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Abstract: We consider a type Il subfacto¥ ¢ M of finite index with a finite system

of braided N-N morphisms which includes the irreducible constituents of the dual
canonical endomorphism. We applyinduction and, developing further some ideas

of Ocneanu, we define chiral generators for the double triangle algebra. Using a new
concept of intertwining braiding fusion relations, we show that the chiral generators can
be naturally identified with the-induced sectors. A matriX is defined and shown to
commute with the S- and T-matrices arising from the braiding. If the braiding is non-
degenerate, ther is a “modular invariant mass matrix” in the usual sense of conformal
field theory. We show that in that case the fusion rule algebra of the dual system of
M-M morphisms is generated by the images of both kinds-wfduction, and that the
structural information about its irreducible representations is encoded in the mass matrix
Z. Our analysis sheds further light on the connection between (the classifications of)
modular invariants and subfactors, and we will construct and analyze modular invariants
fromSU(n), loop group subfactors in a forthcoming publication, including the treatment
of all SU(2);, modular invariants.
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1. Introduction

It is a surprising fact that a series of at first sight unrelated phenomena in mathematics
and physics are governed by the scheme of A-D-E Dynkin diagrams, such as simple Lie
algebras, finite subgroups 8t(2; C), simple singularities of complex surfaces, quivers

of finite type, modular invariant partition functions (2) WZW models and subfac-

tors of Jones index less than four. Though a good understanding of the interrelations
has not yet been achieved, this coincidence indicates that there are deep connections
between these different fields which even seem to go beyond the A-D-E governed cases,
e.g. finite subgroups @L(n; C), modular invariants 08U(n) WZW models, or (cer-

tain) SU(n), subfactors of larger index. This paper is addressed to the relation between
the (classifications of) modular invariants in conformal field theory and subfactors in
operator algebras.

In rational (chiral) conformal field theory one deals with a chiral algebra which
possesses a certain finite spectrum of representations (or superselection sgctors)
acting on a Hilbert spacH,. Its characterg; (t) = try, (e777(0=¢/29) 'Im(z) > 0,

Lo being the conformal Hamiltonian ardhe central charge, transform unitarily under
“reparametrization of the torus”, i.e. there are matri€esdT such that

(=10 = Suxe@, 0@+ =) T,
" iz

which are the generators of a unitary representation of the (double cover of the) modular
groupSL(2; Z) in which T is diagonat: In order to classify conformal field theories,

in particular extensions in a certain sense of a given theory, one searches for modular
invariant partition function® (t) = Z(—1/t) = Z(r + 1) of the form

Z(t) =Y Zowxa (@ xu (D),

nt

where
Z)\’MZO, 1,2,..., Zoo=1 Q)

Here the label “0” refers to the “vacuum” representation, and the condifiph= 1
reflects the physical concept of uniqueness of the vacuum state. The matising this

way is called a modular invariant mass matrix. Mathematically speaking, the problem
can be rephrased like this: Find all the matricésn the commutant of the unitary
representation o8L(2; Z) defined byS and T subject to the conditions in Eq. (1). In

1 More precisely, for current algebras the characters depend also on other variablescthr@esponding
to Cartan subalgebra generators which are omitted here for simplicity. But these variables are responsible that
one is in general dealing with the whole groBp(2; Z) rather tharPSL(2; Z).



Onea-Induction, Chiral Generators and Modular Invariants for Subfactors 431

this paper we study this mathematical problem in the subfactor context. We start with
a von Neumann algebra, more precisely a fagfoendowed with a system of braided
endomorphisms. Such a braiding defines matri€esd T which provide a unitary
representation o8L(2; Z) if it is non-degenerate. We then study embeddiNgs M

in larger factorsM which are in a certain sense compatible with the braided system
of endomorphisms. We show that such an embedding M determines a modular
invariant mass matrix in exactly the sense specified above.

Longo and Rehren have studied nets of subfactors and defined a useful formula to
extend a localized transportable endomorphism of the smaller to the larger observable
algebra, realizing a suggestion in [43]. Xu [47,48] has worked on essentially the same
construction applied to subfactors arising from conformal inclusions with the loop group
construction of A. Wassermann [45]. Two of us systematically analyzed the Longo—
Rehren extension for nets of subfactorsn[2,4]. As sectors, a reciprocity between
extension and restriction of localized transportable endomorphisms was established,
analogous to the induction-restriction machinery of group representations, and therefore
the extension was calledinduction in order to avoid confusion with the different sector
induction. Itwas also noticed in [2] that the extended endomorphisms leave local algebras
invariant and hence-induction can also be considered as a map which takes certain
endomorphisms of a local subfactor to endomorphisms of the embedding factor. This
theory was applied to nets arising from conformal field theory models in [3,4], and
it was shown that for all type | modular invariants 88)(2) respectivelySU(3) there
are associated nets of subfactors and in é&tinduction gives rise to fusion graphs. In
fact it was shown that that these graphs are the A-D-E Dynkin diagrams respectively
their generalizations of [7,8], and this is no accident: The homomorphism property of
a-induction relates the spectrum of the fusion graphs to the non-zero diagonal entries
of the modular invariant mass matrix.

A few months after the work of Longo—Rehren, Ocneanu presented his theory of
“quantum symmetries” of Coxeter graphs and gave lectures [39] one year later. He
introduced a notion of a “double triangle algebra” and defined elementshich we
refer to as “chiral generators” as they were not specifically named there. Ocnheanu’s
analysis has much in common with work of Xu [47] and two of us [3,4] about subfactors
of type B, Eg and Duven The reason for this is that the same structures are studied from
different viewpoints, as we will outline in this paper.

We start with a fairly general setting which admits both constructi@fisduction as
well as Ocneanu’s double triangle algebras and chiral generators. Namely, we consider a
type Il subfactorN c M of finite index with a finite system a¥-N morphisms which
includes the irreducible constituents of the dual canonical endomorphism. (A “system
of morphisms” means essentially that, as sectors, the morphisms form a closed algebra
under the sector “fusion” product, see Definition 2.1 below.) Therefore the subfactor is
in particular forced to have finite depth. The inclusion structure associates A-fte
system automaticallw-M, M-N and M-M systems. The typical situation is that the
system ofV/-M morphismsis the “unknown part” of the theory. As an easy reformulation
of Ocneanu’s idea from his work on Goodman—de la Harpe—Jones subfactors associated
with Dynkin diagrams one can define the double triangle algebra for such a setting, and it
provides a powerful tool to gain information about the “unknown part” from the “known
part” of the theory. Namely, the double triangle algebra is a direct sum of intertwiner
spaces equipped with two different product structures, and its c8pteith respect to
the “horizontal product” turns out to be isomorphic to the (in general non-commutative)
fusion rule algebra of th&f-M system when endowed with the “vertical product”. This
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kind of duality is the subfactor analogue to the group algebra with its pointwise and
convolution products.

Under the assumption that te-N system is braided there is automatically the no-
tion of «-induction, which extendd'-N to (possibly reducible)/-M morphisms. (This
notion does not even depend on the finite depth condition.) The braiding provides pow-
erful tools to analyze the structure of the cenfgrat the same time, and the analysis
is most conveniently carried out with a graphical intertwiner calculus which will be
explained in detail in this paper. Besides the standard “braiding fusion symmetries” for
wire diagrams representing intertwiners of the braided morphisms, we show that
the theory ofx-induction gives rise naturally to an extended symmetry which we call
“intertwining braiding fusion relations”. This reduces all graphical manipulations rep-
resenting the relations between intertwiners to easily visible purely topological moves,
and it allows us to work without the “sliding moves along walls” involving “quantum
6/-symbols for subfactors” which are the main technical tool in [39]. With a braiding
on theN-N system we can define chiral generatpfsin the centetZ;,, and our notion

essentially coincides with Ocneanu’s definition of elemelj‘isgiven graphically in his

A-D-E setup. We show that the decomposition ofﬂj‘és into minimal central projec-
tions in Z;, corresponds exactly to the sector decomposition oltieduced sectors
[oz;—L], and therefore they can be naturally identified.

As shown by Rehren [40], a system of braided endomorphisms gives rise to S- and
T-matrices which provide a unitary representation of the modular ¢gga® Z) when-
ever the braiding is non-degenerate. (Relations between modular S- and T-matrices and
braiding data are also discussed in [35,14,13].) In termg-pfduction we define a
matrix Z with entriesZ, , = (oz;“, o) for N-N morphisms\, u, where the brackets

denote the dimension of the intertwiner space I-(I@j'h a’;). As it corresponds to the
“vacuum” in physical applications, we use the label “0” for the identity morphisf id

and hence our matriX satisfies the conditions in Eq. (1), where nd@ig/o = 1 is just

the factor property oM. We show thaZ commutes with§ and7 and thereforeZ is a
“modular invariant mass matrix” in the sense of conformal field theory if the braiding
is non-degenerate. In fact, the non-degenerate case is the most interesting one, as in
the SU(n); examples in conformal field theory. We apply an argument of Ocneanu to
our situation to show that in that case, due to the identification with chiral generators,
both kinds ofx-induction together generate the whate M fusion rule algebra. More-
over, the essential information about its representation theory (or equivalently, about the
decomposition of the centeg;, with the vertical product into simple matrix algebras)

is then encoded in the mass mat#xWe show that the irreducible representations of
the M-M fusion rule algebra are labelled by palrsy with Z; ,, # 0, and that their
dimensions are given exactly by the numizgr,,. Consequently, th#/-M fusion rules

are then commutative if and only if alf;, ,, € {0, 1}. An analogous result has been
claimed by Ocneanu for his A-D-E setting related to the modular invariant mass ma-
trices of theSU(2) WZW models of [6,23]. He has his own geometric construction of
modular invariants sketched in the lectures but not included in the lecture notes [39]. Our
construction is different and based on the results of [4], and it shows that the structural
results do not depend on the very special properties of Dynkin diagrams and hold in a
far more general context. We also analyze the representation af the fusion rule
algebra arising from its left action al-N sectors. As corollaries of our analysis we
find that the number aV-M (or M-N) morphisms is given by the trace #), whereas

the number of\/-M morphisms is given by {Z 7).
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In a forthcoming publication we will further analyze and apply our construction to
subfactors constructed by means of the Igvglositive energy representations of the
SU(n) loop group theory. For these examples, the braiding is always non-degenerate
and, moreover, the S- and T-matrices are the modular matrices performing the character
transformations of the correspondi®iJ(n), WZW theory. Therefore the construc-
tion of braided subfactofgor these models yields non-diagonal modular invariahts
E.g. for SU(2), one can construct the subfactors in terms of local loop groups which
recover the A-D-E modular invariants of [6,23]. In our setting also the “type 1I” or
“non-blockdiagonal” invariants can be treated by dropping the chiral locality condition.
(The chiral locality condition, expressing local commutativity of the extended chiral
theory in the formulation of nets of subfactors [33], implies*“reciprocity” [2] which
in turn forces the modular invariant to be of type I. Detailed explanation and non-local
examples will be provided in [5].) Thus this paper extends the known results on con-
formal inclusions [47,48,3,4] and simple current extensions [3,4%0¢n),, and it
generally relates (the classification of) modular invariants to (non-degenerately) braided
subfactors. Furthermore our results prove two conjectures by two of us [4, Conj. 7.1 &
7.2].

This paper is organized as follows. In Sect. 2 we review some basic facts about
morphisms, intertwiners, sectors and braidings, and we reformulate Rehren’s result about
S- and T-matrices arising from superselection sectors in our context of braided factors.
In Sect. 3 we establish the graphical methods for the intertwiner calculus we use in
this paper. The abstract mathematical structure underlying the basic graphical calculus
(Subsect. 3.1) is “strict monoidal*-categories” [9]. Graphical methods for calculations
involving fusion and braiding have been used in various publications, see e.g. [34,28,
46,15,14,24,22]. However, for our purposes it turns out to be extremely important
to handle normalization factors with special care, and to the best of our knowledge,
a comprehensive exposition which applies to our framework has not been published
somewhere. So we work out a “rotation covariant” intertwiner calculus here, based on
a formulation of Frobenius reciprocity by Izumi [19]. We then definrenduction for
braided subfactors and use it to extend our graphical calculus conveniently. In Sect. 4
we present the double triangle algebra and analyze its properties. In Sect. 5 we present
our version of Ocneanu’s graphical notion of chiral generators, and we show that it can
be naturally identified with the-induced sectors. We then define the “mass matrix”
and show that it commutes with the S- and T-matrices ofNh& system. Assuming
now that the braiding is non-degenerate, we show that\fh#f fusion rule algebra
is generated by the images of the two kindsgnd —) of «-induction. In Sect. 6 we
decomposeZ;, with the vertical product into simple matrix algebras which is equivalent
to the determination of all the irreducible representations o#th#& fusion rule algebra,
and we show that their dimensions are given by the entries of the modular invariant mass
matrix. Then we analyze the representation arising from the left actidf-ohsectors.

In Sect. 7 we finally conclude this paper with general remarks and comments and an
outlook to the applications to subfactors arising from conformal field theory which will
be treated in [5].

2 We remark that our short-hand notion of a “braided subfactor’ meaning a subfactor for which Assump-
tions 4.1 and 5.1 below hold is different from the notion used in [31].
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2. Preliminaries

2.1. Morphisms and sectorgzor our purposes it turns out to be convenient to make
use of the formulation of sectors between different factors. We follow here (up to minor
notational changes) lzumi’s presentation [19,20] based on Longo’s sector theory [30].
Let A, B be infinite factors. We denote by Met, B) the set of unitak-homomorphisms
from A to B. We also denote Erfd) = Mor(A, A), the set of unitak-endomorphisms.
Forp € Mor(A, B) we define the statistical dimensidp = [B : p(A)]*?, where[B :
p(A)]is the minimal index [21,29]. A morphism € Mor(A, B) is called irreducible if

the subfactop (A) C B is irreducible, i.e. if the relative commutantA)’ N B consists

only of scalar multiples of the identity iB. Two morphismso, o’ € Mor(A, B) are
called equivalent if there exists a unitagye B such thato’(a) = up(a)u* for all

a € A.We denote by Se¢t, B) the quotient of Mo¢A, B) by unitary equivalence, and

we call its element8-A sectors. Similar to the case= B, SectA, B) has the natural
operations, sums and products: ler o2 € Mor(A, B) choose generators, 2 € B of
aCuntz algebré,, i.e. suchthat’t; = §; ;jlandt 1 +12t5 = 1. Definep € Mor(A, B)

by puttingp(a) = t1p1(a)t] + t2p2(a)t; foralla € A, and then the sum of sectors is
defined agp1] @ [p2] = [p]. The product of sectors comes from the composition of
endomorphismg,p1][02] = [p1 o p2]. We often omit the composition symbad™, so
[p1llp2] = [p1p2]. The statistical dimension is an invariant for sectors (i.e. equivalent
morphisms have equal dimension) and is additive and multiplicative with respect to
these operations. Moreover, fig] € SectA, B) there is a unique conjugate sector
[p] € SectB, A) such that, if p] is irreducible [ o] is irreducible as well anfp] x [p]
contains the identity sect@id 4] and[p] x [ o] containgid 3] precisely once. We choose

a representative endomorphism[pi and denote it naturally by, thus[p] = [p]. For
conjugates we haw; = d,. As for bimodules one may decoraeA sectord o] with
suffixes,g[p]4, and then we can multiply[o]4 x alo]p but not, for instancez[p]a

with itself. Forp, T € Mor(A, B) we denote

Hom(p,7) ={t € B:tp(a) =t(a)t, ac A}
and
(p, ) =dimHom(p, 7).
If [p] = [p1] @ [p2] then
(p, ) = (p1, T) + (p2, 7).

Note that ifp is irreducible then for, 1 € Hom(p, 7) it follows thats*¢’ is a scalar and
then putting

t*t = (t,)1p (2)

defines an inner product on Hgm t). One often calls Hortp, ) a “Hilbert space of
isometries” in this case.

