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Abstract: We discuss the meaning of renormalization used for deriving quadratic bo-
sonic commutation relations introduced by Accardi [ALV] and find a representation of
these relations on an interacting Fock space. Also, we investigate classical stochastic
processes which can be constructed from noncommutative quadratic white noise. We
postulate quadratic free white noise commutation relations and find their representation
on an interacting Fock space.

1. Introduction

Hudson and Parthasarathy [HP] showed that a Brownian motionB(T ) can be represented
as a sum of two noncommuting operators: annihilationa(0,T ) and creationa?(0,T ),

B(T ) = a(0,T ) + a?(0,T ) =
∫ T

0
(at + a?t ),

whereat anda?t stand for the infinitesimal annihilation and creation operators respec-
tively.

Accardi [ALV], in order to study some physical problems, introduced quadratic white
noise operators, which informally can be written asnt = a?t at , bt = (at )

2 andb?t =
(a?t )

2. The first one, called the number operator has been already considered in the white
noise calculus and it does not cause serious difficulties. The other two, called quadratic
annihilation and quadratic creation operators, in fact represent infinite quantities and
therefore have to be redefined. Indeed, it can be shown that because of[at , a?s ] = δ(t−s)
we have

[a2
t , a

?
s

2] = 2δ2(t − s)+ 4δ(t − s)ata
?
s ,

? Research partially supported by the Scientific Research Committee in Warsaw under grant number
P03A05415.



616 P.Śniady

whereδ denotes the Dirac distribution. Since the square of the delta function is not well
defined, this relation is meaningless. Furthermore it is too singular to apply the subtrac-
tion renormalization [S]. By renormalizationδ2(x) = γ0δ(x)Accardi postulates that the
renormalized quadratic white noise operators should fulfill the following commutation
relation:

[bt , b?s ] = 2γ0δ(t − s)+ 4δ(t − s)ns, (1)

which for smeared operatorsbφ = ∫
φtbt , b?ψ = ∫

ψsbs takes the form

[bφ, b?ψ ] = 2γ0〈φ,ψ〉 + 4nφ̄ψ . (2)

In Sect. 2 we present another discussion of this relation in a more general context of
q-deformed commutation relations.

In Sect. 3 we show that from this discussion follows for the bosonic case the meaning
of renormalization constantγ0 as the inverse of the lengthscale taken for quadratic
variation of a (noncommutative) Brownian motion and we discuss other commutation
relations. Furthermore, from quadratic white noise operators we construct some classical
stochastic processes.

Accardi and Skeide [ALV,AS] have constructed a Fock representation of quadratic
white noise relations. The construction presented in the paper [ALV] uses the Kol-
mogorov decomposition for a certain positive kernel. Another approach is presented in
the paper [AS] where the construction of quadratic white noise operators is based on the
theory of Hilbert modules. In Sect. 4 and 5 we present a direct construction of such a
representation on an interacting Fock space. Our method is based on defining explicitly
a scalar product on a symmetric Fock space.

In Sect. 6 we discuss the existence of a Fock representation of an algebra containing
both quadratic and usual linear white noise operators. It turns out that it is in general not
possible to find such a representation. The main reason is that under a certain lengthscale
the renormalized quadratic operators lose their intuitive meaning as squares of creation
and annihilation operators.

In Sect. 7 we introduce free quadratic white noise operators which should describe
the squares of free creation and annihilation operators with small violation of freeness
and construct their representation.

Both standard and quadratic white noises are weak processes, i.e. mappings from
some linear spaceS to operators on a Hilbert space. Contrary to white noise commutation
relations, the quadratic relation (2) involves not only a scalar product inS, but a product
of two elements ofS as well. From the noncommutative geometry viewpoint [C] it
would be interesting to consider noncommutative spacetime algebrasS as well and
quadratic white noise relations provide appropriate examples. Unfortunately, for the
bosonic white noise there seems to be some limitations on the choice ofS but for the
free case the construction works for all associative algebras.

2. General Renormalized Quadratic White Noise

For a Hilbert spaceH and a real numberq, −1 < q ≤ 1 let us considerq-deformed
white noise operators [FB,BKS]: the creationa?φ and its adjoint annihilationaφ indexed
by φ ∈ H. These operators fulfill the following commutation relation:

aφa
?
ψ − qa?ψaφ = 〈φ,ψ〉. (3)
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For the caseH = L2(M, dµ) we can write informally

aφ =
∫
M

φ(t)at , a?φ =
∫
M

φ(t)a?t ,

whereat , a?t denote white noise annihilation and creation operators.
Our goal is to introduce operatorsbφ andb?φ which would be informally treated as

integrals of squares of white noise operators

bφ =
∫
M

φ(t)(at )
2, b?φ =

∫
M

φ(t)(a?t )
2.

