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Abstract: The norm convergence of the Trotter–Kato product formula with error bound
is shown for the semigroup generated by that operator sum of two nonnegative selfadjoint
operatorsA andB which is selfadjoint.

1. Introduction

If A andB are selfadjoint operators bounded below in a Hilbert spaceH with domains
D[A] andD[B] and if their sumA+B is essentially selfadjoint onD[A] ∩D[B], then
the exponential product formula

lim
n→∞(e

−tB/2ne−tA/ne−tB/2n)n = lim
n→∞(e

−tA/ne−tB/n)n = e−tC (1.1)

holds in strong operator topology, whereC is the closure ofA + B. The convergence
in (1.1) is uniform on each compactt-interval in the closed half line[0,∞). This is the
celebrated result by Trotter [26]. It was extended by Kato [15] to the case for the form
sumC of two arbitrary nonnegative selfadjoint operatorsA andB.

The aim of the present paper is to prove that (1.1) holds even in operator norm,
uniformly on each compactt-interval in the open half line(0,∞), together with an
error bound of orderO(n−1/2), when the sumC := A + B is selfadjoint onD[C] =
D[A] ∩D[B].

To state our theorem, consider real-valued, Borel measurable functionsf on [0,∞)

satisfying
0 ≤ f (s) ≤ 1, f (0) = 1, f ′(0) = −1. (1.2)
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Some examples of functions satisfying (1.2) are

f (s) = e−s , f (s) = (1 + k−1s)−k, k > 0. (1.3)

In fact, it was also forf (tA), g(tB) in place ofe−tA, e−tB with f andg being the
functions satisfying (1.2) that Kato [15] proved the product formula (1.1) in strong
operator topology.

We are interested in those functionsf which satisfy (1.2) and further that for every
smallε > 0 there exists a positive constantδ = δ(ε) < 1 such that

f (s) ≤ 1 − δ(ε), s ≥ ε, (1.4)

and that for some fixed constantκ with 1< κ ≤ 2,

[f ]κ := sup
s>0

|f (s)− 1 + s|
sκ

< ∞. (1.5)

A functionf (s) satisfying (1.2) has property (1.4), if it is non-increasing. Of course, the
functions in (1.3) have properties (1.4) and (1.5).

Theorem. Let f and g be functions having properties (1.4) and (1.5) with κ ≥ 3/2 as
well as (1.2). If A and B are nonnegative selfadjoint operators in a Hilbert space H
with domains D[A] and D[B] such that the operator sum C := A+B is selfadjoint on
D[C] = D[A] ∩D[B], then it holds in operator norm that∥∥[g(tB/2n)f (tA/n)g(tB/2n)]n − e−tC

∥∥ = O(n−1/2),∥∥[f (tA/n)g(tB/n)]n − e−tC
∥∥ = O(n−1/2), n → ∞.

(1.6)

The convergence is uniform on each compact t-interval in the open half line (0,∞) and
further, if C is strictly positive, i.e. C ≥ η for some constant η > 0, uniform on the
closed half line [T ,∞) for every fixed T > 0.

The first original result of such a norm convergence of the Trotter–Kato product
formula (1.1) was proved by Rogava [21] under an additional condition thatA is strictly
positive andB is A-bounded, with error bound of orderO(n−1/2 logn). The next is a
result by Helffer [6] for the Schrödinger operatorsH = H0 + V ≡ −1

2�+ V (x) with
C∞ nonnegative potentialsV (x), roughly speaking, growing at most of orderO(|x|2)
for large|x| with error bound of orderO(n−1). Each of these two results is independent
of and does not cover the other. Then under some stronger or more general conditions,
several further results are obtained.

As for the abstract case, a better error boundO(n−1 logn) than Rogava’s is obtained
by Ichinose–Tamura [13] (cf. [11]) whenB is Aα-bounded for some 0< α < 1, even
though theB = B(t) may bet-dependent, and by Neidhardt–Zagrebnov [16, 17] (cf.
[18, 19]) whenB isA-bounded with relative bound less than 1.

As for the Schrödinger operators, a different proof to Helffer’s result was given by
Dia–Schatzman [3]. Further, more general results were proved for continuous nonneg-
ative potentialsV (x), roughly speaking, growing of orderO(|x|ρ) for large |x| with
ρ > 0, together with error bounds dependent on the powerρ (for instance, of or-
derO(n−2/ρ), if ρ ≥ 2), by Ichinose–Takanobu [7, 8], Doumeki–Ichinose–Tamura [4],
Ichinose–Tamura [12], Takanobu [24] and Ichinose–Takanobu [9, 10]. It should be noted
(see Guibourg [5], Shen [22, 23]) that in all these cases of the Schrödinger operators the
sumH = H0 + V is selfadjoint on the domainD[H ] = D[H0] ∩D[V ].
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Thus the present theorem not only extends Rogava’s result, but also can include all
the results mentioned above. It should be emphasized that the error boundO(n−1/2)

obtained, in fact, is even better than Rogava’s, and than the error bounds (e.g. [8, 4, 12,
9]) known for the Schrödinger operators with potentialsV (x) growing of orderO(|x|ρ)
whenρ > 4.

