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Abstract: We study the analyticity of the topological pressure for some one-parameter
families of potentials on countable Markov shifts. We relate the non-analyticity of the
pressure to changes in the recurrence properties of the system. We give sufficient condi-
tions for such changes to exist and not to exist. We apply these results to the Manneville—
Pomeau map, and use them to construct examples with different critical behavior.

1. Introduction

A well known theorem of Ruelle [Ru2, Rul] states that for every topologically mixing
topological Markov shiftX with a finite number of states, the topological pressure
Pyop is analytic on the space of Holder continuous functions. Thatdsy € C(X)
Holder continuoust — Pyop(¢p + ty) is real analytic in a neighborhood of= 0
(whence for every). In ferromagnetism, this is sometimes interpretedask‘of phase
transitions” (see [E]).

If the number of states igountable, this theorem is no longer true. [S3] contains an
example of @ which depends on a finite number of coordinates (“finite range potential”)
for which Pyop(¢p+1¢) has a positive Lebesgue measure set of critical points. Other finite
range examples with critical behavior can be found in [Hof, Lo, W1,W2]. Infinite range
examples include the Manneville—Pomeau map (see e.g. [PM, Lo]) and the Farey map
[PS] (see also [LSV]).

The purpose of this paper is to study critical phenomena for some smooth one-
parameter families of infinite range potentials on countable Markov shifts. The critical
phenomena we consider are non-analyticity of the pressure, changes in the existence of
an equilibrium measure, and changes in its finiteness, when it exists.

It was observed in [S2], that there are three modes of recurrence for potentials on
countable Markov shifts: positive recurrence, null recurrence and transience. Positive

* Part of a dissertation prepared in the Tel-Aviv University
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recurrent potentials admit finite equilibrium measures. Null recurrent potentials admit
conservative infinite equilibrium measures. Transient potentials do not have conservative
conformal measures. A change in the mode of recurrence of a one-parameter family
affects, therefore, the existence or finiteness of the equilibrium measure.

We show that a change in the mode of recurrence is also related with non-analyticity
ofthe pressure, and give conditions governing the existence of such changes (Theorems 2
and 3). We use these results to derive some of the properties of the Manneville—Pomeau
map, and show that all systems with the same symbolic structure have similar proper-
ties. This explains why the Manneville—Pomeau map has the same critical behavior as
that of the examples considered in [PS,Lo,W1] and [W2, Theorem 5]. We also construct
examples with different critical behavior, using the methods of [S3]. Among these exam-
ples is a potential which is “intermittent” (i.e., admits infinite conservative equilibrium
measure) for a whole interval of “temperatures” (example 4). This is different than the
Manneville—Pomeau example, which is intermittent only for a specific “temperature”.

The structure of the paper is as follows. Section 2 contains a survey of relevant results
on the thermodynamic formalism of countable Markov shifts. Section 3 contains the
statement of our main results, Theorems 2, 3 and 4. Section 4 contains an application of
these results to the study of the renewal shift and the closely related Manneville-Pomeau
map. Section 5 contains other examples. Section 6 contains the proof of Theorem 2.
Section 7 contains the proof of Theorems 3 and 4.

2. Survey of the Thermodynamic Formalism for Countable Markov Shifts

In this section we survey some results from [S1,S2] concerning the thermodynamic
formalism of some infinite range potentials on countable Markov shifts. For a survey on
finite range potentials see [GS] (see also [G1]).

2.1. Basic definitions and notational conventions. Let S be a countable set andl =
tij) ¢« g @ Matrix of zeroes and ones with no columns or rows which are all zeroes. Let
X be the set

Xi={reshO: ¢, =1, vizo0
endowed with the relative product topology, which is also given by the bagdioders
lag, ... ,ap-1]l ={xeX:x;=a;,0<i<n-1},

wheren € N andao, ... , a,—1 € S. An admissible word is a € S such thatfa] # ¢.
Its length is|a| = n. Let T : X — X be theleft shift (Tx); := x;4+1. The topological
dynamical systemX, T) is called aone sided) topological Markov shift. We say thai
is topologically mixing if(X, T) is topologically mixing. The members ¢fare called
thestates of the shift, and the matriA is called theransition matrix. The set$a] where
a € S are called thepartition sets.

Let¢ : X — R be some real function (also callpdtential). Thevariationsof ¢ are
Vi(@) :=suflo(x) —o()| :x,ye X, x; =y, 0<i <n—1}. ¢ is said to have
summable variationsif }" ., V,(¢) < co. ¢ is calledweakly Holder continuous (with
parametep) if there existA > 0 andd < (0, 1) such that for alh > 2, V,,(¢) < A6".
Note that in both cases the quantification begins with 2 so¢ may be unbounded or
may satisfyVi(¢) = oo.
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For everyp with summable variations we associate the corresporiiielde operator
[RU2] (Lg f) (x) := Y7y € f(). If | Lyl < oo this is a bounded operator on
the Banach spac€p(X) = {f € C(X) : | fllo < o0} (complex valued functions).
One checks thatL} f)(x) = > ru,—, e” ) f(y) whereg, := Y igoTk,

We use the following notational conventions. All logarithms are natural logarithms.
The indicator functions of sets C X are denoted by, and 1:= 1x.a = B*"b means
thatB > 1,a,b > 0 andB™"b < a < B"b; a, = b, means thaBBVn, a, = B*'b,;

a, < b, means thafic # 0 such that,, /b, — ¢; anda, ~ b, means that, /b, — 1.

2.2. Pressureand recurrence. Fora e S setg,(x) := Lj,(x)inf{n > 1: T"(x) € [a]}
(where infd := oo and 0- co = 0). Set

Zn(¢oa) = Y ") and Zi@.a) = Y Oy ().

Thx=x Thx=x

Itis known that ifX is topologically mixingg has summable variatiohsand||L¢ 1o
is finite then the following limit exists, is finite and is independent of the choieeoS

1
PG(¢) := lim - log Z, (¢, a). (1)

Pg (¢) is called theGurevich pressure of ¢ ([S1,G1, G2,G3]) and satisfies the following
variational principle

Pg(¢) = SUP{hM(T) +f¢du :u € Pr(X); —/(l)dp. < oo},

wherePr (X) is the set off -invariant Borel probability measures.

Let A = expPg(¢)]. We say thate is recurrent if for some a € S,
Y12 Zy (¢, a) diverges andransient if it converges. We say thap is positive
recurrent if it is recurrent and)_, ., nA™" Z (¢, a) < oo andnull recurrent if it is re-
currentand_, ., nA™" Z} (¢, a) = oo. It turns out that these definitions do not depend
on the choice of € S and that [S2]:

Theorem 1. Let X be atopologically mixing countable Markov shift, and let ¢ be some
real function on X with summable variations. If ¢ has finite Gurevich pressure, then ¢
isrecurrent if and only if there exist A > 0, a conservative measure v finite and positive
on cylinders, and a positive continuous function / such that L;v = Aavand Lyh = Ah.
Inthiscase A = expPg(¢) and there exist a,, 1 oo such that for every cylinder [a] and
xeX

1
2o (Lha) ) = vl
k=1
-1
The sequence {a, },~0 satisfiesa,, ~ (f[a] hdv) i1 2% Zi (¢, a) for everya € S.

