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Abstract: A class of dynamical semigroups arising in quantum optics models of masers
and lasers is investigated. The semigroups are constructed, by means of noncommutative
Dirichlet forms, on the full algebra of bounded operators on a separable Hilbert space.
The explicit action of their generators on a core in the domain is used to demonstrate the
Feller property of the semigroups, with respect to theC∗-subalgebra of compact oper-
ators. The Dirichlet forms are analysed and theL2-spectrum together with eigenspaces
are found. When reduced to certain maximal abelian subalgebras, the semigroups give
rise to the Markov semigroups of classical Ornstein–Uhlenbeck processes on the one
hand, and of classical birth-and-death processes on the other.

1. Introduction

The object of this paper is the investigation of the evolution equation

d

dt
Ptx = LPtx; P0 = id (1.1)

determined by the Lindblad-type operator

Lx = −µ2

2
(A∗Ax − 2A∗xA + xA∗A) − λ2

2
(AA∗x − 2AxA∗ + xAA∗). (1.2)

The equation is for an evolution of bounded linear operators on the complex Hilbert
spaceh = l2(Z+); the operatorsA andA∗ are the annihilation and creation operators
of the usual representation of the canonical commutation relations associated with the
quantum harmonic oscillator (defined in Sect. 4) and the constantsλ andµ satisfy:

µ > λ > 0 so that ν := λ2/µ2 ∈ ]0, 1[.
? F.C. was supported by an EU Fellowship in Nottingham.
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We may writeL in the alternative form

Lx = L∗
λxLλ + LµxL∗

µ + Gx + xG, (1.2′)

where

Lλ = λA∗, Lµ = µA∗, G = −1
2

(
λ2(N + 1) + µ2N

)
,

andN denotes the number operatorA∗A. The relevance of such evolution equations
for mathematical models of masers and lasers is discussed in [FRS]. Such equations
also arise in weak-coupling models of open quantum systems (see [Da1], Chap. 10,
[AAFL]).

The first mathematical problem that must be faced with an equation of the form (1.1)
is that the Lindbladian involves unbounded operators. One must therefore decide on the
space in which one seeks solutions, and also the sense in whichL is to be considered the
generator of a one parameter semigroupP = (Pt )t≥0 solving (1.1). Spaces on which
it is natural to consider this problem include: the von Neumann algebra of all bounded
operators onh; its predual, the Banach space of trace class operators onh; and theC∗-
algebra of compact operators onh. We shall denote theseL∞, L1 andK respectively,
and also writeLp for the Schattenp-class, so thatL2 denotes the Hilbert–Schmidt class.
As far as the continuity of the semigroup is concerned, due to the non-separability of
L∞ the appropriate topologies are respectively the weak∗-topology onL∞, the strong
topology onK and the weak or strong topology onL1.

In [FRS] weak∗-continuous solutions onL∞ are obtained from unitary solutions of
associated quantum stochastic differential equations, thereby extending the method of
[HuP] to unbounded coefficient quantum SDE’s. Ergodicity of these weak∗-continuous
solutions is also proved in [FRS].

In the present work a different approach is taken, based on the recent theory of
noncommutative Dirichlet forms ([Ci1,2, GL1,2]). Instead of attacking the problem
of closability and dissipativeness ofL on the nonseparable Banach spaceL∞, and
seeking to apply the Lumer–Phillips Theorem, we consider the equivalent but more
tractable problems of establishing closability and a Markov property for an associated
nonnegative quadratic formEν , on the separable Hilbert spaceL2. We exploit the fact
thatL2, together with the cone of nonnegative Hilbert–Schmidt operatorsL2+, and the
adjoint operation onL2, comprise a standard form forL∞. The equivalence of theL∞
andL2 problems (and solutions) is due to the existence of an invariant state for the
dynamics. This state provides the means of moving back and forth between algebra and
Hilbert space. Moreover it is theKMS-symmetryof the problem, with respect to this
state, which permits a quadratic form description of the generator of the dynamics.

The first advantage of this approach is that symmetry, semiboundedness and Hilbert
space domain consideration, make closability and the Markov property ofE much easier
to prove than closability and dissipativeness ofL. The second advantage is that studying
the domain of the nonnegative self-adjoint operator corresponding toE , one is able to
characterize the action ofL on an explicit core, and also to prove the strong continuity
of the semigroup onK (weak Feller property) and the invariance ofK under theL∞-
semigroup (Feller property). The third advantage is that we are able to obtain a complete
description of theL2-spectrum with associated eigenspaces.

It should be mentioned that the semigroups onL∞ constructed here are quasi-free,
having an explicit representation on Weyl operators (see [AlL], p. 63); in particular they
leave invariant the C*-algebra of the Weyl relations ([Sla]). However, since the distance
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between distinct Weyl operators is
√

2, the semigroups fail to be strongly continuous on
the Weyl algebra. These semigroups are also discussed in the (pre-quantum stochastic
calculus) paper [HIP].

In Sect. 2 we recall some of the properties of the standard form(L∞, L2, L2+, ∗),
whereL∞ is the faithful normal representation ofL∞ on the Hilbert spaceL2 obtained
by left multiplication:Lxξ = xξ for x ∈ L∞, ξ ∈ L2. We then establish basic properties
of left and right multiplication operatorsLX, RX, and bimodule derivationsdX on L2,
in whichX is an unbounded operator on the original Hilbert spaceh.

In Sect. 3 we recall the correspondence between symmetric (noncommutative) Dirich-
let forms onL2, symmetric Markov semigroups onL2 and KMS-symmetric Markov
semigroups onL∞ (specialized to the present setting). In Sect. 4, using the unbounded
operatorsLN , RN anddA we construct (for eachµ > λ > 0) a closed nonnegative
form E on L2 which is Markov with respect to a certain cyclic vectorξν ∈ L2+ (where
ν = λ2/µ2). We shall refer to the associated Markov semigroups onL2 andL∞ as
quantum Ornstein–Uhlenbeck semigroups.

In Sect. 5, motivated by Phillips’theory of dual semigroups ([Phi]) we define the weak
Feller and Feller properties for a weak∗-continuous semigroup onL∞, and prove that
the quantum O–U semigroups are Feller semigroups. We also show that, on an explicitly
given core, the action of theL∞-generator indeed coincides with the Lindblad-type
operator (1.2). This amounts to solutions of (1.1) on bothL∞ andK.

In Sect. 6 we prove ergodicity of the quantum O–U semigroups, and, by comparison
of E with certain other related forms, and application of the minimax principle, we derive
the discreteness of theL2-spectra of each quantum O–U generator. Although both these
results follow from the spectral analysis in the following section, they are included here
for the purpose of illustrating techniques that may be applicable when a complete spectral
analysis is not available. We also show how these semigroups provide a realisation of the
Markov semigroups of classical birth and death processes by restriction to the maximal
abelian subalgebra generated by the number operator. This nicely illustrates an important
feature of quantum Markov semigroups, namely that they may contain widely varying
classical Markov semigroups through restriction to different abelian subalgebras.

Section 7 contains a completeL2-spectral analysis, and reveals why we have chosen
to use the namequantum Ornstein-Uhlenbeckrather thanquantum birth and death. In
the limiting caseλ = µ we are dealing with a quantum Brownian motion semigroup.
This is treated in the final section by means of the tracial theory of noncommutative
Dirichlet forms ([AH-K, DaL]).

