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Abstract: Inachain of nonlinear oscillators, linearly coupled to their nearest neighbors,
all travelling waves of small amplitude are found as solutions of finite dimensional
reversible dynamical systems. The coupling constant and the inverse wave speed form
the parameter space. The groundstate consists of a one-parameter family of periodic
waves. It is realized in a certain parameter region containing all cases of light coupling.
Beyond the border of this region the complexity of wave-forms increases via a succession
of bifurcations. In this paper we give an appropriate formulation of this problem, prove
the basic facts about the reduction to finite dimensions, show the existence of the ground
states and discuss the first bifurcation by determining a normal form for the reduced
system. Finally we show the existencenainopteronswhich are localized waves with

a noncancelling periodic tail at infinity whose amplitude is exponentially small in the
bifurcation parameter.

1. Introduction

Consider the dynamics of a one-dimensional network of nonlinear oscillators, as de-
scribed by the infinite system

Xo+ V' (X)) = y(Xps1—2Xp + Xp—1), nel. 1)

Here, X, (@), 7 € R, gives the position of the™ particle, V (X,) its potential energy,

V being a regular function independentigfand the positive constapt measures the
coupling between nearest neighbors, which is assumed to be linear. Furthermore, the
function V satisfiesV’(0) =0, V”(0) = 1.

We shall construct solutions of (1) in the form of travelling waves. In fact, we shall
develop a general method for classifying travelling waves of small amplitude via an
infinite sequence of bifurcations. We shall discuss in detail the groundstate and the first
of these bifurcations.
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With the ansat,, (r) = X(f — nt), after scaling the time as= r¢, and denoting
x(t) = X(tt), system (1) is transformed to

¥+ 2V x@)] = yrlx(t — 1) — 2x(t) + x(1 + 1)] (2)

which is a scalar "neutral” or "advance-delay” differential equation

Equations of this type have been the subject of various investigations on the dynamics
of lattices. Friesecke and Wattis have shown in [6] the surprising fact that, in a unidimen-
sional hamiltonian network, solitary waves exist, even if the coupling is nonlinear. They
used a variational approach. How delicate this result really is, will appear also in the
subsequent analysis. Further results along these lines were given by Smets and Willem
[19].

Equation (2) has been investigated by MacKay and Aubry in [15] for the existence of
time-periodic and localized-in-space standing waves, so-called breathers. Aubry then,
while searching for “multibreathers”, developed in [1] the technique of “phase torsion”
to study the existence of travelling waves.

Rusticini also studied equations of the type considered here in [17, 18]. His motivation
came from problems of optimal control. He proved a Hopf-bifurcation theorem by con-
structing 2d-center manifolds for periodic solutions via a Lyapunov-Schmidt argument.
Some of his analysis is close to ours, like the ad hoc constructiéR-semigroups on
the positive and the negative spectral part — both being infinite dimensional.

We should also mention the recent work of Mallet-Paret et al. in [3,13,14] on waves
in higher dimensional lattices. There, the dynamics is restricted to discrete systems, but
give a global picture of the solutions. The arguments rely on an advanced form of the
Lyapunov-Schmidt method given by X.B. Lin (cf. [14]).

With the method being developed here, we exploit two facts: first the ellipticity of
(2) in its continuous parts, and the intrusion of hyperbolicity via the discrete terms.
With increasing intensity of coupling, the effect of the latter will be more and more
dominating, and the complexity of the solution behavior will explode. Nevertheless, one
can perform the “continuous limit” for (1) and thus obtain travelling wave solutions of
the following nonlinear wave equation

uip+ V' (u) = Kuge 3)

for the functionu (7, £). Its discretized form (1) is obtained witki, () = u (7, nh), and
K = yh?, whereh is the discretization step. Looking for solutions of (3) of the form of
travelling waves,

u(t, &) =X —§/o), (4)
leads to the discretized form (2), where= i/c. Now, (4) implies for (3)
aax
1=K/ +5 = 53, (5)

whereg is defined byV’(x) = x — g(x), henceg(x) = O(x?). It is then clear that
travelling waves, as solutions of (5), exist near 0, if and onk it-? < 1, i.e.y 7% < 1.
They form aone parameter familin the neighborhood of 0.

In the present work, we prove the existence of the corresponding travelling waves
(if y2 < 1) for the above discretized model (1), but wiso prove the existence of
infinitely many other types of travelling waves near 0, for value$)ofr) in regions
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such thatyt2 > 1. This shows in particular how dangerous the belief might be that all
nontrivial solutions of a discretized version of (5) survive the limit> 0.

The method we shall develop is based on previous work in [11,16,20], proving the
reducibility of quasilinear elliptic systems in infinite cylindrical domains. Treating the
system as evolutionary in the unbounded variable, one is able to show that, under quite
general conditions, the original system, if restricted to a suitable neighborhood of 0, is
equivalent to a flow on finite dimensionamanifold. Extending this idea to the problem
under consideration in Sect. 2, we are able to prove the validity of a reduction of (2) to a
system of ordinary differential equations whose dimension equals the dimension of the
invariant subspace belonging to the central part of the spectrum of the linearization at
0, and which inherits th&eversibility” from the original equation (2). This is done in
Sects. 4 and 5. It should be emphasized that the extension of the previous results to the
case considered here is by no means straightforward.

In the following sections we analyze the case of small coupling first, when no bifur-
cation occurs and all “small” travelling waves are periodic. Thereafter we treat the first
bifurcation occurring at a critical value of the coupling constaifhear 21 forr = 1).

The difficulties of applying previous reduction results [20] will be apparent in that case
and solved in a general way. Exploiting the reducibility to a finite system of ordinary
differential equations, we apply normal form theory. The resulting system is integrable
on this level of approximation and quite rich in its structure. In order to keep the scope
of this paper limited, however, we suppress the instinct to describe all possible solutions
as well as the proof of persistence for the full system - not just reduced to its normal
form — of the solutions found. That would complete the analysis.

We rather construct some of the most interesting forms of waves, such as “nanopter-
ons”. These are roughly the superposition of a localized travelling (solitary) wave, whose
principal part is given explicitly, and exponentially small (in the bifurcation parameter)
periodic waves (“phonons”). The proof of their existence follows from the work of
Lombardi in [12]. For other type of solutions, like periodic or quasi-periodic ones, see
the methods developed in [8].

2. Extended Formulation
Instead of treating (2) directly, we introduce a new variabke [—1, 1] and functions
X(t, v) = x(t + v). The notationU (r)(v) = (x(t), £@t), X(t, v))T indicates our
intention to construd as a map fronR into some function space living on theinterval
[—1, 1]. We use the notations(r) = x(r), 81X (¢, v) = X(¢,1), ands~1X (¢, v) =
X (t, —1). Equation (2) can now be written as follows:

U = Ly,tU + M. (U), (6)
whereL,, . is the linear, nonlocal operator

0 1 0
Ly.=|-12Q+2y) 0yr2@t+671 |,
0 0 d
and

M. (U) = %0, g(x), 0)7,
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whereg(x) = x — V/(x) = ax? + bx® + - - = 0(x?) asx — 0. Moreover, we require
the boundary conditioX (¢, 0) = x(z).

