Commun. Math. Phys. 211, 615 — 628 (2000) Communications in
Mathematical
Physics
© Springer-Verlag 2000

Quadratic Bosonic and Free White Noises

Piotr Sniady*

Instytut Matematyczny, Uniwersytet Wroctawski, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland.
E-mail: psnia@math.uni.wroc.pl

Received: 23 August 1999 / Accepted: 8 December 1999

Abstract: We discuss the meaning of renormalization used for deriving quadratic bo-
sonic commutation relations introduced by Accardi [ALV] and find a representation of
these relations on an interacting Fock space. Also, we investigate classical stochastic
processes which can be constructed from noncommutative quadratic white noise. We
postulate quadratic free white noise commutation relations and find their representation
on an interacting Fock space.

1. Introduction

Hudson and Parthasarathy [HP] showed that a Brownian msti@h can be represented
as a sum of two noncommuting operators: annihilati@n) and creation, 7,

T
B(T)=apr) + aZO,T) = /(; (ar + ay),

wherea, anda; stand for the infinitesimal annihilation and creation operators respec-
tively.

Accardi [ALV], in order to study some physical problems, introduced quadratic white
noise operators, which informally can be writtenras= a;a;, by = (ar)? andb; =
(a,*)z. The first one, called the number operator has been already considered in the white
noise calculus and it does not cause serious difficulties. The other two, called quadratic
annihilation and quadratic creation operators, in fact represent infinite quantities and
therefore have to be redefined. Indeed, it can be shown that becausedf = §(t —s)
we have

[a?, a*?] = 25%(t — 5) 4+ 45(t — s)aa?,

S
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whereé denotes the Dirac distribution. Since the square of the delta function is not well
defined, this relation is meaningless. Furthermore it is too singular to apply the subtrac-
tion renormalization [S]. By renormalizatiéR(x) = y08(x) Accardi postulates that the
renormalized quadratic white noise operators should fulfill the following commutation
relation:

which for smeared operatobg = [ ¢b;, by, = [ b, takes the form

[bg, by 1 = 2y0(d, V) + 4ngy,. (2)

In Sect. 2 we present another discussion of this relation in a more general context of
g-deformed commutation relations.

In Sect. 3 we show that from this discussion follows for the bosonic case the meaning
of renormalization constanty as the inverse of the lengthscale taken for quadratic
variation of a (honcommutative) Brownian motion and we discuss other commutation
relations. Furthermore, from quadratic white noise operators we construct some classical
stochastic processes.

Accardi and Skeide [ALV,AS] have constructed a Fock representation of quadratic
white noise relations. The construction presented in the paper [ALV] uses the Kol-
mogorov decomposition for a certain positive kernel. Another approach is presented in
the paper [AS] where the construction of quadratic white noise operators is based on the
theory of Hilbert modules. In Sect. 4 and 5 we present a direct construction of such a
representation on an interacting Fock space. Our method is based on defining explicitly
a scalar product on a symmetric Fock space.

In Sect. 6 we discuss the existence of a Fock representation of an algebra containing
both quadratic and usual linear white noise operators. It turns out that it is in general not
possible to find such a representation. The main reason is that under a certain lengthscale
the renormalized quadratic operators lose their intuitive meaning as squares of creation
and annihilation operators.

In Sect. 7 we introduce free quadratic white noise operators which should describe
the squares of free creation and annihilation operators with small violation of freeness
and construct their representation.

Both standard and quadratic white noises are weak processes, i.e. mappings from
some linear spacgto operators on a Hilbert space. Contrary to white noise commutation
relations, the quadratic relation (2) involves not only a scalar produtiat a product
of two elements ofS as well. From the noncommutative geometry viewpoint [C] it
would be interesting to consider noncommutative spacetime algébegswell and
quadratic white noise relations provide appropriate examples. Unfortunately, for the
bosonic white noise there seems to be some limitations on the chokéwffor the
free case the construction works for all associative algebras.