If p € Mor(4, B) with d, < oo thenp € Mor(B, A) is a conjugate if there are
isometries’, € Hom(ida, pp) andr, € Hom(idg, pp) such that

p(rp)' 7y =dy g and 5(rp)r, =d, M1,,

and in the case thatis irreducible such isometrieg andr, are unique up to a common
phase. ITC is another factor anel € Mor(C, A) andr € Mor(C, B) are morphisms with
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finite statistical dimensiong,, d; < oo, and conjugate morphisnas € Mor(A, C),
T € Mor(B, C), respectively, then the “left and right Frobenius reciprocity maps”,

d,d
L, : Hom(z, po) — Hom(o, pt), t+—> % p(t)*rp,

T
o o dode . _ _
R, : Hom(, Tp) — Hom(T,65), s+ 7 S*T(Fp),
o
are anti-linear (vector space) isomorphisms with inverses

d,d;
dy

d,d
R,1:Hom(z,5p) — Hom(G, 7p), y+— ./ 2“ Y*a (rp),
T

E;l : Hom(o, pt) — HOom(z, po), x+— px)*r,,

respectively [19]. (See also [14, Sect. 5] and [13, App. A] for such formulae arising from
superselection sectors.) Hence we have in particular Frobenius reciprocity [19,32],

(t.po) = (pt,0) = (p,0T) = (0p,T) = (0,Tp) = (10, p).

If r ando are irreducible then the Frobenius reciprocity maps are even (anti-linearly)
isometric: With the inner products as in Eq. (2) on the above intertwiner spaces we have
(1,1 = (Lp(t)), Lp(t))fore, ' € Hom(z, po) and similarly(s, s') = (R, (s"), R, (s))
fors, s’ € Hom(a, Tp).

The mapp, : B — A defined by

¢p(b) =ri p(b)ry,, bEB
is completely positive, normal, unital,(1z) = 14 and satisfies

dp(p(ar)bp(az)) = a1¢,(b)az, ai,a2 € A, beB.

The map is called the (unique) standard leftinverse. The minimal conditional expectation
for the subfactop(A) C B is given byE, = p o ¢,. Let nowp, o, t as above be
irreducible with standard left inverses, ¢, ¢, respectively, and lete Hom(z, po)

be non-zero. Then, (t1*) € Hom(o, o) is a positive scalar anfl; : B — 7(C) given
bypo ¢>p(tt*)1§r (b) =Tt o¢s 0 ¢, (tbt™) forall b € B is a conditional expectation for

the subfactor (C) C B. Since conditional expectations for irreducible subfactors are
unique we conclude that

¢ (D) Ep(tt*) = ¢s 0¢p(tbt*), beB

holds for anyr € Hom(z, po). Moreover,s*t' is a scalar for any, 1 € Hom(z, po),
t*t" = (t,1")1p, and so isC, (t)*L,(t'), in fact

R

pdo
dr

(t,1)1a = (Lp(t), Lo0)1a = Lp(t) Lp(1) = o' t)ry,

and this is

[PEI d‘f /
Pp(1't%) = Ddy (t,1")14. (3
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Now let N ¢ M be an infinite subfactor of finite index. Let € End(M) be a
canonical endomorphism frod into N andd = y |y € End(N). Byt € Mor(N, M)
we denote the injection map(n) = n € M, n € N. Thend, = [M : N1¥?, and a
conjugater € Mor(M, N) is given byt(m) = y(m) € N,m € M. (These formulae
could in fact be used to define the canonical and dual canonical endomorphism.) Note
thaty = « and6d = wu, and there are isometries = r, € Hom(idy, 6) andv =
7, € Hom(idys, ) such thaw*v = y (v*)w = [M : N]~¥/21. Moreover, we have the
pointwise equality = Nwv, and for eaclm € M the decompositiom = nv yields a
unique element € N. Explicitly, n = [M : N1Y2w*y (m).

Now let us consider a single factdrand its sectors. For a set of irreducible sectors
which is closed under conjugation and irreducible decomposition of products (a “sector
basis” in the notation of [2—4] in the case that the set is finite) it is often useful to choose
one representative endomorphism for each sector.

Definition 2.1. We call a subseh C End(A) asystem of endomorphismd it satisfies
the following properties.

1. Eachi € A isirreducible and has finite statistical dimension.

2. Different elements i\ are inequivalent, i.e. different as sectors.

3.id4 € A.

4.Foranyx € A, we have a morphist € A such thaffi] is the conjugate sector of
[A]

5. A is closed under composition and subsequent irreducible decomposition, i.e. for
anyi, u € A we have non-negative integelkq’ﬂ with [A T[] = > en N;,u[”] as
sectors.

Note that we do not assume finiteness’ofn this definition. The numbery;, =
(A, v) are called fusion coefficients. Frobenius reciprocity now re@gg = va =
N}\

v,

and associativity of the sector product yields

Z NNy o = Z NipNeg-

HEA TeA
The additivity and multiplicativity of the statistical dimension with respect to sector
sums and products impligs, .o N; ,,dv = dpdyu, &, i, v € A. Defining matricesv,
with entries(N, )y, = N{’M gives N; as the transpose @, and defines the “regu-
lar representation” of the sector produd,N,, = >°,.5 N}, Ny, and the statistical
dimension can be regarded as a one-dimensional representation or as a simultaneous
eigenvector of all matriced’,, with eigenvalues/,, (A, 1, v € A).

2.2. Braided endomorphismd.et A again be an infinite factor antl a system of en-
domorphisms ofd. In general the sector products are not commutative. If the sectors
commute, then a“systematic choice of unitary intertwiners” in each spacéxlama),

A, € A, is called a braiding (which need not exist in general). To be more precise, we
give the following:

Definition 2.2. We say that a systerh of endomorphisms ibraided if for any pair
A, n € A there is a unitary operatog (1, u) € Hom(iu, ui) subject to initial condi-
tions

e(ida, p) = e(r,idy) = 1, 4)



Onea-Induction, Chiral Generators and Modular Invariants for Subfactors 437

and whenever € Hom(x, uv) we have the braiding fusion equations (BFE's)

p(t) e, p) = e(u, p) u(e(v, p))t,
te(p,2) = u(e(p, v))elp, 1) p(t),
p®)* e(u, p) u(ev, p)) = &, p)t*,
t* u(e(p,v))e(p, n) = e(p, 1) p(t)*,

(®)

foranya, u,v € A.

The unitarieg (A, n) are calledraiding operatorgor statistics operatons Note that
a braidings = ¢* always comes along with another “opposite” braiditg namely
operatorg— (A, u) = (et (u, M)*, et (u, 1) = e(u, 1), satisfy the same relations. The
unitariess™ (A, u) ande (1, ) are different in general but may coincide for some.
Later we will also use the following notion of non-degeneracy of a braiding (cf. [40]).

Definition 2.3. We say that a braiding on a system of endomorphismsis non-
degenerate if the following condition is satisfied: If some morphiame A satisfies
et (A, u) = &~ (A, p) for all morphismsu € A, then we have = idy4.

We may also extend a given braiding frarin a well defined manner to all equivalent
and sum endomorphisms as follows. We denot&lgg) the set of all endomorphisms
A, p € End(A) given asi(a) = Y i tiri(a)tf and p(a) = Z’;‘zl Sipj (a)sf; for
alla € A, wheret; € A,i =1,2...,n,ands; € A, j = 1,2,...,m, are Cuntz
algebra generators, .64 = ;11 and) " ; titf =1, and similarlysjsl =4;,1and
Z'}Ll sjsj =1, andx;, p; € A. (Heren, m > 1.) Fori, p as above we put

g0, p) =) Y 5ipi(t) €(his pj) hi (I, (6)

i=1j=1

and one can check that this definition is independent of the ambiguities in the choice of
isometries; € Hom(;, 1) ands; € Hom(p;, p). Note that in the case = m = 1 this
reads

e(Ad(u) o &, Ad(q) o p) = gp(u) e(r, p) Mg )u* (7)

with some unitaries, g € A. Then for any sum endomorphisrasu, p € Z(A) the
BFE’s (5) hold as well or, alternatively, we have the naturality equations

Pt e(h, p) = e(u, )1, te(p, 1) = e(p, 1) p(t) (8)

whenever € Hom(, ). Using decompositions of productg, A, u € (A) one can
then easily show by use of the BFE’s that

e, p) = e(d, p) A, p)),  e(h, up) = p(e(r, p)) e(r, p). C)

By plugging this in Eq. (8) we find that BFE's hold for endomorphism<i(\) as
well and Eq. (8) yields foe (A, ©) € Hom(iu, u)) the braid relation (or “Yang—Baxter
equation”)

p(e(h, w) e, p) Ae(u, p)) = e(u, p) (e, p)) (A, p). (10)
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Now let A be a braided system of endomorphisms angled € A be conjugate
morphisms. Denote by= r, € Hom(id 4, pp) andr = 7, € Hom(id 4, p) isometries
such that

p(r)F = B =d; ',

which are then unique up to a common phaséote thate(p, p)*F € Hom(id 4, pp)
is an isometry and hencgp, p)*r = w,r for some phase, € T which is called
the statistics phasend is obviously independent of the common phase ahdr.
In fact w, is even independent of the choice @fand p within their sectors: Ifp’ =
Ad u o p andp’ = Ad i o p for some unitaries, i € A, then it is easy to see that
isometries’ = ip(u)r € Hom(idy, p'p’) and7’ = up(a)i € Hom(id4, p’p’) also
fulfill p(+")*r = p(F")*r' = d;ll. Now the braiding operator transformssg’, p') =
up)e(p, p)p(u)*u* and hence

e(p', p)'F = iupue(p, p)'F = wpr’.
The statistics phase can also be obtained by

bo(e(p, p)) = r*p(e(p, P = wyd, 1.

(The numbera)pdp‘l is usually called thestatistics parametey This is obtained from
the initial condition and the BFE:

p(r) = p(r)e(ida, p) = e(p, p)p(e(p, P,
but sincer*e(p, p)* = w,r* we obtain
r*p(e(o, POr =r*e(p, p)*p(r) = 0,7 p(r) = w,d; 1.
Moreover we havey, = w;. This can be seen as follows. We have
r=re(p,ida) = p(e(p, p)e(p, P)p(r),
hencer*p(e(p, p)) = p(r)*e(p, p)*, thus
wpd, ML= p(r)*e(p, p)r = wpp(r)*F = wpd, ™,

sincee(p, p)*r = wpr by definition. Therefore we hawe,r* = i*e(p, p)*. Another
application of the BFE yields(p, p)p(r) = p(e(p, p))*r, hence we have

p(P)*e(p, P)p(F) = p(F)*p(e(p. P)*F = wpp(r)*F = wpd, 1.

Now leti, u,v € A. Letr = r, € Hom(ida, AA) and7 = 7. € Hom(id, AL)
be isometries such tha{(r)*r = L(r)*r = d;ll. Letr,t’ € Hom(x, wv). Recall that

3 If pis not self-conjugate then we may chooge= 7, andr; = r,. However, ifp is self-conjugate,
p = p, we do not have, = 7, in general. This is only true for so-called “real” sectors, and for “pseudo-real”
sectors we have, = —7p.
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G (t't") = dA 1d I Hom(A, 1) is a scalar. We can now compute

wrd YA = wpdy T by 0 (1) = By 0 b (' A(F) e (A, WA
=7"¢, 0, H'e(A, )t F =7r* ¢, 0 Pule(A, UWAE*) F
=7r* ¢y o pu(e(h, p*)t'F = F*t* ¢y o Pu(e(uv, uv)) t'r
= F*1* ¢y 0 du (e, V)P (e, v))e(w, (e, w) '
= wudflf*t* bu (e, VIL(EW, V)W, W) 1'F
= a)ud *t* ¢, (v(e (v, We, v)Iv(e(u, v)) t'r
= wyuwyd, Y e, e, v) 17
= a)ua)vd;ldv_l t*e(v, we(u, v)t,

where we finally could omit thé’s sincer*s(v, w)e(u, v)t’ € Hom(x, 1) is a scalar.
As e(v, w)e(u, v)t’ € Hom(x, nv) we find

o (t, 1) = oy (t, e, we(u, v)t')

for anyz, ' € Hom(x, uv), and therefore we arrive at the important relation

e(v, e, v)tr = t forall r € Hom(k, uv). (12)

[omon

Decomposingnv] in all irreducible sectorgi] and choosing for each € A
some orthonormal bases of intertwiners € Hom(x, uv),i =1, 2,. Nl’} ,» Where
NA = (A, uv) as usual, we havp, A >, 1. ity.,; = 1,and therefore we find by Egs.
(3) and (11),

¢,LL(8(V3 M)S(HM U))* = ¢u. <S(U’ M)S(M’ U) Z ZD\Q!’%T;[')

reA 0

a)ua)v
=2 o © “"’d d L
rea  O* nv

One then defines a matrixin terms of these numbers [40] (see also [14,13]):

w, W
Yuv = ZAVNﬁ,UdA, v EA, (12)
reA

i.e.d,dyd,(e(v, w)e(u, v))* =Y, 1 Then one has
Y)\’M = Yll»)“ = Y){M = Y)_L,ﬁ
The first equality is obvious from Eq. (12), so we only need to skipy = (¥; ,)*. In

fact, applying the BFE again yieldge (A, i))ry. = e(k, 1)*n(r) andrii(e(u, 1)) =
w(r)*e(u, 1)*. Hence

Vil = du (Vi) = dadyy (i i (e (u, Meh, 1))
= dydy (Fr e, 1) e (hy ) *)rum)* = (75 Yz,,m)* = (Y7,)* 1.
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Moreover, we have
A
Yo pYup=dp Z Nu,quJw
A

since

Yy pYppl= dﬁdﬂdu $u(e(p, V)Pu(e(p, we(u, p)e(v, p))*
= d,?dudu ¢y 0 du(ule(p, v))e(p, we(m, p)iu(e(v, p))*
= d3dudy Y, Y by 0 u(e(p, 1v)p(taity. ey, p))*
=d2dudy Y, 3 by o Pu(tiie(p, e, p)t)*
= d3dyudy Y5 Y dutnith, ) dale(p, Me(h, p))* =dp 35 N Y, 51
From now on we assume that the systans finite. We define the complex number
A= Z dPw;,
rEA

and ifza # 0 we putc = 4argza)/m. Note that thec is here only defined mod 8
and we may make a choice. L€tbe the conjugation matrix with entri€s, , = 8, ;.
Clearly,C = C* = C~1. We then have the following

Proposition 2.4.Let A be finite system of endomorphisms with # 0. Then S- and
T-matrices defined by

ric/12

_1 _
S)\,,L = |za]| Y)n,l/«’ T)»,M =€ wj, 5)#“ A EA,

obey the partial Verlinde modular algeb@®STST = S,CTC = T,CSC = § and
T*T = 1.

To prove the proposition, we simply compute

_ * *
Zua),\Y;thMYﬂ,va)v—a);\a),,zﬂa)MY _Y* o

ATV
_ o yx
= w;w, ZM’U deMN)L’VYﬁ’J
_ o P @p
= W)Wy Z/L,p,a wll«dMN)L,uN;l,a W0 dp
— 2 o Yp
= W)Wy Zp,o dpdGNk,v o

= Yk,v Zp dgwp = Yk,vaa

henceT STST = e ™</4z5|"15zA = S. The remaining relation6 TC = T, CSC =
S andT*T = 1are obvious.

We defineweight vectorsy* with component:yﬁ = Y, andstatistics characters
xr : A — Cwithevaluations, (1) = d;lYML,A, u € A.We have seenthatthe weight
vectorsy”* are simultaneous eigenvectors of the fusion matriégswith eigenvalues
x.(1), Nuy* = x.(w)y*. Hence we obtain by computing inner products,

X (P) (Y, YY) = (h, Npy™) = (Nayh, y*) = (0 (0", y*) = x () (v, y*).

