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Abstract: We consider a smooth groupoid of the form� � �, where� is a Riemann
surface and� a discrete pseudogroup acting on� by local conformal diffeomorphisms.
After defining aK-cycle on the crossed productC0(�) � � generalising the classical
Dolbeault complex, we compute its Chern character in cyclic cohomology, using the
index theorem of Connes and Moscovici. This involves in particular a generalisation of
the Euler class constructed from the modular automorphism group of the von Neumann
algebraL∞(�)� �.

1. Introduction

In a series of papers [4,5], Connes and Moscovici proved a general index theorem
for transversally (hypo)elliptic operators on foliations. After constructingK-cycles on
the algebra crossed productC0(M) � �, where� is a discrete pseudogroup acting on
the manifoldM by local diffeomorphisms [4], they developed a theory of characteristic
classes for actions of Hopf algebras that generalise the usual Chern–Weil construction to
the non-commutative case [5,6]. The Chern character of the concernedK-cycles is then
captured in the periodic cyclic cohomology of a particular Hopf algebra encoding the
action of the diffeomorphisms onM. The nice thing is that this cyclic cohomology can be
completely exhausted as Gelfand–Fuchs cohomology and renders the index computable.

We shall illustrate these methods with a specific example, namely the crossed product
of a Riemann surface� by a discrete pseudogroup� of local conformal mappings. We
find that the relevant characteristic classes are the fundamental class[�] and a cyclic
2-cocycle onC∞c (�)�� generalising the (Poincaré dual of the) usual Euler class. When
applied to theK-cycle represented by the Dolbeault operator of� � �, this yields a
non-commutative version of the Riemann–Roch theorem. Throughout the text we also
stress the crucial role played by the modular automorphism group of the von Neumann
algebraL∞(�)� �.

� Allocataire de recherche MENRT.
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2. The DolbeaultK-Cycle

Let� be a Riemann surface without boundary and� a pseudogroup of local conformal
mappings of� into itself. We want to define aK-cycle on the algebraC0(�) � �

generalising the classical Dolbeault complex. Following [4], the first step consists in
lifting the action of� to the bundleP over�, whose fiber at pointx is the set of Kähler
metrics corresponding to the complex structure of� atx. By the obvious correspondence
metric↔ volume form,P is theR

∗+-principal bundle of densities on�. The pseudogroup
� acts canonically onP and we consider the crossed productC0(P )� �.

Letν be a smooth volume form on�.As in [2], this gives a weight on the von Neumann
algebraL∞(�)�� together with a representativeσ of its modular automorphism group.
Moreoverσ leavesC0(�)� � globally invariant and one has

C0(P )� � = (C0(�)� �)�σ R, (1)

where the spaceP is identified with� ×R thanks to the choice of the global sectionν.
Therefore one has a Thom-Connes isomorphism [1]

Ki(C0(�)� �)→ Ki+1(C0(P )� �), i = 0,1, (2)

and we shall obtain the desiredK-homology class onC0(P )��. The reason for working
on P rather than� is thatP carries quasi�-invariant metric structures, allowing the
construction ofK-cycles represented by differential hypoelliptic operators [4].

More precisely, consider the productP × R, viewed as a bundle over� with 2-
dimensional fiber. The action of� extends toP×R by makingR invariant. Up to another
Thom isomorphism, theK-cycle may be defined onC0(P ×R)�� = (C0(P )��)⊗
C0(R). By a choice of horizontal subspaces on the bundleP×R, one can lift the Dolbeault
operator∂ of�. This yields the horizontal operatorQH = ∂+∂∗, where the adjoint∂

∗
is

taken relative to theL2-norm given by the canonical invariant measure onP ×R (see [4]
for details). Finally, consider the signature operator of the fibers,QV = dV d∗V − d∗V dV ,
wheredV is the vertical differential. Then the sumQ = QH + QV is a hypoelliptic
operator representing our DolbeaultK-cycle.

This construction ensures that the principal symbol ofQ is completely canonical,
because it is related only to the fibration ofP ×R over�, and hence is invariant under�.
Another choice of horizontal subspaces does not change the leading term of the symbol
of Q. This is basically the reason whyQ allows one to construct a spectral triple (of
even parity) for the algebraC∞c (P × R)� �.

If � = Id, thenC0(P × R)� � = C0(�)⊗ C0(R
2) and the addition ofQV toQH

is nothing else but a Thom isomorphism inK-homology

K∗(C0(�))→ K∗(C0(P × R)) (3)

sending the classical Dolbeault elliptic operator∂ + ∂∗ toQ.
Now we want to compute the Chern character ofQ in the periodic cyclic cohomology

H ∗(C∞c (P × R) � �) using the index theorem of [5]. We need first to construct an
odd cycle by tensoring the Dolbeault complex with the spectral triple of the real line
(C∞c (R), L2(R), i ∂

∂x
). In this way we get a differential operatorQ′ = Q+ i ∂

∂x
whose

Chern character lives in the cyclic cohomology of(C∞c (P ) � �) ⊗ C∞c (R2). By Bott
periodicity it is just the cup product

ch∗(Q′) = ϕ#[R2] (4)
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of a cyclic cocycleϕ ∈ HC∗(C∞c (P ) � �) by the fundamental class ofR
2. The main

theorem of [5] states thatϕ can be computed from Gelfand–Fuchs cohomology, after
transiting through the cyclic cohomology of a particular Hopf algebra. We perform the
explicit computation in the remainder of the paper.