2. Unbounded Multiplication Operators and Derivations

Here we describe the standard form convenient for our present purposes, and introduce
the unbounded multiplication operators and derivations which will be used (in the fol-
lowing section) to construct the noncommutative Dirichlet forms we wish to investigate.
In future sectionsh will always be the sequence spacel2(Z+), but here it may be any
complex separable Hilbert space. The inner product islinear in its second argument.
The von Neumann algebra of all bounded operators onh is denotedL∞; its elements
by x, y, z, . . . ; and the faithful, normal, semifinite trace onL∞ (normalized so that on
projections it gives their dimension) is denoted Tr.

Let Lp (1 ≤ p < ∞) denote the Schatten classes, whose elements will be denoted
by Greek lettersξ, η, ρ, . . . . ThusL2 is the Hilbert–Schmidt class, and its inner product
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is given by〈ξ, η〉 = Tr (ξ∗η). Consider the maps

πL : L∞ → B(L2), πL(x) = Lx,

πR : L∞ → B(L2), πR(x) = Rx,

whereLx andRx are the left and right multiplication operators,ξ 7→ xξ andξ 7→ ξx,
respectively.πL defines a faithful, normal representation ofL∞, while πR defines a
faithful, normal representation of the opposite algebra(L∞)0. PuttingL∞ = πL(L∞)

andR∞ = πR(L∞) we have the commutant relations

(L∞)′ = R∞ and (R∞)′ = L∞

in B(L2).
The closed convex cone inL2 consisting of nonnegative Hilbert–Schmidt operators

is a self-dual cone in the sense that

L2+ =
{
ξ ∈ L2 : 〈ξ, η〉 ≥ 0 ∀η ∈ L2+

}
.

The associated antiunitary conjugationJ on L2 is simply the adjoint map onL2 :
Jξ ≡ ξ∗. We therefore haveJLxJ = Rx∗ , so thatJL∞J = R∞ = (L∞)′, and
LxJLxJ ξ = xξx∗ ≥ 0 wheneverξ ∈ L2+.

In summary (
L∞, L2, L2+, ∗

)

is a standard form forL∞. We refer to [Haa] for the definition of standard forms and
the proof of their uniqueness. The Dirichlet forms and Markov semigroups will be
constructed on this standard form, in the framework of [Ci1,2]. We shall use the fact
thatL2 is the complexification of the real Hilbert space of self-adjoint Hilbert–Schmidt
operators which itself is characterized by

L2
R

=
{
ξ ∈ L2 : 〈ξ, η〉 ∈ R ∀η ∈ L2+

}
.

Also note that each elementξ ∈ L2
R

may be uniquely expressed as a differenceξ =
ξ+ − ξ− in which ξ± ∈ L2+ and the support projections ofξ+ andξ− in L∞ (as well as
in R∞) are orthogonal.

The following notation (of Dirac) remains highly convenient. For vectorse, f in h,
let |e〉 〈f | denote the operator onh given by

|e〉 〈f | v = 〈f, v〉 e.

Thus, whene andf are unit vectors,|e〉 〈f | is a partial isometry with initial spaceCf

and final spaceCe.

Now let ρ0 ∈ L1, ϕ0 ∈ L∞∗ andξ0 ∈ L2 be respectively a strictly positive density
matrix, the corresponding (vector) state, and the corresponding vector. Thus, in terms of
a Hilbert basis (en) consisting of eigenvectors ofρ,

ρ0 = ∑
n≥1 γn |en〉 〈en| , with γn > 0 and

∑
γn = 1,

ϕ0(Lx) = Tr(ρ0x) = 〈ξ0, xξ0〉 ,

ξ0 = ρ
1/2
0 = ∑

n≥1 γ
1/2
n |en〉 〈en| .
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The action of the associated modular operator and modular group are given by:

1
1
2 ξ =

[
ρ

1/2
0 ξρ

−1/2
0

]
, at least forξ ∈ L∞ξ0 = L∞ρ

1/2
0 ;

σit (Lx) = Lρit xρ−it .

The symmetric embeddingof algebra into Hilbert space, determined by the faithful
normal stateϕ, takes the simple form:

ι(2) : L∞ → L2, ι(2)(Lx) = ρ1/4xρ1/4 = 11/4Lxξ0.

More generallyL∞ is symmetrically embedded intoLp by ι(p)(Lx) = ρ
1/2p
0 xρ

1/2p
0 .

We next consider unbounded multiplication operators and derivations onL2. Let X
be a closed and densely defined operator onh, with domain Dom(X). Its adjointX∗ is
then also closed and densely defined. For eachξ ∈ L2, viewed as an operator onh, Xξ

is closed, but not necessarily densely defined, whereasξX is densely defined but not
necessarily closed. We define left and right multiplication operators, and (unbounded)
derivations, onL2 as follows:

Dom(LX) =
{
ξ ∈ L2 : Dom(Xξ) = h andXξ ∈ L2

}
; LXξ = Xξ,

Dom(RX) =
{
ξ ∈ L2 : ξX is bounded and[ξX] ∈ L2

}
; RXξ = [ξX],

Dom(δX) = Dom(LX) ∩ Dom(RX); δX = LX − RX,

where [ ] denotes the closure of a (closable) operator. Notice that Dom(Xξ) = h
already implies thatXξ ∈ L∞ and also that ifξX is bounded then[ξX] ∈ L∞. Thus
our definitions involve a natural progression of restrictions onξ .

For a pair of Hilbert bases[e] = (en) and[f ] = (fn) for h, let

C00 ([e, f ]) = Lin {|en〉 〈fm|}
and letC00 ([e]) = C00 ([e, e]). ThusC00 ([e, f ]) is a dense subspace ofL2 consisting
of finite rank operators, and moreoverC00([e]) is a weak∗-dense∗-subalgebra ofL∞
whose norm closure isK.

Lemma 2.1.LetX be a closed densely defined operator onh.

(i) JDom(LX) = Dom(RX∗); JLXJ = RX∗ ;
(ii) LX is a closed densely defined operator onL2 affiliated toL∞, and satisfying:

LX∗ ⊂ (LX)∗; Dom(LX) = Dom(L|X|);

(iii) RX is a closed densely defined operator onL2 affiliated toR∞, and satisfying

RX∗ ⊂ (RX)∗; Dom(RX) = Dom(R|X∗|).

Proof. If ξ ∈ Dom(LX), then Dom(Xξ) = h andXξ ∈ L2 so ξ∗X∗ ⊂ (Xξ)∗ ∈
L2, which implies thatξ∗ ∈ Dom(RX∗) and(RX∗ξ∗)∗ = LXξ . ThusJDom(LX) ⊂
Dom(RX∗) andJRX∗J ⊃ LX. Conversely, ifη ∈ Dom(RX∗) thenηX∗ is bounded and[
ηX∗] ∈ L2, soXη∗ = [

ηX∗]∗ ∈ L2, thusη∗ ∈ Dom(LX). Therefore Dom(RX∗) ⊂
JDom(LX), and (i) follows.
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If (en) and(fn) are Hilbert bases forh contained in Dom(X) and Dom(X∗) respec-
tively, thenC00 ([e, f ]) is a dense subspace ofL2 contained in Dom(LX) ∩ Dom(RX).
HenceLX, RX andδX are all densely defined.

Let v|X| be the polar decomposition ofX so that|X| = v∗X. If ξ ∈ Dom(LX) then
Dom(|X|ξ) = Dom(v∗Xξ) = Dom(Xξ) = h and|X|ξ = (v∗X)ξ = v∗(Xξ) ∈ L2,
sinceL2 is an ideal ofL∞, soξ ∈ Dom(L|X|). Hence Dom(LX) ⊂ Dom(L|X|). The
reverse inclusion follows similarly, so Dom(LX) = Dom(L|X|).

