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Abstract: A discrete-time chain, associated with the generalized eigenvalue problem
for two Jacobi matrices, is derived. Various discrete and continuous symmetries of this
integrable equation are revealed. A class of its rational, elementary and elliptic functions
solutions, appearing from a similarity reduction, are constructed. The latter lead to large
families of biorthogonal rational functions based upon the very-well-poised balanced
hypergeometric series of three types: the standard hypergeometric sEgjdsasic
seriesiopg and its elliptic analoguggEg. For an important subclass of the elliptic
biorthogonal rational functions the weight function and normalization constants are
determined explicitly.
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1. Introduction

The theory of orthogonal polynomials is a well established subject [19]. Numerous
and long history investigations of explicit examples culminated in the discovery of the
Askey—Wilson polynomials — the most general set of the classical orthogonal poly-
nomials [1]. The theory of biorthogonal rational functions is less developed, but it is
actively pursued in many recent papers, see, e.9g., [9,11,13-15,22-24]. A remarkable set
of such functions related to a very-well-poised 2-balanced generalized hypergeometric
serieg Fg containing five free parameters was constructed by Wilson [22]. This class of
biorthogonal rational functions was believed to be the most general one based upon the
plain hypergeometric series.¢xanalogue of this class, providing a six parameter fam-

ily of functions expressed through a very-well-poised balanced basic hypergeometric
series opg, has been built by Rahman and Wilson in [13,14,23] (see also [9,15]). These
examples are intimately related to Ramanujan’s entry 40 continued fraction and its basic
analogue [8]. For a different interesting approach to the biorthogonality concept, see
[10].

Inthe presentwork we extend known classes of biorthogonal rational functions in sev-
eral respects. First, we describe an eight parameter family of functions expressed through
the very-well-poised 2-balanced’s series with a more complicated parametrization of
its arguments than in the Wilson case. These functions are orthogonal to a linear combi-
nation of three series of a similar form. A brief announcement of this result is given in
our recent note [25]. Second, we presegtanalogue of this clas— a nine parameter
family of rational functions expressed through a very-well-poised balangedseries
which are orthogonal to a linear combination of three similar functions.

The third generalization concerns the principally new type of series — the elliptic
analogues of the very-well-poised balanced hypergeometric series. These series were
introduced recently by Frenkel and Turaev under the name “modular hypergeometric
functions” in the context of elliptic solutions of the Yang—Baxter equation [4]. As a natural
generalization of the previous class of rational functions, we derive a ten parameter family
of biorthogonal functions on the basis of an elliptic generalization of the mentigped
series.

The elliptic class of functions contains a subclass obeying a self-duality symmetry
similar to the one of the Wilson’s functions. For this special case we give explicit expres-
sions for the discrete weight function and normalization constants in the biorthogonality
relation. We conjecture that these self-dual functions define the most general set of
classical biorthogonal rational functions in the spirit of the Askey—Wilson polynomials
situation.

The key method of construction of new explicit examples of biorthogonal functions
is based upon the analysis of solutions of a chain of spectral transformations for a spe-
cific three-term recurrence relation. This recurrence relation was introduced by Ismail
and Masson in connection to tiRg; type continued fractions [11]. Our spectral trans-
formations generalize the ones investigated by Christoffel and Geronimus in the theory
of orthogonal polynomials [6,7,19]. They may be considered also as discrete Darboux
transformations for biorthogonal rational functions. From the point of view of the theory
of integrable equations, we construct a specific discrete (1+1)-dimensional integrable
chain and find its particular self-similar solutions associated with some generalized sepa-
ration of variables. In the case of orthogonal polynomials an analogue of such a program
leads to the discrete-time Toda chain (or the modifidealgorithm) and its self-similar
solutions comprising recurrence coefficients of the Askey—Wilson polynomials [17,18].
The biorthogonal functions mentioned above are derived in a systematic fashion as a
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result of a solution of a well-defined set of finite-difference equations. In particular, the
modular hypergeometric series are emerging as special solutions Bf thibree-term
recurrence relation with some elliptic functions coefficients.

2. Ryr-Polynomials and theR;-Chain

Denote asP,,j (z), n, j € Z, an infinite two-dimensional array of functions of the
independent variable € C. Let these functions satisfy the following relations:
_DIMPL @+ e -l TP @)

B T—=Aj41 7

PI7N@) = BI Pl (@) + Al - B]) P, (@), (2:2)

Pt (2.1)

where the superpotentialds,ﬁ, B,{ C,{ D/,' and the spectral coefficiend;sn/, ﬂ,{ 1j do

not depend on. Performing the shiff — j — 1in (2.1) and removing",{*l(z) with
the help of (2.2) we arrive at the three-term recurrence relation

Pl @ +7 vl — P @ +uj e~ — B P_1()=0,  (2.3)
where the potentials{;, r,{, v,{ have the form

ANCGl ; 1-DyAl,—CiB;
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D" Bn+1 D" Bn+1 (2 4)
B DIA —alCiB '
J.j_ " n+l~n “p41 n~n =2n
Ty Uy = T .
D;, Bn+1

Analogously, shiftingj — j + 1in (2.2) and removingﬂ,{+1(z) with the help of (2.1)
we come again to (2.3) but with different recurrence coefficients. The compatibility
condition of these two recurrence relations yields the constraints

.314 = Bn, 0(‘,{ =0p+j,

and a set of three nonlinear finite-difference equations

i ~J Jj+1 ~j+1
gl pi pitipitl’ '
n+1~n n n
J plJ J J j+lp,j+1 Jj+1~7+1
Ci Bi+ Ay, Dn—1  Ci "By + Ay D)y —1 26)
B’.,D} B B pitt ’ '
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i pJ j j i+1,,j+1 ji+1~7+1
nrj Cin Bi + Bur1A, 1 Di—rj  onijs1Ci Bi 4 B Ay Dy = A @7
M = R . (2.
B, .D; B} D}

We say that this system of equations determines a (1+1)-dimensional discrete integrable
chain, since it arises from the compatibility condition of two linear difference equations.
It plays a crucial role in the following considerations. The varigbheay be considered
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as a discrete time since the derived equations generalize the discrete time Toda chain
appearing in a similar context for orthogonal polynomials [17].
If one takes in (2.3) the initial conditions

P{(2) = pj, P{@) =riz—v),

wherep; are some non-zero numbers, thef(z), n > 0, represent™ degree poly-
nomials inz. In order to truncate the relation (2.2)at= 0 we impose the constraints
Aé = Aéﬁo = 0. Continued fractions associated with the three-term recurrence relation
of the type (2.3) were named by Ismail and MassoR gsfractions [11]. Therefore we
shall refer toP) (z) as theR;;-polynomials and to Egs. (2.5)—(2.7) as tRg;-chain.
Note thatR;;-polynomials can be reduced to the so-calkgcand Laurent biorthogonal
polynomials or to the standard orthogonal polynomials by removing in (2.3) the bilinear
dependence onin various ways. The transformations (2.1) and (2.2) are analogues of
Christoffel’s transformation of orthogonal polynomials to kernel polynomials [19] and
of its inverse analyzed by Geronimus [6, 7] respectively. Considered together they may
also be called discrete Darboux transformations forRherecurrence relation (2.3).

As shown in [11] for a given set oR;;-polynomials such thaP’(an+,) # 0,
P/ (ﬁ,,) #0 andun # 0 there always exists a linear functior (the discrete variable
j is considered as a dummy variable in (2.3)) such that

;. 2" P (2)
T 21z — o) (2 — Br)

On the basis of very simple linear algebra arguments this relation was rewritten in [24]
as a biorthogonality condition of two rational functions built frati(z):

:|:0, 0<m<n. (2.8)

L [H,{;(z) R,{(z)] —0 for n#m, (2.9)

where rational functionﬂ,{ (2), H,,J;(z) are defined below. Denolké(z) = Sé =1
and set

J ) J
Pi @) Sl =— 1@ (2.10)

RI@) = m— .,
‘ [Teea@ —ajt) [Ticui @ — Bo)

for n > 0. These functions satisfy three-term recurrence relations with the linearized
z-dependence:

@ — tnpj+DR) 1 (2) + 1 (V) — DR (@) +uj(z — BRI, (2) = (2.11)
1)1z = Bur)S) 1 (@) +ril (V) — D1 + (@ — @i )S)_1 (@) = (2.12)

Equations (2.11), (2.12) can be considered as generalized eigenvalue problems [21] of
the form

Ly (2) = zMy(2),

where the operators, M are two general tri-diagonal Jacobi matrices.
The upper indexy does not play an essential role in the derivation of the biorthog-
onality relations. Let us set temporarify= 0 and suppress all the superscripts for a
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simplification. Then we may rewrite the relation (2.11) in the fdri®y, (z) = zM R,, (),
where

LRy (2) = apt1Ru41(2) — ravp Ry (2) + Buutn Rp—1(2),
MRy, (z) = Ry11(2) — ra Ry (2) + un Ry—1(2).

In these notations Eq. (2.12) takes the fatmS, (x) = xM 7 S, (x), whereLT, M7 are
the matriced., M transposed with respect to the formal inner product

(S(), R@) =Y Sy(x)Ru(2)

k=0

defined upon the space of rational functions. More precisely, one has

LT8,(2) = tn1Bn+150+1(2) — rnnSu(2) + 0 Sp—1(2),
M7 S,(2) = tn1S041(2) — S (2) + Sn—1(2).

From the chain of relations

0=(S(), LR(z)) — 2(S(x), MR(2))

2.13
= (LT S(x), R()) — 2(M" S(x), R(2)) = (x — 2)(M" S(x), R(2)). (243

one can conclude that the functiofg (x) = M’ S, (x) are orthogonal taR,(z) for
different eigenvalues # z. Restoring the superscriptone can find that the functions

H, (z) are defined as follows:

Hi(@) =ul 1S 1) —rlSi@ + S, (2.14)

forn=1,2,..., and forn = 0 one has

L
H(@) = ujsi (o) —rf = 0P~
z—pB1

Since we are dealing with matrices and their eigenvectors, the orthogonality for
different eigenvalues (2.13) suggests that there is also a dual orthogonality relation for
functionsH,, (z) and R}, (z) with equal eigenvalues It is defined with the help of the
functionalZ ; mapping rational functions afonto the complex plang (2.8). As aresult,
the biorthogonality ofH;}, (z) to R}, (z) for m # n can be checked by direct substitution
of the corresponding expressions into (2.9) and an application of the conditions (2.8).