3. The Hopf Algebra and Its Cyclic Cohomology

First we reduce to the case of a flat Riemann surface, since for any groupoid��� one
can find a flat surface�′ and a pseudogroup�′ acting by conformal transformations on
�′ such thatC0(�

′)��′ is Morita equivalent toC0(�)�� (see [5] and Sect. 5 below).
Let then� be a flat Riemann surface and(z, z) a complex coordinate system corre-

sponding to the complex structure of�. Let F be theGl(1,C)-principal bundle over
� of frames corresponding to the conformal structure.F is gifted with the coordinate
system(z, z, y, y), y, y ∈ C

∗. A point ofF is the frame

(y∂z, y∂z) at (z, z). (5)

The action of a discrete pseudogroup� of conformal transformations on� can be lifted to
an action onF by pushforward on frames. More precisely, a holomorphic transformation
ψ ∈ � acts on the coordinates by

z→ ψ(z), Domψ ⊂ F, (6)

y → ψ ′(z)y, ψ ′(z) = ∂zψ(z). (7)

Let C∞c (F ) be the algebra of smooth complex-valued functions with compact support
onF , and consider the crossed productA = C∞c (F )� �. A is the associative algebra
linearly generated by elements of the formfU∗ψ with ψ ∈ �, f ∈ C∞c (F ), suppf ⊂
Domψ . We adopt the notationUψ ≡ U∗

ψ−1 for the inverse ofU∗ψ . The multiplication
rule

f1U
∗
ψ1
f2U

∗
ψ2
= f1 (f2 ◦ ψ1)U

∗
ψ2ψ1

(8)

makes good sense thanks to the condition suppfi ⊂ Domψi . We introduce now the
differential operators

X = y∂z, Y = y∂y, X = y∂z, Y = y∂y, (9)

forming a basis of the set of smooth vector fields viewed as a module overC∞(F ).
These operators act onA in a natural way:

X.(fU∗ψ) = (X.f )U∗ψ, Y.(fU∗ψ) = (Y.f )U∗ψ (10)

and similarly forX, Y . We remark that the system(z, z) determines a smooth volume
form dz∧dz

2i on�. This in turn gives a representativeσ of the modular automorphism
group ofL∞(�)� �, whose action onC∞c (�)� �reads (cf. [3] chap. III)

σt (fU
∗
ψ) = |ψ ′|2it f U∗ψ, t ∈ R. (11)

We letD be the derivation corresponding to the infinitesimal action ofσ :

D = −i d
dt
σt |t=0 D(fU∗ψ) = ln |ψ ′|2fU∗ψ. (12)
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The operatorsδn, δn, n ≥ 1 are defined recursively

δn = [X, . . . [X︸ ︷︷ ︸
n

,D] . . . ] δn = [X, . . . [X︸ ︷︷ ︸
n

,D] . . . ]. (13)

Their action onA are explicitely given by

δn(fU
∗
ψ) = yn∂nz (lnψ ′)fU∗ψ, δn(fU

∗
ψ) = yn∂nz (lnψ ′)fU∗ψ. (14)

Thusδn, δn represent in some sense the Taylor expansion ofD.All these operators fulfill
the commutation relations

[Y,X] = X, [Y, δn] = nδn,
[X, δn] = δn+1, [δn, δm] = 0,

(15)

and similarly for the conjugatesX, Y , δn. Thus{X, Y, δn,X, Y , δn}n≥1 form a basis of
a (complex) Lie algebra. LetH be its enveloping algebra. The remarkable fact is thatH
is a Hopf algebra. First, the coproduct' : H → H⊗H is determined by the action of
H onA:

'h(a1⊗ a2) = h(a1a2) ∀h ∈ H, ai ∈ A. (16)

One has

'X = 1⊗X +X ⊗ 1+ δ1⊗ Y,
'Y = 1⊗ Y + Y ⊗ 1, 'δ1 = 1⊗ δ1+ δ1⊗ 1.

(17)

'δn for n > 1 is obtained recursively from (13) using the fact that' is an algebra
homomorphism,'(h1h2) = 'h1'h2. Similarly for the conjugate elements.
The counitε : H → C satisfies simplyε(1) = 1, ε(h) = 0 ∀h �= 1. Finally,H has
an antipodeS : H → H, determined uniquely by the conditionm ◦ S ⊗ Id ◦ ' =
m ◦ Id⊗ S ◦' = ηε, wherem : H⊗H → H is the multiplication andη : C → H the
unit of H. One finds

S(X) = −X + δ1Y, S(Y ) = −Y, S(δ1) = −δ1. (18)

SinceS is an antiautomorphism:S(h1h2) = S(h2)S(h1), the values ofS(δn), n > 1
follow.

We are interested now in the cyclic cohomology ofH [5,6]. As a space, the cochain
complexC∗(H) is the tensor algebra overH:

C∗(H) =
∞⊕
n=0

H⊗n. (19)

The crucial step is the construction of a characteristic map

γ : H⊗n→ Cn(A,A∗) (20)

from the cochain complex ofH to the Hochschild complex ofA with coefficients inA∗
[3]. FirstF has a canonical�-invariant measuredv = dzdz dydy

(yy)2
. This yields a traceτ

onA:

τ(f ) =
∫
F

f dv, f ∈ C∞c (F ),
τ (fU∗ψ) = 0 if ψ �= 1.

(21)
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Then the characteristic map sends then-cochainh1⊗· · ·⊗hn ∈ H⊗n to the Hochschild
cochainγ (h1⊗ · · · ⊗ hn) ∈ Cn(A,A∗) given by

γ (h1⊗ · · · ⊗ hn)(a0, . . . , an) = τ(a0h1(a1) . . . hn(an)) , ai ∈ A. (22)

The cyclic cohomology ofH is defined such thatγ is a morphism of cyclic complexes.
One introduces the face operatorsδi : H⊗(n−1)→ H⊗n for 0 ≤ i ≤ n:

δ0(h1⊗ · · · ⊗ hn−1) = 1⊗ h1⊗ · · · ⊗ hn−1,

δi(h1⊗ · · · ⊗ hn−1) = h1⊗ · · · ⊗'hi ⊗ · · · ⊗ hn−1, 1≤ i ≤ n− 1,

δn(h1⊗ · · · ⊗ hn−1) = h1⊗ · · · ⊗ hn−1⊗ 1,

(23)

as well as the degeneracy operatorsσi : H⊗(n+1)→ H⊗n,

σi(h1⊗ · · · ⊗ hn+1) = h1⊗ . . . ε(hi+1) · · · ⊗ hn+1, 0 ≤ i ≤ n. (24)

Next, the cyclic structure is provided by the antipodeS and the multiplication ofH.
Consider the twisted antipodẽS = (δ ⊗ S) ◦', whereδ : H → C is a character such
that

