = U_1 \amalg U_2$, which is flat. Then S^2 is described by the groupoid $\Sigma \rtimes \Gamma_0$. If Γ is a pseudogroup of local transformations of S^2 , there exists a pseudogroup Γ' containing Γ_0 , acting on Σ and such that the crossed product $C^{\infty}(S^2) \rtimes \Gamma$ is Morita equivalent to $C_c^{\infty}(\Sigma) \rtimes \Gamma'$. The latter splits into four parts: it is the direct sum, for i, j = 1, 2, of elements of the form $f_{ij}U_{\psi_{ij}}^*$ with

$$\psi_{ij}: U_i \to U_j \quad \text{and} \quad \operatorname{supp} f_{ij} \subset \operatorname{Dom} \psi_{ij}.$$
 (110)

For convenience, we adopt a matricial notation for any generic element $b \in C_c^{\infty}(\Sigma) \rtimes \Gamma'$:

$$b = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \quad b_{ij} = f_{ij} U^*_{\psi_{ij}}.$$
 (111)

Now the Morita equivalence is explicitly realized through the following idempotent $e \in C_c^{\infty}(\Sigma) \rtimes \Gamma'$:

$$e = \begin{pmatrix} \rho_1^2 & \rho_1 \rho_2 U_g^* \\ U_g \rho_2 \rho_1 & U_g \rho_2^2 U_g^* \end{pmatrix}, \quad e^2 = e,$$
(112)

where $\{\rho_i\}_{i=1,2}$ is a partition of unity relative to the covering $\{U_i\}$:

$$\rho_1 \in C_c^{\infty}(U_1), \quad \rho_1^2 + \rho_2^2 = 1 \text{ on } S^2 = U_1 \cup \{\infty\}.$$
(113)

The reduction of $C_c^{\infty}(\Sigma) \rtimes \Gamma'$ by *e* is the subalgebra

$$(C_c^{\infty}(\Sigma) \rtimes \Gamma')_e = \{ b \in C_c^{\infty}(\Sigma) \rtimes \Gamma'/b = be = eb \}.$$
(114)

Its elements are of the form

$$ebe = \begin{pmatrix} \rho_1 c\rho_1 & \rho_1 c\rho_2 U_g^* \\ U_g \rho_2 c\rho_1 & U_g \rho_2 c\rho_2 U_g^* \end{pmatrix}$$
(115)

with $c = \rho_1 b_{11} \rho_1 + \rho_2 U_g^* b_{21} \rho_1 + \rho_1 b_{12} U_g \rho_2 + \rho_2 U_g^* b_{22} U_g \rho_2$. Then *c* can be considered as an element of $C^{\infty}(S^2) \rtimes \Gamma$ under the identification $S^2 = U_1 \cup \{\infty\}$. $(C_c^{\infty}(\Sigma) \rtimes \Gamma')_e$ and $C^{\infty}(S^2) \rtimes \Gamma$ are isomorphic through the map

$$\theta: C^{\infty}(S^{2}) \rtimes \Gamma \longrightarrow (C^{\infty}_{c}(\Sigma) \rtimes \Gamma')_{e}$$
$$a \longmapsto \begin{pmatrix} \rho_{1}a\rho_{1} & \rho_{1}a\rho_{2}U^{*}_{g} \\ U_{g}\rho_{2}a\rho_{1} & U_{g}\rho_{2}a\rho_{2}U^{*}_{g} \end{pmatrix}.$$
(116)

We are ready to compute the pullbacks of $[\Sigma]$ and $\tau \in HC^2(C_c^{\infty}(\Sigma) \rtimes \Gamma')$ by θ . This yields the following cyclic 2-cocycles on $C^{\infty}(S^2) \rtimes \Gamma$:

$$\theta^{*}[\Sigma] = [S^{2}],$$

$$(\theta^{*}\tau)(a_{0}, a_{1}, a_{2}) = \int_{S^{2}} a_{0} \left(da_{1}(\partial \ln \psi_{2}' a_{2} + [a_{2}, \rho_{2}^{2} \partial \ln g']) + (\partial \ln \psi_{1}' a_{1} + [a_{1}, \rho_{2}^{2} \partial \ln g']) \right)$$

$$- \int_{S^{2}} a_{2} a_{0} a_{1} d(\rho_{2}^{2}) \partial \ln g',$$
(117)