If ξ ∈ Dom(LX∗) andη ∈ Dom(LX), thenXη ∈ L2, soξ∗Xη ∈ L1 andX∗ξ ∈ L2

so (X∗ξ)∗ ∈ L2. But (X∗ξ)∗η extends the everywhere defined operatorξ∗Xη, so the
two operators must coincide, and we have〈ξ, LXη〉 = Tr (ξ∗Xη) = Tr

(
(X∗ξ)∗ η

) =
〈LX∗ξ, η〉. Thus(LX)∗ ⊃ LX∗ .

The fact thatLX is closed follows easily from the closure ofX: if (ξn) is a sequence
in Dom(LX) such thatξn → ξ andXξn → η in L2, then for eachu ∈ h, ξnu → ξu

andXξnu → ηu in h, soξu ∈ Dom(X) andXξu = ηu, thereforeξ ∈ Dom(LX) and
LXξ = η.

The affiliation properties easily follow using the fact thatL2 is an ideal ofL∞, and
the remaining properties follow by similar arguments.ut
Lemma 2.2.Let X be a closed densely defined operator onh. ThenδX is a closable
densely defined operator satisfying

δX ⊂ (δX∗)∗ ; JδXJ = −δX∗ .

Moreover, ifDom(L|X|) = Dom(L|X∗|), thenDom(δX) is J -invariant.

Proof. We have already seen (in the proof of Lemma 2.1) that Dom(δX) ⊃ C00 ([e, f ])
whenever(en) and(fn) are Hilbert bases contained in Dom(X) and Dom(X∗) respec-
tively. Since

(δX)∗ = (LX − RX)∗ ⊃ L∗
X − R∗

X ⊃ LX∗ − RX∗ = δX∗ ,

replacingX by X∗ we haveδX ⊂ (δX∗)∗, in particularδX is closable. SinceJ is anti-
unitary,

JδXJ = JLXJ − JRXJ = RX∗ − LX∗ = −δX∗ .

If Dom(L|X|) = Dom
(
L|X∗|

)
then Dom(LX) = Dom(LX∗) and so Dom(RX) =

JDom(LX∗) = JDom(LX) = Dom(RX∗). Thus

J (Dom(LX) ∩ Dom(RX)) = Dom(RX∗) ∩ Dom(LX∗) = Dom(RX) ∩ Dom(LX) ,

in other wordsJDom(δX) = Dom(δX). ut
In view of the previous lemma we make the following definition:

dX := [δX],
for X closed and densely defined onh.
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Lemma 2.3.Let X be a closed densely defined operator onh. The real parts of the
domainsDom(LX), Dom(RX) and Dom(δX) are invariant under the modulus map

ξ 7→ |ξ | = (ξ∗ξ)
1
2 in L2. In fact we have the following characterisations of domains:

Dom(LX) ={
ξ ∈ L2 : Xξξ∗X∗ is bounded, densely defined and has trace class closure

}
and, forξ ∈ Dom(LX), ‖Xξ‖2

2 = Tr
([

Xξξ∗X∗]);
Dom(RX) ={
ξ ∈ L2 : X∗ξ∗ξX is bounded, densely defined and has trace class closure

}
and, forξ ∈ Dom(RX), ‖[ξX]‖2

2 = Tr
([

X∗ξ∗ξX
])

.

Proof. Let ξ ∈ L2 and letT0 = Xξξ∗X∗. If ξ ∈ Dom(LX) then Dom(Xξ) = h and
Xξ ∈ L2, so Dom(T0) = Dom(X∗) which is dense andT0 ⊂ Xξ(Xξ)∗ ∈ L1. Thus the
closure ofT0 coincides withXξ(Xξ)∗ and, by Lemma 2.1,

‖Xξ‖2
2 = ∥∥[

ξ∗X∗]∥∥2
2 = Tr

(
Xξ (Xξ)∗

) = Tr(T ) = ‖T ‖1 .

Conversely, ifT0 is densely defined and bounded, and its closureT is trace class, thenT =
Xξξ∗X∗ ⊂ Xξ(Xξ)∗ = ∣∣(Xξ)∗

∣∣. Since a densely defined bounded operator has only

one closed extension,T = ∣∣(Xξ)∗
∣∣2. Thus(Xξ)∗ is everywhere defined and Hilbert–

Schmidt, soξ∗ ∈ Dom(RX∗) = JDom(LX), soξ ∈ Dom(LX). This establishes the
first characterisation, and the second now follows from Lemma 2.1(i). The invariance
properties are now immediate too.ut

3. Noncommutative Dirichlet Forms

In this section we first summarize the general results on Dirichlet forms and Markov
semigroups, specialized to the standard form

(L∞, L2, L2+, ∗)
described in Sect. 2. The

full theory is developed in [Ci1,2] and [GL1,2]. We also recall the definition and basic
properties of the unbounded annihilation, creation and number operators onl2(Z+). Let
ρ0, ϕ0 and ξ0 be corresponding strictly positive density matrix, faithful normal state
and positive cyclic vector, as in Sect. 2. The order intervals

{
η ∈ L2 : 0 ≤ η ≤ ξ0

}
and{

η ∈ L2 : η ≤ ξ0
}

will be denoted[0, ξ0] and] − ∞, ξ0] respectively. These are closed
convex subsets ofL2, and we shall denote the nearest point projection onto[0, ξ0] and
] − ∞, ξ0] by η 7→ ηI andη 7→ η∧ respectively. Forη ∈ L2

R
we have

η∧ = η − (η − ξ0)+ = ξ0 − (η − ξ0)−.

Corresponding to any self-adjoint contraction semigroup
(
P

(2)
t

)
onL2 its form generator

is the unique closed nonnegative quadratic formE , given by

E[η] = lim
t→0

t−1
〈
η, (I − P

(2)
t )η

〉
,

and conversely such a form determines the semigroup throughP
(2)
t = e−tH(2) , where

H(2) = H ∗
(2) ≥ 0 is determined by

∥∥∥(H(2))
1/2η

∥∥∥2 = E[η], Dom
(
(H(2))

1/2
)

=
{
η ∈ L2 : E[η] < ∞

}
.
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A self-adjoint contraction semigroup onL2 is called(sub-)Markovwith respect toξ0 if

P
(2)
t ([0, ξ0]) ⊂ [0, ξ0] ∀t,

andconservativeif also

P
(2)
t ξ0 = ξ0 ∀t.

A densely defined nonnegative quadratic formE is calledMarkovwith respect toξ0 if

η ∈ Dom(E) ⇒ η∗ ∈ Dom(E) andE [
η∗] = E [η] , (3.1a)

η = η∗ ∈ Dom(E) ⇒ ηI ∈ Dom(E) andE[ηI ] ≤ E[η], (3.1b)

and is calledDirichlet if it is also closed.
The Markov conditions (a) and (b) on a closed densely defined nonnegative quadratic

form on L2 are equivalent to the (sub-)Markov property of the corresponding semi-
group ([Ci1] Theorem 4.11, [GL1] Theorem 5.7). This amounts to a noncommutative
generalisation of the Beurling–Deny characterisation of the form generators of clas-
sical symmetric Markov semigroups. As in the commutative case, there is a bijective
correspondence between such semigroups and symmetric weak∗-continuous positive
contraction semigroups onL∞. In the noncommutative case the correspondence arises
not simply through common restriction, but through intertwining with the symmetric
embedding of the algebra into Hilbert space:ι(2) ◦ P

(∞)
t = P

(2)
t ◦ ι(2); explicitly

ρ
1/4
0 P

(∞)
t (x)ρ

1/4
0 = P

(2)
t

(
ρ

1/4
0 xρ

1/4
0

)
.