1 The following results, including Theorem 1 below, were stated in [S1] and [S2] under stronger continuity
assumptions o, but the proofs given there are also valid §owith summable variations.
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Furthermore,

1.if ¢ is poditive recurrent then v(h) < oo, a, o n, and for every [a] )F"L’J)l[@ fwed

hv[a] uniformly on compacts, where & is normalized so that v(h) = 1.
2.if ¢ isnull recurrent then v(h) = oo, a, = o(n), and for every [a] /\‘"Lgl[g] tends
to zero uniformly on cylinders.

It is easy to check thaidv is T-invariant, that: is bounded away from zero and
infinity on partition sets and that, (logh) < > -, .1 Vi(¢). Itis also clear from the
convergence part of the theorem thatnd/ are unique up to a multiplicative constant.
As a corollary we obtain,

Lemma 1. Let X be topologically mixing and let ¢ be a function with summable vari-
ations and finite Gurevich pressure. Then there exist two continuous functions ¢’ and
psuchthat ¢’ <0, Pg(¢') =0and¢’ = ¢+ ¢ —p o T — Pg(¢). The function ¢
is bounded on partition sets. If ¢ isrecurrent then Ly 1 = 1, and if ¢ istransient then
Ly1 <1 1f ¢ isweakly Holder continuous then so are ¢ and ¢.

Proof. Seti := expPg(¢). Assume thap is transient. Fix some statee S and set

h = Z,plz\—”Lgl[a]. By transience, topological mixing and summable variatibns
is finite. Also, if ¢ is weakly Holder, then so are ldgand logh o T'. Itis easy to check
thatk—1L¢,h < h.Sety :=loghand¢’ :=¢p+¢ —¢poT — Pg(¢).Clearly, Lyl <1
whenceg’ < 0 as required. The case wheris recurrent is handled by replacihgn
the last argument by thie given by theorem 1 (see [Wal] for a similar normalization
procedure). O

3. Statement of Main Results

We recall the well-known processioiducing in the context of topological Markov shifts
(see [S2] and [A, Sect. 1.5]). Fix some states S. SetS := {[a] : |a| = 1; a =

aiff i =0; [a,a] # 0}, X := SV and letT : X — X be the left shift. For every

¢: X - Rset
va—1

5:: Z¢0Tk o,
k=0

wherer : X — [a] is given byr ([ag], [a4], .. .) := (ag, 4y, --.). The pair(X, ¢) is
called theinduced system and¢ is called theénduced potential (on[a]).

Induced systems are in many cases easier to handle than the original systems, as
shown by the following example: A syste(X, ¢) is calledBernoulli if X = SNV and
if ¢(x) = ¢(xp). A potential is calledMarkov if ¢(x) = ¢(xg, x1). If ¢ is a Markov
potential, thenX, ¢) is a Bernoulli systers.

If ¢ is weakly Holder continuous, sogs Summable variations alone, however, is not
enoughi may not have summable variations, evep ifoes. The existence of pressure,
however, is always guaranteed:

2 Thisis also true for the larger class of potentiafer which3a € S suchthap (x) = ¢ (xo, . . . , Xy, (x))
aslong as the inducing is done with respegtfo The state: can be viewed as a “gap” between non-interacting
clusters of interacting particles. Analogous potentials are studied in a different mathematical setting in [FF].
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Lemma 2. Let X be topologically mixing and let ¢ : X — R be some function with
summable variations. Let a € S be some fixed state and let X and ¢ be the induced
system and induced potential. Then the following limit exists for all [a] € S (although
it may beinfinite) and is independent of the choice of [a]:

PG ($) = lim % log Z, (¢, [a).
Proof. Follows from the proof of Theorem 1 in [S1] and the standard estimation
Va+@oT +...+doT 1<, Vilgl O
To state our main results, we need the following definition.

Definition 1. Let X be topologically mixing and let ¢ : X — R have summable vari-
ations and finite Gurevich pressure. Fix a € § and let (X, ¢) be the induced sys-
tem. Set pil¢] := sufp : Pg(¢ + p) < oo}. The a-discriminantof ¢ is A,[¢] =

SUN PG (¢ + p) : p < palpl} < oc.
As we shall see later (Sect. 6, Proposition 3),
Aalpl = PG (¢ + pilo)). (2)

Both A,[¢] andp[¢] are determined by £ Z*(¢, a) in the following way. LetR be
the radius of convergence of this series. Then

Aglp) —log ) REZE(@,a)| < Y Vi(@) 3
k=1 k=2
« . 1 N
Pal¢) = — limsup —log Z,(¢. a) 4)

Both relations follow from the stronger statement (Sect. 6, Proposition 3):

<Y Vi(@). (5)

k=2

PG(@+p)—log) " Zi (¢, a)
k=1

Note that whenp is a Markov potential, both (5) and (3) are equalities (because for
Markov potentials) .., Vi(¢) = 0). Our basic result is:

Theorem 2 (Discriminant theorem). Let X be a topologically mixing countable
Markov shift and let ¢ : X — R be some function with summable variations and
finite Gurevich pressure. Let a € S be some arbitrary fixed state.

1. The equation Pg(¢ + p) = 0 has a unique solution p(¢) if A,[¢] > 0, and no
solution if A,[¢] < 0. The Gurevich pressure of ¢ is given by

—p(@)  Adel=0

; 6
~PiI$] Adlp] <0 ©

PG (¢) =

2. ¢ is podgitive recurrent if A,[¢] > 0 and transient if A,[¢] < O. In the case
Aqlp] = 0, ¢ iseither positive recurrent or null recurrent.



560 O. M. Sarig

Theorem 2 should be understood in the context of one-parameter families of poten-
tials. Given such a familfi¢g}, let {Ag} be the corresponding one-parameter family
of discriminants. Whem g changes sign{¢g} changes its recurrence properties and
the case in (6) changes. A change in the mode of recurrence implies, by Theorem 1, a
change in the qualitative properties of the equilibrium measure (existence and finiteness).
A change of case in (6) may imply non-smoothnesgfes Pg (¢g). This suggests that
the search for critical phenomena for one-parameter families may be done by studying
the sign changes of the discriminant. This can sometimes be done with the aid of (3), as
we shall see in Sects. 4 and 5. The proof of Theorem 2 is given in Sect. 6.

We now discuss the case when the discriminant does not change sign and remains
positive. Let$ be some function with summable variations and finite pressure. We say
that¢ is strongly positive recurrent if for some stater € S

Aylo] > 0.

(This generalizes the notion sible positivity for Markov potentials discussed in [GS].)
The Discriminant Theorem implies that every strongly positive recurrent function is
positive recurrent. The opposite statement is false (Example 2 below).

We are interested in differentiability of the pressure functional, i.e. in the existence
of directional derivatives[ff—t |t=0 Pg (¢ + ). We restrict ourselves to the following set
of directions:

Dir(¢) := {v : Zvn(w) <00, Je>0st V| <e Pglp+ri1y) <ooy.
n=2

The following theorem completes Theorem 2 by saying that if the discriminantis positive,
then there is no critical phenomena of the sort that can be encounteredwdemges
sign. Its proof is given in Sect. 7.

Theorem 3. Let X be a topologically mixing and ¢ be a weakly Holder continuous
function such that Pg(¢) < oo. If ¢ is strongly positive recurrent then Vi € Dir(¢)
weakly Holder continuous, 3¢ > 0 such that ¢ + ¢y is positive recurrent for all || < &
and suchthat z — Pg (¢ + ty) isreal analyticin (—e, ¢).