Observe that (6) is somewhat more general than the original Eq. (2), if we aliow
depend not only ow, but on&, X as well. In that case, the coupling could be a smooth
nonlinear function as indicated in the introduction.

We introduce Banach-spacBsandD for U (v) = (x, &, X(v))7,

H=R? x (C°[-1,1]), @
D= {U e R? x (C}[-1,1])/X(0) = x}

with the usual maximum norms. The operalgr, then mapdD into H continuously.
The nonlinearityM, is supposed to satisiyf, € C¥(D, D), k > 1, and

1M (W) Ip < (U115 8

forall U € Dwith ||U|lp < p; p being an arbitrary positive constant. In our particular
caseg € C%(Q) suffices for the validity of the assumption #;; Q denotes an open
neighborhood of & R.

It is obvious thatL,, ., acting inH with domainD, has a compact resolvent .
Moreover,L, . andM., both anticommute with the reflexichin H, given by

S, & X)) = (x, —£, X o5)T, 9)

whereX o s(v) = X (—v). Therefore, (6) iseversible

Although (6) is illposed as an initial value problem, it is possible to construct, never-
theless, solutions bounded for ale R. Using a proper extension of certain reduction
methods for quasilinear elliptic systems (cf. [11,16,20]) one is able to reduce (6) to
a finite dimensional system of ordinary differential equations, which is reversible and
has the property to contain all bounded solutions which are close to the trivial solution
U = 0. The dimension of this reduced system will depend on the coupling parayneter
and on the delay-advance parametefhis dependence of the dimension as a function
of (v, 1) is detailed in the next section.

3. The Spectrum ofL,, .
To determine the spectruy = )" L, ; of L, ;, the resolvent equation
AM—-L,)U=F (20)

has to be solved for any giveR = (fo, f1, F2)T € H, with A € C, andU =
(x,€,X)T e D. This is possible provided thaf(1; y, ) # 0, where

Ny, 1) = =22 —2(1+ 2y) + yr2(e" +e7). (11)
Indeed, we obtain

x=—[NG; v, DI Y fo+ fu+ yT2f), (12)
E=—[NG; y, O M2+ NGO v, DI fo+ Afi+yT2afi),  (13)

v
X(v) = eMx — / V) Fo(s)ds, (14)
0
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with
g ! A(l A(L
Fi= [ 1= Rals) 4+ e o -s)lds,
0

SinceN (; y, T) is an entire function of for every(y, t) € Ri, the spectrun) " L, ;
consists of isolated eigenvalugsThey are roots oV (%; v, t), and thus have finite
multiplicities.

Remark that., . isreal and thaS§L, . + L, .S = 0holds.}_ L, . is then invariant
underi — A andi — —A. Thus,) " L, . is invariant under reflexion on the real —and
the imaginary axis if©. Thus, we can restrict the following considerations te p+iq
with nonnegativep andg.

The central pard g = > gL, =) L, NiR of the spectrum is determined by
N(ig;y,7)=0,9 € R, i.e.

g%+ 2yt?cosqg — 12(1+ 2y) = 0. (15)
For eigenvalues of higher multiplicity we have to solve in addition
g —ytlsing=0 (16)
if the multiplicity is at least two. For triple eigenvalues
1—y1? cosqg =0 (17)

has to hold also.

In the parameter-space, ) € Ri, the set DE, for which there are double eigenval-
ues on_,, consists of a sequence of curves which we call"DEC”. They are parametrized
by g = x € RT as follows:

d(y, T)(x) : 72 = x> — 2xtanx/2, y =t °x/sinx. (18)
For triple eigenvalues it follows in addition
x = tanx. (29)

Sinced(y, t)(x)/dx vanishes on DEC if (19) holds, the triple eigenvalues appear as
cusps on DEC. There are no eigenvalues of multiplicity higher that 3 gn

In the following lemma we describe the charactedf on the bifurcation curves
DEC. To conform with Fig. 1, we restrict this descriptioanjt{{, i.e. those eigenvalues
on ), having positive imaginary part. Due to reversibility the respof is obtained
by a simple reflexion on the real axis.

Lemma 1. () Foreach(y, t) € R?,thereexistpo > 0,suchthatalk. € >" L, :\Y,
satisfy| ReA| > po.
(i) Leth=p+ig e > \Y o then

lg| < T+ 2,/yt2+4e=2coshp/2) (20)

holds.
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(iii) Given any DEC. It contains exactly one cusp poiptt, t*) say, corresponding
to a triple eigenvalueéq* of 3. Moreover,Y L+ .+ = {%iq*}. For all other

(v, ) on that DEC,Y"§ L, . contains either two or one double eigenvalue. The
first case happens where two different DEC's intersect(y Ift) does not belong
to any DECY "¢ L, . consists of simple eigenvalues.

(iv) For each fixedr € (0, 2], there exists a strictly increasing sequer(@g*(r)),

0 <y <...,such thatzg Ly;g, possesses a double eigenvaluiay;f, which
has largest modulus among all eigenvalues. All other eigenvalugg'lm),;,T are

simple. Ify € (v} (1), ¥;11(0), v5 =0, 3¢ L, - consists o2, + 1 simple eigen-
values.

4--—— -

0 2% 4r 6m 2nm ¢

Fig. 1. Pure imaginary eigenvalues &f, ; (upper half). Dots are simple eigenvalues. A simple cross and a
double cross respectively means double or triple eigenvalue
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For larger values ofr, the situationy_§ L, . is described in Fig. 1.

Proof. Ad (i). Let us denote., = p, + ig, the rootsh of N(A; y, t) = 0. Assuming
pn # 0, and p, — 0 asn — oo, we have

qf + 2)/12 cosq, — ?(1+2y) =¢, — 0,
qn — y2sing, = ¢, — 0.

Henceg, is bounded, and we can extract a subsequegoeonverging towards,, and
g+ satisfies

g2+ 2yt2cosq, — t?(1+2y) =0,
gx — yT2sings = 0.

This means thag, is a (double) root oV (ig; y, t), contradicting the isolatedness of
the roots. This completes the proof of (i).
Ad (ii). Denotingh = p + iq the rootsh of N(%; y, t) = 0, we have

p? — g% = 2yt?coshpcosqg — t2(1+ 2y),
pq = yt?sinhpsing.

It follows: g2 < 12 + p? + 4yt?costt p/2 < 12 + 4(y 12 + 4e~?) costt p/2, and
assertion (i) is immediate.

