On the Virial Theorem in Quantum Mechanics

V. Georgescu¹, C. Gérard²

¹ CNRS, Département de Mathématiques, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

² Centre de Mathématiques, UMR 7640 CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received: 7 January 1999 / Accepted: 2 June 1999

Abstract: We review the various assumptions under which abstract versions of the quantum mechanical virial theorem have been proved. We point out a relationship between the virial theorem for a pair of operators H, A and the regularity properties of the map $\mathbb{R} \ni s \mapsto e^{isA}(z-H)^{-1}e^{isA}$. We give an example showing that the statement of the virial theorem in [CFKS] is incorrect.

The Virial Theorem in Quantum Mechanics

The virial relation is the statement that if H, A are two selfadjoint operators on a Hilbert space \mathcal{H} , the expectation value of the commutator [H, iA] vanishes on eigenvectors of H:

$$\mathbb{1}_{\{\lambda\}}(H)[H, \mathbf{i}A]\mathbb{1}_{\{\lambda\}}(H) = 0.$$
(1)

The virial relation is a very important part of Mourre's positive commutator method. In fact, combined with a positive commutator estimate, one can use the virial relation to obtain the local finiteness of point spectrum (or even the absence of point spectrum). Moreover, for Hamiltonians having a multiparticle structure, it is an essential tool to prove the positive commutator estimate itself (see eg [Mo,PSS,FH]).

If *H*, *A* are both unbounded operators, some care has to be taken with the definition of the commutator [H, iA] which a priori is only defined as a quadratic form on $\mathcal{D}(H) \cap \mathcal{D}(A)$. A rather weak assumption under which (1) can be formulated without ambiguity is the following one:

There exists a subspace $S \subset D(H) \cap D(A)$ dense in $D(H^n)$ for some $n \in \mathbb{N}$, such that

$$|(Hu, Au) - (Au, Hu)| \le C(||H^n u||^2 + ||u||^2), \ u \in \mathcal{S}.$$
(2)

The quadratic form [H, iA] extends then uniquely from S to $\mathcal{D}(H^n)$ which means that the left-hand side of (1) has an unambiguous meaning.

The obstacle to a direct proof of (1) is of course that an eigenvector of H needs not be in $\mathcal{D}(A)$. Actually the counterexample that we will construct below shows that the virial relation does not hold under assumption (2).

To overcome this, additional assumptions on H and A are needed. To our knowledge, three different types of assumptions have been used in the literature to prove the virial theorem in an abstract setting.

• In [Mo, Prop. II.4], (1) is proved under the following assumptions:

- i) $\mathcal{D}(H) \cap \mathcal{D}(A)$ is dense in $\mathcal{D}(H)$,
- ii) e^{isA} preserves $\mathcal{D}(H)$ and for each $u \in \mathcal{D}(H) \sup_{|s| \le 1} ||He^{isA}u|| < \infty$, iii) the quadratic form [H, iA] on $\mathcal{D}(H) \cap \mathcal{D}(A)$ is bounded below, (M) closeable, and it extends as a bounded operator from $\mathcal{D}(H)$ to \mathcal{H} .

In fact the condition " e^{isA} preserves $\mathcal{D}(H)$ " implies i) and the second part of ii), see [ABG, Prop. 3.2.5]. Moreover, it was noticed in [PSS] that Mourre's proof works without change under a condition weaker than iii). So the assumptions which are really needed for the validity of Mourre's proof are:

(M') i)
$$e^{isA}$$
 preserves $\mathcal{D}(H)$,
ii) $|(Hu, Au) - (Au, Hu)| \le C(||Hu||^2 + ||u||^2), u \in \mathcal{D}(H) \cap \mathcal{D}(A)$.

• In [ABG, Prop. 7.2.10], (1) is proved if H is of class $C^{1}(A)$ i.e., if

 $\exists z \in \mathbb{C} \setminus \sigma(H)$ such that $\mathbb{R} \ni s \mapsto e^{isA} R_z e^{-isA}$ is C^1 for the strong (AGB) topology of $B(\mathcal{H})$.