In order to give meaning to these expressions let us consider a sequence(Ii) of disjoint
measurable subsets ofM, each of the same measurel and a sequence(χi) of orthogonal
functions

χi(x) =
{

1 : x ∈ Ii
0 : x /∈ Ii .

Furthermore let us consider piecewise constant functionsφ, ψ ,

φ(x) =
∑
i

φ(xi)χi(x), ψ(x) =
∑
i

ψ(xi)χi(x),

for a sequence(xi) such thatxi ∈ Ii . Now let us define

bφ =
∑
i

φ(xi)(a 1√
l
χi
)2, b?ψ =

∑
i

ψ(xi)(a
?
1√
l
χi
)2.

A simple computation shows that for squares of creation and annihilation operators

a2
ζ a
?
ξ

2 − q4a?ξ
2a2
ζ = (1 + q)〈ζ, ξ〉2 + q(1 + q)2〈ζ, ξ〉a?ξ aζ

hold. For this reason we have

bφb
?
ψ − q4b?ψbφ

= (1 + q)
∑
i

ψ(xi)φ(xi)+ q(1 + q)2
∑
i

ψ(xi)φ(xi) a
?
1√
l
χi
a 1√

l
χi
.

Since theL2(M, dµ) norm of the function 1√
l
χi is equal to 1, the operatora?1√

l
χi
a 1√

l
χi

is a number operator. If we consider only the creation and annihilation operatorsa?θ ,
aθ for functionsθ that are piecewise constant on setsIi then the operatorsa?1√

l
χi
a 1√

l
χi

and
∫
Ii
a?t at have the same commutation relations with others and therefore they are

indistinguishable in the sense of vacuum expectation values. Under these assumptions
we can write

bφb
?
ψ − q4b?ψbφ

= 1 + q

l

∫
M

ψ(x)φ(x) dµ(x)+ q(1 + q)2
∫
M

ψ(x)φ(x) a?t at . (4)

The preceding calculations hold only for a very limited class of functionsφ and
ψ . However, we shall postulate the following commutation relation between quadratic
creation and annihilation operators for allφ andψ :

bφb
?
ψ − q4b?ψbφ = γ 〈φ,ψ〉 + c nφ̄ψ , (5)

for some constantsγ , c and wherenf , called a number operator, should be understood
as a generalization of the usual number operator

∫
M
f (x)a?t at .
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2.1. Fock representations.Hudson–Parthasarathy’s operatorsaφ , a?φ (φ ∈ H) are usu-
ally represented as operators acting on some Hilbert space with a cyclic vector� with
the property thataφ� = 0 for all φ ∈ H. Since the operatorsbφ , b?φ are interpreted
as smeared renormalised squares of white noise operatorsat , a?t , therefore it is natural
to ask if it is possible to find a representation of operatorsbφ , b?φ , nφ acting on some

Hilbert space02 such that02 contains a cyclic vector�, called a vacuum, such that
bφ� = 0, nφ� = 0 for all φ. In such a setup we will be able to define a stateτ on the
space of operators acting on02 defined byτ(X) = 〈�,X�〉 which would play the role
of a (noncommutative) expectation value.

3. Bosonic Quadratic White Noise

3.1. Bosonic commutation relations.For the bosonic caseq = 1 Eq. (4) takes the form

[bφ, b?ψ ] = 2γ0〈φ,ψ〉 + 4nφ̄ψ, (6)

whereγ0 = 1
l
. Furthermore, we postulate that two creation, two annihilation and two

number operators should commute:

[bφ, bψ ] = 0, [b?φ, b?ψ ] = 0, [nφ, nψ ] = 0. (7)

A simple calculation for piecewise constant functions[∑
i

φ(xi)a
?
1√
l
χi
a 1√

l
χi
,
∑
j

ψ(xj )(a
?
1√
l
χj
)2

]
= 2

∑
k

ψ(xk)φ(xk)(a
?
1√
l
χk
)2

gives us a motivation for the following commutation relations:

[nφ, b?ψ ] = 2b?φψ, [bψ, nφ] = 2bψφ? . (8)

3.2. Classical quadratic processes.By the spectral theorem a commuting family of
normal operators has a common spectral measure. After applying a state the spectral
measure becomes an ordinary measure which has a natural probabilistic interpretation
as a joint distribution of random variables corresponding to operators from our family.

Let us define fors ∈ R,

Qs(φ) = bφ? + b?φ + snφ. (9)

Similar to the white noise it is a weak process [S], i.e. an operator valued function on a
linear spaceL2(M, dµ) ∩ L∞(M, dµ). In the caseM = R+ we can construct from it
a stochastic processQs(t) = Qs(χ(0,t)).

