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Abstract: We review the various assumptions under which abstract versions of the quan-
tum mechanical virial theorem have been proved. We point out a relationship between
the virial theorem for a pair of operatof$, A and the regularity properties of the map

R > s — €4(z — H)~1€%4, We give an example showing that the statement of the
virial theorem in [CFKS] is incorrect.

The Virial Theorem in Quantum Mechanics

The virial relation is the statement thatAf, A are two selfadjoint operators on a Hilbert
spaceH, the expectation value of the commutagéf, i A] vanishes on eigenvectors of
H:

Ty (H)[H,iAlLpy(H) =0. 1)

The virial relation is a very important part of Mourre’s positive commutator method. In
fact, combined with a positive commutator estimate, one can use the virial relation to
obtain the local finiteness of point spectrum (or even the absence of point spectrum).
Moreover, for Hamiltonians having a multiparticle structure, it is an essential tool to
prove the positive commutator estimate itself (see eg [Mo, PSS, FH])).

If H, A are both unbounded operators, some care has to be taken with the definition
of the commutatorH, i A] which a priori is only defined as a quadratic form®oH ) N
D(A). A rather weak assumption under which (1) can be formulated without ambiguity
is the following one:

There exists a subspasec D(H) N D(A) dense inD(H™) for somen € N, such
that

|(Hu, Au) — (Au, Hu)| < C([H"ul?> + [ul?), u € S. )

The quadratic forniH, iA] extends then uniquely froifi to D(H") which means that
the left-hand side of (1) has an unambiguous meaning.
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The obstacle to a direct proof of (1) is of course that an eigenvectalr méeds not
be inD(A). Actually the counterexample that we will construct below shows that the
virial relation does not hold under assumption (2).

To overcome this, additional assumptionsiandA are needed. To our knowledge,
three different types of assumptions have been used in the literature to prove the virial
theorem in an abstract setting.

e In [Mo, Prop. 11.4], (1) is proved under the following assumptions:

i) D(H)ND(A)isdenseirD(H), .
™) ii) e'*4 preserve®(H) and for eachy € D(H) sup <y | HE* ul| < oo,
iii) the quadratic form[H,iA] on D(H) N D(A) is bounded below,
closeable, and it extends as a bounded operator TPofh) to H.

In fact the condition “ 84 preserve®(H)” implies i) and the second part of ii), see
[ABG, Prop. 3.2.5]. Moreover, it was noticed in [PSS] that Mourre’s proof works without
change under a condition weaker than iii). So the assumptions which are really needed
for the validity of Mourre’s proof are:

M) i) €4 preserved(H),
i) |(Hu, Au) — (Au, Hu)| < C(||HL£||2 + ||u||2), u € DH)NDA).

e IN[ABG, Prop. 7.2.10], (1) is proved iff is of classC1(A) i.e., if

3z € C\o(H) such thafR 5> s — &$4R.e 4 is C1 for the strong

(AGB) topology of B(#H).

We have used the notatid®. = (z — H)~1. Two equivalent characterizations of the
cla) property in terms of commutators are:

(AGB)) %z(Ae) C\o(H) such that|(Au, R.u) — (Ru, Aw)| < Cllull%, u €

and:

(AGB") i) 3z € C\o(H) such thatR,D(A) C D(A), R¥D(A) C D(A),
i) |(Hu, Au) — (Au, Hu)| < C(||Hul|? + |u||®), u € D(H) N D(A).

e Finally in [CFKS, Theorem 4.6], (1) is proved under the following assumptions:

i) D(H)ND(A)isdenseiD(H),
i) |(Hu, Au) — (Au, Hu)| < C(|Hul? + [u]|?), u € D(H) N D(A),
(CKFS) iii) 3 Hy, selfadjoint such thaD(H) = D(Hp), [Hp, iA] extends as a
bounded operator frof®(Hp) to H, andD(A) N D(HpA) is a core for
Hp.

SinceD(HpA) = {u € D(A)|Au € D(Hp)} C D(A) one can suspect that there is
a misprint in the last condition and that it should be replaced by the stronger version:
D(Ho) N D(HpA) is a core forHy. Anyway, such a change does not invalidate the
discussion below.

