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Abstract: A discrete-time chain, associated with the generalized eigenvalue problem
for two Jacobi matrices, is derived. Various discrete and continuous symmetries of this
integrable equation are revealed. A class of its rational, elementary and elliptic functions
solutions, appearing from a similarity reduction, are constructed. The latter lead to large
families of biorthogonal rational functions based upon the very-well-poised balanced
hypergeometric series of three types: the standard hypergeometric series9F8, basic
series10ϕ9 and its elliptic analogue10E9. For an important subclass of the elliptic
biorthogonal rational functions the weight function and normalization constants are
determined explicitly.
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1. Introduction

The theory of orthogonal polynomials is a well established subject [19]. Numerous
and long history investigations of explicit examples culminated in the discovery of the
Askey–Wilson polynomials – the most general set of the classical orthogonal poly-
nomials [1]. The theory of biorthogonal rational functions is less developed, but it is
actively pursued in many recent papers, see, e.g., [9,11,13–15,22–24]. A remarkable set
of such functions related to a very-well-poised 2-balanced generalized hypergeometric
series9F8 containing five free parameters was constructed by Wilson [22]. This class of
biorthogonal rational functions was believed to be the most general one based upon the
plain hypergeometric series. Aq-analogue of this class, providing a six parameter fam-
ily of functions expressed through a very-well-poised balanced basic hypergeometric
series10ϕ9, has been built by Rahman and Wilson in [13,14,23] (see also [9,15]). These
examples are intimately related to Ramanujan’s entry 40 continued fraction and its basic
analogue [8]. For a different interesting approach to the biorthogonality concept, see
[10].

In the present work we extend known classes of biorthogonal rational functions in sev-
eral respects. First, we describe an eight parameter family of functions expressed through
the very-well-poised 2-balanced9F8 series with a more complicated parametrization of
its arguments than in the Wilson case. These functions are orthogonal to a linear combi-
nation of three series of a similar form. A brief announcement of this result is given in
our recent note [25]. Second, we present aq-analogue of this class – a nine parameter
family of rational functions expressed through a very-well-poised balanced10ϕ9 series
which are orthogonal to a linear combination of three similar functions.

The third generalization concerns the principally new type of series – the elliptic
analogues of the very-well-poised balanced hypergeometric series. These series were
introduced recently by Frenkel and Turaev under the name “modular hypergeometric
functions” in the context of elliptic solutions of theYang–Baxter equation [4].As a natural
generalization of the previous class of rational functions, we derive a ten parameter family
of biorthogonal functions on the basis of an elliptic generalization of the mentioned10ϕ9
series.

The elliptic class of functions contains a subclass obeying a self-duality symmetry
similar to the one of the Wilson’s functions. For this special case we give explicit expres-
sions for the discrete weight function and normalization constants in the biorthogonality
relation. We conjecture that these self-dual functions define the most general set of
classical biorthogonal rational functions in the spirit of the Askey–Wilson polynomials
situation.

The key method of construction of new explicit examples of biorthogonal functions
is based upon the analysis of solutions of a chain of spectral transformations for a spe-
cific three-term recurrence relation. This recurrence relation was introduced by Ismail
and Masson in connection to theRII type continued fractions [11]. Our spectral trans-
formations generalize the ones investigated by Christoffel and Geronimus in the theory
of orthogonal polynomials [6,7,19]. They may be considered also as discrete Darboux
transformations for biorthogonal rational functions. From the point of view of the theory
of integrable equations, we construct a specific discrete (1+1)-dimensional integrable
chain and find its particular self-similar solutions associated with some generalized sepa-
ration of variables. In the case of orthogonal polynomials an analogue of such a program
leads to the discrete-time Toda chain (or the modifiedqd-algorithm) and its self-similar
solutions comprising recurrence coefficients of the Askey–Wilson polynomials [17,18].
The biorthogonal functions mentioned above are derived in a systematic fashion as a
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result of a solution of a well-defined set of finite-difference equations. In particular, the
modular hypergeometric series are emerging as special solutions of theRII three-term
recurrence relation with some elliptic functions coefficients.

2. RII -Polynomials and theRII -Chain

Denote asP jn (z), n, j ∈ Z, an infinite two-dimensional array of functions of the
independent variablez ∈ C. Let these functions satisfy the following relations:

P
j+1
n (z) = D

j+1
n P

j
n+1(z)+ C

j+1
n (z− α

j+1
n )P

j
n (z)

z− λj+1
, (2.1)

P
j−1
n (z) = B

j
nP

j
n (z)+ A

j
n (z− β

j
n) P

j
n−1(z), (2.2)

where the superpotentialsAjn, B
j
n , C

j
n,D

j
n and the spectral coefficientsαjn, β

j
n , λj do

not depend onz. Performing the shiftj → j − 1 in (2.1) and removingP j−1
n (z) with

the help of (2.2) we arrive at the three-term recurrence relation

P
j
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j
n (v

j
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j
n (z)+ u

j
n (z− α

j
n)(z− β

j
n) P

j
n−1(z) = 0, (2.3)

where the potentialsujn, r
j
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j
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n+1
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j
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j
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j
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j
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,
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j
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j
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n+1D
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j
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j
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j
n

D
j
n B

j
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.

(2.4)

Analogously, shiftingj → j + 1 in (2.2) and removingP j+1
n (z) with the help of (2.1)

we come again to (2.3) but with different recurrence coefficients. The compatibility
condition of these two recurrence relations yields the constraints

β
j
n = βn, α

j
n = αn+j ,

and a set of three nonlinear finite-difference equations

A
j
nC

j
n

B
j
n+1D

j
n

= A
j+1
n C

j+1
n−1

B
j+1
n D

j+1
n

, (2.5)

C
j
n B

j
n + A

j
n+1D

j
n − 1

B
j
n+1D

j
n

= C
j+1
n B

j+1
n + A

j+1
n D

j+1
n−1 − 1

B
j+1
n D

j+1
n

, (2.6)

αn+j Cjn Bjn + βn+1A
j
n+1D

j
n−λj

B
j
n+1D

j
n

= αn+j+1C
j+1
n B

j+1
n + βn A

j+1
n D

j+1
n−1−λj+1

B
j+1
n D

j+1
n

. (2.7)

We say that this system of equations determines a (1+1)-dimensional discrete integrable
chain, since it arises from the compatibility condition of two linear difference equations.
It plays a crucial role in the following considerations. The variablej may be considered
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as a discrete time since the derived equations generalize the discrete time Toda chain
appearing in a similar context for orthogonal polynomials [17].

If one takes in (2.3) the initial conditions

P
j
0 (z) = pj , P

j
1 (z) = r

j
0 (z− v

j
0),

wherepj are some non-zero numbers, thenP jn (z), n ≥ 0, representnth degree poly-
nomials inz. In order to truncate the relation (2.2) atn = 0 we impose the constraints
A
j
0 = A

j
0β0 = 0.Continued fractions associated with the three-term recurrence relation

of the type (2.3) were named by Ismail and Masson asRII -fractions [11]. Therefore we
shall refer toP jn (z) as theRII -polynomials and to Eqs. (2.5)–(2.7) as theRII -chain.
Note thatRII -polynomials can be reduced to the so-calledRI and Laurent biorthogonal
polynomials or to the standard orthogonal polynomials by removing in (2.3) the bilinear
dependence onz in various ways. The transformations (2.1) and (2.2) are analogues of
Christoffel’s transformation of orthogonal polynomials to kernel polynomials [19] and
of its inverse analyzed by Geronimus [6,7] respectively. Considered together they may
also be called discrete Darboux transformations for theRII recurrence relation (2.3).

As shown in [11] for a given set ofRII -polynomials such thatP jn (αn+j ) 6= 0,

P
j
n (βn) 6= 0 andujn 6= 0 there always exists a linear functionalLj (the discrete variable
j is considered as a dummy variable in (2.3)) such that

Lj
[

zmP
j
n (z)∏n

k=1(z− αj+k)(z− βk)

]
= 0, 0 ≤ m < n. (2.8)

On the basis of very simple linear algebra arguments this relation was rewritten in [24]
as a biorthogonality condition of two rational functions built fromP jn (z):

Lj
[
H
j
m(z)R

j
n(z)

]
= 0 for n 6= m, (2.9)

where rational functionsRjn(z),H
j
m(z) are defined below. DenoteRj0(z) = S

j
0(z) = 1

and set

R
j
n(z) = P

j
n (z)∏n

k=1(z− αj+k)
, S

j
n(z) = P

j
n (z)∏n

k=1 u
j
k(z− βk)

, (2.10)

for n > 0. These functions satisfy three-term recurrence relations with the linearized
z-dependence:

(z− αn+j+1)R
j
n+1(z)+ r

j
n (v

j
n − z)R

j
n(z)+ u

j
n(z− βn)R

j
n−1(z) = 0, (2.11)

u
j
n+1(z− βn+1)S

j
n+1(z)+ r

j
n (v

j
n − z)S

j
n(z)+ (z− αn+j )Sjn−1(z) = 0. (2.12)

Equations (2.11), (2.12) can be considered as generalized eigenvalue problems [21] of
the form

Lψ(z) = zMψ(z),

where the operatorsL,M are two general tri-diagonal Jacobi matrices.
The upper indexj does not play an essential role in the derivation of the biorthog-

onality relations. Let us set temporarilyj = 0 and suppress all the superscripts for a
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simplification. Then we may rewrite the relation (2.11) in the formLRn(z) = zMRn(z),
where

LRn(z) ≡ αn+1Rn+1(z)− rnvnRn(z)+ βnunRn−1(z),

MRn(z) ≡ Rn+1(z)− rnRn(z)+ unRn−1(z).

In these notations Eq. (2.12) takes the formLT Sn(x) = xMT Sn(x), whereLT ,MT are
the matricesL,M transposed with respect to the formal inner product

(S(x), R(z)) ≡
∞∑
k=0

Sn(x)Rn(z)

defined upon the space of rational functions. More precisely, one has

LT Sn(z) = un+1βn+1Sn+1(z)− rnvnSn(z)+ αnSn−1(z),

MT Sn(z) = un+1Sn+1(z)− rnSn(z)+ Sn−1(z).

From the chain of relations

0 = (S(x), LR(z))− z(S(x),MR(z))

= (LT S(x), R(z))− z(MT S(x), R(z)) = (x − z)(MT S(x), R(z)),
(2.13)

one can conclude that the functionsHn(x) ≡ MT Sn(x) are orthogonal toRn(z) for
different eigenvaluesx 6= z. Restoring the superscriptj one can find that the functions
H
j
n (z) are defined as follows:

H
j
n (z) ≡ u

j
n+1S

j
n+1(z)− r

j
nS

j
n(z)+ S

j
n−1(z) (2.14)

for n = 1,2, . . . , and forn = 0 one has

H
j
0 (z) = u

j
1S
j
1(z)− r

j
0 = r

j
0 (β1 − v

j
0)

z− β1
.