τ(h(a)b) = τ(aS̃(h)(b)) ∀ a, b ∈ A. (25)

This last formula plays the role of ordinary integration by parts. One finds:

δ(1) = 1, δ(Y ) = δ(Y ) = 1,

δ(X) = δ(X) = δ(δn) = δ(δn) = 0 ∀ n ≥ 1.
(26)

The definition implies̃S2 = 1. Connes and Moscovici proved in [6] that the latter identity
is sufficient to ensure the existence of a cyclicity operatorτn : H⊗n→ H⊗n,

τn(h1⊗ · · · ⊗ hn) = ('n−1S̃(h1)) · h2⊗ · · · ⊗ hn ⊗ 1, (27)

with (τn)n+1 = 1. NowC∗(H) endowed withδi, σi, τn defines a cyclic complex. The
Hochschild coboundary operatorb : H⊗n→ H⊗(n+1) is

b =
n+1∑
i=0

(−)iδi (28)

and Connes’ operatorB : H⊗(n+1)→ H⊗n is

B =
n∑
i=0

(−)ni(τn)iB0 B0 = σnτn+1+ (−)nσn. (29)

They fulfill the usual relationsB2 = b2 = bB + Bb = 0, so thatC∗(H, b, B) is
a bicomplex. We define the cyclic cohomologyHC∗(H) as theb-cohomology of the
subcomplex of cyclic cochains. The correspondingperiodic cyclic cohomologyH ∗(H)
is isomorphic to the cohomology of the bicomplexC∗(H, b, B) [3]. Furthermore, the
definitions ofδi, σi, τn imply thatγ is a morphism of cyclic complexes. Consequently,
γ passes to cyclic cohomology

γ : HC∗(H)→ HC∗(A), (30)
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as well as to periodic cyclic cohomology

γ : H ∗(H)→ H ∗(A). (31)

In fact we are not interested in the frame bundleF but rather in the bundle of metrics
P = F/SO(2), whereSO(2) ⊂ Gl(1,C) is the group of rotations of frames.P is
gifted with the coordinate chart(z, z, r), where the radial coordinater is obtained from
the decomposition

y = e−r+iθ , r ∈ R, θ ∈ [0,2π [. (32)

The pseudogroup� still acts onP by

z→ ψ(z), z→ ψ(z),

r → r − 1

2
ln |ψ ′(z)|2. (33)

DefineA1 = ASO(2) ⊂ A the subalgebra of elements ofA invariant under the (right)
action ofSO(2) onF . A1 is canonically isomorphic to the crossed productC∞c (P )��.
P carries a�-invariant measuredv1 = e2rdzdzdr, so that there is a trace onA1, namely

τ1(f ) =
∫
P

f dv1, f ∈ C∞c (P ),
τ1(fU

∗
ψ) = 0 if ψ �= 1.

(34)

Thus passing toSO(2)-invariants yields an induced characteristic map from the relative
cyclic cohomology ofH [5]

γ1 : HC∗(H, SO(2))→ HC∗(A1) (35)

given byγ1(h1 ⊗ · · · ⊗ hn)(a0, . . . , an) = τ1(a0h1(a1) . . . h1(an)), ai ∈ A1, where
h1 ⊗ · · · ⊗ hn represents an element ofHC∗(H, SO(2)). The mapγ1 generalises the
classical Chern-Weil construction of characteristic classes from connections and cur-
vatures. In the crossed product case� � �, these classes are captured by the periodic
cyclic cohomology ofH. Connes and Moscovici computed the latter as Gelfand–Fuchs
cohomology. This is the subject of the next section.

4. Gelfand–Fuchs Cohomology

LetG be the group of complex analytic transformations ofC. G has a unique decom-
positionG = G1G2, whereG1 is the group of affine transformations

x → ax + b, x ∈ C, a, b ∈ C (36)

andG2 is the group of transformations of the form

x → x + o(x). (37)

Any element ofG is then the compositionk ◦ ψ for k ∈ G1, ψ ∈ G2. SinceG2 is the
left quotient ofG byG1, G1 acts onG2 from the right: fork ∈ G1, ψ ∈ G2, one has
ψ � k ∈ G2. Similarly,G2 acts onG1 from the left:ψ � k ∈ G1.
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We remark thatG1 is the crossed productC�Gl(1,C). The spaceC×Gl(1,C) is a
prototype for the frame bundleF of a flat Riemann surface. This motivates the notation
a = y, b = z for the coordinates onG1. Under this identification, the left action ofG2
onG1 corresponds to the action ofG2 onF : for a holomorphic transformationψ ∈ G2,
one has

z→ ψ(z), y → ψ ′(z)y, (38)

with ψ(0) = 0, ψ ′(0) = 1. Furthermore, the vector fieldsX,X, Y, Y form a basis of
invariant vector fields for the left action ofG1 on itself, i.e. a basis of the (complexified)
Lie algebra ofG1. Its dual basis is given by the left-invariant 1-forms (Maurer–Cartan
form)

ω−1 = y−1dz, ω−1 = y−1dz,

ω0 = y−1dy, ω0 = y−1dy.
(39)

The left actionG2 �G1 implies a right action ofG2 on forms by pullback. One has in
particular, forψ ∈ G2,

ω−1 ◦ ψ = ω−1, ω0 ◦ ψ = ω0 + y∂z lnψ ′ω−1 and c.c. (40)

Consider now the discrete crossed productH∗ = C∞c (G1)�G2, whereG2 acts on
C∞c (G1) by pullback. As a coalgebra,H is dual to the algebraH∗. One has a natural
action ofH onH∗:

X.(fU∗ψ) = X.fU∗ψ, f ∈ C∞c (G1), ψ ∈ G2,

δn(fU
∗
ψ) = yn∂nz lnψ ′ fU∗ψ,

(41)

and so on withY,X . . . . The operatorsδn, δn have in fact an interpretation in terms of
coordinates on the groupG2: forψ ∈ G2, δn(ψ) is by definition the value of the function
δn(U

∗
ψ)Uψ at 1∈ G1. For anyk ∈ G1, one has

[δn(U∗ψ)Uψ ](k) = δn(ψ � k). (42)

Note that (40) rewrites

ω0 ◦ ψ = ω0 + δ1(ψ � k)ω−1 atk ∈ G1. (43)

The Hopf subalgebra ofH generated byδn, δn, n ≥ 1, corresponds to the commutative
Hopf algebra of functions onG2 which arepolynomial in these coordinates.