We note here that unless the sumA + B is selfadjoint onD[A] ∩ D[B], the norm
convergence of (1.1) does not always hold, even though the sum is essentially selfadjoint
there andB is A-form-bounded with relative bound less than 1. This fact has recently
been pointed out by Hiroshi Tamura [25] with a counterexample.

To prove our theorem, in Sect. 2, we establish an operator-norm version of Chernoff’s
theorem (cf. [1, 2]) with error bounds.The theorem is proved in Sect. 3. Section 4 remarks
on conditions (1.4) and (1.5).

2. Operator-norm Version of Chernoff’s Theorem

To prove the theorem, we shall use the following operator-norm version of Chernoff’s
theorem (cf. [1, 2]) with error bounds. The case without error bounds was noted by
Neidhardt–Zagrebnov [18].

Lemma 2.1. Let C be a nonnegative selfadjoint operator in a Hilbert space H and
let {F(t)}t≥0 be a family of selfadjoint operators with 0 ≤ F(t) ≤ 1. Define St =
t−1(1 − F(t)). Then in the following two assertions, for 0 < α ≤ 1, (a) implies (b) .

(a)
‖(1 + St )

−1 − (1 + C)−1‖ = O(tα), t ↓ 0. (2.1)

(b) For any δ > 0 with 0 < δ ≤ 1,

‖F(t/n)n − e−tC‖ = δ−2t−1+αeδtO(n−α), n → ∞, (2.2)

for all t > 0.

Therefore, for 0 < α < 1 (resp. α = 1), the convergence in (2.2) is uniform on each
compact t-interval in the open half line (0,∞) (resp. in the closed half line [0,∞)).

Moreover, if C is strictly positive, i.e. C ≥ η for some constant η > 0, the error
bound on the right-hand side of (2.2) can also be replaced by (1+ 2/η)2t−1+αO(n−α),
so that, for 0 < α < 1 (resp. α = 1), the convergence in (2.2) is uniform on the closed
half line [T ,∞) for every fixed T > 0 (resp. on the whole closed half line [0,∞)).

Proof. Assume (a). Lett > 0. We have

F(t/n)n − e−tC = (F (t/n)n − e−tSt/n)+ (e−tSt/n − e−tC). (2.3)

To estimate the first term on the right-hand side of (2.3), let us note

0 ≤ e−n(1−λ) − λn ≤ e−1/n, for 0 ≤ λ ≤ 1. (2.4)

Though this can be in fact shown with the upper bound 2e−2/n in place ofe−1/n, we shall
content ourselves with it. To see (2.4) is easy. Since the functionξ(λ) := e−n(1−λ) − λn

attains its maximum atλ0 satisfyinge−n(1−λ0) = λn−1
0 , we obtain 0≤ ξ(λ) ≤ ξ(λ0) =

λn−1
0 − λn0 = (1/n)n(1 − λ0)e

−n(1−λ0) ≤ e−1/n.
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Then by (2.4), we have by the spectral theorem for everyt > 0,

‖F(t/n)n − e−tSt/n‖ = ‖F(t/n)n − e−n(1−F(t/n))‖ ≤ e−1n−1. (2.5)

To estimate the second term, we use a formula in Kato [14, IX.4, (2.27)]

(1 + Sε)
−1[e−t (δ+Sε) − e−t (δ+C)](1 + C)−1

=
∫ t

0
e−(t−s)(δ+Sε)[(1 + Sε)

−1 − (1 + C)−1]e−s(δ+C)ds

=
∫ t/2

0
+

∫ t

t/2
≡ S1 + S2,

(2.6)

whereδ > 0 andε > 0. PuttingD(ε) = (1 + Sε)
−1 − (1 + C)−1 in the following, we

are assuming‖D(ε)‖ = O(εα) by (2.1). ForS1 we have by integration by parts

S1 =
[
−e−(t−s)(δ+Sε)D(ε)e−s(δ+C)(δ + C)−1

]s=t/2
s=0

+
∫ t/2

0
(δ + Sε)e

−(t−s)(δ+Sε)D(ε)e−s(δ+C)(δ + C)−1ds

= − e−(t/2)(δ+Sε)D(ε)e−(t/2)(δ+C)(δ + C)−1 + e−t (δ+Sε)D(ε)(δ + C)−1

+
∫ t/2

0
(δ + Sε)e

−(t−s)(δ+Sε)D(ε)e−s(δ+C)(δ + C)−1ds.