Any non-trivial solution of theR;;-chain with appropriate boundary conditions at
n = 0 provides a system of biorthogonal rational functions. Let us sketch briefly a

procedure of building? (z) out of the given coefficientdy, . .., Aj. Introduce first
two auxiliary polynomials of the™ degree:

vi=[]e-n+0). Zi=[]G@-ej). n>0, (2.15)
k=1 k=1
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anch{ = Zé = 1. Then the polynomialS’,{ (z) admit the following representation:

j i v/ @)
Pl@) =Z1@ Y &l L— (2.16)

k=0 k(Z)

with some unknown coeﬁiciend (k), k < n. Substituting this expression into (2.1)
we arrive at the system of equations

D”l n+1(k) + C’+l Gl k) = "“(k 1. k=12 ..n

From the first two equations one find,é(O) and;,{ (n):

) n—1 Cj+l ) n—1 1
6@ =0 [] e sl =[]~ (2.17)
m=0 ~'m m=0 ~'m

Introducing the normalized coefficiemé(k) = gnj (k)/g,{ (0), we rewrite the remaining
part of the equations as follows:

j+1(o)

J+1 _
{’(O)C]“Ll k-1, k=1,2,...,n. (2.18)

n) 1 (6) = (k) —

Sincen,’;(O) =1 andn,f (k) are known already, this recurrence relation allows one to

find all the coefficientsy;, (k) uniquely in an iterative manner.

Closing this section let us show that tiRg;-chain allows one to generate from a
given three term recurrence relation (2.3) another recurrence relation of the same nature.
Indeed, from the relation (2.1) one can find

j+1
j Aj+1 i+l Ci' (2 — Ongjs1) )
p$4@)=.7;ff-ai (2) — — Dﬂilf P (2). (2.19)
n

In a similar way, from (2.2) one may expreB,é_l(z) in terms ofP,f_l(z) and P,'[ (2):

Pi 7 ) — B} P! (2)
Az = Bu)

Substituting (2.19) and (2.20) into (2.3) we get the three-term recurrence relation in the
discrete time variablg:

Pl 1) =

n > 0. (2.20)

Z— )"]Jrl P]+l
Dj+1

o CI Ny i — 2 W B (i — 2 .
()+<Vyjl(vé—2)+ n ( nj»ijl )+ n n( nj] ) Pn](Z)
Dn An
+u£(z—qn+j)

i—1
: P! () =0.
Ay

(2.21)
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This is again a representative of the generalized eigenvalue problems. Repﬂé(:mg

by S; (z) in (2.21) and comparing the result with (2.12) one can seeShab satisfy
R;;-type recurrence relations in both discrete variablesd j. Note however, that in
the context of therR; ;-polynomials one has > 0, while the values of are not limited.

Suppose that the dependencejoentersP,{ (z) via some continuous parameters. Then
(2.21) defines some contiguous relation for the corresponding system of polynomials.

3. Companion Polynomials

Consider the functionH,{ (z) in more detail. It is convenient to represent them in the
form

04 (2)

H](2) = P— ,
(z = Bnt+1) Hk:l uy(z — Br)

(3.1)

WhereQ{;(z) are some polynomials of thd" degree which will be called the companion
polynomials. Their explicit form is found from the definition (2.14):

01(2) = P/1(@) = ril (2 = BusD) P @) + ui(z — B) (@ — BusD P12, (3.2)

fom >0 andQé(z) = ré B1— v‘é). Using the recurrence relation (2.3) we can represent
0} (z) in one of the two forms

04 2) =1 (Busrt — v P (2) + uh (2 — Bu) (@ntj — Bus1) P_1(2) (3.3)
or

But1 — @t ) Py (@) + 1 (s j — vi) (@ — Bur) P (2)

Z_an+j

0h(2) = (3.4)

From (3.3) itis clear thaQ{;(z) are indeed polynomials of théh degree. With the help
of the formulas (3.3) and (3.4) it is possible to exprégsz) throughQy,(z):

Pl(2) =] 0} + 8]z —ansj-1)0)_1(2) (3.5)
or
Py — on Q) 1(2) + T (2 — oenﬂ)Q,é’ 3.6)
Z— :3n+1
where

J . J J
i Taea(@ngj-1— v, o) s/ Un (Bn+1 — ontj)

Vn - ) n — : 1)
€ €
~ - o raa(Barz — v,
o) = Ontj — Bnt1 o= n+1\Pn+2 n+1
n ej ’ n ej )
n+1 n+1

&) =rir] J(@nrjo1— V) D Burt — ) — uh@ntj — Bur) (Bn — it j-1), (3.7)
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and it is assumed tha_ﬁ # 0. Substituting (3.5) and (3.6) into (2.1) and (2.2) we find

that the polynomial®;, (z) satisfy the relations

SN ~j+1 ~ J
1 D Qn+l +Co (@ — ey j+1) On
n

~ 3

Z—Aj+1
o A
n  =BiOi+Az-B)0O)_,

with the following entries:

Gntj = ntj-1, Bn = But1, Lj=1, (3.8)
.. DI, B
A= — 5 Bl =By (3.9)
D;

The rest two superpotentia&,{ and@,{ have much more complicated form:

J J
~ €; ~ i € 1
Dj=—"5D) ;. &= ﬁ(q{ R 1+/—’jg”+>. (3.10)
n+1 ntj-1 n+l E”Bn-i-l

Evidently, the compatibility condition of th¢ — j £ 1 transformations forQ; (2)
polynomials generates they;-recurrence relation and th& ;-chain with new entries

determined by&{l e, Xj. We can formulate thus the following statement.

Theorem 1.The transformationg3.8)3.10)define a particular symmetry of th& ;-
chain(2.5){2.7)generated by the transition from a given seRef-polynomialsP; (z)
to the set of their companion polynomials (z).

4. Symmetries of theR;-Chain and a Similarity Reduction

Let us describe some other symmetries ofRiag-chain. Let us start from a brief consid-
eration of the normalization (gauge) freedom. Although this analysis is simple enough
it is instructive to give it here.

We can transform recurrence coefficients in (2.3) by the multiplication of polynomials

by an arbitrary gauge fact@;{ independent on, P](z) =& P’(z) This leads to
recursions (2.1), (2.2) with the renormalized entries

. Al . .l . o

Al =", B)=Blwl, C)==2, D)=Db]l1s, (4.1)
J J
tn—l Wy,

wheret,, = £/71/6], w) = &8/ . The coefficients;], wj satisfy the relation

fhowh g = = ;" w) ™. The transformed recurrence coefficients have the form
i J
g & =
Sn—i—l é—':n-i-l

with other entries in (2.3) being unchanged. There is thus a large freedom in the form of
presentation of the recurrence coefficients of polynompgl&).
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In [11] the gaugefn = 1 was chosen. It is possible also to choose the ga,{lge

un =1, r = 1, leading to monic polynomlals”(z) = 7"+ 0(z"1), which may be
convement for some reasons. From (2.1) and (2.2) it is seen that the monicity condition

implies the following constraints upon the superpotentials:+ B = CJ + D} = 1.
In this normalization one has actually only two independent equations (2.5) and (2.7),
because Eq. (2.6) is fulfilled automatically.

There is an essential technical drawback with the monic gauge — it is not convenient

for construction of explicit solutions of th%”—chainA,’;, e, D,{. For the latter purpose
itis necessary to reduce the number of superpotentials and another gauge will be chosen

below: B] = 1. As seen from (4.1) this choice leaves a freedom in the transformation
of superpotentials:

Al = Al/ta_1, Dj — Dit, (4.3)

where the factor, does not depend oj This freedom will be used in the following.

Describe now some more involved properties of fe-chain. LetA}, B, C}, D}
satisfy Egs. (2.5), (2.6). These functions would provide a solution of the wRgle
chainifi; = a,4; = B, = const., because then Eq. (2.7) coincides with (2.6). Shifting
the argument of polynomials and— z — const. one can convert the latter constraints
toA; = anyj = B, = 0. The solutions generated under these constraints are too trivial

since the polynomials have the fqrﬁ,{ () = ynjz”, whereynj do not depend on.
Indeed, using the initial conditioﬁ({ (z) = 1 and settingr = 0 in (2.1) one finds that

P](z) = y{z and the statement follows by induction. Below we shall assume that this
trivial situation does not take place.

Itis not difficult to see that the affine transformation of the argument> £z+n can
be compensated by the appropriate affine transformation of the paramgterg,, A
and recurrence coefficients, similar to the orthogonal polynomials case. However, the
biorthogonal rational functions are associated with the generalized eigenvalue problem
L+ (z) = zM (z) which admits also the inversion symmetry> 1/z, since itamounts
to the permutation of the operatatsandM. As a result, rational transformations of the
argument ofR;;-polynomials accompanied by an appropriate gauge transformation

(4.4)

éﬂm:=@z+off%<gz+”)

{z+o

whereg, n, ¢, o are arbitrary parameters independenfpleaves invariant the space of
these polynomials.

Theorem 2.The polynomialg4.4) satisfy(2.3) with the following recurrence coeffi-
cients:

J

Ao=riE o), =T ) =l — o) E — ),
§—vn (4.5)
__owmi—n o1

On+j =

E_fan+j’ n_s_gﬁn.
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Consequently, th&;;-chain is invariant with respect to the transformatig@sb) and

~ oAj—1

hj=t—. Al=AlE—¢B), Bl=B8l,

= &~ thn)
' joe ' ' j (4.6)
C':J:Cn(é $otnyj) Dl — Dj
! E—chy T gy

The proof is skipped being simple enough.

A different type of symmetries is induced by discrete transformations of the un-
derlying two-dimensional grid formed by the variables;. Namely, the reflections 1)
j—> —j,n—> —n2n—j,j—>n;3)j—> —j—n;4n— —n— jinduce peculiar
involutions of theR;;-chain.