Let A be the complexification of the formal Lie algebra ofG. It coincides with the
jets of holomorphic and antiholomorphic vector fields of any order onC:

∂x,x∂x, . . . , x
n∂x, . . . , x ∈ C,

∂x,x∂x, . . . , x
n∂x, . . . .

(44)

The Lie bracket between the elements of the above basis is thus

[xn∂x, xm∂x] = (m− n)xn+m−1∂x and c.c.,

[xn∂x, xm∂x] = 0.
(45)
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Define the generator of dilatationsH = x∂x + x∂x and of rotationsJ = x∂x − x∂x .
They fulfill the properties

[H, xn∂x] = (n− 1)xn∂x; [H, xn∂x] = (n− 1)xn∂x,

[J, xn∂x] = (n− 1)xn∂x, [J, xn∂x] = −(n− 1)xn∂x.
(46)

We are interested in the Lie algebra cohomology ofA (see [7]). The complexC∗(A) of
cochains is the exterior algebra generated by the dual basis{ωn, ωn}n≥−1:

ωn(xm∂x) = δmn+1, ωn(xm∂x) = 0,

ωn(xm∂x) = 0, ωn(xm∂x) = δmn+1, ∀ n ≥ −1,m ≥ 0,
(47)

and the coboundary operator is uniquely defined by its action on 1-cochains

dω(X, Y ) = −ω([X, Y ]) ∀X, Y ∈ A. (48)

From [5] we know that theperiodic cyclic cohomologyH ∗(H, SO(2)) is isomorphic
to the relative Lie algebra cohomologyH ∗(A, SO(2)), i.e. the cohomology of the basic
subcomplex of cochains onA relative to the Cartan operation(L, i) of J :

LJω = (iJ d + diJ )ω ∀ω ∈ C∗(A). (49)

We say that a cochainω ∈ C∗(A) is of weightr if LHω = −rω. Remark that

LHω
n = −nωn, LHω

n = −nωn ∀ n ≥ −1, (50)

so thatC∗(A) is the direct sum, forr ≥ −2, of the spacesC∗r (A) of weight r. Since
[H, J ] = 0,C∗r (A) is stable under the Cartan operation ofJ and we noteC∗r (A, SO(2))
the complex of basic cochains of weightr. Then we have

C∗(A, SO(2)) =
∞⊕
r=−2

C∗r (A, SO(2)). (51)

For any cocycleω ∈ C∗r (A, SO(2)),
LHω = diHω = −rω, (52)

so thatC∗r (A, SO(2)) is acyclic wheneverr �= 0. HenceH ∗(A, SO(2)) is equal to the
cohomology of the finite-dimensional subcomplexC∗0(A, SO(2)). The direct computa-
tion gives

H 0(A, SO(2)) = C with representative 1,
H 2(A, SO(2)) = C

′′ ω−1ω1,

H 3(A, SO(2)) = C
′′ (ω−1ω1− ω−1ω1)(ω0 + ω0),

H 5(A, SO(2)) = C
′′ ω1ω−1ω1ω−1(ω0 + ω0).

(53)

The other cohomology groups vanish.
Next we construct a mapC from C∗(A) to the bicomplex(Cn,m, d1, d2)n,m∈Z of

[3] chap. III.2.δ. Let>m(G1) be the spacem-forms onG1. Cn,m is the space of totally
antisymmetric mapsγ : G2

n+1 → >m(G1) such that

γ (g0g, . . . , gng) = γ (g0, . . . , gn) ◦ g, gi ∈ G2, g ∈ G , (54)
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wheregig is given by the right action ofG onG2, andG acts on>∗(G1) by pullback
(left action ofG onG1).

The first differentiald1 : Cn,m→ Cn+1,m is

(d1γ )(g0, . . . , gn+1) = (−)m
n+1∑
i=0

(−)iγ (g0, . . . ,
∨
gi, . . . , gn+1), (55)

andd2 : Cn,m→ Cn,m+1 is just the de Rham coboundary on>∗(G1):

(d2γ )(g0, . . . , gn) = d(γ (go, . . . , gn)). (56)

Of coursed1
2 = d2

2 = d1d2 + d2d1 = 0. We remark that forγ ∈ Cn,m, the invariance
property (54) implies

γ (g0, . . . , gn) ◦ k = γ (g0 � k, . . . , gn � k) ∀ k ∈ G1, (57)

in other words the value ofγ (g0, . . . , gn) ∈ >m(G1) atk is deduced from its value at 1.
Let us describe now the construction ofC. As a vector space, the Lie algebraA is

just the direct sumG1⊕G2, Gi being the (complexified) Lie algebra ofGi . The cochain
complexC∗(A) is then the exterior product@A∗ = @G1

∗ ⊗@G2
∗. One identifiesG1

∗
with the cotangent spaceT ∗1 (G1) of G1 at the identity. SinceG2 fixes 1∈ G1, there
is a right action ofG2 on@G1

∗ by pullback. The basis{ω−1, ω0, ω−1, ω0} of G1
∗ is

represented by left-invariant one-forms onG1 through the identification

ω−1 →−ω−1 = −y−1dz, ω−1 →−ω−1 = −y−1dz,

ω0 →−ω0 = −y−1dy, ω0 → −ω0 = −y−1dy,
(58)

and the right action ofψ ∈ G2 reads (cf. (40))

ω−1 · ψ = ω−1, ω0 · ψ = ω0 + δ1(ψ)ω−1. (59)

Next, we view a cochainω ∈ C∗(A) as a cochain of the Lie algebra ofG2 with coeffi-
cients in the rightG2-module@G1

∗. It is represented by a@G1
∗-valued right-invariant

form µ onG2. ThenC(ω) ∈ C∗,∗ evaluated on(g0, . . . , gn) ∈ G2
n+1 is a differential

form onG1 whose value at 1∈ G1 is

C(ω)(g0, . . . , gn) =
∫
'(g0,...,gn)

