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Abstract: We study the analyticity of the topological pressure for some one-parameter
families of potentials on countable Markov shifts. We relate the non-analyticity of the
pressure to changes in the recurrence properties of the system. We give sufficient condi-
tions for such changes to exist and not to exist. We apply these results to the Manneville–
Pomeau map, and use them to construct examples with different critical behavior.

1. Introduction

A well known theorem of Ruelle [Ru2,Ru1] states that for every topologically mixing
topological Markov shiftX with a finite number of states, the topological pressure
Ptop is analytic on the space of Hölder continuous functions. That is,∀φ,ψ ∈ C(X)

Hölder continuous,t �→ Ptop(φ + tψ) is real analytic in a neighborhood oft = 0
(whence for everyt). In ferromagnetism, this is sometimes interpreted as “lack of phase
transitions” (see [E]).

If the number of states iscountable, this theorem is no longer true. [S3] contains an
example of aφ which depends on a finite number of coordinates (“finite range potential”)
for whichPtop(φ+tφ) has a positive Lebesgue measure set of critical points. Other finite
range examples with critical behavior can be found in [Hof,Lo,W1,W2]. Infinite range
examples include the Manneville–Pomeau map (see e.g. [PM,Lo]) and the Farey map
[PS] (see also [LSV]).

The purpose of this paper is to study critical phenomena for some smooth one-
parameter families of infinite range potentials on countable Markov shifts. The critical
phenomena we consider are non-analyticity of the pressure, changes in the existence of
an equilibrium measure, and changes in its finiteness, when it exists.

It was observed in [S2], that there are three modes of recurrence for potentials on
countable Markov shifts: positive recurrence, null recurrence and transience. Positive
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recurrent potentials admit finite equilibrium measures. Null recurrent potentials admit
conservative infinite equilibrium measures. Transient potentials do not have conservative
conformal measures. A change in the mode of recurrence of a one-parameter family
affects, therefore, the existence or finiteness of the equilibrium measure.

We show that a change in the mode of recurrence is also related with non-analyticity
of the pressure, and give conditions governing the existence of such changes (Theorems 2
and 3). We use these results to derive some of the properties of the Manneville–Pomeau
map, and show that all systems with the same symbolic structure have similar proper-
ties. This explains why the Manneville–Pomeau map has the same critical behavior as
that of the examples considered in [PS,Lo,W1] and [W2, Theorem 5]. We also construct
examples with different critical behavior, using the methods of [S3].Among these exam-
ples is a potential which is “intermittent” (i.e., admits infinite conservative equilibrium
measure) for a whole interval of “temperatures” (example 4). This is different than the
Manneville–Pomeau example, which is intermittent only for a specific “temperature”.

The structure of the paper is as follows. Section 2 contains a survey of relevant results
on the thermodynamic formalism of countable Markov shifts. Section 3 contains the
statement of our main results, Theorems 2, 3 and 4. Section 4 contains an application of
these results to the study of the renewal shift and the closely related Manneville–Pomeau
map. Section 5 contains other examples. Section 6 contains the proof of Theorem 2.
Section 7 contains the proof of Theorems 3 and 4.

2. Survey of the Thermodynamic Formalism for Countable Markov Shifts

In this section we survey some results from [S1,S2] concerning the thermodynamic
formalism of some infinite range potentials on countable Markov shifts. For a survey on
finite range potentials see [GS] (see also [G1]).

2.1. Basic definitions and notational conventions. Let S be a countable set andA =(
tij

)
S×S

a matrix of zeroes and ones with no columns or rows which are all zeroes. Let
X be the set

X :=
{
x ∈ SN∪{0} : txixi+1 = 1 , ∀i ≥ 0

}
endowed with the relative product topology, which is also given by the base ofcylinders

[a0, . . . , an−1] := {x ∈ X : xi = ai , 0 ≤ i ≤ n− 1} ,
wheren ∈ N anda0, . . . , an−1 ∈ S. An admissible word is aa ∈ Sn such that[a] �= ∅.
Its length is|a| = n. Let T : X → X be theleft shift (T x)i := xi+1. The topological
dynamical system(X, T ) is called a(one sided) topological Markov shift. We say thatX
is topologically mixing if(X, T ) is topologically mixing. The members ofS are called
thestates of the shift, and the matrixA is called thetransition matrix. The sets[a]where
a ∈ S are called thepartition sets.

Letφ : X → R be some real function (also calledpotential). Thevariations of φ are
Vn(φ) := sup{|φ(x) − φ(y)| : x, y ∈ X , xi = yi , 0 ≤ i ≤ n − 1}. φ is said to have
summable variations if

∑
n≥2 Vn(φ) < ∞. φ is calledweakly Hölder continuous (with

parameterθ ) if there existA > 0 andθ ∈ (0,1) such that for alln ≥ 2,Vn(φ) ≤ Aθn.
Note that in both cases the quantification begins withn = 2 soφ may be unbounded or
may satisfyV1(φ) = ∞.
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For everyφ with summable variations we associate the correspondingRuelle operator
[Ru2]

(
Lφf

)
(x) := ∑

Ty=x e
φ(y)f (y). If ‖Lφ1‖∞ < ∞ this is a bounded operator on

the Banach spaceCB(X) = {f ∈ C(X) : ‖f ‖∞ < ∞} (complex valued functions).
One checks that(Ln

φf )(x) = ∑
T ny=x e

φn(y)f (y) whereφn := ∑n−1
k=0 φ ◦ T k.

We use the following notational conventions. All logarithms are natural logarithms.
The indicator functions of setsA ⊆ X are denoted by 1A, and 1:= 1X.a = B±nb means
thatB ≥ 1, a, b > 0 andB−nb ≤ a ≤ Bnb; an � bn means that∃B∀n, an = B±1bn;
an ∝ bn means that∃c �= 0 such thatan/bn → c; andan ∼ bn means thatan/bn → 1.

2.2. Pressure and recurrence. Fora ∈ S setϕa(x) := 1[a](x)inf {n ≥ 1 : T n(x) ∈ [a]}
(where inf∅ := ∞ and 0· ∞ = 0). Set

Zn(φ, a) :=
∑

T nx=x

eφn(x)1[a](x) and Z∗
n(φ, a) :=

∑
T nx=x

eφn(x)1[ϕa=n](x).

It is known that ifX is topologically mixing,φ has summable variations1, and‖Lφ1‖∞
is finite then the following limit exists, is finite and is independent of the choice ofa ∈ S

PG(φ) := lim
n→∞

1

n
logZn(φ, a). (1)

PG(φ) is called theGurevich pressure of φ ([S1,G1,G2,G3]) and satisfies the following
variational principle

PG(φ) = sup
{
hµ(T )+

∫
φdµ : µ ∈ PT (X);−

∫
φdµ < ∞

}
,

wherePT (X) is the set ofT -invariant Borel probability measures.
Let λ := exp[PG(φ)]. We say thatφ is recurrent if for some a ∈ S,∑
n≥1 λ

−nZn(φ, a) diverges andtransient if it converges. We say thatφ is positive
recurrent if it is recurrent and

∑
n≥1 nλ

−nZ∗
n(φ, a) < ∞ andnull recurrent if it is re-

current and
∑

n≥1 nλ
−nZ∗

n(φ, a) = ∞. It turns out that these definitions do not depend
on the choice ofa ∈ S and that [S2]:

Theorem 1. Let X be a topologically mixing countable Markov shift, and let φ be some
real function on X with summable variations. If φ has finite Gurevich pressure, then φ

is recurrent if and only if there exist λ > 0, a conservative measure ν finite and positive
on cylinders, and a positive continuous function h such that L∗φν = λν and Lφh = λh.
In this case λ = expPG(φ) and there exist an ↑ ∞ such that for every cylinder [a] and
x ∈ X

1

an

n∑
k=1

λ−k
(
Lk
φ1[a]

)
(x) −→

n→∞ h(x)ν[a].

The sequence {an}n>0 satisfies an ∼
(∫

[a] hdν
)−1 ∑n

k=1 λ
−kZk(φ, a) for every a ∈ S.

1 The following results, including Theorem 1 below, were stated in [S1] and [S2] under stronger continuity
assumptions onφ, but the proofs given there are also valid forφ with summable variations.
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Furthermore,

1. if φ is positive recurrent then ν(h) < ∞, an ∝ n, and for every [a] λ−nLn
φ1[a] −→

n→∞
hν[a] uniformly on compacts, where h is normalized so that ν(h) = 1.

2. if φ is null recurrent then ν(h) = ∞, an = o(n), and for every [a] λ−nLn
φ1[a] tends

to zero uniformly on cylinders.

It is easy to check thathdν is T -invariant, thath is bounded away from zero and
infinity on partition sets and thatVn(logh) ≤ ∑

k≥n+1 Vk(φ). It is also clear from the
convergence part of the theorem thatν andh are unique up to a multiplicative constant.
As a corollary we obtain,

Lemma 1. Let X be topologically mixing and let φ be a function with summable vari-
ations and finite Gurevich pressure. Then there exist two continuous functions φ′ and
ϕ such that φ′ ≤ 0, PG(φ

′) = 0 and φ′ = φ + ϕ − ϕ ◦ T − PG(φ). The function ϕ

is bounded on partition sets. If φ is recurrent then Lφ′1 = 1, and if φ is transient then
Lφ′1≤ 1. If φ is weakly Hölder continuous then so are φ′ and ϕ.