The casey = ¢ is particularly interesting, as it appears in the study of the one-
parameter famiMﬂ¢},gz,go.3 If Pg(Bog) < oo, thenPg(B¢) < oo for all B > By,
because by lemma ¢,is cohomologous to a non-positive function. Therefeg > So,
¢ € Dir(B¢). This may not be true fo = fo:

Example 1. Let X = NNV(% andg (x) := — log (xo(log 2x0)?). ThenPg (B¢) < oo for
B > 1,andPg(¢) = oo for g < 1.
Proof. Pg(B¢) =log) ;.1 1/[kP(log20)?]. O

Corollary 1. Let X be atopologically mixing and ¢ be weakly Hélder continuous func-
tion such that Pg(¢) < oo and ¢ € Dir(¢). The following conditions are equivalent:

1. ¢ isstrongly positive recurrent.

2. for every weakly Holder continuous v € Dir (¢) there existse > 0 such that ¢ + ¢
is positive recurrent for every real ¢ such that |¢| < .

3.for everya € S Ay[¢] > 0.

3 Such families appear in models for systems whose inverse tempegasiohanged [E].
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Proof. The first statementimplies the second by Theorem 3. The third statement trivially
implies the first. It remains to show that the second statement implies the third. Assume
that the second statement is true, but that the third statement is false. Then for some
a € S, Ay[¢] is not positive. Since by our assumptiapigs positive recurrentp,[¢]

cannot be negative, s, [¢] = 0. Sety := 1,). Sincey =1 onX, Ay[¢ +ty] =1t.

This contradicts the second statement because i theng + ¢ is transient. O

We remark that the assumptions of Theorem 3 can be weakened:

Theorem 4. Let X be atopologically mixing and ¢ be a function with summable vari-
ations, such that P (¢) < oo, A.[¢] > 0 and such that the induced potential on a, ¢,
isweakly Holder. Then Vi € Dir(¢) such that v isweakly Holder continuous, 3¢ > 0
such that ¢ + ¢t is positiverecurrent V|¢| < ¢, and suchthat t — Pg(¢ + ty) isreal
analyticin (—e, ).

In Sect. 7 we prove this stronger version.

4. The Renewal Shift

The examples studied in [PM, Hof, GW,W1,W2,PS] and [Lo] share the same critical
behavior: for some potentiap, the functiong — Pg(B¢) has one point of non-
differentiability 8., and is constant fof > B.. A close look at these examples shows
that they can be represented as different potentials on the same countable Markov shift,
therenewal shift. This is the shift with set of states:= N U {0} and transition matrix
(tij)sxs whose 1 entries amgo, fo; andz; ;—1 (i =1, 2,3, ...). The main result of this
section is

Theorem 5. Let X betherenewal shiftandlet ¢ : X — R beafunction with summable
variations such that supg < oo and such that ¢ is weakly Holder continuous. Then
thereexists 0 < B. < oo such that:

1. B¢ isstrongly positive recurrent for 0 < 8 < 8. and transient for g > B,.

2. Pg(B¢) isreal analytic in (0, B.) and linear in (8., co). It is continuous but not
analytic at 8. (in case 8. < 0).

3.Set A, = SUAEWxel0n—1...0l and |et R(B) be the radius of convergence of
Fg(§) := Zn>1A,’?é§”. If Fg(R(B)) isinfinite for every g then 8. = oo. If38 > 0
such that Fg(R(B)) < 1then B. < oo.

Proof. It is easy to check thaX it topologically mixing. Also,8¢ has finite pressure

forall B > 0, sincePg (B¢) < log|Lgylll < log(2¢#SUP?). One can easily check that
for every functionf,n e Nandg > 0

ZX(Bf,0) = ZX(f,0F and piIBf1 = Bpilfl. @)

Henceforth(X, ¢) denotes the induced system [, P(8) := P (B8¢) andA[B] :
AolBo].

If pgle] = oo thenA[B] = SUR PG (¢ + p) : p < oo} = oo becausePs (¢ + p) >
PG(¢) + p. In this case parts 1 and 2 follow wi. = oo from Theorem 4 and the
discussion after Theorem 3. We therefore restrict ourselves to thegbsk< co.
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Without loss of generality, assume thaj{¢] = O (else pass t¢ + pi[¢] and use
(4)). By (7), p§[B¢] = O for all B > 0, whence by (2)

AlB] = PG (Bd). (8)
As before, ifA[] > O for everyp, parts 1 and 2 follow with8, = co. Assume

38 > 0 such thatA[8] < 0 and se3; := inf{8 > 0: A[B] < 0}. Note thatg, > 0
because according to (3) and (7)

AIB) = log Y- (7591259,0))" 3" Vi) — +ov.
n=1 n=2 -

We claim thatA[g] — —oo asp 1 +oo. Fix somefp such thatA[gg] < 0. By (8)
Bo¢ has finite pressure, whence by Lemmabdg is cohomologous tg/ + P (Bog),
whereyr is weakly Holder continuous (iX) such tharLal < 1. Sincep has summable
variations,V1(¢) < oo. It follows from Lemma 1 tha¥/1(y) < oo as well. By (8), for
allr > 1,

Altpol = Pg(1fop) = Pg(ty) + 1t Pg(Bod).
Since P (Bog) = A[Bo] < 0, we have for alt > 1,

Altpol = P (t¥) <109 | L7z 1loo-

By constructioanl < 1. Therefore, since everye X has more than one pre-image,

V is strictly negative. It follows from this anh (/) < oo that|| L ;1] — Oast 1 oco.
This implies thatA[8] — —oo asB 1 oo.

We show thatA[8] < 0 in (8., +00). By the definition ofs, there are3, | B. such
thatA[B,] < 0. By what we just showed there g8 1 oo such thatA[B,,] < 0. By (8)
A[B] = Pg(B¢), SOA[B] is convex in(B,, B)). By convexity, A[B] < 0in (B,, B,1.
Sincep, | B. andp], 1 oo, A[B] is strictly negative inB., +00).

We have shown thaA[8] < 0 in (B¢, 00). It is obvious thatA[g] > 0 in (0, B.).
Part 1 now follows from the discriminant theorem.

We prove part 2. The analyticity a?(8) in (0, 8;) follows from Theorem 4 and
that fact thatP(8) < oo. The discriminant theorem and (7) imply thég > 3.,
P (B9) = pylBe] = Bpyle] andVB € (0, Bo), P6(Bd) > pylBe) = Bpl¢l. Thus
P (Bo) is linear in(8., oo), but not in(0, co). This implies thatg. is a point of non-
analyticity. The continuity of?(8) in g, follows from the convexity of this function.

To prove part 3, recall thaa[8] > 0 for 8 > 0 small, and note that by (8) that
log F5(R(B)) — B Ynsp Va(®) < AlB] < log Fg(R(B)). D

Example 2. B.¢ can be positive recurrent, null recurrent or transient.

Proof. Let {f,},>1 be a sequence such thagt > 0 and logf, = o(n). Set¢ :=
> n>110n-11109 fu. Then,Z3 (¢, 0) = f,, pglel = 0and), ., V,(¢) = 0, whence

by (2), AolB¢] = 10g9Y",.1 /- Lets(s) = Y, n".

1. Positive recurrence. Set f,, := Wjine' Then Ao[B¢] = log[z(38)/¢(3)#] whence
Bc = 1. Note thatAo[B.¢] = 0 whencePg (B.¢) = —p(lBc¢] = 0. It also follows
that8.¢ is recurrent. Positive recurrence follows frdn),. ; ne 6@ z*(¢, 0) =
D=1/ (3)n3) < co. Note thatB.¢ is positive recurrent but not strongly positive
recurrent.
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2. Null recurrence. The same calculations witfi, = 1/(¢(2)n?).