Therefore the eigenvectors are either orthoganal,y#) = 0, or paralleld,, y* = dj y*
since then the characters are equal,= x,. It is obvious that if some. € A is
degenerate, i.e. has trivial monodromy with all othee A, theny* is parallel to the
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vectory®. (Here and later we use the label “0” for the identity id A.) Note that we
haveyg = d,, and thent, , = dyd,,. Conversely, ify* is parallel toy® we have seen
that then necessarily, ,, = dyd,,, hence

Wr D o p p
Yip=) - N{  dy=dpdy =) N{ dp peA,
peA p peEA

and this is clearly only possible if all the eigenvallmsmcc);l of the monodromy are
trivial, i.e. if A is degenerate. We conclude that a braiding\ois non-degenerate if and
only if (y*,y%) = 8, ow, wherew = D ieA df is theglobal index We now arrive at
Rehren’s result [40].

Theorem 2.5.The following conditions are equivalent for a finite braided system of
endomorphisma:

1. The braiding oA is non-degenerate.
2. We havew = |z4|? and the matrices and T obey the full Verlinde modular algebra

S*S=T*T =1, (ST} =8*=C, CTC=T,
moreoversS diagonalizes the fusion rules (Verlinde formula):

Sk,psu-,pslf,p
o Z :

v
N, S
peA 0.p

Note that the implicatior2. = 1. is trivial since invertibility of S implies that
there is no vectop* parallely®. So let us assume that the braiding is non-degenerate:
(y*, ¥%) = 8, ow for all » € A. Then we can first check

w=>, o, y“)duw;l =2 deu,vdu‘U;l =2 v d wZ)i)U N, dkduwﬁl
v -1
_Zuvkd)\d‘)w NM ll = Z)\,ud)?w)» dl?a)\)’

thusw = |ZA€A d%w,|° = |za[2. Next we compute
ZYAp MP_ZN vadp—z y ") NS’MU):SA,MW,
hences*S = 1. Similarly we observe tha}_, Y pYup = >, Y Y., = & ,w

giving $2 = C which obviously commutes witii. Finally we check
Z S?»,psu,psmf,p _ w_lz Yk,pYu,pYnjp
p So,p > dp
= w_lZNiMYP’“Yj,p = ZN{M‘SW = N s
p,0 o
proving the Verlinde identity.

Corollary 2.6. Ifthe braiding onA is non-degenerate, then the matfiand the diagonal
matrix T are the images = U(S) andT = U(T) of canonical generators

0-1 11
o= (9) 7= (1)
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in a unitary representatio®/ of the modular group SL(2; Z) with dimensior|A|, the
cardinality of A.

3. Graphical Intertwiner Calculus

3.1. Basic graphical intertwiner calculusie now introduce our conventions to rep-
resent and manipulate intertwiners graphically. We consider a braided system of en-
domorphismsA < End(A) with A a type Il factor. Essentially we represent in-
tertwiners by “wire diagrams” where the (oriented) wires represent endomorphisms
A € A. This works as follows. For an intertwingre Hom(A1io - - - Ay, 142 - - i)

we draw a (dashed) box with (downward) incoming wires labelled by, ..., A,

andm (downward) outgoing wiregis, ..., um as in Fig. 1,A;, u; € A. Therefore

Fig. 1.An intertwinerx

the diagrammatic representation.ofdoes not only specify it as an operator, it even
specifies the intertwiner space it is considered to belong to. (Note that the same oper-
ator can belong to different intertwiner spaces as e.g. the identity operator belongs to
any Hom(i, 1) with A varying.) If a morphismp € A is applied tox, thenp(x) €
Hom(pl1Az - - An, puip2 - - - i) IS represented graphically by adding a straight wire
onthe leftasin Fig. 2. Reflecting the fact thatan also be considered as an intertwinerin

Fig. 2. The intertwinerp (x)

Hom(A Az -« - Ay, 12 - - - iy p) We can always add (or remove) a straight wire on the
rightas in Fig. 3 without changing the intertwiner as an operator. We say that intertwiners
x € Hom(Aadz - - Ay, ap2 - - - ) @ndy € Hom(vivz - - - i, p1p2--- o1), pj € A,
arediagrammatically composabiém = k andu; = v; foralli = 1,2,..., m. Then

the composed intertwinerx € Hom(i1iz -« - A,, p102--- p1) IS represented graphi-
cally by putting the wire diagram far on top of that fory as in Fig. 4. We also call

this graphical procedure composition of wire diagrams. Sometimes diagrammatic com-
posability may be achieved by adding or removing straight wires on the right. Now let

4 In the literature the name “modular group” is often reserved™®L(2; Z) = SW(2; Z)/Z, rather than
SL(2; Z). Clearly, we obtain a representationRBL(2; Z) whenever the charge conjugation is trivial = 1.
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Fig. 4. Productyx of diagrammatically composable intertwinersndy

L
of x yields the identityu1pu2 - - - mp102 - -+ p1(x")x = xA1A2 - - Ay p102 -+ - p1(x’), and
this is diagrammatically given in Fig. 5. Thus we have some freedom in translating
intertwiner boxes vertically without actually changing the represented intertwiner.

alsox’ € Homjay -+ &), wypy -+ - iy,) With A7, u'; € A. The intertwining property

My g X 2, % o My g
r-—>~>=7" r-—=~"=7"
| X | | x/ |
| |
r A r—-—>=-=-7"
r1 | x/ | | X | P1
L - — = ] L - — = ]
11 tm Py By e Ly ek Py o

Fig. 5. Vertical translation intertwiners andx’

The intertwiners we consider are (sums over) compositioesesfhientary intertwin-
ersarising from the unitary braiding operataré., u) € Hom(iu, ui) and isometries
t € Hom(A, uv). The wire diagrams and boxes we are dealing with are therefore com-
positions of “elementary boxes” representing the elementary intertwiners. We now have
to introduce some normalization convention. First, the identity intertwiner 14 is
naturally given by the “trivial box” with only straight wires of arbitrary labels. The next
elementary intertwiner ig102 - - - p, (e(A, w)) for which we draw a box as in Fig. 6
where the arbitrary labels, .. ., v,, are irrelevant and may be omitted. Similarly, the
box of Fig. 7 represents the elementary intertwhiféf}d,}/“d;l/“plpz -+ pu (1), where
t € Hom(x, uv) is an isometry. We label the trivalent vertex in the boxrbgince
Hom(x, nwv) may be more than one-dimensional and so we have to specify the inter-
twiner. (Note that there would still be an ambiguity of a phase for the choice of an isom-
etry even if Hongx, uwv) is only one-dimensional.) Finally, the elementary intertwin-

erse(A, w)* = e (u, 1) anddﬁ/4d3/4d;1/4p1p2 -+ pp(1)* are represented by Figs. 8
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Fig. 7. d’l;f” p1p2 -+ - pn (1) wherer € Hom(h, pv) is an isometry

Fig. 9. 4 %plpz - pp(0)*, wherer € Hom(x, ) is an isometry

and 9, i.e. they are obtained from the original boxes in Figs. 6 and 7 by vertical reflection
and inversion of all the arrows.Note that ¢+ represents overcrossing asd under-
crossing of wires. We will consider intertwiners which are products of diagrammatically
composable elementary intertwiners. In terms of wire diagrams we are correspondingly
dealing with compositions of elementary boxes of Figs. 6—9 so that the wires with the
same labels (and orientations) can and will be glued together in parallel and then we
finally forget about the boundaries of the (dashed) boxes. Therefore, if a wire diagram
represents some intertwinethenx* is represented by the diagram obtained by vertical
reflection and reversing all the arrows. Note that our resulting wire diagrams are then
composed only from straight lines, over- and undercrossings (in X-shape) and trivalent
vertices (in Y-shape or inverted Y-shape).

So far, we have considered only wires with downward orientation. We now introduce
also the reversed orientation in terms of conjugation as follows: Reversing the orientation
of an arrow on a wire changes its labeto 1. Also we will usually omit drawing a
wire labelled by id= id4. For eachh € A we fix (the common phase of) isometries
r,. € Hom(id, A1) andr, € Hom(id, A1) such tha.(r,)* 75 = A(7)*r, = d; *1andin
turn for \/d,.r; we draw one of the equivalent diagrams in Fig. 10. So the normalized
isometries and their adjoints appear in wire diagrams as “caps” and “cups”, respectively.
The point is that with our normalization convention, the relatign, )*r, = d;ll
(and its adjoint) gives @&opological invariancefor intertwiners represented by wire
diagrams, displayed in Fig. 11. Note that then the wire diagrams in Fig. 12 represent the
scalard,, (i.e. the intertwiner, 1 € Hom(id, id)). Also note the “vertical Reidemeister
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AT ian

Fig. 10.Wire diagrams for/d, r;,

Fig. 11.A topological invariance for intertwiners represented by wire diagrams

Fig. 12.Wire diagrams for the statistical dimensign

s N

Fig. 13. Unitarity of braiding operators as a vertical Reidemeister move of type |

move of type II” in Fig. 13 is just the unitarity conditios(i, w)*e(A, u) = 1 =
e(u, Me(u, A)*. The BFE’s yield another topological invariance, see Fig. 14 for the first
equation and Fig. 15 for the second equation. The third and fourth equations are obtained

Fig. 14.The first braiding fusion equation
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Fig. 15.The second braiding fusion equation

%

Fig. 16.The braid relation as a vertical Reidemeister move of type IlI

similarly by use of the co-isometry; we leave it as an exercise to the reader to draw the
corresponding wire diagrams. Up to conjugation they can also be obtained by changing
over-to undercrossings in Figs. 14 and 15. Finally, the braid relation, Eq. (10), represents
graphically a vertical Reidemeister move of type lll, presented in Fig. 16. The topological
invariance gives us the freedom to write down the intertwiner algebraically from a given
wire diagram: We can deform the wire diagram by finite sequences of the above moves
and then split it in elementary wire diagrams — in whatever way we decompose the wire
diagrams into horizontal slices of elementary intertwiners, we always obtain the same
intertwiner due to our topological invariance identities.

Next we recall that we can write the statistics phageas the intertwiner

dria(e(h, A))ry.

Therefore we obtain fap, the wire diagram on the left-hand side of Fig. 17. The diagram
) A
A 4

Fig. 17. Statistics phase, as a “twist”
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on the right-hand side expresses thatcan also be obtained s (r;)*e(k, A)A(r3.).
Note that we obtain the complex conjugaigby exchanging over- and undercrossings.
Similarly, we recall that we can write a matrix eleméfit,, = Y, , of Rehren’s Y-
matrix asd).d, ¢, (e(x, pe(u, 1)* = d;\dﬂr;j/l(s_()», we~ (i, A))ry. Dividing by dj,

we obtainy; (1), the statistics charactey, evaluated oru, represented graphically
by the wire diagram in Fig. 18. We have drawn the cirglsymmetrically relative to

&

Fig. 18.Rehren’s statistics charactgs evaluated onu: x; (1)

the straight wirex because it does not make a difference whether we put the “caps”
and “cups” for the isometry,, and its conjugate,, on the left or on the right due

to the braiding fusion relations. As it is a scalar, we can write, = 7Y, ,7, and
therefore its expressiomxdﬂf;r;‘):(s—(u, Me~ (A, w)rir, yields exactly the “Hopf
link” as the wire diagram for the matrix elemeHt ., given by the left-hand side of
Fig. 19. The equality to the right-hand side is just the relatipn = Yf’ﬂ together with

the prescription of representing conjugates. Recall thatis finite then the Y-matrix
differs from the S-matrix just by an overall normalization fac{gw, wherew is the
global index.

Often we consider intertwiners which are sums over intertwiners represented by the
same wire diagram but the sum runs over one or more of the labels. Then we simply
write the sum symbol in front of the diagram, we may similarly insert scalar factors. Now
recall that for finiteA the non-degeneracy of the braiding is encoded in the orthogonality
relation(y©, y*) = 3, ow. Interms of the statistics characters this regjq§dux,\(u) =

d;lal,ow = &, ow. Graphically this can be represented as in Fig. 20. This kind of
(graphical) relation has also been used more recently in [44,38,25] and was called a
“killing ring” in [38].

Wire diagrams can also be used for intertwiners of morphisms between different
factors. LetA, B, C infinite factors,0o € Mor(A, B), o € Mor(C, B), t € Mor(A, C)
irreducible morphisms ande Hom(p, o t) an isometry. Then Fig. 21 represents the

intertwinerdi/ 4d3/ 4dp_ 4, Similarly we can draw a picture using a co-isometry. Along

the lines of the previous paragraphs, we can similarly build up larger wire diagrams
out of trivalent vertices involving different factors. We do not need the triangles with
corners labelled by factors as we can also label the regions between the wires. So far
we do not have a meaningful way to cross wires with differently labelled regions left
and right, but all the arguments listed above which do not involve braidings can be used
for intertwiners of morphisms between different factors exactly as proceeded above.
Moreover, the diagrams may also involve wires where left and right regions are labelled
by the same factor, i.e. these wires corresporehionorphisms of some factor which

may well form a braided system, and then one may have crossings for those wires.
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[CDERC\D)

Fig. 19.Matrix elementy; ,, of Rehren’s Y-matrix as a "Hopf link”

> du "Q = > "“Q "“Q =S0w
' o

Fig. 20.Orthogonality relation for a non-degenerate braiding (“killing ring”)

Fig. 21.The intertwiner ¥ %t as a triangle

3.2. Frobenius reciprocity and rotationd.et A, B, C be infinite factorsp € Mor(A, B),
7 € Mor(C, B),o € Mor(C, A) morphisms with finite statistical dimensiodg, d:, d»
< 00, respectively, and lete Hom(z, po). Then

dody _ }
L,(t) = Z p(t)*r, € Hom(o, pt)

T

dyd
Ro(t) = 1/%#‘)@ € Hom(p, 5)
T

are the images under left and right Frobenius maps. Displaying the intertwiners
dj/zr;ﬁ(t) and di/zp(fg)*t graphically yields the identities in Figs. 22 and 23, re-
spectively. These morphisms need not be irreducible. Taking them as products, we may
replace any of them by bundles of wires. We call the linear isomorphismsig/zr;‘;ﬁ(t)

and

andr — di/zp(fa)*t the left and right Frobenius rotations.

Now let us assume thats isometric and labels a trivalent vertex of wires correspond-
ing to irreducible morphismg, t, o. With the above “transformation law” we then have
the identity of Fig. 24, where the first equality is just a definition which gives us some
prescription of “tightening” wires at trivalent vertices. In fact, the laBg(¢)* of the
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Fig. 23.Right Frobenius reciprocity for an intertwinee Hom(z, po)

trivalent vertex makes sense since it is a co-isometry: Due to irreducibilityapido ,

the map — L£,(¢)* is isometric. Similarly, we get Fig. 25 (using irreducibility oaind

p). Hence the prefactor in Figs. 22 and 23 is just such that it transforms isometries with
natural normalization prefactors into co-isometries with natural normalization prefactors
and, by taking adjoints, the other way round which gives the graphical identities given
in Fig. 26. We may now use the replacement prescription three times, beginning with a
trivalent vertex labelled by an isometrys Hom(z, po) and proceeding in a clockwise
direction. Then we end up with a co-isomeéyr)* € Hom(é p, 7) in the corner where

0 T p T o T
Ly@®)*
; = t =
o o o

Fig. 24.Left Frobenius reciprocity for a trivalent vertex labelled by an isometry

T o T o T o
Ro (1)*
‘ = ) =
o o o

Fig. 25.Right Frobenius reciprocity for a trivalent vertex labelled by an isometry
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o o P P
" and " =
Ly(t) Ro (1)
P T P T T o T o

Fig. 26.Frobenius reciprocity for a trivalent vertex labelled by a co-isometry

we originally had the label. In fact,
(1) = Rp(Le(Ro (1)) = y/dpdodr riT(t*p(Fo)ip).