Since we are dealing with matrices and their eigenvectors, the orthogonality for
different eigenvalues (2.13) suggests that there is also a dual orthogonality relation for
functionsHj

m(z) andRjn(z) with equal eigenvaluesz. It is defined with the help of the
functionalLj mapping rational functions ofz onto the complex planeC (2.8).As a result,

the biorthogonality ofHj
m(z) toRjn(z) for m 6= n can be checked by direct substitution

of the corresponding expressions into (2.9) and an application of the conditions (2.8).
Any non-trivial solution of theRII -chain with appropriate boundary conditions at

n = 0 provides a system of biorthogonal rational functions. Let us sketch briefly a
procedure of buildingP jn (z) out of the given coefficientsAjn, . . . , λj . Introduce first
two auxiliary polynomials of thenth degree:

Y
j
n =

n∏
k=1

(z− λj+k), Z
j
n =

n∏
k=1

(z− αj+k), n > 0, (2.15)
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andY j0 = Z
j
0 = 1. Then the polynomialsP jn (z) admit the following representation:

P
j
n (z) = Z

j
n(z)

n∑
k=0

ζ
j
n (k)

Y
j
k (z)

Z
j
k (z)

(2.16)

with some unknown coefficientsζ jn (k), k ≤ n. Substituting this expression into (2.1)
we arrive at the system of equations

ζ
j
n+1(0)D

j+1
n + ζ

j
n (0) C

j+1
n = 0, ζ

j+1
n (n) = D

j+1
n ζ

j
n+1(n+ 1),

D
j+1
n ζ

j
n+1(k)+ C

j+1
n ζ

j
n (k) = ζ

j+1
n (k − 1), k = 1,2, . . . , n.

From the first two equations one findsζ jn (0) andζ jn (n):

ζ
j
n (0) = (−1)n

n−1∏
m=0

C
j+1
m

D
j+1
m

, ζ
j
n (n) =

n−1∏
m=0

1

D
j+n−m
m

. (2.17)

Introducing the normalized coefficientsηjn(k) = ζ
j
n (k)/ζ

j
n (0), we rewrite the remaining

part of the equations as follows:

η
j
n+1(k) = η

j
n(k)− ζ

j+1
n (0)

ζ
j
n (0)C

j+1
n

η
j+1
n (k − 1), k = 1,2, . . . , n. (2.18)

Sinceηjn(0) = 1 andηjk (k) are known already, this recurrence relation allows one to

find all the coefficientsηjn(k) uniquely in an iterative manner.
Closing this section let us show that theRII -chain allows one to generate from a

given three term recurrence relation (2.3) another recurrence relation of the same nature.
Indeed, from the relation (2.1) one can find

P
j
n+1(z) = z− λj+1

D
j+1
n

P
j+1
n (z)− C

j+1
n (z− αn+j+1)

D
j+1
n

P
j
n (z). (2.19)

In a similar way, from (2.2) one may expressP jn−1(z) in terms ofP j−1
n (z) andP jn (z):

P
j
n−1(z) = P

j−1
n (z)− B

j
nP

j
n (z)

A
j
n(z− βn)

, n > 0. (2.20)

Substituting (2.19) and (2.20) into (2.3) we get the three-term recurrence relation in the
discrete time variablej :

z− λj+1

D
j+1
n

P
j+1
n (z)+

(
r
j
n (v

j
n − z)+ C

j+1
n (αn+j+1 − z)

D
j+1
n

+ u
j
nB

j
n(αn+j − z)

A
j
n

)
P
j
n (z)

+ u
j
n(z− αn+j )

A
j
n

P
j−1
n (z) = 0.

(2.21)
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This is again a representative of the generalized eigenvalue problems. ReplacingP
j
n (z)

by Sjn(z) in (2.21) and comparing the result with (2.12) one can see thatS
j
n(z) satisfy

RII -type recurrence relations in both discrete variablesn andj . Note however, that in
the context of theRII -polynomials one hasn ≥ 0, while the values ofj are not limited.
Suppose that the dependence onj entersP jn (z) via some continuous parameters. Then
(2.21) defines some contiguous relation for the corresponding system of polynomials.

3. Companion Polynomials

Consider the functionsHj
n (z) in more detail. It is convenient to represent them in the

form

H
j
n (z) = Q

j
n(z)

(z− βn+1)
∏n
k=1 u

j
k(z− βk)

, (3.1)

whereQj
n(z) are some polynomials of thenth degree which will be called the companion

polynomials. Their explicit form is found from the definition (2.14):

Q
j
n(z) = P

j
n+1(z)− r

j
n (z− βn+1)P

j
n (z)+ u

j
n(z− βn)(z− βn+1)P

j
n−1(z), (3.2)

for n > 0 andQj
0(z) = r

j
0 (β1−vj0). Using the recurrence relation (2.3) we can represent

Q
j
n(z) in one of the two forms

Q
j
n(z) = r

j
n (βn+1 − v

j
n)P

j
n (z)+ u

j
n(z− βn)(αn+j − βn+1)P

j
n−1(z) (3.3)

or

Q
j
n(z) = (βn+1 − αn+j )P jn+1(z)+ r

j
n (αn+j − v

j
n)(z− βn+1)P

j
n (z)

z− αn+j
. (3.4)

From (3.3) it is clear thatQj
n(z) are indeed polynomials of thenth degree. With the help

of the formulas (3.3) and (3.4) it is possible to expressP
j
n (z) throughQj

n(z):

P
j
n (z) = γ

j
n Q

j
n(z)+ δ

j
n(z− αn+j−1)Q

j
n−1(z) (3.5)

or

P
j
n (z) = σ

j
nQ

j
n+1(z)+ τ

j
n (z− αn+j )Qj

n

z− βn+1
, (3.6)

where

γ
j
n = r

j
n−1(αn+j−1 − v

j
n−1)

ε
j
n

, δ
j
n = u

j
n(βn+1 − αn+j )

ε
j
n

,

σ
j
n = αn+j − βn+1

ε
j
n+1

, τ
j
n = r

j
n+1(βn+2 − v

j
n+1)

ε
j
n+1

,

ε
j
n = r

j
n r
j
n−1(αn+j−1 − v

j
n−1)(βn+1 − v

j
n)− u

j
n(αn+j − βn+1)(βn − αn+j−1), (3.7)
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and it is assumed thatεjn 6= 0. Substituting (3.5) and (3.6) into (2.1) and (2.2) we find
that the polynomialsQj

n(z) satisfy the relations

Q
j+1
n = D̃

j+1
n Q

j
n+1 + C̃

j+1
n (z− α̃n+j+1)Q

j
n

z− λ̃j+1
,

Q
j−1
n = B̃

j
nQ

j
n + Ã

j
n(z− β̃n)Q

j
n−1

with the following entries:

α̃n+j = αn+j−1, β̃n = βn+1, λ̃j = λj , (3.8)

Ã
j
n = D

j
n−1

D
j
n

A
j
n, B̃

j
n = B

j
n+1. (3.9)

The rest two superpotentials̃Djn andC̃jn have much more complicated form:

D̃
j
n = ε

j
n

ε
j−1
n+1

D
j
n−1, C̃

j
n = ε

j
n

αn+j−1 − βn+1

(
D
j
n−1τ

j−1
n + λj − βn+1

ε
j
nB

j
n+1

)
. (3.10)

Evidently, the compatibility condition of thej → j ± 1 transformations forQj
n(z)

polynomials generates theRII -recurrence relation and theRII -chain with new entries
determined byÃjn, . . . , λ̃j . We can formulate thus the following statement.

Theorem 1.The transformations(3.8)–(3.10)define a particular symmetry of theRII -
chain(2.5)–(2.7)generated by the transition from a given set ofRII -polynomialsP jn (z)
to the set of their companion polynomialsQj

n(z).

4. Symmetries of theRII -Chain and a Similarity Reduction

Let us describe some other symmetries of theRII -chain. Let us start from a brief consid-
eration of the normalization (gauge) freedom. Although this analysis is simple enough
it is instructive to give it here.

We can transform recurrence coefficients in (2.3) by the multiplication of polynomials
by an arbitrary gauge factorξjn independent onz, P jn (z) = ξ

j
n P̃

j
n (z). This leads to

recursions (2.1), (2.2) with the renormalized entries

Ã
j
n = A

j
n

t
j
n−1

, B̃
j
n = B

j
nw

j
n, C̃

j
n = C

j
n

w
j
n

, D̃
j
n = D

j
n t
j
n , (4.1)

where t jn = ξ
j−1
n+1/ξ

j
n , w

j
n = ξ

j
n /ξ

j−1
n . The coefficientstjn , w

j
n satisfy the relation

t
j
n w

j
n+1 = t

j+1
n w

j+1
n . The transformed recurrence coefficients have the form

r̃
j
n = ξ

j
n

ξ
j
n+1

r
j
n , ũ

j
n = ξ

j
n−1

ξ
j
n+1

u
j
n, (4.2)

with other entries in (2.3) being unchanged. There is thus a large freedom in the form of
presentation of the recurrence coefficients of polynomialsP

j
n (z).
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In [11] the gaugerjn = 1 was chosen. It is possible also to choose the gauger
j
n −

u
j
n = 1, rj0 = 1, leading to monic polynomialsP jn (z) = zn +O(zn−1), which may be

convenient for some reasons. From (2.1) and (2.2) it is seen that the monicity condition
implies the following constraints upon the superpotentials:A

j
n + B

j
n = C

j
n +D

j
n = 1.

In this normalization one has actually only two independent equations (2.5) and (2.7),
because Eq. (2.6) is fulfilled automatically.

There is an essential technical drawback with the monic gauge – it is not convenient
for construction of explicit solutions of theRII -chainAjn, . . . , D

j
n . For the latter purpose

it is necessary to reduce the number of superpotentials and another gauge will be chosen
below:Bjn = 1. As seen from (4.1) this choice leaves a freedom in the transformation
of superpotentials:

A
j
n → A

j
n/tn−1, D

j
n → D

j
ntn, (4.3)

where the factortn does not depend onj . This freedom will be used in the following.

Describe now some more involved properties of theRII -chain. LetAjn, B
j
n , C

j
n,D

j
n

satisfy Eqs. (2.5), (2.6). These functions would provide a solution of the wholeRII -
chain ifλj = αn+j = βn = const., because then Eq. (2.7) coincides with (2.6). Shifting
the argument of polynomials andz → z − const. one can convert the latter constraints
to λj = αn+j = βn = 0. The solutions generated under these constraints are too trivial

since the polynomials have the formP jn (z) = γ
j
n z

n, whereγ jn do not depend onz.
Indeed, using the initial conditionP j0 (z) = 1 and settingn = 0 in (2.1) one finds that

P
j
1 (z) = γ

j
1 z and the statement follows by induction. Below we shall assume that this

trivial situation does not take place.
It is not difficult to see that the affine transformation of the argumentz,z → ξz+η can

be compensated by the appropriate affine transformation of the parametersαn+j , βn, λj
and recurrence coefficients, similar to the orthogonal polynomials case. However, the
biorthogonal rational functions are associated with the generalized eigenvalue problem
Lψ(z) = zMψ(z)which admits also the inversion symmetryz → 1/z, since it amounts
to the permutation of the operatorsL andM. As a result, rational transformations of the
argument ofRII -polynomials accompanied by an appropriate gauge transformation

P̃
j
n (z) = (ζ z+ σ)n P

j
n

(
ξ z+ η

ζ z+ σ

)
, (4.4)

whereξ, η, ζ, σ are arbitrary parameters independent onj , leaves invariant the space of
these polynomials.

Theorem 2.The polynomials(4.4) satisfy(2.3) with the following recurrence coeffi-
cients:

r̃
j
n = r

j
n (ξ − ζv

j
n), ṽ

j
n = σv

j
n − η

ξ − ζv
j
n

, ũ
j
n = u

j
n(ξ − ζαn+j )(ξ − ζβn),

α̃n+j = σαn+j − η

ξ − ζαn+j
, β̃n = σβn − η

ξ − ζβn
.