Ad (iii). Sincey e RT, the components of DE are defined by the inequalities
sinx > 0, x — 2tanx/2 > 0. Hence, to the™™ component belongs the intervgl =
(27n, x,),n € N*, wherex, is defined by 27 < x, < 2n + D=, x,, = 2tanx, /2.
We haver (2n7) = 2nm, t(x,) = 0 andy (x) — +oo asx — 2nawr~, or x — x,.
There is a unique;} in I, satisfying (19). DEC is a smooth curve ip \ {x}}. It is
easy to check that(x) resp.z(x) decreases resp. increases(dmr, x;¥) and reverses
its type of growth on(x;}, x,). The cusp pointgy (x;), t(x,)] are the points of the
parameter-space, Wheye, contains triple eigenvalues. These atix,. Moreover, the
coordinates of the cusp points satisfy

y=@Q+1)7t 2% c08/2t + 2= (14 1)L sinv2r + 2 > 0. (21)
For a given(y, 1), the double eigenvalueg are solutions of
[t%(1+2y) — ¢°)* + 4lg* — y*c*1 =0, (22)

which is obtained after elimination of sin and cog; in (15,16). This shows that we
cannot have more than 2 double eigenvalusiiL, .. The case wheqis adouble root

of (22) corresponds @, 7) satisfying (21),i.e4iq is atriple eigenvalue df,, ;. In such
acase;tig are the only pure imaginary eigenvaluedgf,, since for fixedr = 7 (x;;),

we know by a continuity argument starting with= 0, that fory < y(x)), there is
only one pair of simple pure imaginary eigenvaluesyily L, ., or equivalently one
positive simple solutiog of (15). We conclude that for eve(y, 1) € Ri, Y o consists

of simple eigenvalues, {fy, t) does not belong to DE. Otherwigar contains exactly
one double eigenvalue {f/, ) does not belong to the intersection of two components
of DE, or is not a cusp point. Intersection points of two components of DEC give two
pairs of double eigenvalues 9n, .
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Ad (iv).Seth (¢) = (1—cosg) (g2 —12)~1, where we assumg > 7. One finds the
set(y, 1) of (18), in looking forg, y, T such thati, (¢) = (2yt2)~1, dh.(q)/dg = 0.
It is easy to show, for 6< t < 2r, thath,; has its minimum value O faf = 2nw, n =
1, 2, ... and maximafor one value gfin every interval between these minima, the values
of maxima decaying ag increases. Assertion (iv) of Lemma 1 then follows directly.
Notice that fort > 27 the functionz, may have one minimum and one maximum
before the first minimum of the formnzr. The case wheh, has an horizontal inflexion
point gives the cusp point. This completes the proaf.

Remark that the spectrum &f, . is not sectorial(see part (i) of the lemma). This
implies, that we cannot use the traditional reduction tools based on estimates of the
resolvent operatatigll — L),,f)*l of order 1 |q| for |¢| large. Indeed, such an estimate
implies the spectrum to be sectorial. Therefore, we have to solve subsequently the affine
linear hyperbolic system (23) ad hoc.

4. Weak Coupling and Periodic Waves

The bifurcations in system (6) will occur when the cardinality)of, L, . changes.

Thus, the sef[t (x), y (x)]} described in Fig. 1 is the critical set where bifurcations take

place. LetAq denote the set dfy, ) where) ", L, . contains only one pair of simple

eigenvaluestiqg;. In this section the caser, ) € Ag is treated. We separate (6) into

a central and a hyperbolic part due to the separa}ior= ) o+ >, of L, .. Then,

we use the Reduction-Theorem 3 in [20] to justify the application of a center manifold

argument. It will follow, that all small nontrivial solutions of (6) are periodic in this case.
Introduce the spaceS‘]?((Z) fora € R, j € N, with norms|| f||;, and similarly the

vector-valued versioE‘;‘(Z), as follows

EY(Z) = {f e C/(R, Z)/||f||,~ = max supe | D¥ £ (1)| < oo} .
T Osks=jseRr

Fora > 0, these Banach-spaces consist of functions, which may grow exponentially at
infinity. Sometimes we need exponentially decaying functions, which will be denoted
by E~%(Z). If necessary, we use weights césh) instead of expx|z|).

The eigenprojectionP;, on the two-dimensional subspace spanned by eigenvec-
tors belonging tatig1, is computed as the sum of the residues for the 3 components
(12,13,14) of the solution of the resolvent Eq. (10). This leads to the following result

Lemma 2. Assumey, t) € Ao, then) (L, . = {%iq1}, and the eigenprojectiom,
is defined inH by

(PLU)o =a1(U)/N1, (PrU)1=q1b1(U)/Ny,

1 .
(PU)2 = Vl[al(U) cosq1v + b1(U) sing1v],
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where
U=(x&X)7 eH,
a1(U) = q1x — yt2o(U), bi(U) =& — yt2p(U),

1
o(U) =/ sing1(1 — $)[X (s) + X (—s)lds,
0

1
pU) = /o cosq1(1 — $)[X(s) — X(—s)lds,
N1 =q1— y?singa.

To prepare application of [20] we have to consider the affine linear system associated
with (6) for the hyperbolic part. Se@, =1 — P1, U, = Q,U, then the equation

0Up =Ly Uy + OpF (23)

has to be solved fa,, € Eg(D;,) NEY (Hy) and for eacl > 0. We have

F=(, f,07, feE{R), ar(Up) =bi(Uy) =0,

and thus

qixn = yrza(Uw & = y2p(Uy), (24)

thdif Fh——(O —yT Slnql,—SmCIlv) J. (25)

Furthermore X, is given as

Xp(t, v) =@ +v) — — / f(s)singi(t + v — s)ds, (26)
and we have to satisfy

y2 [t
xp(t) = Xp(t,0) = q_/ sing1(1 — s)[Xn(t, s) + Xn(t, —s)]ds
1 Jo
henceX; may now be written as follows:
l t
Xp(t,v) = xp(t +v) + N_/ f(s)sing1(t +v — s)ds 27)
1J:

1 v .
=xp(t+v)+ — / [ +v—s)sin(qis)ds, (28)
N1 Jo
which leads to

aiXh(t V) =Xt +v) + — / [t +v—s)cogqrs)ds.

Hence, there exists a constarihdependent o € (—ag, ag) such that

IXnllEg (ct-1.+1) < IIxXulleg +cllfllEg (29)
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Now we take the Fourier transform of (23). For being able to do it, we first asgum@
(i.e. the functionf and the unknowit/,, decay exponentially at infinity). We then obtain
an expression fot/;, analytic with respectté € B, = {k € C; |Imk| < «}, taking
values inDy,, and which is solution of

(kT — Ly ) Up(k) = QnF (k). (30)

Fora > 0, we use the distributions if{, (see Appendix 1), and far = 0 the tempered
distributions inS”. Henceforth, se§” = ;. In such spaces, we cannot use the formula we
established in Sect. 3 for the resolvent, since we have no right to divid&dy y, t)
(see Proposition 4 of Appendix 1), contrary to the case when 0, where Fourier
transforms are analytic.

For anyw, using properties shown in Appendix 1 fer> 0, the Fourier transform
of X5, (-, v), given by (28), yields

&y (k) = ik (k),
- ‘ ik v ..
Rtk v) = VT, (k) + fNLl) /0 40 Sin(g1s)ds,

2
~ 5 ~ . _
N(ik; y, T)Fh (k) = —VN—lfac)[— sings + 2q1(¢% — k?)~Y(cosk — cosqu)],

and, after noticing thaw (ik; y, 7) = 2yt?(cosk — cosq1) + k% — g2, and Ny =
q1 — yt2singy, this leads to

NGk y, OFR (k) + Hk; y, 1) f(k)] = 0, (31)
whereH is defined by the identity

1 q1

. = + Hk; y, 7).
N(ikiy.7)  Ni(k? — ¢?)

