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Abstract: The norm convergence of the Trotter—Kato product formula with error bound
is shown for the semigroup generated by that operator sum of two nonnegative selfadjoint
operatorsA and B which is selfadjoint.

1. Introduction

If A andB are selfadjoint operators bounded below in a Hilbert sgéeeth domains
D[A] andD[B] and if their sumA + B is essentially selfadjoint oP[A] N D[B], then
the exponential product formula

lim (e—tB/Zne—tA/ne—tB/Zn)n — lim (e—lA/ne—tB/n)n — e—tC (11)
n—>oo n— o0

holds in strong operator topology, whefeis the closure ofA + B. The convergence

in (1.1) is uniform on each compaginterval in the closed half linf, co). This is the

celebrated result by Trotter [26]. It was extended by Kato [15] to the case for the form

sumcC of two arbitrary nonnegative selfadjoint operatdrandB.

The aim of the present paper is to prove that (1.1) holds even in operator norm,
uniformly on each compagtinterval in the open half lin€0, co), together with an
error bound of ordeD (n~1/2), when the sunC := A + B is selfadjoint onD[C] =
D[A]N D[B].

To state our theorem, consider real-valued, Borel measurable fungtion$0, co)
satisfying

0<f®) <1l fO=1 fO=-1 (12)
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Some examples of functions satisfying (1.2) are
f)=e*, f)=A+k 1% k=>o0. (1.3)

In fact, it was also forf(rA), g(tB) in place ofe™"4, e~'8 with f andg being the
functions satisfying (1.2) that Kato [15] proved the product formula (1.1) in strong
operator topology.

We are interested in those functiofisvhich satisfy (1.2) and further that for every
smalle > 0 there exists a positive constant §(¢) < 1 such that

f(s) <1—46(e), s=>e, 1.4

and that for some fixed constanwith 1 < « < 2,

[fle = Supw < 60

K
s>0 s

(15)

A function f (s) satisfying (1.2) has property (1.4), if it is non-increasing. Of course, the
functions in (1.3) have properties (1.4) and (1.5).

Theorem. Let f and g be functions having properties (1.4) and (1.5) with« > 3/2 as
well as (1.2). If A and B are nonnegative selfadjoint operators in a Hilbert space H
with domains D[A] and D[ B] such that the operator sumC := A + B isselfadjoint on
D[C] = D[A] N D[B], thenit holdsin operator norm that

llgB/2n) f(tA/m)g(tB/20)]" — €| = O(n~Y?),

1.6
[LfA/mgaB/mT — e €| = 02, n— oc. 0

The convergenceis uniformon each compact ¢-interval in the open half line (0, co) and
further, if C is strictly positive, i.e. C > n for some constant » > 0, uniform on the
closed half line [T, oo) for every fixed T > 0.

The first original result of such a norm convergence of the Trotter—Kato product
formula (1.1) was proved by Rogava [21] under an additional conditiorhestrictly
positive andB is A-bounded, with error bound of ordér(n—1/2logn). The next is a
result by Helffer [6] for the Schrddinger operatdis= Hp + V = —%A + V(x) with
C nonnegative potentialg (x), roughly speaking, growing at most of ordex|x|?)
for large|x| with error bound of orde© (n~1). Each of these two results is independent
of and does not cover the other. Then under some stronger or more general conditions,
several further results are obtained.

As for the abstract case, a better error boor@d —1logn) than Rogava’s is obtained
by Ichinose—Tamura [13] (cf. [11]) wheB is A%-bounded for some & o < 1, even
though theB = B(t) may bet-dependent, and by Neidhardt—Zagrebnov [16, 17] (cf.
[18, 19]) whenB is A-bounded with relative bound less than 1.

