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Abstract: A class of dynamical semigroups arising in quantum optics models of masers
and lasers is investigated. The semigroups are constructed, by means of noncommutative
Dirichlet forms, on the full algebra of bounded operators on a separable Hilbert space.
The explicit action of their generators on a core in the domain is used to demonstrate the
Feller property of the semigroups, with respect to éhesubalgebra of compact oper-
ators. The Dirichlet forms are analysed and iffespectrum together with eigenspaces

are found. When reduced to certain maximal abelian subalgebras, the semigroups give
rise to the Markov semigroups of classical Ornstein—Uhlenbeck processes on the one
hand, and of classical birth-and-death processes on the other.

1. Introduction

The object of this paper is the investigation of the evolution equation
d :
EPI-X::‘CPt-xv P0=|d (11)
determined by the Lindblad-type operator
2 22
Lx = —?(A*Ax —2A"xA + xA*A) — ?(AA*X — 2AxA* + xAAY).  (1.2)

The equation is for an evolution of bounded linear operators on the complex Hilbert
spacel) = [%(Z.); the operatorst andA* are the annihilation and creation operators

of the usual representation of the canonical commutation relations associated with the
quantum harmonic oscillator (defined in Sect. 4) and the constaamsl . satisfy:

u>Ai>0 sothatv:= AZ/MZ €10, 1.

* F.C. was supported by an EU Fellowship in Nottingham.
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We may writeL in the alternative form
Lx = LixLy + LyxLy, + Gx + xG, 1.2)
where
Li=2A% Ly =pA* G=-§ (320N +D+u?N),

and N denotes the number operatét A. The relevance of such evolution equations

for mathematical models of masers and lasers is discussed in [FRS]. Such equations
also arise in weak-coupling models of open quantum systems (see [Dal], Chap. 10,
[AAFL]).

The first mathematical problem that must be faced with an equation of the form (1.1)
is that the Lindbladian involves unbounded operators. One must therefore decide on the
space in which one seeks solutions, and also the sense in @igdb be considered the
generator of a one parameter semigraup= (P;);>0 solving (1.1). Spaces on which
it is natural to consider this problem include: the von Neumann algebra of all bounded
operators oth; its predual, the Banach space of trace class operatdjs amd theC*-
algebra of compact operators §nWe shall denote these™, L1 and K respectively,
and also writd.? for the Schattep-class, so thak? denotes the Hilbert-Schmidt class.

As far as the continuity of the semigroup is concerned, due to the non-separability of
L the appropriate topologies are respectively the Weagology onL°, the strong
topology onkC and the weak or strong topology @rt.

In [FRS] weak*-continuous solutions oh* are obtained from unitary solutions of
associated quantum stochastic differential equations, thereby extending the method of
[Hu P]to unbounded coefficient quantum SDE'’s. Ergodicity of these Weantinuous
solutions is also proved in [FRS].

In the present work a different approach is taken, based on the recent theory of
noncommutative Dirichlet forms ([Ci1,2, GL1,2]). Instead of attacking the problem
of closability and dissipativeness df on the nonseparable Banach spdcg, and
seeking to apply the Lumer—Phillips Theorem, we consider the equivalent but more
tractable problems of establishing closability and a Markov property for an associated
nonnegative quadratic fori,, on the separable Hilbert spa&é. We exploit the fact
that L2, together with the cone of nonnegative Hilbert—-Schmidt operatér,sand the

adjoint operation orL2, comprise a standard form f@&°. The equivalence of the®
and L? problems (and solutions) is due to the existence of an invariant state for the
dynamics. This state provides the means of moving back and forth between algebra and
Hilbert space. Moreover it is thEMS-symmetryf the problem, with respect to this
state, which permits a quadratic form description of the generator of the dynamics.

The first advantage of this approach is that symmetry, semiboundedness and Hilbert
space domain consideration, make closability and the Markov propeftynoich easier
to prove than closability and dissipativenes£of he second advantage is that studying
the domain of the nonnegative self-adjoint operator correspondifigdae is able to
characterize the action df on an explicit core, and also to prove the strong continuity
of the semigroup o’ (weak Feller property) and the invariancefofunder theL°°-
semigroup (Feller property). The third advantage is that we are able to obtain a complete
description of the.2-spectrum with associated eigenspaces.

It should be mentioned that the semigroups/éf constructed here are quasi-free,
having an explicit representation on Weyl operators (see [AlL], p. 63); in particular they
leave invariant the C*-algebra of the Weyl relations ([Sla]). However, since the distance
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between distinct Weyl operatorsi&2, the semigroups fail to be strongly continuous on
the Weyl algebra. These semigroups are also discussed in the (pre-quantum stochastic
calculus) paper [HIP].

In Sect. 2 we recall some of the properties of the standard fd®h, L2, Li, *),
where£™ is the faithful normal representation b on the Hilbert spacé? obtained
by left multiplication:L & = x& forx € L™, ¢ e L2. We then establish basic properties
of left and right multiplication operatorsx, Rx, and bimodule derivationgy on L2,
in which X is an unbounded operator on the original Hilbert spiace

In Sect. 3we recall the correspondence between symmetric (hnoncommutative) Dirich-
let forms onL?, symmetric Markov semigroups ai? and KMS-symmetric Markov
semigroups orL*° (specialized to the present setting). In Sect. 4, using the unbounded
operatorsLy, Ry andd, we construct (for eaclp > A > 0) a closed nonnegative
form £ on L? which is Markov with respect to a certain cyclic vecgre Li (where
v = A2/u?). We shall refer to the associated Markov semigroupd.érand L™ as
guantum Ornstein—Uhlenbeck semigroups.

In Sect. 5, motivated by Phillips’theory of dual semigroups ([Phi]) we define the weak
Feller and Feller properties for a we&lcontinuous semigroup oh*°, and prove that
the quantum O-U semigroups are Feller semigroups. We also show that, on an explicitly
given core, the action of thé°°-generator indeed coincides with the Lindblad-type
operator (1.2). This amounts to solutions of (1.1) on kcthandK.