3. Transience. Setf,, := C/n[log(2n)]2, whereC is a constant such that, ., fu = %
Similar calculations show thatp[B¢] is infinite for 8 < 1 andAg[8¢] < —log 2
for 8 > 1. Thusp, = 1 andB.¢ is transient. O

For an example of the possible applications of theorem 5, consider the Manneville—
Pomeau maf’ : [0, 1] — [0, 1] given by 7 (x) = x + x1*(mod 1), where the value

of T at its discontinuity is 07 (1) = 1 ands > 0 [PM]. The following proposition, is

a generalization of results which are known o= — log |T’| (see [PM] and [Lo]) to

other potentials, whose equilibrium measure is not necessarily equivalent to Lebesgue’s
measure.

Proposition 1 (The Manneville-Pomeau Model). Let T be the Manneville-Pomeau
map andlet f : [0, 1] — R be C[0, 11N C(0, 1] suchthat f'(x) ~ cax®*Lasx \, 0,
wherec # 0and o > 0. Set

P(B) = Sup{hm(T) —i—,B/fdm :m € Pr([0, 1]); —/fdm < o0; m{0} = O}.

1. There exists 0 < B. < oo such that P(B) isreal analytic in (0, 8.) and linear in
(Be, 00). It is continuous but not real-analytic at S..
2. B. isfiniteifand only if @ < s and ¢ < 0. In particular, it isfinitefor f := —log7”.

Proof. Itis common knowledge thadt can be described symbolically as a renewal shift.
We check that the symbolic representationfohas summable variations and apply
theorem 5. To do this we recall some facts on the natural Markov partitignsée [l],
Lemma 4.8.6 in [A] and [T1]).

Define by inductioncg := 1 andc, = c¢p11 + c,%fl. Rewriting this asc,, =
A+’ = ¢, L+ sc, 4 +olc, 1) we see that, [, — c,;* ~ s whence
cn ~ (sn)~1/5. 1t follows from the recursive relation which defings,} that

1

Cp — Cp+1l ™ (SYL)T]'/S

SetI[n] := (¢y+1,cn] @and Iao, ... ,ay—1] = ﬂz;é T—*I[a;]. One checks that
T1[0] = (0,1]andT I[n+1] = I[n], whencel[a, ... , a,—1] iS not empty if and only
if (ag, ... ,a,—1)is an admissible word of the renewal shift.

Claim 1. Thediameter of I[ao, ... , a,—1] satisfiesfor every e > 0

1
[I[ao, ... ,an-1]| = O <m> )

Proof. By the previous discussion,
Ilao, ... ,an—1l =Ilao, ... ,an_1;a,-1—1,...,0],

so we may assume that_1 = 0. SetM := 1+ sugay} andN := |{k : ay = O}|. Since
(ao, ... ,ay—1) is admissible with respect to the transition matrix of the renewal shift,
MN > n. Thus, for eveng € (0, 1) eitherM > nf or N > n1=5.
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Setm,, := |n? | +1.1f M > nf then for some powet, T*I[ag, ... , an_1] € I[m,]
whence sincd”’ > 1 |I[ag, ... , an-11| < [I[my]] = cm, — cmy+1 = O~ PAFY),
If N > nl=# then for everyx € I[ao, ... , an_1]

n—1

N
(T (x) = 1:!) T'(T'x) > (x'!}‘[m T (x))

whence fo := 1/inf e 101 T/ (x)
[I[ao, ..., an-1]] < 6. (10)

Sinced < 1 andN > nl~# we have again thak[ag, ... , a,_1] = O(n~PIHL),
Sinceg € (0, 1) was arbitrary, the claim is proved o

Let (X, o) be the renewal shift andp : X — [0, 1] be the map defined by the
equation{ro(x)} = (>0 I[*0, - - - s Xn—1]1 = =0 [0, - .. . X4—1]. By (9) 7o is well
defined. It is easy to check that o 0 = T o mg, thatng is 1-1 and thatro(X) =
[0, 11\ Up=0T ~"{O}.

Claim 2. Let f be C[0,1] N C1(0, 1] in [0, 1] such that f'(x) ~ cax*"Lasx | O,
wherec # Qanda > 0. Then ¢ := f o g has summable variationsand ¢, the induced
potential on [0], is weakly H&lder continuous.

Proof. Fixx, y € [ao, ... ,a,—1], where without loss of generality,_1 = 0. Fixe > 0
(to be determined later). Then there exists I[ag, ... , a,—1] such that

, Sa—l
lp(x) —dWMI =11 (&) Ilao, ..., an-1ll = O (W) .

Since¢ € Ifao, ... ,an-1] S (cag+1. Caq), and since by the structure of the renewal
shiftag < n — 1, we have tha§*~! = 0 (1 + ¢*~1) whence

1+n7(a71)/s
Va@) =0\ — a5 —

If « > 1 the nominator is bounded and choosing< 1/(2s) we see that/, (¢) is
summable. Ifx < 1 then the nominator i®) (n~*/5) and we have thaV,(¢) =
O (n~+e/s=8)y Choosings < a/s we see the_ V,(¢) is summable. In any case,
has summable variations. The weak Hélder continuity atn be proved in a similar
way.

Claim 3. P(B) = Pg(B¢), where ¢ := f o mo.

Proof. Since supf < oo andVx |7~ 1x| = 2, ILgpllloo < oo. It follows as in ([S1,
Theorem 3],) that

P (p8) = sup{h() + [ 6dn: 1w € P = [ g < o]

(the argument there works also for functions with summable variations).
The claim follows because <> m o g is a 1-1 onto correspondence between the
sets of measures which defigg) and P (8¢).
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Claims 2 and 3 show that we can apply Theorem Bte f o mg and deduce the
existence of3.. We check the conditions for the finitenessspf Let A, be as in Theo-
rem 5. Sincep has summable variationg,, < exp f,,(d,), whered,, € I[0] are defined
by T'(dn) = ¢,. Itis easy to check thak, | c1, whenced, < exp) ;_; f(cx). Without
loss of generalityf (0) = 0 (addition of constants does not affect the finiteness hf
Then by the assumptions of f(x) ~ cx®. Sincecy ~ (sk) ™5, f(ck) ~ c(sk)=*/5.
Thusd i f(er) < cfln x~%/5dx. It follows that there exist constanks;, Ko, K3, Ka
such that

1 o1
_— B =
K1 exp(Kzﬂcfl xa/sdx> <Al < ngxp<K4ﬂc/1 xa/sdx>.

Let Fg(€) andR(B) be as in Theorem 5. Using the above,

1. fa>s thenAf =< 1 for everyg > 0. In this case&g(R(B)) = oo for every, so
Be = oo.
2. Ifa = sthenk1nk2hc < AP < KgnKaBe \tfollowsthatR(8) = 1 andthat (R(8))
is infinite for everyg if ¢ > 0, andF(R(B)) ﬁ—> Oif c < 0. Thus fora = s, if
— 00

¢ > 0theng, is infinite, and ifc < 0 theng, < oo.