Then

(1+Sε)S1(1 + C)

= − (1 + Sε)e
−(t/2)(δ+Sε)D(ε)e−(t/2)(δ+C)(δ + C)−1(1 + C)

+ (1 + Sε)e
−t (δ+Sε)D(ε)(δ + C)−1(1 + C)

+
∫ t/2

0
(1 + Sε)(δ + Sε)e

−(t−s)(δ+Sε)D(ε)e−s(δ+C)(δ + C)−1(1 + C)ds,

and similarly forS2,

(1+Sε)S2(1 + C)

= (1 + Sε)(δ + Sε)
−1D(ε)e−t (δ+C)(1 + C)

− (1 + Sε)(δ + Sε)
−1e−(t/2)(δ+Sε)D(ε)e−(t/2)(δ+C)(1 + C)

+
∫ t

t/2
(1 + Sε)(δ + Sε)

−1e−(t−s)(δ+Sε)D(ε)e−s(δ+C)(δ + C)(1 + C)ds.

We know

e−δt (e−tSε − e−tC) = (1 + Sε)S1(1 + C)+ (1 + Sε)S2(1 + C). (2.7)
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Sinceλγ e−λ ≤ (γ /e)γ for λ ≥ 0 andγ ≥ 0, we can estimate (2.7) with assumption
(2.1) by the spectral theorem as

‖(1 + Sε)S1(1 + C)‖ ≤ (
3e−1/t + 4e−2

∫ t/2

0
(t − s)−2ds

)
O(εα)/δ2

≤ 2O(εα)/(δ2t),

‖(1 + Sε)S2(1 + C)‖ ≤ (
3e−1/t + 4e−2

∫ t

t/2
s−2ds

)
O(εα)/δ2 ≤ 2O(εα)/(δ2t).

Here we have needed thatδ ≤ 1. Hence with (2.7),

‖e−δt (e−tSε − e−tC)‖ = ‖(1 + Sε)(S1 + S2)(1 + C)‖ ≤ 4O(εα)/(δ2t). (2.8)

It follows that withε = t/n the second term of (2.3) obeys

‖e−tSt/n − e−tC‖ ≤ (δ2t)−1eδtO((t/n)α) = δ−2t−1+αeδtO(n−α). (2.9)

Thus, combining (2.5) and (2.9) with (2.3), we have the assertion (b) or (2.2).
In caseC is strictly positive, that is,C ≥ η for some constantη > 0, we can show

Sε ≥ η/2 or‖S−1
ε ‖ ≤ 2/η for sufficiently smallε > 0. In fact, by (2.1),

‖(1 + Sε)
−1‖ = ‖(1 + C)−1‖ +O(εα) ≤ (1 + η)−1 +O(εα) ≤ (1 + η/2)−1 < 1,

so thatSε has bounded inverse

S−1
ε = [(1 + Sε)− 1]−1 = (1 + Sε)

−1[1 − (1 + Sε)
−1]−1

with bound‖S−1
ε ‖ ≤ 2/η. Therefore in the above argument around (2.8), though(1 +

Sε)(δ+Sε)
−1 is bounded as well as(1+C)(δ+C)−1, with bound(1+η/2)(δ+η/2)−1

in place of 1/δ, one can in turn use the formula (2.5) withδ = 0, and show, since both
(1+Sε)S

−1
ε and(1+C)C−1 are bounded with bound(1+2/η) for smallε > 0, that the

right-hand side of (2.9) simply becomes of order(1+2/η)2t−1+αO(n−α). In particular,
it is of orderO(n−α) uniformly on the closed half line[T ,∞) for everyT > 0 for
0 < α < 1, and on the whole closed half line[0,∞) for α = 1. This proves Lemma 2.1.
��

3. Proof of Theorem

We are now in a position to prove the theorem.
First note that sinceC = A+ B is itself selfadjoint and so a closed operator, by the

closed graph theorem there exist constantsa1 anda2 such that

‖Au‖ + ‖Bu‖ ≤ a1‖Cu‖ + a2‖u‖, u ∈ D[C] = D[A] ∩D[B].
Therefore we may assume for some constanta > 0 that

‖(1 + A)u‖ + ‖(1 + B)u‖ ≤ a‖(1 + C)u‖, u ∈ D[C] = D[A] ∩D[B]. (3.1)