Proof. Setλ := expPG(φ). Assume thatφ is transient. Fix some statea ∈ S and set
h := ∑

n≥1 λ
−nLn

φ1[a]. By transience, topological mixing and summable variationsh

is finite. Also, ifφ is weakly Hölder, then so are logh and logh ◦ T . It is easy to check
thatλ−1Lφh ≤ h. Setϕ := logh andφ′ := φ + ϕ − ϕ ◦ T −PG(φ). Clearly,Lφ′1≤ 1
whenceφ′ ≤ 0 as required. The case whenφ is recurrent is handled by replacingh in
the last argument by theh given by theorem 1 (see [Wal] for a similar normalization
procedure). "#

3. Statement of Main Results

We recall the well-known process ofinducing in the context of topological Markov shifts
(see [S2] and [A, Sect. 1.5]). Fix some statea ∈ S. SetS := {[a] : |a| ≥ 1 ; ai =
a iff i = 0 ; [a, a] �= ∅}, X := S

N∪{0}
and letT : X → X be the left shift. For every

φ : X → R set

φ :=
ϕa−1∑

k=0

φ ◦ T k

 ◦ π,

whereπ : X → [a] is given byπ([a0], [a1], . . . ) := (a0, a1, . . . ). The pair(X, φ) is
called theinduced system andφ is called theinduced potential (on [a]).

Induced systems are in many cases easier to handle than the original systems, as
shown by the following example: A system(X, φ) is calledBernoulli if X = SN∪{0} and
if φ(x) = φ(x0). A potential is calledMarkov if φ(x) = φ(x0, x1). If φ is a Markov
potential, then(X, φ) is a Bernoulli system.2

If φ is weakly Hölder continuous, so isφ. Summable variations alone, however, is not
enough:φ may not have summable variations, even ifφ does. The existence of pressure,
however, is always guaranteed:

2 This is also true for the larger class of potentialsφ for which∃a ∈ S such thatφ(x) = φ(x0, . . . , xϕa(x))
as long as the inducing is done with respect to[a]. The statea can be viewed as a “gap” between non-interacting
clusters of interacting particles. Analogous potentials are studied in a different mathematical setting in [FF].
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Lemma 2. Let X be topologically mixing and let φ : X → R be some function with
summable variations. Let a ∈ S be some fixed state and let X and φ be the induced
system and induced potential. Then the following limit exists for all [a] ∈ S (although
it may be infinite) and is independent of the choice of [a]:

PG(φ) = lim
n→∞

1

n
logZn(φ, [a]).

Proof. Follows from the proof of Theorem 1 in [S1] and the standard estimation

Vn[φ + φ ◦ T + . . .+ φ ◦ T n−1] ≤ ∑∞
k=2 Vk[φ]. "#

To state our main results, we need the following definition.

Definition 1. Let X be topologically mixing and let φ : X → R have summable vari-
ations and finite Gurevich pressure. Fix a ∈ S and let (X, φ) be the induced sys-
tem. Set p∗a[φ] := sup{p : PG(φ + p) < ∞}. The a-discriminantof φ is ,a[φ] :=
sup{PG(φ + p) : p < p∗a[φ]} ≤ ∞.

As we shall see later (Sect. 6, Proposition 3),

,a[φ] = PG(φ + p∗a[φ]). (2)

Both,a[φ] andp∗a[φ] are determined by
∑

ξnZ∗
n(φ, a) in the following way. LetR be

the radius of convergence of this series. Then∣∣∣∣∣,a[φ] − log
∞∑
k=1

RkZ∗
k (φ, a)

∣∣∣∣∣ ≤
∞∑
k=2

Vk(φ) (3)

p∗a[φ] = − lim sup
n→∞

1

n
logZ∗

n(φ, a) (4)

Both relations follow from the stronger statement (Sect. 6, Proposition 3):∣∣∣∣∣PG(φ + p)− log
∞∑
k=1

ekpZ∗
k (φ, a)

∣∣∣∣∣ ≤
∞∑
k=2

Vk(φ). (5)

Note that whenφ is a Markov potential, both (5) and (3) are equalities (because for
Markov potentials

∑
k≥2 Vk(φ) = 0). Our basic result is:

Theorem 2 (Discriminant theorem). Let X be a topologically mixing countable
Markov shift and let φ : X → R be some function with summable variations and
finite Gurevich pressure. Let a ∈ S be some arbitrary fixed state.

1. The equation PG(φ + p) = 0 has a unique solution p(φ) if ,a[φ] ≥ 0, and no
solution if ,a[φ] < 0. The Gurevich pressure of φ is given by

PG(φ) =
{
−p(φ) ,a[φ] ≥ 0
−p∗a[φ] ,a[φ] < 0

; (6)

2. φ is positive recurrent if ,a[φ] > 0 and transient if ,a[φ] < 0. In the case
,a[φ] = 0, φ is either positive recurrent or null recurrent.
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Theorem 2 should be understood in the context of one-parameter families of poten-
tials. Given such a family{φβ}, let {,β} be the corresponding one-parameter family
of discriminants. When,β changes sign,{φβ} changes its recurrence properties and
the case in (6) changes. A change in the mode of recurrence implies, by Theorem 1, a
change in the qualitative properties of the equilibrium measure (existence and finiteness).
A change of case in (6) may imply non-smoothness forβ �→ PG(φβ). This suggests that
the search for critical phenomena for one-parameter families may be done by studying
the sign changes of the discriminant. This can sometimes be done with the aid of (3), as
we shall see in Sects. 4 and 5. The proof of Theorem 2 is given in Sect. 6.

We now discuss the case when the discriminant does not change sign and remains
positive. Letφ be some function with summable variations and finite pressure. We say
thatφ is strongly positive recurrent if for some statea ∈ S

,a[φ] > 0.

(This generalizes the notion ofstable positivity for Markov potentials discussed in [GS].)
The Discriminant Theorem implies that every strongly positive recurrent function is
positive recurrent. The opposite statement is false (Example 2 below).

We are interested in differentiability of the pressure functional, i.e. in the existence
of directional derivativesd

dt

∣∣
t=0 PG(φ + tψ). We restrict ourselves to the following set

of directions:

Dir(φ) :=
{
ψ :

∞∑
n=2

Vn(ψ) < ∞, ∃ε > 0 s.t. ∀|t | < ε, PG(φ + tψ) < ∞
}
.

The following theorem completesTheorem 2 by saying that if the discriminant is positive,
then there is no critical phenomena of the sort that can be encountered when, changes
sign. Its proof is given in Sect. 7.

Theorem 3. Let X be a topologically mixing and φ be a weakly Hölder continuous
function such that PG(φ) < ∞. If φ is strongly positive recurrent then ∀ψ ∈ Dir(φ)
weakly Hölder continuous, ∃ε > 0 such that φ + tψ is positive recurrent for all |t | < ε

and such that t �→ PG(φ + tψ) is real analytic in (−ε, ε).

The caseψ = φ is particularly interesting, as it appears in the study of the one-
parameter family{βφ}β≥β0.3 If PG(β0φ) < ∞, thenPG(βφ) < ∞ for all β > β0,
because by lemma 1,φ is cohomologous to a non-positive function. Therefore,∀β > β0,
φ ∈ Dir(βφ). This may not be true forβ = β0:

Example 1. LetX = NN∪{0} andφ(x) := − log
(
x0(log 2x0)

2
)
. ThenPG(βφ) < ∞ for

β ≥ 1, andPG(φ) = ∞ for β < 1.

Proof. PG(βφ) = log
∑

k≥1 1/[kβ(log 2k)2β ]. "#
Corollary 1. Let X be a topologically mixing and φ be weakly Hölder continuous func-
tion such that PG(φ) < ∞ and φ ∈ Dir(φ). The following conditions are equivalent:

1. φ is strongly positive recurrent.
2. for every weakly Hölder continuous ψ ∈ Dir(φ) there exists ε > 0 such that φ + tψ

is positive recurrent for every real t such that |t | < ε.
3. for every a ∈ S ,a[φ] > 0.

3 Such families appear in models for systems whose inverse temperatureβ is changed [E].
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Proof. The first statement implies the second by Theorem 3. The third statement trivially
implies the first. It remains to show that the second statement implies the third. Assume
that the second statement is true, but that the third statement is false. Then for some
a ∈ S, ,a[φ] is not positive. Since by our assumptionsφ is positive recurrent,,a[φ]
cannot be negative, so,a[φ] = 0. Setψ := 1[a]. Sinceψ = 1 onX, ,a[φ + tψ] = t .
This contradicts the second statement because ift < 0 thenφ + tψ is transient. "#
We remark that the assumptions of Theorem 3 can be weakened:

Theorem 4. Let X be a topologically mixing and φ be a function with summable vari-
ations, such that PG(φ) < ∞, ,a[φ] > 0 and such that the induced potential on a, φ,
is weakly Hölder. Then ∀ψ ∈ Dir(φ) such that ψ is weakly Hölder continuous, ∃ε > 0
such that φ + tψ is positive recurrent ∀|t | < ε, and such that t �→ PG(φ + tψ) is real
analytic in (−ε, ε).

