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Abstract: We review the various assumptions under which abstract versions of the quan-
tum mechanical virial theorem have been proved. We point out a relationship between
the virial theorem for a pair of operatorsH, A and the regularity properties of the map
R 3 s 7→ eisA(z − H)−1eisA. We give an example showing that the statement of the
virial theorem in [CFKS] is incorrect.

The Virial Theorem in Quantum Mechanics

The virial relation is the statement that ifH, A are two selfadjoint operators on a Hilbert
spaceH, the expectation value of the commutator[H, iA] vanishes on eigenvectors of
H :

1{λ}(H)[H, iA]1{λ}(H) = 0. (1)

The virial relation is a very important part of Mourre’s positive commutator method. In
fact, combined with a positive commutator estimate, one can use the virial relation to
obtain the local finiteness of point spectrum (or even the absence of point spectrum).
Moreover, for Hamiltonians having a multiparticle structure, it is an essential tool to
prove the positive commutator estimate itself (see eg [Mo,PSS,FH]).

If H, A are both unbounded operators, some care has to be taken with the definition
of the commutator[H, iA] which a priori is only defined as a quadratic form onD(H)∩
D(A). A rather weak assumption under which (1) can be formulated without ambiguity
is the following one:

There exists a subspaceS ⊂ D(H) ∩ D(A) dense inD(Hn) for somen ∈ N, such
that

|(Hu, Au) − (Au, Hu)| ≤ C(‖Hnu‖2 + ‖u‖2), u ∈ S. (2)

The quadratic form[H, iA] extends then uniquely fromS to D(Hn) which means that
the left-hand side of (1) has an unambiguous meaning.
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The obstacle to a direct proof of (1) is of course that an eigenvector ofH needs not
be inD(A). Actually the counterexample that we will construct below shows that the
virial relation does not hold under assumption (2).

To overcome this, additional assumptions onH andA are needed. To our knowledge,
three different types of assumptions have been used in the literature to prove the virial
theorem in an abstract setting.

• In [Mo, Prop. II.4], (1) is proved under the following assumptions:

(M)

i) D(H) ∩ D(A) is dense inD(H),
ii) eisA preservesD(H) and for eachu ∈ D(H) sup|s|≤1 ‖HeisAu‖ < ∞,
iii) the quadratic form[H, iA] on D(H) ∩ D(A) is bounded below,

closeable, and it extends as a bounded operator fromD(H) to H.

In fact the condition “ eisA preservesD(H)” implies i) and the second part of ii), see
[ABG, Prop. 3.2.5]. Moreover, it was noticed in [PSS] that Mourre’s proof works without
change under a condition weaker than iii). So the assumptions which are really needed
for the validity of Mourre’s proof are:

(M′) i) eisA preservesD(H),
ii) |(Hu, Au) − (Au, Hu)| ≤ C(‖Hu‖2 + ‖u‖2), u ∈ D(H) ∩ D(A).

• In [ABG, Prop. 7.2.10], (1) is proved ifH is of classC1(A) i.e., if

(AGB) ∃z ∈ C\σ(H) such thatR 3 s 7→ eisARze−isA is C1 for the strong
topology ofB(H).

We have used the notationRz = (z − H)−1. Two equivalent characterizations of the
C1(A) property in terms of commutators are:

(AGB′) ∃z ∈ C\σ(H) such that|(Au, Rzu) − (R∗
z u, Au)| ≤ C‖u‖2, u ∈

D(A),

and:

(AGB′′) i) ∃z ∈ C\σ(H) such thatRzD(A) ⊂ D(A), R∗
zD(A) ⊂ D(A),

ii) |(Hu, Au) − (Au, Hu)| ≤ C(‖Hu‖2 + ‖u‖2), u ∈ D(H) ∩ D(A).

• Finally in [CFKS, Theorem 4.6], (1) is proved under the following assumptions:

(CKFS)

i) D(H) ∩ D(A) is dense inD(H),

ii) |(Hu, Au) − (Au, Hu)| ≤ C(‖Hu‖2 + ‖u‖2), u ∈ D(H) ∩ D(A),

iii) ∃ H0, selfadjoint such thatD(H) = D(H0), [H0, iA] extends as a
bounded operator fromD(H0) to H, andD(A)∩D(H0A) is a core for
H0.

SinceD(H0A) = {u ∈ D(A)|Au ∈ D(H0)} ⊂ D(A) one can suspect that there is
a misprint in the last condition and that it should be replaced by the stronger version:
D(H0) ∩ D(H0A) is a core forH0. Anyway, such a change does not invalidate the
discussion below.