(4.5)
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Consequently, theRII -chain is invariant with respect to the transformations(4.5)and

λ̃j = σλj − η

ξ − ζλj
, Ã

j
n = A

j
n(ξ − ζβn), B̃

j
n = B

j
n,

C̃
j
n = C

j
n(ξ − ζαn+j )
ξ − ζλj

, D̃
j
n = D

j
n

ξ − ζλj
.

(4.6)

The proof is skipped being simple enough.
A different type of symmetries is induced by discrete transformations of the un-

derlying two-dimensional grid formed by the variablesn, j . Namely, the reflections 1)
j → −j, n → −n; 2)n → j, j → n; 3) j → −j −n; 4)n → −n− j induce peculiar
involutions of theRII -chain.

Theorem 3.The following four involutions describe particular discrete symmetries of
theRII -chain:

1. Ãjn = D
−j
−n, D̃

j
n = A

−j
−n, B̃

j
n = C

−j
−n, C̃

j
n = B

−j
−n ,

β̃n = β1−n, α̃n+j = α−n−j , λ̃j = λ−j ;

2. Ãjn = 1

Anj
, B̃

j
n = Bnj

Anj
, C̃

j
n = Cn+1

j−1

Dn+1
j−1

, D̃
j
n = 1

Dn+1
j−1

,

α̃n+j = αn+j , β̃n = λn, λ̃j = βj ; (4.7)

3. Ãjn = A
1−j−n
n

B
1−j−n
n

, B̃
j
n = 1

B
1−j−n
n

, C̃
j
n = 1

C
1−j−n
n

, D̃
j
n = D

1−j−n
n

C
1−j−n
n

,

λ̃j = α1−j , α̃j+n = λ1−j−n, β̃n = βn;
4. Ãjn = B

j
1−n−j , B̃

j
n = A

j
1−n−j , C̃

j
n = D

j
−n−j , D̃

j
n = C

j
−n−j ,

α̃n+j = β1−n−j , β̃n = α1−n, λ̃j = λj .

The proof consists in the verification that after substitution of the tilded variables
into (2.5)–(2.7) one gets theRII -chain with the reflected grid points as indicated above.
In a sense, this theorem shows an equivalence of the spectral coefficientsλj , αn+j , βn
despite their non-symmetric entrance into the original formulas (2.1), (2.2).

These four transformations do not cover all possible types of involutions of theRII -
chain. E.g., there should exist involutions generated by a freedom in the intermediate
steps of double spectral transformation generalizing the corresponding symmetry for the
standard orthogonal polynomials [16].

Suppose that the superpotentialsAjn, B
j
n , C

j
n,D

j
n and spectral coefficientsαn, βn, λn

are described by some meromorphic functions of the continuous variablesn and j .
Such solutions of integrable chains appear usually from similarity reductions of the
corresponding equations. In general the involutions (4.7) change essentially the form of
a given solution. However, there is a special class of solutions for which only a change
of parameters occurs.

First, note that there are specific combinations of the discrete variablesn and j ,
namely,

u1 = n, u2 = j, u3 = n+ j, u4 = n− j, u5 = 2n+ j, u6 = 2j + n,
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which are expressed through each other under the taken four grid reflections up to a
change of the signs. Therefore symmetric products of some functions of these variables
will not change their form under the grid reflections. This observation allows one to
impose the constraint that the superpotentialsA

j
n, B

j
n , C

j
n,D

j
n split into products of

functions each depending only on one of these six variables:

A
j
n =

6∏
k=1

A(k)(uk), B
j
n =

6∏
k=1

B(k)(uk), C
j
n =

6∏
k=1

C(k)(uk), D
j
n =

6∏
k=1

D(k)(uk).

It is not guaranteed à priori that these restrictions are compatible with Eqs. (2.5)–(2.7).
Before substituting them into theRII -chain it is convenient to simplify superpotentials
as much as possible using the gauge freedom. So, we impose the conditionB

j
n = 1,

which allows us to normalize the polynomialsP j0 = 1. Assume also thatDjn does not
depend on the variableu1 = n, i.e.D(1)(u) = 1, which can be always achieved by the
transformation (4.3).

Then the first equation (2.5) can be resolved completely. It leads to the following
relations between the functionsA(k), C(k),D(k):

C(1)(u) = 1, C(6)(u) = D(6)(u)D(6)(u+ 1)

A(6)(u)A(6)(u+ 1)
, D(2)(u) = A(2)(u)C(2)(u),

D(3)(u) = A(3)(u), D(4)(u) = A(4)(u)C(4)(u)C(4)(u− 1),

D(5)(u) = A(5)(u)

C(5)(u− 1)
.

Still, there remains eleven unknown functions giving too large a freedom. After a thor-
ough analysis of different possibilities we have limited ourselves in this paper to the
following restricted Ansatz of generalized separation of variables (some hints upon such
a choice came from our analysis of the similar situation for orthogonal polynomials [17,
18]):

A
j
n = d(n)ρ(2j + n)

g(2n+ j)g(2n+ j − 1)φ(n− j)φ(n− j − 1)
, B

j
n = 1,

C
j
n = c(n+ j)φ(n− j)φ(n− j + 1)

σ (j)g(2n+ j)g(2n+ j + 1)
, D

j
n = ρ(2j + n)φ(n− j)φ(n− j + 1)

σ (j)
,

(4.8)

where d(0) = 0. Equation (2.5) is satisfied automatically for arbitrary functions
d(x), . . . , σ (x). Note that the first, second and fourth involutions break the condition
B
j
n = 1 and one should perform a gauge transformation (4.1) in order to restore it.

Then it can be seen that the involutions being applied to (4.8) just permute the functions
d(x), c(x), σ (x) up to a simple transformation of their arguments. A similar situation
takes place forg(x), ρ(x), φ(x). Therefore one may expect that the corresponding func-
tions shall have identical forms.

It remains now to solve Eqs. (2.6), (2.7). In some particular cases a trick helps to
reduce (2.7) to (2.6).
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Proposition 1. Suppose that the superpotentials(4.8)determine a solution of the equa-
tions (2.5), (2.6)such that the functionsd(x), σ (x), c(x) contain a number of free pa-
rameters which do not enter the functionsg(x), ρ(x), φ(x). Then Eq.(2.7) is satisfied
for the following choice of the spectral data coefficients:

λj = σ̃ (j)/σ (j), βn = d̃(n)/d(n), αn+j = c̃(n+ j)/c(n+ j), (4.9)

where the tilded functions differ from the untilded ones only by the choice of free param-
eters.

Substituting (4.8) into (2.6) we rewrite this equation in the form

c(n+ j)

g(2n+ j + 1)g(2n+ j)ρ(2j + n)ρ(2j + n+ 1)

+ d(n+ 1)

g(2n+ 2 + j)g(2n+ j + 1)φ(n+ 1 − j)φ(n− j)

− σ(j)

ρ(2j + n) φ(n+ 1 − j) φ(n− j) ρ(2j + n+ 1)

= c(n+ j + 1)

g(2n+ 2 + j)g(2n+ j + 1)ρ(2j + 2 + n)ρ(2j + n+ 1)

+ d(n)

g(2n+ j + 1)g(2n+ j)φ(n− j − 1)φ(n− j)

− σ(j + 1)

ρ(2j + 2 + n)φ(n− j)φ(n− j − 1)ρ(2j + n+ 1)
. (4.10)

We were not able to find all solutions of this equation. However, a rich class of them
has been derived from a set of natural additional constraints. Namely, suppose that
the functionsg(x), ρ(x), φ(x) have simple zeros atx = x2, x1, x0 respectively, where
x2, x1, x0 are some constants. Let us demand thatg(x) 6= 0 for x = x2 − 1, x2 − 2,
ρ(x) 6= 0 for x = x1 − 1, x1 − 2 andφ(x) 6= 0 for x = x0 ± 1. Now the condition of
cancellation of poles in (4.10) leads to the equations

c(x1 − x)

σ (x)
= g(2x1 − 3x) g(2x1 − 3x + 1)

φ(x1 − 3x) φ(x1 − 3x + 1)
,

c(x2 − x)

d(x)
= ρ(2x2 − 3x) ρ(2x2 − 3x + 1)

φ(3x − x2 − 1) φ(3x − x2)
,

σ (x − x0)

d(x)
= ρ(3x − 2x0 − 1) ρ(3x − 2x0)

g(3x − x0 − 1) g(3x − x0)
.

These conditions are resolved if we set

φ(x) = ψ(x − x0), g(x) = ψ(x − x2), ρ(x) = ψ(x − x1) (4.11)

and

σ(x) = d(x + x0), c(x) = d(x2 − x), (4.12)

whereψ(x) is an arbitrary odd functionψ(x) = −ψ(−x) (there are minor restrictions
upon the position of zeros ofψ(x) mentioned above) and the parametersx0, x1, x2
satisfy the constraint

x2 = x0 + x1. (4.13)
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In the following we stick to this particular choice of the functions entering (4.8).
Evidently, there are now only two unknown functionsd(x), ψ(x) and Eq. (4.10)

takes the form:

d(x2 − n− j)

ψ(2n+ j − x2)ψ(2n+ j + 1 − x2)ψ(2j + n− x1)ψ(2j + n+ 1 − x1)

+ d(n+ 1)

ψ(2n+ j + 1 − x2)ψ(2n+ j + 2 − x2)ψ(n− j − x0)ψ(n− j + 1 − x0)

− d(j + x0)

ψ(2j + n− x1)ψ(2j + n+ 1 − x1)ψ(n− j − x0)ψ(n− j + 1 − x0)

= d(x2 − n− j − 1)

ψ(2n+ j + 1 − x2)ψ(2n+ j + 2 − x2)ψ(2j + n+ 1 − x1)ψ(2j + n+ 2 − x1)

+ d(n)

ψ(2n+ j − x2)ψ(2n+ j + 1 − x2)ψ(n− j − 1 − x0)ψ(n− j − x0)

− d(j + 1 + x0)

ψ(2j + n+ 1 − x1)ψ(2j + n+ 2 − x1)ψ(n− j − 1 − x1)ψ(n− j − x1)
.

(4.14)

We shall call (4.14) the basic equation. Assume that the functionsψ(x) andd(x) are
entire, i.e. they do not have singularities for finite values of the argumentx. Then it is
clear from our considerations that there are no poles at finite values ofn andj in (4.14)
for arbitraryψ(x), d(x), providedψ(x) has only simple zeroes.

5. Rational and Elementary Functions Solutions

Let us start from the analysis of a class of rational and elementary functions solutions
of the basic equation (4.14).

If one limits consideration to rational functions, then it is possible to proceed further
by giving toψ(x) the simplest possible forms and analyzing the resulting equation for
d(x). So, we have fixedψ(x) = x and looked for a polynomial solution ford(x). Using
the MAPLE software it was found thatd(x) can be a polynomial of the 6th degree

d(x) = x

5∏
k=1

(x − dk) (5.1)

with the curious restriction upon its roots:

5∑
k=1

dk = 1 + 2(x0 + x2). (5.2)

There is a trivial freedom in the multiplication ofd(x) by an arbitrary factor, which we
did not indicate, and one of the roots ofd(x) was chosen to be equal to zero in order to
haved(0) = 0. As a result, there remains only four free parameters ind(x). Taking in
the formulation of Proposition 1 as̃d(x) a polynomial of the same structure asd(x):

d̃(x) = x

k∏
k=1

(x − ek),

5∑
k=1

ek = 1 + 2(x0 + x2),
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containing other 4 free parameters, we find the spectral coefficients

λj =
5∏
k=1

j + x0 − ek

j + x0 − dk
, βn =

5∏
k=1

n− ek

n− dk
, αn =

5∏
k=1

n− x2 + ek

n− x2 + dk
. (5.3)

It is convenient to denotes ≡ j + 2 − x2, a ≡ 2j + 1 + x0 − x2. The following
result was announced in [25].