2. General Renormalized Quadratic White Noise

For a Hilbert spacé{ and a real numbej, —1 < g < 1 let us consideg-deformed
white noise operators [FB, BKS]: the creatimpand its adjoint annihilationy indexed

by ¢ € H. These operators fulfill the following commutation relation:

agay, — qayag = (. V). 3)
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For the casé{ = £L2(M, du) we can write informally

a¢~=/M¢(_t)az, a;=/M¢(t)a,*,

whereq;, af denote white noise annihilation and creation operators.
Our goal is to introduce operatobg andb* which would be informally treated as
integrals of squares of white noise operators

by = / ¢(D@)? b= / ¢ (1) (a))?
M M

In order to give meaning to these expressions let us consider a sequigrafedisjoint
measurable subsets #f, each of the same measui@nd a sequendag;) of orthogonal
functions

X_(x)z{lzxeli
! O:x¢l -

Furthermore let us consider piecewise constant functons,
$(x) = Z(/)(Xi)Xi(X), Y(x) = Z Y (xi) xi (x),

for a sequencéx;) such thaty; € I;. Now let us define
_ I 2 * . * 2
by ‘ZZ““X’)(“%X;)’ : _IZ“’(’“)(“%M)'

A simple computation shows that for squares of creation and annihilation operators

afat? — q*az?af = 1+ )¢, 6 + 91+ ¢)*(¢, £)aa

hold. For this reason we have
byb?, — q*bl, by
— NB (Y 2 NI ok
=1+q) Zw(x,w(x,) +q(1+q) Zwomx,) a1y Ay

Vi

Since the£2(M, dw) norm of the function- x; is equal to 1, the operatar, a1
\[ \/ZX' ﬁXl

is a number operator. If we consider only the creation and annihilation opetgtors
ay for functionsé that are piecewise constant on sgt¢hen the operatorg;, a1

viti Vi
and f I aya; have the same commutation relations with others and therefore they are
|nd|st|ngwshable in the sense of vacuum expectation values. Under these assumptions
we can write

byb}, — q*b}by
1 + 1t+q

Xi

/ Y ()P (x) du(x) + g1+ )2 / Y ()P (x) alar. @)

The precedmg calculations hold only for a very limited class of functigrend
. However, we shall postulate the following commutation relation between quadratic
creation and annihilation operators for @land+:

bebl, — q* by =y (. ¥) +cngy. (5)
for some constantg, ¢ and where: ¢, called a number operator, should be understood
as a generalization of the usual number operé{pr (x)a;a;.
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2.1. Fock representationddudson—Parthasarathy’s operatogs a; (¢ € H) are usu-
ally represented as operators acting on some Hilbert space with a cyclic Geatibi
the property thati, 2 = 0 for all ¢ € H. Since the operators;, by, are interpreted
as smeared renormalised squares of white noise opetaters therefore it is natural
to ask if it is possible to find a representation of operatgysh}, ng acting on some
Hilbert spacel™® such thatl™? contains a cyclic vectof2, called a vacuum, such that
by2 = 0,nsQ2 = O for all ¢. In such a setup we will be able to define a staten the
space of operators acting &% defined byr (X) = (2, X2) which would play the role
of a (honcommutative) expectation value.

3. Bosonic Quadratic White Noise

3.1. Bosonic commutation relationg:or the bosonic casg= 1 Eq. (4) takes the form
[bg, by, 1 = 2y0($, ¥) + dng,, (6)

whereyy = 71 Furthermore, we postulate that two creation, two annihilation and two
number operators should commute:

[bg, by] =0, [b;, *1/,] =0, [np,ny]=0. @)

A simple calculation for piecewise constant functions
* * 2 * 2
. , . =2
[E,- ¢(xz)a%)(ia%x,_ Ej fo)(a}x,-) ] Ek w(xk)¢(xk)(a%)(k)

gives us a motivation for the following commutation relations:

[n¢, b*I//] = 2[?;‘//, [bw, n¢] = Zpr*. (8)

3.2. Classical quadratic processeBy the spectral theorem a commuting family of

normal operators has a common spectral measure. After applying a state the spectral

measure becomes an ordinary measure which has a natural probabilistic interpretation

as a joint distribution of random variables corresponding to operators from our family.
Let us define fos € R,

Similar to the white noise it is a weak process [S], i.e. an operator valued function on a
linear space&C?(M, du) N L°(M, dw). In the caseM = R, we can construct from it
a stochastic proces3 (1) = Qs (x(0.1))-

Theorem 1.Let us fixs € R. Then{Q;(¢)} forms a commuting family of normal oper-
ators and therefore it is a classical stochastic process. With respect to the expectation
valuer, it is a Markovian process.



Quadratic Bosonic and Free White Noises 619

Proof. The first part of the proof is a simple application of (6)—(8).