with $a_i = f_i U_{\psi_i}^* \in C^{\infty}(S^2) \rtimes \Gamma$. In formula (117), $S^2 = U_1 \cup \{\infty\}$ is gifted with the coordinate chart (z, \overline{z}) of U_1 , which makes sense to $\psi'_i(z) = \partial_z \psi_i(z)$ and $g'(z) = \partial_z g(z) = -1/z^2$, but gives singular expressions at 0 and ∞ . We can overcome this difficulty by introducing a smooth volume form $\nu = \rho(z, \overline{z}) \frac{dz \wedge d\overline{z}}{2i}$ on S^2 . The associated modular automorphism group σ^{ν} leaves $C^{\infty}(S^2) \rtimes \Gamma$ globally invariant and is expressed in the coordinates (z, \overline{z}) by

$$\sigma_t^{\nu}(fU_{\psi}^*) = \left(\frac{\nu \circ \psi}{\nu}\right)^{it} fU_{\psi}^* = \left(\frac{\rho \circ \psi}{\rho}|\partial_z \psi|^2\right)^{it} fU_{\psi}^*, \quad \forall t \in \mathbb{R}.$$
 (118)

Define the derivation δ^{ν} on $C^{\infty}(S^2) \rtimes \Gamma$,

$$\delta^{\nu}(fU_{\psi}^{*}) \equiv -i[\partial, \frac{d}{dt}\sigma_{t}^{\nu}](fU_{\psi}^{*})|_{t=0}$$
$$= [\partial, \ln\left(\frac{\rho \circ \psi}{\rho}|\partial_{z}\psi|^{2}\right)](fU_{\psi}^{*})$$
(119)

$$= \partial \ln \psi' f U_{\psi}^* - [\partial \ln \rho, f U_{\psi}^*].$$
(120)

Riemann-Roch Theorem for One-Dimensional Complex Groupoids

One has

$$\partial \ln \psi' f U_{\psi}^* + [f U_{\psi}^*, \rho_2^2 \partial \ln g'] = \delta^{\nu} (f U_{\psi}^*) + [\partial \ln \rho - \rho_2^2 \partial \ln g', f U_{\psi}^*], \quad (121)$$

where the 1-form $\omega = \partial \ln \rho - \rho_2^2 \partial \ln g'$ is globally defined, nowhere singular on S^2 . Let $R^{\nu} = \partial \overline{\partial} \ln \rho$ be the curvature 2-form associated to the Kähler metric $\rho dz \otimes d\overline{z}$. One has the commutation rule

$$(\overline{\partial}\delta^{\nu} + \delta^{\nu}\overline{\partial})a = [R^{\nu}, a] \quad \forall a \in C^{\infty}(S^2) \rtimes \Gamma.$$
(122)

Simple algebraic manipulations show that the following 2-cochain:

$$\tau^{\nu}(a_0, a_1, a_2) = \int_{S^2} a_0(da_1\delta^{\nu}a_2 + \delta^{\nu}a_1da_2) + \int_{S^2} a_2a_0a_1R^{\nu}$$
(123)

is a cyclic cocycle. Moreover, τ^{ν} is cohomologous to $\theta^* \tau$. To see this, let φ be the cyclic 1-cochain

$$\varphi(a_0, a_1) = \int_{S^2} (a_0 da_1 - a_1 da_0) \omega.$$
(124)

Then for all $a_i \in C^{\infty}(S^2) \rtimes \Gamma$,

$$(\tau^{\nu} - \theta^* \tau)(a_0, a_1, a_2) = -\int_{S^2} (a_0 da_1 a_2 + a_2 da_0 a_1 + a_1 da_2 a_0)\omega$$

= $b\varphi(a_0, a_1, a_2).$ (125)

It is clear now that the construction of characteristic classes for an arbitrary (non flat) Riemann surface Σ follows exactly the same steps as in the above example. Using an open cover with partition of unity, one gets the desired cyclic cocycles by pullback. Choose a smooth measure ν on Σ , then the associated modular group is

$$\sigma_t^{\nu}(fU_{\psi}^*) = \left(\frac{\nu \circ \psi}{\nu}\right)^{it} fU_{\psi}^*, \quad fU_{\psi}^* \in C_c^{\infty}(\Sigma) \rtimes \Gamma.$$
(126)

The corresponding derivation

$$D^{\nu}(fU_{\psi}^{*}) = \ln\left(\frac{\nu \circ \psi}{\nu}\right) fU_{\psi}^{*}$$
(127)

allows one to define the noncommutative differential

$$\delta^{\nu} = [\partial, D^{\nu}]. \tag{128}$$

Then the characteristic classes of the groupoid $\Sigma \rtimes \Gamma$ are given by $[\Sigma]$ and $[\tau^{\nu}] \in$ $HC^2(C_c^{\infty}(\Sigma) \rtimes \Gamma)$, where τ^{ν} is given by Eq. (123) with S^2 replaced by Σ . In the case $\Gamma = \text{Id}$, the crossed product reduces to the commutative algebra $C_c^{\infty}(\Sigma)$