Now, via Proposition 4 of Appendix 1, Eq. (31) leads to

~ = o Jagdy a4y inS,, a>=0
Xh(k)+H(k,V,T)f(k)—{ofora<o *
with a4 to be determingd.

We notice thak — H is analytic in the strig,,, tending to 0 as Ak? at infinity. So
we have the following

Lemma 3. The functionk +— ﬁ(k; y, 7) is the Fourier transform of a function —
H(t;y,t) € HY,, foranys < po, whereH; isthe space of suchthat — g(1)e’!"l e
H(R). Moreover, forf € EZ, anda € (—ag, ag), ag < 8, thenH (5 y, 1) * f € ES
and there is a constanf independent ok such that

IH Gy, 1) % fllgg < ClIf g
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Proof. Let us suppress the parameter ) for the moment ind andH. For|Imk| <
8 < po, we have

(1+ |k|®)|H (k)| < const
hencek — (1+ |k|2)Y/2H (k) € L2(R) holds. Now, for 0< § < po we have
1 o ~
SH (1) = —e‘”/ T H (s + 5)ds
2t Jr
1 o
=5 /Re‘“H(i(S + s)ds,
which implies (by Plancherel)
18O H O 2 = —— 1G5 + )12
N2
Moreover,
d 1 o
E[e‘”H(t)] =5 /]1; ise'H(i§ + s)ds,

hence (by Plancherel)

||i[e5<"H(-)1|| )= i (VH 8 + )l 2
dt L m L4>

i.e., doing the same estimate wit/s, we getr — ¢’/ H(r) ¢ H1(R).
Now consider for-§ < a < §,

1H * fllgg =supf°‘"‘|/ H(t — 1) f(t)dr]|
teR R

< |Ifllggsup | e lFelri=l=rlitl=rl g — o) |de
teRJR

1/2
< Ifleglle® HO 2 (sup Re”“""'”‘““”dr)
teR
c

< — o,
< m||f||E0
This estimate completes Proposition 5 of Appendix 1, and the lemma is praved.
Now, let us defindl, = (%1, &, X») with
Xn(t) = —[H(;y, 1) * f11),
B0 =250
h - dtxh ’

- 1 v
Xn(t,v) =)7h(t+v)+—/ f( +v—s)sin(gis)ds.
N1 Jo

Due to (29), itis clear thalt/;, e EG (D) for a € (—ao, ap), with an estimate

10 leg ez @y < C@)||f1lEg (32)
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andcC is bounded oni—ag, ap). Moreoverﬁh is a solution of (23). For showing this we
first notice that the first and third equation of (23) are easily verified by construction.
Now, the Fourier transform of the second equation is just identity (31j/folt results

that the second equation of (23) is satisfied.

Fora < O, we have by constructio® U), = O, hencePlflh = 0. Let us show
that fora > 0, PoU;, = 0 also holds, since this implies formally exactly the same
computations (see Lemma 2 for the definitionRgj. Indeed, it is sufficient to show that
a1(Up) = 0, because this impliek; (Uy,) = 0 by dlfferentlatmgr(uh) with respect to
t and integrating by parts. Taking the Fourier transfornaaf;,) (analytic in a strip
fora <0, in 8 fora =0, in S, for « > 0), we obtain, due to the properties shown in
Proposition 2 of Appendix 1,

1 v
F (/ sing1(1—v) |:/ [f@+u)+ f(@ —u)]singr(v — u)du] dv) (k)
0 0

1 v
A(k) / sing1(1 — v) |:/ 2 cosku sing1(v — u)duj| dv,
0 0

which is the basic identity for showing thm{al(Uh)] € S, is proportional to

2yt [t
(k) [1 — ”—7/ sing1(1 — v) coskvdvi|
q1 0

coskv — C0Sq1

_ k2 dv

1
- f(k)Zytle_lf sing1(1—v)
0

with X, (k) = —H(k; v, 7) f(k). It results thatf (k) is a factor of a quantity, now
independent of the choice of space fori.e. independent ok. Since we know that
a1(Up) = 0 fora < 0O, the independence with respectat@hows thatzl(Uh) = 0 for
o > 0 also, and thug’th = 0 holds for alle € (—ag, «p).

Fora > 0, the full solutionU}, of (31) is obtained by adding i, a linear combination
of the formb, exp(iq1t) + b exp(—iqat), with b+ = a1 /2w, (see Proposition 3 of
Appendix 1). But, sinc&/, € Eg (D), we concludeP, U, = O if and only if b+ = 0.
Thus, we have finally

Lemma4. Assumef e Ej, for o € (—aop,a0),a0 < 8§ < po, then the system
(23) has a unique solutio, € EF(D;) N EY(Hy), and the linear mapEg (R) >
f = Uy € E§(D) N E(H) is bounded uniformly ie € (—ao, ap).

Thus, we have verified the assumptions of Theorem 3 in ([20], p. 133) with the special
nonlinearity ofM. (U) = t2(0, g(U), 0)”. Therefore, there exists a neighborhc@df
0inD and, for eaclty, t) € Ao, a mapping: € C5(D,; D), whereD, = PiD, D), =
0D, with 2(0; y, t) = 0, Dh(0; y, ) = 0, such that

(i) if U, : R — D, is any solution of
atUchy tUe + PIM[Us + h(Ug; v, 7)] (33)

with Uc(t) e Q. forallr e R, thenU Uc + h(Uc, y, T) solves (6).
(i) if U : R — D solves (6), and/ (1) € Qforall t € R, then

Un(t) = h(U.(1); y,7), teER,
holds, ancﬁc(t) solves (33).
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Theorem 5.Forany(y, t) € Ao, and forU near the origin inD, the system (6) reduces
to a two dimensional reversible smooth vector field. Moreover, the set of solutions near
0 of (6) constitutes a one parameter family of periodic orbits, bifurcating from O.

Corollary 6. For any (y,7) € Ag, the set of solutions near 0 of Eq. (2) is a one
parameter family of periodic solutions, bifurcating from O (the parameter is the amplitude
of the oscillations).

It then results that, fofy, ©) € Ao, the only small amplitude travelling waves of the
original problem (1), belong to a family of time-periodic waves bifurcating from 0.

Proof of the theoremOnce we reduced our problem into the two-dimensional reversible
smooth vector field fot/. (33), with a linear part having the simple pair of eigenvalues
+iq1, the result is known as the Devaney-Lyapunov theorem (see [4]). In fact, it is just
a consequence of the implicit function theorem.

5. Reduction Near the First Critical Curve

In this section we defin€; C I'o = boundary ofAq as the set of parametefgo, 7o)
suchthad g L, -, = {£ig1, £iqo}, Whel’eqo andq; are positive and-ig1 are simple,
+igo are double eigenvalues éf,, ,,. | is obviously dense iffg. Thus, we are faced
with the simplest possible bifurcation of our problem.