3. Ifa € (0, s)anda := 1—(«/s) then for some constany, Co, C3, Ca, C1C2P"" <
AP < C3eC4Fn” Sincea < 1, R(B) = 1 for everyp. It follows that if ¢ > O then
F(R(B)) = oo foreverys, and ifc < 0thenF(R(B)) ﬂj;o 0. ThusforO< o < s,

if ¢ > 0thenp, is infinite and ifc < 0 theng. is finite.

ThusB, < ocoifandonlyifO< o <sandc <0. O

5. Other Examples

In this section we construct examples whose critical behavior is different than that of
potentials on the renewal shift. Our constructions are based on the tools of [S3] which
we now explain. We say that a one parameter family of functigs§) is anexponent
power seriesif it is of the form Fg(§) =, 1~ afks”, wherea,; > 0. Clearly, if Fg
andGg are exponent power series, then soB§€ g, Fg o Gg andc1 Fg + c2G g, where
c1, c2 are positive integers. We say that an exponent power sEgiesaperiodic if the
power expansion of g contains two co-prime powers 6f We say thats is adequate
if it is of the form cPg + éZG,g(g), wherec > 0 andGg is an exponent power series.

The following theorem was essentially proved in [S3]. We include its proof for com-
pleteness.

Theorem 6. For every adequate exponent power series Fg there exists an irreducible
topological Markov shift X and a Markov potential ¢ = ¢ (xo, x1) such that for all 8,
Pg(Bo + p) = log Fg(eP). If Fg isaperiodic, X istopologically mixing.

Proof. Write
Nll

Fp&) =P+ &"y ah,

n=2 k=1
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where 0< N, < oo. Let S be a countable set indexed in the following way

oo N,
S:={a}UJ Jtbu D). ... . bur(n — 1)},

n=2k=1
Let (1), jes be the transition matrix whose non zero entries are exagiy, (1),
b (b i41) s Thp(n—Da TOr @l n,k > 1 andi = 1,...,n — 1 with the addition of
t.q if and only if ¢ # 0. Let X be the corresponding topological Markov shift. Define
¢(x) by ¢p(x) :=loga,; if x € [a, by (D], p(x) :=logc if x € [a,a] ande(x) :=0
otherwise. One checks that

]

Fg(§) =) E"Z3(Bo. a)

n=1

whence by (5) and the fact thdk > 2 Vi (¢) = 0, Pg(B¢ + p) = log Fg(e”). Note
that X is irreducible, because all states connect @nda connects to all states. It is
topologically mixing if and only if there are two words of co-prime lengths which connect
a to a. This can be easily seen to be equivalent to the aperiodici}y 6f Z* (8¢, a),
hence to thatofg. O

The following example shows th§B¢}s-.0 can change from recurrent to transient
an infinite number of times. (This is different than the example with infinite number of
non differentiability points in [S3], which is always transient.)

Example 3. There existsX topologically mixing andp = ¢ (xo, x1) such that for some
Bn 1 0, B¢ is recurrent in(g; 1, B;) for i even and transient farodd.

Proof. Consider the following sequence of numbers

2 (2n—-2
)
A calculation with Stirling’s formula shows thaf,, ~ 7 ~1/2,=3/222"=1_ Another cal-
culation shows that

- 1 2n—2 1 (2n
() w

Multiplying both sides of (11) by Awe see thatv,, are all natural numbers. Summing
both sides of (11) over we see tha_, ., N,4™" = 3.
Fix someg, | 0 with the property thab_6Y# < oo for all & € (0,1) (e.g.

Bu = 1/n). Seta,(B) := —2($)P/P and p(B) = [],-1(1 + ax(B)). Then for all
B > 0, p(B) is well defined, non zero fg8 ¢ {B,}, and satisfies

p(B) =1+ a1(B) +[1+ar(B)]aa(B) + ...,

where the convergence on the right is absolute. Collecting summands with the same

sign write p(8) = A(B) — B(B), whereA(B) = Y. af andB(8) = 3. bf for some
an, b, > 0.1f B € (Bi+1, Bi) theng > B, iff n > i + 1 whence

SGN(A(B) — B(B)) = sgn<]‘[(1 =240y TT a- 21—'3/%) = (1"

n=1 n=i+1
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Thus,A(B) > B(B) iff i is even.
Now constructX and¢ = ¢(xg, x1) such thatPg (8¢ + p) = log Fg(e”), where
Fg(&) is the exponent power series

Fg(§) = 8A(B)B(B)E* + ) NuB(B)'&E".

n=2

SinceN,, < n‘:';% the radius of convergence &k (¢) is R(8) = 1/4B(B) whence

A(B)B
Aa[ﬁ¢]=logFﬁ<R<ﬁ)>=log< 1fg(ﬁ(ﬁ)+ZN4 )

whenceA,[B¢] = Iog%(l + A(B)/B(B)). This is positive iffA(8) > B(B). ThusB¢
is recurrent for8 € (B;+1, B;) andi even, and transient f# € (8;11, ;) andi odd.
|

We have seen that for potentigl®n the renewal shiff¢ can be null recurrence for at
most one value ¢f (the critical point). Our next example shows that for other topological
Markov shifts null recurrence can occur in an entire interval. A trivial example would
be a Markov shift for which the potential = 0 is null recurrent. We therefore restrict
ourselves to examples whepds not cohomologous to a constant.

Example 4. There exist atopologically mixing topological Markov shifand a function
¢ = ¢ (xp, x1) hot cohomologous to a constant such ihats null recurrent for everyg.

Proof. Let N, be as in Example 3 and sgi(p) = 28 (eP + ¢2P). ConstructX topo-
logically mixing and¢ = ¢ (xg, x1) such that

P(B + p) = log <22 N, fﬂ(p)”) .

n=2

Since N, = 4'n~3/2, pi[p¢] is determined by the equatiofy (p:[B¢]) = 1/4. It
follows fromthisthatA,[8¢] = 0. By the Discriminant theorem for &, 8¢ is recurrent
andPg (B¢) = —pi[B¢]. Italso follows thatp is not cohomologous to a constant, since
P (B¢) is not a linear function oB (it is given by the equatiofg[— Ps (B¢)] = 1/4).

We show thatB¢ is null recurrent for allg. SinceVa(¢p) = 0, Pg(Bo + p) =
log) ,.1€""Z} (B¢, a) whence

oo
d
§ :ne_”PG(ﬁ‘p)Z:(ﬂcﬁ,a) = oPc(Bo+p) _ 2f (PE1Bd] )E nN,4- =D

*

n=1 p P=Pq n=2
and this diverges, becausg < 4'n=%/2. 0

Our last example shows that all modes of recurrence can co-exist for interval ranges
of inverse temperatures.

Example 5. There existX topologically mixing and) = ¢ (xg, x1) such that for some
1< B1 < B2 < o0, B¢ is null recurrent for8 € (1, B1), positive recurrent fog €
(B1, B2) and transient fop € (B2, 00).
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Proof. Fix some positiver, ~ 1/[2n(logn)?] such thay = 2, Y, ., a, = 1 and set
AB) = o1l Fp(€) == 3,21 ah A(B)"€" and

Gp(&) = Fg(2Fp(8)).

This is an adequate aperiodic exponent power seriesX lagtd¢ be the corresponding
shift and potential.