In Sect. 6 we prove ergodicity of the quantum O-U semigroups, and, by comparison
of £ with certain other related forms, and application of the minimax principle, we derive
the discreteness of thie?-spectra of each quantum O—U generator. Although both these
results follow from the spectral analysis in the following section, they are included here
forthe purpose of illustrating techniques that may be applicable when a complete spectral
analysis is not available. We also show how these semigroups provide a realisation of the
Markov semigroups of classical birth and death processes by restriction to the maximal
abelian subalgebra generated by the number operator. This nicely illustrates an important
feature of quantum Markov semigroups, namely that they may contain widely varying
classical Markov semigroups through restriction to different abelian subalgebras.

Section 7 contains a completé-spectral analysis, and reveals why we have chosen
to use the namguantum Ornstein-Uhlenbeckther tharquantum birth and deathn
the limiting case. = u we are dealing with a quantum Brownian motion semigroup.
This is treated in the final section by means of the tracial theory of noncommutative
Dirichlet forms ([AH-K, DaL]).

2. Unbounded Multiplication Operators and Derivations

Here we describe the standard form convenient for our present purposes, and introduce
the unbounded multiplication operators and derivations which will be used (in the fol-
lowing section) to construct the noncommutative Dirichlet forms we wish to investigate.
In future sectiongy will always be the sequence spdé@€Z., ), but here it may be any
complex separable Hilbert space. The inner produtihéar in its second argument
The von Neumann algebra of all bounded operatorg§ @smdenoted.*°; its elements
by x, v, z, ...; and the faithful, normal, semifinite trace @&3° (normalized so that on
projections it gives their dimension) is denoted Tr.

Let L? (1 < p < o0) denote the Schatten classes, whose elements will be denoted
by Greek letterg, n, o, ... . ThusL? is the Hilbert—Schmidt class, and its inner product
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is given by(&, n) = Tr (§*n). Consider the maps

m i L® — B(L?), 7i(x)=L,,
7 L™ — B(L%, wr(x)=R,,

whereL, andR, are the left and right multiplication operatoésy~> x& andé +— &x,
respectivelysr; defines a faithful, normal representation I, while 7y defines a
faithful, normal representation of the opposite algelir2)°. Putting£>® = 7 (L>)
andR>® = 7z (L) we have the commutant relations

(L®)Y =R® and (R*®) = L™

in B(L?).
The closed convex cone ik? consisting of nonnegative Hilbert—-Schmidt operators
is a self-dual cone in the sense that

Li:{&eLz:(é‘;,n)EOVneLi}.

The associated antiunitary conjugatidnon L2 is simply the adjoint map oi.? :
J& = &*. We therefore havd L, J = R,+, so that/JL*J = R>® = (L), and
L JL,J& = xEx* > 0 whenevek € L3.

In summary

<£°°, 12,12, *)

is a standard form fof.>°. We refer to [Haa] for the definition of standard forms and
the proof of their uniqueness. The Dirichlet forms and Markov semigroups will be
constructed on this standard form, in the framework of [Ci1,2]. We shall use the fact
that L2 is the complexification of the real Hilbert space of self-adjoint Hilbert—Schmidt
operators which itself is characterized by

L%&:{&eLz:(E,n)eR‘v’neLi}.

Also note that each elemeéte Lﬁ may be uniquely expressed as a differefce
& —&_inwhichéy € Li and the support projections &f andé_ in £L> (as well as
in R°°) are orthogonal.

The following notation (of Dirac) remains highly convenient. For vectorg in b,
let le) (f| denote the operator dngiven by

le) (flv={f v)e.

Thus, where and f are unit vectorsie) ( f| is a partial isometry with initial spacé f
and final spac€e.

Now letpg € LY, po € L and& € L? be respectively a strictly positive density
matrix, the corresponding (vector) state, and the corresponding vector. Thus, in terms of
a Hilbert basis{;,) consisting of eigenvectors @f,

£0 = ,=1Vnlen) (eal, Withy, > 0andy  y, =1,
@o(Ly) = Tr(pox) = (&0, x&0) ,
S0= 105> = Lpar v’ len) (enl .
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The action of the associated modular operator and modular group are given by:

A%f;‘ = [Pé/zfpo_l/z] , atleastfors € L™ = Loopé/z;

O‘,’[(Lx) = Lp”xp‘” .

The symmetric embeddingf algebra into Hilbert space, determined by the faithful
normal statep, takes the simple form:

1@ £® 5 12 (OLy) = pxpY4 = AYAL,&.

More generally.*> is symmetrically embedded into” by (P (L,) = pé/ZPxpé/ZP.

We next consider unbounded multiplication operators and derivatios onet X
be a closed and densely defined operatol pwith domain DongX). Its adjointX* is
then also closed and densely defined. For éaeh.?, viewed as an operator dy) X&
is closed, but not necessarily densely defined, wheg&ais densely defined but not
necessarily closed. We define left and right multiplication operators, and (unbounded)
derivations, on.? as follows:

Dom(Ly) = {s € L2 : Dom(X£) = b and X € LZ} . Lyt = X&,

Dom(Ry) = [S eL?: &£X is bounded angk X1 € LZ} i Rx& =[£X],
Dom(6x) = Dom(Lx) "Dom(Ryx); déx = Lx — Ry,

where [ ] denotes the closure of a (closable) operator. Notice that(Bém= §
already implies thaké € L°° and also that it X is bounded thefs X] € L*°. Thus
our definitions involve a natural progression of restrictiong on

For a pair of Hilbert baseig] = (e,) and[ f] = (f,) for b, let

Coo ([e, /D) = Lin{len) (fml}

and letCoo ([e]) = Coo ([e, €]). ThusCqo ([e, f]) is a dense subspace bf consisting
of finite rank operators, and moreov@go([e]) is a weak*-dense-subalgebra of.*
whose norm closure is.

Lemma 2.1.Let X be a closed densely defined operatorfon
(i) JDom(Lyx) = Dom(Rxx); JLxJ = Ryx+;
(i) Ly is a closed densely defined operatorhaffiliated to£>°, and satisfying:

Lx+ C (Lx)*; Dom(Lx) = Dom(Lx));

(i) Ry is a closed densely defined operator haffiliated toR>°, and satisfying
Rx+ C (Rx)*; Dom(Ry) = Dom(R‘X*‘).