Theorem 3.The following four involutions describe particular discrete symmetries of
the R;;-chain:
1. Al=D"), Dl=a") Bl=c"/ ¢ =B/,

n?

Bn = Bi-n, 55n+j =d_p—j, Aj =A_j;

n+1
. 1 .. B _. T~
2 Ay=—, Bi=-2%, Cil=—L15 Dy=—x
. )’%’ n ”'7 n n+17 n n+1a
Aj Aj Dj’; Dy
&n+j = Un+j, Bn = Ans Aj = lgl/ﬁ (4.7)
1-j—n 1-j—n
3 i An gi__ 1 ai__ 1 s Da
e Jl—j—n T T p1—j—n T T 1—j—n’ TN T 1—j-n’
B; B, Cn Cn
Aj=a1-j, &j+n=)¥l—j—n» Bn = Bn:
Al pl RS AJ ~J oyl N
4. A, = Blfnfj’ B; = Alfnfj’ C, = Dfnfj’ D; = Cfnfj’

&n+j = ,Bl—n—j» Brn = a1y, )\j = )&j-

The proof consists in the verification that after substitution of the tilded variables
into (2.5)—(2.7) one gets thk;;-chain with the reflected grid points as indicated above.

In a sense, this theorem shows an equivalence of the spectral coefficieats ;, 8,
despite their non-symmetric entrance into the original formulas (2.1), (2.2).

These four transformations do not cover all possible types of involutions & the
chain. E.g., there should exist involutions generated by a freedom in the intermediate
steps of double spectral transformation generalizing the corresponding symmetry for the
standard orthogonal polynomials [16].

Suppose that the superpotentias B;, C;, D;, and spectral coefficients,, 8,, A,
are described by some meromorphic functions of the continuous variatdes ;.
Such solutions of integrable chains appear usually from similarity reductions of the
corresponding equations. In general the involutions (4.7) change essentially the form of
a given solution. However, there is a special class of solutions for which only a change
of parameters occurs.

First, note that there are specific combinations of the discrete variabédesl ;,
namely,

ur=mn, up=,j, uz=n+j, us=n—j, us=2n+j, usg=2j+n,



Spectral Transformation Chains 59

which are expressed through each other under the taken four grid reflections up to a
change of the signs. Therefore symmetric products of some functions of these variables
will not change their form under the grid reflections. This observation allows one to

impose the constraint that the superpotentia{s B,{, C,{, D,{ split into products of
functions each depending only on one of these six variables:

6 6 6 6

an=[1A%wo. Bl =T]B%w). ci=]]cPwn. Di=]]DPwp.

k=1 k=1 k=1 k=1

It is not guaranteed a priori that these restrictions are compatible with Egs. (2.5)—(2.7).
Before substituting them into the;;-chain it is convenient to simplify superpotentials

as much as possible using the gauge freedom. So, we impose the comitient,
which allows us to normalize the polynomia§ = 1. Assume also thab;, does not
depend on the variable; = n, i.e. DV () = 1, which can be always achieved by the
transformation (4.3).

Then the first equation (2.5) can be resolved completely. It leads to the following
relations between the functioms®), c® D®:

DO®w)D® u + 1)
A®OWA® W +1)°
D¥w) = A®w), DPw)=AYwWCPwCPw -1,
A® )

cCPw =1 ¢c®w = D@ w) = AP w)Cc®®w),

DO ) =

Still, there remains eleven unknown functions giving too large a freedom. After a thor-
ough analysis of different possibilities we have limited ourselves in this paper to the
following restricted Ansatz of generalized separation of variables (some hints upon such
a choice came from our analysis of the similar situation for orthogonal polynomials [17,
18]):

e d(n)p(2j +n) B _1
" g+ gn+j—Don— pHem—j-1 7
j_ Do ==+ i pRj+men— D —j+1)
"oo(g@n+ gn+j+1n " " o (j)

’

(4.8)

whered(0) = 0. Equation (2.5) is satisfied automatically for arbitrary functions
d(x), ..., o(x). Note that the first, second and fourth involutions break the condition
Bj = 1 and one should perform a gauge transformation (4.1) in order to restore it.
Then it can be seen that the involutions being applied to (4.8) just permute the functions
d(x), c(x), o(x) up to a simple transformation of their arguments. A similar situation
takes place fog(x), p(x), ¢ (x). Therefore one may expect that the corresponding func-
tions shall have identical forms.

It remains now to solve Egs. (2.6), (2.7). In some particular cases a trick helps to
reduce (2.7) to (2.6).
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Proposition 1. Suppose that the superpotentiéds8) determine a solution of the equa-
tions (2.5), (2.6) such that the functiond(x), o (x), c¢(x) contain a number of free pa-
rameters which do not enter the functiops), o(x), ¢ (x). Then Eq(2.7)is satisfied
for the following choice of the spectral data coefficients:

hj=6(NIo(), Bu=dmn)/d(n), anyj=En+ j)/cn+ ), (4.9)

where the tilded functions differ from the untilded ones only by the choice of free param-
eters.

Substituting (4.8) into (2.6) we rewrite this equation in the form

cn+j)
g@2n+j+Dg2n+ j)p2j+n)p2j+n+1)
N dn+1)
g2n+2+)gn+j+Den+1— jomn —j)
~ a(j)
pPRj+nmpn+1—j)¢(n—j)pR2j+n+1)
. cn+j+1
g2+ g+ j+Dp2j+24+n)p2j +n+1)
d(n)
T @it i+ De@it ot —J — Do — )
o(j+1

—— . . . : (4.10)
p2j+2+nm¢p(n—jomn—j—Dp2j+n+1

We were not able to find all solutions of this equation. However, a rich class of them

has been derived from a set of natural additional constraints. Namely, suppose that

the functionsg(x), p(x), ¢ (x) have simple zeros at = xp, x1, xo respectively, where

X2, X1, Xo are some constants. Let us demand ga) # 0 forx = x — 1, x2 — 2,

p(x) Z0forx =x1 —1,x1 — 2and¢(x) # 0 for x = xg £ 1. Now the condition of

cancellation of poles in (4.10) leads to the equations

c(x1—x)  g(2x1—3x)g(2x1 —3x + 1)

o(x)  p1—3)P(x1—3x+1)
cxg—x)  p(2x2—3x) p(2x2—3x +1)
dix)  ¢Bx—x2—1)¢Bx—x2)
o (x — x0) _ p(3x — 2xo — 1) p(3x — 2x0)
d(x) g(83x —x0— 1) g(3x —xg)
These conditions are resolved if we set
d(x) =Y (x —x0), gx)=v(x—x2), px)=v(x—x1) (4.11)
and
o(x) =d(x +xg), c(x)=d(x2—x), (4.12)

wherey (x) is an arbitrary odd functiogy (x) = —y (—x) (there are minor restrictions
upon the position of zeros af (x) mentioned above) and the parametegsxy, x2
satisfy the constraint

X2 = X0 + x1. (4.13)
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In the following we stick to this particular choice of the functions entering (4.8).
Evidently, there are now only two unknown functiodéx), ¢ (x) and Eq. (4.10)
takes the form:

d(x2—n— j)
V@t ¥ @it J ALY @)t n 0¥ @) tnt 1D
din+1)
@ T 1Y@t 12— U — ) —x¥n—j + 110
d(j + x0)

Y@ +n—xDY@2j+n+1l—x)¥(n—j—x)¥(n — j+1—xo)
_ dixg—n—j—-1
_w(2n+j+1—x2)1/f(2n+j+2—xz)1p(2j+n+1—x1)w(2j+n+2—x1)

d(n)
@it V@t v — ) — L x)¥ (i — ) —x0)
- d(j + 1+ xo)
VRj+n+1—xDY2j+n+2—x)¥(n—j—1—x)yn—j—x1)

(4.14)

We shall call (4.14) the basic equation. Assume that the funcijong andd(x) are
entire, i.e. they do not have singularities for finite values of the argumenhen it is
clear from our considerations that there are no poles at finite valueard j in (4.14)
for arbitraryyr (x), d(x), providedyr (x) has only simple zeroes.

5. Rational and Elementary Functions Solutions

Let us start from the analysis of a class of rational and elementary functions solutions
of the basic equation (4.14).

If one limits consideration to rational functions, then it is possible to proceed further
by giving toy (x) the simplest possible forms and analyzing the resulting equation for
d(x). So, we have fixegy (x) = x and looked for a polynomial solution fai(x). Using
the MAPLE software it was found thai(x) can be a polynomial of theé'bdegree

5
dx) =x [ Jx —d) (5.1)

k=1

with the curious restriction upon its roots:

5
> di =1+ 2(x0 + x2). (5.2)
k=1
There is a trivial freedom in the multiplication @fx) by an arbitrary factor, which we
did not indicate, and one of the rootsdfx) was chosen to be equal to zero in order to
haved(0) = 0. As a result, there remains only four free parameter&ir). Taking in
the formulation of Proposition 1 a&x) a polynomial of the same structured&):

k 5
dxy=x]]&x—e), Y ex=1+2(x0+x2),

k=1 k=1
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containing other 4 free parameters, we find the spectral coefficients

5

Jj+xo0— ek n—ey > n—xo+e;
W= (Y0 % _]‘[ ]‘[—. (5.3)
k:1J+xO_dk n—dk i 1n—x2~|—dk

It is convenient to denote = j + 2 — x2, a = 2j + 1 + xo — x2. The following
result was announced in [25].