We have used the notation $R_z = (z - H)^{-1}$. Two equivalent characterizations of the $C^{1}(A)$ property in terms of commutators are:

(AGB')
$$\begin{array}{l} \exists z \in \mathbb{C} \setminus \sigma(H) \text{ such that } |(Au, R_z u) - (R_z^* u, Au)| \leq C ||u||^2, \ u \in \mathcal{D}(A), \end{array}$$

and:

(AGB") i)
$$\exists z \in \mathbb{C} \setminus \sigma(H)$$
 such that $R_z \mathcal{D}(A) \subset \mathcal{D}(A), R_z^* \mathcal{D}(A) \subset \mathcal{D}(A),$
ii) $|(Hu, Au) - (Au, Hu)| \le C(||Hu||^2 + ||u||^2), u \in \mathcal{D}(H) \cap \mathcal{D}(A).$

• Finally in [CFKS, Theorem 4.6], (1) is proved under the following assumptions:

- i) $\mathcal{D}(H) \cap \mathcal{D}(A)$ is dense in $\mathcal{D}(H)$,
- ii) $|(Hu, Au) (Au, Hu)| \le C(||Hu||^2 + ||u||^2), \ u \in \mathcal{D}(H) \cap \mathcal{D}(A),$
- (CKFS) iii) $\exists H_0$, selfadjoint such that $\mathcal{D}(H) = \mathcal{D}(H_0)$, $[H_0, iA]$ extends as a bounded operator from $\mathcal{D}(H_0)$ to \mathcal{H} , and $\mathcal{D}(A) \cap \mathcal{D}(H_0A)$ is a core for H_0 .

Since $\mathcal{D}(H_0A) = \{u \in \mathcal{D}(A) | Au \in \mathcal{D}(H_0)\} \subset \mathcal{D}(A)$ one can suspect that there is a misprint in the last condition and that it should be replaced by the stronger version: $\mathcal{D}(H_0) \cap \mathcal{D}(H_0A)$ is a core for H_0 . Anyway, such a change does not invalidate the discussion below.

It is easy to verify that (M) implies that $e^{isA}R_z e^{-isA}$ is in $B(\mathcal{H}, \mathcal{D}(H))$ and that

 $\mathbb{R} \ni s \mapsto e^{isA} R_z e^{-isA}$ is C^1 for the strong topology of $B(\mathcal{H}, \mathcal{D}(H))$,

and hence (M) implies (ABG). The relation between (M') and (ABG) is even more straightforward: if e^{isA} preserves $\mathcal{D}(H)$ then (M') is equivalent to (ABG) (see Theorem 6.3.4 in [ABG]).

If $H \in C^1(A)$ then $(Au, R_z u) - (R_z^* u, Au)$ is the quadratic form of a bounded operator $[A, R_z]_0 \in B(\mathcal{H})$ (cf. (ABG')). From (ABG'') it follows then that $\mathcal{D}(H) \cap \mathcal{D}(A)$ is a core of H and that the quadratic form (Hu, Au) - (Au, Hu) is continuous for the topology of $\mathcal{D}(H)$, hence it extends uniquely to a continuous quadratic form $[H, A]_0$ on $\mathcal{D}(H)$. Identifying $\mathcal{D}(H) \subset \mathcal{H} \subset \mathcal{D}(H)^*$ in the usual way $[H, A]_0$ becomes a continuous operator $\mathcal{D}(H) \longrightarrow \mathcal{D}(H)^*$ and then one has (see [ABG, Theorem 6.2.10])

$$[A, R_z]_0 = R_z[H, A]_0 R_z.$$
(3)

We shall prove in an appendix that $\mathcal{D}(H)$ is preserved by e^{isA} if $[H, A]_0\mathcal{D}(H) \subset \mathcal{H}$. In other terms, if (ABG) holds and $[H, A]_0\mathcal{D}(H) \subset \mathcal{H}$, then (M) is satisfied.