Similarly we can go in the counter-clockwise direction and then we olsiin* <
Hom(s p, 7), where

Ot) = Lo (Re(Lp(1))) = /dpdody 3 p(711*)5 (rp)rs,

a}nd in order to establish a well-defined rotation procedure we have to sho# that
®(t). Now

O)*O(t) = \/dydydy T(FE*)O1)*G (rp)rs
= dpdydy; T(FETFEEpFONTT(E (rp)re)re
= dpdod; T(F{1* 1, p(ry) po (0 (rp)re)t)re
= dpd; T(FIFEp(rp)Dre = di T(FFe = 1,

hence(®(r) — ©(1))*(O(r) — O()) = 0, i.e.0(r) = O(¢). Thus a trivalent vertex la-
belled with anisometry € Hom(z, po) can equivalently be labelled with a co-isometry
O)* € Hom(a p, 7). So here we have established some “rotation invariance” of triva-
lent vertices (in standard inverted Y-shape or Y-shape) with a replacement prescription
for the rotated labelling (co-) isometries.

Next we turn to the rotation of crossings when we have a braiding. Assume we have
a braided system of endomorphismss A, u, v of some factord. From the BFE we
obtainr, = A(eT (i, 1)eT (i, A)a(r2). Applying A and multiplying byd; e* (x, )7}
from the left yields

e5(h, 1) = di A (eT (W, M)A (). (13)

The BFE yields similarlyr(r,) = et (w, Mu(eF (i, A)r,, and by multiplying with
dyph(ri)e* (1, p) from the left we obtain

£k, 1) = dyph (r) (e (i, 1)y,

and therefore we have the graphical identity given in Fig. 27, here displayed only for
overcrossings. Then this procedure can even be iterated so that we obtain arbitrarily
twisted crossings. Note that for the rotation of crossings we do not need any relabelling
prescription as this is encoded in the BFE's.

We now turn to the discussion of “abstract pictures” which admit different intertwiner
interpretations according to Frobenius rotations.AgtAo, ..., A, be factors equipped
with setsA; ; € Mor(A;, Aj), i, j = 1,2,..., ¢, of irreducible, pairwise inequivalent
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Fig. 27.Rotation of crossings

morphisms with finite index such thm : A; j is closed under conjugation and irre-
ducible decomposition of products (whenever composable) as sectors, and in particular
eacha; ; is a system of endomorphisms. Some of the syst&mamay be braided.

We now consider “labelled knotted graphs” of the following form. On a finite con-
nected and simply connected region in the plane we have a finite number of wires (i.e.
images of piecewis€° maps from the unit interval into the region). Within the region
there is a finite number of trivalent vertices (i.e. common endpoints of three wires) and
crossings of two wires, and for the latter there is a notion of over- and undercrossing (i.e.
for each crossing there is one wire “on top of the other”). If wires are not closed (i.e. if
their two endpoints do not coincide) then they are only allowed to have trivalent vertices
or distinguished points on the boundary of the region as their endpoints. The wires meet
each other only at the trivalent vertices and crossings, and they are directed and labelled
by the morphisms |h_| ; A; j subjectto the following rules. Crossings are only possible
for wires with Iabellmg morphisms in someg; ; with braiding. Furthermore it must be
possible to associate the factotsto the free regions between the wires such that any
wire labelled by some < A; ; has the “source” facto; on its left and the “range”
factor A ; onits right relative to the orientation (composition compatibility). We identify
graphs which are transformed into each other by inversion of the orientation of a wire
and simultaneous replacement of its label, say A; ;, by the representative conjugate
morphismp € A ;. Finally, the trivalent vertices are labelled either by isometric or co-
isometric intertwiners which are associated locally to one corner region of the trivalent
vertex as follows. Ift € A; j, p € A j, 0 € A;; label the three wires of a trivalent
vertex,t is entering and, following counter-clockwiseando are outgoing (as e.g. the
trivalent vertex in Figs. 24 and 25, possibly up to isotopy and rotation), then in the local
corner region opposite to the label must either be an isometrg Hom(z, po) or a
co-isometry* € Hom(é p, 7). If the wires at a trivalent vertex have orientation different
from this, the rule can be derived from the previous case by reversing orientations and
simultaneous relabelling by conjugate morphisms.

Now letG be such a labelled knotted graph as above. To inte¢pastan intertwiner,
we may put it in some “Frobenius annulus” as shown in Fig. 28 for an exatmble.
Frobenius annulus has labelled wires inside such that each of them meets an open end
of a wire of G at one endpoint (labelled byj,...,012 in our example), matching the
label and orientation of this wire, and this way all the open ends of the wirgsapé
either connected to the top or bottom of the outside square boundary of the annulus.
No crossings or trivalent vertices are allowed in the annulus, but it may contain cups or
caps. Gluing the wires together and forgetting about the boundahaotl the annulus,
we will read the result as a wire diagram and therefore the annulus corresponds to a

5 Our notion of a Frobenius annulus is inspired by the annular invariance used in Jones’ definition of a
“general planar algebra” [22].
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P12%8 P11 P10

Fig. 28.A Frobenius annulus surroundigh

“Frobenius choice”, deciding whether we will get a certain intertwiner or its image by
certain Frobenius rotations, cf. Figs. 22 and 23 (and their adjoints).

Reading vertically downwards, we may now have the problem that on a finite number
of horizontal levels a finite number of singular points of crossings, trivalent vertices, cups
and caps are exactly on the same level (or “height”) so that we cannot time slice the
diagram into stripes containing only one elementary intertwiner. Also some wires may
have pieces going exactly horizontally. We now allow to make small vertical translations
such that these crossings and trivalent vertices are put on slightly different levels and all
wires obtain piecewise slopes, without letting wires touch or producing new crossings,
but we may possibly produce some new cups or caps. In the latter case we can always
arrange it so that even each new cup or cap appears on a distinct level. The trivalent
vertices and crossings may not be in “standard form”, i.e. in Y- or inverted Y shape
respectively X-shape. In are‘neighborhood” of a trivalent vertex, we now bend the
wires so that the angles are arranged in standard form. Similarly we modify the crossings
to bend them into an X-shape. Using for labels at trivalent vertices our replacement
prescription by Frobenius reciprocity, we can obtain isometries as labels for trivalent
vertices in inverted Y-shape, located on the bottom corner region, and co-isometries as
labels for trivalent vertices in Y-shape, located on the top corner region.

Again, these topological moves are allowed to produce at most new cups or caps,
all on different levels so that the resulting diagram can be time sliced into stripes of
elementary diagrams. Clearly, this procedure of deforming a labelled knotted graph in
a Frobenius annulus into a regular wire diagram is highly ambiguous. However, the
ambiguities in the above procedures are irrelevant: The ambiguities arising from the
production of slopes of wires and different levels of certain elementary intertwiners are
irrelevant due to the topological invariance of Fig. 11 and the freedom of translating
intertwiners vertically as shown in Fig. 5, and the ambiguities arising from rotations
of the elementary intertwiners are irrelevant due to the rotation invariance of trivalent
vertices and crossings, as we have established in Figs. 24-27.

Now letG; andG- be two labelled knotted graphs as above which are defined on the
same (connected, simply connected) region in the plane and have the same entering and
outgoing wires at the same points with the same orientation, i.e. they have coinciding
open ends so that they fit in the same Frobenius annuli. When embedded in some Frobe-
nius annulus it may now happen that the corresponding intertwiners are the same, even
if G1 andG, are different. Because of the isomorphism property of Frobenius rotations
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it is clear that ther; and G, yield the same intertwiner through embedding in any
Frobenius annulus. We can write down sufficient conditions for such equality in terms
of some “regular isotopy”: For givei; andG» as above choose a Frobenius annulus
and regularize the pictures into two wire diagram¥s and ., respectively. We call

G1 andg, regularly isotopic ifW; can be transformed intid/> by the following list of
moves:

1. Reversing orientation of some wires with simultaneous relabelling by conjugate mor-
phisms,
2. any horizontal translations of elementary intertwiners which may change slopes of
wires but which do not let the wires meet or involve cups or caps,
. vertical translations of elementary intertwiners as in Fig. 5,
. topological moves as in Fig. 11,
. rotations of trivalent vertices and their labels as in Figs. 24-26,
. and for wires corresponding to a braided system we additionally admit
(a) vertical Reidemeister moves of type Il as in Fig. 13,
(b) moving crossings over and under trivalent vertices, cups and caps according to
the BFE’s (cf. Figs. 14 and 15 for the first two relations),
(c) vertical Reidemeister moves of type Il for crossings (cf. Fig. 16 for overcross-
ings),
(d) rotations of crossings (cf. Fig. 27 for overcrossings).

oUW

Thus the ambiguity in the regularization procedure means in particular that from one
graph we can only obtain wire diagrams that can be transformed into each other by these
moves. Itis easy to see that regular isotopy is an equivalence relation for knotted labelled
graphs. Moreover, for closed labelled knotted graphs (i.e. without open ends) which
are then embedded in a trivial annulus, the local rotation invariance of the elementary
intertwiners ends up in a total rotation invariance: We can rotate the picture freely, the
rotated graph is always regularly isotopic to the original one and we will always end up
with the same scalar (timds,,, where4; is the factor associated to the outside regfon).

Let us finally consider an intertwiner ¢ Hom(p, p) with p € Mor(A, B) irre-
ducible. Then clearly is a scalarx = &1p, & € C. Hence we have the identity
dpélp = dyx = d,iyxip, and this is graphically the left-hand side in Fig. 29. On the

=" r B
= [ <> x|
[E— L |

v L-Jd >
|

Fig. 29.Two intertwiners of the same scalar value

other hand, application of the left inverse yieldsp,(x) = dprpp(x)rp = dpély,

which is a different intertwiner of the same scalar value, and it is represented graphically
by the right-hand side in Fig. 29. Thus the left and right-hand side in Fig. 29 represent the
same scalar. If we consider closed wire diagrams and are only interested in the scalars
they represent, then we therefore have a “regular isotopy on the 2-sphere”.

6 Fora single kind of wire corresponding to a braided system, this invariance is similar to the complex
number-valued regular isotopy invariant of knotted graphs obtained in [36].
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3.3. @-Induction for braided subfactorsWe now considew-induction of [2—4] in the
setting of braided subfactors. Here we work with a type 11l subfastar M, equipped
with a braided systemh c End(N) in the sense of Definition 2.1 such that for the
injection mapt : N — M, the sectorffi:] decomposes into a finite sum of sectors
of morphisms inA. (Heret denotes any choice of a representative morphism for the
conjugate sector gf].) Note that since elements i have by definition finite statistical
dimension, it follows that the injection map has finite statistical dimension and thus the
subfactorN C M has finite index. But also note that we did neither assume the finite
depth condition oV C M (we did not assume finiteness &) nor non-degeneracy of
the braiding at this point. As usual, we denote the canonical endomorphisBEnd(M)
by y = u, the dual canonical endomorphisme End(N) by 6 = u and “canonical”
isometries byw € M andw € N, more precisely, we have € Hom(id,,, y) and
w € Hom(idy, ) such thatw*v = y(v*)w = [M : N]1/21. Recall that we have
pointwise equality = Nwv.

With a braidinge on A and its extension t& (A) as in Subsect. 2.2 we can define
theoe-inducedoe)\i for A € X(A) exactly as in [33,2], namely we define

af =17 o Ad(e*(1,0)) o Aol

Thena;” ande; are morphismsin Ma, M) with the properties; ot = tox, a5 (v) =
e, 0)*v, ocitﬂ =oj ol ifalsou € £(A), and clearlyxﬁgN — id,,. Note that the first
property yields immediatelyaic = d,, by the multiplicativity of the minimal index [31].

We also obtain easily thac_tf = ai‘t since we obtaim, = ¢ (0, A1)0(r,) and similarly
7y = €T (0, AM)0 () easily from Eqg. (8). Multiplying both relations by from the
right yieldsryv = oz;\taki(v)rk andryv = afaxi(v)fk, hencer;, € Hom(idy,, a%af),
€ Hom(idM,afoz;E) asM = Nv, thus we can puR_: = ((ry), R+ = t(i,) as

R-isometries for the:-induced morphisms, i.ea_f = a;t. Note also that the definition

of a)jf does not depend on the choice of the representative morpliitsrthe conjugate
sector offt] due to the transformation properties of the braiding operators, Eqg. (7).
Though the local net structure for(/) c M (1) is assumed in [33,2], we need only
an assumption of a braiding for the definitioncq‘f. We, however, have to be careful,
because we do not assume the chiral locality condii®n6)y (v) = y (v) in this pa-
per. (The name “chiral locality” is motivated from the treatment of extensions of chiral
observables in conformal field theory in the setting of nets of subfactors [33], where
the extended net is shown to satisfy local commutativity if and only if the condition
£(0,0)y (v) = y(v) is met [33, Thm. 4.9].) Some theorems in [2—4] do depend on the
chiral locality condition and areot true in this more general setting afinduction.
Namely, withe (0, 6)y (v) = y(v) it was easily derived [2, Lemma 3.5] by using the
BFE that then Homxf, aff) = Hom(tA, () for A, u € S (A). As a surprising corol-
lary (cf. [2, Cor. 3.6]) one found by putting = u« = idy that:, thus the subfactor
N C M, was irreducible which had not been assumed. Another corollary was then
the “main formula” [2, Thm. 3.9], givinq%i, aff) = (tA, ) = (0A, ) by Frobenius
reciprocity. (Moreover, in the framework oets ofsubfactorsV’ ¢ M, where the braid-
ings arise from the transportability of localized endomorphisms, a certain reciprocity
formula(af, B) = (A, op), called ‘wo-reciprocity”, between localized transportable
endomorphismé& andg of the smaller respectively the larger net was established; here
o-restriction is essentiallys = :.) Without chiral locality, these results are in general
not true: The subfactaN c M is neither forced to be irreducible, nor does the main
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formula hold, however, we always have the inequdlétyﬂ aj) < (60X, u), since only
the “>" part of the proof of [2, Thm. 3.9] uses chiral locality.

It is a simple application of the braiding fusion equation and does not involve chiral
locality that fori, i, v € X (A) we have the (equivalent) relations [2, Lemma 3.25]

af (@ (A, p) =651, p)Q, Q™ (p, 1) =& (p, W, (Q) (14)

wheneverQ € Hom(A, ).

Leta € Mor(M, N) be such thafa] is a subsector ofui] for somep € Z(A).
Hencea: € (A). Similarly, letb € Mor(N, M) be such thalb] is a subsector g v]
for somev € Z(A). If T € Hom(b, (v) is an isometry we put

EXO, b) = T*e* (A, D)™ (T), EE(b, 1) = (EF (1, b))*.

Note that the definition is independent of the choic& aindv in the following sense:
Ifalso S € Hom(b, () is an isometry for somé € X (A) thenST* € Hom(wv, «7) and
therefore

EEX(h, b) = S*ST*e* (0, D)o (T) = S*e=(, D)o (ST*T) = S*e* (1, D)o (S).
Similarly one easily checks th&t (1, b) is unitary.

Proposition 3.1.Letx € X(A), leta € Mor(M, N) be such thafa] is a subsector of
[ut] for someu € X(A) and letb € Mor(N, M) be such thafb] is a subsector dfiv]
for somev € X (A). Then we have

e*(r, ar) € Hom(ra, aa), E* (1, b) € Hom(ai b, bi). (15)

Proof. The first relation in Eq. (15) is trivial oV, so we only need to show it far
sinceM = Nv. Note thata(v) € Hom(at, aif), therefore Eq. (5) yields

a()et (O, at) = a(eT(r, 0)eT(r, ar(a(v)),
hence

a oo (v) = aet(r,0)Ma() = e (h, ar(a@))e(r, an*
=Ad et (), a0) o hoa(v).

For the second relation we use the fact that* € Hom(i, i) for T € Hom(b, iv):
EEX(h, bYaTh(n) = T*e(h, D) (TT*D(n)T) = T*eF (1, »)Av(n)ai (T)
= T*DA(m)e* (h, D)o (T) = bA()EE (1, b)
foralln e N. O

Due to Prop. 3.1 we can now draw the pictures in Fig. 30 for the operafoks at)
and £ (A, b). The pictures for their conjugates (at, A) and EF(b, 1) are as usual
obtained by horizontal reflection and inversion of arrows of the pictures in Fig. 30.