Proof. If &€ € Dom(Ly), then DoniX&) = h andX¢ € L? so&*X* C (X£)* €
L2, which implies that* € Dom(Rx+) and (Rx+£*)* = Lx&. ThusJDom(Lx) C
Dom(Ryx+) andJ Rx+J D Lx. Conversely, ifj € Dom(Rx+) thenyX* is bounded and
[nX*] € L?, soXn* = [nX*]" € L2 thusy* € Dom(Ly). Therefore DonRx+) C
JDom(Lx), and (i) follows.
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If (e;) and( f,,) are Hilbert bases fdj contained in DomiX) and Don{X*) respec-
tively, thenCoo ([e, f]) is a dense subspace bf contained in Dot x) N Dom(Rx).
HenceLy, Rx andsy are all densely defined.

Letv|X| be the polar decomposition &f so that X| = v*X. If £ € Dom(Ly) then
Dom(|X|€) = Dom(v*X&) = Dom(X¢) = b and|X|&E = (v*X)é = v*(XE) € L?,
sinceL? is an ideal ofL>®, so¢ e Dom(L,x|). Hence DoniLx) C Dom(Lx|). The
reverse inclusion follows similarly, so Ddihy) = Dom(L x)).

If £ € Dom(Lx+) andn € Dom(Ly), thenXn € L?, so£*Xn € L* andX*& e L?
S0 (X*£)* e L?. But (X*&)*n extends the everywhere defined opergtok s, so the
two operators must coincide, and we hageLxn) = Tr(§*Xn) = Tr ((X*§)*n) =
<Lx*s, 7]) ThUS(LX)* D Lx*.

The fact thatL x is closed follows easily from the closure &f if (&,,) is a sequence
in Dom(Lx) such that, — & andX&, — nin L2, then for each: € b, &,u — &u
andX&,u — nu in b, soéu € Dom(X) andX&u = nu, thereforee € Dom(Ly) and
Lx§ =n.

The affiliation properties easily follow using the fact thatis an ideal ofL>, and
the remaining properties follow by similar arguments.

Lemma 2.2.Let X be a closed densely defined operatorfpriThendy is a closable
densely defined operator satisfying

Sx C (8x+)*; JéxJ = —b8x+.
Moreover, ifDom(L|x|) = Dom(L x+|), thenDom(8x) is J-invariant.
Proof. We have already seen (in the proof of Lemma 2.1) that Bgm> Coo ([e, f])
whenever(e,) and(f,) are Hilbert bases contained in Do&) and Dom(X*) respec-
tively. Since

(6x)* = (Lx — Rx)* D L% — R D Ly — Rx» = 8x~,

replacingX by X* we havesxy C (8x+)*, in particularsy is closable. Sincd is anti-
unitary,

JéxJ =JLxJ — JRxJ = Rxx — Lxx = —8x*.

If Dom(L|x)) = Dom(L,x+) then Dom(Lx) = Dom(Lx+) and so Don{Rx) =
JDom(Lx+) = JDom(Lx) = Dom(Rx+). Thus

J (Dom(Lx) "Dom(Rx)) = Dom(Rx+) N Dom(Lx+) = Dom(Rx) N Dom(Ly),

in other words/Dom(§x) = Dom(8x). O
In view of the previous lemma we make the following definition:
dx = [6x],

for X closed and densely defined pn
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Lemma 2.3.Let X be a closed densely defined operatortgnThe real parts of the
domainsDom(Lx), Dom(Rx) and Dom(Sx) are invariant under the modulus map
E> €] = (5*5)% in L2. In fact we have the following characterisations of domains:
Dom(Ly) =

{g e L?: Xt£*X* is bounded, densely defined and has trace class cl§)sure

and, foré € Dom(Ly), [ X3 = Tr ([X&&*X*]);

Dom(Ry) =

{5 e L?: X*£*£ X is bounded, densely defined and has trace class clbsure

and, foré € Dom(Ry), lI[£X]113 = Tr ([X*£*£X]).

Proof. Let¢ € L2 and letTo = X££*X*. If £ € Dom(Lx) then Dom(X¢) = § and
X¢& € L2, so Dom(Tp) = Dom(X*) which is dense anfly ¢ X£(X&)* € L1. Thus the
closure ofTy coincides withX&(X&)* and, by Lemma 2.1,

IXEN13 = |[*X*]|5 = Tr (X& (X£)*) = Tr(T) = Tl

Conversely, iffpis densely defined and bounded, and its cloglistrace class, theh =
XEE*X* C XE(XE)* = |(X&)*|. Since a densely defined bounded operator has only

one closed extensiod, = (Xs)*|2. Thus(X£)* is everywhere defined and Hilbert—
Schmidt, set* € Dom(Ry+) = JDom(Ly), so& € Dom(Ly). This establishes the
first characterisation, and the second now follows from Lemma 2.1(i). The invariance
properties are now immediate toa

3. Noncommutative Dirichlet Forms

In this section we first summarize the general results on Dirichlet forms and Markov
semigroups, specialized to the standard fQﬂ?P, L2, Li, *) described in Sect. 2. The

full theory is developed in [Ci1,2] and [GL 1,2]. We also recall the definition and basic
properties of the unbounded annihilation, creation and number operatti&an. Let

0o, wo and&p be corresponding strictly positive density matrix, faithful normal state
and positive cyclic vector, as in Sect. 2. The order inter{/als L2:0<p< go} and

{n el?:y< éo} will be denotedO, &) and] — oo, &o] respectively. These are closed
convex subsets df?, and we shall denote the nearest point projection ¢hitéy] and

] — o0, &] by n — ny andn — n respectively. Forp € Li we have
nn=n—m—8&)+ =5 — (n—&)-.

Corresponding to any self-adjoint contraction semigréﬂbz)) onL?its form generator
is the unique closed nonnegative quadratic férngiven by

T -1 _ p@
£l = lim ¢ (n. = PP,

and conversely such a form determines the semigroup thrmﬁahz e 'Ha  where
H) = Hp, > 0is determined by

[ty ¥2n|" = . om((H)™?) = [n e L7: €1 < o).
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A self-adjoint contraction semigroup di? is called(sub-)Markowvith respect tc if

P2 ([0, &) C [0, &0] v,
andconservativef also
PP =& V1.
A densely defined nonnegative quadratic fafris calledMarkovwith respect tcy if
n € Dom(€) = n* € Dom(&) and€ [n*] = £ [n], (3.1a)
n =n* e Dom(€) = n; € Dom(&)and&[n;] < Elnl, (3.1b)

and is calledirichlet if it is also closed.