In Sect. 7 we prove this stronger version.

4. The Renewal Shift

The examples studied in [PM,Hof,GW,W1,W2,PS] and [Lo] share the same critical
behavior: for some potentialφ, the functionβ �→ PG(βφ) has one point of non-
differentiability βc, and is constant forβ > βc. A close look at these examples shows
that they can be represented as different potentials on the same countable Markov shift,
therenewal shift. This is the shift with set of statesS := N ∪ {0} and transition matrix
(tij )S×S whose 1 entries aret00, t0i andti,i−1 (i = 1,2,3, . . . ). The main result of this
section is

Theorem 5. Let X be the renewal shift and let φ : X → R be a function with summable
variations such that supφ < ∞ and such that φ is weakly Hölder continuous. Then
there exists 0 < βc ≤ ∞ such that:

1. βφ is strongly positive recurrent for 0 < β < βc and transient for β > βc.
2. PG(βφ) is real analytic in (0, βc) and linear in (βc,∞). It is continuous but not

analytic at βc (in case βc < ∞).
3. Set An := esup{φn(x):x∈[0,n−1,... ,0]} and let R(β) be the radius of convergence of

Fβ(ξ) := ∑
n≥1 A

β
nξ

n. If Fβ(R(β)) is infinite for every β then βc = ∞. If ∃β > 0
such that Fβ(R(β)) < 1 then βc < ∞.

Proof. It is easy to check thatX it topologically mixing. Also,βφ has finite pressure
for all β ≥ 0, sincePG(βφ) ≤ log‖Lβφ1‖ ≤ log(2eβ supφ). One can easily check that
for every functionf , n ∈ N andβ > 0

Z∗
n(βf,0) = Z∗

n(f,0)β and p∗0[βf ] = βp∗0[f ]. (7)

Henceforth(X, φ) denotes the induced system on[0], P(β) := PG(βφ) and,[β] :=
,0[βφ].

If p∗0[φ] = ∞ then,[β] = sup{PG(φ + p) : p < ∞} = ∞ becausePG(φ + p) ≥
PG(φ) + p. In this case parts 1 and 2 follow withβc = ∞ from Theorem 4 and the
discussion after Theorem 3. We therefore restrict ourselves to the casep∗a[φ] < ∞.
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Without loss of generality, assume thatp∗0[φ] = 0 (else pass toφ + p∗0[φ] and use
(4)). By (7),p∗0[βφ] = 0 for all β > 0, whence by (2)

,[β] = PG(βφ). (8)

As before, if,[β] > 0 for everyβ, parts 1 and 2 follow withβc = ∞. Assume
∃β > 0 such that,[β] ≤ 0 and setβc := inf {β > 0 : ,[β] ≤ 0}. Note thatβc > 0
because according to (3) and (7)

,[β] ≥ log
∞∑
n=1

(
enp

∗
0[φ]Z∗

n(φ,0)
)β − β

∞∑
n=2

Vn(φ) −→
β→0+

+∞.

We claim that,[β] → −∞ asβ ↑ +∞. Fix someβ0 such that,[β0] ≤ 0. By (8)
β0φ has finite pressure, whence by Lemma 1,β0φ is cohomologous toψ + PG(β0φ),
whereψ is weakly Hölder continuous (inX) such thatLψ1≤ 1. Sinceφ has summable

variations,V1(φ) < ∞. It follows from Lemma 1 thatV1(ψ) < ∞ as well. By (8), for
all t > 1,

,[tβ0] = PG(tβ0φ) = PG(tψ)+ tPG(β0φ).

SincePG(β0φ) = ,[β0] ≤ 0, we have for allt > 1,

,[tβ0] ≤ PG(tψ) ≤ log‖Ltψ1‖∞.

By construction,Lψ1≤ 1. Therefore, since everyx ∈ X has more than one pre-image,

ψ is strictly negative. It follows from this andV1(ψ) < ∞ that‖Ltψ1‖∞ → 0 ast ↑ ∞.
This implies that,[β] → −∞ asβ ↑ ∞.

We show that,[β] < 0 in (βc,+∞). By the definition ofβc there areβn ↓ βc such
that,[βn] ≤ 0. By what we just showed there areβ ′n ↑ ∞ such that,[β ′n] < 0. By (8)
,[β] = PG(βφ), so,[β] is convex in(βn, β

′
n). By convexity,,[β] < 0 in (βn, β

′
n].

Sinceβn ↓ βc andβ ′n ↑ ∞, ,[β] is strictly negative in(βc,+∞).
We have shown that,[β] < 0 in (βc,∞). It is obvious that,[β] > 0 in (0, βc).

Part 1 now follows from the discriminant theorem.
We prove part 2. The analyticity ofP(β) in (0, βc) follows from Theorem 4 and

that fact thatP(β) < ∞. The discriminant theorem and (7) imply that∀β > βc,
PG(βφ) = p∗0[βφ] = βp∗0[φ] and∀β ∈ (0, βc), PG(βφ) > p∗0[βφ] = βp∗0[φ]. Thus
PG(βφ) is linear in(βc,∞), but not in(0,∞). This implies thatβc is a point of non-
analyticity. The continuity ofP(β) in βc follows from the convexity of this function.

To prove part 3, recall that,[β] > 0 for β > 0 small, and note that by (8) that
logFβ(R(β))− β

∑∞
n=2 Vn(φ) ≤ ,[β] ≤ logFβ(R(β)). "#

Example 2. βcφ can be positive recurrent, null recurrent or transient.

Proof. Let {fn}n≥1 be a sequence such thatfn > 0 and logfn = o(n). Setφ :=∑
n≥1 1[0,n−1] logfn. Then,Z∗

n(φ,0) = fn, p∗0[φ] = 0 and
∑

n≥2 Vn(φ) = 0, whence

by (2),,0[βφ] = log
∑

n≥1 f
β
n . Let ζ(s) := ∑

n≥1 n
−s .

1. Positive recurrence. Setfn := 1
ζ(3)n3 . Then,0[βφ] = log[ζ(3β)/ζ(3)β ] whence

βc = 1. Note that,0[βcφ] = 0 whencePG(βcφ) = −p∗0[βcφ] = 0. It also follows
thatβcφ is recurrent. Positive recurrence follows from

∑
n≥1 ne

−nPG(φ)Z∗
n(φ,0) =∑

n≥1 n/(ζ(3)n
3) < ∞. Note thatβcφ is positive recurrent but not strongly positive

recurrent.
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2. Null recurrence. The same calculations withfn = 1/(ζ(2)n2).
3. Transience. Setfn := C/n[log(2n)]2, whereC is a constant such that

∑
n≥1 fn = 1

2.
Similar calculations show that,0[βφ] is infinite forβ < 1 and,0[βφ] ≤ − log 2
for β ≥ 1. Thusβc = 1 andβcφ is transient. "#

For an example of the possible applications of theorem 5, consider the Manneville–
Pomeau mapT : [0,1] → [0,1] given byT (x) = x + x1+s(mod 1), where the value
of T at its discontinuity is 0,T (1) = 1 ands > 0 [PM]. The following proposition, is
a generalization of results which are known forf = − log |T ′| (see [PM] and [Lo]) to
other potentials, whose equilibrium measure is not necessarily equivalent to Lebesgue’s
measure.

Proposition 1 (The Manneville–Pomeau Model). Let T be the Manneville–Pomeau
map and let f : [0,1] → R be C[0,1] ∩C1(0,1] such that f ′(x) ∼ cαxα−1 as x ↘ 0,
where c �= 0 and α > 0. Set

P(β) := sup

{
hm(T )+ β

∫
f dm : m ∈ PT ([0,1]); −

∫
f dm < ∞; m{0} = 0

}
.

1. There exists 0 < βc ≤ ∞ such that P(β) is real analytic in (0, βc) and linear in
(βc,∞). It is continuous but not real-analytic at βc.

2. βc is finite if and only if α ≤ s and c < 0. In particular, it is finite for f := − logT ′.

Proof. It is common knowledge thatT can be described symbolically as a renewal shift.
We check that the symbolic representation off has summable variations and apply
theorem 5. To do this we recall some facts on the natural Markov partition ofT (see [I],
Lemma 4.8.6 in [A] and [T1]).

Define by inductionc0 := 1 andcn = cn+1 + c1+s
n+1. Rewriting this asc−s

n+1 =
c−s
n (1 + csn+1)

s = c−s
n (1 + scsn+1 + o(csn+1)) we see thatc−s

n+1 − c−s
n ∼ s whence

cn ∼ (sn)−1/s . It follows from the recursive relation which defines{cn} that

cn − cn+1 ∼ 1

(sn)1+1/s .

Set I [n] := (cn+1, cn] and I [a0, . . . , an−1] := ⋂n−1
k=0 T

−kI [ak]. One checks that
T I [0] = (0,1] andT I [n+1] = I [n], whenceI [a0, . . . , an−1] is not empty if and only
if (a0, . . . , an−1) is an admissible word of the renewal shift.