For t > 0 define positive bounded operators

At = t−1[1 − f (tA)], Bt = t−1[1 − g(tB)], Ct = t−1[1 − e−tC]. (3.2)
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Note that
‖tAt‖ = ‖1 − f (tA)‖ ≤ 1, ‖tBt‖ = ‖1 − g(tB)‖ ≤ 1. (3.3)

The proof of the theorem is now divided into two cases, (a) the symmetric product
case concerning

F(t) = g(tB/2)f (tA)g(tB/2), (3.4)

and (b) the non-symmetric product case concerning

G(t) = f (tA)g(tB). (3.5)

In the former case we shall use Lemma 3.1. The latter case will follow from the former
case.

(a) The symmetric product case. To prove the symmetric product case of the theorem,
by Lemma 2.1 it suffices to show in operator norm that withSt = t−1(1 − F(t)),

‖(1 + St )
−1 − (1 + C)−1‖ = O(t1/2), t ↓ 0. (3.6)

We should already know (cf. Chernoff [1, 2], Kato [15] and Reed–Simon [20]) that
(1 + St )

−1 → (1 + C)−1 in strong operator topology.
Define a positive bounded operator

Kt = 1 + At + Bt/2 − t
4B

2
t/2

= 1 + At + 1
2Bt/2 + 1

2B
1/2
t/2 (1 − t

2Bt/2)B
1/2
t/2

= 1 + At + B
1/2
t/2

(
1+g(tB/2)

2

)
B

1/2
t/2 ≥ 1.

(3.7)

Rewrite 1+ St , by introducingQt , as

1 + St = 1 + At + Bt/2 − t
4B

2
t/2 + t2

4 Bt/2AtBt/2 − t
2(AtBt/2 + Bt/2At)

= K
1/2
t (1 +Qt)K

1/2
t ,

Qt = t2

4K
−1/2
t Bt/2AtBt/2K

−1/2
t − t

2K
−1/2
t (AtBt/2 + Bt/2At)K

−1/2
t .

(3.8)

Then we need that 1+Qt has bounded inverse uniformly fort > 0. The proof of this
fact in Reed–Simon [20] seems to contain a small flaw. So we prove it in the following
lemma. At this stage note that differing from their proof, ours is exchanging the roles of
A andB.

Lemma 3.1. For t > 0,
‖(1 +Qt)

−1‖ ≤ 2/(3 − √
5). (3.9)

If (3.9) is proved, then we can obtain that fort > 0,

‖(1 + St )
−1K

1/2
t ‖ = ‖K−1/2

t (1 +Qt)
−1‖ ≤ 2/(3 − √

5). (3.10)

Proof of Lemma 3.1. We shall use (3.3) and

‖A1/2
t K

−1/2
t ‖ ≤ ‖(1 + At)

1/2K
−1/2
t ‖ ≤ 1,

2−1/2‖B1/2
t/2K

−1/2
t ‖ ≤ ‖(1 + 1

2Bt/2)
1/2K

−1/2
t ‖ ≤ 1.

(3.11)
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We see from the definition ofQt in (3.8),

Qt = K
−1/2
t ( t2Bt/2 − r)At (

t
2Bt/2 − r)K

−1/2
t

− (1−r)t
2 K

−1/2
t (AtBt/2 + Bt/2At)K

−1/2
t − r2K

−1/2
t AtK

−1/2
t

≥ − (1−r)t
2 K

−1/2
t (AtBt/2 + Bt/2At)K

−1/2
t − r2K

−1/2
t AtK

−1/2
t ,

wherer is a constant with 0< r < 1 to be determined later. Hence we have foru ∈ H,

(Qtu,u)

≥ − 2(1 − r)Re
(
(tAt )

1/2(1−g(tB/2)
1+g(tB/2)

)1/2(1+g(tB/2)
2

)1/2
B

1/2
t/2K

−1/2
t u, A

1/2
t K

−1/2
t u

)

− r2
∥∥A1/2

t K
−1/2
t u

∥∥2

≥ − 2(1 − r)
∥∥A1/2

t K
−1/2
t u

∥∥∥∥(1+g(tB/2)
2

)1/2
B

1/2
t/2K

−1/2
t u

∥∥ − r2
∥∥A1/2

t K
−1/2
t u

∥∥2

≥ − (1 − r)
[
p
∥∥A1/2

t K
−1/2
t u

∥∥2 + (1/p)
∥∥(1+g(tB/2)

2

)1/2
B

1/2
t/2K

−1/2
t u

∥∥2
]

− r2
∥∥A1/2

t K
−1/2
t u

∥∥2
.