Let us proceed as in the previous section. We have

N (iqo; yo, T0) = 0N (iqo; yo, T0) = N(iq1; yo, T0) =

The eigenprojectionP; on the two-dimensional subspace, spanned by the eigenvec-
tors belonging totiq1, was already given in the previous section. We compute the
eigenprojectionPy on the four-dimensional subspace, spanned by the eigenvectors and
generalized eigenvectors belongingitéyg. This projection is again given by the sum

of the two coefficients ofs +igo) ~* in the Laurent expansion (see [10]) of the resolvent
operator(Al — L),O,,O)—1 near the double polesigp. We obtain the following

Lemma 7. Assume(yo, 70) € Iy, and ) o Lyy n = {Fiqo, *iq1}, whereiqo is the
double eigenvalue, then the spectral projectiBnon the six-dimensional subspace
belonging to) o L, . iS given asP. = Py + P1 where Py and Py are projections of
rank 4 resp. 2, commuting with,, -,, such thatPo Py = P1Pg = 0. They are explicitly
defined, folU = (x, &, X)T € H, as follows:

(P1U)o = N *a1(U), (P1U)1 = q1N{ b1 (U),
(PLU)2(v) = Ny Ya1(U) cosqrv + b1(U) singyvl,

(PoU) —2— (U)—i ),
oU)o = a2 No<°

293 2 2q0y0té
PoU)1 = — + — ) bo(U) — ———po(U),
(PoU)1 <3N§ No) o(U) No poU)
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290 29078 .
(PoU)2(v) =(PoU)o Cosqov — | —5bo(U) + po(U) | singov +
3N§ No
2a0(U) . 2bo(U
+ %v singov — ZOV(O )v COSqov,

where

q/z. = 13(1+2y0 — 2)0C0sq;), j=0,1, go= yoré sinqo,
N1i=gq1— yorg sing1 #0, No= )/07502 cosqgo —1#0,

a;j(U) = qjx — yoréo;(U), j=0,1,
bj(U) =& — yorép;(U),
coU) = x — yot&oo(U),

oy (U) = /Olsinq,»(l—s)[X(s) FX(—9)lds, j=0,1

pjU) = /01 cosg;(l—s)[X(s) — X(—=s)lds, j=0,1,
ao(U) = /01(1 —5) €0sgo(1 — $)[X (s) + X (—s)]ds,
po(U) = fol(l —s)singo(1 — $)[X (s) — X (—s)ds.

The reader can check easily thatP; = P1 Py = 0 follows from the 4 identities

g0 — 2yot¢ /01 singo(1 — 5) cosq1s)ds = 0,
1— 20§ /01(1 — 5) €0sgo(1 — s) cos(q1s)ds = 0,
q1 — 2y0t¢ /01 cosgo(1 — s) sin(q1s)ds = 0,
/01(1 — 5)singo(1 — s) sin(g1s)ds = 0.

A necessary and sufficient condition f@rto be in the hyperbolic invariant subspdtig
is that the following 6 conditions are realised:

aj(U)=>b;(U)=co(U) =po(U)=0, j=0,1
To prepare application of [20], we have to solve the affine linear system, associated
with (6) for the hyperbolic part. Sed, =1 — Py — P1, U, = Q,U, then we have to
solve

atUh = Lyo,roUh + QhF (34)
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for Uy, e Eg(Dy) NES(MHy) and for each e (—ag, ap). We have

=0, £,.07, feE§®), andF, = Q,F,
(Frn)o=0
(Fi1 = {—q1N; ' + BN§) ' 3vit5 —3—ad)} f.
(Fp)2(v) = {—Nl_l sing1v + 2qo(3N3) L singov + 2Ny v COSqov} f.
The componenk, is now given by

Xp(t,v) = ¢t +v) + Xu(1, v),

~ 2 _
Xn(t,v) = / £(s) ( 240 5 SiNgo(r + v—s) + Att+v=s) cosqo(t + v—s)) ds +
NO No
- N1_1/ sing1(t + v — s) f(s)ds,
0
and
2(t —s)
xp(t) = (1) + f(s) smqo(z —5)+ N COoSqo(t — s) | ds +
NG
(35)
t
— Nl_lf sing1(r — s) f(s)ds,
0
t+v
Xn(t,v) = xp(t +v) + N{lf sing1(t + v —s) f(s)ds + (36)
/ f(s)( > Singo(r + v—s) + UJFTU_S) cosqo(t + v—s)) ds
0

=xpt+v)+ Nflf sin(gys) f(t + v — s)ds +
0

2s
/ ft+v—s) Slnqos + — c0sqos
o No
which leads to

a v
%Xh(t’ v) = x5t +v) + qlNl_lf coSq1s) f(t +v —s)ds +
0

/ f(t+v—s)< +—)005q0s—§]—smqos)d

Hence, there exists a constarihdependent of € (—ag, ap) such that
1 Xnl g -ty < Ixalles +cll f1leg (37)

holds again. Now we take the Fourier transform of (34). For being able to do it, we
proceed as in the previous section. kok 0, we obtain an expression féf, analytic
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with respect tck € B, = {k € C; |Imk| < «a}, taking values ifD; and which is the
solution of

(kT — Ly ) Up(k) = QnF (k). (38)

Fora > 0 we need to use the distributionsSf) (see Appendix 1).
For anya, we have

&y (k) = ik (k),

v ikva f(k) Y ik(v—s5) i
Xptk,v) = e "xp (k) + T e sin(g1s)ds +

_ / ik(v—s) ( 2s )
f (k) sm(qos) + — C0Sqos
No

37/070 3- ‘]0

+
3NZ

N(ik: yo, 10)%5 (k) = — F (k) (

2/12005k(1 — s)[— sin — — singps — l C0osqosld
+ T N N N slas | .
Yo 0 Nl q1 3N2 q N

After using the definitions oiNg, N1 and the fact thag1 (respgo) is a simple (resp.
double) root ofN (ik; yo, 10) = 0, this leads, after elementary computations, to

N (ik: yo, T0)[%5 (k) + H (k; yo. 70) (k)] = O, (39)
whereH is defined by the identity

1 B q1 2(k? + g2) 242
N(ikiyo,t0)  Ni(k2—q?) No(k? —qd? 3NZ(k2—q?)

+ H(k; yo, 10).
(40)

The functionC > k —— N (ik; yo, T0) IS entire, andtq; (resp.tqo) are the unique
simple (resp. double) roots &V (ik; yo, 7o) = 0 in a stripB,, wherepg > «p was
defined in Lemma 1 (i)N behaves a&? at infinity in Bp,. Notice thatC > k +—

H(k; 0, To) iS analytic in the stripB,,, and tends to 0 as/%? for |k| — oo. It results

by the lemma shown at previous section, thats the Fourier transform of a function
R >t H(t; y0, 10) € H;, foranys < po.
It results from Proposition 4, 3 and 5 of Appendix 1, that the solution of (39) reads

aj el +ay e (ad + ith])eld0!
xp (1) + [H (5 v, 10) * f1(1) = +(ag — itby)e™ ", fora > 0,
=0, fora <0,

ag, ai, b3 being arbitrary constants. Now, defifieas in the previous section, based on
the newx;, = —H (-; yo0, T0) * f, and formula (36) folX),. The same argument as in the
previous section, using Proposition 2 of Appendix 1, shows®aélt/,) = Po(Uy) =0
independently of. Then, fora € (—ap, ap), 2o < § < po, We haveny =a; = by =

0.
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Lemma 8. Assumef e EJ, for a € (—ap, ag), ap < 8§ < po, then the affine system
(34) has a unique solutioti, € E§(D,) N EY (Hy), and the linear maggg > f —
Uy € Eg(D) N EY (H) is bounded uniformly i € (—ao, ao).