µ ∈ @T ∗1 (G1), (60)

where'(g0, . . . , gn) is the affine simplex in the coordinatesδi, δi , with vertices
(g0, . . . , gn). Let {ρj } be a basis of left-invariant forms onG1. Then

C(ω)(g0, . . . , gn) =
∑
j

pj (g0, . . . , gn)ρj at 1∈ G1, (61)
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wherepj (g0, . . . , gn) are polynomials in the coordinatesδi, δi . The invariance property
(54) enables us to compute the value ofC(ω)(g0, . . . , gn) at anyk ∈ G1,

C(ω)(g0, . . . , gn)(k) =
∑
j

pj (g0 � k, . . . , gn � k)ρj (62)

becauseρj ◦ k = ρj .
Connes and Moscovici showed in [5] thatC is a morphism fromC∗(A, d) to the

bicomplex (Cn,m, d1, d2)n,m∈Z. In the relative case, it restricts to a morphism from
C∗(A, SO(2), d) to the subcomplex(Cn,mbas. , d1, d2) of antisymmetric cochains onG2
with values in thebasic de Rham cohomology>∗(P ) = >∗(G1/SO(2)).

It remains to compute the image ofH ∗(A, SO(2)) byC. We restrict ourselves to even
cocycles, i.e. the unit 1∈ H 0(A, SO(2)) and the first Chern classc1 ∈ H 2(A, SO(2)),
defined as the class

c1 = [2ω−1ω1]. (63)

One hasC(1) ∈ C0,0
bas.. The immediate result is

C(1)(g0) = 1, g0 ∈ G2. (64)

For the first Chern class, we must transformc1 into a right-invariant form onG2 with
values in@T ∗1 (G1). We already know thatω−1 is represented by−ω−1 = −y−1dz,
which satisfiesω−1 ◦ ψ = ω−1, ∀ψ ∈ G2. Next, the Taylor expansion of an element
ψ ∈ G2 can be expressed in the coordinatesδn thanks to the obvious formula

lnψ ′(x) =
∞∑
n=1

1

n!δn(ψ)x
n, ∀ x ∈ C. (65)

One finds:

ψ(x) = x + 1

2
δ1(ψ)x

2+ 1

3! (δ2(ψ)+ δ1(ψ)
2)x3+O(x4). (66)

It shows that the cochainω1 ∈ C∗(A) is represented by the right-invariant 1-form12dδ1
onG2. Thus at 1∈ G1, C(c1) ∈ C1,1

bas. is given by

C(c1)(g0, g1) =
∫
'(g0,g1)

−ω−1dδ1

= −ω−1(δ1(g1)− δ1(g0)) gi ∈ G2,

(67)

and atk ∈ G1, the 1-formC(c1)(g0, g1) is

C(c1)(g0, g1) = −ω−1(δ1(g1 � k)− δ1(g0 � k)). (68)

Sinceω−1 = y−1dz andδ1(g � k) = y∂z ln g′(z), z andy being the coordinates ofk,
one has explicitly

C(c1)(g0, g1) = −dz(∂z ln g1
′(z)− ∂z ln g0

′(z)). (69)

It is a basic form onG1 relative toSO(2), which then descends to a form onP =
G1/SO(2) as expected.
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The last step is to use the mapF of [3, Theorem 14, p. 220] from(Cn,m, d1, d2) to
the(b, B) bicomplex of the discrete crossed productC∞c (P )�G2. Define the algebra

B = >∗(P )⊗̂@C(G′2), (70)

where@C(G′2) is the exterior algebra generated by the elementsδψ , ψ ∈ G2, with
δe = 0 for the identitye of G2. With the de Rham coboundaryd of >∗(P ), B is a
differential algebra. Now form the crossed productB �G2, with multiplication rules

U∗ψαUψ = α ◦ ψ, α ∈ >∗(P ), ψ ∈ G2,

U∗ψ1
δψ2Uψ1 = δψ2◦ψ1 − δψ1, ψi ∈ G2.

(71)

EndowB �G2 with the differentiald̃ acting on an elementbU∗ψ as

d̃(bU∗ψ) = dbU∗ψ − (−)∂bbδψU∗ψ, (72)

wheredb comes from the de Rham coboundary of>∗(P ). The map

F : (C∗,∗, d1, d2)→ (C∞c (P )�G2, b, B) (73)

is constructed as follows. Letγ ∈ Cn,mbas.. It yields a linear formγ̃ onB �G2:

γ̃ (α ⊗ δg1 . . . δgn) =
∫
P

α ∧ γ (1, g1, . . . , gn), α ∈ >∗(P ), gi ∈ G2,

γ̃ (bU∗ψ) = 0 if ψ �= 1.
(74)

ThenF(γ ) is the followingl-cochain onC∞c (P )�G2, l = dimP −m+ n,

F(γ )(x0, . . . , xl) = n!
(l + 1)!

l∑
j=0

(−)j (l−j)γ̃ (d̃xj+1 . . . d̃xlx0d̃x1 . . . d̃xj ),

xi ∈ C∞c (P )�G2 ⊂ B �G2.

(75)

The essential tool is thatF is a morphism of bicomplexes:

F(d1γ ) = bF(γ ), F(d2γ ) = BF(γ ). (76)

Moreover, ifd1γ = d2γ = 0,F(γ ) is a cyclic cocycle. This happens in our case. Since
P is a 3-dimensional manifold, the image ofC(1) underF is the cyclic 3-cocycle

F(C(1))(x0, . . . , x3) =
∫
P

x0dx1 . . . dx3, xi ∈ C∞c (P )�G2, (77)

whered(fU∗ψ) = dfU∗ψ for f ∈ C∞c (P ),ψ ∈ G2, and the integration is extended over
>∗(P )�G2 by setting∫

P

αU∗ψ = 0 if ψ �= 1, α ∈ >∗(P ). (78)