Herep is an aribitray positive constant. Choosep such that(1− r)p+ r2 = (1− r)/p,

namely,p = −r2+
√
r4+4(1−r)2

2(1−r) . Then withβ(r) = r2+
√
r4+4(1−r)2

2 , we have

(Qtu, u) ≥ −β(r)
[∥∥A1/2

t K
−1/2
t u

∥∥2 + ∥∥(1+g(tB/2)
2

)1/2
B

1/2
t/2K

−1/2
t u

∥∥2
]

= −β(r)
([
At + (1+g(tB/2)

2

)
Bt/2

]
K

−1/2
t u,K

−1/2
t u

)

≥ −β(r)‖u‖2.

We can seeβ(r) attains its minimum atr =
√

5−1
2 :

β(
√

5−1
2 ) = 1

2

((√
5−1
2

)2 +
√(√

5−1
2

)4 + 4
(3−√

5
2

)2
)

= 1
4

(
3 − √

5 + (
70− 30

√
5
)1/2

)
= 1

4

(
3 − √

5 + 3
√

5 − 5
) =

√
5−1
2 .

It follows that(Qtu, u) ≥ −
√

5−1
2 ‖u‖2, so that((1 + Qt)u, u) ≥ (

1 −
√

5−1
2

)‖u‖2 =
3−√

5
2 ‖u‖2. This yields (3.9), showing Lemma 3.1.��
Now we have

(1 + St )
−1 − (1 + C)−1

= (1 + St )
−1[A+ B − (At + Bt/2 − t

4Bt/2(1 − tAt )Bt/2

− t
2(AtBt/2 + Bt/2At))

]
(1 + C)−1

= (1 + St )
−1(A− At)(1 + C)−1 + (1 + St )

−1(B − Bt/2)(1 + C)−1

+ (1 + St )
−1[ t4Bt/2(1 − tAt )Bt/2 + t

2(AtBt/2 + Bt/2At)](1 + C)−1

≡ R1(t)+ R2(t)+ R3(t).

(3.12)

We are going to show in the following lemma that all the threeRi(t) in the last
member of (3.12) converge to zero in operator norm of orderO(t1/2) ast ↓ 0.



496 Takashi Ichinose, Hideo Tamura

Lemma 3.2. For small t > 0,

‖R1(t)‖ ≤ cat1/2, ‖R2(t)‖ ≤ cat1/2, ‖R3(t)‖ ≤ cat1/2, (3.13)

with a constant c > 0 independent of t > 0.

Proof. First note by the spectral theorem that

a0 := ‖At(1 + A)−1‖ = sup
λ≥0

1 − f (tλ)

t (1 + λ)
< ∞,

b0 := ‖Bt/2(1 + B)−1‖ = sup
λ≥0

1 − g(tλ/2)

t (1 + λ)/2
< ∞.

(3.14)

I. ForR1(t) we have

R1(t) = [(1 + St )
−1K

1/2
t ][K−1/2

t (1 + At)
1/2]

× [(1 + At)
−1/2 − (1 + At)

1/2(1 + A)−1](1 + A)(1 + C)−1.

Hence by (3.1), (3.10) and (3.11),

‖R1(t)‖ ≤ 2
3−√

5
a‖(1 + At)

−1/2 − (1 + At)
1/2(1 + A)−1‖.

Then by the spectral theorem we have

‖(1 + At)
−1/2 − (1 + At)

1/2(1 + A)−1‖ = sup
λ≥0

|at (λ)|,

at (λ) =
(
1 + 1 − f (tλ)

t

)−1/2 −
(
1 + 1 − f (tλ)

t

)1/2
(1 + λ)−1

=
( t

1 + t − f (tλ)

)1/2[
1 − 1

1 + λ

(
1 + 1 − f (tλ)

t

)]

=
( t

1 + t − f (tλ)

)1/2f (tλ)− 1 + tλ

t (1 + λ)
.

Sincef satisfiesf ′(0) = −1 by (1.2), there exists a small positive constants1 such
that for 0≤ s ≤ s1,

−s/2 ≤ f (s)− 1 + s ≤ s/2, or s/2 ≤ 1 − f (s) ≤ 3s/2.

Then
sup
λ≥0

|at (λ)| = sup
µ≥0

|at (µ/t)|

= sup
µ≥0

( t

1 + t − f (µ)

)1/2 |f (µ)− 1 + µ|
t + µ

= max
{

sup
0≤µ≤s1

|at (µ/t)|, sup
µ≥s1

|at (µ/t)|
}
.