As for the Schrodinger operators, a different proof to Helffer's result was given by
Dia—Schatzman [3]. Further, more general results were proved for continuous nonneg-
ative potentialsV (x), roughly speaking, growing of orde? (|x|?) for large |x| with
o > 0, together with error bounds dependent on the powéfor instance, of or-
dero(n=2/?),if p > 2), by Ichinose—Takanobu [7, 8], Doumeki—Ichinose—Tamura [4],
Ichinose—Tamura [12], Takanobu [24] and Ichinose—Takanobu [9, 10]. It should be noted
(see Guibourg [5], Shen [22, 23]) that in all these cases of the Schrddinger operators the
sumH = Hp + V is selfadjoint on the domaiP[H] = D[Hp] N D[V].
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Thus the present theorem not only extends Rogava’s result, but also can include all
the results mentioned above. It should be emphasized that the error Baund/?)
obtained, in fact, is even better than Rogava’s, and than the error bounds (e.qg. [8, 4, 12,
9]) known for the Schrddinger operators with potentiéls) growing of orderO (|x|?)
whenp > 4.

We note here that unless the sumt B is selfadjoint onD[A] N D[B], the norm
convergence of (1.1) does not always hold, even though the sum is essentially selfadjoint
there andB is A-form-bounded with relative bound less than 1. This fact has recently
been pointed out by Hiroshi Tamura [25] with a counterexample.

To prove our theorem, in Sect. 2, we establish an operator-norm version of Chernoff’s
theorem (cf. [1, 2]) with error bounds. The theorem is proved in Sect. 3. Section 4 remarks
on conditions (1.4) and (1.5).

2. Operator-norm Version of Chernoff’s Theorem

To prove the theorem, we shall use the following operator-norm version of Chernoff’s
theorem (cf. [1, 2]) with error bounds. The case without error bounds was noted by
Neidhardt—Zagrebnov [18].

Lemma2.1. Let C be a nonnegative selfadjoint operator in a Hilbert space # and
let {F(r)};>0 be a family of selfadjoint operators with 0 < F(r) < 1. Define S, =
t~1(1 — F(¢)). Thenin the following two assertions, for 0 < « < 1, (a)implies (b) .

(a)
IA+S) =@+ Y =0a%, t|o0. 2.1

(b) Forany § > Owith0 < § <1,
IF@/n)" —e €| =82 0m™), n— oo, (2.2)

forall + > 0.

Therefore, for 0 < o < 1 (resp. « = 1), the convergence in (2.2) is uniform on each
compact ¢-interval in the open half line (0, co) (resp. in the closed half line [0, o0)).
Moreover, if C is strictly positive, i.e. C > 5 for some constant n > 0, the error
bound on the right-hand side of (2.2) can also bereplaced by (14 2/7)% 20 (n~®),
so that, for 0 < @ < 1 (resp. « = 1), the convergence in (2.2) is uniform on the closed
half line [T, co) for every fixed T > O (resp. on the whole closed half line [0, c0)).

Proof. Assume (a). Let > 0. We have
F(t/n)" —e™'C = (F(t/n)" — e "Stin) 4 (e7"Sun — ¢71C), 2.3)
To estimate the first term on the right-hand side of (2.3), let us note
O0<e @M " <el/p, for0O<iac<1 (2.4

Though this can be in fact shown with the upper bousict?2 . in place ofe =1/, we shall
content ourselves with it. To see (2.4) is easy. Since the fungtion:= e A4 — )7
attains its maximum ato satisfyinge =% = 321 we obtain 0< £(1) < &(ro) =
A A8 = (I/n)n(dl — rg)e "0 < ¢ 1/p,
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Then by (2.4), we have by the spectral theorem for every0,
IF@/n)" — e S| = ||F(t/n)" — e "EFEMD | < et (25
To estimate the second term, we use a formula in Kato [14, IX.4, (2.27)]

(1+ Sg)—l[e—l((S-l—Sg) _ e—t(6+C)](1+ C)_l

t
_ —(t—$)(6+Se) -1 —17,—s(5+C)
_/0 e [(A+S,) A+C) e ds 2.6)

t/2 t
=/ +/ =851+ %2,
0 t/2

wheres > 0 ande > 0. PuttingD(s) = (1+ S.)~* — (14 €)1t in the following, we
are assuming D(¢g)|| = O (%) by (2.1). ForS; we have by integration by parts