That (ABG) is more general than (M') can be seen from the following example: consider in $L^2(\mathbb{R})$ the operator H of multiplication by a real rational function (which may have poles, e.g. take H(x) = 1/x) and let A = -id/dx; then clearly $H \in C^1(A)$ but e^{isA} and $(A + i\lambda)^{-1}$ do not leave the domain of H invariant.

In conditions (M) and (ABG) assumptions either on the action of e^{isA} on $\mathcal{D}(H)$ or on the action of $(z - H)^{-1}$ on $\mathcal{D}(A)$ are made. No comparable assumptions are made in condition (CFKS). However reading the proof (in particular the proof of [CFKS, Lemma 4.5]) one can see that the assumption that $(z - H_0)^{-1}$ preserves D(A) is implicitly used to justify the identity (3) (with H replaced by H_0). We give below an example showing that the virial relation does not hold if one only assumes (CFKS) (or a slightly stronger version of it). In particular, we show that the relation $(A+i\lambda)^{-1}\mathcal{D}(H) \subset \mathcal{D}(H)$, which plays a crucial role in the argument from [CFKS], is not true under their conditions.

Finally let us mention that in concrete situations (e.g. \mathcal{H} is an L^2 space and H, A are differential operators), the use of cutoff and regularization arguments can be an alternative to the abstract approach relying on (M) or (ABG) (see for example [W,K]).

Results

Let us introduce the following definition concerning multicommutators: we set $\operatorname{ad}_A^0 H = H$. For $k \ge 0$, if $\operatorname{ad}_A^k H$ is a bounded operator from $\mathcal{D}(H)$ to \mathcal{H} and the quadratic form $[\operatorname{ad}_A^k H, A]$ on $\mathcal{D}(H) \cap \mathcal{D}(A)$ extends as a bounded operator from $\mathcal{D}(H)$ into \mathcal{H} we denote it by $\operatorname{ad}_A^{k+1} H$.

Theorem 1. There exists a pair H, A of selfadjoint operators on a Hilbert space H such that:

- i) H, A satisfy (CFKS),
- ii) the multicommutators $\operatorname{ad}_{A}^{k} H$ extend as bounded operators from $\mathcal{D}(H)$ to \mathcal{H} for all $k \in \mathbb{N}$,
- iii) the pair H, A satisfies a Mourre estimate away from 0: For each compact interval I in $\mathbb{R}\setminus\{0\}$ there exist c > 0, K compact such that

$$\mathbb{1}_{I}(H)[H, \mathrm{i}A]\mathbb{1}_{I}(H) \ge c\mathbb{1}_{I}(H) + K,$$

iv) the virial relation does not hold for H, A: there exists $\lambda \in \sigma_{pp}(H)$ such that

$$\mathbb{1}_{\{\lambda\}}(H)[H, \mathbf{i}A]\mathbb{1}_{\{\lambda\}}(H) \neq 0.$$

Theorem 1 is a consequence of Theorem 2 below, which establishes a link between the virial relation and the $C^{1}(A)$ property.

Let H_0 be a positive selfadjoint operator on a Hilbert space \mathcal{H} . For $\phi \in \mathcal{H}$ we consider the rank one perturbation of H_0 ,

$$H_{\phi} := H_0 - |\phi\rangle \langle \phi|,$$

which is selfadjoint with $\mathcal{D}(H_{\phi}) = \mathcal{D}(H_0)$. Note that $\lambda < 0$ is an eigenvalue of H_{ϕ} if and only if $(\phi, (H_0 - \lambda)^{-1}\phi) = 1$ and $\operatorname{Ker}(H_\phi - \lambda)$ is generated by $(H_0 - \lambda)^{-1}\phi$. Let A be another selfadjoint operator on \mathcal{H} such that

 $\mathcal{D}(H_0) \cap \mathcal{D}(A)$ is dense in $\mathcal{D}(H_0)$, the quadratic form $[H_0, A]$ on $\mathcal{D}(H_0) \cap \mathcal{D}(A)$ is bounded for the topology of $\mathcal{D}(H_0)$. (4)

Theorem 2. Assume that H_0 is positive and H_0 , A satisfy (4). Assume that the virial relation holds for H_{ϕ} , A for each ϕ in a core S of A. Then H_0 is of class $C^1(A)$.