As for the first component in the last member above, we have, sincef satisfies (1.5)
with κ ≥ 3/2,

sup
0≤µ≤s1

|at (µ/t)| ≤ sup
0≤µ≤s1

( t

t + µ/2

)1/2 [f ]κµκ
t + µ

≤ √
2[f ]κsκ−3/2

1 t1/2.
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As for the second component, since, by (1.4), for the sames1 as above there exists a
positive constantδ = δ(s1) < 1 such that ifs ≥ s1 thenf (s) ≤ 1 − δ(s1), we have

sup
µ≥s1

|at (µ/t)| ≤
( t

t + δ(s1)

)1/2
(1 + a0) ≤ δ(s1)

−1/2(1 + a0)t
1/2.

This proves the estimate forR1(t).

II. The proof forR2(t) is the same as forR1(t). We have only to replaceAt, A andf
byBt/2, B andg, and only note that

R2(t) = [
(1 + St )

−1K
1/2
t

][
K

−1/2
t (1 + 1

2Bt/2)
1/2][(1 + 1

2Bt/2)
−1/2(1 + Bt/2)

1/2]
× [

(1 + Bt/2)
−1/2 − (1 + Bt/2)

1/2(1 + B)−1](1 + B)(1 + C)−1.

III. For R3(t) we have

R3(t) =
√

2
4 t

1/2[(1 + St )
−1K

1/2
t

][
K

−1/2
t B

1/2
t/2

][
( t2Bt/2)

1/2(1 − tAt )
]

× [
Bt/2(1 + B)−1](1 + B)(1 + C)−1

+
(

1
2t

1/2[(1 + St )
−1K

1/2
t

][
K

−1/2
t A

1/2
t

]
× [

(tAt )
1/2Bt/2(1 + B)−1](1 + B)(1 + C)−1

+
√

2
2 t

1/2[(1 + St )
−1K

1/2
t

][
K

−1/2
t B

1/2
t/2

]
× [

( t2Bt/2)
1/2At(1 + A)−1](1 + A)(1 + C)−1

)
.

It follows by (3.1), (3.9), (3.10) and (3.14) that

‖R3(t)‖ ≤
[√

2
4

2
√

2
3−√

5
b0 +

(
1
2

2
3−√

5
b0 +

√
2

2
2
√

2
3−√

5

)
a0

]
at1/2 ≤ 2

3−√
5
(a0 + b0)at

1/2.

This completes the proof of Lemma 3.2. Thus we have proved (3.6), so that by Lemma
3.1 withF(t) in (3.4),

∥∥F(t/n)n − e−tC
∥∥ = δ−2t−1/2eδtO

(
n−1/2), n → ∞, (3.15)

and in particular, the symmetric product case of the theorem.

(b) The non-symmetric product case. What we have proved in the symmetric product
case (a) of the theorem, namely, (3.15), is thatF(t/n)n = e−tC + Op(t, n), where
Op(t, n) is some bounded operator with norm of orderδ−2t−1/2eδtO(n−1/2) for n large
and t > 0 with 0 < δ ≤ 1. We are now going to show this implies thatG(t/n)n =
e−tC +Op(t, n); here it should be noted that the following proof is equally valid, even if
Op(t, n)means some bounded operator with norm of such an orderδ−2t−1+αeδtO(n−α)
for some 0< α ≤ 1 as we have had on the right-hand side of (2.2) in Lemma 2.1.

Giveng(t), putg1(t) = g(2t)1/2 or g1(t)
2 = g(2t). We can see thatg1 satisfies the

same condition asf andg. PutF1(t) = g1(tB/2)f (tA)g1(tB/2), similarly to (3.4).
Then by the symmetric product case (a), we have

F1(t/n)
n = [g1(tB/2n)f (tA/n)g1(tB/2n)]n = e−tC +Op(t, n). (3.16)
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Then we have by (3.5) and (3.16),

G(t/n)n = [f (tA/n)g(tB/n)]n = [
f (tA/n)g1(tB/2n)

2]n
= f (tA/n)g1(tB/2n)F1(t/n)

n−1g1(tB/2n)

= f (tA/n)g1(tB/2n)
[
e−(n−1)tC/n +Op(t, n)

]
g1(tB/2n)

= f (tA/n)g1(tB/2n)e
−(n−1)tC/ng1(tB/2n)+Op(t, n).

(3.17)

In the following lemma we are denoting by[U,V ] = UV − VU the commutator of
bounded linear operatorsU andV .