Theorem 4. The recurrence relation (2.3) fqr the derived rational solution of ihe-

chain (5.1)(5.3) leads toR;;-polynomialsP;/ (z) which are expressed through a very-
well-poised 2-balanced generalized hypergeometric setfigs

Pl(2) = fi 2)
F a,a/2+1,—n,s+n—1,a+2—s—y1,...,a+2—s—y5.1
o a/2,a+n+la+2—s—n,s—1+y,....,s —1+y5

(1= 2" [Toq(s — 14 yi)n

J _
T = T D@t Dy
(5.4)
wherey1(z), ..., ys(z) are the roots of the following algebraic equation of the fifth
degree:
5 5
[Jo-do=]]0-eo.
k=1 k=1
Let us recall that the generalized hypergeometric function
at,....ar41 o (@) - . (@r41)
F R r+;z)= ne--\Ur+ nZn
r+l ’( bi,....b, nzzon!(bl),,...(br)n
is called well-poised if a1 = ar+1+ b, k =1, ..., r.Itbecomes very-well-poised

if, additionally,a, = a31/2 + 1. And it is calledk-balanced ik + a3 + --- + a1 =
b1+ ---+ b, andz = 1. Such types of series have some special properties, see e.g. [5].
The Wilson family of rational functions [22] corresponds to the case vghea,,, A,
are reduced to the polynomials of the second degree. This can be achieved if one takes
d(x) as a polynomial of the fourth degree and demands that it divides The key
new properties of the polynomials (5.4) consist in the facts that they contain eight inde-
pendent free parameters (in [22] there were only five of them) and that it is necessary to
solve an algebraic equation of the degree higher than two for presentation of the poly-
nomials in the form of hypergeometric series. Actually, there are ten free parameters in
(5.4) in addition to the degree of polynomialand their argument. However, two of
them may be absorbed into the definition of the argumemith the help of the linear
fractional transformation (4.4) which preserves the fixed leading— oo asymptotics
)‘jv Oy, ,Bn — 1.
We are not giving the proof of the above theorem but consider instead in detail its
g-generalization.
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It is natural to replace th¢ (x) = x choice in (4.14) by the following odd function
defining well-knowng-numbers

x/2 _ —x/2

q q
Y(X) = S ——75>
G2 — 412

whereq is an arbitrary (complex) deformation parameter. With the help of the MAPLE
software we have found that theanalogue of the polynomial(x) has the form (up to
a common multiplicative factor)

5
dx) =y [[ve -, (5.5)

k=1

where the same restriction (5.2) needs to be imposed upon the ratits)ofNote that
taking various limits of parametedis one can reduce the number of entries in the product
(5.5) from 6 down to 4, 3, 2, 1.

Taking d(x) = ¥(x) ]_[,f:l ¥ (x — e), Whereey satisfy the same constraints as in
the rational case, and substituting it into (4.9), we find

S 1— qj+xo—ek _ . n—eg 5 1— qxz—n—ek

5
l1-g¢g
=i =[] wn=]] 7. (56
_ +x0—d, _ —d, _ —n—d,
1<=11 A k=ll g k=11 g

For completeness we give also the explicit form of superpotentials
Ao @V A—ag" D [ - g ) 5.7)
al’2qn/2(1 - 5q?=2)(1 - 5> 3 (1 — sq"1/a)(1 - sq"~2/a)’
¢ _@2A=s5qg" DA = sq" /@A = sq" ) [ig A =sq" 072 o o)
5242111 — sq2-2) (1 — 521 (1 — ag /) [[_y (1 — ag~4/s)’
1230”21 —ag" ML - sq" /a)(L — sq" " /a)
qu(3n—l)/2(1 _ aq/s) 1‘[221(1 _ aql_dk/s) ’

where we have introduced the convenient notations

A (5.9)

2j+1-x1 jH+2—x2

a=dq S =q

Let us recall the definition af-hypergeometric serigs.1¢, [5]:

o0
ai, ..., ar41 (@i, ...,ar 10 Qi
+19 04,2 ) = <,
" ( bi,....by ) ];(q,bl,...,br;q)k

where theg-shifted factorial is defined as

n
@9o=1 (@qn.=]]L-ag"™, (@ar....a; 9= @1 @;Dn
k=1
This series is called well-poisedgtiy = azb1 = - - - = a,11b, and very-well-poised if,

additionally,ap; = qai/z, az = —qai/z. Analogously to the 1 F, case,+1¢; is called
balanced ifa1...a,41 =b1...b, andz = q.
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Theorem 5. The three-term recurrence relation f&;;-polynomials(2.3) with the re-
currence coefficients determined frgf6)5.9) has the following explicit solution:
n n

. . 12 _ . 1/2 — -1 2 2
a,qa"'¢, —qa~'<,q7 ", sq""~,aq*/sy1,...,aq"/sys
Pl (z) = f (1)10<ﬂ9< ;

a2, —al/2 aq"*1 aq? " /s, sy1/q,...,sys/qg )’
(5.10)

where

= GY% — g V2 (2 = 1 [To_1 (9 /q: D

n &)= a"2gn i+ D/A(an=1 ag: 4, ’
andyi(z), ..., ys(z) are solutions of the algebraic equation of the fifth degree
5 5 5
C=D[[ox@ =y =z]]@* - » - []w@* - ». (5.11)
k=1 k=1 k=1

Proof. In order to find the explicit form oP,{ (z) we use the representation (2.16). First
we find theg; (0) coefficients in new notations:

@Y% — g7V I 1 (sq%L; g)n
a/2qn et D/Asqg" =1 ag; )y

&l (0) =

Then, it is necessary to calculateshifted factorial forms oﬁ/,{ and Z,{ for which the
algebraic equation (5.11) is needed:

5
Yi@=e-D"]]

k=1

5

L Zi@=G-1"]]

k=1

(SYk/4q5 Dn
(Sqd"_l; Q)n

(@q?/syk; On
(ag?=%/s; q)n

Finally, solving the recurrence relation (2.18), which is the most difficult part of the
derivation, we find

n n—1
9

(a,qa'?, —qa?, q7" sq" 1 aq? /s, ..., ag* B /s; q)rg*
(@, a2, —al72, agn*L ag?1 /s sqBi1, . sqB L g\

(k) =

Now it is a matter of simple substitution into the initial formula (2.16) that leads to the

representation of;/ (z) in terms of the very-well-poised balanceskg basic hyperge-
ometric series given above. The theorem is proved.

A particular subclass of the derived set Bf;-polynomials corresponds to the
Rahman-Wilson biorthogonal rational functions considered earlier in [9,13-15,23]. It
appears whed (x) degenerates into a polynomial of the fourth degree with the roots
d3 = e3,dy = e4,ds5 = es. E.Q., taked; — o0,d2 — —oo in such a way that
d1+do = e1 + ez is afinite constant. The divergenceslifx) appear only as a prefactor
which can be removed by a scaling transformation. Tlagm) dividesd(x) and one
may write

)\j — qn+xofl _i_qfnfonrt —v,

,Bn — qn—l +q—n+t —v, a, = qn—x2+t +q—n+x2—t — v,
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where
e1+e2

5
In this situation it can be shown that the companion polynon@idig) differ from P (z)
only by the replacement of parametegses, e2 by xg — 1, e1 — 1, e2 — 1 respectively.
As a result, one has the biorthogonality relation betweeniiwe-functions differing
from each other only by a choice of parameters. From the relation (2.9) it follows that
our generahgpg-series (5.10) is biorthogonal to a linear combination of three similar
10@9-functions. It is not clear at the moment whether this combination can be reduced
to one basic hypergeometric series.

In the general case, the superpotentials for companion polyno@jats depend
on the parameters, (which was not so forP; (z)) and have much more complicated
form than (5.7)—(5.9). Note that we can build companion polynomialsgibfz) in
the same way as we did fa?/ (z) and they will not coincide withP; (z) or Qj(z).
This follows from the fact that in the general case the change of spectral variables
Bn — Bn+1, @y — a1 caused by the transition to companion polynomials (3.8) cannot
be compensated by a redefinition of parameters of the system. Evidently these transitions
to companion polynomials may be iterated to infinity. At each step we would deal with
a new elementary function solution of ttigy;-chain and a specific biorthogonality
condition between linear combinations of thgg-series.

v = q(€2—61)/2 + q(€1—€2)/2.

6. Elliptic Solutions of the Basic Equation

We were able to find a further generalization of the solutions of the basic relation (4.14)
described in the previous section. This extension uses the elliptic theta functions.
Recall that the Jacobi theta functién(u) is defined as [5]

o
01(u) = 2 (~1)" pU+ Y27 sin(2n + Dyu
n=0
N 6.1)
=2pM4sinu [ ] (1 —2p?"cosd + p4”> 1 - p?,
n=1

wherep is a complex parametdp| < 1. The modular parameteris introduced in the
standard way = exp(rrit). This function possesses many useful properties. The most
important from them are

(i) 61(w) is an odd functionf(—u) = —0(u);
(i) 61(n) is quasiperiodic with respect to the shiftsyandr ¢

Or(u+m) =—0w), O(u+mrt) :—p_1 exp—2iu) 61(u); (6.2)

(iii) an algebraic relation (the Riemann identity)

01(x+2)01(x —2)01(y +w)01(y —w) —O1(x +w) 01 (x —w)01(y +2)01(y —2)
= 01(x+y)01(x —y)01(z+w)b1(z—w) (6.3)

holds for any variables, y, z, w (see, e.g. [2], where a rescaled form of the
function H(u) = 61(wu/21) is used).
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Following [4], let us introduce the “elliptic numbers” (or, simply, e-numbers) through
the definition

O1(mhx)

[x;h, 7] = o1ih)

(6.4)

wherer is an arbitrary constant. Clearly, e-numbers depend on three varialilesd
7. In what follows the dependence ént will be omitted in the notations, i.e. we shall
write [x] = [x; h, T].

The e-numbers possess the following properties:

0 [—x1=—[x];
(i) [x+1/hl=-—[x], [x+t/h]l=—exp(—int —2wihx)[x]; (6.5)
(i)  [x+zllx = zlly + wlly — w] — [x + w][x — w][y + z][y — z]

=[x + yllx — yllz + wllz — w; (6.6)
. . ) _sin(mhx)
(iv) zm(f"fﬂm[x’ h,t] = S (6.7)
(V) ;Ilimo[X; h,t] =x. (6.8)

The property (iv) means that in the limlin(r) — +o0o e-numbers become-
numbers mentioned in the previous section Joe= ¢2". The property (v) relates
e-numbers with the usual numbers.