Symmetry of theL∞-semigroups involves the modular automorphism group of the state,
and also arises through the symmetric embedding:

ϕ
(
σi/2(a)P

(∞)
t (b)

)
= ϕ

(
P

(∞)
t (a)σ−i/2(b)

)
, (3.2a)

Tr
(
ι(1)(a)P

(∞)
t (b)

)
= Tr

(
P

(∞)
t (a)ι(1)(b)

)
, (3.2b)

where, in the first identitya andb are restricted to the algebra of analytic elements of(σt ).
To emphasize this involvement of the state, the condition (3.2) is calledKMS-symmetry.
In the present standard form it takes the explicit form

Tr
(
ρ

1/2
0 aρ

1/2
0 P

(∞)
t (b)

)
= Tr

(
P

(∞)
t (a)ρ

1/2
0 bρ

1/2
0

)
. (3.2′)

This kind of symmetry was discussed by several authors in the eighties (see [Pet, GrK]).
If the quadratic form of a self-adjoint contraction semigroup onL2 satisfies (3.1a)

andE [ξ0] = 0, then (3.1b) is equivalent to the weaker condition

η = η∗ ∈ Dom(E) ⇒ η± ∈ Dom(E) andE (η+, η−) ≤ 0 (3.3)

which is also equivalent to

η = η∗ ∈ Dom(E) ⇒ |η| ∈ Dom(E) andE [|η|] ≤ E [η] . (3.3′)

In general, under (3.1a), the condition (3.3) is equivalent only topositivityof the semi-
group ([Ci2], Theorem 4.10).
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4. Quantum Ornstein–Uhlenbeck Semigroups

In this section we obtain the KMS-symmetric Markov semigroup onL∞, which solves
(1.1), by constructing a Dirichlet form onL2 and using the theory outlined in Sect. 3.
Thus,from now on, let h = l2(Z+), let [e] = {en : n ∈ Z+} be the usual Hilbert basis,
and withµ > λ > 0 andν = λ2/µ2 fixed, letρν ∈ L1, ϕν ∈ L∞∗ andξν ∈ L2 be given
by

ρν = (1 − ν)
∑

n≥0 νn |en〉 〈en| ,
ϕν(Lx) = Tr (ρνx) = 〈ξν, xξν〉 ,

ξν = ρ1/2
ν = (1 − ν)1/2 ∑

n≥0 νn/2 |en〉 〈en| .
Also let(σt ) andι(p) denote the associated modular automorphism group and symmetric
embeddings, and we shall abbreviateC00([e]) to C00.

For constructing the Dirichlet forms we shall apply the results of Sect. 2 to the
number, annihilation and creation operators defined as follows. Thenumber operator
N is the self-adjoint multiplication operatorα = (αn) 7→ (nαn), with maximal domain{
α ∈ h : ∑

n≥0 |nαn|2 < ∞}
. The annihilation and creation operatorsare given by

Dom(A) = Dom(A∗) = Dom
(√

N
)

with

Aen =
{√

nen−1 if n > 0, A∗en = √
n + 1en+1.

0 if n = 0;
The operatorsA andA∗ are closed and mutually adjoint,A∗A = N , whereasAA∗ =
N + I , and in terms of the isometric right shift operatorS given bySen = en+1, we
have the relations

A∗ = √
NS = S

√
N + I ; A = √

N + IS∗ = S∗√N, (4.1)

which are not merely algebraic, but are also precise in terms of operator domains.

Proposition 4.1.Let ξ ∈ D := Dom
(
L√

N

)
∩ Dom

(
R√

N

)
. Then the following ex-

pressions are all finite, and they coincide:

1
2

{
‖(µLA − λRA) ξ‖2 + ∥∥(µLA − λRA) ξ∗∥∥2

}
, (4.2a)

1
2

{
‖(µLA − λRA) ξ‖2 + ‖(µRA∗ − λLA∗) ξ‖2

}
, (4.2b)

λµ ‖dAξ‖2 + 1
2 (λ − µ)2

{∥∥∥L√
Nξ

∥∥∥2 +
∥∥∥R√

Nξ

∥∥∥2
}

− λ (µ − λ) ‖ξ‖2 , (4.2c)

1
2

∑
n,m≥0

{∣∣∣λ√
m + 1αn

m − µ
√

n + 1αn+1
m+1

∣∣∣2 ,

+
∣∣∣λ√

n + 1αn
m − µ

√
m + 1αn+1

m+1

∣∣∣2
}

+ 1
2µ2

∑
n≥1

n

{∣∣∣α0
n

∣∣∣2 + ∣∣αn
0

∣∣2} ,

(4.2d)

whereξ = ∑
m,n≥0 αn

m |em〉 〈en|. Moreover, ifξ ∈ Dom(LN) ∩ Dom(RN), then there is
a fifth useful equal expression:〈

ξ, 1
2

(
λ2 + µ2

)
(Nξ + [ξN ]) + λ2ξ − λµ

(
A

[
ξA∗] + A∗ [ξA]

)〉
. (4.3)
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Proof. By Lemma 2.1(ii) the domains ofLA, L√
N , L√

N+1 andLA∗ all coincide. By
Lemma 2.1(i) the domains ofRA, R√

N+1, R√
N andRA∗ all coincide too. It follows

that each of the expressions (4.2a–d) is finite and, since Dom(LN) ∩ Dom(RN) ⊂
Dom(LA∗RA), (4.3) is finite too. By another application of Lemma 2.1(i), (4.2a) and
(4.2b) coincide. Straightforward calculations verify that (4.2b–d) also coincide, and that
(4.3) equals (4.2b) under the given domain constraint onξ . ut

Theorem 4.2.LetD = Dom
(
L√

N

)
∩ Dom

(
R√

N

)
, and letE : D → R+ be the map

defined by any of the expressions (4.2a–d). ThenE is a Dirichlet form with domainD
satisfyingE [ξν ] = 0. MoreoverC00 is a core forE .

Proof. By (4.2a) we see thatE is a nonnegative quadratic form satisfying theJ -invariance
condition (3.1a). Using (4.2c) write

E = λµE [1] + 1
2 (λ − µ)2 E [2] − λ (µ − λ) , (4.4)

whereE [1][ξ ] = ‖dAξ‖2 andE [2][ξ ] =
∥∥∥L√

Nξ

∥∥∥2 +
∥∥∥R√

Nξ

∥∥∥2
. By Lemma 2.1,E [2]

is the sum of two closed quadratic forms, and is therefore closed. ThereforeE itself is
closed, being the sum of closed formsλµE [1], 1

2 (λ − µ)2 E [2] and−λ (µ − λ) I .
By Lemma 2.1 ifξ ∈ D then

‖dAξ‖2 = ‖LAξ − RAξ‖2 ≤ 2
(
‖LAξ‖2 + ‖RAξ‖2

)

= 2

(∥∥∥L√
Nξ

∥∥∥2 +
∥∥∥R√

N+1ξ

∥∥∥2
)

= 2
(
E [2][ξ ] + ‖ξ‖2

)
.

Thus we have the comparison of forms:

E ≤ (λ + µ)2 E [2] + λ (λ + µ) I. (4.5)

In particular, since Dom(E) = Dom
(E [2]), any form core forE [2] is also a form core

for E . Puttingpk = ∑k
n=0 |en〉 〈en|, we havepkξpk ∈ C00 for anyξ ∈ L2 and it is easy

to see that, forξ ∈ D,

pkξpk → ξ ; √
Npkξpk → √

Nξ and
[
pkξpk

√
N

]
→

[
ξ
√

N
]
.