Let Rr(B) and Rg(B) denote the radii of convergence Bg(£) andGg(£). Note
that Rr(B) = 1/A(B) and Fg(Rr(B)) = 1. Let B2 be the solution ofRr(82) = 2.
Clearly,Rr(B) < 2for8 < 2 andRp(B8) > 2 for 8 > B>. Thus,

1. if B € (1. B2) then Zp(Rr(B)) = 2 > Rr(B) SORG(B) = F5 " (3Rr(B)). In this

caseGg(RG(B)) = Fp(2- 3Rp(B)) = Fs(Rp(B)) = 1;
2. if B > Bo then Zg(Rr(B)) = 2 < Rp(B) SO Rg(B) = Rp(B). In this case
Gp(2Fg(RFr(B)) < Fg(Rr(B)) = 1.

Since Ay[Bo] = l0gGg(RG(B)), B¢ is transient forg > B, and recurrent fo e

(1, B2).
We check positive recurrence and null recurrenceffoe (1, B2). Fix someg €

(1, B2). SinceGg(RG(B)) = 1, Au[B¢] = 0 whencee= 6B = ¢=palbdl = R;(B).
Thus Y., . ne "9 Z2(¢,a) = Ro(B) fk G (). Now, sinceRg (B) =

1 §=Rg(B)
Fy'GRE(B)),

d
d_‘ Fg(2Fg(§)) = F[/}(RF(,B)) . 2F,§(RG(/3))-
§le=rg(p)

SinceRg(B) < Rp(B), thisis finite iff F/’,(RF(,B)) < 00, which is comparable to

1 i n
A(B) = 26nf (logn)2b”
This sum is infinite forg € (1, 2) and finite forg € (2, B2). (Note thatg, > 2 since
af > 1, whereasy? < A(B) = 1) o

6. Proof of Theorem 2

The proof of Theorem 2 is based on a generalization of certain renewal theoretic ideas.
These are presented in the following subsection. The proof of Theorem 2 is given in the
subsection following it.

6.1. A renewal sequence of operators. Leta € S be some fixed state. L&ip[a] be
the Banach spac€pla] := {f € Cp(X) : f(x) = 0 for x ¢ [a]} equipped with
the supremum norm. Let, D : Cgla] — Cpgla] be the operators defined by1=
f, Of = 0Vf € Cgla]. Consider the operatofs,, R, : Cgla] — Cpgla] given by
To:=1,Rp:=0and

Tnf = 1[u]Lgf

R f = L1 L (f Ligu=n1)



Phase Transitions for Countable Markov Shifts 569

(see also [FL] and [PS].) A direct calculation shows that these operators satisfy the
following “renewal equation” for > 1,

T, = RiTy—1+ R2T,—2+ ...+ R, 1,

(12)
T, =T,-1R1+ T,,_2R> + ...+ ToR,.

Set

T[$1@) =14 ) 2"Ty, Ral$l@) =) "Ry

n=1 n=1

These are well defined bounded linear operator€gfu] for |z| < 2L, To see this
use the summable variations property to prove fat¢l(z)|| = | Tul¢1(x) 1|, <
BY ,-0l2l"Zu(#, a), whereB := exp}_, ., V.(¢), and note that the radius of conver-

gence of the seri€¥. 7" Z, (¢, a) is A~ by (1). In terms of these generating functions,
we can restate (12) in the following forsiz| < A~1,

Tul¢1(z) = [1— Ralp1()1 7L

It also follows from (12) that for allz| < A~1,

T.[$1() = 1+ ) Rulp1@)". (13)

n=1

Note that (13) is also valid for alf real such that > A1, as long as both sides are
applied to positive functions.

For every bounded linear operatHon Cp[a] let p(S) denote the spectral radius ®f
(with respectto the supremum norm), with the convention that the ‘opefgter coly,;
has an infinite spectral norm. The following two propositions relate the renewal sequence
to the discriminant.

Proposition 2. Let ¢ denote the induced potential on [a]. Then
PG($ + p) =10gp (Ral1(eD)).

Proof. Letx : X — [a] be the natural embedding. A calculation shows that for every
pandf € Cpla]

(Ral1(e?) f) o = Lz (f o 7). (14)

Fix some[a] € S. SinceX = SOz BT p,lal) = ||L;+p1||oo. The proposition
follows from this and (14). O

Proposition 3. Let X betopologically mixing countable Markov shift, let ¢ beafunction
with summable variations and finite Gurevich pressure. Let X and ¢ denote the induced
pair withrespecttoa € S. Then Pg (¢ + p) isconvex, strictly increasing and continuous
in (—oo, pXl#]l. Also, (2—(5) hold.
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Proof. Fix a € S and sety(p) := Pg(¢ + p), p* = pil$l, z := e andR(z) :=
R,[#](z). Proposition 2 and summable variations imply that foradl [a],

.1
y(p) = lim —log|R(e”)" 14l
n—oon

= lim } log R(e?)" 141 (x).
n—oon
We use this formula to prove that is convex, strictly increasing and continuous in
(—o0, p*) and that (5) and (4) hold. The expressiadd@?”)" 1;,(x) are convex inp,
since they are of the forfy_ a;e%?, wherea; > 0. Thusy (p) is convex inp, being a
limit of convex functions. Clearlyypy < p2 < p*and all0< f € Cgla], R(e?2)f >
eP2PL1R(eP1) f. Iterating this and using the above formula faip) we have thay (p)
is strictly increasing. It follows thay is finite in (—oo, p*), whence by convexity it is
continuous there. Standard estimations show that for everyfOc Cpla], R(e?) f =
BELY 1 Z¥(¢,a) f, WhereB = exp)_,., Vi(#). Iterating this, and using the above
formulafory (p), we have (5). Clearly, (5) implies (4), so (4) is also proved.

It remains to prove that(p) is continuous on the left ip*. We prove this under the
assumption that (p*) < oo (the proof for the infinite case is essentially the same). By
monotonicity, it is enough to prove that for every- 0 there existp < p* such that
y(p) > y(p*) —e. Fixx € [a]. SettingR(e”) = ), .1 "’ R, in the above formula for
y, we have

1 -
y(p) = n||—>moo p log Z ep(kl+“'+k”)Rk1 ceeos Reg, g (). (15)
k1,... . kp=1

By the definition ofp*, there areV andp andn > log B/¢ such that

N
ay = log Z ep(k1+...+kn)Rk1 oo R 1 > n(y(p*) — e).
k1,... .kn

By the summable variations properdy,, + am, < am,+m, + 109 B for everymyi, m.
Writem = kn +r,where 0<r <n —1.Then

am ka, + a, — (k + 1)log B L, log B

> ) —2
m kn+r m—>o0o n n zv(P) ¢

whencey (p) > y(p*) — 2¢. This proves thay is continuous in(—oo, p*]. This also
implies that (2). This and (5) imply (3).0

We will need the following version of the Kac formula, whose proof follows in a
standard way from Theorem 1 and general results for Markov operators (see Theorem
VI.Cin [F]).

Lemma 3. Let X be a topologically mixing Markov shift, assume ¢ has summable
variations and fix some a € S. Let (X, ¢) be the induced system on [a], and as-
sume that both ¢ and ¢ have summable variations. Then ¢ is recurrent with pres-
sure zero if and only if ¢ is positive recurrent with pressure zero. In this case, if
Liv=v,Lgh=h, L%ﬁ =7, Laﬁ = h then up to a multiplicative constant v = v o 7,

h=hom,v(A) = [ (Xnlot"1a)omdvandh = Y 21 345 LY (haljp,—a) mod v,
where € isthe operator £(f) := Ly(f - 1j4c) and h, := l[u]i_lon_l.
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6.2. Proof of Theorem 2. Throughout the proof let: and ¢ be fixed. LetT(z) :
Tul¢1(2), R(2) := Rul¢1(2). Let B := exp) _;., Vi[#] and setA := A4[¢], v (p) :
PG (¢ + p), andp™ := p;lo].