Claim 1. The diameter of I [a0, . . . , an−1] satisfies for every ε > 0

|I [a0, . . . , an−1]| = O

(
1

n1+1/s−ε

)
. (9)

Proof. By the previous discussion,

I [a0, . . . , an−1] = I [a0, . . . , an−1; an−1 − 1, . . . ,0],
so we may assume thatan−1 = 0. SetM := 1+sup{ak} andN := |{k : ak = 0}|. Since
(a0, . . . , an−1) is admissible with respect to the transition matrix of the renewal shift,
MN ≥ n. Thus, for everyβ ∈ (0,1) eitherM ≥ nβ or N ≥ n1−β .
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Setmn := 'nβ(+1. If M ≥ nβ then for some powerk, T kI [a0, . . . , an−1] ⊆ I [mn]
whence sinceT ′ ≥ 1 |I [a0, . . . , an−1]| ≤ |I [mn]| = cmn − cmn+1 = O(n−β(1+1/s)).
If N ≥ n1−β then for everyx ∈ I [a0, . . . , an−1]

(T n)′(x) =
n−1∏
i=0

T ′(T ix) ≥
(

inf
x∈I [0] T

′(x)
)N

whence forθ := 1/inf x∈I [0] T ′(x)

|I [a0, . . . , an−1]| ≤ θN . (10)

Sinceθ < 1 andN ≥ n1−β we have again thatI [a0, . . . , an−1] = O(n−β(1+1/s)).
Sinceβ ∈ (0,1) was arbitrary, the claim is proved."#

Let (X, σ ) be the renewal shift andπ0 : X → [0,1] be the map defined by the
equation{π0(x)} = ⋂

n≥0 I [x0, . . . , xn−1] = ⋂
n≥0 I [x0, . . . , xn−1]. By (9)π0 is well

defined. It is easy to check thatπ0 ◦ σ = T ◦ π0, thatπ0 is 1-1 and thatπ0(X) =
[0,1] \ ∪n≥0T

−n{0}.
Claim 2. Let f be C[0,1] ∩ C1(0,1] in [0,1] such that f ′(x) ∼ cαxα−1 as x ↓ 0,
where c �= 0 and α > 0. Then φ := f ◦π0 has summable variations and φ, the induced
potential on [0], is weakly Hölder continuous.

Proof. Fix x, y ∈ [a0, . . . , an−1], where without loss of generalityan−1 = 0. Fixε > 0
(to be determined later). Then there existsξ ∈ I [a0, . . . , an−1] such that

|φ(x)− φ(y)| = |f ′(ξ)| · |I [a0, . . . , an−1]| = O

(
ξα−1

n1+1/s−ε

)
.

Sinceξ ∈ I [a0, . . . , an−1] ⊆ (ca0+1, ca0), and since by the structure of the renewal
shift a0 ≤ n− 1, we have thatξα−1 = O(1+ cα−1

n ) whence

Vn(φ) = O

(
1+ n−(α−1)/s

n1+1/s−ε

)
.

If α ≥ 1 the nominator is bounded and choosingε < 1/(2s) we see thatVn(φ) is
summable. Ifα < 1 then the nominator isO(n(1−α)/s) and we have thatVn(φ) =
O(n−(1+α/s−ε)). Choosingε < α/s we see the

∑
Vn(φ) is summable. In any case,φ

has summable variations. The weak Hölder continuity ofφ can be proved in a similar
way.

Claim 3. P(β) = PG(βφ), where φ := f ◦ π0.

Proof. Since supf < ∞ and∀x |T −1x| = 2, ‖Lβφ1‖∞ < ∞. It follows as in ([S1,
Theorem 3],) that

PG(βφ) = sup
{
hµ(σ)+ β

∫
φdµ : µ ∈ Pσ (X);−

∫
φdµ < ∞

}
(the argument there works also for functions with summable variations).

The claim follows becausem ↔ m ◦ π0 is a 1-1 onto correspondence between the
sets of measures which defineP(β) andPG(βφ).
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Claims 2 and 3 show that we can apply Theorem 5 toφ = f ◦ π0 and deduce the
existence ofβc. We check the conditions for the finiteness ofβc. LetAn be as in Theo-
rem 5. Sinceφ has summable variations,An � expfn(dn), wheredn ∈ I [0] are defined
byT (dn) = cn. It is easy to check thatdn ↓ c1, whenceAn � exp

∑n
k=1 f (ck). Without

loss of generality,f (0) = 0 (addition of constants does not affect the finiteness ofβc).
Then by the assumptions onf , f (x) ∼ cxα. Sinceck ∼ (sk)−1/s , f (ck) ∼ c(sk)−α/s .
Thus

∑n
k=1 f (ck) � c

∫ n

1 x−α/sdx. It follows that there exist constantsK1,K2,K3,K4
such that

K1 exp

(
K2βc

∫ n

1

1

xα/s
dx

)
≤ Aβ

n ≤ K3 exp

(
K4βc

∫ n

1

1

xα/s
dx

)
.

Let Fβ(ξ) andR(β) be as in Theorem 5. Using the above,

1. If α > s thenAβ
n � 1 for everyβ > 0. In this caseFβ(R(β)) = ∞ for everyβ, so

βc = ∞.
2. If α = s thenK1n

K2βc ≤ A
β
n ≤ K3n

K4βc. It follows thatR(β) = 1 and thatF(R(β))

is infinite for everyβ if c > 0, andF(R(β)) −→
β→∞ 0 if c < 0. Thus forα = s, if

c > 0 thenβc is infinite, and ifc < 0 thenβc < ∞.
3. If α ∈ (0, s)anda := 1−(α/s) then for some constantsC1, C2, C3, C4,C1e

C2βcn
a ≤

A
β
n ≤ C3e

C4βcn
a
. Sincea < 1, R(β) = 1 for everyβ. It follows that if c > 0 then

F(R(β)) = ∞ for everyβ, and ifc < 0 thenF(R(β)) −→
β→∞ 0. Thus for 0< α < s,

if c > 0 thenβc is infinite and ifc < 0 thenβc is finite.

Thusβc < ∞ if and only if 0< α ≤ s andc < 0. "#

5. Other Examples

In this section we construct examples whose critical behavior is different than that of
potentials on the renewal shift. Our constructions are based on the tools of [S3] which
we now explain. We say that a one parameter family of functionsFβ(ξ) is anexponent

power series if it is of the formFβ(ξ) = ∑
n,k≥0 a

β
nkξ

n, whereank ≥ 0. Clearly, ifFβ

andGβ are exponent power series, then so areFβGβ ,Fβ ◦Gβ andc1Fβ + c2Gβ , where
c1, c2 are positive integers. We say that an exponent power seriesFβ is aperiodic if the
power expansion ofFβ contains two co-prime powers ofξ . We say thatFβ is adequate
if it is of the form cβξ + ξ2Gβ(ξ), wherec ≥ 0 andGβ is an exponent power series.

The following theorem was essentially proved in [S3]. We include its proof for com-
pleteness.

Theorem 6. For every adequate exponent power series Fβ there exists an irreducible
topological Markov shift X and a Markov potential φ = φ(x0, x1) such that for all β,
PG(βφ + p) = logFβ(e

p). If Fβ is aperiodic, X is topologically mixing.

Proof. Write

Fβ(ξ) = cβξ +
∞∑
n=2

ξn
Nn∑
k=1

a
β
nk,
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where 0≤ Nn ≤ ∞. Let S be a countable set indexed in the following way

S := {a} ∪
∞⋃
n=2

Nn⋃
k=1

{bnk(1), . . . , bnk(n− 1)}.

Let (tij )i,j∈S be the transition matrix whose non zero entries are exactlyta,bnk(1),
tbnk(i)bnk(i+1), tbnk(n−1)a for all n, k ≥ 1 andi = 1, . . . , n − 1 with the addition of
taa if and only if c �= 0. LetX be the corresponding topological Markov shift. Define
φ(x) by φ(x) := logank if x ∈ [a, bnk(1)], φ(x) := logc if x ∈ [a, a] andφ(x) := 0
otherwise. One checks that

Fβ(ξ) =
∞∑
n=1

ξnZ∗
n(βφ, a)

whence by (5) and the fact that∀k ≥ 2 Vk(φ) = 0, PG(βφ + p) = logFβ(e
p). Note

thatX is irreducible, because all states connect toa anda connects to all states. It is
topologically mixing if and only if there are two words of co-prime lengths which connect
a to a. This can be easily seen to be equivalent to the aperiodicity of

∑
ξnZ∗

n(βφ, a),
hence to that ofFβ . "#

The following example shows that{βφ}β>0 can change from recurrent to transient
an infinite number of times. (This is different than the example with infinite number of
non differentiability points in [S3], which is always transient.)

Example 3. There existsX topologically mixing andφ = φ(x0, x1) such that for some
βn ↓ 0,βφ is recurrent in(βi+1, βi) for i even and transient fori odd.

Proof. Consider the following sequence of numbers

Nn := 2

n

(
2n− 2
n− 1

)
.