HenceC00 is a form core forE [2] and thus by (4.5) it is also a form core forE .
Sinceν = λ2/µ2 and

LAξν = (1 − ν)1/2 ∑
n≥1 νn/2√n |en−1〉 〈en|

= (1 − ν)1/2 ∑
n≥0 ν(n+1)/2

√
n + 1 |en〉 〈en+1| = √

νRAξν,

we have(µLA − λRA) ξν = 0. Butξ∗
ν = ξν so by (4.2a)E [ξν ] = 0. It therefore remains

only to establish thatE satisfies (3.3).

By Lemma 2.3 both Dom
(
L√

N

)
∩ L2

R
and Dom

(
R√

N

)
∩ L2

R
are left invariant by

the modulus mapξ → |ξ |, henceD ∩ L2
R

is invariant under this map, and therefore
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also under the mapsξ 7→ ξ±. Lemma 2.3 also implies thatE [2] [|ξ |] = E [2] [ξ ] for
ξ ∈ D ∩ L2

R
. Now for ξ ∈ C00 ∩ L2

R
, since

[
A∗ξ−A

]
,
[
Aξ−A∗] ∈ L2+,

E [1] (ξ+, ξ−) = 〈
ξ+, d∗

AdAξ−
〉

= 〈
ξ+, A∗Aξ− − [

A∗ξ−A
] − [

Aξ−A∗] + [
ξ−AA∗]〉

≤ 〈
ξ+, A∗Aξ−

〉 + 〈
ξ+,

[
ξ−AA∗]〉

= 〈Aξ+, Aξ−〉 + 〈[
ξ+A

]
,
[
ξ−A

]〉
= Tr

([
Aξ+ξ−A∗]) + Tr

([
A∗ξ+ξ−A

]) = 0,

using the polarised form of the identities in Lemma 2.3. Therefore, forξ ∈ C00 ∩ L2
R

,
E [1] [|ξ |] ≤ E [1][ξ ] and so, by (4.4),E [|ξ |] ≤ E [ξ ] too. Now letξ ∈ D∩L2

R
and choose

a sequence(ξn) in C00∩L2
R

converging toξ in the quadratic form norm ofE . It is easily
verified that|ξn| → |ξ | so, by the lower semicontinuity ofE ,

E [|ξ |] ≤ lim inf E [|ξn|] ≤ lim inf E [ξn] = E [ξ ] .

This completes the proof.ut
From the results of Sect. 3 we therefore have

Corollary 4.3. There is a self-adjoint contraction semigroupP (2) on L2, with form
generator (4.2), which is Markov with respect toξν , and a weak∗-continuous positive
contraction semigroupP (∞) onL∞, determined byι(2) ◦ P

(∞)
t = P

(2)
t ◦ ι(2), which is

KMS-symmetric with respect toϕν , and also conservative.

The generator−H(2) of the symmetric Markov semigroupP (2) satisfies

H(2) ⊃ 1
2

(
λ2 + µ2

)
(LN + RN) + λ2 − λµ (LARA∗ + LA∗RA) , (4.6)

as is clear from (4.3). In the next section we investigateP (∞), and its weak∗-generator
−H(∞).

5. The Feller Property

The R.S. Phillips theory of dual semigroups ([Phi])implies that there is a Banach sub-
space ofL∞, which we shall call thePhillips subspaceand denote byB, on which the
semigroupP (∞) is strongly continuous. MoreoverB is the norm closure of the domain
of the weak∗-generator ofP (∞), andB is also the maximal subspace on whichP (∞) is
strongly continuous. This justifies the following definition.

A weak∗-continuous semigroupT = (Tt )t≥0 onL∞ satisfies aweak Feller property
if there is a weak∗-dense, separableC∗-subalgebraA of L∞ on whichT is strongly
continuous:

lim
t→0

‖Tta − a‖ = 0 ∀a ∈ A.

The semigroup isFeller if moreover it leaves such aC∗-subalgebra invariant:

Tt (A) ⊂ A ∀t ≥ 0.

By the maximality of the Phillips subspace, any such algebraA satisfiesA ⊂ B.
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Theorem 5.1.Each quantum Ornstein–Uhlenbeck semigroupP (∞) is Feller with re-
spect to the algebra of compact operatorsK. The subalgebraC00 is both anL∞-core

for the generator of
(
P

(∞)
t |K

)
and also a weak∗-core forL, the weak∗-generator of

P
(∞)
t . Moreover the action ofL onx ∈ C00 is given by each of the following expressions:

− 1
2µ2 {

A∗Ax + [
xA∗A

] − 2
[
A∗xA

]} − 1
2λ2 {

AA∗x + [
xAA∗] − 2

[
AxA∗]} ,

(5.1a)

− 1
2µ2

{
Nx + [xN ] − 2

[√
NSxS∗√N

]}

− 1
2λ2

{
(N + 1)x + [x(N + 1)] − 2

[√
N + 1S∗xS

√
N + 1

]}
, (5.1b)

Gx + [xG] + [
L∗

λxLλ

] + [
LµxL∗

µ

]
, (5.1c)

whereG = −1
2

{(
λ2 + µ2

)
N + λ2

}
, Lλ = λA∗ andLµ = µA∗.

The proof proceeds through a series of lemmas. Since the weak∗-generatorL is
−H(∞), we use both notations, according to convenience.

Lemma 5.2.Each O–U semigroup is weakly Feller with respect toK and its L∞-
generator satisfies:

Dom(L) ⊃ C00, (5.2)

ι(2)
(
H(∞)x

) = H(2)ι
(2)(x) ∀x ∈ C00, (5.3)

L(C00) ⊂ C00. (5.4)

Proof. Since ι(2) (|en〉 〈em|) = (1 − ν)1/2 ν(n+m)/4 |en〉 〈em|, we have the identity
ι(2) (C00) = C00. SinceH(2) leavesC00 invariant, as is clear from (4.6),

K : x 7→
(
ι(2)

)−1
H(2)ι

(2)(x)

defines an operator onL∞ with domainC00, which leaves this domain invariant. Letx ∈
C00, ξ ∈ L2 andz = (ι(2))∗(ξ) = ρ

1/4
ν ξρ

1/4
ν ∈ L1, thenι(2)(x) ∈ C00 ⊂ Dom

(
H(2)

)
,

so 〈
z, (x − P

(∞)
t x)

〉
=

〈
ξ, ι(2)(x) − P

(2)
t ι(2)(x)

〉

=
〈
ξ,

∫ t

0
ds P (2)

s H(2)ι
(2)(x)

〉

=
∫ t

0
ds

〈
ξ, ι(2) ◦ P (∞)

s (Kx)
〉

=
∫ t

0
ds

〈
z, P (∞)

s (Kx)
〉
.

Since the semigroupP (∞) is contractive, this identity forz extends from the dense
subspace

(
ι(2)

)
∗ (L2) to all of L1 by the Dominated Convergence Theorem. Dividing by

t and lettingt ↘ 0 therefore gives

x ∈ Dom
(
H(∞)

)
and H(∞)x = Kx.

This establishes (5.2–4) and also that the Phillips subspaceB containsC00. Since the
closure ofC00 in L∞ is K, andB is closed,B must containK also. ut
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Lemma 5.3.The expressions (5.1a–c) all coincide withLx, for x ∈ C00.