The property thaD; is a process with independent increments means exactly that
for all disjoint setsM1, M» C M and f; € Alg{Q,(¢) : ¢ € L2(M;)} the equality
t(f1f2) = t(f1)t(f2) holds. Note that every expression containing operaigrs,

b; (¢ € H) can be written according to the relations (6), (8) in the normal form, a linear
combination of products of type

b(;l~~'b;knm...nxnlb%u'bl/,,. (10)

Each of the operatorsy,, by,, b, commutes with each of the operators,, by,,

b;z for ¢; € L£L2(M;, duw), therefore a product of two expressions of the form (10),
one being an element of Algy, by, b* ¢ € L£2(My)} and the other an element of
Alg{ng, by, by ¢ € L2(M>)} is—up to a permutation of factors—in a normally ordered
form. The stater has a property that on normally ordered products it takes nonzero
values only on multiples of identity and f1 f2) = t(f1)t(f2) follows.

Now it is enough to notice that the expectation valu@gie) is equal to 0 for any.
|

3.3. Quadratic variation of a Brownian motiorLet M = R, and let us consider
an arithmetic serie;), t; = li. For the sum of squares of increments of a standard
Brownian motion the following operator equality holds:

Y GIBi+) — B =) d)lay, +a,
=Y ¢@)las, + 2a},ay, +a}? + (tir1 — 1),

wherey; is the characteristic function of an interyal ¢;;.1). In the preceding discussion
we have chosen the commutation relations between operidtgrsby - andiny, to

coincide with commutation relations betweﬁi'n ay anda Ay, Whenever the length

of intervals is equal td = ylo Therefore, for any functlo¢ WhICh is piecewise constant
on intervals(¢;, t; 1) we can write

D )B(tis1) — B

1 1
=Y 6 {ﬂbx,. bl 4 20 ]+ (41— n-)} = 020) +/R ¢ () dx.
i +

This equation can be viewed as follows. Just bgea are quantum components of the
Brownian motion, for functiong which are pleceW|se constant on intervals which length
is a multiplicity of i operatorsb¢,, b* 2ng are quantum components of the quadratic
variation of Brownlan motion. The consta{jot describes the lengthscale under which
such interpretation is no longer valid.

The measures corresponding#eQ02(t) + t = y0Q2(x.n) + t for ¢ being the
multiplicity of ; are therefore thg? distributions. From this it follows that for arbitrary
t these are gamma distributions and2(¢) + ¢ is a gamma process.
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4. Quadratic Bosonic White Noise on an Interacting Fock Space

Let A be a commutativeC*-algebra of continuous functions on some &€twith a
measurg: and let the state o induced byu be denoted also by.

Definition 1. A partition of a finite set is a collectionyr = {1, ..., m;;} of nonempty
setsr,, which are pairwise disjoint and their union is equalAo

An ordered partition of afinite setisasett = {r1, ..., 7, } of nonempty sequences
np = (7Tp1, ..., Tpn,) suchthatthe family of sets 1, ..., 7y 5,}, 1 < p < mforms

a partition of A.

For a fixed positive constam let us consider a vector spagé(A) =®D,0 ABn
(where4®" denotes the symmetric tensor power) with a sesquilinear form defined by

MR- QX V1® - QYy)

2t Yoo . .
== 8klﬁ Z 1_[ n_M(X”plwﬂpl e X”!’"p w;-[pnp)v (11)
(71,0, tm} 1spsm P
where the sum is taken over all ordered partitionsf the set{1, ..., n}.
Please note that this sesquilinear form is well-defined on the full tensor patier
however we shall usually use it on the symmetric tensor POYFET.

In the sumrZ = @, .., A®" appears a summand® which should be understood
as a one-dimensional Hilbert spac& whereQ is a unital vector called vacuum.

The Hilbert spac@%, acompletion of“g will be called bosonic quadratic Fock space.

In the following by/@" we shall mean the completion of the symmetric tensor power
A®k with respect to the scalar product (11).

Question 1Forthe sesqilinear form (11) all algebraic considerations of this section hold

even ifthe algebral is not commutative. If this case we only have to assume that the state
u is tracial and we have to replace the number operator (14) by a pair of left and right
number operators. Unfortunately, in this general situation the form (11) is not always
positively definite. Is it possible to find some nontrivial examples of noncommutative

algebrasA with tracial stateg: such that (11) is positively definite?