Sp=|—e (IO Pe)e O G 4 C)‘l]m/2

§=
t/2
n / (5 + So)e— =96+ D ()e=560+0) (5 1+ )~1ds
0
= — e W/20F8) P ()= /20O (5 4 )L 4 T CFSI De)y(s + )72

t/2
+ / (6 + Sp)e TICTSI D(£)e™CTO (5 4 €)Lds.
0

Then

(1+8,)S1(1+ C)
= — (1+ S.)e”1/20+5) ()= W/26G+O (5 + C)L(1+ C)
+ L+ S)e 'Ot ey + C) LA+ ©)

t/2
+ / (L4 S)(6 + S)e =96+ D)6+ (s + ) L1 + C)ds,
0

and similarly forS»,

(A4+8:)S2(1+C)
=14 S)6 + So) ID(e)e O+ 0)
— 1+ S)6 + SS)—le—(l/Z)(5+Ss)D(E)e—(l/Z)(tHC)(l +0)

t

+ | @+ S)6+ Se) e 96+ D(g)e G+ (5 + C) (1 + C)ds.
t/2

We know

e e — ) = (14 8,)S1(L+ C) 4+ (1 + Sp)S2(1+ O). 2.7
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Sincer’e ™ < (y/e)” for A > 0 andy > 0, we can estimate (2.7) with assumption
(2.1) by the spectral theorem as
t/2
11+ S)S1(d+ Ol < (37t + 4e—2/ (t —5)"%ds) O (") /82
0
< 20(s")/(8%D),

t
1L+ 8)S2(L+ )l < (3¢t +4e™? | 57%ds) 0 (%) /6% < 20(*)/(8%D).
t/2

Here we have needed thiak 1. Hence with (2.7),
le™® (™S — e )| = (L + Se)(S1+ DL+ O]l < 40(e™)/(8%).  (2.8)
It follows that withe = ¢/n the second term of (2.3) obeys
le™Sim — 7€) < (P TrM O(/m)*) = 82 O (). 2.9

Thus, combining (2.5) and (2.9) with (2.3), we have the assertion (b) or (2.2).
In caseC is strictly positive, that isC > »n for some constani > 0, we can show
Se >n/2o0r ||S5‘1|| < 2/n for sufficiently smalle > 0. In fact, by (2.1),

IA+S)H =1A+OH+0E) <@+t +0E") <@+n/27t <1,
so thatS, has bounded inverse
STT=[A+S) - U t=@+S) 1-@+s) 4t

with bound||S€—1|| < 2/n. Therefore in the above argument around (2.8), thadgh
S:)(8+S.)~tis bounded as well ad+ C) (5 + €)1, with bound(1+17/2)(§ +7n/2)~1

in place of 8, one can in turn use the formula (2.5) wih= 0, and show, since both
(1+S.)Stand(1+ €)C 1 are bounded with bound + 2/7) for smalle > 0, that the
right-hand side of (2.9) simply becomes of orde#2/1)%t =1+ 0 (n=%). In particular,
it is of order O(n™) uniformly on the closed half lin¢T’, co) for everyT > 0 for
0 < o < 1, and on the whole closed half lif@, co) for « = 1. This proves Lemma 2.1.
O

3. Proof of Theorem

We are now in a position to prove the theorem.
First note that sinc€ = A + B is itself selfadjoint and so a closed operator, by the
closed graph theorem there exist constantandas such that

[Aull + | Bull < a1l|Cull + az|lull, u € D[C]= D[A]N D[B].
Therefore we may assume for some constant0 that
A+ Aull + 11+ B)ull <all(1+ Cull, ue D[C]=D[AIND[B]. @1
Forr > 0O define positive bounded operators

A =t"H1- FftA)], B, =t 1—-gtB), C,=t1-eCl. (32
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Note that
ltAN = 11— feEAI <1, [ItBl=11-gtB)| <1 (3.9

The proof of the theorem is now divided into two cases, (a) the symmetric product
case concerning

F(t) =g(tB/2) f(tA)g(tB/2), (3.4)
and (b) the non-symmetric product case concerning
G@t) = f(tA)g(tB). (3.5

In the former case we shall use Lemma 3.1. The latter case will follow from the former
case.