A calculation with Stirling’s formula shows thatNn ∼ π−1/2n−3/222n−1. Another cal-
culation shows that

4−nNn = 1

4n−1

(
2n− 2
n− 1

)
− 1

4n

(
2n
n

)
. (11)

Multiplying both sides of (11) by 4n we see thatNn are all natural numbers. Summing
both sides of (11) overn we see that

∑
n≥2 Nn4−n = 1

2.
Fix someβn ↓ 0 with the property that

∑
θ1/βn < ∞ for all θ ∈ (0,1) (e.g.

βn := 1/n). Setαn(β) := −2(1
2)

β/βn andp(β) := ∏
n≥1(1 + αn(β)). Then for all

β > 0,p(β) is well defined, non zero forβ �∈ {βn}n and satisfies

p(β) = 1+ α1(β)+ [1+ α1(β)] α2(β)+ . . . ,

where the convergence on the right is absolute. Collecting summands with the same
sign writep(β) = A(β) − B(β), whereA(β) = ∑

a
β
n andB(β) = ∑

b
β
n for some

an, bn ≥ 0. If β ∈ (βi+1, βi) thenβ > βn iff n ≥ i + 1 whence

sgn(A(β)− B(β)) = sgn

(
i∏

n=1

(1− 21−β/βn)

∞∏
n=i+1

(1− 21−β/βn)

)
= (−1)i .
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Thus,A(β) > B(β) iff i is even.
Now constructX andφ = φ(x0, x1) such thatPG(βφ + p) = logFβ(e

p), where
Fβ(ξ) is the exponent power series

Fβ(ξ) = 8A(β)B(β)ξ2 +
∞∑
n=2

NnB(β)nξn.

SinceNn � 4n

n3/2 the radius of convergence ofFβ(ξ) is R(β) = 1/4B(β) whence

,a[βφ] = logFβ(R(β)) = log

(
8
A(β)B(β)

16B(β)2
+

∞∑
n=2

Nn4−n

)

whence,a[βφ] = log 1
2(1+ A(β)/B(β)). This is positive iffA(β) > B(β). Thusβφ

is recurrent forβ ∈ (βi+1, βi) andi even, and transient forβ ∈ (βi+1, βi) andi odd.
"#

We have seen that for potentialsφ on the renewal shift,βφ can be null recurrence for at
most one value ofβ (the critical point). Our next example shows that for other topological
Markov shifts null recurrence can occur in an entire interval. A trivial example would
be a Markov shift for which the potentialφ ≡ 0 is null recurrent. We therefore restrict
ourselves to examples whereφ is not cohomologous to a constant.

Example 4. There exist a topologically mixing topological Markov shiftX and a function
φ = φ(x0, x1) not cohomologous to a constant such thatβφ is null recurrent for everyβ.

Proof. Let Nn be as in Example 3 and setfβ(p) := 2β(ep + e2p). ConstructX topo-
logically mixing andφ = φ(x0, x1) such that

PG(βφ + p) = log

(
2

∞∑
n=2

Nnfβ(p)
n

)
.

SinceNn � 4nn−3/2, p∗a[βφ] is determined by the equationfβ(p∗a[βφ]) = 1/4. It
follows from this that,a[βφ] = 0. By the Discriminant theorem for allβ,βφ is recurrent
andPG(βφ) = −p∗a[βφ]. It also follows thatφ is not cohomologous to a constant, since
PG(βφ) is not a linear function ofβ (it is given by the equationfβ [−PG(βφ)] = 1/4).

We show thatβφ is null recurrent for allβ. SinceV2(φ) = 0, PG(βφ + p) =
log

∑
n≥1 e

npZ∗
n(βφ, a) whence

∞∑
n=1

ne−nPG(βφ)Z∗
n(βφ, a) =

d

dp

∣∣∣∣
p=p∗a

ePG(βφ+p) = 2f ′
β(p

∗
a[βφ])

∞∑
n=2

nNn4−(n−1)

and this diverges, becauseNn � 4nn−3/2. "#
Our last example shows that all modes of recurrence can co-exist for interval ranges

of inverse temperatures.

Example 5. There existX topologically mixing andφ = φ(x0, x1) such that for some
1 < β1 < β2 < ∞, βφ is null recurrent forβ ∈ (1, β1), positive recurrent forβ ∈
(β1, β2) and transient forβ ∈ (β2,∞).



568 O. M. Sarig

Proof. Fix some positivean ∼ 1/[2n(logn)2] such thata1 = 3
4,

∑
n≥1 an = 1 and set

A(β) = ∑
n≥1 a

β
n , Fβ(ξ) := ∑

n≥1 a
β
nA(β)nξn+1 and

Gβ(ξ) = Fβ(2Fβ(ξ)).

This is an adequate aperiodic exponent power series. LetX andφ be the corresponding
shift and potential.

Let RF (β) andRG(β) denote the radii of convergence ofFβ(ξ) andGβ(ξ). Note
thatRF (β) = 1/A(β) andFβ(RF (β)) = 1. Let β2 be the solution ofRF (β2) = 2.
Clearly,RF (β) < 2 for β < β2 andRF (β) > 2 for β > β2. Thus,

1. if β ∈ (1, β2) then 2Fβ(RF (β)) = 2 > RF (β) soRG(β) = F−1
β (1

2RF (β)). In this

caseGβ(RG(β)) = Fβ(2 · 1
2RF (β)) = Fβ(RF (β)) = 1;

2. if β > β2 then 2Fβ(RF (β)) = 2 < RF (β) so RG(β) = RF (β). In this case
Gβ(2Fβ(RF (β)) < Fβ(RF (β)) = 1.

Since,a[βφ] = logGβ(RG(β)), βφ is transient forβ > β2 and recurrent forβ ∈
(1, β2).

We check positive recurrence and null recurrence forβ ∈ (1, β2). Fix someβ ∈
(1, β2). SinceGβ(RG(β)) = 1, ,a[βφ] = 0 whencee−PG(βφ) = e−p∗a [βφ] = RG(β).

Thus
∑

n≥1 ne
−nPG(βφ)Z∗

n(φ, a) = RG(β)
d
dξ

∣∣∣
ξ=RG(β)

Gβ(ξ). Now, sinceRG(β) =
F−1
β (1

2RF (β)),

d

dξ

∣∣∣∣
ξ=RG(β)

Fβ(2Fβ(ξ)) = F ′
β(RF (β)) · 2F ′

β(RG(β)).

SinceRG(β) < RF (β), this is finite iffF ′
β(RF (β)) < ∞, which is comparable to

1

A(β)

∞∑
n=2

n

2βnβ(logn)2β
.

This sum is infinite forβ ∈ (1,2) and finite forβ ∈ (2, β2). (Note thatβ2 > 2 since
a2

1 > 1
2, whereasaβ2

1 < A(β2) = 1
2.) "#

6. Proof of Theorem 2

The proof of Theorem 2 is based on a generalization of certain renewal theoretic ideas.
These are presented in the following subsection. The proof of Theorem 2 is given in the
subsection following it.

6.1. A renewal sequence of operators. Let a ∈ S be some fixed state. LetCB [a] be
the Banach spaceCB [a] := {f ∈ CB(X) : f (x) = 0 for x �∈ [a]} equipped with
the supremum norm. Let 1,0 : CB [a] → CB [a] be the operators defined by 1f =
f, 0f = 0 ∀f ∈ CB [a]. Consider the operatorsTn, Rn : CB [a] → CB [a] given by
T0 := 1 , R0 := 0 and

Tnf := 1[a]Ln
φf

Rnf := 1[a]Ln
φ(f 1[ϕa=n])
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(see also [FL] and [PS].) A direct calculation shows that these operators satisfy the
following “renewal equation” forn ≥ 1,

Tn = R1Tn−1 + R2Tn−2 + . . .+ RnT0,

Tn = Tn−1R1 + Tn−2R2 + . . .+ T0Rn.
(12)

Set

Ta[φ](z) := 1+
∞∑
n=1

znTn, Ra[φ](z) :=
∞∑
n=1

znRn.

These are well defined bounded linear operators onCB [a] for |z| < λ−1. To see this
use the summable variations property to prove that‖Ta[φ](z)‖ =

∥∥Ta[φ](z)1[a]∥∥∞ ≤
B

∑
n≥0 |z|nZn(φ, a), whereB := exp

∑
n≥2 Vn(φ), and note that the radius of conver-

gence of the series
∑

znZn(φ, a) is λ−1 by (1). In terms of these generating functions,
we can restate (12) in the following form∀|z| < λ−1,

Ta[φ](z) = [1− Ra[φ](z)]−1.

It also follows from (12) that for all|z| < λ−1,

Ta[φ](z) = 1+
∞∑
n=1

Ra[φ](z)n. (13)

Note that (13) is also valid for allz real such thatz ≥ λ−1, as long as both sides are
applied to positive functions.

For every bounded linear operatorS onCB [a] letρ(S) denote the spectral radius ofS

(with respect to the supremum norm), with the convention that the ‘operator’Sf = ∞1[a]
has an infinite spectral norm. The following two propositions relate the renewal sequence
to the discriminant.

Proposition 2. Let φ denote the induced potential on [a]. Then

PG(φ + p) = logρ
(
Ra[φ](ep)

)
.