So, asinthe previous section, we have verified the assumptions of Theorem 3 in ([20]
p.133), and we are now able to use a reduction on a 6-dimensional center manifold.

6. Normal Form Near fo

As we have observed, is dense img. Exceptional points oiifg are the cusp points,
where there is one pair of triple eigenvalues, and the angular points, where there are
two pairs of double eigenvalues and one pair of simple eigenvalues. In what follows, we
exclude points of the parameter plane which are close to poiritg ofhere the ratio

q1/qo takes the values 1 (cusps), 1/2, 2, 1/3, 3 corresponding to strong resonances. We
also exclude neighborhoods of the angular pointBpfAs a consequence we consider
only those pointgy, ) € I'g near points wheréq1/qo)(y, 7) is close to a rational
numberr/s such that +s > 5. This set of points is denoted by C I'o.

We stay in the parameter plane near the parf I'o where neighborhoods of strong
resonances are avoided. For the computation of the normal form we need to define, for
every point neaio, the nearest weak resonance. For any rational numybelet us
define the subset dfy,

qly.7)

go(y,t) s

, T oo
dmzr—, impliesr’+s" > r + s}.

< &r4s, AN
qo(y,7) s

Ir/s ={(y,7) € Fo;

It is clear thatl’g is the union off,/s for r/s € Q4 \{1,2,3,1/2,1/3}. We then com-

pute the normal form foy1/q0 = r/s and we shall play oriy, ) to cover the full
neighborhood of"y. The linear operator on the 6-dimensional central subspace has the
form

igg1 0 0 0 O
0igg 0 0 0 0
LO _ 0 Oigp O 0 0
0 0 0 —igg 1 O
0 00 0 —igp O
000 0 0 —ig
in the basiso, 2o, ¢1, o, o, £1 defined by
o= (1,iqo, €17,
%o = (0,1, vel )T
o= (1,iq, 1T,
and which satisfies
Ly, 7%0 = 1900, Sto = ¢o,

L)/o,ToEO = iqozo + ;Ov SEO = _EOs
Lyg,961 = iq181, St1=1¢4.
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It is easy to check that the projectidla + P1 may now be defined as follows:
(Po4 P)U = Ato+ Blo+ Ci1+ c.c. = Up,
with
A= iﬂ[bo(U) +iao(U)] + L[J/otz’p\o(U) +ico(U)]
3N No 0 ’
B = —Ng [bo(U) + iao(U)],
C = 1/2N7 Hay(U) — iby(U)).

The structure of theeversible normal forncorresponding to the linear operatbf®
is computed in Appendix 2. It is shown in particular that the reduced 6-dimensional
system, with its normal form written at order- s — 2, takes the following form:

dA

—; —ig0A+ B+ iAP(u1, uz, us) + O(|A| +|B| +|C) 71, (41)

dB . . r+s—1

o= igoB +iBP(u1, u2, us) + AQ(u1, uz, ua) + O(JA| + |B| + |C]) )
(42)

dC !

o= ig1C + iCR(uz, uz, ug) + O(|A| + |B| + |C)" 71, (43)

whereus = AA,up = i/2(AB — AB),us = CC, and P, Q, R are polynomials with
smoothly parameter dependeatl coefficients for(y, t) in the neighborhood of any
(0, 70) € I,/s. The Qh order coefficients inP, Q, R correspond to the critical linear
part of system (6). We notice that the normal form, truncated at erder- 2, contains all
solutions of the classical 1:1 resonant normal form (just consider solutiongwitlD).

Let us specify the main coefficients of system (41,42,43). We have at first orders

P(u1, uz, us) = ai(y, v) + agua + azuz + aqua,
Q(u1, uz, ug) = b1(y, ) + baua + bsuz + baua,
R(u1, uz, ug) = c1(y, v) + coua + cauz + caug.

Coefficientsay, b1, c¢1 cancel for(y, t) = (yo, t0), and may be easily computed by
using the property that

igo £ vbi(y, 1) +iai(y, 1),

ig1+ici(y, 1)

and their complex conjugate, are the six eigenvalues of the opdrataior (y, 7) close
to (yo, t0). Notice thatpy(y, T) = 0 onI'g and we haveé>;(y, ) > 0 on the sideAg of
the curvel'g.

Now, as for the 1:1 resonance case, the most important coefficieat vshich we
compute below.

Let us denote the basic differential Eq. (6) as follows:

dU
— =Ly U+ (y —yo)LOU

dt
+ (t = ) LOY + Mo o(U, U) + M3 o(U, U, U) + ...
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with
LEOU =130, -2 + X1 + X1, 07,
LODY = 215(0, —(1+ 2po)x + (X' + X7 H, 07,
Mao(U,U) = 72(0, ax?, 0)T,
M3o(U, U, U) = 20, bx3, 0)7.

The Taylor expansion of the 6-dimensional center manifold reads

U=Alo+ Blo+ Ct1+ Alo+ Blo+ Clq+
+ Z(V —y0)" (t — 10)" A" B’;OCrlZSOESOE‘Yl©£Zfrv,0nr)1m%s1’ (44)
where the sum does not contain terms with=n = 0, ro+79+r1+so+So+s1 = 1,
and we have in a classical way

. 0,0
(2igoll — L) D 5on00= M2.0(Z0, 20),

(0,0) -
—Ly,®160100= 2M2,0(%0, §0),

. ~ . 0.0 = 0,0 0,0
ia2¢0 + ba%o + (igol — Lyp) ®9g0100= 2M2.0(Z 0. Pohod + 2M2.0(%0. Pig010
+ 3M3,0(%0. £0. £ 0)-
This leads to
0,0 . j
qjéooz)()o: K1(1, 2iqo, eZlqov)T’
(0,0 T
®160100= 2¢(1,0, )7,
0,0 L~ b ;
D0100= ia280 + $Lo + ?(0’ 0, v2el90")T,
with a, and¢ still unknown, and
K1 = all— 4g3152(1 — vy trgH17L,
—Noba = 18{2a%[1 — 492ty °(1 — y5 L1g D171 + 4a? + 3b). (45)
Notice thatyotg > 1 due to (16) , and thaVp may take any sign since it changes its
sign at the cusp points of DEC, hence there are situations in the parameter plane such
that the coefficienk, is negative. For the truncated normal form at cubic order, we have
solutions withC = 0, corresponding to a flat extra oscillatory part, and reducing to the

solutions of the classical 1:1 reversible resonance vector field. We know tltat o0
there is a one parameter (a “circle”) family of orbits homoclinic to 0 (see for instance

E))

A= ro(t)ei(fJot+1/f(t)+9), B = rl(t)ei(qot-‘:-l/f(t)-i-(?)’ C=0,
2b1(y, 7) -1
ro) =,/ —— — (cosm\/bl(y, r)]) ,

d
rate) = o0

Y(t) = ar(y. )t + zz—z\/bl(y, ) tanh(t\/b1(y. 7).