(a) The symmetric product case. To prove the symmetric product case of the theorem,
by Lemma 2.1 it suffices to show in operator norm that wsith= 1 (1 — F(¢)),

IA+S)t—@a+o) Y =00v?, )0 (3.6)

We should already know (cf. Chernoff [1, 2], Kato [15] and Reed—-Simon [20]) that
(14 5)~t = (1+ C)~Lin strong operator topology.
Define a positive bounded operator

Ki=1+A;+ B2 — ,/2

l 2 1/2
=14+A+ th/Z + i t//2 1- LB!/Z)Bt//Z (3.7

_1+A,+Bl//2(w> BY2> 1.

Rewrite 1+ S;, by introducingQ;, as

2
148 =1+ A+ Byo— B2y + 5B j2Ai Bija — 5(AiBija + Bij2Ay)

1/2(1 n Qt)Kl/Z (3.8)
01 = 5K, ?BijaAi Bk % — 5KV (ABij + BupADK,
Then we need that-t Q, has bounded inverse uniformly for- 0. The proof of this
fact in Reed—Simon [20] seems to contain a small flaw. So we prove it in the following

lemma. At this stage note that differing from their proof, ours is exchanging the roles of
A andB.

Lemma3.l. Fort > 0O,

I+ 007t < 2/(3-5). (3.9
If (3.9) is proved, then we can obtain that fox O,
I+ )7k = 1K 2+ 007 < 2/3 - V). (3.10

Proof of Lemma 3.1. We shall use (3.3) and

IAY2KY2) < 1+ ApY2Kk,Y?) <1,

(3.11)
_ 1 2 -1/2 -1/2
22 BK YA < 1A+ 3B PR < 1
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We see from the definition ad; in (3.8),
01 = K, 2(5Byj2 — 1) Ai(5Bj2 — r)K‘l/2
— done _1/2(A Bij2+ B pADK, 7 — 2K V2 ALK,
> — A0t ’>’ "2(A/Bij2 + Bi oADK, * rth 2A k7Y

-1/2 -1/2

wherer is a constant with @< » < 1 to be determined later. Hence we haveifar H,

(Qru,u)
> 21— r)Re((zA,)l/z 1- g(tB/2))1/2(1+g(£B/2))l/ZBl//2K—l/2 Al/ZK—l/Z )

1+g(tB/2)
o ol
> = 2= AR Pl | (R B | - o2 A PR
> = =[Pl AR 2ul? + /)| (RGP V2 B2 K ]
2||A1/2 _l/2u||2~

Herep is an aribitray positive constant. Chogssuch thatl—r)p +r? = (1—r)/p,
namely,p = —~ +V2(14+:;(1 D% Then with8(r) = w, we have

V

(O, u) > ,3(7‘)[”141/2 71/2’/[ ”2 + ||(l+g(lB/2))1/ZBl//2thl/2u ”2]

—ﬂ(r)<[Az+(1+g(§3/2))3z/2]1<f V2, kY2 )

—B(r)llul?.

v

We can seg(r) attains its minimum at = I5T_1:

B = ((fl 124 (5L +4(—”)>

= 3(3- 5+ (70-30v5)") = 1(3- V5 +3V5 -

)
It follows that (Qu, 1) > —¥52||u||2, so that(L + Q,)u, u) > (1 — ¥3=L)|u|2 =
3%@ |lu||2. This yields (3.9), showing Lemma 3.100
Now we have
A+SHt-a+0™?
=1+ S) YA+ B~ (A + B2 — 5B, 2(1— tA) By
— 5(ABij2 + Bij2A)) |1+ 071
=1+ MA-ANA+ O T+ A+ 5B - B+ 07t
+ L+ S) LGB 2(1 — tA) B2 + 5(ABija + Bi2AD1(1+ )7t
= R1(t) + Ra(t) + Ra(t).

We are going to show in the following lemma that all the thigér) in the last
member of (3.12) converge to zero in operator norm of otdler/2) asr |, 0.

(3.12)
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Lemma 3.2. For small > 0,
IR1()| < cat™?, [[Ra(0)|| < cat™?, |Rs(®)|| < car™?, (3.13
with a constant ¢ > 0 independent of ¢ > O.