It is easy to verify that (M) implies that eisARze−isA is in B(H, D(H)) and that

R 3 s 7→ eisARze
−isA is C1 for the strong topology ofB(H, D(H)),
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and hence (M) implies (ABG). The relation between (M′) and (ABG) is even more
straightforward: if eisA preservesD(H) then (M′) is equivalent to (ABG) (see Theorem
6.3.4 in [ABG]).

If H ∈ C1(A) then (Au, Rzu) − (R∗
z u, Au) is the quadratic form of a bounded

operator[A, Rz]0 ∈ B(H) (cf. (ABG′)). From (ABG′′) it follows then thatD(H)∩D(A)

is a core ofH and that the quadratic form(Hu, Au) − (Au, Hu) is continuous for the
topology ofD(H), hence it extends uniquely to a continuous quadratic form[H, A]0
on D(H). Identifying D(H) ⊂ H ⊂ D(H)∗ in the usual way[H, A]0 becomes a
continuous operatorD(H) −→ D(H)∗ and then one has (see [ABG, Theorem 6.2.10])

[A, Rz]0 = Rz[H, A]0Rz. (3)

We shall prove in an appendix thatD(H) is preserved by eisA if [H, A]0D(H) ⊂ H. In
other terms, if (ABG) holds and[H, A]0D(H) ⊂ H, then (M) is satisfied.

That (ABG) is more general than (M′) can be seen from the following example:
consider inL2(R) the operatorH of multiplication by a real rational function (which
may have poles, e.g. takeH(x) = 1/x) and letA = −id/dx; then clearlyH ∈ C1(A)

but eisA and(A + iλ)−1 do not leave the domain ofH invariant.
In conditions (M) and (ABG) assumptions either on the action of eisA on D(H) or

on the action of(z − H)−1 on D(A) are made. No comparable assumptions are made
in condition (CFKS). However reading the proof (in particular the proof of [CFKS,
Lemma 4.5]) one can see that the assumption that(z−H0)

−1 preservesD(A) is implicitly
used to justify the identity (3) (withH replaced byH0). We give below an example
showing that the virial relation does not hold if one only assumes (CFKS) (or a slightly
stronger version of it). In particular, we show that the relation(A+iλ)−1D(H) ⊂ D(H),
which plays a crucial role in the argument from [CFKS], is not true under their conditions.

Finally let us mention that in concrete situations (e.g.H is anL2 space andH, A

are differential operators), the use of cutoff and regularization arguments can be an
alternative to the abstract approach relying on (M) or (ABG) (see for example [W,K]).

Results

Let us introduce the following definition concerning multicommutators: we set ad0
A H =

H . Fork ≥ 0, if adk
A H is a bounded operator fromD(H) to H and the quadratic form

[adk
A H, A] on D(H) ∩ D(A) extends as a bounded operator fromD(H) into H we

denote it by adk+1
A H .

Theorem 1.There exists a pairH, A of selfadjoint operators on a Hilbert spaceH such
that:

i) H, A satisfy (CFKS),
ii) the multicommutatorsadk

A H extend as bounded operators fromD(H) to H for all
k ∈ N,

iii) the pairH, A satisfies a Mourre estimate away from0: For each compact intervalI
in R\{0} there existc > 0, K compact such that

1I (H)[H, iA]1I (H) ≥ c1I (H) + K,
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iv) the virial relation does not hold forH, A: there existsλ ∈ σpp(H) such that

1{λ}(H)[H, iA]1{λ}(H) 6= 0.

Theorem 1 is a consequence of Theorem 2 below, which establishes a link between
the virial relation and theC1(A) property.

LetH0 be a positive selfadjoint operator on a Hilbert spaceH. Forφ ∈ H we consider
the rank one perturbation ofH0,

Hφ := H0 − |φ >< φ|,
which is selfadjoint withD(Hφ) = D(H0). Note thatλ < 0 is an eigenvalue ofHφ if
and only if(φ, (H0 − λ)−1φ) = 1 and Ker(Hφ − λ) is generated by(H0 − λ)−1φ.

Let A be another selfadjoint operator onH such that

D(H0) ∩ D(A) is dense inD(H0),

the quadratic form[H0, A] onD(H0) ∩ D(A) is bounded for the topology ofD(H0).

(4)

Theorem 2.Assume thatH0 is positive andH0, A satisfy (4). Assume that the virial
relation holds forHφ, A for eachφ in a coreS of A. ThenH0 is of classC1(A).