Lemma 3.3. For τ = t/n or τ = t/2n,

‖[f (τA), e−tC]‖ = δ−1eδtO(n−1),

‖[g(τB), e−tC]‖ = δ−1eδtO(n−1), ‖[g1(τB), e
−tC]‖ = δ−1eδtO(n−1),

with 0 < δ ≤ 1 a constant. Therefore the norm bounds on the right-hand side are of
order O(n−1) uniformly on each compact t-interval in the closed half line [0,∞).

If C is strictly positive, i.e. C ≥ η for some constant η > 0, then these norm bounds
are of order O(n−1) uniformly on the whole closed half line [0,∞).

Proof. We have only to prove the first one forf (τA). We see by (3.2) forδ > 0,

[f (τA), e−tC] = eδt
(
f (τA)e−t (δ+C) − e−t (δ+C)f (τA)

)
= eδt

(
(1 − τAτ )e

−t (δ+C) − e−t (δ+C)(1 − τAτ )
)

= −eδt τ (Aτ e−t (δ+C) − e−t (δ+C)Aτ ).

Since by (3.1) and (3.14) the norm of

Aτe
−t (δ+C) = t−1[Aτ (1+A)−1][(1+A)(1+C)−1][(1+C)(δ+C)−1]t (δ+C)e−t (δ+C)

is bounded bya0ae
−1/(δt) and similarly fore−t (δ+C)Aτ , we have‖[f (τA), e−tC]‖ =

a0ae
−1δ−1eδtO(n−1).

In caseC is strictly positive, i.e.C ≥ η for η > 0, we may begin the above argument
with δ = 0 to get the norm bound‖Aτe−tC‖ ≤ a0ae

−1/(ηt), so that‖[f (τA), e−tC]‖ =
a0ae

−1η−1O(n−1).
This proves Lemma 3.3.��

By Lemma 3.3, we obtain from (3.17),

G(t/n)n = [f (tA/n)g(tB/n)]n = f (tA/n)g(tB/n)e−(n−1)tC/n +Op(t, n)

= f (tA/n)e−(n−1)tC/2ng(tB/n)e−(n−1)tC/2n +Op(t, n)

= e−(n−1)tC/2nf (tA/n)g(tB/n)e−(n−1)tC/2n +Op(t, n).

(3.18)

Lemma 3.4. For τ = t/n,
∥∥(1 + C)−1/2[f (τA)g(τB)− e−τC](1 + C)−1/2

∥∥ = O(τ).
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Proof. We have by (3.2),

(1 + C)−1/2[f (τA)g(τB)− e−τC
]
(1 + C)−1/2

= (1 + C)−1/2[(1 − τAτ )(1 − τBτ )− e−τC
]
(1 + C)−1/2

= τ(1 + C)−1/2Cτ (1 + C)−1/2 − τ(1 + C)−1/2(Aτ + Bτ )(1 + C)−1/2

+ τ2(1 + C)−1/2AτBτ (1 + C)−1/2

≡ E1(τ )+ E2(τ )+ E3(τ ).

It is easy to see that‖E1(τ )‖ ≤ τ .We have also‖E2(τ )‖ ≤ (a0+b0)τ and‖E3(τ )‖ ≤
(a0b0)

1/2τ , by (3.3), because

E2(τ ) = − τ(1 + C)−1/2(1 + A)1/2
[
(1 + A)−1/2Aτ (1 + A)−1/2]

× (1 + A)1/2(1 + C)−1/2

− τ(1 + C)−1/2(1 + B)1/2
[
(1 + B)−1/2Bτ (1 + B)−1/2]

× (1 + B)1/2(1 + C)−1/2,

E3(τ ) = τ(1 + C)−1/2(1 + A)1/2
[
(1 + A)−1/2A1/2

τ

]
× (τAτ )

1/2(τBτ )
1/2[B1/2

τ (1 + B)−1/2](1 + B)1/2(1 + C)−1/2.

This proves Lemma 3.4.��
Finally, by Lemma 3.4 we obtain from (3.18),

G(t/n)n = [
f (tA/n)g(tB/n)

]n
= e−(n−1)tC/2n(1 + C)1/2

(
(1 + C)−1/2f (tA/n)g(tB/n)(1 + C)−1/2)

× (1 + C)1/2e−(n−1)tC/2n +Op(t, n)

= e−(n−1)tC/2n(1 + C)1/2
[
(1 + C)−1/2e−tC/n(1 + C)−1/2 +Op(t/n)

]
× (1 + C)1/2e−(n−1)tC/2n +Op(t, n)

= e−tC + [
e−(n−1)tC/2n(1 + C)1/2

]
Op(t/n)

[
(1 + C)1/2e−(n−1)tC/2n]

+Op(t, n)

= e−tC + δ−1eδtOp(n
−1)+Op(t, n)

= e−tC +Op(t, n).