Proof. First note by the spectral theorem that

_ 1— f@r)
— 1 —
ag = [|A;(14+A)"7| —flzjg Y

_ 1-g@r/2)
bo:= |B;/2(1+ B) Y| = sup—=>""""
0 := || B:2( )l Az([)) (A4 02 <

El

(3.19

I. For R1(¢) we have

Ri(t) = [A+ SO KMk 21+ ApY3)

x[1+A) V2 - A+ A2+ AH A+ @+ 07
Hence by (3.1), (3.10) and (3.11),

IR < F2zall @+ A)™Y2 = A+ A2+ A)7Y.

Then by the spectral theorem we have

IA+A)" Y2 — @+ ApY2a+ 47 = suplar (3.
A>

ar(h) = (1+ W)&/Z - (1+ W)m(ur S

- (1+r—tf(m))1/2[l_ 141r/\(1+ — {(M))]

. t 12 f(tA) — 14 tA
_(1+z—f(t,\)) t(1+ 1)

Since f satisfiesf’(0) = —1 by (1.2), there exists a small positive constarguch
that for 0< s < s1,

—s/2< f(s)—1+s5<s/2, or s/2<1-— f(s)<3s/2

Then
supla,(A)| = supla; (/)|
A>0 n=0
1/2 —
_ t >/ [f(w) =1+ p
p=0 N1+1— f(n) t+pu
=max| sup la,(u/nl, suplai(u/nl}.
O<us<s1 u>s1

As for the first component in the last member above, we have, singatisfies (1.5)
with « > 3/2,

4 V2[ flep® —3/2.1/2
sup la;(u/t)| < sup < V2 fles A2
ospzsr Osussl(t + M/Z) 4 1
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As for the second component, since, by (1.4), for the sagves above there exists a
positive constand = §(s1) < 1 such thatifs > 51 then f(s) <1 — 8(s1), we have

t 1/2
—) 8(s) ™21 2,
:;E'W/”'fﬁ - 5(s1)) 1+ ag) < 8(s1)"Y2(1 + ap)r

This proves the estimate faé1(z).

II. The proof forR,(¢) is the same as faR1(r). We have only to replacg,, A and f
by B;/2, B andg, and only note that

Ro(t) = [+ SO K2 [k, Y2+ 1B Y2 [ + 3B o)~ Y2 + B2 Y?]

x [+ B2 ™% — A+ B 2?21+ B @+ B)A+ O

lll. For R3(¢) we have

x [B,/2(1+ B)~ ](1+ B)(l +0)7t
+ (1 2@+ S KA [k A
x [(tADY?B, 21+ B A+ B)(1+ )7t
+ 22[@+ 507K P (KB
x [(5Bi2Y2 A1+ A~ @+ A) (L + C)—l).
It follows by (3.1), (3.9), (3.10) and (3.14) that

IR0l = [ %2220+ (352200 + 2 22 )aolar’? = 2 (a0 + bojar .

This completes the proof of Lemma 3.2. Thus we have proved (3.6), so that by Lemma
3.1 with F(¢) in (3.4),

||F(t/n)" — ¢ || = 8_2t_1/268t0(n_1/2), n — 0o, (3.15

and in particular, the symmetric product case of the theorem.

(b) The non-symmetric product case. What we have proved in the symmetric product
case (a) of the theorem, namely, (3.15), is tRat/n)" = ¢~'C + O,(t, n), where
0,(t, n) is some bounded operator with norm of ordef: ~/2¢% 0 (n=1/2) for n large
andr > 0 with 0 < § < 1. We are now going to show this implies thats /n)" =
e+ 0,(t, n); here it should be noted that the following proof is equally valid, even if
0,(t, n) means some bounded operator with norm of such an orderteed O (n—)
for some O< « < 1 as we have had on the right-hand side of (2.2) in Lemma 2.1.
Giveng(r), putgi(r) = g(21)Y? or g1(1)2 = g(21). We can see that; satisfies the
same condition ag andg. Put F1(t) = g1(tB/2) f(tA)g1(t B/2), similarly to (3.4).
Then by the symmetric product case (a), we have

Fi(t/n)" = [g1(1B/2n) f (tA/n)g1(t B/2m)]" = ™' + 0, (1, n). (3.16)
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Then we have by (3.5) and (3.16),

G(t/n)" = [f(tA/m)gtB/m]" = [f(tA/n)ga(tB/2n)?]"
= f(tA/n)g1(tB/2n)F1(t/n)" tg1(tB/2n)
= f(tA/n)ga(tB/2n)[e”""VC/" 1+ 0, (1, n)]g1(tB/2n)
= f(tA/n)g1(t B/2n)e"""VIC/M g1 (1 B/2n) + O, (1, n).