The Markov conditions (a) and (b) on a closed densely defined nonnegative quadratic
form on L2 are equivalent to the (sub-)Markov property of the corresponding semi-
group ([Cil] Theorem 4.11, [GL1] Theorem 5.7). This amounts to a honcommutative
generalisation of the Beurling—Deny characterisation of the form generators of clas-
sical symmetric Markov semigroups. As in the commutative case, there is a bijective
correspondence between such semigroups and symmetrictwaakinuous positive
contraction semigroups ab™. In the noncommutative case the correspondence arises
not simply through common restriction, but through intertwining with the symmetric

embedding of the algebra into Hilbert spac®: o P = P2 @) explicitly
1/4 1/4 2 ( 14 1/4

Symmetry of thd.*°-semigroups involves the modular automorphism group of the state,
and also arises through the symmetric embedding:

¢ (0i2@P P ®)) = ¢ (P @0-i/20) (3:23)
Tr (L(l) (@) P> (b)) —Tr (P}"") (@)@ (b)) : (3.2b)

where, inthe firstidentity andb are restricted to the algebra of analytic elementsof
To emphasize this involvement of the state, the condition (3.2) is ddN&8-symmetry
In the present standard form it takes the explicit form

Tr (pé/zapé/th(oo) (b)) =Tr (P,(oo) (a)pé/sz3/2> : 3.2)

This kind of symmetry was discussed by several authors in the eighties (see [Pet, GrK]).
If the quadratic form of a self-adjoint contraction semigroupldnsatisfies (3.1a)
and€ [&o] = 0, then (3.1b) is equivalent to the weaker condition

n=n"eDom() = nt € Dom(E) andf (ny,n-) <0 (3.3)
which is also equivalent to
n=n"eDom() = |nl € Dom(&) and&[|nl] <&[n]. (3.3)

In general, under (3.1a), the condition (3.3) is equivalent onfyottivity of the semi-
group ([Ci2], Theorem 4.10).
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4. Quantum Ornstein—Uhlenbeck Semigroups

In this section we obtain the KMS-symmetric Markov semigroug.6f, which solves
(1.1), by constructing a Dirichlet form oh? and using the theory outlined in Sect. 3.
Thus,from now onleth = I%(Z,), let[e] = {e, : n € Z, } be the usual Hilbert basis,
and withu > A > 0 andv = A2/u? fixed, letp, € LY, ¢, € £ andg, € L? be given
by

o =(0A-v) anO V" |ey) (enl

ov(Ly) =Tr(ppx) = (&y, X&),

£ =py% = A= 0Y2Y, gV |en) (enl -
Also let(o;) and.(” denote the associated modular automorphism group and symmetric
embeddings, and we shall abbreviéig([e]) to Coo.

For constructing the Dirichlet forms we shall apply the results of Sect. 2 to the

number, annihilation and creation operators defined as followsntUh#er operator

N is the self-adjoint multiplication operatar= («,) — (no,), with maximal domain
{(x €bh:) -0 Ina,|? < oo}. The annihilation and creation operatorsare given by

Dom(A) = Dom(A4*) = Dom (\/ﬁ) with

| ne,—1ifn >0, A*e, = /n+ leyia.
A =1""0 "itn=0;

The operatorst and A* are closed and mutually adjoi; A = N, whereasAA™* =

N + 1, and in terms of the isometric right shift operatgiven by Se, = ¢,,+1, we
have the relations

=VNS=SYN+1I; A=+/N+IS" =5+VN, (4.1)

which are not merely algebraic, but are also precise in terms of operator domains.

Proposition 4.1.Let¢ € D := Dom (Lﬁ) N Dom (Rﬁ). Then the following ex-
pressions are all finite, and they coincide:

lLa = 2R €12+ (uLa — 2R €[} (4.2)

L — 2RO E12 + I GuRa = 2La) €12} (4.2b)

M dag ]2 + 5 (0~ M)Z{“me e Hz} —hu-n R, @420
5 oo | [ F g — T

o/ e, — /i e } W23 {

n>1

(4.2d)

al‘l

+|O‘o| }

where¢ = Zm 1>0%m lem) {en]. Moreover, ife € Dom(Ly) N"Dom(Ry), then there is
a fifth useful equal expression:

6.3 (32 + 1?) (Ve + [END + 2% —hpu (A [547] + 4% [541)).  (43)
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Proof. By Lemma 2.1(ii) the domains a4, L /5, L /577 andL - all coincide. By
Lemma 2.1(i) the domains at 4, R /71, Ry and R4+ all coincide too. It follows

that each of the expressions (4.2a—d) is finite and, since @@am N Dom(Ry) C
Dom(L 4+ Rya), (4.3) is finite too. By another application of Lemma 2.1(i), (4.2a) and
(4.2b) coincide. Straightforward calculations verify that (4.2b—d) also coincide, and that
(4.3) equals (4.2b) under the given domain constrairg.om

Theorem 4.2.Let D = Dom (Lﬁ> N Dom (Rf> and let€ : D — R, be the map

defined by any of the expressions (4.2a—d). Théna Dirichlet form with domainD
satisfying€ [&,] = 0. MoreoverCqo is a core for€.

Proof. By (4.2a) we see thdtis a nonnegative quadratic form satisfying thevariance
condition (3.1a). Using (4.2c) write

E=mEM + T — w2 —a(u -, (4.4)

where€W[g] = [lds )2 andE12[g] = HLWE HZ + H R yé H2 By Lemma 2.1£12

is the sum of two closed quadratic forms, and is therefore closed. Theteftwelf is
closed, being the sum of closed forms&!Y, 3 (A — )22 and—a (u — 1) 1.
By Lemma 2.1 if¢ € D then

1dA& 112 = I1Lag — RaEI2 = 2 (ILEI? + IRAEI?)