Proof. Let $\phi \in S$, $\lambda < 0$, $u = (H_0 - \lambda)^{-1}\phi$, $\alpha^2 = (\phi, u)^{-1}$, so that λ is an eigenvalue of $H_{\alpha\phi}$. Since $\alpha\phi \in S$ and by hypothesis the virial relation holds for $H_{\alpha\phi}$, A, we have:

$$0 = (u, [H_0, A]_0 u) + \alpha^2 (u, A\phi)(\phi, u) - \alpha^2 (u, \phi)(A\phi, u)$$

= $((H_0 - \lambda)^{-1}\phi, [H_0, A]_0 (H_0 - \lambda)^{-1}\phi)$
+ $((H_0 - \lambda)^{-1}\phi, A\phi) - (A\phi, (H_0 - \lambda)^{-1}\phi).$

Using (4), this implies that

$$|((H_0 - \lambda)^{-1}\phi, A\phi) - (A\phi, (H_0 - \lambda)^{-1}\phi)| \le C ||\phi||^2, \ \forall \phi \in S.$$

Since S is dense in $\mathcal{D}(A)$, this implies (ABG') and hence that H_0 is of class $C^1(A)$. \Box

If we assume the following condition which is stronger than (4):

 $\mathcal{D}(H_0) \cap \mathcal{D}(A)$ is dense in $\mathcal{D}(H_0)$, $[H_0, A]$ extends to a bounded operator $[H_0, A]_0 : \mathcal{D}(H_0) \longrightarrow \mathcal{H}$, (5) $\mathcal{D}(H_0) \cap \mathcal{D}(H_0A)$ is dense in $\mathcal{D}(H_0)$,

then for $\phi \in \mathcal{D}(A)$ we have:

$$[H_{\phi}, A] = [H_0, A] - [|\phi \rangle \langle \phi|, A] = [H_0, A]_0 + |A\phi \rangle \langle \phi| - |\phi \rangle \langle A\phi|,$$

and hence the pair H_{ϕ} , A satisfies then (CFKS).

Note that if in addition to (5) we assume that the multicommutators $ad_A^k H_0$ are bounded operators on $\mathcal{D}(H_0)$, then for $\phi \in \mathcal{D}(A^{\infty}) = \bigcap_{p \in \mathbb{N}} \mathcal{D}(A^p)$ the multicommutators $\operatorname{ad}_A^k H_\phi$ have the same property.

278

By Theorem 2 to construct the pair H, A in Theorem 1, it suffices to find a pair H_0 , A satisfying (5) such that H_0 is not of class $C^1(A)$.

Let $\mathcal{H} = L^2(\mathbb{R}, dx)$, q the operator of multiplication by x in \mathcal{H} and p the self-adjoint operator in \mathcal{H} associated to -id/dx.

We will consider the operators

$$H_0 = e^{\omega q}, \ A = e^{\omega p} - p, \tag{6}$$

which are selfadjoint operators on their natural domains given by the functional calculus. We note that $\mathcal{D}(A) = \mathcal{D}(p) \cap \mathcal{D}(e^{\omega p})$. Noting also that $\mathcal{D}(e^{\alpha p}) \subset \mathcal{D}(e^{\omega p})$ if $0 < \alpha < \omega$ and using Fatou's lemma we see that the domain of $e^{\omega p}$ can be described as follows: a function $f \in L^2(\mathbb{R})$ belongs to $\mathcal{D}(e^{\omega p})$ if and only if f has an analytic extension to the strip $\{x + iy| - \omega < y < 0\}$ and $\|f(\cdot + iy)\|_{L^2} \leq \text{const.}$ Then $\lim_{y\to\omega} f(x + iy) \equiv$ $f(x + i\omega)$ exists in L^2 and one has $(e^{\omega p} f)(x) = f(x - i\omega)$.