Proof. Let φ ∈ S, λ < 0, u = (H0 − λ)−1φ, α2 = (φ, u)−1, so thatλ is an eigenvalue
of Hαφ . Sinceαφ ∈ S and by hypothesis the virial relation holds forHαφ, A, we have:

0 = (u, [H0, A]0u) + α2(u, Aφ)(φ, u) − α2(u, φ)(Aφ, u)

= ((H0 − λ)−1φ, [H0, A]0(H0 − λ)−1φ)

+ ((H0 − λ)−1φ, Aφ) − (Aφ, (H0 − λ)−1φ).

Using (4), this implies that

|((H0 − λ)−1φ, Aφ) − (Aφ, (H0 − λ)−1φ)| ≤ C‖φ‖2, ∀φ ∈ S.

SinceS is dense inD(A), this implies (ABG’) and hence thatH0 is of classC1(A). ut
If we assume the following condition which is stronger than (4):

D(H0) ∩ D(A) is dense inD(H0),

[H0, A] extends to a bounded operator[H0, A]0 : D(H0) −→ H,

D(H0) ∩ D(H0A) is dense inD(H0),

(5)

then forφ ∈ D(A) we have:

[Hφ, A] = [H0, A] − [|φ >< φ|, A] = [H0, A]0 + |Aφ >< φ| − |φ >< Aφ|,
and hence the pairHφ, A satisfies then(CFKS).

Note that if in addition to (5) we assume that the multicommutators adk
A H0 are

bounded operators onD(H0), then forφ ∈ D(A∞) = ∩p∈ND(Ap) the multicommuta-
tors adkA Hφ have the same property.
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By Theorem 2 to construct the pairH, A in Theorem 1, it suffices to find a pairH0, A

satisfying (5) such thatH0 is not of classC1(A).
LetH = L2(R, dx), q the operator of multiplication byx in H andp the self-adjoint

operator inH associated to−id/dx.
We will consider the operators

H0 = eωq, A = eωp − p, (6)

which are selfadjoint operators on their natural domains given by the functional calculus.
We note thatD(A) = D(p)∩D(eωp). Noting also thatD(eαp) ⊂ D(eωp) if 0 < α < ω

and using Fatou’s lemma we see that the domain of eωp can be described as follows: a
functionf ∈ L2(R) belongs toD(eωp) if and only if f has an analytic extension to the
strip {x + iy| − ω < y < 0} and‖f (· + iy)‖L2 ≤ const. Then limy→ω f (x + iy) ≡
f (x + iω) exists inL2 and one has(eωpf )(x) = f (x − iω).

The operators eωp, eωq were considered by Fuglede in [Fu] in order to show that the
Heisenberg form of the canonical commutation relations is not equivalent to the Weyl
form.

From the Weyl form of the canonical commutation relations eiαpeiβq = eiαβeiβqeiαp

it follows, by formally takingα = β = −iω with ω = (2π)1/2, that eωpeωq = eωqeωp.
This commutation property will certainly hold on a large domain (we give below the
details of the proof) although the operators eωp and eωq do not commute, which is the
reason whyH0 is not of classC1(A).

Lemma 1. LetH0, A be the pair defined in (6) forω = (2π)
1
2 . Then

i) H0, A satisfy (5),
ii) the multicommutatorsadk

A H0 are bounded operators fromD(H0) into H for all
k ∈ N,

iii) onD(H0) ∩ D(A) we have[H0, iA] = ωH0,
iv) H0 is not of classC1(A).

Proof of Theorem 1.Applying Lemma 1 and Theorem 2 forS = D(A∞), we see that
there existsφ ∈ D(A∞) such that forH = Hφ properties i), ii) and iv) of Theorem 1
are satisfied. Property iii) follows from Lemma 1 iii) and the fact thatH −H0, [H, A]−
[H0, A] are compact operators.ut

Proof of Lemma 1.Let us consider the sequence of operators e−q2/n. Clearly e−q2/n tends
strongly to1 in the spacesH andD(eωq). Let us verify that the same is true inD(eωp).
In fact using the Fourier transformation, we see that eωpe−q2/n = e−(q−iω)2/neωp, in
particular e−q2/n preservesD(eωp). This easily implies that e−q2/n tends strongly to1
in D(eωp). Similarly we havepe−q2/n = e−q2/np − 2ie−q2/nq/n, which shows that
e−q2/n tends strongly to1 in D(p) and hence inD(eωp − p).

After conjugation by Fourier transformation, we see that the same results hold for
the operator e−p2/n. Let now

Tn = e−q2/ne−p2/n.

