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Abstract: We derive simple explicit formula for the character of a cycle in the Connes’
(b, B)-bicomplex of cyclic conomology and apply it to write formulas for the equivariant
Chern character and characters of finitely-summable bounded Fredholm modules.

1. Introduction

The notion of a cycle, introduced by Connes in [4], plays an important role in his devel-
opment of the cyclic cohomology and its applications. Many questions of the differential
geometry and noncommutative geometry can be reformulated as questions about geomet-
rically defined cycles. Associated with a cycle isdtsmracter which is a characteristic
class in cyclic cohomology, described by an explicit formula (see [4]).

Some natural constructs, like the transverse fundamental cycle of a foliation [6] or the
superconnection in [15] require however consideration of more general objects, which
we call “generalized cycles” (we recall the definition in Sect. 2). The simplest geometric
example of generalized cycle is provided by the algebra of forms with values in the
endomorphisms of some vector bundle, together with a connection. More interesting
examples arise from vector bundles equivariant with respect to the action of the discrete
group, or, more generally, holonomy equivariant vector bundles on foliated manifolds.

The original definition of the character of a cycle does not apply directly to generalized
cycles. To overcome this, Connes ([4], cf. also [6]) has devised a canonical procedure
allowing to associate a cycle with a generalized cycle. This allows to extend the definition
of the character to the generalized cycles.

In this paper we show that the character of a generalized cycle can be defined by the
explicit formula in the(b, B)-bicomplex, resembling the JLO formula for the Chern
character [10]. In the geometric examples above this leads to formulas for Bott's Chern
character [2] in cyclic cohomology. As another example we derive the formula for the
character of the Fredholm module.
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The paper is organized as follows. In Sect. 2 we define the character of a generalized
cycle and, more generally, generalized chain. Closely related formulas also appear and
play an important role in Nest and Tsygan'’s work on the algebraic index theorems [12,
13]. We then establish some basic properties of this character and prove that our definition
of the character coincides with the original one given by Connes in [4]. In Sect. 3
we construct the cyclic cocycle, representing the equivariant Chern character in the
cyclic cohomology, and discuss relation of this construction with the multidimensional
version of the Connes construction of the Godbillon-Vey cocycle [5], and the transverse
fundamental class of the foliation. In Sect. 4 we write explicit formulas for the character
of a bounded finitely-summable Fredholm module, whEfe— 1 is not necessarily
0 (such objects are called pre-Fredholm modules in [4]). The idea is to associate with
such a Fredholm module a generalized cycle, by the construction similar to [4]. We thus
obtain finitely summable analogues of the formulas from [10] and [9].

2. Characters of Cycles

In this section we start by stating definitions of generalized chains and cycles, and writing
the JLO-type formula for the character. We then show that this definition of character
coincides with the original one from [4].

In what follows we require the algebré to be unital. This condition will be later
removed by adjoining the unit td.

One defines generalized chaiover an algebrad by specifying the following data:

1. Graded unital algebra? ando2 and a surjective homomorphism: Q — 92 of
degree 0, and a homomorphism A — QY. We require thap andr be unital.

2. Graded derivations of degree™ on 2 andV’ on 92 such that- o V = V' o r and
6 e Q2 such that

VA(E) = 0k — £6
V& € Q. We require thaW (6) = 0.
3. Agraded trac?[ on Q" for somen (called the degree of the chain) such that

][V(g) =0
ve € Q"1 such thar(¢) = 0.
If one requiresd2 = 0 one obtains the definition of thgeneralized cycleThe

generalized cycle for which = 0 is calledcycle
One defines the boundary of the generalized chain to be a generalizedyce’,

/

0, ][ ) of degreen — 1 over an algebral, where the][ is the graded trace defined by

][/E/ = ][V(S), (2.1)

where¢’ € ()" 1 andé € ©" such that (&) = £’. Homomorphisnp’ : A — 9°
is given by

the identity

o =rop. (2.2)
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Notice that fort” € 9Q (V/)2(¢') = 0" — £'0’, whered' is defined by
0" = r(). (2.3)
With every generalized cha{if of degree: one can associate by a JLO-type formula

a canonicak-cochain CKC™) in the (b, B)-bicomplex of the algebral, which we call
a character of the generalized chain,

Ch(C"(ag, a1, .. .ax) =

n—k

-1z . ‘ ;
% > fp(aowmwmal))e'l L Vip@)e®. (2.4)
2

' io+i1+-~+ik:%
Note that ifC" is a (non-generalized) cycle Q') coincides with the character of

C" as defined by Connes.
For the generalized chaihlet 3C denote the boundary ¢t

Theorem 2.1.LetC" be a chain, and(C") be its boundary. Then

(B + b)Ch(C") = S Ch(3(C™)). (2.5)
Here S is the usual periodicity shift in the cyclic bicomplex.
Proof. By direct computation.o

Remark 2.1A natural framework for such identities in cyclic conomology is provided
by the theory of operations on cyclic cohomology of Nest and Tsygan, cf. [12,13].