We will use also the notations [4]

[xIn =lx+1]...[x +n—=1], [n]!=[1],,

which are natural elliptic generalizations of the Pochhammer symbol and factorial.
Now we are ready to construct elliptic solutions of the basic equation (4.14). Compare

the properties offix] andy (x). Both are odd functions and the limiting case$.df(iv),

(v) coincide withyr(x) for the elementary functions and rational solutions of (4.14)

described in the previous section. Therefore, it is natural to identify them,

¥ (x) = [x]. (6.9)

Ford(x) we choose the following Ansatz

5
d(x) = ][ [ix - dul, (6.10)
k=1

where parameterg, are restricted by the condition (5.2). Then the limits to previous
solutions are obvious. In order to prove that (6.10) is a solution oRthechain (4.14)

it is necessary to rewrite the resulting equation in such a form that it will define a
doubly periodic function without singularities in the fundamental rectangle of the elliptic
functionf(x). By the Liouville theorem such a function should be a constant the value
of which is determined separately.
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To this end let us consider the combination

R(n) :< d(xp—n—j)
[2n+j—x2][2n+j—x2+1][2j +n+xo—x2][2j +n+x0—x2+1]
d(n+1)
+ [2n+j—x2+1][2n+ j —x2+2][n— j —x0l[n— j —x0+1]
dxp—n—j—1)
20+ j—xo+ 120+ j —x24+2][2j +n+x0—x2+1][2j +n+x0—x2+2]
d(n)
[2n+4j—x2][2n+ j —x2+1][n— j—x0—1][n— j —x0]
+ d(j+xo+1) )
[2j+n+x0—x2+1][2j +n+x0—x24+2][n— j —x0—1][n— j —x0]

X [2j+n+x0—x2][2]+n+x0—x2+1][n—j—x0][n—j—x0+1],

whered(x) is given by (6.10). Let us treat as a continuous variable. Then it is not
difficult to see thatR(n + 1/h) = R(n) andR(n + t/h) = R(n) due to the special
restriction (5.2). By the construction, all the polesrif:) as a function of: have been
cancelled in advance by the special choice ofdhe, o (x), ¢ (x) andp(x) functions,
i.e.R(n) is entire and doubly periodic. By the Liouville theorgt(n) = C1 is a constant
not depending on, which may depend, however, on other variablesy, xg. In order

to prove thatC1 = d(j + xo), which would imply (4.14), it is necessary to consider the
combination

s == e =) ___
[j —x21[j — x2 + 11[2j + x0 — x2][2j + x0 — x2 + 1]
B d(j + xo)
[2j + xo0 — x21[2] + x0 — x2 4+ L[—j — x0l[—j — x0 + 1]
B dxo—j—1)
[ —x24+10[j —x2+ 21[2j + x0 — x2 + 1[2j + x0 — x2+ 2]
d(0)
[j —x2llj — x2+ 1[—j — xo — L[—j — xol
n d(j+x0+1) )
[2j + xo0 — x2 + 1[2j + x0 — x2 + 2][—j — x0 — 1][—] — x0]

x [j —x2+1[j —x2+ 2][—j — xol[—/ — xo0 + 1I.

Again, takingj as a continuous variable, it can be checked #@t+ 1/4) = S(j)
andS(j + t/h) = S(j). By the constructiors(j) does not have poles ih Therefore
S(j) = C2 is a constant not depending gnTaking the limit; — —xp, one can see
thatC, = —d (1), which implies thatC1 = d(j + xo).

We thus proved that the functiaf(x) given by (6.10) satisfies the basic equation
(4.14) provided the constraint (5.2) is satisfied. Note an important difference of the
derived elliptic solution from the rational one and itsyeneralization — in the latter
cases one can take parameters of the system to infinity and lower the number of products
of ¥ (x) in d(x), whereas in the elliptic case this is not possible for finitdue to the
quasi-periodicity of theta functions.
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We can construct another solution of (4.14),

5 5
dx)=[x] [Jix —el, Y ex =1+ 2(x0 + x2),
k=1 k=1

with the help of which the spectral variableg, 8,, A, are restored similarly to the
previous cases.

Consider first in detail biorthogonal rational functions corresponding to the following
special choice of parameters:

e3=d3, e4=ds, es=ds, e1+ ex=d1+ do. (6.11)
Taking into account formulas (4.9) we get the expressions

_ [k —eqllk —e2]

_ rralk el 6.12
o= Ik ank =) (6.12)
[k — x2 + e1llk — x2 + e2]
= 1
Tk —x2+ dllk —x2+ dal’ (6.13)
e = [k + xo — e1]lk + xo — e2] (6.14)

[k +x0 — dallk + x0 — d2]’

7. Elliptic Analogues of Hypergeometric Functions

In this section we reconstruct an explicit form of tRg;-polynomials P/ (z) corre-
sponding to the restricted elliptic solution of tiRg;-chain (6.11).

Consider the expression (2.16) fBf;-polynomials. First of all we choose the fol-
lowing parametrization of the argument

[E1[E + e2 — ea]

= . 7.1
O = T dy —enlle +dr—en] (v
Using the identity (6.6) we can write
2(E) -y = [k +& +x0 — e1llk — & +x0 — e2lld2 — e1lle1 — di] . @72
[§ +d2 — eall§ + d1 — e1llk + xo — dallk + xo — d2]
2(E) — o = [k +& —x2+e2llk — & —x2+ e1lld2 — ex][er — di] (7.3)
“TlEtd—ellls tdi—edllk—xp +dillk —x2+dal
Hence
: . [d2 — erlles —da]  \"
Zl () = i) =
© g<z i) <[s T da — ellé +dy - el])
[1+j+&+e2—x2lunll+ ) —§+e1—x2ln
% . . , (7.4)
[1+ ) —x2+dilall+j —x2+d2ls
j - [d2 — e1]le1 — d1] !
Y, () = —Aiag) =
© ,El(z 1+ <[s T da— erllE + i — e1]>
[14+j+&—er+xolull+j—& —ex+x0ln (75)

[1+ ) +x0—diln[1+ j+ x0—d2ln
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Determine now the coefficienté (k) from the difference equation (2.18). The coef-
ficients,! (0) have the form

n—=1 j+1 . 5 .
j Cin [/ +1—x2]n Hk:l[] +1—x2+diln
J(0) = (=" —— = (=" . (7.6
= WI;IOD,{,Jrl = [J +1—x2]2n[2) + 2 — x1ln (7.6)
Whence
GO [+ xo+1[2) +2 - x1][2) +3—xl[2n + j +2 - x2]
locitt  n—j—xolln—j—xo0—12j +n+2—x1l[2j +n+3—x]
5 .
XH[J,+1+xo_dk]. (77)
i L+ 1—x2+di]
Consider now the Ansatz
. —al 1 — i
ni (k) = Gk: ) [—nlk[l—x2+ j + nlk (7.8)

xo+1l—n+jlk2—x1+n+2jl’

whereG (k, j) are coefficients to be determined.
Substituting (7.7), (7.8) into (2.18) and using the identity (6.6) we see that the part
containing dependence on the argumeiid cancelled. The remaining part yields the
equation forG (k; j):
Gl;j)  _ [2j+2-xl2j +3—x1] 13[ [j + 1+ x0 — dy]
Gk—-1,j+1 [k1[k 4+ 2j — x1 + 1] [ +1—x2+dn]

(7.9)

m=1

with the initial conditionG (0; j) = 1. It is easily verified that the only solution of the
equation (7.9) for the taken initial condition is

[—x14 1+ 2j1k[1— x1 + 2j + 2] 15[ [j + 1+ x0 — dnlk

(11 — x1+ 2/] [j+1—x2+dnlc

Gk; j) = (7.10)

m=1

We thus have found,{ (k) to be given by (7.8), wheré& (k; j) is fixed in (7.10).
Substituting (7.5), (7.4), (7.8) into (2.16) we arrive at the following expression:

Pl (@) = Z}(2)5](0) 10E9(2j + 1—x1; —n, 1+ j—xz +n, j + 1+ xo—ds,
j+1+x0—ds, j+1+x0—ds, j+1+E&+x0—e1,
J+1=§+x0—e2h, 1), (7.11)

where1gEg is the particular terminating very-well-poised balanced “elliptic” hyperge-

ometric function. The general series of this type E, were defined in [4] as (we use
slightly different notations)

00 r—2
[a1lkla1 + 2k] [az+mlk
1E/(a1; as,as, ..., ar415h,7) = ,
e a ,;0 [k1'[a1] mljl [1+a1 —agimle

(7.12)
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where the parametets, aq, . . ., a4 satisfy the balancing condition

r—-5 r-3
>+ ar— Y azm =0. (7.13)

In order to avoid the convergence problems of (7.12), one has to assume that one of the
parameters; is equal to a negative integer. In our case the condition (7.13) is fulfilled due
the constraints (4.13) and (5.2). Hon () — +oo this, ;1 E, function is transformed
into the very-well-poised balancedseries, 1 1¢,. We suggest to use the capital letter
“E” to denote this new type of series to make it similar to the plain hypergeometric series
case (capital “F") and to keep a trace of the “E"lliptic functions.

We thus have the following statement.

Theorem 6.The polynomialso,,j (z) (7.11)are polynomials ofR;;-type satisfying the
recurrenceq2.1), (2.2) and the biorthogonality condition&.8) with respect to some
functional ;.

As clearly seen from (7.4), (7.5) and (7.11), thelependence enters only in the
combinationsg + j, x1 — 2j, x2 — j, i.e. the shifts — j+1 are equivalentto a simple
redefinition of the parameters.

In the next section we describe explicitly the linear functiodaland a pair of

biorthogonal functionsk; (z), 7}/ (z) corresponding taP/ (z) in a finite-dimensional
case.