Theorem 4.The recurrence relation (2.3) for the derived rational solution of theRII -
chain (5.1)-(5.3) leads toRII -polynomialsP jn (z) which are expressed through a very-
well-poised 2-balanced generalized hypergeometric series9F8:

P
j
n (z) = f jn (z)

9F8

(
a, a/2 + 1,−n, s + n− 1, a + 2 − s − y1, . . . , a + 2 − s − y5

a/2, a + n+ 1, a + 2 − s − n, s − 1 + y1, . . . , s − 1 + y5
; 1

)
,

f
j
n (z) = (1 − z)n

∏5
k=1(s − 1 + yk)n

(n+ s − 1)n(a + 1)n
,

(5.4)

wherey1(z), . . . , y5(z) are the roots of the following algebraic equation of the fifth
degree:

z

5∏
k=1

(y − dk) =
5∏
k=1

(y − ek).

Let us recall that the generalized hypergeometric function

r+1Fr

(
a1, . . . , ar+1

b1, . . . , br
; z
)

=
∞∑
n=0

(a1)n . . . (ar+1)n

n!(b1)n . . . (br )n
zn

is called well-poised if 1+ a1 = ak+1 + bk, k = 1, . . . , r. It becomes very-well-poised
if, additionally,a2 = a1/2 + 1. And it is calledk-balanced ifk + a1 + · · · + ar+1 =
b1 + · · · + br andz = 1. Such types of series have some special properties, see e.g. [5].

The Wilson family of rational functions [22] corresponds to the case whenβn, αn, λn
are reduced to the polynomials of the second degree. This can be achieved if one takes
d(x) as a polynomial of the fourth degree and demands that it dividesd̃(x). The key
new properties of the polynomials (5.4) consist in the facts that they contain eight inde-
pendent free parameters (in [22] there were only five of them) and that it is necessary to
solve an algebraic equation of the degree higher than two for presentation of the poly-
nomials in the form of hypergeometric series. Actually, there are ten free parameters in
(5.4) in addition to the degree of polynomialsn and their argumentz. However, two of
them may be absorbed into the definition of the argumentz with the help of the linear
fractional transformation (4.4) which preserves the fixed leadingj, n → ∞ asymptotics
λj , αn, βn → 1.

We are not giving the proof of the above theorem but consider instead in detail its
q-generalization.
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It is natural to replace theψ(x) = x choice in (4.14) by the following odd function
defining well-knownq-numbers

ψ(x) = qx/2 − q−x/2

q1/2 − q−1/2 ,

whereq is an arbitrary (complex) deformation parameter. With the help of the MAPLE
software we have found that theq-analogue of the polynomiald(x) has the form (up to
a common multiplicative factor)

d(x) = ψ(x)

5∏
k=1

ψ(x − dk), (5.5)

where the same restriction (5.2) needs to be imposed upon the roots ofd(x). Note that
taking various limits of parametersdk one can reduce the number of entries in the product
(5.5) from 6 down to 4, 3, 2, 1.

Taking d̃(x) = ψ(x)
∏5
k=1ψ(x − ek), whereek satisfy the same constraints as in

the rational case, and substituting it into (4.9), we find

λj =
5∏
k=1

1 − qj+x0−ek
1 − qj+x0−dk , βn =

5∏
k=1

1 − qn−ek
1 − qn−dk

, αn =
5∏
k=1

1 − qx2−n−ek
1 − qx2−n−dk . (5.6)

For completeness we give also the explicit form of superpotentials

A
j
n = − (q1/2 − q−1/2)−3(1 − qn)(1 − aqn−1)

∏5
k=1(1 − qn−dk )

a1/2qn/2(1 − sq2n−2)(1 − sq2n−3)(1 − sqn−1/a)(1 − sqn−2/a)
, (5.7)

C
j
n = a2(1 − sqn−2)(1 − sqn/a)(1 − sqn−1/a)

∏5
k=1(1 − sqn+dk−2)

s2q2n−1(1 − sq2n−2)(1 − sq2n−1)(1 − aq/s)
∏5
k=1(1 − aq1−dk /s)

, (5.8)

D
j
n = −(q1/2 − q−1/2)3

a5/2(1 − aqn−1)(1 − sqn/a)(1 − sqn−1/a)

s2q(3n−1)/2(1 − aq/s)
∏5
k=1(1 − aq1−dk /s)

, (5.9)

where we have introduced the convenient notations

a ≡ q2j+1−x1, s ≡ qj+2−x2.

Let us recall the definition ofq-hypergeometric seriesr+1ϕr [5]:

r+1ϕr

(
a1, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑
k=0

(a1, . . . , ar+1; q)k
(q, b1, . . . , br ; q)k z

k,

where theq-shifted factorial is defined as

(a; q)0 = 1, (a; q)n =
n∏
k=1

(1 − aqk−1), (a1, . . . , ar ; q)n = (a1; q)n . . . (ar ; q)n.

This series is called well-poised ifqa1 = a2b1 = · · · = ar+1br and very-well-poised if,
additionally,a2 = qa

1/2
1 , a3 = −qa1/2

1 . Analogously to ther+1Fr case,r+1ϕr is called
balanced ifqa1 . . . ar+1 = b1 . . . br andz = q.
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Theorem 5.The three-term recurrence relation forRII -polynomials(2.3)with the re-
currence coefficients determined from(5.6)–(5.9)has the following explicit solution:

P
j
n (z) = f

j
n (z)10ϕ9

(
a, qa1/2,−qa1/2, q−n, sqn−1, aq2/sy1, . . . , aq

2/sy5

a1/2,−a1/2, aqn+1, aq2−n/s, sy1/q, . . . , sy5/q
; q, q

)
,

(5.10)

where

f
j
n (z) = (q1/2 − q−1/2)−3n(z− 1)n

∏5
k=1(syk/q; q)n

an/2qn(n+1)/4(sqn−1, aq; q)n ,

andy1(z), . . . , y5(z) are solutions of the algebraic equation of the fifth degree

(z− 1)
5∏
k=1

(yk(z)− y) = z

5∏
k=1

(qdk − y)−
5∏
k=1

(qek − y). (5.11)

Proof. In order to find the explicit form ofP jn (z) we use the representation (2.16). First
we find theζ jn (0) coefficients in new notations:

ζ
j
n (0) = (q1/2 − q−1/2)−3n∏5

k=1(sq
dk−1; q)n

an/2qn(n+1)/4(sqn−1, aq; q)n .

Then, it is necessary to calculateq-shifted factorial forms ofY jn andZjn for which the
algebraic equation (5.11) is needed:

Y
j
n (z) = (z− 1)n

5∏
k=1

(aq2/syk; q)n
(aq2−dk /s; q)n , Z

j
n(z) = (z− 1)n

5∏
k=1

(syk/q; q)n
(sqdk−1; q)n .

Finally, solving the recurrence relation (2.18), which is the most difficult part of the
derivation, we find

η
j
n(k) = (a, qa1/2,−qa1/2, q−n, sqn−1, aq2−d1/s, . . . , aq2−d5/s; q)kqk

(q, a1/2,−a1/2, aqn+1, aq2−n/s, sqd1−1, . . . , sqd5−1; q)k .

Now it is a matter of simple substitution into the initial formula (2.16) that leads to the
representation ofP jn (z) in terms of the very-well-poised balanced10ϕ9 basic hyperge-
ometric series given above. The theorem is proved.ut

A particular subclass of the derived set ofRII -polynomials corresponds to the
Rahman-Wilson biorthogonal rational functions considered earlier in [9,13–15,23]. It
appears whend(x) degenerates into a polynomial of the fourth degree with the roots
d3 = e3, d4 = e4, d5 = e5. E.g., taked1 → ∞, d2 → −∞ in such a way that
d1 +d2 = e1 +e2 is a finite constant. The divergences ind(x) appear only as a prefactor
which can be removed by a scaling transformation. Then,d(x) divides d̃(x) and one
may write

λj = qn+x0−t + q−n−x0+t − v,

βn = qn−t + q−n+t − v, αn = qn−x2+t + q−n+x2−t − v,
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where
t = e1 + e2

2
, v = q(e2−e1)/2 + q(e1−e2)/2.

In this situation it can be shown that the companion polynomialsQ
j
n(z)differ fromP jn (z)

only by the replacement of parametersx0, e1, e2 by x0 − 1, e1 − 1, e2 − 1 respectively.
As a result, one has the biorthogonality relation between two10ϕ9-functions differing
from each other only by a choice of parameters. From the relation (2.9) it follows that
our general10ϕ9-series (5.10) is biorthogonal to a linear combination of three similar
10ϕ9-functions. It is not clear at the moment whether this combination can be reduced
to one basic hypergeometric series.

In the general case, the superpotentials for companion polynomialsQ
j
n(z) depend

on the parametersek (which was not so forP jn (z)) and have much more complicated
form than (5.7)–(5.9). Note that we can build companion polynomials forQ

j
n(z) in

the same way as we did forP jn (z) and they will not coincide withP jn (z) or Qj
n(z).

This follows from the fact that in the general case the change of spectral variables
βn → βn+1, αn → αn−1 caused by the transition to companion polynomials (3.8) cannot
be compensated by a redefinition of parameters of the system. Evidently these transitions
to companion polynomials may be iterated to infinity. At each step we would deal with
a new elementary function solution of theRII -chain and a specific biorthogonality
condition between linear combinations of the10ϕ9-series.

6. Elliptic Solutions of the Basic Equation

We were able to find a further generalization of the solutions of the basic relation (4.14)
described in the previous section. This extension uses the elliptic theta functions.

Recall that the Jacobi theta functionθ1(u) is defined as [5]

θ1(u) = 2
∞∑
n=0

(−1)np(n+1/2)2 sin(2n+ 1)u

= 2p1/4 sinu
∞∏
n=1

(
1 − 2p2n cos 2u+ p4n

)
(1 − p2n),

(6.1)

wherep is a complex parameter,|p| < 1. The modular parameterτ is introduced in the
standard wayp = exp(πiτ ). This function possesses many useful properties. The most
important from them are

(i) θ1(u) is an odd function,θ1(−u) = −θ(u);
(ii) θ1(u) is quasiperiodic with respect to the shifts byπ andπτ

θ1(u+π) =−θ(u), θ(u+πτ) =−p−1 exp(−2iu) θ1(u); (6.2)

(iii) an algebraic relation (the Riemann identity)

θ1(x+z)θ1(x−z)θ1(y+w)θ1(y−w)−θ1(x+w)θ1(x−w)θ1(y+z)θ1(y−z)
= θ1(x+y)θ1(x−y)θ1(z+w)θ1(z−w) (6.3)

holds for any variablesx, y, z, w (see, e.g. [2], where a rescaled form of theθ1
functionH(u) = θ1(πu/2I ) is used).
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Following [4], let us introduce the “elliptic numbers” (or, simply, e-numbers) through
the definition

[x;h, τ ] = θ1(πhx)

θ1(πh)
, (6.4)

whereh is an arbitrary constant. Clearly, e-numbers depend on three variablesx, h and
τ . In what follows the dependence onh, τ will be omitted in the notations, i.e. we shall
write [x] ≡ [x;h, τ ].