=2( |t + [ re])
= 2(Pe1 +1617).
Thus we have the comparison of forms:
E<O+w?EP 4 an+p I (4.5)

In particular, since Don) = Dom(£12!), any form core foi€!?! is also a form core

for £. Puttingpy = Zﬁ:o len) (en], We havepiépy € Coo for anyé e L2 and it is easy
to see that, fo€ € D,

pképx — & VNpiEpr — v/N& and [pk&pk«/ﬁ] — I:E\/N:I

HenceCoo is a form core fo[?! and thus by (4.5) it is also a form core fér
Sincev = A?/u? and
La&y = A -2y 1 v2 /0 |en—1) (enl
= (1—Y2Y, o2+ Tlen) (enyal = VVRAE),

we have(uLs — AR4) &, = 0. Butéf = &, soby (4.2af [§,] = 0. It therefore remains
only to establish thaf satisfies (3.3).
By Lemma 2.3 both DoréLﬁ> NL2 and Dom(R\/N) N L3 are left invariant by

the modulus mag — |&|, henceD N Lﬁ is invariant under this map, and therefore
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also under the maps — &.. Lemma 2.3 also implies that? [|&]] = £1?1[£] for
£ e DNLZ%. Nowforg € CooN L3, since[A*€_A], [A6_A*] € L2,

EM (&1, 60) = (5. didat-)

(60 %A — [4% 4] - [Ag_2"] + [£-447))

(4. A" AE) + (g1 [£-4A%])
(Agp, AE_) +([£+A], [6-A])
Tr([Ag46-A*]) + Tr ([A*E1£_A]) =0,
using the polarised form of the identities in Lemma 2.3. Therefores forCoo N LIZR,

EWlgN] < Mgl and so, by (4.4% [I€]] < £[£]too. Now lets € DN LZ and choose

asequencé;,) in CopN Lf& converging tc in the quadratic form norm &. It is easily
verified that|&,| — |&€]| so, by the lower semicontinuity &f,

E[IEN < liminf £[|&,]] < liminf £[£,] = £[&].

=<

This completes the proofo

From the results of Sect. 3 we therefore have

Corollary 4.3. There is a self-adjoint contraction semigrouf® on L2, with form
generator (4.2), which is Markov with respect&g and a weak‘-continuous positive

contraction semigrou? ) on L>°, determined by o P = P 6@ whichis
KMS-symmetric with respect {g, and also conservative.

The generator H(y) of the symmetric Markov semigroup® satisfies
Hi > 3 (324 u2) (Ly + Ry) +32 =it (LaRas + La-Ra) . (46)

as is clear from (4.3). In the next section we investigat®’, and its weak -generator

5. The Feller Property

The R.S. Phillips theory of dual semigroups ([Phi])implies that there is a Banach sub-
space ofL*>, which we shall call théhillips subspac@and denote by, on which the
semigroupP > is strongly continuous. Moreovét is the norm closure of the domain
of the weak*-generator of? (>, andB is also the maximal subspace on whieff® is
strongly continuous. This justifies the following definition.

A weak*-continuous semigroup = (T;),~ 0n L satisfies aveak Feller property
if there is a weak'-dense, separablé*-subalgebrad of L> on whichT is strongly
continuous:

Iimo||7}a —al|=0 Vae A.

—

The semigroup igeller if moreover it leaves such@*-subalgebra invariant:
T;(A) C A vVt =0.

By the maximality of the Phillips subspace, any such algebgatisfiesd c B.
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Theorem 5.1.Each quantum Ornstein—Uhlenbeck semigraRif® is Feller with re-
spect to the algebra of compact operatéisThe subalgebragg is both anL>°-core

for the generator o(P,(°°)|,C> and also a weak-core for £, the weak*-generator of
P,(°°). Moreover the action of onx € Cogis given by each of the following expressions:
— 112 {A* Ax + [xA*A] - 2[A*xA]} — 222 {AA*x + [xAA*] - 2[AxA*]},

(5.1a)

— 12 {Nx F[xN] =2 [JNst*W]}
— 12 {(N FOx N+ D] -2 [«/N T 15" xSVN + 1]} , (5.1b)
Gx + [xG]+ [LyxLy] + [LuxL}], (5.1c)

whereG = —3 {(A2+ u?) N + 22}, L, = AA* and L, = nA*.
The proof proceeds through a series of lemmas. Since the tvgakeratorl is
—H(), We use both notations, according to convenience.

Lemma 5.2.Each O-U semigroup is weakly Feller with respectioand its L°°-
generator satisfies:

Dom(£) D Coo, (5.2)
(@ (Hioopx) = Hit®(x) Vx € Coo, (5.3)
L(Coo) C Coo. (5.4)
Proof. Since (@ (le,) (em]) = (1 —v)Y200+tm/4 16 (¢,,|, we have the identity

1@ (Coo) = Coo. SinceH ) leavesCqp invariant, as is clear from (4.6),
“1
K:x+— (L(2)> H(z)c(z)(x)

defines an operator drf with domainCqg, which leaves this domain invariant. Lete

Coo & € L2 andz = (1@),(&) = py*epr’* € L1, theni@ (x) € Coo C Dom (Hz)),

SO
(z, (x — P,‘°°)x)> - <s, @) - pP,@ (x)>

t
- <§, / ds P;2>H(2)L<2>(x)>
0
t
=f ds <§,L(Z)ORY(OO)(KX)>
0

t
- / ds (z, PV (Kx)).
0

Since the semigrou(® is contractive, this identity for extends from the dense
subspacé?)_(L?)toall of L' by the Dominated Convergence Theorem. Dividing by
t and lettingr N\, O therefore gives

x € Dom(H(x)) and Hs)x = Kx.