(3.19)
HereOp(t/n) andOp(n

−1) also mean some bounded operators with norm of order
O(t/n) andO(n−1), respectively, forn large andt > 0. Therefore we can conclude
from (3.19),

‖G(t/n)n − e−tC‖ = O(n−1/2), n → ∞, (3.20)

uniformly on each compactt-interval in the open half line(0,∞).
If C is strictly positive, then we can see this norm boundO(n−1/2) on the right-hand

side of (3.20) is uniform on the closed half line[T ,∞) for everyT > 0, taking this case
of both Lemma 2.1 and Lemma 3.3 into consideration.

Thus we have proved the non-symmetric product case of the theorem.
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4. Remarks on Conditions (1.4) and (1.5)

In this section, we note that condition (1.4) is necessary, and make a remark on what
both conditions (1.4) and (1.5) imply.

First, letf andg be real-valued smooth functions satisfying (1.2) and (1.5) such that
f (s) = g(s) = 1 for s > 1. Note that thesef andg do not satisfy (1.4). LetH be
a nonnegative selfadjoint operator inH. Assume thatH has only discrete eigenvalues
divergent to infinity. Let{λj }∞j=1 be the eigenvalues with{ψj }∞j=1 the corresponding
normalized eigenvectors.

Take three operatorsA, B andC asA = B = 1
2H, C = A + B = H. Fix n

sufficiently large, and takeN so large thatλN > 2n. Then

[f (A/n)g(B/n)]nψN = [f (H/2n)g(H/2n)]nψN
= [f (λN/2n)g(λN/2n)]nψN = ψN,

which preserves the norm as vectors in the Hilbert spaceH. On the other hand, we
havee−CψN = e−HψN = e−λNψN → 0, strongly asN → ∞. This means that
[f (A/n)g(B/n)]n never converges toe−C in operator norm.

Next, in general, letf andg be real-valued smooth functions satisfying (1.2) and
(1.5), but one of them, say,f not (1.4). We may suppose thatf (1) = 1. LetH be a
selfadjoint operator as above but with eigenvalues{λj = j}∞j=1. TakeA = H, B =
O, C = A+ B = H . Then

[f (A/n)g(B/n)]nψn = f (H/n)nψn = f (1)nψn = ψn,

which preserves the norm, whilee−Cψn = e−Hψn = e−nψn → 0, strongly asn → ∞.
This means again that[f (A/n)g(B/n)]n never converges toe−C in operator norm.

Thus, finally we arrive at the following remark on both conditions (1.4) and (1.5).
Since theTheorem should also hold in both the special and trivial casesB = O orC = A,
andA = O or C = B, we expect (2.1) in Lemma 2.1 to hold withF(t) = f (tA) and
α = 1/2:

‖(1 + At)
−1 − (1 + A)−1‖ = O(t1/2), t ↓ 0, (4.1)

and similarly withF(t) = g(tB/2)2. Here note thatg(s/2)2 also have the same prop-
erties (1.2), (1.4) and (1.5) asg(s). The fact is, conditions (1.4) and (1.5) are giving
sufficient conditions for (4.1) to hold. In fact, fort > 0 put

a′
t (λ) =

(
1 + 1 − f (tλ)

t

)−1 − (1 + λ)−1 = f (tλ)− 1 + tλ

(1 + λ)(t + 1 − f (tλ))
.

Then the right-hand side of (4.1) is equal to

sup
λ≥0

|a′
t (λ)| = sup

µ≥0
|a′
t (µ/t)| = sup

µ≥0

t |f (µ)− 1 + µ|
(t + µ)(1 + t − f (µ))

. (4.2)

Take the sames1 > 0 as in proof I of Lemma 3.2. Then, dividing the supremum over
µ ≥ 0 in (4.2) into those over two parts 0≤ µ ≤ s1 andµ ≥ s1, we have by (1.5),

sup
0≤µ≤s1

|a′
t (µ/t)| ≤ sup

0≤µ≤s1
[f ]κµκ t

(t + µ)(t + µ/2)
≤ 2[f ]κ tκ−1,
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and by (1.4) witha0 in (3.14),

sup
µ≥s1

|a′
t (µ/t)| ≤ sup

µ≥s1
t |f (µ)− 1 + µ|
(t + µ)(t + δ(s1))

≤ sup
µ≥s1

(1 + a0)t

(t + δ(s1))
≤ (1 + a0)δ(s1)

−1t.

Therefore, as for the bound of (4.1) we can concludeO(tκ−1), which, for smallt > 0,
is less than or equal toO(t1/2) because 3/2 ≤ κ ≤ 2.
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