It is easy to verify that (M) implies that'¢' R,e 4 is in B(#, D(H)) and that

R 5 s > €%4R,e754 is 1 for the strong topology oB(#, D(H)),
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and hence (M) implies (ABG). The relation between’(nd (ABG) is even more
straightforward: if &4 preserve®(H) then (M) is equivalentto (ABG) (see Theorem
6.3.4in [ABG]).

If H € CY(A) then (Au, R.u) — (R}u, Au) is the quadratic form of a bounded
operatoffA, R;]o € B(H) (cf. (ABG)). From (ABG@’) it follows then thalD(H)ND(A)
is a core ofH and that the quadratic fortHu, Au) — (Au, Hu) is continuous for the
topology of D(H), hence it extends uniquely to a continuous quadratic fgtnA]g
on D(H). ldentifying D(H) ¢ H C D(H)* in the usual way{H, A]p becomes a
continuous operatdP(H) — D(H)* and then one has (see [ABG, Theorem 6.2.10])

[A, Rz]O = Rz[Ha A]ORZ‘ (3)

We shall prove in an appendix thR{ H) is preserved byié“ if [H, AloD(H) C H.In
other terms, if (ABG) holds anH, AJoD(H) C H, then (M) is satisfied.

That (ABG) is more general than (Mcan be seen from the following example:
consider inL2(R) the operato of multiplication by a real rational function (which
may have poles, e.g. tak#(x) = 1/x) and letA = —id/dx; then clearlyH € C1(A)
but €4 and(A + i) 1 do not leave the domain @f invariant. _

In conditions (M) and (ABG) assumptions either on the action'df en D(H) or
on the action ofz — H)~! onD(A) are made. No comparable assumptions are made
in condition (CFKS). However reading the proof (in particular the proof of [CFKS,
Lemma 4.5]) one can see that the assumption(thaty) ~* preserve® (A) is implicitly
used to justify the identity (3) (with replaced byHp). We give below an example
showing that the virial relation does not hold if one only assumes (CFKS) (or a slightly
stronger version of it). In particular, we show that the relatidr-i») ~1D(H) Cc D(H),
which plays a crucial role in the argument from [CFKS], is not true under their conditions.

Finally let us mention that in concrete situations (€4gis an L? space and?, A
are differential operators), the use of cutoff and regularization arguments can be an
alternative to the abstract approach relying on (M) or (ABG) (see for example [W,K]).

Results

Let us introduce the following definition concerning multicommutators: we %iﬂd:
H.Fork >0, if ad;‘ H is a bounded operator frof(H) to # and the quadratic form
[ad; H, Al on D(H) N D(A) extends as a bounded operator frénH) into H we
denote it by alf™ H.

Theorem 1. There exists a paifl, A of selfadjoint operators on a Hilbert spagesuch
that:

i) H, A satisfy (CFKS),

i) the multicommutatorad’; H extend as bounded operators frdd{H) to H for all
keN,

i) the pair H, A satisfies a Mourre estimate away fr@mFor each compact interval
in R\{0} there exist > 0, K compact such that

1;(H)[H,iAl1;(H) > c1;(H) + K,
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iv) the virial relation does not hold foH, A: there exists. € opp(H) such that

1py(H)[H, 1Al (H) # 0.

Theorem 1 is a consequence of Theorem 2 below, which establishes a link between
the virial relation and th€*(A) property.

Let Hp be a positive selfadjoint operator on a Hilbert spaic&or¢ € H we consider
the rank one perturbation @y,

Hy = Ho— ¢ >< 9|,

which is selfadjoint withD(Hy) = D(Hp). Note that, < 0 is an eigenvalue ol if
and only if (¢, (Ho — ) ~1¢) = 1 and KetHy — 1) is generated byHo — 1)~ 14.
Let A be another selfadjoint operator ghsuch that
D(Hp) ND(A) is dense iD(Hp),
the quadratic forniHg, A] onD(Hp) N D(A) is bounded for the topology dP(Hp).
(4)

Theorem 2. Assume thatiy is positive andHp, A satisfy (4). Assume that the virial
relation holds forHy, A for each¢ in a coreS of A. ThenHy is of classC1(A).