The image ofγ = C(c1) is more complicated to compute. One has

γ̃ (α ⊗ δg) = −
∫
P

α ∧ y−1dzδ1(g � k), α ∈ >2(P ), g ∈ G2, (79)
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wherey−1dzδ1(g � k) = dz∂z ln g′(z) is, of course, a 1-form onP . F(γ ) is the cyclic
3-cocycle

F(γ )(f0U
∗
ψ0
, . . . , f3U

∗
ψ3
)

= − γ̃ (f0U
∗
ψ0
df1U

∗
ψ1
df2U

∗
ψ2
f3δψ3U

∗
ψ3

+ f0U
∗
ψ0
df1U

∗
ψ1
f2δψ2U

∗
ψ2
df3U

∗
ψ3

+ f0U
∗
ψ0
f1δψ1U

∗
ψ1
df2U

∗
ψ2
df3U

∗
ψ3
)

= γ̃ (f0 (df1 ◦ ψ0) (df2 ◦ ψ1ψ0) (f3 ◦ ψ2ψ1ψ0)δψ2ψ1ψ0

+ f0 (df1 ◦ ψ0) (f2 ◦ ψ1ψ0) (df3 ◦ ψ2ψ1ψ0)(δψ2ψ1ψ0 − δψ1ψ0)

− f0 (f1 ◦ ψ0) (df2 ◦ ψ1ψ0) (df3 ◦ ψ2ψ1ψ0)(δψ1ψ0 − δψ0)),

(80)

upon assuming thatψ3ψ2ψ1ψ0 = Id. Using the relation

δ1(ψ � k) = [δ1(U∗ψ)Uψ ](k), ∀ k ∈ G1, ψ ∈ G2, (81)

the computation gives

F(γ )(x0, . . . , x3) =
∫
P

x0(dx1dx2δ1(x3)+ dx1δ1(x2)dx3+ δ1(x1)dx2dx3)y
−1dz.

(82)

Now recall thatP has an invariant volume formdv1 = e2rdzdzdr. The differential
df of a function onP makes use of the horizontalX = y∂z, X = y∂z and vertical
Y + Y = −∂r vector fields:

df = y−1dzX.f + y−1dzX.f − dr(Y + Y ).f. (83)

Then using the relations (40) one sees thatF(C(c1)) is a sum of terms involving the
Hopf algebra

F(C(c1))(x0, . . . , x3) =
∑
i

∫
P

x0h
i
1(x1) . . . h

i
3(x3)dv1, (84)

where the sum
∑
i h
i
1 ⊗ hi2 ⊗ hi3 is a cyclic 3-cocycle ofH relative toSO(2). This

follows from the existence of a characteristic map

HC∗(H, SO(2))→ HC∗(C∞c (P )�G2) (85)

and the duality betweenH andH∗ = C∞c (G1)�G2 (cf. [5]).
Returning to the initial situation, whereF is the frame bundle of a flat Riemann

surface�, andP = F/SO(2) the bundle of metrics, the above computation shows that
the cyclic 3-cocycle onA1 = C∞c (P )� �,

[c1](a0, . . . , a3) =
∑
i

∫
P

a0h
i
1(a1) . . . h

i
3(a3)dv1, ai ∈ A1, (86)
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is the image ofC(c1) by the characteristic mapHC∗(H, SO(2)) → HC∗(A1). Also
the fundamental class

[P ](a0, . . . , a3) =
∫
P

a0da1da2da3 (87)

is in the range of the characteristic map.
Since Connes and Moscovici showed that the Gelfand–Fuchs cohomology

H ∗(A, SO(2)) is isomorphic to the periodic cyclic cohomology ofH, we have com-
pletely determined the odd part of the range of the characteristic map. We can summarize
the result in the following

Proposition 1. Under the characteristic map

H ∗(A, SO(2)) # H ∗(H, SO(2))→ H ∗(A1), (88)

the unit 1 ∈ H 0(A, SO(2))maps to the fundamental class [P ] represented by the cyclic
3-cocycle,

[P ](a0, . . . , a3) =
∫
P

a0da1da2da3, ai ∈ A1, (89)

and the first Chern class c1 ∈ H 2(A, SO(2)) gives the cocycle [c1] ∈ HC3(A1):

[c1](a0, . . . , a3) =
∫
P

a0(da1da2δ1(a3)+ da1δ1(a2)da3+ δ1(a1)da2da3)y
−1dz.

(90)

In Sect. 2 we considered an oddK-cycle onC0(P × R
2) � � represented by a

differential operatorQ′, which is equivalent, up to Bott periodicity, to an oddK-cycle
onC0(P )��.Q′ is a matrix-valued polynomial in the vector fieldsX,X, Y +Y and the
partial derivatives along the two directions ofR

2. Its Chern character is the cup product

ch∗(Q′) = ϕ#[R2] (91)

of a cyclic cocycleϕ ∈ HCodd(C∞c (P ) � �) by the fundamental class ofR2. The
index theorem of Connes and Moscovici states thatϕ is in the range of the characteristic
map (we have to assume that the action of� on� has no fixed point). Hence it is a
linear combination of the characteristic classes[P ] and [c1]. We shall determine the
coefficients by using the classical Riemann–Roch theorem.

5. A Riemann–Roch Theorem for Crossed Products

We shall first use the Thom isomorphism inK-theory [1],

Ki(C0(�)� �)→ Ki+1(C0(P )� �) (92)

to descend the characteristic classes[P ] and [c1] down to the cyclic cohomology of
C∞c (�) � �. Recall thatC0(P ) � � is just the crossed product ofC0(�) � � by the
modular automorphism groupσ of the associated von Neumann algebra

C0(P )� � = (C0(�)� �)�σ R. (93)
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By homotopy we can deformσ continuously into the trivial action. Forλ ∈ [0,1], let
σλt = σλt , ∀ t ∈ R. Thenσ 1 = σ , σ 0 = Id and

(C0(�)� �)�Id R = C0(�)� � ⊗ C0(R). (94)

Next, the coordinate system(z, z) of� gives a smooth volume formdz∧dz2i together with
a representative ofσ , whose action on the subalgebraC∞c (�)� � is

σt (fU
∗
ψ) = f |ψ ′|2itU∗ψ, f ∈ C∞c (�), ψ ∈ �, (95)

and accordingly

σλt (fU
∗
ψ) = f |ψ ′|2iλtU∗ψ. (96)