The operators $e^{\omega p}$, $e^{\omega q}$ were considered by Fuglede in [Fu] in order to show that the Heisenberg form of the canonical commutation relations is not equivalent to the Weyl form.

From the Weyl form of the canonical commutation relations $e^{i\alpha p}e^{i\beta q} = e^{i\alpha\beta}e^{i\beta q}e^{i\alpha p}$ it follows, by formally taking $\alpha = \beta = -i\omega$ with $\omega = (2\pi)^{1/2}$, that $e^{\omega p}e^{\omega q} = e^{\omega q}e^{\omega p}$. This commutation property will certainly hold on a large domain (we give below the details of the proof) although the operators $e^{\omega p}$ and $e^{\omega q}$ do not commute, which is the reason why H_0 is not of class $C^1(A)$.

Lemma 1. Let H_0 , A be the pair defined in (6) for $\omega = (2\pi)^{\frac{1}{2}}$. Then

- i) H_0 , A satisfy (5),
- ii) the multicommutators $\operatorname{ad}_{A}^{k} H_{0}$ are bounded operators from $\mathcal{D}(H_{0})$ into \mathcal{H} for all $k \in \mathbb{N}$,
- iii) on $\mathcal{D}(H_0) \cap \mathcal{D}(A)$ we have $[H_0, iA] = \omega H_0$,
- iv) H_0 is not of class $C^1(A)$.

Proof of Theorem 1. Applying Lemma 1 and Theorem 2 for $S = D(A^{\infty})$, we see that there exists $\phi \in D(A^{\infty})$ such that for $H = H_{\phi}$ properties i), ii) and iv) of Theorem 1 are satisfied. Property iii) follows from Lemma 1 iii) and the fact that $H - H_0$, $[H, A] - [H_0, A]$ are compact operators. \Box

Proof of Lemma 1. Let us consider the sequence of operators $e^{-q^2/n}$. Clearly $e^{-q^2/n}$ tends strongly to 1 in the spaces \mathcal{H} and $\mathcal{D}(e^{\omega q})$. Let us verify that the same is true in $\mathcal{D}(e^{\omega p})$. In fact using the Fourier transformation, we see that $e^{\omega p}e^{-q^2/n} = e^{-(q-i\omega)^2/n}e^{\omega p}$, in particular $e^{-q^2/n}$ preserves $\mathcal{D}(e^{\omega p})$. This easily implies that $e^{-q^2/n}$ tends strongly to 1 in $\mathcal{D}(e^{\omega p})$. Similarly we have $pe^{-q^2/n} = e^{-q^2/n}p - 2ie^{-q^2/n}q/n$, which shows that $e^{-q^2/n}$ tends strongly to 1 in $\mathcal{D}(p)$ and hence in $\mathcal{D}(e^{\omega p} - p)$.

After conjugation by Fourier transformation, we see that the same results hold for the operator $e^{-p^2/n}$. Let now

$$T_n = \mathrm{e}^{-q^2/n} \mathrm{e}^{-p^2/n}.$$

We deduce from the above observations that

$$\operatorname{slim}_{n \to +\infty} T_n = \mathbb{1}$$
, in the spaces $\mathcal{D}(H_0), \ \mathcal{D}(A), \ \mathcal{D}(H_0) \cap \mathcal{D}(A)$, (7)

where $\mathcal{D}(H_0) \cap \mathcal{D}(A)$ is equipped with the intersection topology. Since T_n maps \mathcal{H} into $\mathcal{D}(H_0) \cap \mathcal{D}(H_0A)$, we see that the first and third conditions of (5) are satisfied.