Lemma 3.2.Leta, b € Mor(M, N) be such thafa] and[b] are subsectors dfji] and
[tv] for somei, v € X (A), respectively. Whenevére Hom(a, b) we have

af (V) EF@, p) =E5(b.p)Y, YE(p.a)=EX(p.b)ay (V).
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A ) a A K& a a;\" ) b a;k b
a ( af a \a; b ( A b \ A
Fig. 30.Wire diagrams foet (1, at), e~ (1, av), EY (A, b), £~ (1, b), respectively

Proof. Let S € Hom(a, 1) andT € Hom(b, 1) be isometries. Thed*(a, p) =
aF ($)*eE (i1, p)S andE+(p, b) = T*e*(p, D)k (T). Now TYS* € Hom(iji, tb).
Inserting this in Eq. (14) yields the statemertt.

In order to establish a symmetry for “moving crossings over trivalent vertices” we
can now state the following

Proposition 3.3.Let &, p € X(A), leta,b € Mor(M, N) be such thafa] and [b]
are subsectors ofut] and [vi] for somep,v € X(A) and leta,b € Mor(N, M)
be conjugates, respectively. Whenevet Hom(x, ab), x € Hom(a, Ab) andY <
Hom(a, b1), we have the intertwining braiding fusion equations (IBFE’s):

p(t) e* (1, p) = e (at, p) a(EF (b, p))t, (16)
te*(p, 1) = a(E*(p, b)) e (p.av) p(t), (17)

p(x) eE(at, p) = eE(r, p) A= (bt, p)) x, (18)
xeF(p,a)) = MeF(p, b)) e (p, 1) p(x). (19)

af (V) €5 @, p) = EX(b, p) b(e=(h. p)) Y, (20)
Y E5(p.a) = b(e*(p, 1) EX(p. b) ey (V). (21)

Proof. Since[b] must be a subsector @fv] for v € X (A) a conjugate ob, there is an
isometryT € Hom(b, tv). Note that ther(T) € Hom(ab, atv). Hence by naturality
and Proposition 3.1 we compute
e (p, ab) = a(T*)e*(p, atv) pa(T) = a(T*)a(e*(p, V)e* (p, av) pa(T)
= a(T*)a(e*(p, D)acy (T)e* (p. av) = a(€*(p, b)e* (p. av),

and hence alse* (ab, p) = e*(at, p)a(EX (b, p). We also obtain
eX(Abt, p) = (A, p)A(eF (b1, p))

and
e*(p, Abt) = (e (p, bu)e* (p, 1)

by Eq. (9). Note that € Hom(at, Abt) by restriction. Equations (16)—(19) follow now
by naturality, Eq. (8). Next, we note th@t € Hom(bx, (tv), and henc&€*(p, b)) =
T*e* (p, m)a[f(T). Therefore
EX(p, bi) = T*0(e=(p, M)e=(p, V) (T) = b(e(p, M) T*e*(p, D)z (T)
= b(e™(p. WEX(p. b),

and hence alsé* (bx, p) = ET(b, p)b(¢ (1, p)). Now Egs. (20) and (21) follow from
Lemma3.2. O
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KP (

Fig. 31.The first intertwining braiding fusion equation (overcrossings)

Fig. 32.The sixth intertwining braiding fusion equation (overcrossings)

These IBFE’s can be nicely visualized in diagrams. We display Eq. (16) in Fig. 31
and Eq. (21) in Fig. 32, both for overcrossings. We leave the remaining diagrams as a
straightforward exercise to the reader. Note that the IBFE's give us the freedom to move
wires with labelo andozj,E freely over trivalent vertices which involve oné-N wire and

two N-M wires. Unitarity of operator§* (1, b) yields a “vertical Reidemeister move
of type II” similar to Fig. 13. We can now also easily elaborate the rotation behavior of
mixed crossings displayed in Fig. 30 (and consequently their conjugates). Crucial for this
is the fact thaTRa% =1(r)) =ry andRaAi = 1(r;) = . can be used as R-isometries for
the a-induced morphisms a8+ € Hom(id, Eaf) and Rai € Hom(idy,, ai‘tﬁ)
A - B A

satisfya; (R,)* R,z = d; *1y anda; (R,2)* R,z = d; *1y andd,z = d;.. First we
notice that we have

e\, ar) = d, i A(eT (at, 1)) ra(ry)

by Eqg. (13). Now letR, € Hom(idy,, aa) andr, € Hom(idy, aa) be isometries such
thata(R,)*r, = d; 11y anda(i,)* R, = d; %, and otherwise we keep the notations as
in Prop. 3.3. From Eq. (17) we obtaitE ¥ (a, 1))7, = ¥ (., a))A(F,). Hence we have

e* (A, at) = dg e (h, at) ha(Ry)*A(Fa) = dy aci (Rg)* e (A, av) A(7y)
= dy aci"(Ry)* a(EF (@, 1)) .
Next we compute, using again Eq. (13),
EX(,b) = T* e (0, D) &F(T) = ds. T* k(T (0, W)AD(r2) & (T)
—d, f;af(af(n*ﬁ(a, MNTaEb(ry) = dy 7S (EF (b, ) b(ry).
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Finally, as Eq. (17) yieldg a(E£ (%, @) = A(7,)*e T (at, 1), we obtain
EE(, a) = dya(Fy)* aa(EX (A, @) Ry = dy aM(7a)* a(e¥(at, M) Ry.

Drawing forR = = t(r}) andRaki = ((ry) caps of the wires:;t, these relations yield
graphically the analogues of Fig. 27. We conclude that we can include the crossings of
Fig. 30 consistently in our “rotation covariant” graphical framework.

4. Double Triangle Algebras for Subfactors

We now formulate Ocneanu’s construction [39] for a subfactor with finite index and finite
depth rather than for bi-unitary connections and bimodules arising from Goodman-de
la Harpe-Jones subfactors associated to A-D-E Dynkin diagrams in order to apply it in
a more general context. From now on we work withc M satisfying the following

Assumption 4.1.Let N C M be a type lll subfactor with finite index. We assume that
we have a system of endomorphisgngy C Mor(N, N) = End(N) in the sense

of Definition 2.1 such that for the injection map N — M, the sectofd] = [u]
decomposes into a sum of sectors of morphismsiy. We choose sets of morphisms
NXy C Mor(M, N), yXny C Mor(N, M) and Xy C Mor(M, M) = EndM)
consisting of representative endomorphisms of irreducible subsectors of sectors of the
form [At], [tA] and[AL], A € y X, respectively. (We may and do choadg in » Xy

as the endomorphism representing the trivial sector.) We also assumethais finite.
Consequently, the sat = y Xy U y X Uy Xy U pr Xy s finite.

Note that Assumption 4.1 implies that representative morphisms for all irreducible
sectors appearing in decompositions of powerq ([6%]) of Longo’s (dual) canonical
endomorphism are containedynXy; (y Xy). In other words, the set contains at least
the morphisms corresponding to the (equivalence classes of) bimodules arising from
this subfactor through the Jones tower, and therefore we may callahich does not
contain any other morphismsnainimal choiceWe conclude that finiteness gfXy in
Assumption in 4.1 automatically implies that the subfaé¢foc M has finite depth. We
used sectors instead of bimodules in view of our “identification” of chiral generators
with a-induced sectors below. Therefore we need a sector approach in order to define
a-induction since its definition involves 1, and hence we work with factors of type Il1.

(We do not need hyperfiniteness Mf for our purposes.)

We now use the graphical calculus presented in Sect. 3. In the graphical method
of [37] (and [11, Chapter 12]), factors, bimodules (morphisms), and intertwiners are
represented with trivalent vertices, edges, and triangles, respectively, and this is where
the name “double triangle algebra” comes from. However, here (as in [38, 39]) these three
kinds of objects are represented by regions, wires, and trivalent vertices, respectively,
though the labels for regions are omitted for notational simplicity.

For X in Assumption 4.1, we define tiouble triangle algebra® with two multi-
plicationsx; andx, as follows. As a linear space, we set

© = @ Hom(ab, cd).

a,b,c,dENXM

This is a finite dimensional complex linear space. An eleme®iis presented graph-
ically as in Fig. 33 under the interpretation in Sect. 3 with the convention of reading
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S*

A

c ‘;d
t

Fig. 33.An element ine

the diagram from the top to the bottom. (A general elemer®iris a linear combina-

tion of this type of element.) We can interpret the same diagram with the convention of
reading the diagram from the left to the right or, equivalently, keeping the top-to-bottom

convention but putting the diagram in a suitable Frobenius annulus. Then the resulting
intertwiner is in

O = @ Hom(ca, db).

a,b,C,dENXM

The isomorphism of these two spaces is given by application of two Frobenius rotations,

and we can use this isomorphism to iden@yand<>. By our convention of the normal-

ization in Sect. 3, the diagram of Fig. 33 represents an eleaiéé l/4d}/4dj/4d;l/2ts*

in the block Hontab, cd), wheres € Hom(x, ab) andr € Hom(x, cd) are isometries

andi € yXy. Similarly we may use elements € which are graphically represented
as in Fig. 34 with isometrieS € Hom(B, ca), T € Hom(8, db) andB € 5 X);. Note

Fig. 34.An element in&

that elements of the form in Fig. 33, or equivalently of the form in Fig. 34, sfan
linearly.

Our graphical convention is as follows. We use thin, thick, and very thick wires for
N-N morphisms,N-M morphisms, and/-M morphisms, respectively, analogous to
the convention [39]. We call thenV-N wires, and so on. We lab&/-N morphisms
with Greek letters., w, v, ..., N-M morphisms with Roman lettets b, ¢, d, . .., and
M-M morphisms with Greek lettes, ', 87, .... We orientN-N or M-M wires but
we put no orientations oN-M wires since it is clear from the context whether we mean
anN-M morphisma or anM-N morphisma. We simply put a labet for an unoriented

thick wire for both. Note that, whatever we consid€r, or <, the same intertwiner

(as an operator) may appear in different blocks of the double triangle algebra, e.g. the
identity idy is an element in any Hoab, ab), a, b € yXy. The graphical notation

is particularly useful in order to avoid this kind of confusion because diagrams as in
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&* 1% s* 1%
a b a v a 4
b
A %), " = ‘Sh,a/‘sdﬁc’ A %
d
ce—Y—q —T—y ce—1 Y

t t t t
Fig. 35.The horizontal product;, on o

Figs. 33 and 34 always specify also the associated block in addition to the intertwiner
as an operator.

Thehorizontal products, on € is defined as in Fig. 35. The meaning of the right-
hand side is as follows. The product is by definition zero if the labels of the open ends
of the wires facing each other do not match. If they match, we glue the wires of the two
diagrams together as in Fig. 35 and interpret it as an intertwiner. It belongs to the block
of the double triangle algebra which is specified by the four remaining open ends of the
new diagram. This is a horizontal version of the composition of intertwiners described
in Sect. 3.

We also can represent this horizontal product in terms of elements in Fig. 34. This is
described in Fig. 36, because the convention of Sect. 3 means that this product is just

the composition of the intertwiners ¥, and this composition is realized by taking the
inner product of the two intertwiners in the right-hand side in Fig. 36.

We similarly define thevertical products, on € by composing two diagrams verti-
cally, but with extra coefficients as in Fig. 37. The meaning of the right-hand side is as
before. Note that the definitions of horizontal and vertical products are not completely
symmetric due to the extra coefficients we chose. This choice is somewhat arbitrary but it
just turns out to be useful for our purposes. Namely, with this definition of the products,

a b a/ b/ a b/
B ' dpd, B
§* PO M = Spaba.cOpp %(S/,ﬂ $* T/
c d J d c d

Fig. 36.The horizontal product presented in another way

*y :zsayc/(sb.du/dadb a B b

Fig. 37.The vertical produck, in <
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the minimal central projections @&, %) have simple and useful composition rules
with respect to the vertical produet, see Theorem 4.4 below. We clearly also have

a x-structure for the horizontal product obtained by vertical reflection of the diagram,
adjoining labels for trivalent vertices and reversing orientations of wires. Analogously,
a x-structure for the vertical product comes from horizontal reflection. The basic idea
is that the 90-degree rotation is something like a “Fourier transform” which transforms
the two products into each other, similar to the situation of the group algebra of a finite
or compact group.

For each, A, a, b we choose orthonormal bases of isometﬂf§§ € Hom(B, ba),
- B hij A A ’
i=12 .., Né,a’ andta’g € Hom(x,ab) j =1,2,..., Na/;' so that

Ng N)Lg
> 2T =1 and 3 Yot =1 (22)

BemXy i=1 ren Xy j=1

foralla, b € yXy. Then itis easy to see that the elements in Fig. 38 form bas€s of

AN
a b a ([a,i) b
b _ Vap by B rBii bl d A
Bic,a,i 4 dadyd.dy c,a db red,j dadydcdy \
¢ d ¢ M d
c,d

Fig. 38.Matrix uniISeZ’ﬁ:;i for (9, *h) andff;‘cbijyj for (9, *y)

which constitute complete systems of matrix uGi®, ;) respectively( €, x,). Thus

for each of the two multiplications the double triangle algebra is a direct sum of full
matrix algebras. The two different bases are transformed into each other by a unitary
transformation with coefficients given by thg-8ymbols for subfactors of [37] (see

[11, Chapter 12] for the basic properties of “quantujasymbols”), but this will not be
exploited here.

Definition 4.2. For eachg € y Xy we define an elemerg = Za,b,i eg’;‘})’,"ai c ©.
Graphically, this element is given by the left-hand side in Fig. 39. We use the convention

shown on the right-hand side in Fig. 39 to represent this element.

Fig. 39.The minimal central projectioag
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Due to the summationover=1, 2, ..., Nfa, the definition is independent of the choice

of the intertwiner bases as different orthonormal bases are related by a unitary matrix.
We will use such a graphical convention whenever we have a sum over internal “fusion
channels” of two corresponding trivalent vertices together with prefactors which renor-
malize the trivalent vertices to isometries. Note that we obtain a prefactor, as displayed
in Fig. 40 for an example, when we turn around the small arcs at trivalent vertices.
Here the dotted parts mean that there might be expansions as given in the following
lemma or later even be braiding operators in between; it is just important that the small
arcs at corresponding trivalent vertices denote the same summation over internal fusion
channels.

Fig. 40.Turning around small arcs yields a prefactor

Lemma 4.3.The identity of Fig. 41 holds. Analogous identities hold,ib, 8 are re-
placed by wires of other type (in a compatible way).

~ g
R:

Fig. 41.The identity with expansion using

Proof. With the normalization convention as in Fig. 39, this is just the expansion of the
identity in Eq. (22), and this certainly holds as well using similar expansions with other
intertwiner bases.O

Note that the identity in Fig. 41 may, for example, also appear rotated by 90 degrees
as we can put the left- and right-hand sides in some Frobenius annulus as described in
Subsect. 3.2.

As we have already indicated, the horizontal product is essentially the composition of
intertwiners in<>. The main point of the double triangle algebra is the following. Sup-
pose we have complete information on the fusion ruleg-a¥, N-M, M-N morphisms

in X and their §-symbols. We can define the algeb€a in terms of matrix elements

fcf;lf}?”i and determine their composition with respect to the horizontal product without
any information of the\f-M morphisms. Then we cdimd M-M sectors and determine
their fusion rules by the following theorem which generalizes a result for Goodman—de

la Harpe—Jones subfactors in [39] in a straightforward manner.
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Theorem 4.4.For any 8 € y Xy the elementg € © of Definition 4.2 is a mini-
mal central projection with respect to the horizontal product, and all minimal central
projections arise in this way in a bijective correspondence. Furthermore, we’ have

dﬁdﬁ/ }3//
eg *y eg = Z _Nﬂ,ﬂ’ epr (23)

for all 8, B/ € yXu. In particular, the centerZ;, of € with respect to the horizontal
product is closed under the vertical product.