The e-numbers possess the following properties:

(i) [−x] = −[x];
(ii ) [x + 1/h] = −[x], [x + τ/h] = − exp(−iπτ − 2πihx) [x]; (6.5)

(iii ) [x + z][x − z][y + w][y − w] − [x + w][x − w][y + z][y − z]
= [x + y][x − y][z+ w][z− w]; (6.6)

(iv) lim
Im(τ)→+∞[x;h, τ ] = sin(πhx)

sin(πh)
; (6.7)

(v) lim
h→0

[x;h, τ ] = x. (6.8)

The property (iv) means that in the limitIm(τ) → +∞ e-numbers becomeq-
numbers mentioned in the previous section forq = e2πih. The property (v) relates
e-numbers with the usual numbers.

We will use also the notations [4]

[x]n = [x][x + 1] . . . [x + n− 1], [n]! = [1]n,

which are natural elliptic generalizations of the Pochhammer symbol and factorial.
Now we are ready to construct elliptic solutions of the basic equation (4.14). Compare

the properties of[x] andψ(x). Both are odd functions and the limiting cases of[x] (iv),
(v) coincide withψ(x) for the elementary functions and rational solutions of (4.14)
described in the previous section. Therefore, it is natural to identify them,

ψ(x) = [x]. (6.9)

Ford(x) we choose the following Ansatz

d(x) = [x]
5∏
k=1

[x − dk], (6.10)

where parametersdk are restricted by the condition (5.2). Then the limits to previous
solutions are obvious. In order to prove that (6.10) is a solution of theRII -chain (4.14)
it is necessary to rewrite the resulting equation in such a form that it will define a
doubly periodic function without singularities in the fundamental rectangle of the elliptic
functionθ1(x). By the Liouville theorem such a function should be a constant the value
of which is determined separately.
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To this end let us consider the combination

R(n) =
(

d(x2−n−j)
[2n+j−x2][2n+j−x2+1][2j+n+x0−x2][2j+n+x0−x2+1]

+ d(n+1)

[2n+j−x2+1][2n+j−x2+2][n−j−x0][n−j−x0+1]
− d(x2−n−j−1)

[2n+j−x2+1][2n+j−x2+2][2j+n+x0−x2+1][2j+n+x0−x2+2]
− d(n)

[2n+j−x2][2n+j−x2+1][n−j−x0−1][n−j−x0]
+ d(j+x0+1)

[2j+n+x0−x2+1][2j+n+x0−x2+2][n−j−x0−1][n−j−x0]
)

× [2j+n+x0−x2][2j+n+x0−x2+1][n−j−x0][n−j−x0+1],
whered(x) is given by (6.10). Let us treatn as a continuous variable. Then it is not
difficult to see thatR(n + 1/h) = R(n) andR(n + τ/h) = R(n) due to the special
restriction (5.2). By the construction, all the poles ofR(n) as a function ofn have been
cancelled in advance by the special choice of thec(x), σ (x), φ(x) andρ(x) functions,
i.e.R(n) is entire and doubly periodic. By the Liouville theoremR(n) = C1 is a constant
not depending onn, which may depend, however, on other variablesj, x2, x0. In order
to prove thatC1 = d(j + x0), which would imply (4.14), it is necessary to consider the
combination

S(j) =
(

d(x2 − j)

[j − x2][j − x2 + 1][2j + x0 − x2][2j + x0 − x2 + 1]
− d(j + x0)

[2j + x0 − x2][2j + x0 − x2 + 1][−j − x0][−j − x0 + 1]
− d(x2 − j − 1)

[j − x2 + 1][j − x2 + 2][2j + x0 − x2 + 1][2j + x0 − x2 + 2]
− d(0)

[j − x2][j − x2 + 1][−j − x0 − 1][−j − x0]
+ d(j + x0 + 1)

[2j + x0 − x2 + 1][2j + x0 − x2 + 2][−j − x0 − 1][−j − x0]
)

× [j − x2 + 1][j − x2 + 2][−j − x0][−j − x0 + 1].
Again, takingj as a continuous variable, it can be checked thatS(j + 1/h) = S(j)

andS(j + τ/h) = S(j). By the constructionS(j) does not have poles inj . Therefore
S(j) = C2 is a constant not depending onj . Taking the limitj → −x0, one can see
thatC2 = −d(1), which implies thatC1 = d(j + x0).

We thus proved that the functiond(x) given by (6.10) satisfies the basic equation
(4.14) provided the constraint (5.2) is satisfied. Note an important difference of the
derived elliptic solution from the rational one and itsq-generalization – in the latter
cases one can take parameters of the system to infinity and lower the number of products
of ψ(x) in d(x), whereas in the elliptic case this is not possible for finiteτ due to the
quasi-periodicity of theta functions.
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We can construct another solution of (4.14),

d̃(x) = [x]
5∏
k=1

[x − ek],
5∑
k=1

ek = 1 + 2(x0 + x2),

with the help of which the spectral variablesαn, βn, λn are restored similarly to the
previous cases.

Consider first in detail biorthogonal rational functions corresponding to the following
special choice of parameters:

e3 = d3, e4 = d4, e5 = d5, e1 + e2 = d1 + d2. (6.11)

Taking into account formulas (4.9) we get the expressions

βk = [k − e1][k − e2]
[k − d1][k − d2] , (6.12)

αk = [k − x2 + e1][k − x2 + e2]
[k − x2 + d1][k − x2 + d2] , (6.13)

λk = [k + x0 − e1][k + x0 − e2]
[k + x0 − d1][k + x0 − d2] . (6.14)

7. Elliptic Analogues of Hypergeometric Functions

In this section we reconstruct an explicit form of theRII -polynomialsP jn (z) corre-
sponding to the restricted elliptic solution of theRII -chain (6.11).

Consider the expression (2.16) forRII -polynomials. First of all we choose the fol-
lowing parametrization of the argumentz:

z(ξ) = [ξ ][ξ + e2 − e1]
[ξ + d2 − e1][ξ + d1 − e1] . (7.1)

Using the identity (6.6) we can write

z(ξ)− λk = [k + ξ + x0 − e1][k − ξ + x0 − e2][d2 − e1][e1 − d1]
[ξ + d2 − e1][ξ + d1 − e1][k + x0 − d1][k + x0 − d2] , (7.2)

z(ξ)− αk = [k + ξ − x2 + e2][k − ξ − x2 + e1][d2 − e1][e1 − d1]
[ξ + d2 − e1][ξ + d1 − e1][k − x2 + d1][k − x2 + d2] . (7.3)

Hence

Z
j
n(z) =

n∏
k=1

(z− αj+k) =
( [d2 − e1][e1 − d1]

[ξ + d2 − e1][ξ + d1 − e1]
)n

×[1 + j + ξ + e2 − x2]n[1 + j − ξ + e1 − x2]n
[1 + j − x2 + d1]n[1 + j − x2 + d2]n , (7.4)

Y
j
n (z) =

n∏
k=1

(z− λj+k) =
( [d2 − e1][e1 − d1]

[ξ + d2 − e1][ξ + d1 − e1]
)n

×[1 + j + ξ − e1 + x0]n[1 + j − ξ − e2 + x0]n
[1 + j + x0 − d1]n[1 + j + x0 − d2]n . (7.5)
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Determine now the coefficientsηjn(k) from the difference equation (2.18). The coef-
ficientsζ jn (0) have the form

ζ
j
n (0) = (−1)n

n−1∏
m=0

C
j+1
m

D
j+1
m

= (−1)n
[j + 1 − x2]n ∏5

k=1[j + 1 − x2 + dk]n
[j + 1 − x2]2n[2j + 2 − x1]n . (7.6)

Whence

ζ
j+1
n (0)

ζ
j
n (0)C

j+1
n

= [j + x0 + 1][2j + 2 − x1][2j + 3 − x1][2n+ j + 2 − x2]
[n− j − x0][n− j − x0 − 1][2j + n+ 2 − x1][2j + n+ 3 − x1]

×
5∏
k=1

[j + 1 + x0 − dk]
[j + 1 − x2 + dk] . (7.7)

Consider now the Ansatz

η
j
n(k) = G(k; j) [−n]k[1 − x2 + j + n]k

[x0 + 1 − n+ j ]k [2 − x1 + n+ 2j ]k , (7.8)

whereG(k, j) are coefficients to be determined.
Substituting (7.7), (7.8) into (2.18) and using the identity (6.6) we see that the part

containing dependence on the argumentn is cancelled. The remaining part yields the
equation forG(k; j):

G(k; j)
G(k − 1; j + 1)

= [2j + 2 − x1][2j + 3 − x1]
[k][k + 2j − x1 + 1]

5∏
m=1

[j + 1 + x0 − dm]
[j + 1 − x2 + dm] (7.9)

with the initial conditionG(0; j) = 1. It is easily verified that the only solution of the
equation (7.9) for the taken initial condition is

G(k; j) = [−x1 + 1 + 2j ]k[1 − x1 + 2j + 2k]
[k]![1 − x1 + 2j ]

5∏
m=1

[j + 1 + x0 − dm]k
[j + 1 − x2 + dm]k . (7.10)

We thus have foundηjn(k) to be given by (7.8), whereG(k; j) is fixed in (7.10).
Substituting (7.5), (7.4), (7.8) into (2.16) we arrive at the following expression:

P
j
n (z) = Z

j
n(z)ζ

j
n (0) 10E9(2j + 1−x1; −n,1 + j−x2 + n, j + 1 + x0−d3,

j + 1 + x0−d4, j + 1 + x0−d5, j + 1 + ξ + x0−e1,

j + 1−ξ + x0−e2;h, τ), (7.11)

where10E9 is the particular terminating very-well-poised balanced “elliptic” hyperge-
ometric function. The general series of this typer+1Er were defined in [4] as (we use
slightly different notations)

r+1Er(a1; a4, a5, . . . , ar+1;h, τ) =
∞∑
k=0

[a1]k[a1 + 2k]
[k]![a1]

r−2∏
m=1

[a3+m]k
[1 + a1 − a3+m]k ,

(7.12)
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where the parametersa1, a4, . . . , ar+1 satisfy the balancing condition

r − 5

2
+ r − 3

2
a1 −

r−2∑
m=1

a3+m = 0. (7.13)

In order to avoid the convergence problems of (7.12), one has to assume that one of the
parametersak is equal to a negative integer. In our case the condition (7.13) is fulfilled due
the constraints (4.13) and (5.2). ForIm (τ) → +∞ this r+1Er function is transformed
into the very-well-poised balancedq-seriesr+1ϕr . We suggest to use the capital letter
“E” to denote this new type of series to make it similar to the plain hypergeometric series
case (capital “F”) and to keep a trace of the “E”lliptic functions.

We thus have the following statement.

Theorem 6.The polynomialsP jn (z) (7.11)are polynomials ofRII -type satisfying the
recurrences(2.1), (2.2) and the biorthogonality conditions(2.8) with respect to some
functionalLj .