Proof. Let π : X → [a] be the natural embedding. A calculation shows that for every
p andf ∈ CB [a] (

Ra[φ](ep)f
) ◦ π = Lφ+p(f ◦ π). (14)

Fix some[a] ∈ S. SinceX = S
N∪{0}

, Zn(φ + p, [a]) � ‖Ln

φ+p
1‖∞. The proposition

follows from this and (14). "#
Proposition 3. LetX be topologically mixing countable Markov shift, let φ be a function
with summable variations and finite Gurevich pressure. Let X and φ denote the induced
pair with respect to a ∈ S. ThenPG(φ + p) is convex, strictly increasing and continuous
in (−∞, p∗a[φ]]. Also, (2)–(5) hold.
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Proof. Fix a ∈ S and setγ (p) := PG(φ + p), p∗ := p∗a[φ], z := ep andR(z) :=
Ra[φ](z). Proposition 2 and summable variations imply that for allx ∈ [a],

γ (p) = lim
n→∞

1

n
log‖R(ep)n1[a]‖

= lim
n→∞

1

n
logR(ep)n1[a](x).

We use this formula to prove thatγ is convex, strictly increasing and continuous in
(−∞, p∗) and that (5) and (4) hold. The expressionsR(ep)n1[a](x) are convex inp,
since they are of the form

∑
aie

bip, whereai ≥ 0. Thusγ (p) is convex inp, being a
limit of convex functions. Clearly,∀p1 < p2 < p∗ and all 0≤ f ∈ CB [a], R(ep2)f ≥
ep2−p1R(ep1)f . Iterating this and using the above formula forγ (p) we have thatγ (p)
is strictly increasing. It follows thatγ is finite in (−∞, p∗), whence by convexity it is
continuous there. Standard estimations show that for every 0≤ f ∈ CB [a], R(ep)f =
B±1 ∑

n≥1 Z
∗
n(φ, a)f , whereB = exp

∑
k≥2 Vk(φ). Iterating this, and using the above

formula forγ (p), we have (5). Clearly, (5) implies (4), so (4) is also proved.
It remains to prove thatγ (p) is continuous on the left inp∗. We prove this under the

assumption thatγ (p∗) < ∞ (the proof for the infinite case is essentially the same). By
monotonicity, it is enough to prove that for everyε > 0 there existsp < p∗ such that
γ (p) > γ (p∗)− ε. Fix x ∈ [a]. SettingR(ep) = ∑

n≥1 e
npRn in the above formula for

γ , we have

γ (p) = lim
n→∞

1

n
log

∞∑
k1,... ,kn=1

ep(k1+...+kn)Rk1 · . . . · Rkn1[a](x). (15)

By the definition ofp∗, there areN andp andn > logB/ε such that

an := log
N∑

k1,... ,kn

ep(k1+...+kn)Rk1 · . . . · Rkn1[a] ≥ n(γ (p∗)− ε).

By the summable variations property,am1 + am2 ≤ am1+m2 + logB for everym1,m2.
Write m = kn+ r, where 0≤ r ≤ n− 1. Then

am

m
≥ kan + ar − (k + 1) logB

kn+ r
−→
m→∞

an

n
− logB

n
≥ γ (p∗)− 2ε

whenceγ (p) ≥ γ (p∗) − 2ε. This proves thatγ is continuous in(−∞, p∗]. This also
implies that (2). This and (5) imply (3)."#

We will need the following version of the Kac formula, whose proof follows in a
standard way from Theorem 1 and general results for Markov operators (see Theorem
VI.C in [F]).

Lemma 3. Let X be a topologically mixing Markov shift, assume φ has summable
variations and fix some a ∈ S. Let (X, φ) be the induced system on [a], and as-
sume that both φ and φ have summable variations. Then φ is recurrent with pres-
sure zero if and only if φ is positive recurrent with pressure zero. In this case, if
L∗φν = ν, Lφh = h,L∗

φ
ν = ν, Lφh = h then up to a multiplicative constant ν = ν ◦π ,

h = h◦π , ν(A) = ∫ (∑∞
n=0 @

n1A
)◦πdν andh = ∑∞

n=1
∑n−1

k=0 L
k
φ(ha1[ϕa=n]) mod ν,

where @ is the operator @(f ) := Lφ(f · 1[a]c ) and ha := 1[a]h ◦ π−1.
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6.2. Proof of Theorem 2. Throughout the proof leta and φ be fixed. LetT (z) :=
Ta[φ](z), R(z) := Ra[φ](z). LetB := exp

∑
k≥2 Vk[φ] and set, := ,a[φ], γ (p) :=

PG(φ + p), andp∗ := p∗a[φ].
Part 1. Proof of (6). Assume, ≥ 0. According to Proposition 3,γ is continuous and
strictly increasing in(−∞, p∗], γ (p∗) ≥ 0 andγ (p) →−∞. Therefore, there exists a
uniquepa(φ) for whichγ (pa(φ)) = 0.

We claim thatpa(φ) = −PG(φ). Fix somep < pa(φ). Sinceγ is strictly increasing,
γ (p) < 0, whenceρ(R(ep)) < 1. By (13),‖T (ep)1[a]‖∞ ≤ 1+ ∑ ‖R(ep)n‖ < ∞
whence, by summable variations,

∑
enpZn(φ, a) converges. The radius of conver-

gence of this series is exp[−PG(φ)]. Thereforep ≤ −PG(φ). Taking p ↑ pa(φ)

we havepa(φ) ≤ −PG(φ). Assume by way of contradiction that∃pa(φ) < p′ <

−PG(φ). Then‖T (ep
′
)‖ ≤ B

∑
enp

′
Zn(φ, a) < ∞ whence by (13), the series 1+∑

R(ep
′
)n1[a](x) converges for everyx. Summable variations imply that∀x ∈ [a] and

∀n ≥ 1, ‖R(ep
′
)n‖ ≤ BR(ep

′
)n1[a](x). Thus

∑ ‖R(ep
′
)n‖ < ∞ whenceρ[R(ep

′
)] ≤

1, or equivalently,γ (p′) ≤ 0. This, however, is impossible becauseγ is strictly increas-
ing, γ (pa(φ)) = 0 andp′ > pa(φ). This proves thatpa(φ) = −PG(φ) and settles (6)
for the case, ≥ 0.

Assume now that, < 0. In this case there is no solution for the equationγ (p) = 0,
because forp ≤ p∗ γ (p) ≤ , < 0 and forp > p∗ γ (p) = ∞. We show that
in this casePG(φ) = −p∗. By (4) and the inequalityZ∗

n(φ, a) ≤ Zn(φ, a), p∗ ≥
−PG(φ). Assume by way of contradiction thatp∗ > −PG(φ). Then for everyx ∈ [a],
T (ep

∗
)1[a](x) ≥ B−1 ∑

enp
∗
Zn(φ, a) = ∞, whence by (13), 1+∑

R(ep
∗
)n diverges

everywhere on[a]. Thusρ[R(ep
∗
)] ≥ 1, whence, = γ (p∗) ≥ 0 in contradiction to

our assumptions. This settles the case, < 0.

Part 2. Proof that recurrence is equivalent to , ≥ 0. Assume that, ≥ 0. By
the first part of the theoremγ (−PG(φ)) = 0 so the spectral norm ofR(e−PG(φ)) is
equal to 1. Therefore, there existsξ ∈ [0,2π) such that 1− eiξR(e−PG(φ)) does not
have a bounded inverse operator. In particular, the series 1+ ∑

k≥1 e
ikξR(e−PG(φ))k

does not converge in the strong norm. It follows that there exists someε > 0 such that
for everyN there existsn = n(N) > N andgn ∈ CB [a] such that‖gn‖∞ = 1 and
‖∑

k≥n e
ikξR(e−PG(φ))kgn‖∞ > ε. Now, on[a]

∞∑
k=n

R(e−PG(φ))k1[a] ≥
∞∑
k=n

R(e−PG(φ))k|gn| ≥
∣∣∣∣∣
∞∑
k=n

eikξR(e−PG(φ))kgn

∣∣∣∣∣ ≥ ε

whence‖∑
k≥n R(e−PG(φ))k1[a]‖∞ ≥ ε for everyn. By the summable variations prop-

erty this is only possible if
∑

R(e−PG(φ))k1[a] diverges on[a] whence

‖T (e−PG(φ))1[a]‖∞ = ∞.

This is equivalent to
∑

e−kPG(φ)Zk(φ, a) = ∞, soφ is recurrent.
Assume that, < 0. Setρ := ρ[R(ep

∗
)]. Thenρ = exp, < 1. By the definition

of the spectral radius, there exists someC and ρ0 ∈ (ρ,1) such that for everyn,
‖R(ep

∗
)n‖∞ < Cρn

0. The renewal equation implies that‖T (ep
∗
)‖ ≤ C/(1− ρ0). It

follows thatT (ep
∗
) is bounded, whence

∑
ekp

∗
Zk(φ, a) is convergent. By the first part

of the theorem, and since, < 0,p∗ = −PG(φ). It follows thatφ is transient.
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Part 3. Proof that , > 0 implies positive recurrence. Assume that, > 0. By what
we have just provedφ is recurrent. Letν andh be the eigenmeasure and eigenfunction
given by theorem 1, and setdm = hdm. Recall thatm an invariant measure, and that
m(X) < ∞ if and only if φ is positive recurrent. We will prove positive recurrence by
showing thatm(X) < ∞.