Proof. Let¢ € S, 1 < 0,u = (Ho — 2) 19, «? = (¢, u)~1, so that is an eigenvalue
of Hye. Sinceag € S and by hypothesis the virial relation holds s, A, we have:

0 = (u, [Ho, Alou) + a?(u, Ap)($, u) — a>(u, ¢)(A¢, u)
= ((Ho — M) "¢, [Ho, Alo(Ho — »)"1¢)
+ ((Ho— M) 71¢, Ag) — (Ag, (Ho — 1) 719).

Using (4), this implies that
|((Ho — 2)7'¢. Ap) — (A¢. (Ho — 1) '¢)| < Cli¢||%, ¥ € 5.
Sinces is dense irfD(A), this implies (ABG’) and hence thay is of classC1(A). O
If we assume the following condition which is stronger than (4):

D(Hp) N D(A) is dense iD(Hp),
[Hp, A] extends to a bounded operatéfy, Alo : D(Hp) —> H, (5)
D(Hp) N D(HpA) is dense ifD(Hp),

then for¢ € D(A) we have:
[Hy, Al = [Ho, Al — [l¢ >< ¢|, Al = [Ho, Alo + [A¢ >< ¢| — | >< AQ|,

and hence the pafty, A satisfies thefCFKS)

Note that if in addition to (5) we assume that the multicommutatoﬁg,ﬁaﬁare
bounded operators di(Hp), then forg € D(A™) = N,enD(AP) the multicommuta-

tors a(i‘ Hy have the same property.
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By Theorem 2 to construct the pdif, A in Theorem 1, it suffices to find a paify, A
satisfying (5) such thall is not of classC1(A).

LetH = L?(R, dx), g the operator of multiplication by in 7 andp the self-adjoint
operator inH associated te-id /dx.

We will consider the operators

Ho=¢e", A=¢e"" — p, (6)

which are selfadjoint operators on their natural domains given by the functional calculus.
We note thaD(A) = D(p) ND(e“P). Noting also thaD(e*”) ¢ D(e“P) if0 < o < w

and using Fatou’s lemma we see that the domair’dfoan be described as follows: a
function f € L2(R) belongs taD(e“?) if and only if  has an analytic extension to the
strip {x +iy| —o <y < Oy and| f(- +iy)ll;2 < const. Then lim_,, f(x +iy) =

f(x +iw) exists inL? and one hae”” f)(x) = f(x — iw).

The operators®, €~ were considered by Fuglede in [Fu] in order to show that the
Heisenberg form of the canonical commutation relations is not equivalent to the Weyl
form.

From the Weyl form of the canonical commutation relatiofig@f? = defgbager
it follows, by formally takinge = g = —iw with w = (27)Y/2, that &Pe?? = e?9eP.

This commutation property will certainly hold on a large domain (we give below the
details of the proof) although the operatot¥ end ¢ do not commute, which is the
reason whyHg is not of classC1(A).

Lemma 1. Let Hp, A be the pair defined in (6) fap = (271)%. Then

i) Hp, A satisfy (5),

i) the muIticommutatorad; Hp are bounded operators frof?(Hp) into A for all
keN,

iii) onD(Hp) N D(A) we havg Hp, iA] = wHo,

iv) Hg is not of clasC1(A).

Proof of Theorem 1Applying Lemma 1 and Theorem 2 f6r = D(A°), we see that
there existgp € D(A™) such that forH = Hy properties i), ii) and iv) of Theorem 1
are satisfied. Property iii) follows from Lemma 1 iii) and the fact tHat Ho, [H, A] —
[Ho, A] are compact operatorso

Proof of Lemma 1L et us consider the sequence of operatoﬁsz@ .Clearly e°/" tends
strongly to1 in the space$( andD(e”?). Let us verify that the same is true T(e”?).

In fact using the Fourier transformation, we see th&es?’/" = e~@—i®)*/ngop jn
particular g’/ preserved(e”?). This easily implies thate”/" tends strongly ta
in D(e”?). Similarly we havepe=4°/" = e~4°/" p — 2ie=9%/"¢ /n, which shows that
e=9°/" tends strongly ta in D(p) and hence iD (e’ — p).