We remark that the algebra(C0(�)��)�σλR is equal to the crossed productC0(P )�λ�

obtained from the following deformed action of� onP :

z→ ψ(z), z → ψ(z),

r → r − 1

2
λ ln |ψ ′(z)|2, ψ ∈ �. (97)

Hence for anyλ ∈ [0,1], one has a Thom isomorphism

Fλ : K0(C0(�)� �)→ K1(C0(P )�λ �), (98)

andF0 is just the connecting mapK0(C0(�)��)→ K1(S(C0(�)��)). We introduce
also the family{[P ]λ}λ∈[0,1] of cyclic cocycles

[P ]λ(aλ0, . . . , aλ3) =
∫
P

aλ0da
λ
1 . . . da

λ
3, ∀ aλi ∈ C∞c (P )�λ �. (99)

One has[P ]1 = [P ] and[P ]0 = [�]#[R] ∈ (C∞c (�)� �)⊗ C∞c (R), where

[�](a0, a1, a2) =
∫
�

a0da1da2 ∀ ai ∈ C∞c (�)� �. (100)

Moreover for any element[e] ∈ K0(C0(�)� �) such thatFλ([e]) is in the domain of
definition of[P ]λ, the pairing

〈Fλ([e]), [P ]λ〉 (101)

depends continuously uponλ. Next for anyλ ∈]0,1], consider the vertical diffeomor-
phism ofP whose action on the coordinates(z, z, r) reads

λ̃(z) = z, λ̃(z) = z, λ̃(r) = λr. (102)

Thus forλ �= 0 one has an algebra isomorphism

χλ : C∞c (P )�λ �→ C∞c (P )� � (103)

by setting

χλ(fU
∗
ψ) = f ◦ λ̃ U∗ψ ∀ f ∈ C∞c (P ), ψ ∈ �. (104)
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For anyλ �= 0,

(χλ)∗ ◦Fλ = F1, (105)

(χλ)
∗[P ]1 = [P ]λ. (106)

Equation (105) comes from the unicity of the Thom map (cf. [1]), and (106) is obvious.
Thus〈Fλ([e]), [P ]λ〉 is constant forλ �= 0, and by continuity at 0,

〈F1([e]), [P ]〉 = 〈[e], [�]〉. (107)

This shows that the image of[P ] by Thom isomorphism is the cyclic 2-cocycle[�]
corresponding to the fundamental class of�. In exactly the same way we show that the
image of[c1] is the cyclic 2-cocycleτ defined, forai = fiU∗ψi ∈ C∞c (�)� �, by

τ(a0, a1, a2) =
∫
�

a0(da1∂ lnψ ′2 a2+ ∂ lnψ ′1 a1da2), (108)

with ∂ = dz∂z. Note that in the decomposition of the differential on�, d = ∂ + ∂, both
∂ and∂ commute with the pullbacks by the conformal transformationsψ ∈ �.

So far we have considered aflat Riemann surface and the constructions we made
were relative to a coordinate system(z, z). We shall now remove this unpleasant feature
by using the Morita equivalence [5]. In order to understand the general situation, let us
first treat the particular case of the Riemann sphereS2 = C∪{∞}. We consider an open
covering of the sphere by two planes:S2 = U1 ∪ U2, U1 = C, U2 = C, together with
the glueing functiong:

g : U1\{0} → U2\{0},
z (→ 1

z
.

(109)

The pseudogroup of conformal transformations�0 generated by{U∗g , Ug} acts on the
disjoint union� = U1)U2, which is flat. ThenS2 is described by the groupoid���0.
If � is a pseudogroup of local transformations ofS2, there exists a pseudogroup�′
containing�0, acting on� and such that the crossed productC∞(S2) � � is Morita
equivalent toC∞c (�) � �′. The latter splits into four parts: it is the direct sum, for
i, j = 1,2, of elements of the formfijU∗ψij with

ψij : Ui → Uj and suppfij ⊂ Domψij . (110)

For convenience, we adopt a matricial notation for any generic elementb ∈ C∞c (�)��′:

b =
(
b11 b12
b21 b22

)
, bij = fijU∗ψij . (111)

Now the Morita equivalence is explicitly realized through the following idempotent
e ∈ C∞c (�)� �′:

e =
(

ρ1
2 ρ1ρ2U

∗
g

Ugρ2ρ1 Ugρ2
2U∗g

)
, e2 = e, (112)
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where{ρi}i=1,2 is a partition of unity relative to the covering{Ui}:
ρ1 ∈ C∞c (U1), ρ1

2+ ρ2
2 = 1 onS2 = U1 ∪ {∞}. (113)

The reduction ofC∞c (�)� �′ by e is the subalgebra

(C∞c (�)� �′)e = {b ∈ C∞c (�)� �′/b = be = eb}. (114)

Its elements are of the form

ebe =
(
ρ1cρ1 ρ1cρ2U

∗
g

Ugρ2cρ1 Ugρ2cρ2U
∗
g

)
(115)

with c = ρ1b11ρ1+ρ2U
∗
g b21ρ1+ρ1b12Ugρ2+ρ2U

∗
g b22Ugρ2. Thenc can be considered

as an element ofC∞(S2)�� under the identificationS2 = U1∪ {∞}. (C∞c (�)��′)e
andC∞(S2)� � are isomorphic through the map

θ : C∞(S2)� � −→ (C∞c (�)� �′)e

a (−→
(
ρ1aρ1 ρ1aρ2U

∗
g

Ugρ2aρ1 Ugρ2aρ2U
∗
g

)
.