8. Finite-Dimensional Biorthogonality

In this section we fix the value of discrete tinie= 0 in all formulas and remove the
superscript 0 inP,?(z) and other functions. Then, thiedependence of all expressions
can berestored if one makes the shiffs—> xo+ j, x1 — x1—2j, x2 — x2— j keeping

all the parameterdy, .. ., ds, e1, ez fixed. The key recurrence relation (2.3) takes now
the form

Puy1() +rn (W — 2)Pu(2) +up (2 — o) (2 — By) Pro1(2) = 0. (81)
Let us impose one more constraint upon the parameters in addition to (6.11),
d3—xp=—-N=1,23,.... (8.2)

Then it is seen from (4.12) tha{N) = 0. In turn, this means thaty = 0 in (8.1).
Therefore the recurrence relation is truncated naturaltyigf a solution of the equa-
tion Py(z) = 0 and one gets a finite-dimensional system of polynomfalg), n =
0,..., N — 1 Itis assumed that there are no other relevant zeroes or palgsaimdr;,
forn=1,..., N. From our formalism it follows thaPy (z) has the followingV zeroes

[s +1+x0—eills +1+ x0—e2]
= A = . S=0,1,...,N_1. 83
ST ¥ 1+ x0 — dalls + 1+ x0 — da] (8:3)

Indeed, if one restoresdependence for a minute, then it is seen th)%\t_j =0,j=
0,..., N — 1. Substituting these conditions into (2.1) one concludes that the parameters
Ajt1, ..., An define zeroes of the polynomialg,fj(z), j=0,...,N—1.
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Comparing (8.3) with the continuous parametrization of the arguméntl), we
find thatz, = z(&;) for

& =s+1+x0— e (8.4)
Assume that all the zeroes (8.3) are distinct,d;6# zx, j # k, and do not coincide

with the pointsy;, 8;, i = 1,2,..., N — 1. Then it can be shown (see, e.g. [24]) that
the biorthogonality relation (2.8) can be rewritten explicitly in the form

N-1 m
ZU)‘YZ‘—P"(ZS)=O, m=012 .. .n-1 (8.5)
=0 Qn(Zs)

where

4 (@) =] [e—az—B) (8.6)

i=1
and the weight function; is

qN-1(zs)

= AN 8.7)
Pn-1(zs) PN(ZS)

Wy
Let us calculate all the entrig, (z;), gv—1(z5), Pn—1(zs) Of the weight functionw;.

First, notice that

Py(z5) = pn(zs — 20) - - - (25 — 25-1)(2s — Zs41) - - - (Ts — ZN-1), (8.8)

wherepy is some constant. Substituting (8.3) into (8.8) and using the identity (6.6) we
find

e do — e1]ld1 — e1] N-1
PlL(z,) = py (=N LN — —1!( d2 = e1 )
@) = o DTN = = N e T T a1 )
[xo+1+4+s—dillxo+1+s—do] [s1[2x0+2—d1 —d2 + sly

. 8.9
[2x0 + 2 — d1 — do + 2s] [xo+1—dilylxo+ 1—do]n (89)

In order to calculatgy_1(zs;) we need the expressions (6.12), (6.13)dpr 8. Using
the identity (6.6) we find

Sn[l—x1 4+ NIs[14 x0 + x2 — d1 — do]s
an-1(zs) = (8.10)
[2—x1]5[24 x0 + x20 —d1 —do — N|s[24+ x0 — N
[1+x0 —d1—d2+ Nlgl[xo + 1

X 9
[2 4+ x0 — d1 — d2]s[s + x0 — d1 + 112N —2[s + xo — do + 1]2N—2

wheredy is a factor independent a5.
In order to calculaté’y _1(z;) we substitute (8.4) into (7.11) far= N — 1 and find

Py-1(z5) = Zn-1(z5) {n-1(0) x (8.11)
8E7(1 —x1; N —x2,1+x0—dsg,1+x0—ds,s + 2+ 2xg — d1 — d2, —s; h, 7).
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The elliptic analogue of the very-well-poised hypergeometric sgiisin (8.11) can
be summed up exactly using the generalized Jackson summation formula derived in [4]:
sE7(a1; aa, ..., a8 h, 1)
_ la1+1ula1 +1—as —aslular + 1 —as — aglular +1—as —agls  (8.12)
la1 + 1 — aalsla1 + 1 — aslu[a1 + 1 — aglular + 1 — as — a5 — asl,

wheren = —ag is a honnegative integer. This formula yields

Py_1(zs) = Zn-1(z5) {N-1(0) X (8.13)
[2 — x1]s[da + ds — xo — xZ]s[l — N+ d4]s[1 — N + ds]
[1+ds — x2ls[1+ ds — x2]5[2 + x0 — NIs[—=N — x0 + da + ds]y

Combining all the derived expressions together, we get
ws = kn (zg — B1) wy, (8.14)
wherexy is a factor not depending anand

_[2x0+2—d1—do+ 25][1 — Nls[2x0 + 2 — d1 — dols

YT [2x0+2—d1 — do][s]'[2x0 + 2 — d1 — da + N1 (8.15)
y [xols[1 + d4 — x2]s[1 + ds — x2]5[1 + x0 + x2 — d1 — d2]s _
[2 — x1]s[3+ x0 — d1 — d2]s[1 — N + dals[1 — N + ds];s
From (2.9) we have
N-1
D o (25— B1) Ru(z) Hu(z) =0, n#m, (8.16)
s=0

where
R, (2) = Py(2)/(Zy(2) £u(0)) = 10E9(1 — x15 —n, 1 — x2+n, 1+ x0 — d3,
1+x0—da,l+x0—ds,1+&+x0—e1,1—&+x0—e2;h,1). (8.17)

Here we have divided for conveniend® (z) defined in (2.10) by, (0). The rational
functionsH, (z) have the structur#, (z) = 0,(z)/(z — Bn+1) [ 111 4k (z — Br). Intro-
duce the modified rational functions

n(2
To(@) = (2 — foun. g Ho() = — 22D (8.18)
k=22 — Br)
Then the biorthogonality relation (8.16) is rewritten as
N-1
Z @5 Ry(25) T (25) = hn Spm, (8.19)
s=0

whereh,, are the normalization constants to be determined in the next section. Note that
the rational function®,, (z), T, (z) have the same structupe/n], i.e. both are the ratios

of two nth degree polynomials. Poles of the functioRs(z) and T, (z) are located at

the pointsu1, ag, ..., a, andpB, Bs, ..., B.t1 respectively, wherey, B, are given by
(6.12), (6.13).
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Consider the following transformation of the parameters:

df =1+ x2—dj, eT =14+ x2—eq, d; =1+ x2—do, eﬁ =1+ x2— e,

d; = d3, d;{ = dg, d; =ds, N*=N, (8.20)

xg=1+x0+x2—d1—dz, x;=x2 & =-6.
It can be checked that this transformation is an involutionpit&.= p for any parameter
p.Notethat* (&) = z(§),i.e. the dependence pbn the parametérremains unchanged
under the involutionx. Moreover,a; = Biy1, B = ax—1, i.e. the poles oR, (z) and
T, (z) are interchanged under this involution. The weight function appears to be an invari-
ant functionw? = w,. This means, in particular, th&*(z) = 7,(z), T,7(z) = Ru(2),
because the pair of biorthogonal rational functi®$z), 7,,(z) is defined uniquely (up

to a normalization factor) by their poles from the relation (8.19).
As a result, we recover an explicit expression for the rational fundi@n):

T,(z) = R;(z) = 10E9(2+ x0 — d1 — do; —n, 1 — x2 +n,
24 x0+x2—d1—dp—d3, 24+ x0+ x2 —d1 — dp — da,
24+ x0+x2—d1—dy—ds,1+&+x9—e1,1—&+x0—e2; h,1).(8.21)

Note that this expression is valid even without the quantization condition (8.2).

To summarize, the biorthogonality relation (8.19) holds for the rational functions
R, (z) andT,(z) given by (8.17) and (8.21) with the weight functiap (8.15).

In order to find the normalization constarits we need the duality property of the
functionsR, (z) andT,(z). This will be analyzed in the next section.

9. Duality Property and the Normalization Constants

Let us rewrite the expressions f&y,(z;) andT,,(zy) after the substitution of (8.4) into
(8.17) and (8.21),

Rys = 10E9(1 — x1; —n, 1 —x2+n, 1+ x0 — d3, 1 + xo — da,
l4+x0—ds,2+2xg—d1—do+s,—s;h, 1), (9.1)
Ty = 10E9(2+ x0 —d1 — d2; —n, 1 — x2 +n, 24 x0 + x2 — d1 — d2 — d3,
24+ x0+x2—d1—dy—ds, 2+ x0+ x2 —d1 — dp — ds,
24+ 2xg—d1—do+s,—s;h, 1), (9.2)

where we use the matrix notatioRs, = R, (z5), T,s = T,(zs) for brevity. Consider
the following transformation of the parameters:

Yo=—1-xo—x2+di+dy, X1=x1, X2=-1—2x0+d1+d>,
d3=—-1—N—2xo+d1+ds, ds=—1—2x9—x2+d1+ds+ da,
ds=—1—2x0g—x2+d1+do+ds, &1+ & =di+do,

di+d> = 2d1 + 2d> — 1 — 2xg — x». (9.3)

It is directly verified that

Rys = Rgn, Tys =T, 0=<s,n <N-1, (94)



74 V. Spiridonov, A. Zhedanov

where byR,; we mean the matrix obtained from, (z;) by the replacement of all

parametergly, ..., xo by dq, ..., X». One may conclude that the transformation (9.3)
is equivalent to the permutation mfands or to the transposition of matriceg,;, 7,;.

SinceR,s = Rps, Tns = Tys, We have an involution which will be called the duality
transformation.