As clearly seen from (7.4), (7.5) and (7.11), thej -dependence enters only in the
combinationsx0 +j, x1−2j, x2 −j , i.e. the shiftsj → j ±1 are equivalent to a simple
redefinition of the parameters.

In the next section we describe explicitly the linear functionalLj and a pair of

biorthogonal functionsRjn(z), T
j
n (z) corresponding toP jn (z) in a finite-dimensional

case.

8. Finite-Dimensional Biorthogonality

In this section we fix the value of discrete timej = 0 in all formulas and remove the
superscript 0 inP 0

n (z) and other functions. Then, thej -dependence of all expressions
can be restored if one makes the shiftsx0 → x0+j, x1 → x1−2j, x2 → x2−j keeping
all the parametersd1, . . . , d5, e1, e2 fixed. The key recurrence relation (2.3) takes now
the form

Pn+1(z)+ rn (vn − z)Pn(z)+ un (z− αn)(z− βn) Pn−1(z) = 0. (8.1)

Let us impose one more constraint upon the parameters in addition to (6.11),

d3 − x2 = −N = 1,2,3, . . . . (8.2)

Then it is seen from (4.12) thatc(N) = 0. In turn, this means thatuN = 0 in (8.1).
Therefore the recurrence relation is truncated naturally ifz is a solution of the equa-
tion PN(z) = 0 and one gets a finite-dimensional system of polynomialsPn(z), n =
0, . . . , N − 1. It is assumed that there are no other relevant zeroes or poles inun andrn
for n = 1, . . . , N . From our formalism it follows thatPN(z) has the followingN zeroes

zs = λs+1 = [s + 1 + x0 − e1][s + 1 + x0 − e2]
[s + 1 + x0 − d1][s + 1 + x0 − d2] , s = 0,1, . . . , N − 1. (8.3)

Indeed, if one restoresj -dependence for a minute, then it is seen thatC
j
N−j = 0, j =

0, . . . , N −1. Substituting these conditions into (2.1) one concludes that the parameters
λj+1, . . . , λN define zeroes of the polynomialsP jN−j (z), j = 0, . . . , N − 1.
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Comparing (8.3) with the continuous parametrization of the argumentz (7.1), we
find thatzs = z(ξs) for

ξs = s + 1 + x0 − e2. (8.4)

Assume that all the zeroes (8.3) are distinct, i.e.zj 6= zk, j 6= k, and do not coincide
with the pointsαi, βi, i = 1,2, . . . , N − 1. Then it can be shown (see, e.g. [24]) that
the biorthogonality relation (2.8) can be rewritten explicitly in the form

N−1∑
s=0

ws z
m
s Pn(zs)

qn(zs)
= 0, m = 0,1,2, . . . , n− 1, (8.5)

where

qn(z) =
n∏
i=1

(z− αi)(z− βi) (8.6)

and the weight functionws is

ws = qN−1(zs)

PN−1(zs) P
′
N(zs)

. (8.7)

Let us calculate all the entriesP ′
N(zs), qN−1(zs), PN−1(zs) of the weight functionws .

First, notice that

P ′
N(zs) = ρN(zs − z0) . . . (zs − zs−1)(zs − zs+1) . . . (zs − zN−1), (8.8)

whereρN is some constant. Substituting (8.3) into (8.8) and using the identity (6.6) we
find

P ′
N(zs) = ρN(−1)N−s−1[N − s − 1]!

( [d2 − e1][d1 − e1]
[s + x0 + 1 − d1][s + x0 + 1 − d2]

)N−1

×[x0 + 1 + s − d1][x0 + 1 + s − d2]
[2x0 + 2 − d1 − d2 + 2s]

[s]![2x0 + 2 − d1 − d2 + s]N
[x0 + 1 − d1]N [x0 + 1 − d2]N . (8.9)

In order to calculateqN−1(zs) we need the expressions (6.12), (6.13) forαk, βk. Using
the identity (6.6) we find

qN−1(zs) = δN [1 − x1 +N ]s[1 + x0 + x2 − d1 − d2]s
[2 − x1]s[2 + x0 + x2 − d1 − d2 −N ]s[2 + x0 −N ]s (8.10)

× [1 + x0 − d1 − d2 +N ]s[x0 + 1]s
[2 + x0 − d1 − d2]s[s + x0 − d1 + 1]2N−2[s + x0 − d2 + 1]2N−2 ,

whereδN is a factor independent onzs .
In order to calculatePN−1(zs) we substitute (8.4) into (7.11) forn = N − 1 and find

PN−1(zs) = ZN−1(zs) ζN−1(0)× (8.11)

8E7(1 − x1;N − x2,1 + x0 − d4,1 + x0 − d5, s + 2 + 2x0 − d1 − d2,−s;h, τ).
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The elliptic analogue of the very-well-poised hypergeometric series8E7 in (8.11) can
be summed up exactly using the generalized Jackson summation formula derived in [4]:

8E7(a1; a4, . . . , a8;h, τ)
= [a1 + 1]n[a1 + 1 − a4 − a5]n[a1 + 1 − a4 − a6]n[a1 + 1 − a5 − a6]n

[a1 + 1 − a4]n[a1 + 1 − a5]n[a1 + 1 − a6]n[a1 + 1 − a4 − a5 − a6]n ,
(8.12)

wheren = −a8 is a nonnegative integer. This formula yields

PN−1(zs) = ZN−1(zs) ζN−1(0)× (8.13)
[2 − x1]s[d4 + d5 − x0 − x2]s[1 −N + d4]s[1 −N + d5]s

[1 + d4 − x2]s[1 + d5 − x2]s[2 + x0 −N ]s[−N − x0 + d4 + d5]s .

Combining all the derived expressions together, we get

ws = κN (zs − β1) ωs, (8.14)

whereκN is a factor not depending ons and

ωs = [2x0 + 2 − d1 − d2 + 2s][1 −N ]s[2x0 + 2 − d1 − d2]s
[2x0 + 2 − d1 − d2][s]![2x0 + 2 − d1 − d2 +N ]s (8.15)

×[x0]s[1 + d4 − x2]s[1 + d5 − x2]s[1 + x0 + x2 − d1 − d2]s
[2 − x1]s[3 + x0 − d1 − d2]s[1 −N + d4]s[1 −N + d5]s .

From (2.9) we have

N−1∑
s=0

ωs (zs − β1) Rn(zs)Hm(zs) = 0, n 6= m, (8.16)

where

Rn(z) = Pn(z)/(Zn(z) ζn(0)) = 10E9(1 − x1; −n,1 − x2 + n,1 + x0 − d3,

1 + x0 − d4,1 + x0 − d5,1 + ξ + x0 − e1,1 − ξ + x0 − e2;h, τ). (8.17)

Here we have divided for convenienceRn(z) defined in (2.10) byζn(0). The rational
functionsHn(z) have the structureHn(z) = Qn(z)/(z− βn+1)

∏n
k=1 uk(z− βk). Intro-

duce the modified rational functions

Tn(z) = (z− β1)u1 . . . un Hn(z) = Qn(z)∏n+1
k=2(z− βk)

. (8.18)

Then the biorthogonality relation (8.16) is rewritten as

N−1∑
s=0

ωs Rn(zs)Tm(zs) = hn δnm, (8.19)

wherehn are the normalization constants to be determined in the next section. Note that
the rational functionsRn(z), Tn(z) have the same structure[n/n], i.e. both are the ratios
of two nth degree polynomials. Poles of the functionsRn(z) andTn(z) are located at
the pointsα1, α2, . . . , αn andβ2, β3, . . . , βn+1 respectively, whereαk, βk are given by
(6.12), (6.13).
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Consider the following transformation of the parameters:

d∗
1 = 1 + x2 − d1, e∗1 = 1 + x2 − e1, d∗

2 = 1 + x2 − d2, e∗2 = 1 + x2 − e2,

d∗
3 = d3, d∗

4 = d4, d∗
5 = d5, N∗ = N, (8.20)

x∗
0 = 1 + x0 + x2 − d1 − d2, x∗

2 = x2, ξ∗ = −ξ.
It can be checked that this transformation is an involution, i.e.p∗∗ = p for any parameter
p. Note thatz∗(ξ) = z(ξ), i.e. the dependence ofzon the parameterξ remains unchanged
under the involution∗. Moreover,α∗

k = βk+1, β
∗
k = αk−1, i.e. the poles ofRn(z) and

Tn(z) are interchanged under this involution. The weight function appears to be an invari-
ant functionω∗

s = ωs. This means, in particular, thatR∗
n(z) = Tn(z), T

∗
n (z) = Rn(z),

because the pair of biorthogonal rational functionsRn(z), Tn(z) is defined uniquely (up
to a normalization factor) by their poles from the relation (8.19).

As a result, we recover an explicit expression for the rational functionTn(z):

Tn(z) = R∗
n(z) = 10E9(2 + x0 − d1 − d2; −n,1 − x2 + n,

2 + x0 + x2 − d1 − d2 − d3,2 + x0 + x2 − d1 − d2 − d4,

2 + x0 + x2 − d1 − d2 − d5,1 + ξ + x0 − e1,1 − ξ + x0 − e2;h, τ). (8.21)

Note that this expression is valid even without the quantization condition (8.2).
To summarize, the biorthogonality relation (8.19) holds for the rational functions

Rn(z) andTn(z) given by (8.17) and (8.21) with the weight functionωs (8.15).
In order to find the normalization constantshn we need the duality property of the

functionsRn(z) andTn(z). This will be analyzed in the next section.

9. Duality Property and the Normalization Constants

Let us rewrite the expressions forRn(zs) andTn(zs) after the substitution of (8.4) into
(8.17) and (8.21),

Rns = 10E9(1 − x1; −n,1 − x2 + n,1 + x0 − d3,1 + x0 − d4,

1 + x0 − d5,2 + 2x0 − d1 − d2 + s,−s;h, τ), (9.1)

Tns = 10E9(2 + x0 − d1 − d2; −n,1 − x2 + n,2 + x0 + x2 − d1 − d2 − d3,

2 + x0 + x2 − d1 − d2 − d4,2 + x0 + x2 − d1 − d2 − d5,

2 + 2x0 − d1 − d2 + s,−s;h, τ), (9.2)

where we use the matrix notationsRns ≡ Rn(zs), Tns ≡ Tn(zs) for brevity. Consider
the following transformation of the parameters:

x̃0 = −1 − x0 − x2 + d1 + d2, x̃1 = x1, x̃2 = −1 − 2x0 + d1 + d2,

d̃3 = −1 −N − 2x0 + d1 + d2, d̃4 = −1 − 2x0 − x2 + d1 + d2 + d4,

d̃5 = −1 − 2x0 − x2 + d1 + d2 + d5, ẽ1 + ẽ2 = d̃1 + d̃2,

d̃1 + d̃2 = 2d1 + 2d2 − 1 − 2x0 − x2. (9.3)

It is directly verified that

R̃ns = Rsn, T̃ns = Tsn, 0 ≤ s, n ≤ N − 1, (9.4)
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where byR̃ns we mean the matrix obtained fromRn(zs) by the replacement of all
parametersd1, . . . , x2 by d̃1, . . . , x̃2. One may conclude that the transformation (9.3)
is equivalent to the permutation ofn ands or to the transposition of matricesRns, Tns .