(116)

We are ready to compute the pullbacks of[�] andτ ∈ HC2(C∞c (�) � �′) by θ .
This yields the following cyclic 2-cocycles onC∞(S2)� �:

θ∗[�] = [S2],
(θ∗τ)(a0, a1, a2) =

∫
S2
a0

(
da1(∂ lnψ ′2 a2+ [a2, ρ2

2∂ ln g′])

+ (∂ lnψ ′1a1+ [a1, ρ2
2∂ ln g′])

)

−
∫
S2
a2a0a1d(ρ2

2)∂ ln g′,

(117)

with ai = fiU
∗
ψi
∈ C∞(S2) � �. In formula (117),S2 = U1 ∪ {∞} is gifted with

the coordinate chart(z, z) of U1, which makes sense toψ ′i (z) = ∂zψi(z) andg′(z) =
∂zg(z) = −1/z2, but gives singular expressions at 0 and∞. We can overcome this
difficulty by introducing a smooth volume formν = ρ(z, z) dz∧dz2i onS2. The associated
modular automorphism groupσν leavesC∞(S2)�� globally invariant and is expressed
in the coordinates(z, z) by

σνt (fU
∗
ψ) =

(
ν ◦ ψ
ν

)it
f U∗ψ =

(ρ ◦ ψ
ρ
|∂zψ |2

)it
f U∗ψ, ∀ t ∈ R. (118)

Define the derivationδν onC∞(S2)� �,

δν(fU∗ψ) ≡ −i[∂,
d

dt
σ νt ](fU∗ψ)|t=0

= [∂, ln (ρ ◦ ψ
ρ
|∂zψ |2

)](fU∗ψ) (119)

= ∂ lnψ ′ fU∗ψ − [∂ ln ρ, fU∗ψ ]. (120)
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One has

∂ lnψ ′ fU∗ψ + [fU∗ψ, ρ2
2∂ ln g′] = δν(fU∗ψ)+ [∂ ln ρ − ρ2

2∂ ln g′, fU∗ψ ], (121)

where the 1-formω = ∂ ln ρ − ρ2
2∂ ln g′ is globally defined, nowhere singular onS2.

Let Rν = ∂∂ ln ρ be the curvature 2-form associated to the Kähler metricρdz ⊗ dz.
One has the commutation rule

(∂δν + δν∂)a = [Rν, a] ∀ a ∈ C∞(S2)� �. (122)

Simple algebraic manipulations show that the following 2-cochain:

τ ν(a0, a1, a2) =
∫
S2
a0(da1δ

νa2+ δνa1da2)+
∫
S2
a2a0a1R

ν (123)

is a cyclic cocycle. Moreover,τ ν is cohomologous toθ∗τ . To see this, letϕ be the cyclic
1-cochain

ϕ(a0, a1) =
∫
S2
(a0da1− a1da0)ω. (124)

Then for allai ∈ C∞(S2)� �,

(τ ν − θ∗τ)(a0, a1, a2) = −
∫
S2
(a0da1a2+ a2da0a1+ a1da2a0)ω

= bϕ(a0, a1, a2).

(125)

It is clear now that the construction of characteristic classes for an arbitrary (non
flat) Riemann surface� follows exactly the same steps as in the above example. Using
an open cover with partition of unity, one gets the desired cyclic cocycles by pullback.
Choose a smooth measureν on�, then the associated modular group is

σνt (fU
∗
ψ) =

(
ν ◦ ψ
ν

)it
f U∗ψ, fU∗ψ ∈ C∞c (�)� �. (126)

The corresponding derivation

Dν(fU∗ψ) = ln

(
ν ◦ ψ
ν

)
fU∗ψ (127)

allows one to define the noncommutative differential

δν = [∂,Dν]. (128)

Then the characteristic classes of the groupoid� � � are given by[�] and [τ ν] ∈
HC2(C∞c (�)� �), whereτ ν is given by Eq. (123) withS2 replaced by�.

In the case� = Id, the crossed product reduces to the commutative algebraC∞c (�)
for which (δν = 0)

τ ν(a0, a1, a2) =
∫
�

a0a1a2R
ν (129)
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is just the image of the cyclic 0-cocycle

τ ν0 (a) =
∫
�

aRν (130)

by the suspension map in cyclic cohomology

S : HC∗(C∞c (�))→ HC∗+2(C∞c (�)).
Thus the periodic cyclic cohomology class ofτ ν corresponds in de Rham homology to
the cap product

1

2πi
[τ ν] = c1(κ) ∩ [�] ∈ H0(�) (131)

of the first Chern class of the holomorphic tangent bundleκ by the fundamental class.
This motivates the following definition:

Definition 2. Let � be a Riemann surface without boundary and � a discrete pseu-
dogroup acting on � by local conformal transformations. Let ν be a smooth volume
form on �, and σν the associated modular automorphism group leaving C∞c (�) � �

globally invariant. Then the Euler class e(� � �) is the class of the following cyclic
2-cocycle on C∞c (�)� �

1

2πi
τν(a0, a1, a2) = 1

2πi

∫
�

(a2a0a1R
ν + a0(da1δ

νa2+ δνa1da2)), (132)

where δν is the derivation−i[∂, d
dt
σ νt |t=0], andRν is the curvature of the Kähler metric

determined by ν and the complex structure of �. Moreover, this cohomology class is
independent of ν.

Now if � = Id, the operatorQ of Sect. 2 defines an element of theK-homology of
� × R

2. It corresponds to the tensor product of the classical Dolbeault complex[∂] of
� by the signature complex[σ ] of the fiberR2, so that its Chern character in de Rham
homology is the cup product

ch∗(Q) = ch∗([∂])#ch∗([σ ])
= ([�] + 1

2
c1(κ) ∩ [�])#2[R2] ∈ H∗(� × R

2)
(133)

which yields, by Thom isomorphism, the homology class on�

2[�] + c1(κ) ∩ [�] ∈ H∗(�). (134)

Next for any�, we know from the last section that the Chern character of the DolbeaultK-
cycle, expressed in the periodic cyclic cohomology ofC∞c (�)��, is a linear combination
of [�] ande(� � �). Thus we deduce immediately the following generalisation of the
Riemann–Roch theorem:

Theorem 3.Let� be a Riemann surface without boundary and� a discrete pseudogroup
acting on � by local conformal mappings without fixed point. The Chern character of
the DolbeaultK-cycle is represented by the following cyclic 2-cocycle on C∞c (�)��:

ch∗(Q) = 2[�] + e(� � �). (135)

Acknowledgements. I am very indebted to Henri Moscovici for having corrected an erroneous factor in the
final formula.
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