Return to the biorthogonality relation and observe that,ifw;, # 0, n,s =
0,1,..., N—1, thenthe relation (8.19) means the mutual orthogonality of two matrices
with the entriesk,,;/ h, andT,,; w;. Hence there exists the dual orthogonality relation
for the same matrices

Z Tys Ry _ fvnjés’n _ & (9 5)
n=0

get
C’;)s RysTins = fln Sum - (96)

Comparing (9.5) and (9.6) we arrive at the equalities
K ~ K

~ hn = Iz =K, (97)

wp Wy

wherek is a normalization constant not dependingmmands. Sincewg = 1, this
constant can be found if one puts= s’ = 0 in (9.5):

h, =

k=Y @ (9.8)

Applying the transformation (9.3) @, expressed by (8.15) we get
_[1—x2+ 25][1— NI[1 - x2]s
[s]'[1 — x2][1 — x2 + N,
y [—1—x0 — x2 +d1 + d2]s[1 + da — x2][1 + ds — x2]s[—x0ls
[2 = x1]5[3 4 x0 — d1 — d2]s[1 — dals[1 — d5]¢ ’
The sum (9.8) is reduced to the functigh; and can be calculated using the formula
(8.12):
_ [2—x2ln—1lx2 — ds — ds]y-1[1+ x0 — d4ln-1[1 + x0 — d5ln-1
[1—daly—1[1 — dsln—-1[2 — x1]ln—1[x0 + x2 —da — ds]ly—1

It can be checked that, indeed= «. So, the normalization constants have the explicit
expression

Wy

(9.9)

(9.10)

. [1—x2][n]![1—x2+ N,
[1—x2+2n][1— N[l — x2]n

y [2 — x1]u[3+ x0 — d1 — d2]u[1 — dalu[1 — ds]n
[—1—x0 — x2+d1+ d2lu[1 4 ds — x2],[1 + ds — x2],[—x0ln

Gathering the results of the previous and this section we arrive at the following
theorem.

hy =

.(9.11)
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Theorem 7.Let d1, d2, da, ds, e1, e2 and xg, x1, x2 be arbitrary parameters with the
restrictions

X2 =x0+x1, e1+ex=di1+d,
di+dy+dys+ds=1+2x0+x2+ N,

whereN is a fixed positive integer. Then the rational functions

R,(z) = 10E9(l —x1; —n,1—xp4+n,1—x1+ N,1+ xq — dg, (9.12)
l+x0—ds,1+&+x0—e1,1—&+x0—e2h, 1)

and

T,(z) = 10E9(2+x0—d1—do; —n,1—x24+n,24+x9g—d1—do+ N, (9.13)

of the argument
[E1[§ + e2 — el

YO = el —enlle + d1—en]
are biorthogonal
N-1
Z Ry (2) T (z5)ws = hy Sum (9-14)
s=0

on the “elliptic grid”
_Is+1+x0—eills +1+x0—eo]
s+ 1+x0—dills +1+x0—do]’

with the weight functiom, and normalization constants, given by(8.15)and(9.10),
(9.11)respectively.

s=012...,N-1 (9.15)

s

We conjecture that the functions defined in this theorem represent the most gen-
eral set of self-dual biorthogonal rational functions, i.e. they are the top level classical
biorthogonal rational functions in the spirit of the Askey—Wilson polynomials status [1].

Consider some limiting cases of the functioRg(z). If Im(r) — +o0, then
[x; h, ] — sin(whx)/sin(xh) and, hence, we arrive at the biorthogonal rational
functions expressed in terms of the very-well-poised balanced basic hypergeometric
series1gpe With the discrete measure [9,15,23]. In this case= (1 — z,)! «
sin(wh(s — ay)) sin(zwh(s — ap)) with some constants;, az. Hence in this limit one
can perform a rational transformation of the argumesuch that the functions are
parametrized with the help of thequadratic grict, (in the terminology of [15]).

In the limit z7 — 0 we have[x; i, t] — x and we arrive at Wilson’s family of
functions which are biorthogonal on the quadratic §gié= (s — a1) (s — a2). Note that
only in these limiting cases one can reduce parametrization of the argument of rational
functions to the quadratic @r-quadratic grids. In the elliptic case the gridbecomes
inevitably rational in a quadraticcombination of the key elliptic theta function of
(9.15).

For a special choice of parameters one can make the fun@jgasandT, (z) equal
to each other. Indeed, consider the following restriction upon the parameters:

di1+do=x2+ 1. (9.16)
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Then from the explicit expressions (9.12) and (9.13) one can sed;it@t= R, (z)
and, hence, in this case we have the pure orthogonality relation

N-1
Z W5 Ry (25) Rin(25) = hpbum (9-17)
s=0

instead of (9.14). The condition (9.16) means, in particulardhat 8,41, i.e. all poles
of the functionk,, (z) coincide with the poles of the functidfy (z). In [24] it was shown
that this condition (coincidence of the poles of rational functi®gz) and7,(z)) is
necessary and sufficient for the equalty(z) = 7,,(z) in the general case.

Let us restore now the discrete time dependence in the rational functions and discuss
briefly the effects of the shift§ — j + 1 associated with the analogues of Christoffel
transformations (2.1). As was mentioned, jhdependence in all expressions is recov-
ered by the shiftsg — xo + j,x1 — x1 — 2j, x2 — x2 — j without change of the
parameterds, ..., ds, e1, e2. Note that due to the condition (8.2) this leads to the shift
of the integer parameté¥, N — N — j, i.e. each Christoffel transformation reduces

the dimensionality of the system of rational functiag¥vidy 1. Denote aS)S' the weight
functlon obtained after these substitutions into (8.15). Then it is seea)éhai 1 and
Wl ; = 0. Moreover, the following relation betweerj " andw! takes place

j+1 Zs —Aj+1
w, ] =y ——— w;, (9.18)
is —O0j41

wherey; is easily determined from the conditimdsé+l = 1. As a result, one has the
following relation between the functionals; at different;:

Z—Aj+1

L, (9.19)
T+l

Liy1i=vy;

where the standard notation for the product of a functighay a functiong(z) is used:
8()L(f(2)) = L(g(z) f(z))- Note that the function®; (z) are orthogonal on the set
{zd} = Xj+1, Aj42, ..., Ay, Whereas the functlonB’+ (z) are orthogonal on the set

th = Ajy2, Ajy2,..., Ay, which differs from the previous one by deletion of the
first pointi ;1 .

Rational modifications of the functional were used already by Wilson in the con-
struction of hisg Fg-family of biorthogonal functions [22,23]. Namely, he has built it
from the requirement that multiplication of the weight function by particular rational
factors is equivalent to simple shifts of the free parameters of some hypergeometric se-
ries. We have shown that a similar property holds for a much wider system of functions.
Actually this is true for any explicit solution of the;;-chain with the dependence ¢gn
entering through continuous parameters because the relation (9.19) is valid for arbitrary
biorthogonal rational functions for an appropriate choice of the consgants

Indeed, suppose thdt; provides the biorthogonality condition (2.8) for sorpe
Then, using the definition (2.1), one easily verifies that1 defined by (9.19) provides

the biorthogonality functional for the polynomiaBﬁ"H(z):
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£j+l[ z (2) }:yj pitt Ej[ "z = By Pl (2)

T — D) (@ — o) TG — oG — B
2" P (2)

[Tec1(z — oj) (2 — Br)

+)/er{+1£]‘|: i|=0, O0<m<n.

The transformations (2.1) are similar to Christoffel’s transformations in the theory of
orthogonal polynomials (transitions to kernel polynomials, see, e.g. [19]). However,
instead of the linear transformation of the functiofial 1 o< (z—X;11)L; characteristic

for orthogonal polynomials, one arrives at the more involved rule (9.19). For a more
detailed comparison of these two transformations, see [24].

Self-similarity of the functional, i.e. the requirement that there exist some non-
trivial rational multiplication factors which lead only to a change of parameters of the
underlying system of functions is a highly non-trivial constraint. Systematic search of
systems obeying such a property requires an investigation of symmetries of the chains of
spectral transformations (thig ;-chain in our case or the discrete-time Toda chain in the
case of orthogonal polynomials [18]) with the subsequent analysis of solutions which
are invariant under the corresponding symmetry transformations (self-similar solutions).
The main problem consists now in the generation of all discrete and continuous symme-
tries of the taken nonlinear discrete time equation, which is a nontrivial problem. Some
additional self-similar reductions of the;;-chain, differing from (4.8), are discussed
in the next section.

10. Mébius Transformations of the Grids and Some Other Similarity Reductions

As we know, R;;-polynomials P, (z), as well as the corresponding rational functions
R,(z) andT,(z), are covariant with respect to the Mdbius transformatior (£z +
n)/(¢z + o). Consider what happens with the elliptic grid(9.15) under this transfor-
mation. It is sufficient to consider two elementary transformations:

(i) z— z—C, C =const;
(i) z — 1/z.
For the linear transformation (i) one can write

_b+1+xo—ells+1+xo—e2]l [1+1+4x0—e1]lr+1+4x0—e2]

[s+14+x0—dills+1+x0—d2] [t+1+x0—dillt+ 1+ x9—d2]
—t t+2x0+2—dy—d

:p[s 1ILs + 1 4+ 2x0 + 1 2]’ (10.1)
[s +1+x0—dills + 1+ xo — d2]

s —

where we have chosen a specific parametrization of the corGtaiat the variable.
The uniform scaling factop has the form

o= [d2 — e1lld1 — e1]
[t +x0+1—dil[t +x0—do+1]

We see that for arbitrarg' the pointsz; — C belong to the same set of elliptic grids
with the changed parameters e2. Moreover, obviously 1z, also belongs to this set of
grids with the permutatiofds 2} <> {e1,2}. We thus arrive at the following proposition:
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Proposition 2. Mobius transforms of the elliptic grid points — (§z5 +1n)/(Czs +0)
belong again to an elliptic grid from the cla3.15) for a different choice of parameters
di, da, e1, e2 and of the uniform scaling factqr.

Let us outline another application of the Mdbius transformations. For orthogonal
polynomials,R; and Laurent biorthogonal polynomials only affine transformations of
preserve the form of the corresponding three-term recurrence relation. Using this sym-
metry it is possible to define a class of polynomials whose discrete spectrum contains
a number of independent geometric progressions which can be considered as gener-
alizations of the corresponding Schrddinger equation situation [16]. Since symmetry
transformations oR;;-polynomials comprise the fuSL(2, C) group, we may define
a particular self-similar set of solutions of tt®g;-chain from the requirement for the
shift j — j + M, M —integer, to be equivalent to the discrete shift of another grid vari-
ablen — n + k, k € Z, combined with the transformation (4.5), (4.6) for some fixed
&, ¢, 0, n. These conditions correspond to the following reduction ofRhgechain:

hian okj—1 iy = Lk N 0Pntk — 1
]+ = ) j-‘r = ) n — )
§ —CAj §—Cajtk & — LBk
M M
AN = AL € — Chayi), BT —B,{+k,
. Qe ; D’
C;{+M C,4+k§ ¢ n+]+k’ D',i-’_M _ n+k ]
E—CAj §—CAj

Then formally the spectral coefficients are composed from up t#f independent
sequences of numbers having the form of the ratios of geometric progressions:

i+p
Atigm = L E0m 12, M, (10.2)
cmq' + dm

whereay,, by, ¢, dm, g are some constants. The coefficigfifeindw;,  ; are composed
from up tok andM — k sequences of numbers of a similar form.