Corollary 2.2. If C" is a generalized cycle the@h(C") is ann-cocycle in the cyclic
bicomplex of an algebral.

Corollary 2.3. For two cobordant generalized cyclé$ andCy,
[S Ch(C))] =[S Ch(C3)]
in HC"2(A).

Formula (2.4) can also be written in a different form. We will use the following
notations. First,][ can be extended to the whole algelszaby setting]Lg =0if

degt # n. Forg € Q ¢f is defined 352310% . Then denoteAX the k-simplex
{(to, 11, ..., )0+ 11+ - - + 1 = 1, t; = 0} with the measurdn dz; . . . d. Finally,
«a is an arbitrary nonzero real parameter. Then

CH(C"(ao, a1, . ..ax) =

o7 / <][p(ao)e—“f°9V(p(al))e—“’19...V(p(ak))e—“’k9> dirdts .. .dix, (2.6)

Ak
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wherek is of the same parity as. Indeed,

f/o(ao)e_atoev(,o(al))e_atle . V(Io(ak))e—(xtke —

ik

nek it ,
D B N TR ][p(ao)elowpml))ell V(p(a)e™  (2.7)
ioHirt+ig="5 ot

and our assertion follows from the equality

i i iolig!. .. ix!
/t(l)otil Lptdndt . dy = —— . .
(io+i1+ - +ix +k)!

An

Remark 2.2We worked above only in the context of unital algebras and maps. The case
of general algebras and maps can be treated by adjoining a unit. We follow [15]. The
definition of the generalized chain in the nonunital case differ from the definition in the
unital case only in two aspects: first, we do not require algebras and morphisms to be
unital; second, we do not require any more that the curvatigean element of2?;

rather we require it to be a multiplier of the algelstavhich satisfies the following: for

w € QF, 6w andwb are iNQ*12, V(Bw) = 0V (w), V(wb) = V(w)0 and][ew = ][we

if o € "2, We also need to require existence of éie- multiplier of 32 such that
r(w) = 0'r(w), r(wd) = r(w)d’, and include it in the defining data of the chain.

With C" = (2,09, r,V, V', 0, ) — nonunital generalized chain over a (possibly
nonunital) algebrad we associate canonically a unital chain

over the algebral A with unit adjoined. The construction is the following: the algebra
Q is obtained from the algebi@ by adjoining a urti1 , (of degree 0 ) and an element
6 of degree 2 with the reIatlon%w = fw andwd = wb for w € Q, and similarly for
the algebrad<2. The derivationV coincides withV on the elements a2 and satisfies

equalltlesV(e) =0 andV(l) = 0, andV’ is defined similarly. The graded tra?éon

 is defined to coincide wit)y[ on the elements a2 and, ifn is even, is required to

satisfy the relati0|7[5% =0.

Now if C" is a (nonunital) generalized cycle ovdy; formula (2.4), applied tg”
defines a (reduced) cyclic cocycle over an algefirand hence a class in the reduced
cyclic cohomolong_C" (,Z) = HC"(A). Corollary 2.3 implies that this class is invari-
ant under the (nonunital) cobordism. Note also that in the unital case the class defined
after adjoining the unit agrees with the one defined before.

Alternatively, one can work from the beginning with the Loday—Quillen—-Tsygan
bicomplex, see e.g. [11], where the corresponding formulas can be easily written.
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We now will show equivalence of the previous construction with Connes’ original
construction.