Let νa,ma be the measuresνa(A) := ν(A ∩ [a])/ν[a] and ma(A) := m(A ∩
[a])/m[a]. LetTa := T ϕa be the induced transformation. Sincem is T -invariant,ma is
Ta-invariant. Note that the transfer operator ofTa with respect toνa is R(λ−1). To see
this note that∀g ∈ L∞(νa),∀f ∈ L1(νa),

νa[gR(λ−1)f ] =
∞∑
n=1

ν
[
λ−nLn

φ

(
g ◦ T n · f 1[ϕa=n]

)] = νa(g ◦ Ta · f ).

SetA(x) := [
R(λ−1)ϕa

]
(x). By Kac’s formula, the fact theR(λ−1) acts as the

transfer operator ofνa and the boundness ofh = dm
dν

away from zero and infinity on
partition sets,∃C1 > such that

m(X) =
∫

ϕa dma = C±1
1

∫
ϕa dνa =

∫
[a]

A(x)dν(x).

Clearly,

A(x) =
∞∑
n=1

nλ−n
∑

T ny=x

eφn(y)1[ϕa=n](y) = B±1
∞∑
n=1

nλ−nZ∗
n(φ, a).

Since, > 0, p∗ > −PG(φ) soλ−1 is smaller than the radius of convergence of the
series

∑
znZ∗

n(φ, a). It follows that
∑

nλ−nZ∗
n(φ, a) < ∞ whence‖A(x)‖∞ < ∞.

Sinceν[a] < ∞, m(X) < ∞ as required. "#

7. Proof of Theorem 4

In this section we prove Theorem 4, a strengthened version of Theorem 3.

7.1. Preparatory lemmas. Let X be topologically mixing and leta ∈ S be some fixed
state. Letφ be some function with summable variations and finite pressure and let(X, φ)

be the induced system on[a].
For everyx, y ∈ X set t(x, y) := inf {n ≥ 0 : xn �= yn}. Fix θ ∈ (0,1) and set

for every functionf : X → C , Df := sup{|f (x) − f (y)|/θ t(x,y) : x �= y}. Let
L = L(θ, a) be the space

L(θ, a) := {f ∈ CB(X) : ‖f ‖L := ‖f ‖∞ +Df < ∞}. (16)

A standard argument shows thatL is a Banach space and that if‖Lφ1‖∞ < ∞ then

Lφ(L) ⊂ L and‖Lφ‖B(L)
< ∞, whereB(L) is the space of bounded operators on

L equipped with the strong operator norm. The following lemma says that the induced
system has a spectral gap, and is similar to well-known results in the theory of interval
maps with indifferent fixed points ([T1,T2,A,ADU,B,PS]).



Phase Transitions for Countable Markov Shifts 573

Lemma 4. Let X be topologically mixing, φ some function on X and a ∈ S a fixed state.
Let (X, φ) be the induced system on [a] and assume that φ is weakly Hölder continuous
with exponent θ ∈ (0,1) and that ‖Lφ1‖∞ < ∞. Then φ is positive recurrent if and

only if the spectrum of Lφ : L(θ, a) → L(θ, a) consists of a simple eigenvalue λ and a

subset of {z : |z| < τλ}, where τ < 1. In this case, λ = ePG(φ).

Proof. Assume thatφ is positive recurrent with finite pressure and setλ := expPG(φ).
X has the structure of a full shift. It is known ([S1, Sect. 5], see also [A, Theorem 4.7.7]
and [Yu]) that for such systems there existsK > 0 andτ ∈ (0,1) such that for every
f ∈ L ∥∥∥∥λ−n

(Lφ)
nf − h

∫
f dν

∥∥∥∥L
< Kτn,

whereLφh = λ h, L∗
φ
ν = λν andν(h) = 1. This implies the required spectral property.

The opposite direction is trivial, since the spectral property implies thatλ
−n

Ln

φ
has a non

trivial limit (the eigenprojection ofλ), and this is only possible ifφ is positive recurrent
with pressure logλ. "#
Lemma 5. Let X be topologically mixing and let φ be a function with summable vari-
ations such that PG(φ) < ∞ and ,a[φ] > 0. For every ψ ∈ Dir(φ), ∃ε > 0
∃r > exp[−PG(φ)] such that

∑
n≥1 nr

nZ∗
n(φ + ε|ψ |, a) < ∞.

Proof. Without loss of generality,PG(φ) = 0 (else pass toφ−PG(φ)). Since,a[φ] > 0,
∃r > exp[−PG(φ)] = 1 such that‖Ra[φ](r)1[a]‖∞ is finite, or equivalently,∑

n≥1 r
nZ∗

n(φ, a) < ∞. Without loss of generality

lim sup
n→∞

1

n
logZ∗

n(φ, a) < − logr.

Setfn(t) := (1/n) logZ∗
n(φ + tψ, a) andf (t) := lim supn→∞ fn(t). By Hölder’s

inequality,fn are convex, whence so isf . Sinceψ ∈ Dir(φ), there is someε > 0 such
that∀|t | < 2ε,−∞ ≤ f (t) ≤ PG(φ + tψ) < ∞.

By convexity and sincef < ∞, eitherf (t) = −∞ everywhere in(−2ε,2ε), or
|f (t)| < ∞ everywhere in(−2ε,2ε). In the first case the radius of convergence of∑

k≥1 x
kZ∗

k (φ + tψ, a) is infinite for t = ±ε and we are done. In the second case, by
convexity and finiteness,f (t) is continuous in(−2ε,2ε). Thus, sincer was chosen so
thatf (0) < − logr, there existsε′ < ε such that∀|t | < 2ε′ f (t) < − logr. It follows
that r is strictly smaller than the radius of convergence of

∑
k≥1 x

kZ∗
k (φ + tψ, a) for

t = ±ε′ and again, we are done."#
Recall that functionF : C × C → B(L) is calledanalytic in a neighborhood of

(z0, w0) if ∃Fnk ∈ B(L) such thatF(z,w) = ∑
n,k≥0(w − w0)

k(z − z0)
kFnk and the

series converges in the strong operator norm in a neighborhood of(z0, w0).

Lemma 6. Let X be topologically mixing, let φ be some function with summable vari-
ations such that PG(φ) < ∞ and let ψ ∈ Dir(φ). Let a ∈ S be some state such that
,a[φ] > 0 and assume that φ and ψ , the induced potentials on [a], are weakly Hölder
continuous with parameter θ . ThenF : C×C → B(L) given byF(z,w) = Lφ+zψ+logw

is analytic in a neighborhood of (z, w) = (0, e−PG(φ)).
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Proof. Throughout this proof‖·‖ denotes the strong operator norm inB(L). We assume,
without loss of generality, thatPG(φ) = 0 and prove analyticity in(0,1). For every
function g : X → C let Mg be the operatorMgf = gf . SetEn := {x ∈ X :
ϕa(π(x)) = n}. This is a union of partition sets inX. SetRn := LφM1En

. Then,

F(z,w) =
∞∑
n=1

wnRnMezψ

=
∞∑
n=1

∞∑
k=0

wnzk

k! RnMψ
k .

We show that this converges inB(L) in some open ball containing(z, w) = (0,1).

Fix someN and setAN(x) := ex − (1+ x + x2

2! + . . . , xN

N ! ). Then∥∥∥∥∥∥
∑

n,k>N

1

k!w
nzkRnMψ

k

∥∥∥∥∥∥ ≤
∑
n>N

|w|n
∥∥∥RnMAN(zψ)

∥∥∥ .

We estimate the summands of the last series.
For everyp ∈ S setQpf (x) := f (p x). Let E′

n := {p ∈ S : [p] ⊆ En}. By
definition,RnMAN(zψ) =

∑
p∈E′

n
QpMAN(zψ)eφ

. Since for everyf, g ∈ L, ‖fg‖L ≤
‖f ‖L‖g‖L , ∥∥∥QpMAN(zψ)expφ

∥∥∥ ≤ ∥∥∥Qpe
φ
∥∥∥L

∥∥QpAN(zψ)
∥∥L .

It is standard to check that∀x, y ∈ C, |AN(x)−AN(y)| ≤ |x − y|(e|x| + e|y|) and that
∀x, y ∈ R, |ex − ey | ≤ |x − y|(ex + ey). Using this and the inequality|AN(x)| ≤ e|x|,
it is easy to show that there is some constantK1 (independent ofn andN ) such that
∀|z| < 1, ∥∥∥QpMAN(zψ)expφ

∥∥∥ ≤ K1

∥∥∥eφ1[p]
∥∥∥∞ ∥∥∥e|zψ |1[p]∥∥∥∞ .

Summing over allp ∈ E′
n and using weak Hölder continuity, we have that for someK

independent ofn andN ,∥∥∥RnMAN(zψ)

∥∥∥ ≤ KZ∗
n(φ + |z| · |ψ |, a).