Theorem 1.Let us fixs ∈ R. Then{Qs(φ)} forms a commuting family of normal oper-
ators and therefore it is a classical stochastic process. With respect to the expectation
valueτ , it is a Markovian process.
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Proof. The first part of the proof is a simple application of (6)–(8).
The property thatQs is a process with independent increments means exactly that

for all disjoint setsM1,M2 ⊂ M andfi ∈ Alg{Qs(φ) : φ ∈ L2(Mi)} the equality
τ(f1f2) = τ(f1)τ (f2) holds. Note that every expression containing operatorsnφ , bφ ,
b?φ (φ ∈ H) can be written according to the relations (6), (8) in the normal form, a linear
combination of products of type

b?φ1
· · · b?φknχ1 . . . nχmbψ1 · · · bψl . (10)

Each of the operatorsnφ1, bφ1, b?φ1
commutes with each of the operatorsnφ2, bφ2,

b?φ2
for φi ∈ L2(Mi, dµ), therefore a product of two expressions of the form (10),

one being an element of Alg{nφ, bφ, b?φ : φ ∈ L2(M1)} and the other an element of

Alg{nφ, bφ, b?φ : φ ∈ L2(M2)} is–up to a permutation of factors–in a normally ordered
form. The stateτ has a property that on normally ordered products it takes nonzero
values only on multiples of identity andτ(f1f2) = τ(f1)τ (f2) follows.

Now it is enough to notice that the expectation value ofQs(φ) is equal to 0 for anyφ.
ut

3.3. Quadratic variation of a Brownian motion.Let M = R+ and let us consider
an arithmetic series(ti), ti = li. For the sum of squares of increments of a standard
Brownian motion the following operator equality holds:∑

i

φ(ti)[B(ti+1)− B(ti)]2 =
∑
i

φ(ti)[aχi + a?χi ]2

=
∑
i

φ(ti)[a2
χi

+ 2a?χi aχi + a?χi
2 + (ti+1 − ti )],

whereχi is the characteristic function of an interval(ti , ti+1). In the preceding discussion
we have chosen the commutation relations between operatorslbχi , lb

?
χj

and lnχk to

coincide with commutation relations betweena2
χi

, a?2χj anda?χkaχk whenever the length

of intervals is equal tol = 1
γ0

. Therefore, for any functionφ which is piecewise constant
on intervals(ti , ti+1) we can write∑

i

φ(ti)[B(ti+1)− B(ti)]2

=
∑
i

φ(ti)

{
1

l
[bχi + b?χi + 2nχi ] + (ti+1 − ti )

}
= 1

l
Q2(φ)+

∫
R+
φ(x) dx.

This equation can be viewed as follows. Just likeaφ , a?φ are quantum components of the
Brownian motion, for functionsφwhich are piecewise constant on intervals which length
is a multiplicity of 1

γ0
operatorsbφ , b?φ , 2nφ are quantum components of the quadratic

variation of Brownian motion. The constant1
γ0

describes the lengthscale under which
such interpretation is no longer valid.

The measures corresponding toγ0Q2(t) + t = γ0Q2(χ(0,t)) + t for t being the
multiplicity of 1

γ0
are therefore theχ2 distributions. From this it follows that for arbitrary

t these are gamma distributions andγ0Q2(t)+ t is a gamma process.



620 P.Śniady

4. Quadratic Bosonic White Noise on an Interacting Fock Space

Let A be a commutativeC?-algebra of continuous functions on some setM with a
measureµ and let the state onA induced byµ be denoted also byµ.

Definition 1. A partition of a finite setA is a collectionπ = {π1, . . . , πm} of nonempty
setsπp, which are pairwise disjoint and their union is equal toA.

An ordered partition of a finite setA is a setπ = {π1, . . . , πm} of nonempty sequences
πp = (πp1, . . . , πp,np ), such that the family of sets{πp1, . . . , πp,np }, 1 ≤ p ≤ m forms
a partition ofA.

For a fixed positive constantγ0 let us consider a vector spacẽ02
b(A) = ⊕

n≥0 A⊗̂n

(whereA⊗̂n denotes the symmetric tensor power) with a sesquilinear form defined by

〈χ1 ⊗ · · · ⊗ χk, ψ1 ⊗ · · · ⊗ ψl〉
= δkl

2k

k!
∑

{π1,...,πm}

∏
1≤p≤m

γ0

np
µ(χ?πp1

ψπp1
· · ·χ?πpnp ψπpnp ), (11)

where the sum is taken over all ordered partitionsπ of the set{1, . . . , n}.
Please note that this sesquilinear form is well-defined on the full tensor powerA⊗n,

however we shall usually use it on the symmetric tensor powerA⊗̂n.
In the sum0̃2

b = ⊕
n≥0 A⊗̂n appears a summandA⊗̂0 which should be understood

as a one-dimensional Hilbert spaceC� where� is a unital vector called vacuum.
The Hilbert space02

b, a completion of̃02
b will be called bosonic quadratic Fock space.