Let us now check the second condition of (5). We claim that

$$[H_0, iA] = \omega H_0, \text{ on } \mathcal{D}(H_0) \cap \mathcal{D}(A).$$
(8)

In fact let $u \in \mathcal{D}(H_0) \cap \mathcal{D}(A)$, and $u_n = T_n u$. By (7) it suffices to check that $(Au_n, H_0u_n) - (H_0u_n, Au_n) = i\omega(u_n, H_0u_n)$ for each *n*. Since $Au_n \in \mathcal{D}(H_0)$ and $H_0u_n \in \mathcal{D}(A)$, we have

$$(Au_n, H_0u_n) - (H_0u_n, Au_n) = (u_n, AH_0u_n - H_0Au_n).$$

But u_n is an entire function, decreasing faster than any exponential on each line Imz = Cst. Hence we have

$$AH_0u_n(x) = e^{\omega(x-i\omega)}u_n(x-i\omega) + i\frac{d}{dx}(e^{\omega x}u_n(x))$$

= $e^{\omega x}(u_n(x-i\omega) + i\frac{d}{dx}u_n(x)) + i\omega e^{\omega x}u_n(x)$
= $H_0Au_n(x) + i\omega H_0u_n(x),$

since $\omega^2 = 2\pi$. This proves (8) and hence the second condition of (5). Moreover it follows from (8) that the multicommutators $ad_A^k H_0$ are bounded on $\mathcal{D}(H_0)$.

Let us now prove that H_0 is not of class $C^1(A)$. Assume the contrary. Then $(H_0+1)^{-1}$ would send $\mathcal{D}(A)$ into itself. The function $u(x) = e^{-x^2}$ belongs to $\mathcal{D}(A)$ and $(H_0+1)^{-1}u$ equals $(e^{\omega x}+1)^{-1}e^{-x^2}$. This function has a pole at $z = -i\omega/2$ and hence is not in $\mathcal{D}(A)$. This gives a contradiction and hence H_0 is not of class $C^1(A)$. \Box

Appendix

The following result is of some independent interest.

Lemma 2. Let A, H be selfadjoint operators in a Hilbert space \mathcal{H} such that $H \in C^1(A)$ and $[A, H]_0 \mathcal{D}(H) \subset \mathcal{H}$. Then $e^{isA} \mathcal{D}(H) \subset \mathcal{D}(H)$ for all real s.

Proof. For any bounded operator *S* of class $C^{1}(A)$ the commutator [*S*, *A*] extends to a bounded operator in \mathcal{H} denoted [*S*, *A*]₀, and one has

$$Se^{itA} = e^{itA}S + \int_0^t e^{i(t-s)A}[S, iA]_0 e^{isA} ds.$$

So if $t > 0, u \in \mathcal{H}$:

$$\|Se^{itA}u\| \le \|Su\| + \int_0^t \|[S, A]_0e^{isA}u\|ds.$$

We shall take

$$S = H_{\varepsilon} = H(1 + i\varepsilon H)^{-1} = -i/\varepsilon + (i/\varepsilon)R^{\varepsilon},$$

where $R^{\varepsilon} = (1 + i\varepsilon H)^{-1}$. We set $T = [A, H]_0(H + i)^{-1} \in B(\mathcal{H})$ and we use [ABG, Theorem 6.2.10]; then

$$[A, H_{\varepsilon}]_{0} = R^{\varepsilon}T(H + i)R^{\varepsilon} = R^{\varepsilon}TH_{\varepsilon} + iR^{\varepsilon}TR^{\varepsilon}.$$

Since $||R^{\varepsilon}|| \le 1$ we obtain

$$||H_{\varepsilon}e^{itA}u|| \le ||H_{\varepsilon}u|| + t||T|||u|| + ||T|| \int_{0}^{t} ||H_{\varepsilon}e^{isA}u||ds.$$