Part 1. Proof of (6). AssumeA > 0. According to Proposition 3; is continuous and
strictly increasing in—oo, p*1, y (p*) > 0 andy (p) — —oo. Therefore, there exists a
uniquep, (¢) for whichy (p,(¢)) = 0.

We claim thatp, (¢) = — Pg(¢p). Fix somep < p,(¢). Sincey is strictly increasing,
y(p) < 0, whencep(R(e?)) < 1. By (13),[IT(e”)1a)lloo = 1+ 3 [IR(P)"]| < o0
whence, by summable variationy, ¢"? Z, (¢, a) converges. The radius of conver-
gence of this series is ekpPg;(¢)]. Thereforep < —Pg(¢p). Taking p 1 pa(¢)
we havep,(¢) < —Pg(¢). Assume by way of contradiction thap,(¢) < p’ <
—PG(¢). Then||T ()| < BY. €™ Z,(¢,a) < oo whence by (13), the series
> R(eP/)” 1;41(x) converges for every. Summable variations imply th&t € [«] and
Vn > 1, |R(e”)"|| < BR(e”)"1i41(x). ThusY [|R(e?)"|| < oo whencep[R(e?)] <
1, or equivalentlyy (p) < 0. This, however, is impossible becayses strictly increas-
ing, ¥ (pa(¢)) = 0andp’ > p,(¢). This proves thap,(¢) = — Ps(¢) and settles (6)
for the caseh > 0.

Assume now thal\ < 0. In this case there is no solution for the equatigp) = O,
because fop < p* y(p) < A < Oandforp > p* y(p) = oco. We show that
in this casePg(¢) = —p*. By (4) and the inequalityZ’(¢,a) < Z,(¢,a), p* >
— P (¢). Assume by way of contradiction that > — P (¢). Then for every € [a],
T(e? ) (x) = B~1Y " Z,(¢, a) = 0o, whence by (13), & 3" R(e?")" diverges
everywhere onal. Thusp[R(e”")] > 1, whenceA = y(p*) > 0 in contradiction to
our assumptions. This settles the case: 0.

Part 2. Proof that recurrence is equivalent to A > 0. Assume thatA > 0. By

the first part of the theorem(— Pg(¢)) = 0 so the spectral norm at (e~ 76 is

equal to 1. Therefore, there exigtse [0, 27) such that 1— ¢'é R(e=P6(®)) does not
have a bounded inverse operator. In particular, the seriegl, . ; e’ R(e=Fc @)k

does not converge in the strong norm. It follows that there exists somé@ such that
for every N there exists: = n(N) > N andg, € Cpla] such that|g,|lcc = 1 and
1> ksp € R(e™Po@Yrg, [l o > &. Now, on[a]

00 & ad
SR IO 14y = 3RO = |3 RO g, | =
k=n k=n k=n

whencel| Y-, R(e~P6@)¥ 11|l > & for everyn. By the summable variations prop-
erty this is only possible i§_ R(e~F¢®)k1,, diverges orfa] whence

IT (e "6 @) 1)1l 00 = 00.

This is equivalent tg_ e~ *F6(@ 7, (¢, a) = 0o, SO¢ is recurrent.

Assume thaiA < 0. Setp := p[R(e”")]. Thenp = expA < 1. By the definition
of the spectral radius, there exists sofieand pg € (p, 1) such that for every,
IR(e”)'lc < Cpli. The renewal equation implies thgI' (e”)|| < C/(1 — po). It
follows thatT (¢”") is bounded, whencg’ ek 7,.(¢, a) is convergent. By the first part
of the theorem, and sinck < 0, p* = — Pg(¢). It follows that¢ is transient.
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Part 3. Proof that A > Oimplies positiverecurrence. Assume thatA > 0. By what
we have just proved is recurrent. Lev andh be the eigenmeasure and eigenfunction
given by theorem 1, and séin = hdm. Recall thatn an invariant measure, and that
m(X) < oo if and only if ¢ is positive recurrent. We will prove positive recurrence by
showing thain(X) < oo.

Let v,, m, be the measures,(A) := v(A N [a])/v[a] andm,(A) = m(A N
[a])/m[a]. Let T, := T %« be the induced transformation. Sineds T-invariant,m, is
T,-invariant. Note that the transfer operatorfyfwith respect ta, is R(A~1). To see
this note thavg € L®(v,),Vf € L1(v,),

o0

valgRG 1= 0 L (g0 T fligem) | = valg o Tu - £).
n=1
SetA(x) := [R(.7Yg,] (x). By Kac’s formula, the fact th&k(A~1) acts as the

transfer operator of, and the boundness af = ‘fl—’f away from zero and infinity on
partition sets3iC1 > such that

m(X) :/(pa dmg, = Clilf(pa dv, :/ Ax)dv(x).
[a]

Clearly,

o0 oo
AW =) T Y O mn () = B ) T 2@, @),
n=1

Thy=x n=1

SinceA > 0, p* > —Pg(¢) sor~1is smaller than the radius of convergence of the
series) 7" Z} (¢, a). It follows that)  nA™"Z*(¢,a) < oo whence||A(x)|lc < o0.
Sincev[a] < oo, m(X) < co as required. O

7. Proof of Theorem 4

In this section we prove Theorem 4, a strengthened version of Theorem 3.

7.1. Preparatory lemmas. Let X be topologically mixing and let € S be some fixed
state. Letp be some function with summable variations and finite pressure a(yd, e
be the induced system ¢a].

For everyx,y € X setf(x,y) = inf{n > 0: %, # y,}. Fix6 € (0,1) and set
for every functionf : X — C, Df := suf|f(X) — fM]/6'FY : ¥ # 3). Let
L = L9, a) be the space

LO,a)={f €CsX):Iflz:=lfllec + Df < o0}. (16)

A standard argument shows thatis a Banach space and thau|iL$1||oo < oo then
Lg(Z) c L and ||L$||B(Z) < oo, whereB(L) is the space of bounded operators on

L equipped with the strong operator norm. The following lemma says that the induced
system has a spectral gap, and is similar to well-known results in the theory of interval
maps with indifferent fixed points ([T1,T2,A,ADU, B, PS]).
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Lemma 4. Let X betopologically mixing, ¢ somefunctionon X anda € S afixed state.
Let (X, ¢) betheinduced systemon [a] and assume that ¢ isweakly Holder continuous
with exponent 6 € (0, 1) and that ||L$1||C>O < 00. Then ¢ is positive recurrent if and
only if the spectrumof L : £(6, a) — L(6, a) consists of a simple eigenvalue 2 and a

subset of {7 : |z] < TA}, wheret < 1. Inthiscase, & = eF6@,
Proof. Assume tha# is positive recurrent with finite pressure andset expPg (¢).
X has the structure of a full shift. It is known ([S1, Sect. 5], see also [A, Theorem 4.7.7]

and [Yu]) that for such systems there exiéts> 0 andt € (0, 1) such that for every
ferL

HX‘”(%)" f-h / fdv

< Kt",
L

whereLzh = .1, L%U = Av andv (k) = 1. This implies the required spectral property.
The opposite direction is trivial, since the spectral property impliesﬁﬁ’éL% has anon

trivial limit (the eigenprojection of), and this is only possible # is positive recurrent
with pressure log. O

Lemma5. Let X be topologically mixing and let ¢ be a function with summable vari-
ations such that Pg(¢) < oo and A,[¢] > 0. For every v € Dir(¢), 3¢ > 0
Ir > expl—Pg(¢)lsuchthat }° 1 nr" Z; (¢ + ely|, a) < oo.