Proof. That eacleg is a minimal central projection and that all minimal central projec-
tions arise in this way is obvious from the description of the matrix units. The vertical
producteg *, eg is given graphically by the left-hand side of Fig 42. We can use the

a a a a a a
il i 8
ﬂ/// ﬂ// ﬁ////
D dy b b= Y. 4 b b
ab.e //a,{)/}c, "
B".B".B
B B B
c c c c c c

Fig. 42.The vertical producég *, eg/

expansion of Lemma 4.3 for the two parallel wirgand 8’ in the middle. Now note

that the horizontal unitis given b, = > _; e4. Therefore, by multiplyindl, from the

left and from the right, we obtain the diagram on the right-hand side of Fig. 42. Read-
ing the diagram from left to right, we observe that intertwiners in Kgth g”) and
Hom(B"”, B"") are involved here. Hence we first obtain a fadipr g/ 8g~ gr. Next, we

can use the trick of Fig. 40 to turn around the small arcs at the trivalent vertices involving
a,b, p’. Thisyields a factodfg/db. This way we see that the diagram on the right-hand

side of Fig. 42 represents the same element ofhas the diagram in. Fig. 43. Now let

a,b,c,p”

Fig. 43.The vertical producég *, eg

us look at the part of this picture inside the dotted box. Reading it from the left, this part

7 Note that the fusion coefficients with dimension prefactors as in Eq. (23) coincide with the structure
constants used far-algebras [1].
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a,c,ﬁ”.ﬂ’”

Fig. 44.The vertical productg *, %

can be read for fixed andc aszl- e T T/fﬂ,k( /3, )*T* and the sum ovearruns over

a full orthonormal bases of isometri@sin the Hilbert space Hoiig, caf’) since we
have the summation ovér Next we look at the part inside the dotted box of the diagram
in Fig. 44. Here, since we introduced the sum og€t, the part can be similarly read

for fixeda andc ast,k S; T;;;,k(Tf;;,k)*Sj, where the sum ovef runs over another

orthonormal basis of isometriess in the Hilbert space Hows, ¢ap’). Since such bases

{T;} and{S;} are related by a unitary matrix transformation (this is essentially “unitarity

of 6j-symbols”), we conclude that the diagrams in Figs. 43 and 44 represent the same
element in®. We now see that we first obtain a facsgr z~. Next we can turn around

the small arcs at the outer two trivalent vertices involyihg’ andg’”’ = B” so that we
obtain a factotlg /dg». Then, by “stretching” the diagram a bit, we can read the diagram
for fixeda, c, B” as

/3// B
c.a B.B
dgdg
B .3 T,B 1(T/3 l) T,B ]( /)*
dar B.B
i jom=lki=1 “F"
B ks Bl B3 B im " im
B (Tﬁﬂ’) Tgp (Tea ) Tey Ty )"

2 dgdg
_Z ﬂﬁNgﬂ/Tﬁ l(Tﬁ l).
dﬂ//
i=1

Now proceeding with the summations overc, 8” yields the statemento

Now consider the vector space with basis elememsﬁ € y Xy which we can

endow with a product througB][8'] = Zﬁ,, ,[,B”] We call the algebra defined
this way theM -M fusion rule algebra. S|m|IarIy we define the N fusion rule algebra
using morphisms iy Xy.

Definition 4.5. We define a linear mag from theM-M fusion rule algebra taZ;, by
linear extension o ([8]) = eg/dg.

Theorem 4.4 now says that this mé&ps an isomorphism from th&f-M fusion rule
algebra ontq Zj,, x,). Note that(Z;, *,) is a non-unital subalgebra ¢€, x,). The
unit 1, of (€, %,) is given byl, = )", fi, wheref, = Y, i f”f,j] whereas the
unit of (25, *,) is given byeg.
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Definition 4.6. We define two linear functionals, and z, on € corresponding to the
two product structures;, andx, by linear extension of

d,b,j
On(€g. s ) = 8apdc.adi,j dadedp /w2,

w (£ ) = 8a.cBe.adi j i
Applied to an element in Fig. 33 (Fig. 34) the functiopal(z,) can be characterized

graphically as in Fig. 45 (Fig. 46). Therefore these functionals correspond to closing the
open ends of a diagram with prefactors as in the middle part of Figs. 45 and 46.

(24)

a b a
on: s Hﬂ T St 20 S* T Sapd (d“d0)3/2d;/2 (S, T)
’ a,5%¢, 2 ' =8a,pbcd ——5— (S, T
w g ’ w2
c d c

Fig. 45.The horizontal functionap;,

S*
b
Ty A > Sa.cOpa/dady @ @ b =548 dadpd’ (s, 1)
cJ’—d
t

Fig. 46.The vertical functionat,

Recall that the global index of Xy is given byw = >, », d?. Note that we
have sector decompositiofis:] = ), (1, at)[A] and hencel,d, = >, (A, at)d, for
anya € y Xy . Using Frobenius reciprocityp, at) = (A, a) we obtain similarlyl, d, =
> (h at)d,. Hencew = 3, d? = 3, (A, aldrda/d, = Y, d2. Similarly we obtain

w =Y dj (cf. [37)).
Lemma 4.7.We havep;, (eg) = dg/w. In particular, the functionaly, is a faithful state
on (€, %;). The functionak, is a (un-normalized) faithful trace of$, x,).

Proof. By Definition 4.6 and Fig. 39, we compute

onlep) = Y N dadpdgw™2= " | S Nydy|dpdew? = diuw

a,heNXM aeNXM beNXM

Since the horizontal unit, is given byl;, = Zﬁ eg we find thaip(1;) = 1. Asg;, sends
off-diagonal matrix units to zero and the diagonal ones to strictly positive numbers, this
proves thaty, is a faithful state. Obviously alsg sends off-diagonal matrix units (with
respect ta,) to zero and the diagonal ones to strictly positive numbers, and hence itis a
strictly positive functional but it is not normalized. The trace propeytyy) = 7,(yx)

is clear from the definition of, using matrix units fox andy. O
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Fort, we could have gained analogous properties ag;#fdry replacing the scalak;,
in Eq. (24) byd,dyd; /w? (and by multiplying the scalars in Fig. 46 also &y, /w?).
However, we chose a different normalization on each matrix unit in order ta funto
a trace on(€, x,). Later we want to study the centégy,, x,) which is, as we have
seen, a subalgebra 6, %,). Thereforer, provides a faithful trace onz;, *,) but
it has in general different weightings on its simple summands. To constructzfr@m
trace which sends one-dimensional projections to one will in particular be possible in
the case thay Xy is non-degenerately braided, see Subsect. 6.1 below.

Thisis also the case in the following most basic example of the double triangle algebra.
Let N be atype lll factor and; a finite group acting freely oiv. Consider the subfactor
N C N x G = M. Then (with the minimal choice fak’) the double triangle algebra
€ for this subfactor is just the group algebra@f That is, the double triangle algebra
is spanned by the group elements linearly. The horizontal product is given by the group
multiplication. By Proposition 4.4 we conclude that the minimal central projections in
© and thus irreduciblé/-M sectors are labelled by the irreducible representations of
G. (Of course, this identification of th&/-M sectors is well-known for that example.)
The functionak, gives the standard trace on the group algebra, and the vertical product
corresponds to the ordinary tensor product of group representations.

5. a-Induction, Chiral Generators and Modular Invariants

5.1. Relatingy-induction to chiral generatorsWe will now define chiral generators for
braided subfactors and prove that the conceptsioiduction and chiral generators are
essentially the same. For the rest of this paper deal with the following

Assumption 5.1.In addition to Assumption 4.1 we now assume that the sygtEmis
braided.

With the braiding we have now the notion @finduction in the sense of Subsect.
3.3. From now on we are also dealing with crossing¥y e¥ wires and mixed crossings
introduced in Subsect. 3.3. We now present chiral generators as our version of a definition
Ocneanu originally introduced for systems of bimodules arising from A-D-E Dynkin
diagrams in [39]. The construction of the chiral generator is similar to the “Ocneanu
projection” in the tube algebra [38] (see also [12]) and also related to Izumi’s analysis
[20] of the tube algebra in terms of sectors for the Longo—Rehren inclusion [33].

Definition 5.2. For any . € y Xy, we define an elemeqvt){r e © Dby the diagram on
the left-hand side of Fig. 47 and call itchiral generator. Similarly, we also defing,”
by exchanging over- and undercrossings.

Note that we dootassume the non-degeneracy of the braiding for the definﬁfon

We obtain the diagram in the middle from the one on the left-hand side in Fig. 47
by applying two IBFE’s. This way we obtain two twists in the semi-circular thin wires
which correspond to the labglbut they give complex conjugate phases so that their
effects cancel out. The diagram on the right-hand side is obtained by Lemma 4.3 and
application of the IBFE, and this shows that our definition coincides with Ocneanu’s
notion given in his setting.

Sincew;"t = 1A we find that each irreducible subsedtgi of [« ] is the equivalence
class of somes € Xy if A € yAXn. Therefore we have the sector decomposition
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a a al |a a b b a
d o E SN e VD S
a,b a,b,v v
b b

| b b b

Fig. 47.A chiral generatop;”

[057] = Y pe,,xy (B ) [B], and we can considd; ] as an element of thaf-M

fusion algebra. The relation between the sector decompositi{mj\‘ijfand the chiral
generator is clarified by the following result.

Theorem 5.3.For any A € yXy, we haved, *pi = > BeuXn d}g_]-(ﬁ,a;_)eﬂ, and
consequentlys™ = d; ®([«;°]). In particular, p;° is in the centerZ;,.

Proof. We only show the statement for the-sign; the other case is analogous. First
we fixa,b € yXy andr € yXy. For each8 € j Xy we choose orthonormal bases

. ; Bii R B Bii pBiise _
of isometriesT; * € Hom(g, ba), i = 1,2, ~s N 1 SO thatd g ; T, " (T; ) _.1M.
Using Frobenius reciprocity, we obtain an orthonormal basis of isomelﬂésrg’i”) =
da'?dy?dy " *b(TE )7, € Hom(a, bp).

Here we chose an isometiy € Hom(idy, bb) such that there is an isometry
Ry, € Hom(idy,, bb) subject to relationd(Ry)*r, = db_llN andb(rp)*Rp = db_llM,
as usual. Choosing also orthonormal bases of isomekigs € Hom(g, oz;“), { =
1,2, .., (B, "), for eachB e yXu (sO that}g , VeV, = 1u) we find that

{b(vg;g)ﬁ;l(T;a;i)}ﬂ’i’g gives an orthonormal basis of isometries of I-(ar,rbaf). Fi-
nally, using Proposition 3.1, we find that putting

g dady s
spiei = &7 O bO*b (V) Ly H(TE) = Zl—ﬂﬁ(/\, buy*b(Vo (TE)*)F

defines an orthonormal basis of isometreg, ;}g,; ¢ of Hom(a, Ab). Then we have

forany¢ =12, ..., (B8, a;r) by the elementary relations for the intertwind&ts 7, the
following identity:

TPl = a2 b(r)* bb(TL Vi ) Ry R} bb(Vp.o(TE)*) b(Fy)

dgdp - _
- Za b(speiet (. b0*) Ry R} b(et (1, b)s), ).
The second line yields graphically exactly the diagram in Fig. 48 where we read the
diagram from the left to the right in order to interpret it as an intertwinefin Now

let us take on both sides first the summation averl, 2, ..., Nfa. Then the left-hand

side gives exactly the Hotha, ba) part ofeg (in <) as defined in Definition 4.2. Next
we divide bydg and we proceed with the summation over= 1,2, ..., (8, af) and
B € mXy. On the left-hand side we obtain the Ham, ba) part of 3, d;l(ﬂ, afVep
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dg
V& dyd, A l o | A
b b

; ; Bii (B3
Fig. 48.Diagram forTEa (TEa )

this way, and this is exactly the Ha, ba) part of ®([e; 1). On the right-hand side

we now have a summation over the full bagig ;} g, of Hom(a, Ab). Therefore we

can use the graphical convention of Fig. 39 to put a small semi-circle around the wire
labelled by at the two trivalent vertices. This gives us a facaf, d,, /d; so that only a
factord)\_1 remains from the original prefactor in Fig. 48. Thus, by repeating the above
procedure for alk, b € yX); and making finally the summation overb € yXy,

we obtain on the left the fulcb([af]) whereas the right-hand side gives graphically the
diagram in Fig. 49. The diagram on the left-hand side in Fig. 47 is obtained from Fig. 49,

3 1
a,b d}” A a;j— A

b — N—>
Fig. 49.The image® (o} 1) = 34 d,glw, o Veg

up to the factoel,, by a topological move.o

Note that it was not clear from the definition that the chiral generators are in the center
Zy,, but Theorem 5.3 proves this centrality as it states;blj%\is a linear combination of
eg’s. Also note that iixiE is irreducible therpjE is a (horizontal) projection, however, if
af is not irreducible, therpw;IE is a sum over projections with weight coefficients arising
from the nature of the isomorphisfinin Definition 4.5.

Two of us [4, Subsect. 3.3] established a relative braiding between the two kinds of
a-induction, which holds in a fairly general context. (It does neither depend on chiral lo-
cality nor even on finite depth.) Theorem 5.3 now shows that Ocneanu’s relative braiding
[39] is a special case of the analysis in [4, Subsect. 3.3].

From Theorem 5.3 and the homomorphism property-ofduction [2, Lemma 3.10],
we obtain immediately the following
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Corollary 5.4. The chiral generatorg)iIE arein Z,. For A, u € yXy, we have

d,d

+ + A +

Py %o Dy = E d“N)‘j’Mpv.
UENXN v

Note that this corollary shows that tiM- M fusion rule algebra contains two represen-
tations of theN-N fusion rule algebra.

5.2. Modular invariants for braided subfactor$Ve will now show that a notion of
“modular invariant” arises naturally for a braided subfactor. We first note that under
Assumption 5.1, we have matricEs= (Y, ) andT = (T}, ) for the system\ = y Xy

asin Subsect. 2.2. We recall that in the case that the braiding is non-degenerate, the matrix
S = w12y isunitary and the matricessand (the diagonal) obey the Verlinde modular
algebraby Theorem 2.5. Motivated by the results of [4] we how construct a certain matrix
Z commuting withY and7 such thatitis a “modular invariant mass matrix” in the usual
sense of conformal field theory whenever the braiding is non-degenerate.

Definition 5.5. For a systemX’ satisfying Assumption 5.1, we define a maffixvith
entriesZ, , = (a; . o), At € NN

As Z, . is by definition a dimension and sino@ = idy, is irreducible by virtue
of the factor property of\f, the matrix elements oNbvioust satisfy the conditions in
Eq. (1) fora, u € nyXn, where the label “0” refers as usual to the identity morphism
idy € vXn. We relate the definition af to the chiral generators by the following

Theorem 5.6.We have the identity

w

+ —
s ApneNXN. 25
ad, on(Py *n Py) I € NXN (25)

Ly =

Therefore the numbeZ,, ,, is graphically represented as in Fig. 50.

dpd, —+ _
Zp = %2 O
’ [; wdydy, |
Cm

Fig. 50.Graphical representation @, ,,
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Proof. From Theorem 5.3 we obtain

Bem Xy B .
Hence
1.+ - + -
> 2l B Blep = b} n by
BemXyu B Alu

Application of the horizontal statg;, of Definition 4.6 and multiplication by yields

Eq. (25) sianaf] and[a;] decompose into sectaig] with 8 € Xy, and by Lemma

4.7. Now the right-hand side of Eq. (25) is given graphically by the diagram on the left
in Fig. 51, and we can slide around the trivalent vertices to obtain the diagram on the

Z dpd,
v wdydy

Fig. 51.The scalawd; d; 2g;, (p; +4 p;)

right-hand side. Without changing the scalar value we can now open the outer wire
labelled byb and close it on the other side, as in Fig. 29. This way we obtain the picture
in Fig. 50 up to a 90 degree rotation, but a rotation is irrelevant for the scalar vatues.