(3.17)

In the following lemma we are denoting p¥/, V] = UV — VU the commutator of
bounded linear operatots andV.

Lemma33.Fort =t/nort =t/2n,
ILf(zA), e Cll =8t 0™,
Ig(xB), el =871 0™, Nlgr(xB), e "1 =671 0™,

with 0 < § < 1 a congstant. Therefore the norm bounds on the right-hand side are of
order O (n~1) uniformly on each compact z-interval in the closed half line [0, co).

If C isdtrictly positive, i.e. C > 7 for some constant n > 0, then these norm bounds
are of order O (n—1) uniformly on the whole closed half line [0, c0).

Proof. We have only to prove the first one fgi(z A). We see by (3.2) fo$ > 0,
[f(xA), e D= (f(rA)e™ O — T OFO f(z )

=" ((1—1A)e ' OTO —o710TO 1 —74)))

— —eStI(Afe_t(8+c) _ e_t(8+C)Ar).
Since by (3.1) and (3.14) the norm of
Are™ OO = AL+ A TA+ A A0 TA+ O +0) (5 +C)e "+
is bounded byigae~1/(8¢) and similarly fore "¢+ A, we havel|[ f(t A), e'C]|| =
agae 1871 O (n1).

In caseC is strictly positive, i.eC > 5 for n > 0, we may begin the above argument
with 8 = 0to getthe norm bountid e '€ || < agae™1/(nt), sothat|[ f(t A), e~'C]| =
aoae_ln_lO(n_l).

This proves Lemma 3.3.0
By Lemma 3.3, we obtain from (3.17),

Gt/m)" = [f(tA/mgB/mI" = f(tA/n)g(tB/n)e” "~ D" 1+ 0,(t,n)
= f(tA/n)e”"VIC/2 (1 B )= VICI2N L O (2, n) (3.18)
= DI/ £t A ) g (1B /n)e”"TVICI2 L 0 (2, ).

Lemma34. Fort =t/n,

|@+ O f(zA)gB) — 1L+ O = 0(n).
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Proof. We have by (3.2),

L+ O V?[f(xAEEB) —e T ]1+ )72
=1+0O) YV [1-14)A-1B) —eTC]A+ )72
=t1+0O)Y?c;a+0) Y-+ 0)Y%A, + BHA+ )2
+72A+ )24, B, 1+ C) Y2
= E1(1) + E2(1) + E3(7).
ItiseasytoseethdtF1(t)| < r.Wehaveals@E2(t)|| < (ap+bo)t and||E3(7)| <
(aobo)Y/?t, by (3.3), because
Ex(t) = —t(1+O) Y20+ AV L+ A) 24,1+ 4)7V?]
x (1+ A2+ c) Y2
— 11+ O+ BY?[(L+ B)"Y?B.(1+ B) ]
x (1+ B)Y2(1+ 072,
E3(t) = t(1+ O) Y21+ A)Y2[(1+ A)~H2AY2]
x (tADY2(rB)Y2[BY2(1+ B Y31+ BYYA1 + )2

This proves Lemma 3.4.0

Finally, by Lemma 3.4 we obtain from (3.18),

G(t/n)" = [f@A/n)gtB/m)]"

= e~ DI 4 V(A4 )TVt A/m)g(tB/n)(L+ C)H?)
x (L4 C)Y2e==1iC/2n 4 0 (1, n)

= ¢~ (TDIC/2 (1 4 O)2[(1 4 )TV A+ O)THE 4 0, (t/)]
x (14 C)Y2e=(=DIC/2n 4 (2, m)

— e 1C 4 [e—(rz—l)tC/Zn(1+ C)l/z]Op(t/n)[(l—i— C)l/Ze—(n—l)tC/Zn]
+ 0,(t,n)

= 'C 4570, + 0,1, 1)

=e'C 4 0,(,n).
(3.19
Here 0, (t/n) and 0, (n~1) also mean some bounded operators with norm of order
O(t/n) and O (n~1), respectively, forn large andt > 0. Therefore we can conclude
from (3.19),

1G(@/n)" —e €= 0mnY?), n— oo, (3.20)

uniformly on each compactinterval in the open half lin€0, co).