This establishes (5.2—4) and also that the Phillips subsBammntainsCoo. Since the
closure ofCqg in L*° is I, andB is closed 3 must contairiC also. O



Quantum Ornstein—Uhlenbeck Semigroups 97

Lemma 5.3.The expressions (5.1a—c) all coincide with, for x € Coo.
Proof. The expressions (5.1a) and (5.1b) coincide by the explicit polar decompositions
(4.1). A simple computation on the basis elemgnjs$ (¢,,| of Coo shows that (5.1c)

agrees with (5.1a). Leto : Cop — Coo be the map given by these common expressions.
The identities

,03'/4A*€n — ,03'/4 /n + Teps1 = (1— v)l/4v(n+l)/4 /n + Tlegp1 = V1/4A*,03'/4en,

give the following commutation relations, fere Coop:
103/4A>x<)C _ 1)1/4A>k'01}/4x; p&”Ax _ v‘1/4A,o3/4x; ,oul/“Nx — Npl}/4x.
Thus, since» = A2/u?,
pv1/4 (Mz [A*xA] +22 [AxA*]) ,01/4 _ szl/z [A*EA] 1 a2y12 [ASA*]
=i {[A*EA] + [AsA*]},
wheret = (@ (x). This gives the following identity fox € Coo:

(@ (Kox)
- -1 {(AZ n uz) (NL(Z) (x) + [L(Z)(x)N]) + Azz(x)} +ap {[A*EA] + [AEA*])
= —H(2)t(2) (x)
=1@ (Lx),

by (4.6) and (5.3). By the injectivity af?, this completes the proofo

Lemma 5.4.There is atimel’ > 0, depending only o and w, such that

DA HkaH k! < o0

k>0
forall x € Copandr € [0, T[. In particular each element afqg is an analytic vector
for £. Fort € [0, T[ andx € Coo, P\™"x = ¥ o(k)) 1k LFx.

Proof. PutL = —H . We know, by (5.4), that leavesCqp invariant so thatCpg C
MNy=1D0m(L¥). If x = |e,) (em| then

Lx = dpm len—1) (em—1| + Bum len) {em| + Yam lent1) {em+al, (55)

where

1
Unm = )\2\/ nnm;  Bum = _z ()‘2 + MZ) (n+m)— )\2;

Vam = 12/ (n + 1) (m + 1).
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since laum| + [Bam| + 1Vam| < (A2 + u?) (n +m + 1), iterating (5.5) leads to the
estimate

Hﬁ’fo < (A2+u2)k(n+m+l)(n+m+3)~-~(n+m+2k—1)
5Zk<A2+,1,L2)k(n+m~|—1)(n+m+2)~-~(n~|—m+k)

— ok (AZ n Mz)k k!(n+m+k)

n+m

< 2n+m4k ()\2 + //L2>kk‘ ,

thus putting? = [4(A2 + uz)]_l, Y iotX | LEx|| /k! < oo for t < T. Since any
element ofCqg is a finite linear combination of elements of the fore) (e,,|, this

finiteness holds for any in Coo. We may therefore define mags : Cog — L*°, for

t € [0, T[, by

S;x = Z(k!)_ltkﬁkx.
k>0

Since eachCkx € Cog, S;x € K. By (5.4), forx € Coo,

d 1k pktl ~1 k pk
TS = ];)(k!) okl = ;z((k!) *C x) Vi € [0, TY.

Now the serie$" (k) ~1*£kx and " £ (k) ™t ¥ £¥x) are both norm convergent and
so also weaK-convergent, and is weak*-closed, so

d
S;x € bom(£) and Es,x =L(Sx) Vtel0,Tl.
By the uniqueness of the solution of the Cauchy problem,

P = Sx =Y (k)M Lhx (5.6)
k>0

forx € Copandr € [0, T[. O

Proof of the theoremSinceK is the norm closure o€qo, the inclusion (5.2) implies
that the Phillips subspace includgs and soP* is weakly Feller with respect to
K. The contractivity of eact?* and (5.6) together imply thab® () c K for

t € [0, T[. Invariance for all positive times now follows from the semigroup property, so
P is strongly Feller. The identification of (5.1) witfw, for x € Cop, is contained in
Lemma 5.3. Finally, sinc€qg is weak*-dense and-invariant, it is a weak-core

for Hiw) ([BrR], Corollary 3.7), and since it is norm densekiin Coq is also a core for

the generator o(P,(OO) |K>. This completes the proofm
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6. Ergodicity and Discreteness of Spectrum

We saw in Theorem 4.2 that the quantum O-U semigroups have zero at the bottom of their
L2-spectrum, and that zero is an eigenvalue corresponding to the eigeriyedtothe
present section we shall strengthen this by proving ergodicity of the semigiRSaps

and P,(OO), and discreteness of the?-spectrum. The results contained in this section
are subsumed by those of the final section, however they are included here since the
arguments used may be applicable in cases where itis difficult to find the whole spectrum.
L*-ergodicity has been demonstrated by different methods in [FRS].

A positivity preserving self-adjoint contraction semigra@@) on L? is ergodicif

V&, e L2\ {0} 3r > 0such that(, T,n) > O.

We shall use the following result from [Ci1]:

Theorem 6.1.Let (7;) be a positivity preserving self-adjoint contraction semigroup on
L2. If zero is an eigenvalue of the generator of the semigroup, then the following are
equivalent:

(i) the multiplicity of the zero eigenvalue is one and it has a strictly positive eigenvector;
(i) (Ty) is ergodic.

Strict positivity for a vector inL2 means that its support is the identity &,
equivalently the vector is cyclic fof>°. A semigroup(S;) on L*° is ergodicif

S;ix =xVt>0= x =al for somex € C.

Theorem 6.2.The quantum O-U semigroups$? and P> are ergodic.

Proof. By Theorem 4.2£ [£,] = 0, so zerois an eigenvalue of the generata? 6t. The
representation (4.2d) makes it clear that only multiples shtisfy€ [£] = 0. Sincé,, is
strictly positive,L2-ergodicity follows from Theorem 6.1. Now™-ergodicity follows
from the injectivity of the symmetric embeddin@. o

Theorem 6.3.The L2-spectrum of the quantum O—U semigroups are discrete.
Proof. As in the proof of Theorem 4.2 we represent the O—U Dirichlet form as

€ =M 4+ 30— 2P —a(u - W1,

2 2
whereEW[E] = ||d )2 and £12[E] = HLWgH n Hng H CLet HIY = dtd,
andH? = >_k=0kRi, whereRy is the orthogonal projection onto the linear span of

{len) (em] : n +m = k}. ClearlyCogp is a core forH 2 so that (by the proof of Theorem
4.2) H'?! is the self-adjoint operator associated witfl. Now recall the comparison of
forms obtained in the same proof (4.4) — this may be wrifils > K, where

K=30-w?H? —xu—-nl

It follows from the minimax principle that the infimum of the essential spectrufgf
is greater than that & ([Da 2], Lemma 1.2.2). Sinc& has empty essential spectrum,
so doesH(y); the spectrum is therefore discrete
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As a final result of this section we consider the restriction of the quantum O-U
semigroups to the abelian subalgebra consisting of bounded functions of the number
operator, i.e. the weakclosed linear span dfle,) (e,| : n € Z}, which we identify
with [%°(Z.).