Let ε > 0 andr > 1 be as in Lemma 5. Without out loss of generalityre−ε > 1 and
ε < 1. Then for all|z| < ε and|w| < r,∥∥∥∥∥

∞∑
n=N+1

∞∑
k=N+1

|w|n|z|k
k! RnMψk

n

∥∥∥∥∥ ≤ K

∞∑
n=N+1

rnZ∗
n(φ + ε|ψ |, a) −→

N→∞ 0

whenceF(z,w) is analytic in a neighborhood of(0,1). "#
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7.2. Proof of Theorem 4. Let φ be a function with summable variations and finite pres-
sure and letψ ∈ Dir(φ). Assume that∃a ∈ S such that,a[φ] > 0 and such that the
induced potentials on[a], φ,ψ are weakly Hölder continuous with exponentθ ∈ (0,1).
Without loss of generality, assume thatPG(φ) = 0. Set

G(z,w) := PG(φ + zψ − w).

By the discriminant theorem,∀z ∈ R, if ∃w ∈ R such thatG(z,w) = 0, thenw =
PG(φ + zψ). Thus,PG(φ + zψ) is given implicitly by

G(z, PG(φ + zψ)) = 0. (17)

We will show thatG has a complex holomorphic extension to a neighborhood of(z, w) =
(0,0) in C×C, and apply the complex implicit function theorem ([Boch], p. 39) to deduce
that (17) definesPG(φ+zψ) real analytically in a neighborhood ofz = 0. (This theorem
applies since∀h > 0,G(0, h) ≤ PG(φ − h) = PG(φ)− h whenceGw(0,0) �= 0.)

By Theorem 2 and Lemma 3, since,a[φ] > 0 andPG(φ) = 0,φ is positive recurrent
with pressure zero. By (5),

∑
Z∗
n(φ, a) < ∞ whence‖Lφ‖ < ∞. By Lemma 4 the

spectrum ofLφ : L → L consists of the simple isolated eigenvalue 1 and a compact
subset of{z : |z| < τ } for someτ < 1. By standard analytic perturbation theory
[Ka], there existsδ > 0 such that if‖L − Lφ‖B(L)

< δ thenL has a (unique) simple
eigenvalueλ(L) of maximal magnitude, this eigenvalue is simple, has magnitude larger
than (1 + τ)/2, and the rest of the spectrum is contained in{z : |z| < (1 + τ)/2}.
Furthermore, the mapL �→ λ(L) is holomorphic in{L ∈ B(L) : ‖L− Lφ‖B(L)

< δ}.
By lemma 6,∃ε > 0 such that(z, w) �→ Lφ+zψ−w is holomorphic inU := {(z, w) ∈
C2 : |z|, |w| < ε} and such that‖Lφ+zψ−w − Lφ‖B(L)

< δ for all |z|, |w| < ε. In this
neighborhood we define

Ĝ(z, w) := logλ
(
Lφ+zψ−w

)
.

Ĝ is holomorphic inU . For everyz,w real such that(z, w) ∈ U , the spectrum of
Lφ+zψ−w consists of a simple eigenvalueλ(z,w) and a compact subset of{λ : |λ| <
|λ(z,w)|}. By Lemma 4,φ + zψ − w is positive recurrent with pressure logλ(z,w) =
Ĝ(z, w). It follows thatĜ is a holomorphic extension ofG. This proves thatt �→ PG(φ+
tψ) is real analytic in(−ε, ε).

We show thatφ + tψ is positive recurrent for|t | small. Real analyticity implies
continuity, so∃δ′ > 0 such that∀|t | < δ′, PG(φ + tψ) ∈ (− ε

2,
ε
2). Setw := −PG(φ +

tψ). Then |w − ε
3| < ε whencePG(φ + tψ − w + ε

3) = G(t, w − ε
3) < ∞. Since

PG(φ + tψ + p) is increasing inp, PG(φ + tψ + ( ε3 − w)) > G(t, w) = 0 whence
,a[φ + tψ] > 0. "#

Acknowledgements. This paper is part of a dissertation prepared in the Tel-Aviv university under the super-
vision of Jon Aaronson. I wish to express my deep gratitude to Jon Aaronson for his support and countless
useful suggestions.



576 O. M. Sarig

References

[A] Aaronson, J.:An introduction to infinite ergodic theory. Math. Surv. and Monographs50, Providence,
RI: AMS, 1997

[ADU] Aaronson, J., Denker, M., Urbanski, M.: Ergodic theory for Markov fibered systems and parabolic
rational maps. Trans. Am. Math. Soc.337, 495–548 (1993)

[Boch] Bochner, S., Martin, W.T.:Several Complex Variables. Princeton, NJ: Princeton Univ. Press, 1948
[B] Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys.69, 1–17

(1979)
[E] Ellis, R.S.: Entropy, Large Deviations and Statistical Mechanics. Berlin–Heidelberg–New York:

Springer Verlag, 1985
[F] Foguel, S.R.:The ergodic theory of Markov processes. New-York: Van-Nostrand, 1969
[FF] Fisher, M.E., Felderhof, B.U.: Phase Transitions in One-Dimensional Cluster Interaction Fluids:

IA. Thermodynamics, IB. Critical Behavior. Ann. of Phys.58, 176–280 (1970).
[FL] Foguel, S.R., Lin, M.: Some Ratio Limit Theorems for Markov Operators. Z. Wahrschein. verw.

Geb.23, 55–66 (1972)
[GS] Gurevich, B.M., Savchenko, S.V.: Thermodynamic formalism for countable symbolic Markov

chains. Uspekhi. Mat. Nauk.53 2, 3–106 (1998); Engl. Transl. in Russian Math. Surv.53 2, 245–344
(1998)

[G1] Gurevich, B.M.:AVariational Characterization of One-Dimensional Countable State Gibbs Random
Fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete68, 205–242 (1984)

[G2] Gurevic, B.M.: Shift entropy and Markov measures in the path space of a denumerable graph. Dokl.
Akad. Nauk. SSSR192 (1970); Engl. Transl. in Soviet Math. Dokl.11, 744–747 (1970)

[G3] Gurevic, B.M.: Topological entropy for denumerable Markov chains. Dokl. Akad. Nauk. SSSR187
(1969); Engl. Transl. in Soviet Math. Dokl.10, 911–915 (1969)

[GW] Gaspard, P., Wang, X.-J.: Sporadicity between periodic and chaotic dynamical behaviors. Proc.
Math. Acad. Sci. USA85, (13), 4591–4595 (1988)

[Hof] Hofbauer, F.: Examples for the nonuniqueness of the equilibrium state. Trans. Am. Math. Soc.228,
133–241 (1977)

[I] Isola, S.: Dynamical Zeta Functions and Correlation Functions for Non-Uniformly Hyperbolic
Transformations. Preprint

[Ka] Kato, T.:Perturbation Theory of Linear Operators. Berlin–Heidelberg–NewYork: Springer Verlag,
1966

[LSV] Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Erg. Th. Dyn. Sys.
19, 671–685 (1999)

[Lo] Lopes, A.O.: The Zeta function, Non-differentiability of Pressure, and the Critical Exponent of
Transition. Adv. in Math.101, 133–165 (1993)

[PM] Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems.
Commun. Math. Phys.74, 189–197 (1980)

[PP] Parry, W., Pollicott, M.:Zeta functions and the periodic orbit structure of hyperbolic dynamics.
Astérisque187–188 (1990)

[PS] Prellberg, T., Slawny, J.: Maps of intervals with indifferent fixed points: Thermodynamic formalism
and phase transitions. J. Stat. Phys.66, (No. 1/2), 503–514 (1992)

[Ru1] Ruelle, D.:Thermodynamic Formalism. Encycl. of Math. and itsApp.Vol5, Reading, MA:Addison-
Wesley, 1978

[Ru2] Ruelle, D.: Statistical Mechanics of a one-dimensional lattice gas. Commun. Math. Phys.9, 267–278
(1968)

[S1] Sarig, O.M.: Thermodynamic Formalism for Countable Markov Shifts. Erg. Th. Dyn. Sys.19,
1565–1593 (1999)

[S2] Sarig, O.M.: Thermodynamic Formalism for Null Recurrent Potentials. To appear in Isreal J. Math.
[S3] Sarig, O.M.: On an example with topological pressure which is not analytic. C. R. Acad. Sci. Paris

série I330, 311–315 (2000)
[T1] Thaler, M.: Transformation on[0,1]with infinite invariant measures. Isr. J. Math.46, 67–96 (1983)
[T2] Thaler, M.: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Isr.

J. Math.37, (4), 303–314 (1980)
[Wal] Walters, P.: Ruelle’s operator theorem andg-measures. Trans. Am. Math. Soc.214, 375–387 (1978)
[W1] Wang, X.-J.: Abnormal Fluctuations and thermodynamic phase transition in dynamical systems.

Phys. Rev. A39, (No. 6), 3214–3217 (1989)
[W2] Wang, X.-J.: Statistical Physics of temporal intermittency. Phys. Rev. A40, (No. 11), 6647–6661

(1989)



Phase Transitions for Countable Markov Shifts 577

[Ya] Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math.147,
585–650 (1998)

[Yu] Yuri, M.: Multidimensional maps with infinite invariant measures and countable state sofic shifts.
Indag. Math.6, 355–383 (1995)

Communicated by Ya. G. Sinai