Another type of reductions is associated with the companion polynor@",élds).
Since they satisfy recurrence relation of g type, it is possible to define a system of
R;1-polynomials from the following constraint:

(10.3)

PItM() = ¢z + ) O] (SZ + ’7)

{z+o

or from a similar condition imposed after a number of transitions to companion polyno-
mials. A generalization of such closures can be reached if one considers the associated
R;r-polynomials. Corresponding constraints imposed upomthechain look cumber-

some because of the complexity of transformations (3.9), (3.10).

Analysis of the structure of the last two types of closures lies beyond the scope of the
present paper. The spectrum of the elliptic biorthogonal rational functions (9.12) is
defined as aratio of theta functions. Comparing this with (10.2), itis natural to conjecture
that for some similarity closures; will consist of superpositions of a number of “elliptic
sequences” of points of the form (9.15).
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11. General Elliptic Biorthogonal Rational Functions

In the discussion of elliptic solutions of thg ;-chain we have restricted ourselves to the
special case (6.11). In this section we consider the general situationaltientse; of

the polynomialc?(x) = [x] ]_[;E’:l[x — ¢;] are different fromyd; with the only restriction

5 5
D ei =) di =1+ 2(x0+ x2). (11.1)
i=1 i=1

In this case we have

5 5 5
[k — x2 + ei] [k — ei] [k + x0 — e;]
= 11.2
EIW—xz+d P £Iw di1’ EIM+xo—d] (12

We need to find a convenient parametrization of the expressiens;, andz — ay.
This can be done with the help of the following proposition.

Proposition 3. Assume thatl;, ¢;,i = 1, ..., 5, are arbitrary numbers (pairwise dis-
tinct from each other) located inside the fundamental parallelogram of periods of the
function[x] with the restriction(11.1) Then the following identity

5 5
- 1_[ [x — 6,] _ K(Z) l_[ [x — Vi (Z)] (113)
i=1 i

holds, where the parametetsz), v; (z) do not depend on.

Proof. It is easily verified that due to the condition (11.1) the functjofx) = z —
]'[?Zl[x — ¢;]/[x — d;] is double-periodic with the periods &, ¢/ k. This function is
meromorphic and has 5 simple poles at the paiptsside the parallelogram of periods.
Hence by the theorems concerning double-periodic meromorphic functions (see, e.qg.
[20, Ch.21.5]) the functiory (x) should have the expression (11.3) with zerogs)

inside the fundamental parallelogram of periods. This proves the staterment.

Using the parametrization (11.3) and the property that] = —[x], we find

n 5 .
; [j+1—x2+4+vi(@)]n
zZ) :l | —aiiy) =Kk" | | ,
@ =1e=am =@ =g Ta,

n 5 .
j [J+1+x0—vi@
v/ =] -rs0 =€"@ [] ) 11.4
2 k:l(z jH) = ) iy LU+ 1+ x0—diln ( )

The biorthogonal rational functiorR,{(z) have the form (differing from the functions
entering (2.9) by the normalization factags(0)):

, J
Rl = — &) —Z ] (11.5)

ZJ(Z)Cn O  =o ZJ()



80 V. Spiridonov, A. Zhedanov

where the coefficient$,’; (k) are given by (7.8), (7.10). Substituting (11.4) and (7.8) into
(11.5) we arrive at the expression

RI(2) = 10E9(2j + 1 —x1; —n, j+1—x2+n, j + 14 x0 — 11(2),
JH+14+x0—v22),...,j+14+x0—vs5(2);h, 7). (11.6)

We see that agaiR; (z) are expressed in terms of the elliptic analogue of the very-well-
poised hypergeometric functiongEg. However, there are now more free parameters and
the zeroes; (z) have no simple expression. The solution of ¢ chain leading to (11.6)
contains twelve natural parameters, say,x2, d1, ..., ds, e1, ..., es, h, T. One more
free parameter appears as a ratio of the polynorialsandd (x) for e; = d;; it was set
equal to 1 in our considerations. Linear fractional transformationshbuld allow one
to fix three parameters, so that there remains only ten independent parameters. However,
we did not consider explicitly how this minimization of the number of parameters takes
place.

Set for simplicity ; = 0 and remove the superscript O from the notations. Taking
the constraintl; — x> = N, similar to (8.2), we arrive again at the finite-dimensional
biorthogonality,

N-1

Z Ry (z5) Tin(z5)wg = hy Spm, (117)
s=0

where for the spectral pointg we have the expression

5

[s +1+x0— ¢l
=A = - - . 11.8
s s+1 il:!_[s+1+x0_di] ( )

We see that the grid (11.8) is again a double-periodic function (of the arguinigutit

has now an essentially more complicated form than (8.3). Similar to the self-dual case,
the linear fractional transformations of do not change the general form of the grid
(11.8) — this is a consequence of Proposition 3. The weight funatjds given again

by the formula (8.7). However, in this case we were not able to find a simple expression
for Py_1(zy). Moreover, the companion rational functi@i(z) has now much more
complicated form than in the restricted case (6.11).

Similar to the rational and elementary functions solutions cases, transition to com-
panion polynomials in the general elliptic case cannot be compensated by a redefinition
of parameters. As a result, the corresponding superpoteatjals;, , D;, will not satisfy
the similarity constraint (4.8) we have started from. One may thus conclude that actually
we have an infinite sequence of elliptic solutions of #e-chain depending on ten free
parameters.

12. Conclusions

In the literature on hypergeometric special functions satisfying three-term recurrence
relations and some orthogonality conditions it was conjectured rather explicitly that
Wilson'’s family of biorthogonal rational functions and their basic analogues of Rahman
and Wilson provide “the most general model of its type” [9]. In this paper we have
constructed a more general system of biorthogonal rational funclipd which still
possesses the main properties of these families:
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(i) the functionsR,(z) satisfy the three-term recurrence relation (2.11) (with the co-
efficients being given by elliptic functions);

(ii) a pair of rational function®R,(z) andT,(z) is biorthogonal on a finite number of
pointszg, s =0, 1,..., N —1with respectto the explicitly found discrete weights
ws (determined again by elliptic functions);

(iii) there is a self-duality property of the functio®;, (z5) (and7,(z,)) in the sense that
the interchange of the number of rational functioand of the discrete variable
parametrizing its argument, <> s, is equivalent to a change of parameters;

(iv) the functionsk, (z) possess a self-similarity in the sense that there are Christoffel
transformations which are equivalent to a redefinition of the free parameters.

The generalization with respect to previously known families of functions consists
in the introduction of the new types of grids — the elliptic grids (8.3). Surprisingly these
grids appeared in [2] in the study of exactly solvable models of statistical mechanics.
Namely, the grid (8.3) is a solution of the following symmetric biquadratic difference
equation [2]:

az2z2,1 + bzsze1(zs + 2e41) + (@5 + 2240) + 2dzsze1 + ez + 241) + f = 0.
(12.1)

For the special choice of parameters= b = 0 one recovers the difference equation
defining the quadratic angtquadratic grids [12,15]:

(i) zs = A19° + Aoq™° + Ag;
(i) zo = A1s%+ Az s + Aa.

Existence of the elliptic grids for the case of biorthogonal rational functions could
be guessed from the following considerations. Let us start from the hyperbolic grid (i)
which is known to be associated with the Askey—Wilson polynomials [1] of glre-
family of biorthogonal functions considered in [9,13-15,23]. The grid (i) is determined
from the difference equation

(@2 +231) + 2dzszei1 + €25 + 2541) + f = 0. (12.2)

We know, however, that the Mobius transformatign= (¢z, + 1) /(¢ zs + o) is admis-

sible: it transforms one set of biorthogonal rational functions to another. But thégrid
satisfies now Eq. (12.1) with some restriction upon the parameléts:, d, e, f. It is
natural to remove this restriction and consider the equation (12.1) as a starting point.
Then, as shown in [2], one derives uniquely the elliptic grid (8.3). The additional free
parameter, evidently, coincides with the modular parametéihus the elliptic grids
appear quite naturally from thequadratic ones and this indicates the existence of the
corresponding system of biorthogonal rational functions.

In the recent seminal paper [4] Frenkel and Turaev have introduced “elliptic” gen-
eralizations of the hypergeometric functions (more precisely, elliptic analogues of the
very-well-poised balanced series). These new types of functions were overlooked in
the previous works on special functions. The authors of [4] have offered many useful
identities concerning these functions. They also identified “elliptisgmbols”, appear-
ing within some exactly solvable models of statistical mechanics [3], with the elliptic
very-well-poised balanced hypergeometric functipfig for some special choice of pa-
rameters. However, to the best of our knowledge, the relation of these functions to the
three-term recurrence relation of tiRg,-type, the corresponding generalized spectral
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problems and biorthogonal rational functions upon the elliptic grids constructed in this
paper were not discussed in the literature.

It should be stressed that our approach is based upon self-similar reductions of the
chains of spectral transformations for eigenvalue problems (see, e.g., our previous works
[16-18], where this formalism was applied to the Schrédinger equation and ordinary
orthogonal polynomials). In this general formalism the elliptic hypergeometric functions
are derived in a completely regular way as solutions ofRherecurrence relation for
some elliptic recurrence coefficients, which correspond to some particular solutions of
the R;;-chain. Considering other similarity solutions of tRg;-chain one can arrive at
the biorthogonal rational functions determined in terms of the more complicated special
functions.
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