Proof. The expressions (5.1a) and (5.1b) coincide by the explicit polar decompositions
(4.1). A simple computation on the basis elements|en〉 〈em| of C00 shows that (5.1c)
agrees with (5.1a). LetK0 : C00 → C00 be the map given by these common expressions.
The identities

ρ1/4
ν A∗en = ρ1/4

ν

√
n + 1en+1 = (1 − ν)1/4ν(n+1)/4

√
n + 1en+1 = ν1/4A∗ρ1/4

ν en,

give the following commutation relations, forx ∈ C00:

ρ1/4
ν A∗x = ν1/4A∗ρ1/4

ν x; ρ1/4
ν Ax = ν−1/4Aρ1/4

ν x; ρ1/4
ν Nx = Nρ1/4

ν x.

Thus, sinceν = λ2/µ2,

ρ1/4
ν

(
µ2 [

A∗xA
] + λ2 [

AxA∗]) ρ1/4 = µ2ν1/2 [
A∗ξA

] + λ2ν−1/2 [
AξA∗]

= λµ
{[

A∗ξA
] + [

AξA∗]} ,

whereξ = ι(2)(x). This gives the following identity forx ∈ C00:

ι(2)(K0x)

= −1
2

{(
λ2 + µ2

) (
Nι(2)(x) +

[
ι(2)(x)N

])
+ λ2ι(x)

}
+ λµ

{[
A∗ξA

] + [
AξA∗]}

= −H(2)ι
(2)(x)

= ι(2) (Lx) ,

by (4.6) and (5.3). By the injectivity ofι(2), this completes the proof.ut
Lemma 5.4.There is a timeT > 0, depending only onλ andµ, such that

∑
k≥0

tk
∥∥∥Lkx

∥∥∥ /k! < ∞

for all x ∈ C00 and t ∈ [0, T [. In particular each element ofC00 is an analytic vector
for L. For t ∈ [0, T [ andx ∈ C00, P

(∞)
t x = ∑

k≥0(k!)−1tkLkx.

Proof. PutL = −H(∞). We know, by (5.4), thatL leavesC00 invariant so thatC00 ⊂⋂
N≥1 Dom

(Lk
)
. If x = |en〉 〈em| then

Lx = αnm |en−1〉 〈em−1| + βnm |en〉 〈em| + γnm |en+1〉 〈em+1| , (5.5)

where

αnm = λ2√nm; βnm = −1

2

(
λ2 + µ2

)
(n + m) − λ2;

γnm = µ2
√

(n + 1)(m + 1).
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Since |αnm| + |βnm| + |γnm| ≤ (
λ2 + µ2

)
(n + m + 1), iterating (5.5) leads to the

estimate

∥∥∥Lkx

∥∥∥ ≤
(
λ2 + µ2

)k

(n + m + 1) (n + m + 3) · · · (n + m + 2k − 1)

≤ 2k
(
λ2 + µ2

)k

(n + m + 1) (n + m + 2) · · · (n + m + k)

= 2k
(
λ2 + µ2

)k

k!(n+m+k
n+m

)

≤ 2n+m4k
(
λ2 + µ2

)k

k! ,

thus puttingT = [
4(λ2 + µ2)

]−1
,
∑

k≥0 tk
∥∥Lkx

∥∥ /k! < ∞ for t < T . Since any
element ofC00 is a finite linear combination of elements of the form|en〉 〈em|, this
finiteness holds for anyx in C00. We may therefore define mapsSt : C00 → L∞, for
t ∈ [0, T [, by

Stx =
∑
k≥0

(k!)−1tkLkx.

Since eachLkx ∈ C00, Stx ∈ K. By (5.4), forx ∈ C00,

d

dt
Stx =

∑
k≥0

(k!)−1tkLk+1x =
∑
k≥0

L
(
(k!)−1 tkLkx

)
∀t ∈ [0, T [.

Now the series
∑

(k!)−1tkLkx and
∑ L (

(k!)−1 tkLkx
)

are both norm convergent and
so also weak∗-convergent, andL is weak∗-closed, so

Stx ∈ Dom(L) and
d

dt
Stx = L (Stx) ∀t ∈ [0, T [.

By the uniqueness of the solution of the Cauchy problem,

P
(∞)
t x = Stx =

∑
k≥0

(k!)−1tkLkx (5.6)

for x ∈ C00 andt ∈ [0, T [. ut
Proof of the theorem.SinceK is the norm closure ofC00, the inclusion (5.2) implies
that the Phillips subspace includesK, and soP (∞) is weakly Feller with respect to
K. The contractivity of eachP (∞)

t and (5.6) together imply thatP (∞)
t (K) ⊂ K for

t ∈ [0, T [. Invariance for all positive times now follows from the semigroup property, so
P (∞) is strongly Feller. The identification of (5.1) withLx, for x ∈ C00, is contained in
Lemma 5.3. Finally, sinceC00 is weak∗-dense andH(∞)-invariant, it is a weak∗-core
for H(∞) ([BrR], Corollary 3.7), and since it is norm dense inK, C00 is also a core for

the generator of
(
P

(∞)
t |K

)
. This completes the proof.ut
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6. Ergodicity and Discreteness of Spectrum

We saw inTheorem 4.2 that the quantum O–U semigroups have zero at the bottom of their
L2-spectrum, and that zero is an eigenvalue corresponding to the eigenvectorξν . In the
present section we shall strengthen this by proving ergodicity of the semigroupsP (2)

andP
(∞)
t , and discreteness of theL2-spectrum. The results contained in this section

are subsumed by those of the final section, however they are included here since the
arguments used may be applicable in cases where it is difficult to find the whole spectrum.
L∞-ergodicity has been demonstrated by different methods in [FRS].

A positivity preserving self-adjoint contraction semigroup(Tt ) onL2 is ergodicif

∀ξ, η ∈ L2+\ {0} ∃t > 0 such that〈ξ, Ttη〉 > 0.

We shall use the following result from [Ci1]:

Theorem 6.1.Let (Tt ) be a positivity preserving self-adjoint contraction semigroup on
L2. If zero is an eigenvalue of the generator of the semigroup, then the following are
equivalent:

(i) the multiplicity of the zero eigenvalue is one and it has a strictly positive eigenvector;
(ii) (Tt ) is ergodic.

Strict positivity for a vector inL2 means that its support is the identity inL∞,
equivalently the vector is cyclic forL∞. A semigroup(St ) onL∞ is ergodicif

Stx = x ∀t ≥ 0 ⇒ x = α1 for someα ∈ C.

Theorem 6.2.The quantum O–U semigroupsP (2) andP (∞) are ergodic.

Proof. By Theorem 4.2,E [ξν ] = 0, so zero is an eigenvalue of the generator ofP (2). The
representation (4.2d) makes it clear that only multiples ofξν satisfyE [ξ ] = 0. Sinceξν is
strictly positive,L2-ergodicity follows from Theorem 6.1. NowL∞-ergodicity follows
from the injectivity of the symmetric embeddingι(2). ut
Theorem 6.3.TheL2-spectrum of the quantum O–U semigroups are discrete.

Proof. As in the proof of Theorem 4.2 we represent the O–U Dirichlet form as

E = λµE [1] + 1
2(λ − µ)2E [2] − λ(µ − λ)I,

whereE [1][ξ ] = ‖dAξ‖2 andE [2][ξ ] =
∥∥∥L√

Nξ

∥∥∥2 +
∥∥∥R√

Nξ

∥∥∥2
. Let H [1] = d∗

AdA

andH [2] = ∑
k≥0 kRk, whereRk is the orthogonal projection onto the linear span of

{|en〉 〈em| : n + m = k}. ClearlyC00 is a core forH [2] so that (by the proof of Theorem
4.2)H [2] is the self-adjoint operator associated withE [2]. Now recall the comparison of
forms obtained in the same proof (4.4) – this may be writtenH(2) ≥ K, where

K = 1
2 (λ − µ)2 H [2] − λ(µ − λ)I.