Since ˜̃
Rns = Rns,

˜̃
T ns = Tns , we have an involution which will be called the duality

transformation.
Return to the biorthogonality relation and observe that ifhn ωs 6= 0, n, s =

0,1, . . . , N−1, then the relation (8.19) means the mutual orthogonality of two matrices
with the entriesRns/hn andTms ωs . Hence there exists the dual orthogonality relation
for the same matrices

N−1∑
n=0

TnsRns′

hn
=
N−1∑
n=0

T̃snR̃s′n
hn

= δss′

ωs
. (9.5)

Applying the duality transformation to the original biorthogonality relation (8.19), we
get

N−1∑
s=0

ω̃s R̃ns T̃ms = h̃n δnm. (9.6)

Comparing (9.5) and (9.6) we arrive at the equalities

hn = κ

ω̃n
, h̃n = κ

ωs
, κ̃ = κ, (9.7)

whereκ is a normalization constant not depending onn and s. Sinceω0 = 1, this
constant can be found if one putss = s′ = 0 in (9.5):

κ =
N−1∑
n=0

ω̃n. (9.8)

Applying the transformation (9.3) toωs expressed by (8.15) we get

ω̃s = [1 − x2 + 2s][1 −N ]s[1 − x2]s
[s]![1 − x2][1 − x2 +N ]s

×[−1 − x0 − x2 + d1 + d2]s[1 + d4 − x2]s[1 + d5 − x2]s[−x0]s
[2 − x1]s[3 + x0 − d1 − d2]s[1 − d4]s[1 − d5]s . (9.9)

The sum (9.8) is reduced to the function8E7 and can be calculated using the formula
(8.12):

κ = [2 − x2]N−1[x2 − d4 − d5]N−1[1 + x0 − d4]N−1[1 + x0 − d5]N−1

[1 − d4]N−1[1 − d5]N−1[2 − x1]N−1[x0 + x2 − d4 − d5]N−1
. (9.10)

It can be checked that, indeed,κ̃ = κ. So, the normalization constants have the explicit
expression

hn = κ
[1 − x2][n]![1 − x2 +N ]n

[1 − x2 + 2n][1 −N ]n[1 − x2]n
× [2 − x1]n[3 + x0 − d1 − d2]n[1 − d4]n[1 − d5]n

[−1 − x0 − x2 + d1 + d2]n[1 + d4 − x2]n[1 + d5 − x2]n[−x0]n . (9.11)

Gathering the results of the previous and this section we arrive at the following
theorem.
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Theorem 7.Let d1, d2, d4, d5, e1, e2 and x0, x1, x2 be arbitrary parameters with the
restrictions

x2 = x0 + x1, e1 + e2 = d1 + d2,

d1 + d2 + d4 + d5 = 1 + 2x0 + x2 +N,

whereN is a fixed positive integer. Then the rational functions

Rn(z) = 10E9(1 − x1; −n,1 − x2 + n,1 − x1 +N,1 + x0 − d4, (9.12)

1 + x0 − d5,1 + ξ + x0 − e1,1 − ξ + x0 − e2;h, τ)
and

Tn(z) = 10E9(2 + x0 − d1 − d2; −n,1 − x2 + n,2 + x0 − d1 − d2 +N, (9.13)

1 − x0 + d4 −N,1 − x0 + d5 −N,1 + ξ + x0 − e1,1 − ξ + x0 − e2;h, τ)
of the argument

z(ξ) = [ξ ][ξ + e2 − e1]
[ξ + d2 − e1][ξ + d1 − e1]

are biorthogonal

N−1∑
s=0

Rn(zs)Tm(zs)ωs = hn δnm (9.14)

on the “elliptic grid”

zs = [s + 1 + x0 − e1][s + 1 + x0 − e2]
[s + 1 + x0 − d1][s + 1 + x0 − d2] , s = 0,1,2, . . . , N − 1 (9.15)

with the weight functionωs and normalization constantshn given by(8.15)and(9.10),
(9.11)respectively.

We conjecture that the functions defined in this theorem represent the most gen-
eral set of self-dual biorthogonal rational functions, i.e. they are the top level classical
biorthogonal rational functions in the spirit of the Askey–Wilson polynomials status [1].

Consider some limiting cases of the functionsRn(z). If Im(τ) → +∞, then
[x;h, τ ] → sin(πhx)/ sin(πh) and, hence, we arrive at the biorthogonal rational
functions expressed in terms of the very-well-poised balanced basic hypergeometric
series10ϕ9 with the discrete measure [9,15,23]. In this casez̃s ≡ (1 − zs)

−1 ∝
sin(πh(s − a1)) sin(πh(s − a2)) with some constantsa1, a2. Hence in this limit one
can perform a rational transformation of the argumentz such that the functions are
parametrized with the help of theq-quadratic grid̃zs (in the terminology of [15]).

In the limit h → 0 we have[x;h, τ ] → x and we arrive at Wilson’s family of
functions which are biorthogonal on the quadratic gridz̃s = (s − a1)(s − a2). Note that
only in these limiting cases one can reduce parametrization of the argument of rational
functions to the quadratic orq-quadratic grids. In the elliptic case the gridzs becomes
inevitably rational in a quadraticcombination of the key elliptic theta function ofs
(9.15).

For a special choice of parameters one can make the functionsRn(z) andTn(z) equal
to each other. Indeed, consider the following restriction upon the parameters:

d1 + d2 = x2 + 1. (9.16)
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Then from the explicit expressions (9.12) and (9.13) one can see thatTn(z) = Rn(z)

and, hence, in this case we have the pure orthogonality relation

N−1∑
s=0

ωsRn(zs) Rm(zs) = hnδnm (9.17)

instead of (9.14). The condition (9.16) means, in particular, thatαn = βn+1, i.e. all poles
of the functionRn(z) coincide with the poles of the functionTn(z). In [24] it was shown
that this condition (coincidence of the poles of rational functionsRn(z) andTn(z)) is
necessary and sufficient for the equalityRn(z) = Tn(z) in the general case.

Let us restore now the discrete time dependence in the rational functions and discuss
briefly the effects of the shiftsj → j + 1 associated with the analogues of Christoffel
transformations (2.1). As was mentioned, thej -dependence in all expressions is recov-
ered by the shiftsx0 → x0 + j, x1 → x1 − 2j, x2 → x2 − j without change of the
parametersd1, . . . , d5, e1, e2. Note that due to the condition (8.2) this leads to the shift
of the integer parameterN , N → N − j , i.e. each Christoffel transformation reduces
the dimensionality of the system of rational functionsN by 1. Denote asωjs the weight
function obtained after these substitutions into (8.15). Then it is seen thatω

j
0 = 1 and

ω
j
N−j = 0. Moreover, the following relation betweenωj+1

s andωjs takes place

ω
j+1
s−1 = γj

zs − λj+1

zs − αj+1
ω
j
s , (9.18)

whereγj is easily determined from the conditionωj+1
0 = 1. As a result, one has the

following relation between the functionalsLj at differentj :

Lj+1 = γj
z− λj+1

z− αj+1
Lj , (9.19)

where the standard notation for the product of a functionalL by a functiong(z) is used:
g(z)L(f (z)) ≡ L(g(z)f (z)). Note that the functionsRjn(z) are orthogonal on the set
{zjs } = λj+1, λj+2, . . . , λN , whereas the functionsRj+1

n (z) are orthogonal on the set

{zj+1
s } = λj+2, λj+2, . . . , λN , which differs from the previous one by deletion of the

first pointλj+1 .
Rational modifications of the functional were used already by Wilson in the con-

struction of his9F8-family of biorthogonal functions [22,23]. Namely, he has built it
from the requirement that multiplication of the weight function by particular rational
factors is equivalent to simple shifts of the free parameters of some hypergeometric se-
ries. We have shown that a similar property holds for a much wider system of functions.
Actually this is true for any explicit solution of theRII -chain with the dependence onj
entering through continuous parameters because the relation (9.19) is valid for arbitrary
biorthogonal rational functions for an appropriate choice of the constantsγj .

Indeed, suppose thatLj provides the biorthogonality condition (2.8) for somej .
Then, using the definition (2.1), one easily verifies thatLj+1 defined by (9.19) provides

the biorthogonality functional for the polynomialsP j+1
n (z):
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Lj+1

[
zmP

j+1
n (z)∏n

k=1(z− αj+k+1)(z− βk)

]
= γjD

j+1
n Lj

[
zm(z− βn+1)P

j
n+1(z)∏n+1

k=1(z− αj+k)(z− βk)

]

+ γjC
j+1
n Lj

[
zmP

j
n (z)∏n

k=1(z− αj+k)(z− βk)

]
= 0, 0 ≤ m < n.

The transformations (2.1) are similar to Christoffel’s transformations in the theory of
orthogonal polynomials (transitions to kernel polynomials, see, e.g. [19]). However,
instead of the linear transformation of the functionalLj+1 ∝ (z−λj+1)Lj characteristic
for orthogonal polynomials, one arrives at the more involved rule (9.19). For a more
detailed comparison of these two transformations, see [24].

Self-similarity of the functionalL, i.e. the requirement that there exist some non-
trivial rational multiplication factors which lead only to a change of parameters of the
underlying system of functions is a highly non-trivial constraint. Systematic search of
systems obeying such a property requires an investigation of symmetries of the chains of
spectral transformations (theRII -chain in our case or the discrete-time Toda chain in the
case of orthogonal polynomials [18]) with the subsequent analysis of solutions which
are invariant under the corresponding symmetry transformations (self-similar solutions).
The main problem consists now in the generation of all discrete and continuous symme-
tries of the taken nonlinear discrete time equation, which is a nontrivial problem. Some
additional self-similar reductions of theRII -chain, differing from (4.8), are discussed
in the next section.

10. Möbius Transformations of the Grids and Some Other Similarity Reductions

As we know,RII -polynomialsPn(z), as well as the corresponding rational functions
Rn(z) andTn(z), are covariant with respect to the Möbius transformationz → (ξz +
η)/(ζz+ σ). Consider what happens with the elliptic gridzs (9.15) under this transfor-
mation. It is sufficient to consider two elementary transformations:

(i) z → z− C, C = const;
(ii) z → 1/z.

For the linear transformation (i) one can write

zs − C = [s + 1 + x0 − e1][s + 1 + x0 − e2]
[s + 1 + x0 − d1][s + 1 + x0 − d2] − [t + 1 + x0 − e1][t + 1 + x0 − e2]

[t + 1 + x0 − d1][t + 1 + x0 − d2]
= ρ

[s − t][s + t + 2x0 + 2 − d1 − d2]
[s + 1 + x0 − d1][s + 1 + x0 − d2] , (10.1)

where we have chosen a specific parametrization of the constantC via the variablet .
The uniform scaling factorρ has the form

ρ = [d2 − e1][d1 − e1]
[t + x0 + 1 − d1][t + x0 − d2 + 1] .

We see that for arbitraryC the pointszs − C belong to the same set of elliptic grids
with the changed parameterse1, e2. Moreover, obviously 1/zs also belongs to this set of
grids with the permutation{d1,2} ↔ {e1,2}. We thus arrive at the following proposition:



78 V. Spiridonov, A. Zhedanov

Proposition 2. Möbius transforms of the elliptic grid pointszs → (ξzs + η)/(ζzs + σ)
belong again to an elliptic grid from the class(9.15) for a different choice of parameters
d1, d2, e1, e2 and of the uniform scaling factorρ.