for which $(\delta^{\nu} = 0)$

$$\tau^{\nu}(a_0, a_1, a_2) = \int_{\Sigma} a_0 a_1 a_2 R^{\nu}$$
(129)

is just the image of the cyclic 0-cocycle

$$\pi_0^{\nu}(a) = \int_{\Sigma} a R^{\nu} \tag{130}$$

by the suspension map in cyclic cohomology

$$S: HC^*(C_c^{\infty}(\Sigma)) \to HC^{*+2}(C_c^{\infty}(\Sigma)).$$

Thus the periodic cyclic cohomology class of τ^{ν} corresponds in de Rham homology to the cap product

$$\frac{1}{2\pi i} [\tau^{\nu}] = c_1(\kappa) \cap [\Sigma] \quad \in H_0(\Sigma)$$
(131)

of the first Chern class of the holomorphic tangent bundle κ by the fundamental class. This motivates the following definition:

Definition 2. Let Σ be a Riemann surface without boundary and Γ a discrete pseudogroup acting on Σ by local conformal transformations. Let ν be a smooth volume form on Σ , and σ^{ν} the associated modular automorphism group leaving $C_c^{\infty}(\Sigma) \rtimes \Gamma$ globally invariant. Then the Euler class $e(\Sigma \rtimes \Gamma)$ is the class of the following cyclic 2-cocycle on $C_c^{\infty}(\Sigma) \rtimes \Gamma$

$$\frac{1}{2\pi i}\tau^{\nu}(a_0, a_1, a_2) = \frac{1}{2\pi i}\int_{\Sigma} (a_2 a_0 a_1 R^{\nu} + a_0 (da_1 \delta^{\nu} a_2 + \delta^{\nu} a_1 da_2)), \quad (132)$$

where δ^{ν} is the derivation $-i[\partial, \frac{d}{dt}\sigma_t^{\nu}|_{t=0}]$, and R^{ν} is the curvature of the Kähler metric determined by ν and the complex structure of Σ . Moreover, this cohomology class is independent of ν .

Now if $\Gamma = \text{Id}$, the operator Q of Sect. 2 defines an element of the *K*-homology of $\Sigma \times \mathbb{R}^2$. It corresponds to the tensor product of the classical Dolbeault complex $[\partial]$ of Σ by the signature complex $[\sigma]$ of the fiber \mathbb{R}^2 , so that its Chern character in de Rham homology is the cup product

$$ch_*(Q) = ch_*([\partial])\#ch_*([\sigma])$$

= ([\Sigma] + \frac{1}{2}c_1(\kappa) \cap [\Sigma])#2[\R^2] \cap H_*(\Sigma \times \R^2) (133)

which yields, by Thom isomorphism, the homology class on Σ

$$2[\Sigma] + c_1(\kappa) \cap [\Sigma] \in H_*(\Sigma).$$
(134)

Next for any Γ , we know from the last section that the Chern character of the Dolbeault *K*-cycle, expressed in the periodic cyclic cohomology of $C_c^{\infty}(\Sigma) \rtimes \Gamma$, is a linear combination of $[\Sigma]$ and $e(\Sigma \rtimes \Gamma)$. Thus we deduce immediately the following generalisation of the Riemann–Roch theorem:

Theorem 3. Let Σ be a Riemann surface without boundary and Γ a discrete pseudogroup acting on Σ by local conformal mappings without fixed point. The Chern character of the Dolbeault K-cycle is represented by the following cyclic 2-cocycle on $C_c^{\infty}(\Sigma) \rtimes \Gamma$:

$$ch_*(Q) = 2[\Sigma] + e(\Sigma \rtimes \Gamma). \tag{135}$$

Acknowledgements. I am very indebted to Henri Moscovici for having corrected an erroneous factor in the final formula.

References

- 1. Connes, A.: An analogue of the Thom isomorphism for crossed products of a C^* algebra by an action of \mathbb{R} . Adv. in Math. **39**, 31–55 (1981)
- 2. Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation. In: *Geometric methods in operator algebras, Kyoto (1983)*, , Pitman Res. Notes in Math. **123**, Harlow: Longman, 1986, pp. 52–144
- 3. Connes, A.: Non-commutative geometry. New-York: Academic Press, 1994
- 4. Connes, A., Moscovici, H.: The local index formula in non-commutative geometry. GAFA **5**, 174–243 (1995)
- Connes, A., Moscovici, H.: Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198, 199–246 (1998)
- 6. Connes, A., Moscovici, H.: Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48, 85 (1999)
- Godbillon, C.: Cohomologies d'algèbres de Lie de champs de vecteurs formels. Séminaire Bourbaki, Vol. 1972/73, n^o 421

Communicated by A. Connes