In the following byA⊗̂k we shall mean the completion of the symmetric tensor power
A⊗̂k with respect to the scalar product (11).

Question 1.For the sesqilinear form (11) all algebraic considerations of this section hold
even if the algebraA is not commutative. If this case we only have to assume that the state
µ is tracial and we have to replace the number operator (14) by a pair of left and right
number operators. Unfortunately, in this general situation the form (11) is not always
positively definite. Is it possible to find some nontrivial examples of noncommutative
algebrasA with tracial statesµ such that (11) is positively definite?

Forψ ∈ A we define the action of the quadratic creation, annihilation and number
operators on simple tensors by

b?ψ(χ1 ⊗ · · · ⊗ χk) =
∑

0≤i≤k
χ1 ⊗ · · · ⊗ χi ⊗ ψ ⊗ χi+1 ⊗ · · · ⊗ χk, (12)

bψ(χ1 ⊗ · · · ⊗ χk) = 2γ0 µ(ψ
?χ1) χ2 ⊗ · · · ⊗ χk (13)

+ 2
∑

2≤i≤k
χ2 ⊗ · · · ⊗ χi−1 ⊗ (χiψ

?χ1)⊗ χi+1 ⊗ · · · ⊗ χk,

nψ(χ1 ⊗ · · · ⊗ χk) =
∑

1≤i≤k
χ1 ⊗ · · ·χi−1 ⊗ (ψχi)⊗ χi+1 ⊗ · · · ⊗ χk, (14)

for k ≥ 1 and their action on the vacuum by

b?ψ(�) = ψ, bψ(�) = 0, nψ(�) = 0. (15)
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Please note that simple tensors are in general not elements of the symmetric tensor power
of A. However, by linearity these definitions extend to a dense subspace of the symmetric
tensor powerA⊗̂n. What is important, the range of operatorsbφ : A⊗̂n → A⊗̂(n−1),
b?φ : A⊗̂n → A⊗̂(n+1), nφ : A⊗̂n → A⊗̂n is again a symmetric power ofA.

A difficulty arises from the fact that such defined operators are not bounded. For
example we shall not claim thatb?φ is an adjoint ofbφ because such a statement is not
easy to prove since it demands careful discussion of domains of operators. It seems
that in order to do this we would have to define these operators on some analogue of
exponential domain of Hudson and Parthasarathy [HP] in a less intuitive way. Similarly
commutation relations will hold only in a restricted sense.

Theorem 2.Operatorsbφ , b?φ , nφ fulfill the following operator norm estimates with
respect to the scalar product (11):∥∥∥bφ : A⊗̂k → A⊗̂(k−1)

∥∥∥ ≤ √
2k

(√
γ0 ‖φ‖L2 + (k − 1)‖φ‖L∞

)
, (16)∥∥∥b?φ : A⊗̂(k−1) → A⊗̂k

∥∥∥ ≤ √
2k

(√
γ0 ‖φ‖L2 + (k − 1)‖φ‖L∞

)
, (17)∥∥∥nφ : A⊗̂k → A⊗̂k

∥∥∥ ≤ k ‖φ‖L∞ . (18)

Proof. Let us consider a mapA⊗k → A⊗(k−1) defined on simple tensors byψ1 ⊗· · ·⊗
ψk 7→ 2γ0〈φ,ψ1〉ψ2 ⊗ · · · ⊗ ψk. It is easy to see that the operator norm of this map
does not exceed

√
2kγ0 ‖φ‖L2.

And now, for anyi let us consider a mapA⊗k → A⊗(k−1) defined on simple tensors
byψ1 ⊗ · · · ⊗ ψk 7→ 2ψ2 ⊗ · · · ⊗ ψi−1 ⊗ (ψiφ

?ψ1)⊗ ψi+1 ⊗ · · · ⊗ ψk. It is easy to
see that the operator norm of this map does not exceed

√
2k ‖φ‖L∞ .

The sum of these maps is equal tobφ , which shows the estimate (16).
The estimation (17) follows from (16) becausebφ is an adjoint ofb?φ what will be

proven in Theorem 3 and therefore their norms are equal.
The inequality (18) is obvious.ut
This theorem allows us to define the action onA⊗̂k of operatorsaφ , a?φ for all

φ ∈ L2(M, dµ) ∩ L∞(M, dµ) and of operatornφ for all φ ∈ L∞(M, dµ).

Theorem 3.For anyζ ∈ L2(M, dµ)∩ L∞(M, dµ) operatorsbζ andb?ζ are adjoint in
the sense that

〈bζ9,8〉 = 〈9, b?ζ8〉
for all 9 ∈ A⊗̂k,8 ∈ A⊗̂l . For anyφ ∈ L∞(M, dµ) the adjoint ofnφ is equal tonφ?
in the sense that

〈nζ9,8〉 = 〈9, nζ?8〉,
for all 9 ∈ A⊗̂k,8 ∈ A⊗̂l .