With every generalized cyclé = (2, V, 6, ][) over an algebrad Connes shows

how to associate canonically a cydg.
One starts with a graded algekea, which as a vector space can be identified with
the space of 2 by 2 matrices over an algeRravith the grading given by the following:

[wn w12

k k k—1 k—2
€ Qg if w11 € Q" w12, w21 € Q andwyo € Q4.
w21 wzz] 0

/ /
The product of the two elementsy w = [w“ 60121| ando’ = [w,ll 0)/12} is given

w21 022 W21 @22
by
[ e12][1 0] oy @)
Cre = [“’21 wzj [0 9] [")/21 W (.8)
The homomorphismy : A — Qp is given by
0
po(a) = [" w 0] . (2.9)

On this algebra one can define a graded derivélipof degree 1 by the formula (here
e |:6011 CU12:|)
w21 W22
_| V(w1 V(w12
Vol = [ ~V(@21) —V(a)zz)} | (2.10)

One checks that

V2(w) = [g 2:|>kw—a)>x<|:g (ﬂ (2.11)

More generally, one can define on this algebra a family of connectignd < ¢ < 1
by the equation

Vi(@) = Vo(w) +1(X x 0 — (—1)%%0 x X), (2.12)

whereX’ is degree 1 element @ty given by the matrix

0 -1
=[] 219

Lemma 2.4.(V))*(@) = (1~ 1?) ([?, ﬂ remer [g ﬂ)

Proof. Follows from an easy computationa
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Hence forr = 1 we obtain a graded derivati&‘g whose square is 0 .

Finally, the graded tracf is defined by
0

][ w = ][wll — (—1)degw][a)229. (2.14)
%

Itis closed with respect t&y, and hence, being a graded trace, it is closed with respect
to v, for anyz.

Corollary 2.5. Cx = (Qg, Vgl, ][ ) is a (nongeneralized) cycle.
0

The cycleCy is Connes’ canonical cycle, associated with the generalized €ycle
With every (nongeneralized) cycle of degre€onnes associated a cycliecocycle on
the algebrad by the following procedure: let the cycle consist of a graded algehra

degree 1 graded derivatiehand a closed tracg-. Then the character of the cycle is
the cyclic cocycler in thecyclic complexgiven by the formula

t(ag, a1, ..., ay) = ][p(ao)d,o(al) .odp(ay). (2.15)

To it corresponds a cocycle in thig, B)-bicomplex with only one nonzero component
of degreer, which equals,%,][p(ao)dp(al) ...dp(ay).
Theorem 2.6.LetC" be a generalized cycle of degre®ver an algebraA, andCy be

the canonical cycle oved, associated witlt” (see above). Thef€Ch(C")] = [t (C})]
in HC"(A).

Note that equality here is in the cyclic cohnomology, not only in the periodic cyclic
cohomology. The theorem will follow easily from the above considerations and the
following lemma.

Lemma2.7.Let Co = (22, Vo, 6o, ][) , be a generalized cycle of degreeover an

algebra A, and letn be an element of2!. Consider the generalized cycly =
(€2, V1, 01, ][), where

V1= Vg + ady,
01 =6p+ Von + 772.

Then[Ch(Cg)] = [Ch(C1)].

Proof of Lemma 2. First, we can suppose that the cycle is unital — in the other case one
can perform a construction, explained in Remark 2.2.

We start by constructing a cobordism between cy€endC; . This is analogousto a
construction from [15]. The cobordism is provided by the cli&in= (€, 9Q°, r¢, V¢,

C
(VY 9¢, ][ ) with C¢ = —Cp U C; defined as follows.
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The graded algebrg¢ is defined as2*([0, 1))®%2, where® denotes the graded
tensor product, an&*([0, 1]) is the algebra of the differential forms on the segment
[0, 1]. The mapo© : A — Q€ is given by

0¢(a) = 1&p(a). (2.16)

We denote by the variable on the segmelt, 1].
The graded derivatioR ¢ is defined by

V(a®w) = da®w + (—1)*®®a@Vow + (—1)%%1a®[n, o). (2.17)

Hered is the de Rham differential di®, 1].
The curvaturé© is defined to be

1860 + 1®Vny + 12®n° + d1®n. (2.18)

As expected, the algebgf2® is defined to be&2 & Q2. The restriction map® : Q¢ —
Q @ Q is defined by

cra o JaQo®al)o if dege =0
r(a%w) = !0 otherwise (2.19)
The connectiorV’ on Q@ Qis given byVo @ V1.
The graded trac?[ on (Q°)"*1is given by the formula
< afw if degw =nand degr =1
][ aQw = [OL,/l] ][ . (2.20)
0 otherwise

It is easy to see that

][CV“(o@a)) _ (a (1) — a(O))][a) if degw = n and degr = O' (2.21)
0 otherwise

Hence the “boundary” trac(e][ ) induced or2 @ equals—][ <) ][

Thus we constructed the generalized cl&inproviding the cobordism betweély
andC;. Corollary 2.3 implies thatS Ch(Cp)] = [S Ch(C1)]. To obtain the more precise
statement of the lemma and finish the proof of the theorem, we need to examine the
character CIC¢), sinceS Ch(Cp) — S Ch(Cy1) = (b + B) Ch(C®).