For ¢ € A we define the action of the quadratic creation, annihilation and number
operators on simple tensors by

P,a® - @x)= ) 1n® - @x®Y®fit1® - ® X, 12)
O<i<k
by(X1® - ® xx) =200 k(¥ x1) X2 ® -+ ® xx (13)
+ZZ X2Q® @ Xi-1® (¥ XD @ Xi+1® -+ ® X
2<i<k
ny(X1® -+ ® xk) = Z X® - Xxic1® (Vxi) @ Xit1® -+ @ Xk» (14)
1<i<k

for k > 1 and their action on the vacuum by

:0(9) =y, by () = 0, ny () = 0. (15)
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Please note that simple tensors are in general not elements of the symmetric tensor power
of A. However, by linearity these definitions extend to a dense subspace of the symmetric
tensor powetd®”. What is important, the range of operatogs : A®" — A®*=D,

by A s ABMHD - ABn . A®n is again a symmetric power of.

A difficulty arises from the fact that such defined operators are not bounded. For
example we shall not claim thaj is an adjoint ofb, because such a statement is not
easy to prove since it demands careful discussion of domains of operators. It seems
that in order to do this we would have to define these operators on some analogue of
exponential domain of Hudson and Parthasarathy [HP] in a less intuitive way. Similarly
commutation relations will hold only in a restricted sense.

Theorem 2.Operatorsby, by, ny fulfill the following operator norm estimates with
respect to the scalar product (11):

s+ A — A3V < VK (75 16l ce + k= Diigle= ), (16)

by ABEY s 4P| < V2 (Yo Il gz + (k= Dliglles). (A7)
g - A > 43| < k119 . (18)

Proof. Let us consider a mag® — A®*-1 defined on simple tensors iy ® - - - ®
Y > 2y0{(0, Y1) ® - -+ ® Y. It is easy to see that the operator norm of this map

does not exceeq/2kyp [|¢]| 2.

And now, for anyi let us consider a mag® — A®*-D defined on simple tensors
byv1® - @k t=> 292® - @ Yi-1® (Yid* Y1) @ Yi41 ® -+ ® Y. Itis easy to
see that the operator norm of this map does not ex¢&d||¢ || £o.

The sum of these maps is equabtn which shows the estimate (16).

The estimation (17) follows from (16) becauggis an adjoint ofb; what will be
proven in Theorem 3 and therefore their norms are equal.

The inequality (18) is obvious.o

This theorem allows us to define the action df* of operatorsag, ay for all
¢ € L2(M,dw) N LM, dw) and of operatony forall ¢ € L>(M, dp).

Theorem 3.Forany¢ € £2(M, dw) N LM, dw) operatorsb; andbg are adjointin
the sense that
(bW, @) = (¥, b} D)

forall ¥ € A®k, @ e A% For any¢ € L%(M, dw) the adjoint ofny is equal ton g
in the sense that
(ne W, @) = (¥, ne~ @),

forall ¥ e A% & e A%

Proof. Let us conside =Y, v/ ®--- @y}, € A®k andd = Y P ®
q&lN e A®! . SinceV is a symmetric tensor the value of a scalar procguvthN qﬁf’@
¢, ®®¢N ®- - ®¢)does not depend an This implies that

(W, 0"(0)®) = (I + D(V, ¢ @ D).
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We can split the sum in the definition (11) 6F, ¢ ® @) into two parts: over ordered
partitionsz of the set{0, 1, ..., k — 1} which contain a block consisting of a single
element 0 and all the others ordered partitions. Since thestistéracial we have

(W, 0 ® D) = z+1—ZZ[Vo n™

x 3 T Buied oult oY )

{m1,...mm} 1<P<m

+ Z Z Yo K W nql¢nq1 ’ W:g;q@]x,.n,,)

{71, tm} 1=g<m

X 1_[ (1/,77171 1//77717 np ¢7Tp1 ¢)7]T\;,np)} ’

1<p<m.piq P

where the sums over are taken over all ordered partitionsof the sef{1, ..., k — 1}.
Note that for any nonempty subsétof the set{1, ..., k — 1} we have