’



458 G. looss, K. Kirchgéassner

wheref € R. Two of them are reversiblé: = 0 or . For the full vector field (41,42,43),

we are now able to use in particular the results of E. Lombardi [12]: under the non res-
onance assumptions which are realized here, there exists a family of pairs of reversible
solutions of (2) homoclinic to periodic solutions of exponentially small amplitude. This
means that this type of solutions, which are mainly given by the above mentioned re-
versible orbits homoclinic to 0, now contain an oscillating par€invhich cannot be

annihilated, whose size '@(e‘c/bi/z) hence exponentially small in the bifurcation pa-
rametemb1(y, 7). So it remains a “phonon” at infinity, the central “localized” part of the
solution being of ordex/b1(y, t). More precisely, the principal parts of these “local-
ized” travelling waves are obtained up to ord®fb1(y, t)] (resp.O[+/b1(y, 7)]) for
r+s > 6 (respr + s = 5), in replacing in the center manifold expansion (44)Lif
amplitudesA, B, C by the above explicit expressions (see [5]).

Theorem 9.For (y, t) inaneighborhood of the cunig&,, except near exceptional points
(cusps, angular points and strong resonances), an@/foear the origin inD, the system

(6) reduces to a 6-dimensional reversible vector field, with a fixed point at the origin
and a linear part possessing a pair of double eigenvalttégy, and a pair of simple
eigenvaluestiqs. The bifurcation parameter i&; = dist[(y, t), I'o], (counted> 0Qin

Ap). All generic bifurcating (periodic, quasiperiodic, homoclinic, ) small bounded
solutions of this 6-dim reversible vector field correspond to “small” travelling waves,
solutions of (2).In particular, foKy, 7) in the open set wherk, < 0 [see(45)], there

are travelling waves which are localized in space, with exponentially small oscillating
tails, called “nanopterons” (following J. P. Boyd’s denomination [2]).

Appendix 1. Construction of a Suitable Distribution Space

Givena > 0 andB,, := {z € C/|Imz| < «}, define the spacé§,as follows
Se = {f : B4 — C/f holomorphic inBy, gm. »(f) < 00, (m, p) € N?},

whereg,, ,(f) = suplz™ fP)(z)|e%!Rel and whereN is the set of integers starting at
z€By
0

The pair 8, gm,,) defines a Fréchet space. Notice thaishoez) 1 € S, if a2 <
/2, s0S, is nontrivial and we havs, C S (space of rapidly decaying functions).

Proposition 1. The Fourier transforni defines a bijection ofi,, being continuous in
both directions.

Proof. For any¢ < S, , we first show thatF¢ =: $bel0ngs taS, . Let us notice that
foranyp, m > 0, andk € B,, we have

P Em P (k) = / xPe X (x)dx.
R

Now, takek = k, + ik; and choosé, > O andz = x +i(¢ —a), 0 < ¢ < «, - for
k, < 0, takez = x + i(a — ¢) and argue analogously — then, one obtains

ip+mkm$(p)(k)eakr — eskr ei(s—a)k,- f e—ik,xzp¢(zn) (Z)EindZ,
zeR+i(e—a)
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whence it follows
K" PP (k)™ < e Cp (@),
whereC, ,,(¢) = sup(1+ | Rez|?)|z7¢"™ (z)|e%!ReZ < oo is independent of. The

ZEBy
limit ¢ — 04 then yields

Gn.p (@) < 7TLdpm (@) + qpr2.m (D).

Therefore, to eachh € Sy, there exists a uniqu§ = F¢ € Sy, and the map — $
is continuous. The surjectivity of this map follows by applying the inverse Fourier
transform; and the above estimate gives the continuity in both directions.

Now, define the dual spac%, of linear continuous forms of, and provide it with
the weak topology, i.e. pointwise convergence. THér which we denote by again
—is again a bijection off/,, and it is continuous in both directions. Moreover, we have
S’ c 8/, whereS' is the set of tempered distributionsa

Proposition 2. Givena > 0, f € E§(R) andr € €910, 1]; then

(i) feS,via(f ¢):= fR f(®)¢(t)de, foranye € S,, and the embedding
E§ — S, is continuous.

(i) [FfC+v)k) =e*(Ff)k),veR.
(i) k(1) := [3r(s)f(t +5)ds € S, and

l .
(Fh)(k) = (]—‘f)(k)/ r(s)e*ds.
0
Proof. Ad (i). For everyg € S, the following inequality is valid

I(f. o)l = I/Rf(t)cb(t)dtl =< 7lq0,0(9) + q2,0D)]1I1 fllEeg-

Ad (ii). This identity is obtained, similar to the case of tempered distributions

(FFCA40).8) = (F((+ ). 8) = /R £t + )@@t

= [ r0dc—vai= [ 5o [ | ¢<s>ef<fv>ms] i
R R R

- / FOFVOp)(0)dt = (FFf, ") = (PO F £, ¢).
R

Ad (iii). The inclusionEg C S, is obvious. Now, let

n

ha(t) =) r(sp) f(t +s))As; €S,

j=1
be any Riemann sum fg’lbl r(s) f(t + s)ds. Then we have

—alt|

[{hn —h, $)| < [qo,0(®) + q2,0(<15)]/]R |h (1) — ha(t)ldr.

1+1¢2
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The integrand tends pointwise to Oas> co and is dominated by an integrable function,
thus

im (hn, ¢) = (h,¢), ¢ € Sa

n—oo

holds. Similarly, we conclude

(Fhn, @) = (hn, Fp) — (Fh,¢)

n—oo

and the left side converges to the expression on the right side of the assertion (iii) as
n — oo. The proposition is proved.o

Proposition 3. For any f € S,

[F(D)](k) = ik(F f)(k)
holds. MoreovetF(e'd") = 28, and F(ite'd’") = —2n8).

Proof. Same proofasis’. O

Proposition 4. Let K be an analytic and polynomially bounded function in the strip
Bs wheres > «. Assume thaik has a finite number of roots; with multiplicity
mj, j =12, ...N,inthe stripB,. Then the kernel s, of the linear operatorf — K f

is formed by all linear combinations of the forE?’=1 Zzzl ajkagf) with arbitrary
ajr € C (wheres, is the Dirac distribution iny which is trivially in 57, ands™ is the
m'" derivative ofs,).

Proof. Assume first that all roots are simple. Fbre kernel defined above, and for any
¢ in Sy, we have 0= (K f, ¢) = (f, K¢p) sinceK¢ € S,. This means thatf, ) =0
for all ¥ in S, which cancel at simple roots, j = 1,2,... N. Now, any¢ € S, may
be decomposed as the sumMf+ 1 functions inSg,

N
_ ¢@p) [Tpp@—2))
¢(2) = Z cosha(z — zp) [12,(zp — 2))

p=1

+ ¥ (2),

wherey has simple roots ia;, j = 1,2,... N, and(f, ¢) = Zg=1ap¢(zp). This
proves Proposition 4 for simple roots.