It follows from the minimax principle that the infimum of the essential spectrum ofH(2)

is greater than that ofK ([Da2], Lemma 1.2.2). SinceK has empty essential spectrum,
so doesH(2); the spectrum is therefore discrete.ut
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As a final result of this section we consider the restriction of the quantum O–U
semigroups to the abelian subalgebra consisting of bounded functions of the number
operator, i.e. the weak∗-closed linear span of{|en〉 〈en| : n ∈ Z+}, which we identify
with l∞(Z+).

Theorem 6.4.The semigroupP (∞) leavesl∞(Z+) invariant. Its restriction tol∞(Z+)

is the Markov semigroup of the classical birth and death process with birth rates(
λ2(k + 1)

)
k≥0 and death rates

(
µ2k

)
k≥0.

Proof. Let c0 andc00 denote the subalgebras ofl∞ consisting of sequences which tend
to zero, respectively vanish after a finite number of terms. Recall the proof of Lemma
5.4. By (5.5),L (|en〉 〈en|) is given by

λ2n |en−1〉 〈en−1| −
{(

µ2 + λ2
)

n + λ2
}

|en〉 〈en| + µ2(n + 1) |en+1〉 〈en+1| . (6.1)

Moreover, fort ∈ [0, T [ andx in l∞ ∩ C00 = c00, P
(∞)
t x ∈ l∞ ∩ K = c0, by Lemma

5.4. By norm density ofc00 in c0 and weak∗-density ofc00 in l∞, together with the
norm and weak*-continuity of eachP (∞)

t and the semigroup property ofP (∞), both
c0 andl∞ are left invariant, and semigroups are induced on these abelian subalgebras.
Now one can recognise in (6.1) the action of the generator of a classical birth-and-death
process (putϕ = δn, whereδn(k) = 1 if k = n and 0 otherwise, in (7.8) below).ut

7. L2-Spectrum: Caseλ < µ

In this section we shall obtain a complete description of theL2–spectrum of the quantum
Ornstein–Uhlenbeck semigroups, together with multiplicities and eigenspaces. We shall
also see how both classical Ornstein–Uhlenbeck semigroups and classical birth and death
processes are embedded within each quantum semigroup.

The notation developed in the previous sections will be used, together with:

0(z) = z−N ; Qz = 2−1/2[zA + zA∗]
for z ∈ C of unit modulus. Thus, writingQ for Qz whenz = 1,

Qz = 0(z)∗Q0(z).

Lemma 7.1.Letρ = ρν . Then

(a) V := Lin{ρ1/4A∗iAjρ1/4 : i, j ≥ 0} is a dense subspace ofL2.
(b) Un = Wn for eachn ≥ 0, whereUn := Lin{ρ1/4A∗iAjρ1/4 : i + j ≤ n} andWn :=

Lin{ρ1/4Qm
z ρ1/4 : |z| = 1, m ≤ n}.

Proof. First note that, forγ ∈ ]0, 1[ ,

Ran(γ N) = Dom(γ −N) ⊂ ⋂
k≥1 Dom(Nk) = ⋂

l,m Dom(A∗lAm).

Sinceρ = (1− ν)νN , it follows thatA∗lAmρ1/4 is everywhere defined and closed, and
therefore bounded, for eachl, m ≥ 0. In particularV ⊂ ⋂

p≥1 Lp.



Quantum Ornstein–Uhlenbeck Semigroups 101

(a) Letξ = ∑
n,m≥0 αnm|en >< em| ∈ L2 be orthogonal toV . SinceV is invariant

under the adjoint operation it suffices to show thatαnm = 0 for m ≥ n ≥ 0. Now

ρ1/4A∗(i+k)Aiρ1/4

= (1 − ν)1/2νk/4 ∑
n≥0 νn/2√(n + 1) · · · (n + k)n(n − 1) · · ·

· · · (n − i + 1)|en+k >< en|,
so, fixingk ≥ 0, the orthogonality condition implies that, for eachi,∑

n≥i

αn,n+k

√
(n + 1) · · · (n + k)νn/4n(n − 1) · · · (n − i + 1)ν(n−i)/4 = 0. (7.1)

Now let βn = αn,n+k

√
(n + 1) · · · (n + k)νn/4. Then the sequence(βn) is square–

summable and sof (z) = ∑
n≥0 βnz

n defines an analytic function on the open unit
disc, and (7.1) says thatf and all of its derivatives vanish atz = ν1/4. Thusf must
be identically zero, and soαn,n+k = 0 ∀ n. Sincek ≥ 0 was fixed arbitrarily, this
establishes (a).

(b) The inclusionWn ⊂ Un is obvious from the definition and canonical commutation
relations. For the opposite inclusion letm ≤ n and letω be a unit modulus number whose
square is a primitive(m + 1)th root of unity, and note that forr ∈ Z,

∑m
j=0 ω2jr = 0

unlessω2r = 1. Thus, forl ∈ {0, 1, . . . , m},∑m
j=0 ωj(m−2l)(Qωj )m = ∑m

j=0 ω−2lj (A + ω2jA∗)m

= ∑m
k=0

(
m
k

) ∑m
j=0 ω2j (k−l)A∗kA(m−k) + l.o.t.

= (m + 1)
(
m
l

)
A∗lA(m−l) + l.o.t.,

where l.o.t. is a linear combination of terms of the formA∗jAk with j + k < m. Since
W0 = U0 = Cρ1/2, it follows inductively thatUn ⊂ Wn. ut

The differential operator given by

(GOUϕ)(t) =
(µ2 + λ2

4

)
ϕ′′(t) −

(µ2 − λ2

2

)
tϕ′(t) (7.2)

is the generator of a classical Ornstein–Uhlenbeck semigroup; its eigenpolynomials are
{pn : n ≥ 0}, where

pn(t) = ∑
2r≤n

{
− 1

4
· µ2 + λ2

µ2 − λ2

}r n!
r!(n − 2r)! t

n−2r , (7.3)

and corresponding eigenvalues−{n(µ2 − λ2)/2}.
Theorem 7.2.TheL2-generator of the quantum Ornstein–Uhlenbeck semigroup, with
parametersλ < µ ∈ ]0, ∞[ , has the form

H(2) =
(µ2 − λ2

2

) ∑
n≥0 nPEn,

wherePEn is the orthogonal projection onto

En := Lin{ρ1/4pn(Qz)ρ
1/4 : |z| = 1}
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andpn is given by (7.3). A basis forEn is obtained by restrictingz to the set

�n := {ωj
n : j = 0, . . . , n},

whereωn is a unit modulus number whose square is a primitive(n + 1)th root of unity.