Z n 1/f nql d)nql 7Tq nq ¢7Tq ng Z Z

g 1<r=ng
N Mx N
X M(W;qu ¢nq1 w;-[q e l¢77q,r71 (WJT%,. ; wo ) ¢7rq ’ wnq r+l¢7fq.r+l e ¢ﬂq,nq ¢”q.nq )1
where the sums are taken over all sequenges- (7, 1, . . ., 74.1,) SUch that each of

the elements off appears inr, exactly once.
Now, it is easy to see that

(U, Dy ) =28 111 [onwSﬁ e @y, o)+
M

+ZZ<W®--~®wi”11®(wiMﬁ*w¥)®wi%1®-~-w,ﬁ”,d>>},

i M

which proves the first part of the theorem.
The proof of the fact that the adjoint o}, is equal ta:4- is very simple and we shall
omitit. O

Theorem 4.For any¢, ¥ € £L2(A) N LX(A), ¢, n € LX(A) andd € A®k we have

(b}, 0510 =0, [by, byld =0, (19)
[bg. %10 = (20, ¥} + Angey ). (20)
[ng, b} 10 = 267, ®,  [by. n|® = 2bpy . (21)

Proof. Since the definitions of creation quadratic operators and standard creation oper-
ators coincide, two quadratic creation operators commute. Quadratic annihilation oper-
ators are their adjoints so they commute with each other as well.
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Let us consider two auxiliary annihilation operators

by(x1® - ® xx) =200 LY x1) x2® -+ ® X
by(1® @ x0) =2 x2®- @ xi1® (¥ x) ® Xi41® - ® .

2<i<k

We han?l/, = 131/, + B,/,.
The definition ofb coincides up to a factor with the definition of the standard anni-
hilation operator, therefore

by, b1 = 2y0(. V).

It is easy to see that there are exactly two terms in the commutator which do not
cancel:

[bg, b3 1(x1® -+ ® xx) = 200 d* X1+ 19" V) ® X2 ® -+ ® s

which is equal to the action ofidny4+. If we do not assume that is commutative we
have to replace by an appropriate sum of left and right multiplication operators.

5. Another Representation of the Quadratic Bosonic Fock Space

The construction from the previous subsection can be presented in a more direct way. Let
us consider anisomorphist(M)®- - -QC (M) = Cag(M x - - - x M), whereCqg(M")
denotes the space of continuous functiondfih= M x - - - x M which are finite sums
of simple tensors. The multiplication mef®” 5 x1 ® - - - @ x, — x1--- X, € Aunder
this isomorphism is equal to the diagonal m@gy(M") > f — Af € C(M), where
(Af)(x) = f(x,x,...,x)foranyx € M.

For any ordered partitiom = {r1, ..., ¢} ofthesefl, ..., n}letA, : Mk — M
be an embedding a¥/* onto the diagonal o#" defined by partitiont:

Ag(x1, .o, xK) = (1, ..., W),

wherey, = x, for r € my. A% (1®™) denotes the pull-back of the measufé" on M™
onto a multidiagonal oM* defined byA ,, namely

/f(xl,--ka)dA;(N«@m):/ flAZ (1, y)ldp(yy) -+ - dp(ym).
Mk Mm

Note that however the function,, depends on the choice of order of blocks of partition
7, the pull-back measum? («®™) does not depend on it.
Therefore the scalar product (11) can be represented as

(CD, \I’) =8k1/k<I>(x1,...,xk)\ll(x1,...,xk) duk(xl,...,xk)
M

for @ € Cag(M*), ¥ € Cag(M"), where the measure, on M* is given by

Y
W=l ¥ e,
TTm} "
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In other words: the measurg on M* is a sum of the product measure tff and of
product measures with supports on all multidiagonals/6f
The operators defined in the last section in this context are represented as follows:

B (XL, X)) = Y SEDW XL, -, X1, Xigd -5 Xnd), (22)
i

(bpW)(x1, ..., x,) =2¥0 /M ¢ D)V (X1, o XpgrD)d (X4 1) (23)

+2)  POW(XL, X2, ., Xi L, Xiy Xiy Xi L - - Xn),
i

(g W) (X1, ... x) =W (1, ... x) Y d(xy). (24)

6. Quadratic and Linear Bosonic White Noise

It is natural to ask if it is possible to incorporate both quadratic white noise operators
by, by, ng and linear white noise operatarg, a; to the same algebra. We postulate
relations (6)—(8) of quadratic white noise, a relation of white noise

lag, ay] = (¢, V),

and some relations linking quadratic and linear noises, among which we shall mention
only
lag, b*w] = Za(;*w, [bg, a:y] = 2a4y+.