Proof. Let us consider9 = ∑
M ψ

M
0 ⊗ · · · ⊗ ψMk−1 ∈ A⊗̂k and8 = ∑

N φ
N
1 ⊗ · · · ⊗

φNl ∈ A⊗̂l . Since9 is a symmetric tensor the value of a scalar product
〈
9,

∑
N φ

N
1 ⊗

· · · ⊗ φNi−1 ⊗ ζ ⊗ φNi ⊗ · · · ⊗ φNl

〉
does not depend oni. This implies that

〈9, b?(ζ )8〉 = (l + 1)〈9, ζ ⊗8〉.
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We can split the sum in the definition (11) of〈9, ζ ⊗ 8〉 into two parts: over ordered
partitionsπ of the set{0,1, . . . , k − 1} which contain a block consisting of a single
element 0 and all the others ordered partitions. Since the stateµ is tracial we have

〈9, ζ ⊗8〉 = δk,l+1
2k

k!
∑
M

∑
N

[
γ0 µ(ψ

M?
0 ζ )

×
∑

{π1,...,πm}

∏
1≤p≤m

γ0

np
µ

(
ψM?πp1

φNπp1
· · ·ψM?πp,np

φNπp,np

)
+

∑
{π1,...,πm}

∑
1≤q≤m

γ0 µ
(
ψM0

?ζψM?πq1
φNπq1

· · ·ψM?πq,nq
φNπq,nq

)
×

∏
1≤p≤m,p 6=q

γ0

np
µ

(
ψM?πp1

· · ·ψM?πp,np
φNπp1

· · ·φNπp,np
)]
,

where the sums overπ are taken over all ordered partitionsπ of the set{1, . . . , k − 1}.
Note that for any nonempty subsetA of the set{1, . . . , k − 1} we have

∑
πq

µ
(
ψM0

?ζψM?πq1
φNπq1

· · ·ψM?πq,nq
φNπq,nq

) =
∑
πq

∑
1≤r≤nq

1

nq

×µ(
ψM?πq1

φNπq1
· · ·ψM?πq,r−1

φNπq,r−1

(
ψMπq,r ζ

?ψM0
)?
φNπq,r ψ

M?
πq,r+1

φNπq,r+1
· · ·ψM?πq,nq

φNπq,nq

)
,

where the sums are taken over all sequencesπq = (πq,1, . . . , πq,nq ) such that each of
the elements ofA appears inπq exactly once.

Now, it is easy to see that

〈9, b?ζ8〉 = 2δk,l+1

[
γ0

∑
M

〈ψM0 , ζ 〉〈ψM1 ⊗ · · · ⊗ ψMk ,8〉+

+
∑
i

∑
M

〈ψM1 ⊗ · · · ⊗ ψMi−1 ⊗ (
ψMi ζ

?ψM0
) ⊗ ψMi+1 ⊗ · · ·ψMk ,8〉

]
,

which proves the first part of the theorem.
The proof of the fact that the adjoint ofnφ is equal tonφ? is very simple and we shall

omit it. ut
Theorem 4.For anyφ,ψ ∈ L2(A) ∩ L∞(A), ζ, η ∈ L∞(A) and8 ∈ A⊗̂k we have

[b?φ, b?ψ ]8 = 0, [bφ, bψ ]8 = 0, (19)

[bφ, b?ψ ]8 = (2γ0〈φ,ψ〉 + 4nφ?ψ)8, (20)

[nζ , b?ψ ]8 = 2b?ζψ8, [bψ, nζ ]8 = 2bζ?ψ8. (21)

Proof. Since the definitions of creation quadratic operators and standard creation oper-
ators coincide, two quadratic creation operators commute. Quadratic annihilation oper-
ators are their adjoints so they commute with each other as well.
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Let us consider two auxiliary annihilation operators

b̂ψ (χ1 ⊗ · · · ⊗ χk) = 2γ0 µ(ψ
?χ1) χ2 ⊗ · · · ⊗ χk,

b̃ψ(χ1 ⊗ · · · ⊗ χk) = 2
∑

2≤i≤k
χ2 ⊗ · · · ⊗ χi−1 ⊗ (χiψ

?χ1)⊗ χi+1 ⊗ · · · ⊗ χk.

We havebψ = b̂ψ + b̃ψ .
The definition ofb̂ coincides up to a factor with the definition of the standard anni-

hilation operator, therefore
[b̂φ, b?ψ ] = 2γ0〈φ,ψ〉.