Proof. Withoutloss of generalityP; (¢) = 0 (else passto— Pg (¢)). SinceA,[¢] > O,
Ir > expg—Pg(¢p)] = 1 such that||R,[¢]1(r) 14l is finite, or equivalently,
Y on=1""Z (¢, a) < oo. Without loss of generality

. 1
limsup=logZ;(¢,a) < —logr.

n—oo N

Set f,(t) == (I/n)logZ} (¢ + t,a) and f(¢) := limsup,_, o, f(t). By Holder's
inequality, f,, are convex, whence so j& Sinceyr € Dir(¢), there is some > 0 such
thatVv|s| < 2¢, —00 < f(t) < Pg(¢ + 1) < oo.

By convexity and sincef < oo, either f(r) = —oo everywhere in(—2¢, 2¢), or
|f ()] < oo everywhere in(—2¢, 2¢). In the first case the radius of convergence of
Zk>1kaZ(¢ + 1, a) is infinite forr = +¢ and we are done. In the second case, by
convexity and finitenessf,(¢) is continuous in(—2¢, 2¢). Thus, since was chosen so
that £ (0) < —logr, there exists’ < ¢ such thaw|r| < 2¢’ f(r) < —logr. It follows
thatr is strictly smaller than the radius of convergenceZ(}}le"Z,j (¢ + t, a) for
t = +¢’ and again, we are donen

Recall that functiont” : C x C — B(L) is calledanalytic in a neighborhood of
(z0. wo) if AFux € B(L) such thatF (z, w) = Y, ;-0(w — wo)*(z — z0)* Fx and the
series converges in the strong operator norm in a neighborhogd,abg).

Lemma 6. Let X be topologically mixing, et ¢ be some function with summable vari-
ations such that Pg(¢) < oo and let ¢ € Dir(¢). Let a € S be some state such that
Aql¢] > 0and assume that ¢ and v/, the induced potentials on [a], are weakly Holder
continuouswith parameter 6. Then F : CxC — B(L) givenby F(z, w) = L

isanalytic in a neighborhood of (z, w) = (0, e~ F6(®),

¢+zy+logw
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Proof. Throughout this proof- || denotes the strong operator nornBiC). We assume,
without loss of generality, thaPs(¢) = 0 and prove analyticity in0, 1). For every
functiong : X — C let M, be the operatoM, f = gf. SetA, = {x € X :

@a(m(x)) = n}. This is a union of partition sets K. SetR,, := LzMa,, . Then,

I
12
S
=
=
=
X
<

F(z, w)

We show that this converges B(L) in some open ball containing, w) = (0, 1).
Fix someN and setAy (x) :==¢* — (1 +x + E—? +..., "VN!). Then

1 k= 7}
DT 2T ED BT L AT |
nk>N n>N

We estimate the summands of the last series.

For everyp € S setQ5f(xX) := f(pX). LetAl, := {p € S : [p] € A,}. By
definition,R,,MAN(Z% = ZﬁeA,’l QgMAN(Z%eg. Since for everyf, g € L, || fglz <
IFlzlglz

|05Ma o | = | @5e? | IQrANGD -

It is standard to check thatx, y € C, |[Ax (x) — Ax(¥)| < |x — y|(e"! + €I”!) and that
Vx,y € R, |eX —e¥| < |x — y|(e* + ¢¥). Using this and the inequalityt y (x)| < e/,
it is easy to show that there is some const&nt(independent ofi and N) such that
Viz| < 1,

_ _ b1, l2¥1,—
07005 = K1 | F1am]_ e m]

Summing over alp € A}, and using weak Holder continuity, we have that for sakhe
independent of and N,

|RaMy | = KZi @+ 121 101 @),

Lete > 0 andr > 1 be as in Lemma 5. Without out loss of generality® > 1 and
¢ < 1. Thenforalllz| < ¢ and|w| < r,

ee}
< K n *
<K ) r"Zi@+elyla) — 0
n=N+1

o wlzf
> > T RaMyg

n=N+1k=N+1

whenceF (z, w) is analytic in a neighborhood @0, 1). O
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7.2. Proof of Theorem 4. Let ¢ be a function with summable variations and finite pres-
sure and lety € Dir(¢). Assume thala € S such thatA,[¢] > 0 and such that the
induced potentials ofa], ¢, ¥ are weakly Holder continuous with exponént (0, 1).
Without loss of generality, assume that (¢) = 0. Set

I'(z,w):= Pg(¢p + z¢y — w).

By the discriminant theorenyz € R, if 3w € R such thatl'(z, w) = 0, thenw =
PG (¢ + z1). Thus,Pg (¢ + zv) is given implicitly by

I'(z, P(¢ +z¢)) =0. a7)

We will show thatl” has a complex holomorphic extension to a neighborhogg af) =

(0, 0)inCx C, and apply the compleximplicit function theorem ([Boch], p. 39) to deduce
that (17) define®s (¢ +z1) real analytically in a neighborhood of= 0. (This theorem
applies sinc&/h > 0,T°(0, h) < Pg(¢ — h) = Pg(¢) — h whencel',,(0, 0) # 0.)

By Theorem 2 and Lemma 3, sintg[¢] > 0 andPg(¢) = 0, ¢ is positive recurrent
with pressure zero. By (5} Z;i(¢, a) < oo whence|Lg|| < oo. By Lemma 4 the
spectrum ofL : £ — L consists of the simple isolated eigenvalue 1 and a compact
subset of{z : |z] < t} for somer < 1. By standard analytic perturbation theory
[Ka], there exist$ > 0 such that if| L — Lilgz <9 thenL has a (unique) simple
eigenvalue.(L) of maximal magnitude, this eigenvalue is simple, has magnitude larger
than (1 + 7)/2, and the rest of the spectrum is containedzn |z|] < (1 + 7)/2}.
Furthermore, the map — A(L) is holomorphic in{L € B(L) : ||L — LE”B(Z) < §8}.

By lemma 63¢ > 0 such thaiz, w) — Lyro—w is holomorphic inU := {(z, w) €
CZI: lz], lw| < ¢} and :'such thaﬂLm — L$”B(Z) < §forall |z], |lw| < . In this
neighborhood we define

Tz, w):= log A (Lm) .

T is holomorphic inU. For everyz, w real such tha(z, w) € U, the spectrum of
Lyrv—w consists of a simple eigenvalugz, w) and a compact subset of : |A| <
|A(z, w)|}. By Lemma 4¢ + zy — w is positive recurrent with pressure lag, w) =
I'(z, w). Itfollows thatT is a holomorphic extension ®f. This proves that — Pg (¢ +
ty) is real analytic in(—e, ¢).

We show thatp + ¢ is positive recurrent fofz| small. Real analyticity implies
continuity, so38’ > 0 such thav|t| < &', PG (¢ + 1) € (=5, 5). Setw := —Pg (¢ +
ty). Then|w — 5| < e whencePg(¢p +1tyy —w+5) = I'(t,w — §) < oo. Since
PG (¢ + 1ty + p) is increasing inp, Pg(¢ + t¥ + (5 —w)) > I'(t, w) = 0 whence
Aglp+1ty]1>0. O
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