We deduce from the above observations that

slimn→+∞ Tn = 1, in the spacesD(H0), D(A), D(H0) ∩ D(A), (7)
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whereD(H0) ∩ D(A) is equipped with the intersection topology. SinceTn mapsH into
D(H0) ∩ D(H0A), we see that the first and third conditions of (5) are satisfied.

Let us now check the second condition of (5). We claim that

[H0, iA] = ωH0, onD(H0) ∩ D(A). (8)

In fact let u ∈ D(H0) ∩ D(A), and un = Tnu. By (7) it suffices to check that
(Aun, H0un) − (H0un, Aun) = iω(un, H0un) for eachn. SinceAun ∈ D(H0) and
H0un ∈ D(A), we have

(Aun, H0un) − (H0un, Aun) = (un, AH0un − H0Aun).

But un is an entire function, decreasing faster than any exponential on each lineImz =
Cst . Hence we have

AH0un(x) = eω(x−iω)un(x − iω) + i d
dx

(eωxun(x))

= eωx(un(x − iω) + i d
dx

un(x)) + iωeωxun(x)

= H0Aun(x) + iωH0un(x),

sinceω2 = 2π . This proves (8) and hence the second condition of (5). Moreover it
follows from (8) that the multicommutators adk

A H0 are bounded onD(H0).
Let us now prove thatH0 is not of classC1(A).Assume the contrary. Then(H0+1)−1

would sendD(A) into itself. The functionu(x) = e−x2
belongs toD(A) and(H0+1)−1u

equals(eωx +1)−1e−x2
. This function has a pole atz = −iω/2 and hence is not inD(A).

This gives a contradiction and henceH0 is not of classC1(A). ut

Appendix

The following result is of some independent interest.

Lemma 2. LetA, H be selfadjoint operators in a Hilbert spaceH such thatH ∈ C1(A)

and[A, H ]0D(H) ⊂ H. TheneisAD(H) ⊂ D(H) for all real s.

Proof. For any bounded operatorS of classC1(A) the commutator[S, A] extends to a
bounded operator inH denoted[S, A]0, and one has

SeitA = eitAS +
∫ t

0
ei(t−s)A[S, iA]0eisAds.

So if t > 0, u ∈ H:

‖SeitAu‖ ≤ ‖Su‖ +
∫ t

0
‖[S, A]0eisAu‖ds.

We shall take
S = Hε = H(1 + iεH)−1 = −i/ε + (i/ε)Rε,

whereRε = (1 + iεH)−1. We setT = [A, H ]0(H + i)−1 ∈ B(H) and we use [ABG,
Theorem 6.2.10]; then

[A, Hε]0 = RεT (H + i)Rε = RεT Hε + iRεT Rε.
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Since‖Rε‖ ≤ 1 we obtain

‖HεeitAu‖ ≤ ‖Hεu‖ + t‖T ‖‖u‖ + ‖T ‖
∫ t

0
‖HεeisAu‖ds.

From the Gronwall lemma it follows that for eacht0 > 0 there is a constantC such that
‖HεeitAu‖ ≤ C(‖Hεu‖ + ‖u‖) for all ε > 0, 0 ≤ t ≤ t0, u ∈ H. Now it suffices to
apply Fatou’s lemma.ut

As a final remark we shall prove a version of the virial theorem. LetA, H be self-
adjoint operators on a Hilbert spaceH such that eisAD(|H |σ ) ⊂ D(|H |σ ) for some real
numberσ ≥ 1/2 and alls (then the domain of|H |τ will also be invariant if 0≤ τ ≤ σ).
SetK = D(|H |σ ) and identifyK ⊂ H ⊂ K∗. Then the group induced by eisA in K is
strongly continuous, hence the spaceD(A; K) = {u ∈ K ∩ D(A)|Au ∈ K} is dense in
K. So the sesquilinear form(Au, Hu) − (Hu, Au) is well defined on the dense linear
subspaceD(A; K) of K (one needs this restricted subspace only ifσ < 1; e.g. ifσ = 1/2
then one does not have anything better thanHK ⊂ K∗).

Assume, moreover, that the preceding sesquilinear form is continuous for the topology
of K and denote by[A, H ]0 the operator inB(K, K∗) associated to it. If we setAε =
(eiεA − 1)(iε)−1, then it is easily seen that

[H, Aε] = 1

ε

∫ ε

0
ei(ε−s)A[H, iA]0eisAds

holds in the strong operator topology ofB(K, K∗). In particular we see that[H, Aε]
converges strongly inB(K, K∗) to [H, iA]0. This clearly implies the virial theorem,
because the eigenvectors ofH belong toK.
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