Theorem 6.4.The semigroupP (> leaved ™ (Z, ) invariant. Its restriction td*(Z..)

is the Markov semigroup of the classical birth and death process with birth rates
(*%(k + 1)), and death rategu2k), _ .
Proof. Let cg andcgo denote the subalgebrasiéf consisting of sequences which tend

to zero, respectively vanish after a finite number of terms. Recall the proof of Lemma
5.4. By (5.5),L (le,) (e, ]) is given by

320 len-1) en-1l = { (2 +32) n + 22} lea) tenl + 1201 + Dlens1) (ensal . (6.1)

Moreover, fort € [0, T[ andx in [*° N Cog = coo, Pt("o)x € [® NK = cp, by Lemma
5.4. By norm density ofqg in c¢o and weak*-density ofcqg in [°°, together with the

norm and weak*-continuity of each > and the semigroup property &, both

co andI® are left invariant, and semigroups are induced on these abelian subalgebras.
Now one can recognise in (6.1) the action of the generator of a classical birth-and-death
process (pup = §,, wheres, (k) = 1 if k = n and 0 otherwise, in (7.8) below)o

7. L?-Spectrum: Caser <

In this section we shall obtain a complete description ofthespectrum of the quantum
Ornstein—Uhlenbeck semigroups, together with multiplicities and eigenspaces. We shall
also see how both classical Ornstein—Uhlenbeck semigroups and classical birth and death
processes are embedded within each quantum semigroup.

The notation developed in the previous sections will be used, together with:

P =z Q. =2""%zA +24%
for z € C of unit modulus. Thus, writing for Q. whenz = 1,

0. =T@"0rI'(2).

Lemma7.1.Letp = p,. Then
(@) V := Lin{p¥4A* A/ p1/4 i, j > 0} is a dense subspace bf.
(b) U, = W, for eachn > 0, whereU,, := Lin{pY/2A* A/ p¥/* . i+ j < n}andW, :=
Lin{p¥4Qmp¥4: |zl =1, m < n}.
Proof. First note that, foyr €10, 1[,
Rany") = Dom(y ") C ;=1 Dom(N*) =, Dom(A* A™).

Sincep = (1 —v)v", it follows thatA* A” p1/4 is everywhere defined and closed, and
therefore bounded, for ea¢hn > 0. In particularV C ﬂpzlLl’.
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(@) Leté =3, ~o%mlen >< em| € L? be orthogonal td/. SinceV is invariant
under the adjoint operation it suffices to show tlag; = 0 form > n > 0. Now

p1/4A*(i+k)Aip1/4
=1A-»Y2Ay 2+ D+ —1) -
ce(m—i 4 Dlepyk >< enl,

so, fixingk > 0, the orthogonality condition implies that, for each

Yt/ D V=1 (=i + =0, (7.0)

n>i

Now let 8, = appik/(n+1D---(n + k"4, Then the sequences,) is square—
summable and s¢f(z) = )_,.oB.2" defines an analytic function on the open unit

disc, and (7.1) says that and all of its derivatives vanish at= v/4. Thus f must
be identically zero, and se, ,+x = OV n. Sincek > 0 was fixed arbitrarily, this
establishes (a).

(b) The inclusiorWv,, c U,, is obvious from the definition and canonical commutation
relations. For the opposite inclusioniet< »n and letw be a unitmodulus number whose
square is a primitivém + 1)™ root of unity, and note that for € Z, Y7y w?" =0

unlessw? = 1. Thus, forl € {0, 1, ... ,m},
Y@ M(Q,)" = YT g 2 (A + 0¥ AT
=200 (3) Yo ¢D Ak AT 1ot
=(m+1(}])A"A"D +lo.,

where l.0.t. is a linear combination of terms of the fo#ty A* with j + k < m. Since
Wo = U = CpY/2, it follows inductively thatU, c W,. O
The differential operator given by
2

(gouwxn==(ﬁi}ff)¢%n——(“ ;Azywkn (7.2)

is the generator of a classical Ornstein—Uhlenbeck semigroup; its eigenpolynomials are
{pn : n > 0}, where

1 /¢L2+)"2}r n! n—2r

_ . 7.
4 pu2—221 rli(n—2r)! ’ (7:3)

pu(t) = ZZrSn l

and corresponding eigenvalue$n (12 — 12)/2).

Theorem 7.2.The L2-generator of the quantum Ornstein—Uhlenbeck semigroup, with
parameters. < u € 10, oo[ , has the form

2 2
ue—A
H(Z) = ( 2 ) ZnZOnPEnv

wherePg, is the orthogonal projection onto

E, :=Lin{pY*p,(0)pY* : 1zl = 1)
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and p,, is given by (7.3). A basis fd,, is obtained by restricting to the set
Q, = {w,Jl. :j=0,...,n},
wherew, is a unit modulus number whose square is a primitive- 1)™ root of unity.
Proof. In view of the relations Ram/4) c Dom(N),
NpY4 A% AT g4 = pHAA* A A% AT p4,
TpYA A% A pb/A = 1A p%T AT p1/4,

and Lemma 2.1, the subspa¥es contained in the domain dfy and Ry, and is left
invariant by both operators. Therefore, by Proposition #1¢C Dom(H)) and for
§eV,

A2+ u?