We remark that we can apply Lemma 4.3 to replace the two horizontal wires labelled
by b by a summation over a thin wing and this way we obtain an equivalent diagram
from Fig. 50 for the matrix elements, _,, which only consists of thinX-N) wires
A, u, v and thick (V-M) wiresb, ¢ but which does not involve very thick{-M) wires
labelled byx-induced morphismsf, .

Theorem 5.7.The matrixZ of Definition 5.5 commutes with the matricésand 7' of
the systeny Xy .

Proof. Using the diagram for the matrix elemems; in Fig. 19, the sun} _, Y, ,Z, ,

can be represented by the diagram on the left-hand side of Fig. 52. Using Lemma 4.3
and also the trick to turn around the small arcs given in Fig. 40, we obtain the right-hand
side of Fig. 52. We can now slide around the lower trivalent vertex of themtm®btain

the left-hand side of Fig. 53. Next, we can use Lemma 4.3 to replace the two parallel
horizontal wires with labela andb by a summation over a thin wire. Similarly, but

the other way round, we can then use Lemma 4.3 to replace the summation over the wire
with label) by two straight horizontal wires with labelsandc. This way we obtain the
right-hand side of Fig. 53. Now it should be clear how to proceed: We slide around the
upper trivalent vertex of the wire counter-clockwise. Then we see that the result gives
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dbdc _ Z dadbdc
b,c,\ wd“ a,b,c,\ wdﬂdv
Fig. 52. Commutation ofY andZ
dgdpd, _ Z dgdpd,
a,b,c,\ wdu'dv a,b,c,p wdﬂ'dv

Fig. 53.Commutation ofY andZ

us the diagram fo[p Zy,pYp,u, rotated by 90 degrees. This proviég = ZY. Next

we show commutativity oZ with 7. We have to show, Z, ,, = Z, ,,. Using the
graphical expression for the statistics phagen the left-hand side of Fig. 17, we can
representy, Z, ,, by the left-hand side of Fig. 54. We now start to rotate the upper oval

Z dpd,
be wd,d;,

Fig. 54.Commutation off’ andZ

consisting of the thick wires andc in a clockwise direction. This way we obtain the
right-hand side of Fig. 54. It should now be clear that, if we continue rotating to a full
rotation by 360 degrees, then we remove the twist from the wiwbereas we obtain a
twist in the wirep which is of the type displayed on the right-hand side of Fig. 17, thus
representing,,. HenceT Z = ZT. O

The following is now immediate by Thm. 2.5, which states that in the non-degenerate
case matrice§ = w2y andT provide a unitary representation of the modular group
SL(2; 7).
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Corollary 5.8. If the braiding ony X is non-degenerate, then the mat#éxdefined in
Definition 5.5 is a modular invariant mass matrix.

In conformal field theory thé&SL(2; Z) action arises from a “reparametrization of
the torus”, and in the parameter spateorresponds to a 90 degree rotation dhtb
twisting the torus. Note that this action is nicely reflected in the proof of Thm. 5.7.

5.3. Generating property af-induction. We now show that both kinds of-induction
generate the whol®&f-M fusion rule algebra (or the sector algebra in our terminology of
[2—-4]) in the case that th¥-N system is non-degenerately braided. That is, from now
on we work with the following

Assumption 5.9.In addition to Assumption 5.1, we now assume that the braiding on
~N Xy is non-degenerate in the sense of Definition 2.3.

With Assumption 5.9 we can now use the “killing ring”, the orthogonality relation of
Fig. 20, and this turns out to be a powerful tool in the graphical framework.

The following theorem states in particular that any minimal central projeeigon
of (€, x;,) appears in the linear decomposition of sopjfe*u p,.- Such a generating
property Ofp;-t 's has also been noticed by Ocneanu in the setting of the lectures [39]. We
can apply his idea of the proof (which is not included in the notes [39]) to our situation
without essential change.

Theorem 5.10.Under Assumption 5.9, we hal€, ., x, i *v p;, = wl, in €,
and consequently

Y adefllal=w Y dglp] (26)
)\.,IJ/ENXN ﬂeMXM
in the M-M fusion rule algebra. In particular, for ang e ,,X), the sector{g] is a

subsector otaj][a;] for somer, u € yXy.

Proof. The sumZMi p; *y p, IS given graphically by the left-hand side of Fig. 55.
By using Lemma 4.3 for the two parallel vertical wiresn the bottom and the IBFE

a \U J a

Fig. 55.The sumy_, |, pf * Py

moves we obtain the right-hand side of Fig. 55. For the summation over the thiia wire
we can use Lemma 4.3 again to obtain the left-hand side of Fig. 56. Now we can slide
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N e cr

Fig. 56.The sumy_, , p;" *v pj;

around the right trivalent vertex of the wire and this yields the right-hand side of Fig.

56. Next we can use the trick of Fig. 40 to turn around the small arcs from theutire

the wireb. This yields a factotl,, /d,. Then we can proceed with the summation over

b, using Lemma 4.3 once more, and this gives us the left-hand side of Fig. 57. Now we

a,c,ju,v

¢ N\ e ¢

Fig. 57.The sumy_; , pyf *v py;

observe that the summation oyeprovides a killing ring, and hence we obtain a factor
wéy, 0. The normalization convention for the small arcs yields another fagigy, And
hence we get exactly the right-hand side of Fig. 57. The circularaeancels the factor
1/d., and thus we are left exactly with the global indeximes a summation over two
straight horizontal wires, and the latter is exactly the horizontalnit } 4 eg. The
rest is application of the isomorphisin 0O

We remark that the non-degeneracy of the braiding played an essential role in the
proof. In fact there are counter-examples showing that the generating property does
not hold in general if the braiding is degenerate (e.g. the finite group case discussed in
Sect. 4.2 of [2] serves as such an example).

6. Representations of the -M Fusion Rule Algebra

6.1. Irreducible representations of thi&-M fusion rules. We next study in detail the
algebra( 2, *,) or, equivalently, thé-M fusion rule algebra in the case that thieN
system is non-degenerately braided. Note that the Assumption 5.1 implies in particular
that the N-N fusion rules algebra is Abelian. However, the-M fusion rules are in
general non-commutative, and therefore so is the ceigr=,). We are now going

to decomposéZy, *,) in simple matrix algebras. Note that such a decomposition of
(2, *y) is equivalent to the determination of the irreducible representations &f tie

fusion rule algebra.
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Fig. 58.The vectomz’fm €Mp

We need some preparation. As in the graphical setting for the double triangle algebra,
we can consider the diagram in Fig. 58 as a veﬂb,ﬁm € Hy u, WhereH,; ,, is the
vector spacéH, , = @aeNXM Hom(Af, aa), A, u € yXy. Hereb,c € yXy, and
t € Hom(x, b¢) ands € Hom(jz, cb) are isometries labelling the two trivalent vertices
in Fig. 58. It is important to notice that we do not allow coefficients depending:on
The same isometrigs s are used in each block Haini, aa) of H, ,.. We next define
the subspacél, , C H,,, spanned by such vectors:

H,., =spafQ) " |b,c e yXy, t € HOm(A, bé), s € Hom(ii, ch)}.

b,c,t,s

A, A, ; AL A
Take two such vector®, ", - and<,’', , .. We define an elemei®, ", ., }(2,,,

e © by the diagram in Fig. 59. (This notation will be justified by Lemma 6.1 below.)

AL Al
bt s’><Qb.c,t,s| € e

Fig. 59.The elemeniQ

We now choose orthonormal bases of isomemﬁgse Hom(x, bé),i = 1,2, ..., N} o,

for each, b, ¢ and putszg’“ = Qz:gt;:i,zﬁtf with some multi-indext = (b, ¢, i, j).

Varying &, we obtain a generating set Hf;u which will, however, in general not be a
basis asthe vectofz’;’“ may be linearly dependent fd, ,, . Let@’}’“ € Hyu,j=12,

any two vectors. We can expand thenﬂz‘%s“ = Zs cf. Qg’“ with cf. € C, but note that
this expansion is not unique. We now define an elernéﬁn’(‘)(d)’;ﬂ e © by

O @5 = D (3L e, 27)
I
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and a scalar @y, ") € C,

1
(@37, @1") = ——— 1 (1977)(95 ). (28)
dpdy,
Lemma 6.1.Equation (27) extends to a sesqui-linear nidp,, x H, , — 2, which
is positive definite: If®*#)(®*#| = 0 for somed** € H, , thend** = 0. Conse-
quently, Eq. (28) defines a scalar product turniflg,, into a Hilbert space.

Proof. As in particular®; € H, ,, we can write®; = @, (P;), with (®;), €
Hom(A (i, aa) according to the direct sum structure?éf ,,, j = 1, 2. Assumed; = 0.
Then clearly(®1), = 0 for all a. Now the Homiaa, a’a’) part of|d>i"‘)(<1>§”‘| c©

is given by(®1), (P2)}, hence|d>’}’“)(d>’;’“| = 0. A similar argument applies >,
and hence the elemehbi’”)(@g’ﬂ e € is independent of the linear expansions of
the @ ;'s. Therefore Eq. (27) defines a sesqui-linear ngp, x H, , — <. Now
assume}d)’}’“)(d)’}ﬂ = 0. Then in particulak®1),(®1)} = 0 for alla € y Xy, and
hence®; = 0, proving strict positivity. That the sesqui-linear forfm-) on H, , is
non-degenerate follows now from positive definiteness,ofit remains to show that

|<I>’}’“)(<I>g’“| € Z,. But this is clear since any element of the form in Fig. 33 can be
“pulled through” the diagram in Fig. 59 by using the IBFE's1

Lemma 6.2.We have the identity in Fig. 60 for intertwinersktom(x’ i/, A1), A, i,/
/L/ € NAN.

Qbr ol

= 58w Sl h;.c’,t/,5/>

A ;M

Fig. 60.An identity in Hom(\' i/, AjL)

Proof. Using Lemma 4.3 we can replace the left-hand side of Fig. 60 by the left-hand
side of Fig. 61. Next we can slide one of the trivalent vertices of the wasound the
wire a. Using the identity of Fig. 40, we obtain a factfy/d,, and we can now proceed
with the summation oves, again using Lemma 4.3. Using also Lemma 4.3 for the
parallel wiresc, ¢’ as well ash andb’, we obtain the right-hand side of Fig. 61. Using
now Lemma 4.3 once again for the wirest, we can pull the wire over the middle
expansion. The summation oueyields a killing ring which disconnects the picture into
two halves, one is an intertwiner in H@ii, A) and the other in Horqu/, 1). Hence we
obtain a factos, ,/8,,,/, and we conclude that the left-hand side in Fig. 60 represents
a scalar intertwines; /6, ,,¢1y € Hom(rii, Af1), ¢ € C. To compute that scalar, we
can start again on the left-hand side of Fig. 60, now putting: » andu’ = u. The



476 J. Bdckenhauer, D. E. Evans, Y. Kawahigashi

M
C

q
U

d(l
b> dpdy,

a

~ o~

Fig. 62. Computation of the scalar

diagram on the left-hand side of Fig. 62 clearly represents an intertwiner of the same
scalar value;. We can now use the move of Fig. 29 which does not change the scalar
value: We open the wire on the left and close it on the right. The resulting diagram is
regularly isotopic to the diagram on the right-hand side of Fig. 62. Thus we are left with

exactly the diagram fod;ldljlrv(mz;’z, p SQ(QQ:ZLSD. This proves the lemman

The following is now immediate by the definition of the vertical product.

Corollary 6.3. Let <I>;’“ € H, , and wj.”“’ € Hy v, j = 1,2. Then we have

A, A, Ao Ao A, A, A, A,
| DT FNDGH | ey (W N (W5H | = S50 8 (@57, WH) [OTF) (W5 (29)
in the double triangle algebra.

WheneverH; ,, # {0} we can choose an orthonormal ba{s&g‘\’“}?':"IH“‘. Then

Lemma 6.1 and Corollary 6.3 tell us tHatEf’“ME;’ﬂ }r.ui,j forms a set of non-zero
matrix units in(Zy, *,). However, we do not know yet whether this is a complete set.

Lemma 6.4.Letm,u(e,3)9’b\:éft“? € H,.,, denote the vector which is given graphically
by the diagram in Fig. 63, wherg, u € yXn, b,c € yXy, andt € Hom(A, be),
s € Hom(jx, cb) are isometries. Then in faﬁtk,u(eﬂ)szﬁfl s € Hy p.

Proof. Using Lemma 4.3 and also the trick of Fig. 40, we can draw the diagram on the

left-hand side in Fig. 64 fmn,ﬂ(eﬂ)szlf’ft“y. Now let us look at the part of this picture

above the dotted line. In a suitable Frobenius annulus, this part can be read fordxed
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A %,L

Fig. 64.The vectornk,ﬂ(eﬁ)ﬁg’éf,_x eHp

aas) ; Ma(t;)e~ (v, Aja)t¥, and the sum runs over a full orthonormal basis of isometries

t; in the Hilbert space Hoiv, bBa) since we have the summation ovérNext we look

at the part above the dotted line on the right-hand side of Fig. 64. This can be similarly
read for fixedv anda aszj A(sj)e™ (v, A/l)s;’.‘, where the sum runs over another full
orthonormal basis of isometrieg € Hom(v, bBa). Since such bases } and{s;} are
related by a unitary matrix transformation (this is again just “unitarity o§@mbols”),

the left and right-hand side represent the same vect# ip. Then, using again Lemma

4.3 and also the trick of Fig. 40, we conclude that the veﬂaolg(eﬁ)szh 1. CaN be
represented by the diagram on the left-hand side of Fig. 65. Now let us look at the part of

rc sy «— > coeff; i -
f 3 ‘

i j

Fig. 65.The vectorr;, u(eﬂ)Qb ers € Hoau

the diagram inside the dotted b(_)x. In a suitable Frobenius annulus, this can be interpreted
as an intertwiner in Horghx, a’a’). But any element in this space can be written as a

linear combination of elements constructed from basis |some{‘yiest“ */ asindicated
in the dotted box on the right-hand side of Fig. 65. The coefﬁments in |ts linear expansion
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depend only onr’, i, j for fixeda’, 8, b, c, t, s, but certainly not on:. This shows that

Tru(ep)S2 ", | is alinear combination a2} '’s, thusm; , (ep)$2 %, | € Hy . O

Themap, ¥, |+ m u(ep)S2, ", | definesclearlyalinearmap, . (ep) : Hy.. —
H,., sinceitis just alinear intertwiner multiplication on each Hom, aa) block. From
Lemma 6.4 we now learn that, , (eg) is in fact a linear operator oH,, ,. With the
definition of the vertical product we now immediately obtain the following

Corollary 6.5. With orthonormal base{sEf’“}?i:an“‘ of eachH, , we have

A, A, Vo Mo
|E; M)(Ej ), ep *y | By " HE] "

(30)

A A A, A
= (SX,A/ Su,pf (Ej #a nl,u(eﬁ)Ek M) |E,' M)( E] M|~

SinceZ;, is spanned by theg’s, we obtain a magp, , : Z, — B(H,, ;) by linear
extension, and we obtain similarly the following

Corollary 6.6. The mapr,, : 2, — B(H, ) is a representation ofZ;,, *,).

We now tackle the problem of completeness of the system of matrix units.

Definition 6.7. For i, 1 € y Xy we define theertical projector g, , € € by

vV d)tdl‘« A A,
G =gt D19, (31)
§
a
Z dpde
a,b,c,d w2

Fig. 66.A vertical projectoig;,

This is given graphically in Fig. 66. (Clearly, we can use Lemma 4.3 twice to obtain
an equivalent picture which does not involve pieces of very thick wires corresponding
to a;“ anda,, .) We are now ready to prove the main result of this section.