Let us outline another application of the Möbius transformations. For orthogonal
polynomials,RI and Laurent biorthogonal polynomials only affine transformations ofz

preserve the form of the corresponding three-term recurrence relation. Using this sym-
metry it is possible to define a class of polynomials whose discrete spectrum contains
a number of independent geometric progressions which can be considered as gener-
alizations of the corresponding Schrödinger equation situation [16]. Since symmetry
transformations ofRII -polynomials comprise the fullSL(2, C) group, we may define
a particular self-similar set of solutions of theRII -chain from the requirement for the
shift j → j +M,M – integer, to be equivalent to the discrete shift of another grid vari-
ablen → n + k, k ∈ Z, combined with the transformation (4.5), (4.6) for some fixed
ξ, ζ, σ, η. These conditions correspond to the following reduction of theRII -chain:

λj+M = σλj − η

ξ − ζλj
, αj+M = σαj+k − η

ξ − ζαj+k
, βn = σβn+k − η

ξ − ζβn+k
,

A
j+M
n = A

j
n+k(ξ − ζbn+k), B

j+M
n = B

j
n+k,

C
j+M
n = C

j
n+k

ξ − ζαn+j+k
ξ − ζλj

, D
j+M
n = D

j
n+k

ξ − ζλj
.

Then formally the spectral coefficientsλj are composed from up toM independent
sequences of numbers having the form of the ratios of geometric progressions:

λMi+m = amq
i + bm

cmqi + dm
, m = 1,2, . . .M, (10.2)

wheream, bm, cm, dm, q are some constants. The coefficientsβn andαn+j are composed
from up tok andM − k sequences of numbers of a similar form.

Another type of reductions is associated with the companion polynomialsQ
j
n(z).

Since they satisfy recurrence relation of theRII type, it is possible to define a system of
RII -polynomials from the following constraint:

P
j+M
n (z) = (ζ z+ σ)nQ

j
n

(
ξz+ η

ζz+ σ

)
(10.3)

or from a similar condition imposed after a number of transitions to companion polyno-
mials. A generalization of such closures can be reached if one considers the associated
RII -polynomials. Corresponding constraints imposed upon theRII -chain look cumber-
some because of the complexity of transformations (3.9), (3.10).

Analysis of the structure of the last two types of closures lies beyond the scope of the
present paper. The spectrumλj of the elliptic biorthogonal rational functions (9.12) is
defined as a ratio of theta functions. Comparing this with (10.2), it is natural to conjecture
that for some similarity closuresλj will consist of superpositions of a number of “elliptic
sequences” of points of the form (9.15).
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11. General Elliptic Biorthogonal Rational Functions

In the discussion of elliptic solutions of theRII -chain we have restricted ourselves to the
special case (6.11). In this section we consider the general situation whenall rootsei of
the polynomiald̃(x) = [x]∏5

i=1[x − ei] are different fromdi with the only restriction

5∑
i=1

ei =
5∑
i=1

di = 1 + 2(x0 + x2). (11.1)

In this case we have

αk =
5∏
i=1

[k − x2 + ei]
[k − x2 + di] , βk =

5∏
i=1

[k − ei]
[k − di] , λk =

5∏
i=1

[k + x0 − ei]
[k + x0 − di] . (11.2)

We need to find a convenient parametrization of the expressionsz − λk andz − αk.
This can be done with the help of the following proposition.

Proposition 3. Assume thatdi, ei, i = 1, . . . ,5, are arbitrary numbers (pairwise dis-
tinct from each other) located inside the fundamental parallelogram of periods of the
function[x] with the restriction(11.1). Then the following identity

z−
5∏
i=1

[x − ei]
[x − di] = κ(z)

5∏
i=1

[x − νi(z)]
[x − di] (11.3)

holds, where the parametersκ(z), νi(z) do not depend onx.

Proof. It is easily verified that due to the condition (11.1) the functionχ(x) = z −∏5
i=1[x − ei]/[x − di] is double-periodic with the periods 1/h, τ/h. This function is

meromorphic and has 5 simple poles at the pointsdi inside the parallelogram of periods.
Hence by the theorems concerning double-periodic meromorphic functions (see, e.g.
[20, Ch.21.5]) the functionχ(x) should have the expression (11.3) with zeroesνi(z)

inside the fundamental parallelogram of periods. This proves the statement.ut
Using the parametrization (11.3) and the property that[−x] = −[x], we find

Z
j
n(z) =

n∏
k=1

(z− αj+k) = κn(z)

5∏
i=1

[j + 1 − x2 + νi(z)]n
[j + 1 − x2 + di]n ,

Y
j
n (z) =

n∏
k=1

(z− λj+k) = κn(z)

5∏
i=1

[j + 1 + x0 − νi(z)]n
[j + 1 + x0 − di]n . (11.4)

The biorthogonal rational functionsRjn(z) have the form (differing from the functions
entering (2.9) by the normalization factorsζ jn (0)):

R
j
n(z) = P

j
n (z)

Z
j
n(z)ζ

j
n (0)

=
n∑
k=0

η
j
n(k)

Y
j
k (z)

Z
j
k (z)

, (11.5)
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where the coefficientsηjn(k) are given by (7.8), (7.10). Substituting (11.4) and (7.8) into
(11.5) we arrive at the expression

R
j
n(z) = 10E9(2j + 1 − x1; −n, j + 1 − x2 + n, j + 1 + x0 − ν1(z),

j + 1 + x0 − ν2(z), . . . , j + 1 + x0 − ν5(z);h, τ). (11.6)

We see that againRjn(z) are expressed in terms of the elliptic analogue of the very-well-
poised hypergeometric functions10E9. However, there are now more free parameters and
the zeroesνi(z)have no simple expression.The solution of theRII chain leading to (11.6)
contains twelve natural parameters, say,x0, x2, d1, . . . , d4, e1, . . . , e4, h, τ . One more
free parameter appears as a ratio of the polynomialsd(x) andd̃(x) for ei = di ; it was set
equal to 1 in our considerations. Linear fractional transformations ofz should allow one
to fix three parameters, so that there remains only ten independent parameters. However,
we did not consider explicitly how this minimization of the number of parameters takes
place.

Set for simplicityj = 0 and remove the superscript 0 from the notations. Taking
the constraintd1 − x2 = N , similar to (8.2), we arrive again at the finite-dimensional
biorthogonality,

N−1∑
s=0

Rn(zs) Tm(zs)ωs = hn δnm, (11.7)

where for the spectral pointszs we have the expression

zs = λs+1 =
5∏
i=1

[s + 1 + x0 − ei]
[s + 1 + x0 − di] . (11.8)

We see that the grid (11.8) is again a double-periodic function (of the arguments) but it
has now an essentially more complicated form than (8.3). Similar to the self-dual case,
the linear fractional transformations ofzs do not change the general form of the grid
(11.8) – this is a consequence of Proposition 3. The weight functionωs is given again
by the formula (8.7). However, in this case we were not able to find a simple expression
for PN−1(zs). Moreover, the companion rational functionTn(z) has now much more
complicated form than in the restricted case (6.11).

Similar to the rational and elementary functions solutions cases, transition to com-
panion polynomials in the general elliptic case cannot be compensated by a redefinition
of parameters.As a result, the corresponding superpotentialsÃ

j
n, C̃

j
n , D̃

j
n will not satisfy

the similarity constraint (4.8) we have started from. One may thus conclude that actually
we have an infinite sequence of elliptic solutions of theRII -chain depending on ten free
parameters.

12. Conclusions

In the literature on hypergeometric special functions satisfying three-term recurrence
relations and some orthogonality conditions it was conjectured rather explicitly that
Wilson’s family of biorthogonal rational functions and their basic analogues of Rahman
and Wilson provide “the most general model of its type” [9]. In this paper we have
constructed a more general system of biorthogonal rational functionsRn(z) which still
possesses the main properties of these families:
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(i) the functionsRn(z) satisfy the three-term recurrence relation (2.11) (with the co-
efficients being given by elliptic functions);

(ii) a pair of rational functionsRn(z) andTn(z) is biorthogonal on a finite number of
pointszs, s = 0,1, . . . , N−1 with respect to the explicitly found discrete weights
ωs (determined again by elliptic functions);

(iii) there is a self-duality property of the functionsRn(zs) (andTn(zs)) in the sense that
the interchange of the number of rational functionn and of the discrete variables
parametrizing its argument,n ↔ s, is equivalent to a change of parameters;

(iv) the functionsRn(z) possess a self-similarity in the sense that there are Christoffel
transformations which are equivalent to a redefinition of the free parameters.

The generalization with respect to previously known families of functions consists
in the introduction of the new types of grids – the elliptic grids (8.3). Surprisingly these
grids appeared in [2] in the study of exactly solvable models of statistical mechanics.
Namely, the grid (8.3) is a solution of the following symmetric biquadratic difference
equation [2]:

az2
s z

2
s+1 + bzszs+1(zs + zs+1)+ c(z2

s + z2
s+1)+ 2dzszs+1 + e(zs + zs+1)+ f = 0.

(12.1)

For the special choice of parametersa = b = 0 one recovers the difference equation
defining the quadratic andq-quadratic grids [12,15]:

(i) zs = A1q
s + A2q

−s + A3;
(ii) zs = A1 s

2 + A2 s + A3.

Existence of the elliptic grids for the case of biorthogonal rational functions could
be guessed from the following considerations. Let us start from the hyperbolic grid (i)
which is known to be associated with the Askey–Wilson polynomials [1] or the10ϕ9-
family of biorthogonal functions considered in [9,13–15,23]. The grid (i) is determined
from the difference equation

c(z2
s + z2

s+1)+ 2dzszs+1 + e(zs + zs+1)+ f = 0. (12.2)

We know, however, that the Möbius transformationz̃s = (ξzs + η)/(ζzs + σ) is admis-
sible: it transforms one set of biorthogonal rational functions to another. But the gridz̃s
satisfies now Eq. (12.1) with some restriction upon the parametersa, b, c, d, e, f . It is
natural to remove this restriction and consider the equation (12.1) as a starting point.
Then, as shown in [2], one derives uniquely the elliptic grid (8.3). The additional free
parameter, evidently, coincides with the modular parameterτ . Thus the elliptic grids
appear quite naturally from theq-quadratic ones and this indicates the existence of the
corresponding system of biorthogonal rational functions.

In the recent seminal paper [4] Frenkel and Turaev have introduced “elliptic” gen-
eralizations of the hypergeometric functions (more precisely, elliptic analogues of the
very-well-poised balanced series). These new types of functions were overlooked in
the previous works on special functions. The authors of [4] have offered many useful
identities concerning these functions. They also identified “elliptic 6j -symbols”, appear-
ing within some exactly solvable models of statistical mechanics [3], with the elliptic
very-well-poised balanced hypergeometric function10E9 for some special choice of pa-
rameters. However, to the best of our knowledge, the relation of these functions to the
three-term recurrence relation of theRII -type, the corresponding generalized spectral
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problems and biorthogonal rational functions upon the elliptic grids constructed in this
paper were not discussed in the literature.

It should be stressed that our approach is based upon self-similar reductions of the
chains of spectral transformations for eigenvalue problems (see, e.g., our previous works
[16–18], where this formalism was applied to the Schrödinger equation and ordinary
orthogonal polynomials). In this general formalism the elliptic hypergeometric functions
are derived in a completely regular way as solutions of theRII recurrence relation for
some elliptic recurrence coefficients, which correspond to some particular solutions of
theRII -chain. Considering other similarity solutions of theRII -chain one can arrive at
the biorthogonal rational functions determined in terms of the more complicated special
functions.
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