Proof. In view of the relations Ran(ρ1/4) ⊂ Dom(N),

Nρ1/4A∗iAjρ1/4 = ρ1/4A∗AA∗iAjρ1/4,

Jρ1/4A∗iAjρ1/4 = ρ1/4A∗jAiρ1/4,

and Lemma 2.1, the subspaceV is contained in the domain ofLN andRN , and is left
invariant by both operators. Therefore, by Proposition 4.1,V ⊂ Dom(H(2)) and for
ξ ∈ V ,

H(2)ξ =
(λ2 + µ2

2

)
(Nξ + [ξN ]) + λ2ξ − λµ(A[ξA∗] + A∗[ξA]). (7.4)

The gauge invariance

ξ ∈ V ⇒ 0(z)∗ξ0(z) ∈ V and H(2)(0(z)∗ξ0(z)) = 0(z)∗(H(2)ξ )0(z)

follows from the commutation relationA∗0(z) = z[0(z)A∗]. Switching for a moment to
the Schrödinger representation in whichA = 2−1/2[Q+ iP ], Q = Mx andP = −i d

dx
,

commutation relations yield the identities ([FaR])

(A∗AMϕ − 2A∗MϕA + MϕA∗A)f =
(

− 1

2
ϕ′′ + xϕ′)f, (7.5a)

(AA∗Mϕ − 2AMϕA∗ + MϕAA∗)f =
(

− 1

2
ϕ′′ − xϕ′)f (7.5b)

for smoothϕ, andf ∈ L2(R) for which bothf andϕf lie in the domain ofN = A∗A.
Puttingξ = ρ1/4p(Q)ρ1/4 in (7.4), wherep is a polynomial, and using the commutation
relationsNρ1/4 = [ρ1/4N ], Aρ1/4 = ν1/4[ρ1/4A], gives

H(2)(ρ
1/4p(Q)ρ1/4) = ρ1/4

{µ2

2
(A∗Ap(Q) − 2A∗p(Q)A + p(Q)A∗A)

+λ2

2
(AA∗p(Q) − 2Ap(Q)A∗ + p(Q)AA∗)

}
ρ1/4.

Using (7.5) and the functional calculus, this gives

−H(2)(ρ
1/4p(Q)ρ1/4) = ρ1/4(GOUp)(Q)ρ1/4, (7.6)

whereGOU is the classical OU–generator (7.2). Applying gauge invariance to (7.6) we
obtain

H(2)(ρ
1/4p(Qz)ρ

1/4) = ρ1/4(GOUp)(Qz)ρ
1/4. (7.7)
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Thus

H(2)ξ = n
(µ2 − λ2

2

)
ξ ∀ ξ ∈ En,

in particular the subspaces{En : n = 0, 1, . . . } are mutually orthogonal.
Sincepn is a polynomial of degreen, it now follows from Lemma 7.1 that

En = Wn 	 Wn−1 (n ≥ 1); dimEn = (n + 1); ⊕
n≥0 En = L2;

andH(2) is of the form claimed. It remains only to prove thatSn := {ρ1/4pn(Qz)ρ
1/4 :

z ∈ �n} is a basis forEn. From the proof of Lemma 7.1 ifω ∈ C is such thatω2 is a
primitive (n + 1)th root of unity then, for eachl = 0, 1, . . . , n, there is{αj,l,n : j =
0, 1, . . . , n} ⊂ C such that

A∗lA(n−l) = ∑n
j=0 αj,l,npn(Qωj ) + l.o.t.,

in particular, for each unit modulusz, there are{αj (z) : j = 0, . . . , n} ⊂ C such that

pn(Qz) = ∑n
j=0 αj (z)pn(Qωj ) + l.o.t.

By orthogonality the lower order terms (l.o.t.) must all vanish, thusSn spansEn. Since
#Sn = (n + 1) = dimEn, Sn is a basis forEn and the proof is complete.ut

Let GBD be the difference operator defined by

(GBDϕ)(k) = µ2k{ϕ(k − 1) − ϕ(k)} + λ2(k + 1){ϕ(k + 1) − ϕ(k)}, (7.8)

with the understandingϕ(−1) = 0. ThenGBD is the generator of a birth and death
process, and its eigenvalues are{n(µ2 − λ2) : n ≥ 0}, each having multiplicity 1. We
may now give anL2-view of Theorem 6.4.

Proposition 7.3.For any polynomialq,

−H(2)(ρ
1/4q(N)ρ1/4) = ρ1/4(GBDq)(N)ρ1/4. (7.9)

Proof. In view of the commutation relationsAϕ(N)e = ϕ(N + 1)Ae, valid for e ∈
Lin{en : n ≥ 0}, if ξ = ρ1/4q(N)ρ1/4, then

AξA∗e = ν1/2ρ1/4q(N + 1)(N + 1)ρ1/4e;
A∗ξAe = ν−1/4ρ1/4Nq(N − 1)ρ1/4e.

Equation (7.9) now follows easily from (7.4).ut
Puttingm = 2k andl = k in the computation in the proof of Lemma 7.1 (b), and

using mutual orthogonality of the eigenspaces ofH(2) as in the proof of Theorem 7.2,
leads to the following interesting relationship between the respective eigenpolynomials
of the Ornstein–Uhlenbeck and birth and death generators:

Proposition 7.4.Let {pn : n ≥ 0} and {qm : m ≥ 0} be respectively the (monic)
eigenpolynomials of the Ornstein–Uhlenbeck and birth and death generators, indexed
by increasing eigenvalues, then for eachk,

qk(N) =
{
(2k + 1)

(
2k

k

)}−1 ∑2k
j=0 p2k(Qωj ),

whereω2 is a primitive(2k + 1)th root of unity.

Theorem 7.2 and Eqs. (7.7) and (7.9) together show how quantum theory can man-
ufacture a discrete (classical) process by knitting together a one parameter family of
classical continuous processes into a single quantum process.
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8. Quantum Brownian Motion

Whenλ = µ there is no longer an invariant state for the dynamics. However the quadratic
form (4.2) reduces to a multiple of‖dA·‖2 which is a Dirichlet form with respect to the
trace, and therefore generates a symmetric Markov semigroup onL2, and also deter-
mines a semigroup on the algebra, by the theory developed in [AH–K] and [DaL]. The
counterpart to (7.7) is

Lϕ(Qz) = (GBMϕ)(Qz),

whereGBM is the generator of a classical Brownian motion. We shall therefore refer
to thequantum Brownian motion semigroup. The arguments of Sect. 5, in a simplified
form, continue to apply whenλ = µ, and so Theorem 5.1 holds in this case too. Thus
the quantum BM semigroup is a Feller semigroup with respect to the algebra of compact
operators. Not unexpectedly theL2-spectrum is now the whole of the positive half-line.

Theorem 8.1.TheL2-generator of the quantum Brownian motion semigroup with equal
parametersλ = µ ∈]0, ∞[ has spectrum[0, ∞[.
Proof. Without loss we may suppose thatλ = µ = 1, thus letH(2) = d∗

AdA. For t ∈ R

andε > 0 let

ξt,ε = VtRε,

whereVt is the Weyl operator expiQt
√

2 = expit[A + A∗] andRε is the Yosida ap-

proximation to the identity e−εN , N being the number operator. ThusVt is unitary,
p(A, A∗)Rε is Hilbert–Schmidt for any polynomialp, and the following commutation
relations are easily verified:

V ∗
t AVt = A + itI, V ∗

t NVt = N + i[tA∗ − tA] + t2I, [RεA] = eεARε.

It follows thatξt,ε ∈ Dom(H(2)), and

H(2)ξt,ε

= NVtRε + Vt [RεN ] + VtRε − AVt [RεA
∗] − A∗Vt [RεA]

= Vt {N + itA∗ − itA + t2I + N + I }Rε

−Vt (A + itI )e−εA∗Rε − Vt (A
∗ − itI )eεARε

= t2ξt,ε + (1 − eε)Vt {N − itA} Rε + (1 − e−ε)Vt

{
(N + 1) + itA∗} Rε.

But

∥∥ξt,ε

∥∥2
2 =

∥∥∥e−εN
∥∥∥2

2
=

∑
n≥0

e−2εn =
(
1 − e−2ε

)−1
,

therefore
∥∥ξt,ε

∥∥−1
∥∥∥H(2)ξt,ε − t2ξt,ε

∥∥∥
2

→ 0 asε → 0.

This shows that[0, ∞[⊂ σ(H(2)), butH(2) is nonnegative so the reverse inclusion holds
too. ut
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