Theorem 6.8.Under Assumption 5.9, the vertical projectgy , is either zero or a
minimal central projection in(Z;, *,). We have mutual orthogonality, . *, gy v =
Sav8u,wq,. and the vertical projectors sum up to the multiplicative identity of
(2, *v): Z/\,ue xy 4.u = eo. Moreoverg, , = 0 wheneverZ, , = 0 and oth-
erwise the simpfze summang , x, Z; isafull Z, , x Z, , matrix algebra, whereZ, ,

is the (A, w)-entry of the modular invariant mass matrix of Definition 5.5.
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a ¢ a N ¢ J a
G D T T
dpdc . dpdc v
Z w2 ALY Ap = Z w2 Ve Ap
a,b,c,d, kb - a,b,c,d, kv, p 0
D [GUN)
d = d e = N d
Fig. 67.The sum}_; |, gz,
Vi vii A Vi
a utaﬁ ) b taE a a Utag ) b taE a
b b
Z d(‘\/m I 4 MAU B Z dC\/d\)T/J vy 1 AV
a,b,c,d w2 v dadd T ' a,b,c,d, w2 v dadd T '
W, p,T,0, I 4 AP WV, 0, T 0, Py AP
b clb
P c P3J\# Py P35I\
d (dﬁ @b )\ d d tab @3 ﬂ d

Fig. 68.The sum}_; , i

Proof. It follows from Corollary 6.3 thaty;, ;. *, ¢,/ ,» = O unlessh = A" andu = .

We now show thaEML g, = eo. (We denoteg = eiq,,.) The sum s given graphically

by the left-hand side in Fig. 67. A twofold application of Lemma 4.3 yields the right-
hand side in Fig. 67. Applying Lemma 4.3 twice again, we obtain the left-hand side
of Fig. 68. We can now slide the upper trivalent vertex of the wiraround to obtain

the right-hand side of Fig. 68. Next we can use the trick of Fig. 40 to turn around the
small arcs at the trivalent vertices of the wjrgyielding a factowd,, /d.. This gives the

right- and left-hand side of Fig. 68. Since we have a summation gwee can again

use Lemma 4.3, and this gives us the left-hand side of Fig. 69. As we have a prefactor

VN v;i RN Vi
a @5) taE_) a a L(taﬁ) L ) a

b
dufavd, VY Y :
) N 174 - X A I L
abd T a,b,v,i,j
JV,0,T,i, A 4 " AP
d () b Py d af " ) @
(tdb U )\ (tﬂb Cap )\

Fig. 69.The sum}_; | gz

d,, the summation over provides a killing ring, and only = idy survives it: We
obtain a factorwé; o. Now our picture starts to collapse. The facserp yields, with

the normalization convention as in Fig. 39, a faalgrs, ,. Since our picture is now
disconnected into two parts which represent intertwiners in &owh), they are scalars
and we obtain a facta¥, 4. This gives us the right-hand side of Fig. 69. Therefore we
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are now left with a sum over scalars times two straight vertical wires labellaed by
representing a scalar intertwiner in Ham, aa). The scalar value of each connected
part of the picture iﬁi,j«/dudh/da, therefore we can compute the prefactor as

2
by i,j=1 b,v b

Thus we are left with a sum over two vertical straight wires with labehd prefactor
d; L1 Thisiseq.
Next, we can expand each vect@i’“ € H, ., in an orthonormal basis as

dimHA_M
A _ Mlb A A
Qé = E (E; ,Qé YET.
i=1

Inserting this in Eq. (31) yields

Wdlmmﬂ
Y X E e B I NE

9r,u = 5 s

Now usingZML g, = eo and Corollary 6.3 we compute

A, A, A, A, A, A,
8ij |EF M WETY =300y [EFWEN [y qar o %0 |ETWETH
J s J J

\/d)»dl/- A AL A A A A
= Yt DB QN B 1ES (B,

hence
dimH,,
A At
o= Y |EFVEN
i=1

dlmHA u

Thusg, . is a projection and we also have = ), M |EA ”)(El.“‘|. Hence

foranyg € y Xy we find
dimHA "

eﬂ_eo*veﬁ*veo—z Z ”Au(eﬁ)E >|E?’M><E;\’ﬂ|
A i, j=1

by Corollary 6.5. Thus eacky can be expanded in our matrix units, and siGeis
spanned by theg’s we conclude tha{|E?”‘)( E?"‘l}k,“,i,j is a complete system of
matrix units. It follows that the non-zero vertical projectors are minimal central projec-
tions in(Zy, *,), and that the simple summaagg ,, , 2 is a full dimH,,_,, x dimH,_,
matrix algebra. It remains to show dif , = Z, ,. The dimension ofd; , can be
counted as

dimH;\,M dImH)\ m

dimH,o= 33 (EPM M) = Y S n B END =
i=1 i=1

dkdu TU(QA,;L)~
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(]

Z dudbdc
2 A

abe? dydy
e

Fig. 70.The numbed; *d;; 7, (g5, )

Now d;ldljlrv(qx,“) is given graphically in Fig. 70. By the IBFE’s we can pull out
the circle with label: which gives us another factdy,. We can therefore proceed with
the summation ovet, and this yields a factaw, the global index, and then we are left
exactly with the picture in Fig. 50.0

Note that we learn from the proof that putting, @) = ZML d;ldglrv (G, *v 2)
for z € Z, gives a matrix trace Tron (Z;, *,) which sends the minimal projections to
one. Next we have learnt that for al] . with Z; ,, # 0, ther, ,’s are the irreducible
representations @iz, x,) and hence the; , o ®'s are the irreducible representations
of the M-M fusion rule algebra.

Corollary 6.9. Under Assumption 5.9, th-M fusion rule algebra is commutative if
andonlyifZ; , € {0, 1} forall A, u € yXn.

Corollary 6.10. Under Assumption 5.9, the total number of morphismgAi, is equal
tOt(Z'Z) = 35 jen iy Zou-

6.2. The left action oM -N sectors. The decomposition afZ, *,) into simple matrix
algebras is equivalent to the irreducible decomposition of the “regular representation”
(up to multiplicities given as the dimensions) of the M fusion rule algebra, i.e. the
representation obtained by its action on itself as a vector space. There is another repre-
sentation of the/-M fusion rule algebra, namely the one obtained by its (left) action
on theM-N sectors. This is what we study in the following.

We define the vector spadeby K = P, ,, Hom(idy, aa). Note that each block
consists just of scalar multiples of the isometﬁeMbutwe need the explicitform & . We

define basis vectots; € K corresponding td;l/zfa in each block Hortid v, aa). We
can display each; graphically by a thick wire “cap” with label € y X, together with
a prefactor 1d,. We furnishK with a Hilbert space structure by puttifigs, v;) = 84.5.

For eactu € y Xy we define a vectag(eg)vz by putting

o(ep)vg =dg Z Ngﬁ Vj. (32)
b

We can display the right-hand side graphically as in Fig. 71. The left and right-hand
side in Fig. 71 are the same because both sides are scalar multiples of the isgmetry
in each block Hortidy, aa). The mapo(eg) : vz — o(eg)vz clearly defines a linear
operator onkK for eachpg € Xy, and we can extend the map — o(ep) linearly

to Z;,. Graphically, this action of;, is quite similar to the vertical product. (Note that
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Fig. 71.The elemenp(eg)vz € K

there also appears a facifyr cancelling theia_1 in the definition ofv; when gluing the
picture forvz on top of that foreg.)

We observe that the map : eg — 0(eg) extends linearly to a representation of
(Zy, *y) as we can compute fgt, 8’ € Xy as follows:

o(ep)(elepIva) = olep) (dp o Nby 5 v5) = dpdy Yoy NG 3Nb, e
ﬂ” - _1 ﬁ”
= dﬁdﬂ/ Zﬁ”,c Nﬁ,ﬂ’ng”,ElvE = dﬂdﬂ/ Zﬂ”,c dﬁ” Nﬂ’ﬂ/Q(eﬂ”)vﬁ
= 0(ep *y eg)va,
where we used associativity of the sector product in the third equality. Consequently,
0(gx.,) is @ projection onto a subspace, afig,, )« is a subrepresentation.

Lemma 6.11.We havek = @, ., x, K, whereK; = o(g, 1)K

Proof. The vectoro(g; ,.)va € K is given graphically by the left-hand side of Fig. 72.
Now note that the upper part of the diagram represents an intertwiner irgithgm.ii).

Zdb[;c Ay +M _ Za)\iz#

Fig. 72.The vectoro(qy,, )va € K

Therefore it vanishes unless= u and then it must be a scalar multiplergf Hence we

can insert a termi, 7 which corresponds graphically to the disconnection of the wires
as on the right-hand side in Fig. 72 and multiplicatiom}g‘)}. Then the factotl,d. /d;,
disappears because of the normalization convention for trivalent vertices with small arcs,
and we are left exactly with the right-hand side of Fig. 72. It follows in particular that
0(gx,.)K = 0 unlessk = u. The claim follows now since the vertical projectors sum

up toeg ando(ep) is the identity onk. O
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We are now ready to prove the following

Theorem 6.12.The representation of (25, *,) on K obtained by Eq. (32) is unitarily
equivalent to the direct sum over the irreducible representations

[oa @ T, A- (33)

A.GNXN

Consequently, the representation® of theM-M fusion rule algebra which is obtained
by the action on th@/-N sectors arising from, Xy decomposes into irreducibles as
QOCD Z@AHA,AOCD.

Proof. Forb, ¢ € yX) and isometries € Hom(x, b¢) ands € Hom(x, cb) we define a
vectork,f,c,tqs € K by the diagram in Fig. 73. Using again intertwiner bases, we also put

Fig. 73.The vectork;: ., € K

ké = kb i with some multi-index = (b, ¢, i, j). It follows from the right-hand
Colp il p

side in Fig. 72 thaK; C spar{ksA |&€ = (b, c, i, j)}. Conversely, we obtain by Lemma
6.2 thatg(qﬂqu)kg = 0 unlessh = pu, hencek;, = spar{ké & = (b,c, i, j)}. With
A = u, closing the wires on the bottom and on the top on both sides of Fig. 60 yields

(ke kp) = du(g ™ ™).

Hence linear extension ﬁg’* > d;l/zkg defines a unitary operatof, : Hy , — K.

Note thatU means multiplication by, from the right in each block HomA, aa) and
this corresponds graphically to closing the open ends of the wiresFig. 58 and

multiplying byd;l/z. Therefore we find

-1/2
U [m,x(eﬂ)szg’*] = d, ?0,(ep)kt = 01(ep)U [ng]
whereo, = 0|k, . Thusg) ~m) . O

Since the dimension oK is the cardinality ofy X we immediately obtain the
following

Corollary 6.13. Under Assumption 5.9, the total number of morphismg iy, (or,
equivalently, iy, Xy) is equal totr(Z) = ZAENXN Zj -
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7. Conclusions and Outlook

We have analyzed braided type IIl subfactors and shown that in the non-degenerate
case the system aff-M system is entirely generated byinduction, including in par-
ticular the subsectors of Longo’s canonical endomorphisridVe established that in
that case the essential structural information aboutMh#/ fusion rules is encoded in

the modular invariant mass matrix Our setting applies in particular ®U(r) loop
group subfactorsr9(L; SU(n))” ¢ 7%L;G)” of conformal inclusionsSU(n);y C G1

and mo(L; SU(N))” C mo(LiSUMN))” x4 Z, which were analyzed bg-induction in

[3,4]. Herex© denotes the level 1 vacuum representation of the loop gtdEiprg

the levelk representation oESU(n), I ¢ St is an interval, and is a “simple cur-
rent”. The braiding here arises from the localized transportable endomorphisms of the
net of local algebrad (1) = mo(L; SU(N))”. Since it follows from Wassermann'’s work
[45] that these endomorphisms obey Bid(n); fusion rules and from the conformal
spin-statistics theorem [18] that the statistics phases are gives) by €27+ with

h) denoting theSU(n); conformal dimensions, it follows that the S- and T-matrices
from the braiding coincide with the well-known S- and T-matrices which transform the
conformal characters. Therefore Theorem 5.10 shows in particular that Condition 4 in
Proposition 5.1 in [4] holds in the setting of conformal inclusions, and in turn it proves
Conjecture 7.1 in [4]. It also follows that in the setting of Proposition 5.1 in [4], the
sum ofeg for “marked vertices’[f] (the M-M sectors arising from the positive energy
representations of the ambient theory) correspond to the projections appearing in the
decomposition oizjw p;r *; p,,, the “ambichiral projector” in Ocneanu’s language.
Similarly, the results of this paper also prove Conjecture 7.2 in [4]. Theorem 5.10 shows
in particular that there arao counter-examples for conformal inclusions where the
M-M sectors arising from the conformal inclusion subfactor are not generated by the
mixed«-induction (cf. [48]). Xu made some computation in [47] (see also [3]) to find an
example with non-commutative fusion rules a8f{M) sectors generated by the image

of only one “positive” induction for subfactors arising from conformal inclusions. By
Corollary 6.9, itis at least very easy to find examples of a non-commutative afiive
fusion rule algebra. The Pcase mentioned in [4, Subsect. 6.1] is one such example.
In fact, the whole B, series arising from simple current extensionSéf (2)4,—4 also

give examples of non-commutativé-M fusion rule algebras. Such non-commutativity
for Deven has been also pointed out in the setting of [39] (though not in the context of
conformal inclusions or simple current extensions).

We will present the details and more analysis at&lir), loop group subfactors,
including the treatment of a8U(2) modular invariants, in a forthcoming publication [5].
Our treatment can now also incorporate the type Il invariants which were not considered
in [3,4], because we dropped the chiral locality condition which automatically forces
the mass matriZ to be type |, i.e. block-diagonal.

Let us remark that we could also have defigd, with exchanged:-signs in Def.

5.5, and this would correspond to replacifidpy the transposed mass maif#ix It is not

hard to see that all our calculations go through Witkas well. That means-induction

for a (non-degenerately) braided subfactor determines actually two modular invariant
mass matriceg and'Z, and it is not clear to us at present whether they can in fact be
different in our general setting. (We haze = Z for all SU(2) and SU(3) modular
invariants).

A notion of subequivalent paragroups was introduced in [27]. Sintg and Xy,
are equivalent systems of endomorphisms by definitisimduction produces an exam-
ple of a subequivalent paragroup. That is, foe y Xy, the subfactors:f(M) cM
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are subequivalent to(N) C N. Various examples in [27] arise from this construction.
Indeed, the most fundamental example in [27] comes from the Goodman-de la Harpe—
Jones subfactor [17, Sect. 4.5] with index-3/3. In our current setting, this example
comes from the conformal inclusidfl/ (2)10 C SO(5)1 and shows that the two para-
groups with principal graphdzare subequivalent to the paragroup with principal graph
All-

As a corollary of a rigidity theorem presented by Ocnheanu in Madras in January
1997, there are only finitely many paragroups with global index below a given upper
bound. This implies that for a given paragroup we have only finitely many subequivalent
paragroups since their global indices are less than or equal to the global index of the
given paragroup. In the context of modular invariants, a simple argument of Gannon
[16] showsZ)w Zyu < 1/55@ which in turn implies that there are only finitely many
modular invariant mass matric&sfor a given unitary representation8£(2; Z), where
the S-matrix satisfies the standard relatiSag > So,0 > 0. As for a non-degenerately
braided system of morphisms this bound coincides with the global index,1/53 ,,
and in view of the relations between modular invariants and subfactors elaborated in
this paper, it is natural to expect that these two finiteness arguments are not completely
unrelated. We consider a good understanding of the connections between these two
arguments to be highly desirable.

Let us finally remark that in a recent paper of Rehren [42] the embedding of left and
right chiral observables in al2 conformal field theory are studied. Such embeddings
give rise to subfactors and in turn to coupling matrices which are invariant mass matrices
if the Fourier transform matrix of the chiral fusion rules is modular. As these subfactors
are quite different from ours which appear in a framework considering chiral observables
only, the relation between the two approaches also calls for a coherent understanding.
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