It is easy to see that there are exactly two terms in the commutator which do not
cancel:

[b̃φ, b?ψ ](χ1 ⊗ · · · ⊗ χk) = 2γ0(ψφ
?χ1 + χ1φ

?ψ)⊗ χ2 ⊗ · · · ⊗ χk,

which is equal to the action of 4γ0nψφ? . If we do not assume thatA is commutative we
have to replacen by an appropriate sum of left and right multiplication operators.ut

5. Another Representation of the Quadratic Bosonic Fock Space

The construction from the previous subsection can be presented in a more direct way. Let
us consider an isomorphismC(M)⊗· · ·⊗C(M) = Calg(M×· · ·×M), whereCalg(M

n)

denotes the space of continuous functions onMn = M×· · ·×M which are finite sums
of simple tensors. The multiplication mapA⊗n 3 x1 ⊗ · · ·⊗ xn 7→ x1 · · · xn ∈ A under
this isomorphism is equal to the diagonal mapCalg(M

n) 3 f 7→ 1f ∈ C(M), where
(1f )(x) = f (x, x, . . . , x) for anyx ∈ M.

For any ordered partitionπ = {π1, . . . , πk} of the set{1, . . . , n} let1π : Mk → Mn

be an embedding ofMk onto the diagonal ofMn defined by partitionπ :

1π(x1, . . . , xk) = (y1, . . . , yn),

whereyr = xs for r ∈ πs .1?π(µ⊗m) denotes the pull–back of the measureµ⊗m onMm

onto a multidiagonal ofMk defined by1π , namely∫
Mk

f (x1, . . . , xk) d1
?
π(µ

⊗m) =
∫
Mm

f [1π(y1, . . . , ym)]dµ(y1) · · · dµ(ym).

Note that however the function1π depends on the choice of order of blocks of partition
π , the pull–back measure1?π(µ

⊗m) does not depend on it.
Therefore the scalar product (11) can be represented as

〈8,9〉 = δkl

∫
Mk

8(x1, . . . , xk)9(x1, . . . , xk) dµk(x1, . . . , xk)

for 8 ∈ Calg(M
k),9 ∈ Calg(M

l), where the measureµk onMk is given by

µk = 2k

k!
∑

{π1,...,πm}

γm0

|π1| · · · |πm|1
?
π(µ

⊗m).
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In other words: the measureµk onMk is a sum of the product measure onMk and of
product measures with supports on all multidiagonals ofMk.

The operators defined in the last section in this context are represented as follows:

(b?φ9)(x1, . . . , xn+1) =
∑
i

φ(xi)9(x1, . . . , xi−1, xi+1, . . . , xn+1), (22)

(bφ9)(x1, . . . , xn) = 2γ0

∫
M

φ(xn+1)9(x1, . . . , xn+1)dµ(xn+1) (23)

+ 2
∑
i

φ(xi)9(x1, x2, . . . , xi−1, xi, xi, xi+1, . . . , xn),

(nφ9)(x1, . . . , xn) =9(x1, . . . , xn)
∑
i

φ(xi). (24)

6. Quadratic and Linear Bosonic White Noise

It is natural to ask if it is possible to incorporate both quadratic white noise operators
bφ , b?φ , nφ and linear white noise operatorsaφ , a?φ to the same algebra. We postulate
relations (6)–(8) of quadratic white noise, a relation of white noise

[aφ, a?ψ ] = 〈φ,ψ〉,
and some relations linking quadratic and linear noises, among which we shall mention
only

[aφ, b?ψ ] = 2a?φ?ψ , [bφ, a?ψ ] = 2aφψ?.

We shall prove now that in general it is impossible to find a Fock representation of these
relations.

LetX be a measurable subset ofM. Let 0< µ(X) = l < ∞ and letχ(x) = 1 for
x ∈ X andχ(x) = 0 otherwise. By rewriting operators in the normal order we have for
anyc ∈ R,

〈(ca?χa?χ + b?χ )�, (ca
?
χa

?
χ + b?χ )�〉 = 〈�, (caχaχ + bχ)(ca

?
χa

?
χ + b?χ )�〉

= 2c2〈χ, χ〉2 + 2γ0〈χ, χ〉 + 2c〈χ2, χ〉 + 2c〈χ, χ2〉 = 2c2l2 + 4cl + 2γ0l.

It is easy to see that forl < 1
γ0

this expression takes negative values.

This is can be interpreted as another manifestation of the constant1
γ0

which describes
the lengthscale, under which a quadratic white noise loses its physical meaning.

7. Free Quadratic White Noise

7.1. Free commutation relations.For the free caseq = 0 the coefficient standing at
number operator in Eq. (4) is equal to 0 so this equation is equivalent to the commutation
relations of free creation and annihilation operators. However if we redefine annihilation
and creation operators by mulitiplying them by1√

q
and take the limitq → 0 andql = 1

γ

we obtain

bφb
?
ψ = γ 〈φ,ψ〉 + nφ̄ψ . (25)
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The simple calculation forq = 0,

(a?1√
l
χi
a 1√

l
χi
)(a?1√

l
χj
)2 = δij (a

?
1√
l
χj
)2,

(a?1√
l
χi
a 1√

l
χi
)(a?1√

l
χj
a 1√

l
χj
) = δij (a

?
1√
l
χi
a 1√

l
χi
)

motivates us to postulate the other free commutation relations

nφb
?
ψ = b?φψ, bψnφ = bψφ?, nφnψ = nφψ . (26)

Therefore, heuristically quadratic free white noise defined like this could be inter-
preted as a square of free white noise with small violations of freeness in the limitq → 0.
However, since we take the limitl → ∞ it is impossible to repeat the arguments from
Subsect. 3.3 and it should be stressed that this interpretation is very informal.