We shall prove now that in general it is impossible to find a Fock representation of these
relations.

Let X be a measurable subsetMf. Let 0 < u(X) =1 < oo and lety (x) = 1 for
x € X andy (x) = 0 otherwise. By rewriting operators in the normal order we have for
anyc € R,

((ca;a; —i—b;)Q, (ca;a;‘( + b;)Q) = (R, (cayay +bx)(ca;a; + b;‘()Q)

= 2¢%(x, )2 + 2y0(x, x) + 2¢(x%, x) + 2¢(x, x?) = 271 + 4cl + 2yol.

It is easy to see that fdr< y—lo this expression takes negative values.

This is can be interpreted as another manifestation of the coq%twhﬁch describes
the lengthscale, under which a quadratic white noise loses its physical meaning.

7. Free Quadratic White Noise

7.1. Free commutation relationg-or the free casg = 0 the coefficient standing at
number operator in Eq. (4) is equal to 0 so this equation is equivalent to the commutation
relations of free creation and annihilation operators. However if we redefine annihilation
and creation operators by mulitiplying them% and take the limizy — 0 andgl = %

we obtain

boby = y{($,¥) +ngy. (25)
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The simple calculation fag = 0,

2 2
(@4 a1 )@y =8 )2
VRN viki
* * *
a aa a aa =§;i(a ai
( Fiki jxi)( Jiki ij) i ( Jiki 7,Xi)

motivates us to postulate the other free commutation relations

n¢b*,/j = b;'/f’ b,/,nq; = b,/,(pr, NNy = Nepyr- (26)

Therefore, heuristically quadratic free white noise defined like this could be inter-
preted as a square of free white noise with small violations of freeness in the limi0.
However, since we take the limit— oo it is impossible to repeat the arguments from
Subsect. 3.3 and it should be stressed that this interpretation is very informal.

7.2. Realization of quadratic free white noiseet .A be an associative-algebra and
1 A — Cbe astate. Let us consider a pre-Hilbert spgged) = @, A®" with a
scalar product defined by B

(V1® - @Y1, x1 Q- ® Xxk)
= O Z Z 1_[ VM(W,:plﬁZp_l s Ip:{p,l.:,.l)(np,l+1an,1+2 s an)v (27)

m>1(no,....nm) 1I<p<m

where the sum is taken over all increasing sequences of natural numgers, . . . , n,,)
such thatng = 0 andn,, = k what corresponds to all Boolean partitions of a set
{1, ..., k}, i.e. partitions into blocks of consecutive elemefis, 2, ..., n1}, {n1 +
Lni+2...,n2, ... {nm—1+Lnm_1+2,.... 00}

The completion oﬂ“fz(A) will be called the quadratic free Fock space and will be
denoted byrZ(A).

Fory € A we define the action of the quadratic creation operatoré?dw

by(x1®- - ®@x)=v®x10 - ® X,
by(x1® - @ xk) = yu(W*x1) x2®@ @ xx + (W x1x2) ® x3® - -+ @ xx,
ny =Wx) @ x2® - @ xk.

On the algebrad we shall introduce (noncommutativéf and £>° norms by

Xl g2 = v/ (x*x),

Xl g = sup  |ulxy)l.
yeA, Iyl z2=1

Theorem 5. For quadratic free operators the following estimations hold:

by

= |bg| < VPPl 2 + Il o,
lngll < [l oo

Theorem 6.The operators, andbjl; are adjoint. The adjoint ta, is equal ton .
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Proof. First note that the summands in (27) can be splitinto two groups: those for which
the first component of the partition defined @ay) is and those for which is not a single
element. Thereforefob = Y1 Q@ - - Q ¥, X = x0 ® - - - ® xx We have

OV, X) = (¢ @Y1 @Yk, X0 ®++ ® xk) = y (9" x0)
X Z Z 1_[ J/M(lﬁ,:,, Ilf;p_l Tt 1/f;z(p71.|_]_an_lJran/,,_1+2 e an)

mzl(no,n-,nm) 15175"1
Y™ D ulg Y 1 Vi X0 X
m>1 (n0,..cstim)
X 1_[ /L[W;p‘ﬁ;p_l T Iﬁ;:,,,1+1Xn,,,1-1-1)(np,1-|-2 T an]
2<p<m
=(Y1® - @Yk, yn(@* x0)x1 ® - - ® xx)
+(WY1® - @V, (@ xox1) @ x2® -+ ® i),
where the sums are taken over all increasing sequences of natural ng@mbers, n,,)
such thatzg = 0 andn,,, = k.