Ch(C¢) has components ¢tC¢) for k = n +1,n — 1, ... . Its top component
Cht1(ce) is given by the formula,

CH'*H(C) (a0, a1, ..., any1) = ][ P (ag)Ve(p“(ar) ... V(p*(ant1)),

(2.22)

1
(n+ 1!
whereq; € A. But the expression und ‘ is easily seen to be of the fora®w, with
« of degree 0. Hence the expression (2.22) is identically 0, by the definition (2.20) of

C. It follows that CHC®) is in the image of the mag, and this implies thgiCh(Co)] =
[Ch(C)]. O
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Remark 2.3The above lemma remains true if we relax its conditions to aljdabe a
multiplier of degre 1, such thatf-nw = (—1)*~Y/2 Ly andr(nw) = r(wn) = 0 if
r(w) = 0. ThenVyn is a multiplier, defined byVon)w = Vo(nw) + nVow. The same
proof then goes through if we enlarge the algefaren the subalgebra of the multiplier
algebra ofQ obtained fromQ by adjoining 1 ,60, n, Von, and extending][ to this

algebra by zero (i.e. we p%P = 0 for any P — monomial indp andn).

Proof of Theorem 2.6The lemma above applies directly to the cycles

01 = (szg, Vo, [g (ﬂ ’ ][9)

andCy = C% (with n = X). This shows that C€") = Ch(CY) in HC"(A). SinceCY
is a (nongeneralized) cycle, comparison of the definitions shows tHatCh= 7 (C%),
even on the level of cocycles, and the theorem follows.

Corollary 2.8. For two generalized cycles
C1 = (Q1, V1, 91,][ ) and
1

Cy' = (2, V2,92,][2)

define the product bg; x C» = (2189922, V1®1 + 18V2, 6181 + 1862, ][ ® ][ ).
1 2
ThenCh(C1 x C2) = Ch(C1) U Ch(C2).

Proof. For the non-generalized cycles this follows from Connes’ definition of the cup-
product. In the general case, the statement follows from the existence of the natural map
of cycles (i.e. homomorphism of the corresponding algebras, preserving all the structure)
(C1 x C2)x — (C1)x x (C2)x, which agrees with taking the character.

The simplest way to describe this map is by using another Connes’ description of

his construction. In this description matfix”*t ~ “12
w21 W22

elementw1; + w12X + Xw21 + Xw22X, whereX is a formal symbol of degree 1. The

multiplication law is formally defined by X’ = 0, X2 = 6. This should be understood

as a short way of writing identities likeX * X&' = wf’ (note thatX is not an element

of the algebra).

If we denote byX;, X2, X12 formal elements, corresponding €, C2, C1 x C2
respectively, the homomorphism mentioned above is the unital extension of the identity
map1®Q, — 218®Q; defined (again formally) bX 1o — (X1®1+ 18X>). O

, wij € Qis identified with the

3. Equivariant Characteristic Classes

This section concerns vector bundles equivariant with respect to discrete group actions.
We show that there is a generalized cycle associated naturally to such a bundle with (not
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necessarily invariant) connection. The character of this generalized cycle turns out to be
related (see Theorem 3.1) to the equivariant Chern character.

Let V be an orientable smooth manifold of dimensigrE a complex vector bundle
overV, and. A = End(E) — algebra of endomorphisms with compact support. One
can construct a generalized cycle over an algebia the following way. The algebra
Q = Q*(V,End(E)) — the algebra of endomorphism-valued differential forms. Any
connectionV on the bundleE defines a connection for the generalized cycle, with
the curvatured € Q2(V, End(E)) — the usual curvature of the connection. On the

Q"(V,End(E)) one defines a graded tra?é by the formula][a) = [trw, where in
\4

the right-hand side we have a usual matrix trace and a usual integration over a manifold.
Note that wherV is noncompact, this cycle is nonunital. The formula (2.6), define a
cyclic n-cocycle{Ch} on the algebrad, given by the formula

Cl’{‘(ao, ai,...ay) =

/ /lr aoe "V (a)e™0 .. V(a)e 0 | dndty. .. dy. (3.1)
Ak \V

Hence we recover the formula of Quillen from [16]. (Recall that for noncompabese
expressions should be viewed as defining the reduced cocycle over the algefita
unit adjoined, with CR extended by Ch(1) = 0.)