Hp)§ = ( )(NE +[END) + 2% — Au(A[EA™] + A*[EA)). (7.4)
The gauge invariance
§eV=T()%I(z) eV and Hp((T(2)*¢T(z)) = T'(2)*(H2)§)'(2)

follows from the commutation relatioh*I" (z) = z[I"(z) A*]. Switching foramoment to
the Schrodinger representation in whigh= 2-Y/2[Q +iP], 0 = M, andP = —i L,
commutation relations yield the identities ([FaR])

1

(A*AM, — 2A* My A + MyA*A) f = ( — 20"+ xga/)f, (7.52)
1

(AA*M, — 2AM,A* + M, AA®) f = ( - 50" - xgo’)f (7.5b)

for smoothy, andf € L?(R) for which both f andgf lie in the domain ofV = A*A.
Puttings = p¥4p(Q)pY*in (7.4), wherep is a polynomial, and using the commutation
relationsNp¥4 = [pY/4N], ApY* = vI/4p1/4A], gives

2
Hy (0" p(@)p"*) = oM*| 5-(4* 4p(Q) — 24" p(Q)A + p(Q)A™A)

32
+ 5 (AA"P(Q) — 24p(Q)A™ + p(Q) 44" | oM.
Using (7.5) and the functional calculus, this gives
—H (04 p(Q)pM*) = pM*(G% p)(@)p™*, (7.6)

whereG®V is the classical OU-generator (7.2). Applying gauge invariance to (7.6) we
obtain

Hey (0 p(0)0M% = p*G%V p)(0,)pY%. 7.7)
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Thus
2 2

H<2>§=H<M )s V&€ Ep,

in particular the subspac¢g, : n =0, 1, ...} are mutually orthogonal.
Sincep, is a polynomial of degree, it now follows from Lemma 7.1 that

E,=W,0W,1(n=1); dmE, = (n+1); @,20En = L%

andH,y) is of the form claimed. It remains only to prove tt&t:= {pY/*p,(Q,)p/*:
z € Q,} is a basis fotE,. From the proof of Lemma 7.1 ib € C is such that? is a
primitive (n + 1)1 root of unity then, for each = 0,1, ... , n, there is{fajin: j=
0,1,...,n} c Csuchthat

A*ZA(I’Z—I) = Z.’;:Oaj,l,”pn(ij) + |0t,
in particular, for each unit modulus there ardo;(z) : j =0,...,n} C Csuch that

pn(Q7) = Z?:O @j(2)pn(Q,i) + ot

By orthogonality the lower order terms (l.0.t.) must all vanish, tliuspansk,. Since
#S, = mn+ 1) =dimE,, S, is a basis forE,, and the proof is complete

Let GBP be the difference operator defined by
(GBPo) (k) = n2kip(k — 1) — @(k)} + A2k + Dipk + 1) — p(k)}, (7.8)

with the understanding(—1) = 0. ThenGBP is the generator of a birth and death
process, and its eigenvalues &m¢u® — 12) : n > 0}, each having multiplicity 1. We
may now give arl.?-view of Theorem 6.4.

Proposition 7.3.For any polynomial,
—Hy (0 g (N)p"*) = pY*(GPPq)(N) o4, (7.9)
Proof. In view of the commutation relation8¢o(N)e = ¢(N + 1)Ae, valid fore €
Lin{e, : n > O}, if £ = pY/4q(N)p/4, then
AEA*e = v2pY3G(N 4+ 1)(N + 1)pY4;
A*EAe = v Y4pYANG(N — 1)pY .
Equation (7.9) now follows easily from (7.4)o

Puttingm = 2k and/ = k in the computation in the proof of Lemma 7.1 (b), and
using mutual orthogonality of the eigenspacegigf) as in the proof of Theorem 7.2,
leads to the following interesting relationship between the respective eigenpolynomials
of the Ornstein—Uhlenbeck and birth and death generators:

Proposition 7.4.Let {p, : n > 0} and{q,, : m > 0} be respectively the (monic)
eigenpolynomials of the Ornstein—Uhlenbeck and birth and death generators, indexed
by increasing eigenvalues, then for edch

2k\ -1
qk(N)={<2k+1><k)} 330 P2u(Qu),

wherew? is a primitive (2k + 1) root of unity.

Theorem 7.2 and Egs. (7.7) and (7.9) together show how quantum theory can man-
ufacture a discrete (classical) process by knitting together a one parameter family of
classical continuous processes into a single quantum process.
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8. Quantum Brownian Motion

Wheni = pthereis nolonger an invariant state for the dynamics. However the quadratic
form (4.2) reduces to a multiple ¢4 -[|> which is a Dirichlet form with respect to the
trace, and therefore generates a symmetric Markov semigroug oand also deter-
mines a semigroup on the algebra, by the theory developed in [AH-K] and [DaL]. The
counterpartto (7.7) is

Lo(Q,) = (G2 9)(0,),

whereGBM is the generator of a classical Brownian motion. We shall therefore refer
to thequantum Brownian motion semigrouphe arguments of Sect. 5, in a simplified
form, continue to apply wheh = p, and so Theorem 5.1 holds in this case too. Thus
the quantum BM semigroup is a Feller semigroup with respect to the algebra of compact
operators. Not unexpectedly tié-spectrum is now the whole of the positive half-line.

Theorem 8.1.TheL?-generator of the quantum Brownian motion semigroup with equal
parameters. = u €]0, oo[ has spectrunfi0, ool.

Proof. Without loss we may suppose that= u = 1, thus letHp) = d}d4. Fort e R
ande > 0 let

gt,s = Vt Rs»

whereV; is the Weyl operator exiQ, 5 = expit[A + A*] and R, is the Yosida ap-

proximation to the identity ", N being the number operator. This is unitary,
p(A, A*)R, is Hilbert—Schmidt for any polynomiat, and the following commutation
relations are easily verified:

VAV, = A+it]l, VNV, =N +i[tA* —tA] + 121, [R.Al=€AR,.
It follows thaté; . € Dom(H 2)), and

Ho2)é e
= NV;R; + Vi[R:N1+ ViR, — AV,[R: A™] — A*V;[R.A]
= V{{N +itA* —itA+1°I + N+ I}R,
—V,(A+itl) e *A*R, — V,(A* — it])€ AR,
=25+ (L= )V, (N —itA}Re + (L= € )V, {(N + 1) +irA*} R,.

But
2 _ —eN 2_ —2en __ a2 -1
o2 = || = T ez = (1-e%)
n>0

therefore

Jre) " |Hbre — 1280e

2—>Oa33—>0.

This shows thaf0, co[C o (H(2)), but H(2) is nonnegative so the reverse inclusion holds
too. O
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