Assume now thaty, . ...z, are double roots, ang 11, ... zy simple roots ok = 0
in the stripB,. We conclude from the result above, that

r N
[Te—zp | F=2"ajs,
p=1 j=1

Hence, for any in S, we have( f, []‘[;zl(z - z,,)] P) = Zf’zlam(zj). This means

that for anyy in S, having simple roots in,, p = 1,...r, we have

r N
()= i@+ Y bi(z)),
j=1

j=r+1
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whereb; = a; [[Tyea(zj = 2p)| ;= a; [[Tporpps @ = 2)] - Let us take
any ¢ € S,, we have the decompositiop(z) = Z;Zlgb(zp)xp(z) + ¥ (), with

xp(zg) =0ifg # p,and=1ifg = p,wherep € {1,...r}. Now, z3, ...z, are simple
roots ofy, hence we have

N r
¢) =Y apd(zp) + ) cpd(zp),

p=1 p=1

with

-
ap = (f. xp) — Z bjxp(zj) ZCjX,/,(Zj), p=1...r
j=1

j=r+1
ap=>b,, p=r+1,...N

Therefore, Proposition 4 is proved for roots at most double. For roots of arbitrary order,
the proof is left to the readero

Proposition 5. Let H € E;° andg € E§, withs > a > 0, then we have

) HxgeE§, with||H *glloe <26 —a) Y[Hllo-sllgll0a

iy F(H x g) = H.g whereH = FH is the Fourier transform in the usual sense of
functions, andg and F(H * g) are Fourier transforms inS), for « > 0, in §’ for
a =0.

Proof. i) comes from the inequality
/ o sI=ID=311=s1 g < 2(5 — o)1,
R

Now, forae > O, F(H * g) € S, and satisfie¥p € S,

(F(Hx*g),p)=(H=*g, Fo)

/ / / H(t — $)g(s)e " (k)dkdtds

= / g(s) / e ™ g(k)H (k)dkds = (g, F(p.H))

= (@ 9.H) = (HZ ¢).

We noticed, in this calculation, thatH € S, becausd is s analyticinthe striggs O By,
and bounded irB,,. As a corollary, this shows thaf~ Y H .8) = Hxgin Ef.

Fora =0, Hxg € E0 = C (R), F(H * g) € §', and all equalities above hold for
¢e€S. O
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Appendix 2. Reversible Normal Form Associated withZ (@

As indicated for instance in ([7], p. 18 and 23-24) we need to solve
DyyN (Uo).LO*Ug = LO* N (Up),
SN=—-NoS,
whereN = (No, No, N1, No, No, N1)7, and
S(A,B,C,A,B,C)T =(A,-B,C,A,—B,C)T.

Moreover N has polynomial components of an arbitrarily fixed degree in variables
(A, B, C, A, B, C). Let us define the linear differential operator

. of . af . of
D*f = —igoA—— + (—igoB + A)—— — iq1C —=
S iqo0 8A+( iqoB + )BB iq1 8C+

+igoAL 4 qoB + L 4 igic L
1 o l o 4 —1
q0 9A q0 9B q1 Ye
then we must verify

D*No = —iqoNo,
D*No = —iqoNo + No,
D*Nj = —iq1N1.

Independent first integrals @* f = 0, are

ur = AA,up =i/2(AB — AB),uz =iqoB/A+INA,us =CC,us=A"C",
where we assumed th%& = g We observe that
u1
1
C = u4u5_1/SAr/S, C = ué/XA_r/S,

A — 2 —InA
B=(us—na), B=222 s nA
iqo iA igoA

A=

hence, a polynomial in variablég\, B, C, A, B, C) can be expressed as a function of
variables(A, u1, uz, us, us, us), polynomial in(u1, uz, uz, us), with coefficient func-
tions of (4, us), the dependence ins being with polynomials of(us)*/*. Now,
considering polynomial solutions @* f = 0, it results easily, with the variables
(A, u1,uz, us, ug, us), that f is independent o, i.e.

f(A,B,C, A, B, C) = ¢(u1, u2, uz, ua, us),
where
rs/s .
¢ (u1, up, uz, ug, us) = Z¢,1,2,3,4r5u’fugzugSquMSS/ (finite sum)

with integersr; > 0, j = 1,2, 3,4, andrs > 0 or < 0. We can first assert that is
independent ofi3. This is due to the occurrence of inat some power im%’, and a
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study at infinity shows that cannot behave polynomially ia if u3 occurs ing. Now,
an examination of the exponents@fndA (makingB = 0) in ¢ leads to the conditions
r4+rs >0,
sr1 4+ rrs is a positive multiple of.

Henceys = kss, with rks > —r1, sks > —r4. It results that in casgs > 0 one has a
monomialu}luZufus® while in cases < 0, one has a monomiad'«?u*ug ", with
ry = r1+ rks,ry = ra + sks. Finally the polynomial solutions aD* f = 0 can be
written as
J = Po(ui, uz, ua) +usP1(u1, uz, ua, us) + usPa(u1, uz, us, us),

whereP; are polynomials in their arguments. Notice that, if one has in addjties =
+f, then polynomialsP; have real or pure imaginary coefficients.

Let us now solveD*No = —igoNo, No o S = —No.

We observe thaD*(ANp) = 0, hence

ANo = ¢o(u1, uz, ug) + usp1(uy, uz, ua, us) + useo(u1, uz, usg, us),

andu; should be a factor of the polynomiapg ande;. Finally one obtains, after using
the reversibility condition,

No = iA[Po(u1, up, us) + usPr(u1, u, ua, us) + usPo(u1, uz, us, us)]
+iA TCY Pa(u, ua, s),

where Py, P1, P>, P3 havereal coefficientsLet us consider the equatioh*ﬁo
—igoNo + No, and observe thab*(ANo) = ANo, D*(AB) = u1, D*(A" ‘BC?) =
us, hence (using reversibility again)

ANo = iAB[Po(uy, uz, us) + usPi(uy, uz, us, us) + s Pa(uy, uz, ua, is)| +
+ AA[Qo(u1, uz, us) + usQ1(u1, uz, ua, us) + usQ2(u1, uz, us, is)] +
+iA  BCO Py(ug, us, Tis) + AT C° Q3(uz, us, is).
If » = 1, makingA = 0, leads to
0 = BC* P3(uz, us, 0),

andus is factor of P3 if » = 1. Finally, we also havé*(CN1) = 0, then the normal
form reads

No = i A[Po(u1, u2, us) + usP1(u1, u2, us, us) + usPa(u1, u2, us, us)]
+iA TNCO Pa(uz, ua. Tis),

No = i B[Po(u1, u2, ua) + usP1(u1, uz, ua, us) + s Pa(u1, u2, ug, is)]
+ A[Qo(u1, u2, ua) + usQ1(u1, u2, ua, us) + usQ2(u1, u2, us, us]
+iA "°BC* Pa(uz, us.us) + A C° Qa(uz, ua. s).

N1 =1iC[Ro(u1, u2, ua) + usRi(ua, u, us, us) + usRa(u1, uz, us, us)]
+iC T A" Ra(uy, uz, us),

where all polynomials have real coefficients and wheyes in factor in P3 whenr = 1.
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