7.2. Realization of quadratic free white noise.Let A be an associative?-algebra and
µ : A → C be a state. Let us consider a pre–Hilbert space0̃2

f (A) = ⊕
n≥0 A⊗n with a

scalar product defined by

〈ψ1 ⊗ · · · ⊗ ψl, χ1 ⊗ · · · ⊗ χk〉
= δkl

∑
m≥1

∑
(n0,...,nm)

∏
1≤p≤m

γµ(ψ?npψ
?
np−1 · · ·ψ?np−1+1χnp−1+1χnp−1+2 · · ·χnp), (27)

where the sum is taken over all increasing sequences of natural numbers(n0, n1, . . . , nm)

such thatn0 = 0 andnm = k what corresponds to all Boolean partitions of a set
{1, . . . , k}, i.e. partitions into blocks of consecutive elements{{1,2, . . . , n1}, {n1 +
1, n1 + 2, . . . , n2}, . . . , {nm−1 + 1, nm−1 + 2, . . . , nm}}.

The completion of̃02
f (A) will be called the quadratic free Fock space and will be

denoted by02
f (A).

Forψ ∈ A we define the action of the quadratic creation operators on0̃2
f by

b?ψ(χ1 ⊗ · · · ⊗ χk) = ψ ⊗ χ1 ⊗ · · · ⊗ χk,

bψ(χ1 ⊗ · · · ⊗ χk) = γµ(ψ?χ1) χ2 ⊗ · · · ⊗ χk + (ψ?χ1χ2)⊗ χ3 ⊗ · · · ⊗ χk,

nψ = (ψχ1)⊗ χ2 ⊗ · · · ⊗ χk.

On the algebraA we shall introduce (noncommutative)L2 andL∞ norms by

‖x‖L2 = √
µ(x?x),

‖x‖L∞ = sup
y∈A, ‖y‖L2=1

|µ(xy)|.

Theorem 5.For quadratic free operators the following estimations hold:∥∥∥b?φ∥∥∥ = ∥∥bφ∥∥ ≤ √
γ ‖φ‖L2 + ‖φ‖L∞ ,

‖nφ‖ ≤ ‖φ‖L∞ .

Theorem 6.The operatorsbφ andb?φ are adjoint. The adjoint tonφ is equal tonφ? .
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Proof. First note that the summands in (27) can be split into two groups: those for which
the first component of the partition defined by(ni) is and those for which is not a single
element. Therefore for9 = ψ1 ⊗ · · · ⊗ ψk,X = χ0 ⊗ · · · ⊗ χk we have

〈b?φ9,X〉 = 〈φ ⊗ ψ1 ⊗ · · · ⊗ ψk, χ0 ⊗ · · · ⊗ χk〉 = γµ(φ?χ0)

×
∑
m≥1

∑
(n0,...,nm)

∏
1≤p≤m

γµ(ψ?npψ
?
np−1 · · ·ψ?np−1+1χnp−1+1χnp−1+2 · · ·χnp)

+
∑
m≥1

γm
∑

(n0,...,nm)

µ[ψ?n1
ψ?n1−1 · · ·ψ?1φ?χ0 · · ·χn1]

×
∏

2≤p≤m
µ[ψ?npψ?np−1 · · ·ψ?np−1+1χnp−1+1χnp−1+2 · · ·χnp ]

= 〈ψ1 ⊗ · · · ⊗ ψk, γµ(φ
?χ0)χ1 ⊗ · · · ⊗ χk〉

+ 〈ψ1 ⊗ · · · ⊗ ψk, (φ
?χ0χ1)⊗ χ2 ⊗ · · · ⊗ χk〉,

where the sums are taken over all increasing sequences of natural numbers(n0, . . . , nm)

such thatn0 = 0 andnm = k.
The proof of the fact thatnφ is adjoint ton?φ is straightforward and we shall omit it.

ut
Theorem 7.The following operator equalities hold for allφ,ψ ∈ L2 ∩ L∞ andζ, η ∈
L∞:

bψb
?
φ = γµ(ψ?φ)+ nψ?φ, (28)

nζ b
?
φ = b?ζφ, bψnζ = bζ?ψ , (29)

nζ nη = nζη. (30)

7.3. Free quadratic Fock space and free probability.In this subsection we shall present
some properties of the free quadratic Fock space related to the free probability of
Voiculescu [V].