If C is strictly positive, then we can see this norm bouhg —1/2) on the right-hand
side of (3.20) is uniform on the closed half lifig, oo) for everyT > 0, taking this case
of both Lemma 2.1 and Lemma 3.3 into consideration.

Thus we have proved the non-symmetric product case of the theorem.
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4. Remarkson Conditions (1.4) and (1.5)

In this section, we note that condition (1.4) is necessary, and make a remark on what
both conditions (1.4) and (1.5) imply.

First, let f andg be real-valued smooth functions satisfying (1.2) and (1.5) such that
f(s) = g(s) = 1for s > 1. Note that thesg’ andg do not satisfy (1.4). LeH be
a nonnegative selfadjoint operator#h Assume that has only discrete eigenvalues
divergent to infinity. Let{xj};?‘;l be the eigenvalues with//j}j?‘;l the corresponding
normalized eigenvectors.

Take three operatorg, B andC asA = B = %H, C=A+B=H Fixn
sufficiently large, and tak& so large that.y > 2n. Then

[f(A/n)g(B/m)]" Yy = [f(H/2n)g(H /2n)]" YN
=[f(An/20)g(AN/20)]" YN = YN,

which preserves the norm as vectors in the Hilbert sgdc®n the other hand, we
havee Cyy = e Hyy = e *Nyy — 0, strongly asN — oo. This means that
[f(A/n)g(B/n)]" never converges @ € in operator norm.

Next, in general, letf andg be real-valued smooth functions satisfying (1.2) and
(1.5), but one of them, say;, not (1.4). We may suppose thifl) = 1. Let H be a
selfadjoint operator as above but with eigenval{les = j}?"zl. TakeA = H, B =
O,C=A+B=H.Then

Lf(A/mgB/m)" Y = f(H/n)"Yn = f(1)"Yn = Yn,

which preserves the norm, whi,ee €y, = e, = ey, — 0, strongly as: — oc.
This means again th@y (A/n)g(B/n)]"* never converges to~¢ in operator norm.

Thus, finally we arrive at the following remark on both conditions (1.4) and (1.5).
Since the Theorem should also hold in both the special and trivial 8ase® orC = A,
andA = O or C = B, we expect (2.1) in Lemma 2.1 to hold with(z) = f(tA) and
a=1/2:

IA+A)™ =@+ AT =06, 10 (4.1)
and similarly withF (t) = g(tB/2)2. Here note thag(s/2)? also have the same prop-

erties (1.2), (1.4) and (1.5) ags). The fact is, conditions (1.4) and (1.5) are giving
sufficient conditions for (4.1) to hold. In fact, for> 0 put

oy — A A 1 fay) =1+
aj) = (14 =—-2) = @+n = i o

Then the right-hand side of (4.1) is equal to

/ / _1+
suplal ()] = supla, (/1| = sup—11T ad 4.2)

220 =0 =0 (1 + WA +1— f()

Take the same; > 0 as in proof | of Lemma 3.2. Then, dividing the supremum over
u > 0in (4.2) into those over two parts9 1 < s1 andu > 51, we have by (1.5),

/ [f]KI"LKI Kk—1
su Nl < sup ———— < [,
OSMSDSllat(M/ )= 0§M5psl CEWe T2 = [f]
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and by (1.4) withag in (3.14),

/ tHf(w) — 14 p (1 + aop)t
Pl /Dl < S 061 ~ o 4 3Gs0)

)s<1+aw8@o‘%.

Therefore, as for the bound of (4.1) we can conclade* 1), which, for smalls > 0,
is less than or equal t0 (1/2) because @ < « < 2.
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