After conjugation by Fourier transformation, we see that the same results hold for

the operator &”°/". Let now
Tn — e_qz/”e_pz/" .
We deduce from the above observations that

slim,— + T, = 1, in the spacesD(Hp), D(A), D(Ho) N D(A), @)
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whereD(Hp) ND(A) is equipped with the intersection topology. SifgemapsH into
D(Ho) N D(HpA), we see that the first and third conditions of (5) are satisfied.
Let us now check the second condition of (5). We claim that

[Ho, 1Al = wHo, onD(Ho) N D(A). (8)

In fact letu € D(Hp) N D(A), andu, = T,u. By (7) it suffices to check that
(Auy,, Hou,) — (Hou,, Au,) = iw(u,, Hou,) for eachn. SinceAu, € D(Hp) and
Hou, € D(A), we have

(Auy, Houy,) — (Houp, Auy) = (u,, AHou, — HoAuy).

But u,, is an entire function, decreasing faster than any exponential on eadiwiine:
Cst. Hence we have

AHouy,(x) = e26~10)y (v —jw) + i%(e‘“xun(x))
= e (u,(x —iw) + i%un(x)) + iwe® u,(x)
= HoAu,(x) + iwHou,(x),

sincew? = 2x. This proves (8) and hence the second condition of (5). Moreover it
follows from (8) that the multicommutators f‘quHo are bounded ofP( Hp).

Let us now prove thallg is not of clas<1(A). Assume the contrary. Thehlo+1) 1
would sendD(A) into itself. The functiom (x) = - belongs ta>(A) and(Ho+1) ~1u

equalge®™ + 1)‘1e‘X2. This function has a pole at= —iw/2 and hence is notifv(A).
This gives a contradiction and hen#g is not of clasC1(4). O

Appendix
The following result is of some independent interest.

Lemma 2. LetA, H be selfadjoint operators in a Hilbert spag¢such thatd € C1(A)
and[A, HloD(H) C H. Theneé*AD(H) c D(H) for all real s.

Proof. For any bounded operatsrof classC1(A) the commutatofS, A] extends to a
bounded operator iAl denoted S, A]p, and one has

SeliA = iAg +/ dUIALS, i A1ge A ds.
0

Soift >0,u € H:
. t .
IS€"4ull < ||Sull + / IS, Alo€*ullds.
0

We shall take
S=H,=HQ+isH) ' =—i/e+ (i/e)R",

whereR? = (1+icH)~1. We setl’ = [A, H]o(H +1)~! € B(H) and we use [ABG,
Theorem 6.2.10]; then

[A,HJo=R°T(H +1)R* = R°TH; +iR°TR".
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Since| R?|| < 1 we obtain
| He€u|l < IIHauII+t|IT|I||u||+||T||f | € ul|ds.
0

From the Gronwall lemma it follows that for eagh> O there is a constart such that
| He€4u| < C(|Heull + |lul) foralle > 0,0 < ¢ < 19, u € H. Now it suffices to
apply Fatou’s lemma.o

As a final remark we shall prove a version of the virial theorem.Aef be self-
adjoint operators on a Hilbert spagesuch that BAD(|H|®) ¢ D(|H|®) for some real
numbers > 1/2 and alls (then the domain gfff |* will also be invariantif 0< t < o).
Setk = D(|H|°) and identifyXC ¢ # ¢ K*. Then the group induced by*é in K is
strongly continuous, hence the spdeeA; K) = {u € KND(A)|Au € K} is dense in
K. So the sesquilinear fortiu, Hu) — (Hu, Au) is well defined on the dense linear
subspac®(A; K) of K (one needs this restricted subspace ondy # 1;e.g.ifo = 1/2
then one does not have anything better theig c K*).

Assume, moreover, thatthe preceding sesquilinear formis continuous for the topology
of K and denote byA, H]o the operator inB(IC, K*) associated to it. If we set, =
(€4 — 1)(ie)~1, then it is easily seen that

1 o
[H, Al = = / dEDALH | AT A ds
€Jo

holds in the strong operator topology B{/C, £*). In particular we see thdtd, A.]
converges strongly iB(XC, K*) to [H, iA]o. This clearly implies the virial theorem,
because the eigenvectorsifbelong tok.
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