From the Gronwall lemma it follows that for each $t_0 > 0$ there is a constant *C* such that $||H_{\varepsilon}e^{itA}u|| \le C(||H_{\varepsilon}u|| + ||u||)$ for all $\varepsilon > 0, 0 \le t \le t_0, u \in \mathcal{H}$. Now it suffices to apply Fatou's lemma. \Box

As a final remark we shall prove a version of the virial theorem. Let A, H be selfadjoint operators on a Hilbert space \mathcal{H} such that $e^{isA}\mathcal{D}(|H|^{\sigma}) \subset \mathcal{D}(|H|^{\sigma})$ for some real number $\sigma \geq 1/2$ and all s (then the domain of $|H|^{\tau}$ will also be invariant if $0 \leq \tau \leq \sigma$). Set $\mathcal{K} = \mathcal{D}(|H|^{\sigma})$ and identify $\mathcal{K} \subset \mathcal{H} \subset \mathcal{K}^*$. Then the group induced by e^{isA} in \mathcal{K} is strongly continuous, hence the space $\mathcal{D}(A; \mathcal{K}) = \{u \in \mathcal{K} \cap \mathcal{D}(A) | Au \in \mathcal{K}\}$ is dense in \mathcal{K} . So the sesquilinear form (Au, Hu) - (Hu, Au) is well defined on the dense linear subspace $\mathcal{D}(A; \mathcal{K})$ of \mathcal{K} (one needs this restricted subspace only if $\sigma < 1$; e.g. if $\sigma = 1/2$ then one does not have anything better than $H\mathcal{K} \subset \mathcal{K}^*$).

Assume, moreover, that the preceding sesquilinear form is continuous for the topology of \mathcal{K} and denote by $[A, H]_0$ the operator in $B(\mathcal{K}, \mathcal{K}^*)$ associated to it. If we set $A_{\varepsilon} = (e^{i\varepsilon A} - 1)(i\varepsilon)^{-1}$, then it is easily seen that

$$[H, A_{\varepsilon}] = \frac{1}{\varepsilon} \int_0^{\varepsilon} e^{i(\varepsilon - s)A} [H, iA]_0 e^{isA} ds$$

holds in the strong operator topology of $B(\mathcal{K}, \mathcal{K}^*)$. In particular we see that $[H, A_{\varepsilon}]$ converges strongly in $B(\mathcal{K}, \mathcal{K}^*)$ to $[H, iA]_0$. This clearly implies the virial theorem, because the eigenvectors of H belong to \mathcal{K} .

References

- [ABG] Amrein, W., Boutet de Monvel, A., Georgescu, V.: C₀-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians. Basel–Boston–Berlin: Birkhäuser, 1996
- [CFKS] Cycon, H.L., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators with applications to Quantum Mechanics and Global Geometry. Berlin–Heidelberg–New York: Springer, 1987
- [FH] Froese, R., Herbst, I.: A new proof of the Mourre estimate. Duke Math. J. **49**, 1075–1085 (1982) [Fu] Fuglede, B.: On the relation $PQ - QP = -i\mathbb{1}$. Math. Scand. **20**, 79–88 (1967)
- [Fu] Fuglede, B.: On the relation PQ QP = -11. Math. Scalid. 20, 79–88 (1967) [K] Kalf, H.: The quantum mechanical virial theorem and the absence of positive energy bound states
- of Schrödinger operators. Israel J. Math. 20, 57–69 (1975)
 [Mo] Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun.
- Math. Phys. 78, 519–567 (1981)
 [PSS] Perry, P., Sigal, I.M., Simon, B.: Spectral analysis of *N*-body Schrödinger operators. Ann. of Math. 114, 519–567 (1981)
- [W] Weidmann, J.: The virial theorem and its application to the spectral theory of Schrödinger operators. Bull. Am. Math. Soc. 77, 452–456 (1967)

Communicated by B. Simon