The proof of the fact that, is adjoint tOn;) is straightforward and we shall omit it.
i

Theorem 7. The following operator equalities hold for afl, € £2N £® and¢, n €
L

byby =y u(W* @) + ny+p, (28)
neby = by, byng =bey, (29)
neny = ngy. (30)

7.3. Free quadratic Fock space and free probability.this subsection we shall present
some properties of the free quadratic Fock space related to the free probability of
Voiculescu [V].

Definition 2. A noncrossing partition is a partition = {m1, ..., nz}ofasetd, ..., n}
such that there do not exist numbdrs< ¢ < b < ¢ < d < n such thata, ¢ € «,,
b,d € ny andr #s.

Theorem 8.Let.A be an associative-algebra with a state.. For Q;(¢) = b; + by +
sng we have

T[Qs(¢1) - - - Os(d)]

= Z 1_[ Yu(@r,y - ¢ﬂi‘”i) Z l—}—il <2[l) (n’Z; 2>Sn,-—2l—2’

Sis 1S[§ni£

where the sum is taken over all noncrossing partiti¢ns, ..., w}; 7 = {mi1,...,
Wi}y Wil < v+ < Tip;-
The free cumulants [KS] are therefore

1 /2 -2
k(s - bn) = Y1 (P1- - ba) H_l<l>(" » )Sn_zz_;

1=i<"52
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Proof. Let us consider two auxiliary annihilation operators

be(1® - @) = yu(@* Y1) Y2 ® - - ® Y,
bp(Y1® - @ Y) = (" Y1¥2) ® Y3 ® -+ @ Y.

ThereforeQ,(¢) = b}, + sny + by + by andt[Q;(¢1) - - - Os ()] is a sum of 4

summands each equal to the statacting on a product of operatobs, sn, b andb.
Each of these summands is of the foffy_; _; ¥ t(¢x;1 -+~ ¢x;,,.) times a power of
s. Furthermore, only expressions coming from noncrossing partitions can appear. Our
question is: with which coefficient such a term comes inth@; (¢1) - - - O, (qbk)] We
shall discuss the”4 ways of choosing one of four operatabs, sn, b andb to be
associated with each of the vectgs,, . .., ¢, forming a block of the partitiorr.

First note that there must e > 2, and with the vectog,,, must be associated the

annihilators and with the vectop,, . must be associated the creatdr— otherwise
such a summand does not contribute in the sum. There are remajning places on
which we have to choose operatdts b andsn. The number of creation operatdren
these places must be equal to the number of annihilators, themthe? — 2/ places
must be occupied by number operators. There{'bg@) possibilites of choosing places
on which number operators should be placed. The number of ways of chéqdaus
among 2 places on which creation operators should act is equal to@latalan number
n+1( ) [GKP] which ends the proof.o

As a simple corollary we have the following

Theorem 9.Let A be an associative-algebra with a tracial statex and lets € R.
Let 7, (A) be ax-algebra generated by operato3, (¢) for ¢ € A and by the identity
operator. Then a state on F(A) given byp(X) = (R, XQ) is tracial.

Theorem 10.Let A be an associative-algebra with a tracial state:, s € R and let
(A;) be a family of-subalgebras of4 such thatvy = O for anyx € 4;, y € A; and
i # j. Then subalgebra&;(A;) of the algebraF;(A) are free with respect to the state

0.

Proof. By the definition of freeness we have to prove that for any sequgnce. , i,
of indexes such that the consecutive indexes are not égeal; 1 forl <k <n -1
and a sequenogXy) such thatX; € F(4;,) andp(Xy) = 0for 1 < k < n we have
p(X1---Xp) =0.

Each of the operator¥; can be written as a sum of normally ordered operators, i.e.
as a sum of products of the typg, - - “b by - by, OTbY - by neby, - by,. The

assumptiorp (X;) = 0 implies that in this sum the multiplicity of the identity operator
does not appear. By distributing we see that the product - X,, can be written as a
sum of many summands, each being a product of normally ordered products.

The commutation relations (28)—(30) show that for each of these summands if one is
not normally ordered then it is equal to zero. On the other hand, a vacuum expectation
of any normally ordered product (containing no multiplicity of identity) is equal to O.

]
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