Definition 2. A noncrossing partition is a partitionπ = {π1, . . . , πk} of a set{1, . . . , n}
such that there do not exist numbers1 ≤ a < b < c < d ≤ n such thata, c ∈ πr ,
b, d ∈ πs andr 6= s.

Theorem 8.LetA be an associative?–algebra with a stateµ. ForQs(φ) = b?φ +bφ? +
snφ we have

τ [Qs(φ1) · · ·Qs(φk)]
=

∑
π={π1,...,πk}

∏
1≤i≤k

γµ(φπi1 · · ·φπi,ni )
∑

1≤l≤ ni−2
2

1

l + 1

(
2l

l

)(
ni − 2

2l

)
sni−2l−2,

where the sum is taken over all noncrossing partitions{π1, . . . , πk}; πi = {πi,1, . . . ,
πi,ni }, πi,1 < · · · < πi,ni .

The free cumulants [KS] are therefore

kn(φ1, . . . , φn) = γµ(φ1 · · ·φn)
∑

1≤l≤ n−2
2

1

l + 1

(
2l

l

)(
n− 2

2l

)
sn−2l−2.



Quadratic Bosonic and Free White Noises 627

Proof. Let us consider two auxiliary annihilation operators

b̂φ(ψ1 ⊗ · · · ⊗ ψk) = γµ(φ?ψ1) ψ2 ⊗ · · · ⊗ ψk,

b̃φ(ψ1 ⊗ · · · ⊗ ψk) = (φ?ψ1ψ2)⊗ ψ3 ⊗ · · · ⊗ ψk.

ThereforeQs(φ) = b?φ + snφ + b̃φ? + b̂φ? andτ [Qs(φ1) · · ·Qs(φk)] is a sum of 4k

summands each equal to the stateτ acting on a product of operatorsb?, sn, b̃ and b̂.
Each of these summands is of the form

∏
1≤i≤k γµ(φπi1 · · ·φπi,ni ) times a power of

s. Furthermore, only expressions coming from noncrossing partitions can appear. Our
question is: with which coefficient such a term comes in theτ [Qs(φ1) · · ·Qs(φk)]. We
shall discuss the 4ni ways of choosing one of four operatorsb?, sn, b̃ and b̂ to be
associated with each of the vectorsφπi1, . . . , φπi,ni forming a block of the partitionπ .

First note that there must beni ≥ 2, and with the vectorφπi1 must be associated the
annihilatorb̂ and with the vectorφπi,ni must be associated the creatorb? – otherwise
such a summand does not contribute in the sum. There are remainingni − 2 places on
which we have to choose operatorsb?, b̃ andsn. The number of creation operatorsl on
these places must be equal to the number of annihilators, the otherni − 2 − 2l places
must be occupied by number operators. There are

(
ni−2

2l

)
possibilites of choosing places

on which number operators should be placed. The number of ways of choosingl places
among 2l places on which creation operators should act is equal to thel Catalan number

1
n+1

(2l
l

)
[GKP] which ends the proof.ut

As a simple corollary we have the following

Theorem 9.Let A be an associative?-algebra with a tracial stateµ and lets ∈ R.
LetFs(A) be a?-algebra generated by operatorsQs(φ) for φ ∈ A and by the identity
operator. Then a stateρ onFs(A) given byρ(X) = 〈�,X�〉 is tracial.

Theorem 10.Let A be an associative?-algebra with a tracial stateµ, s ∈ R and let
(Ai ) be a family of?-subalgebras ofA such thatxy = 0 for anyx ∈ Ai , y ∈ Aj and
i 6= j . Then subalgebrasFs(Ai ) of the algebraFs(A) are free with respect to the state
ρ.

Proof. By the definition of freeness we have to prove that for any sequencei1, . . . , in
of indexes such that the consecutive indexes are not equalik 6= ik+1 for 1 ≤ k ≤ n− 1
and a sequence(Xk) such thatXk ∈ Fs(Aik ) andρ(Xk) = 0 for 1 ≤ k ≤ n we have
ρ(X1 · · ·Xn) = 0.

Each of the operatorsXk can be written as a sum of normally ordered operators, i.e.
as a sum of products of the typeb?φ1

· · · b?φpbψ1 · · · bψq or b?φ1
· · · b?φpnζ bψ1 · · · bψq . The

assumptionρ(Xk) = 0 implies that in this sum the multiplicity of the identity operator
does not appear. By distributing we see that the productX1 · · ·Xn can be written as a
sum of many summands, each being a product of normally ordered products.

The commutation relations (28)–(30) show that for each of these summands if one is
not normally ordered then it is equal to zero. On the other hand, a vacuum expectation
of any normally ordered product (containing no multiplicity of identity) is equal to 0.
ut
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