One can restrict this cocycle to the subalgebra of funct@®gV) c End(E). As a
result one obtains am-cocycle on the algebr@> (V), which we still denote byCh¢},
given by the formula

1
Cht(ag, a1, . ..ax) = o / aoday ...dagtre?. (3.2)
v

To this cocycle corresponds a current ¥ndefined by the formr ¢~?. Hence in this
case we recover the Chern character of the buAdiote that we use normaliztion of
the Chern character from [1].

Let now an orientable manifol@ of dimensionn be equipped with an action of
the discrete groupp' of orientation preserving transformations, afide al'-invariant
bundle. In this situation, one can again construct a cycle of degmer the algebra
A = End(E) x T". Our notations are the following: the algeb#ais generated by the
elements of the formU,, a € End(E), g € T', andU, is a formal symbol. The product
is (a'Ug)(aUy) = a’ag/Ugg/. The superscript here denotes the action of the group.

The graded algebr® is defined as2*(V, End(E)) x I'. Elements of2 clearly
act on the forms with values ift, and any connectio¥ in the bundleE defines a
connection for the algebi@, which we also denote by, by the identity (here € €,
ands € Q*(V, E))

V(ws) = V(w)s + (—=1)%€% 4,V (s). (3.3)

One checks that the above formula indeed defines a degree 1 derivation, which can be
described by the action on the elements of the faitfy, wherea € Q*(V, End(E)),
g € T, by the equation

V(aUy) = (V(@) + @ A8(2)) Uy, (3.4)
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wheres is Q1(V, End(E))-valued group cocycle, defined by
8(g)=V—goVog L (3.5)

One defines a curvature as an elendiit, where 1 is the unit of the group, adds
the (usual) curvature of . The graded trac% on Q" is given by

Ja ifg=1
][OlUg =31V . (3.6)
0 otherwise

One can associate with this cycle a cyalicocycle over an algebtd, by Eq. (2.6).
By restricting it to the subalgebr@z°(V) x I' one obtains am-cocycle{x*} on this

algebra. Itsc™ component is given by the formula

k
X" (aoUgy, a1Ug,, .. .axUg,) =
Y1 Y2 Yii-1 Vip Yii+1
Z apday da, ...dail_1 a; dail+1
1§i1<i2<~~<i1§kv

Oiigeeiy (V1o ). (3.7)

for gog1...gr = 1 and O otherwise. Here the summation is over all the subsets of
{1,2,...k} and the following notations are useg; are group elements defined by

Yj =8081--.8j-1.Oirir....i;(V1, ..., Y istheform (depending ogp, g1 . .. ) defined
by the formula

Ouineit (V1 o Vi) =

—16"1 | —11672 1,107 ;
/tre 00Tt e T 5 (gy) M
Ak

o0ty 1072 8(gi) "2 .. e "4t . dy. (3.8)

The change of connection does not change the class in the cyclic cohomology, as can
be seen by constructing a cobordism between corresponding cycles. This formula is a
cyclic cohomological analogue of the formula of Bott [2]. More precisely, the following
theorem holds:

Theorem 3.1.Let Chr(E) € H*(V xr EI') be the equivariant Chern character. Let
® : H*(V xr EI') - HP*(C§°(V) x I') be the canonical imbedding, constructed by
Connes, cf. [6]. Then

@ (Chr(E)) = [x].

HereE pulls back to an equivariant bundle &nx EI", and then drops down 6 x - ET",
and the equivariant Chern characterChH) is the Chern character of the resulting
bundle. We recall that we use normalization from [1].

To prove the theorem we need some preliminary constructions and facts.IFor a
manifoldY by Y we denote the homotopy quotientx EI.
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Suppose we are givei-manifoldsV and X, X oriented. We construct then a map
I : HC/(CF(V) x T) — HC/TIMX(Ceo(V x X) x I'). The construction is the
following: in HCd'mX(Cgo(X) x I') there is a class represented by the cocycle
T(fOUgoa ,flUgj_? LR} kagk)

L Sy fod 0 df T i gogr. . gk =1
0 otherwise

’

k=dimX.
One then constructs the magrom the following diagram:
HC/(CE(V) x T) 5 HCIHIMX ((€8°(V) x T) ® (CF(X) x T))
& HCHIMX (v« X) % T). (3.9)
Here the last arrow is induced by the natural map
A:CE(VxX)xT =(CFV)QCF X)) T
- (CP(V)xT)® (C5°(X) » T') (3.10)

defined byA ((f ® f)Ug) = (fUg) ® (f'Us).
Suppose now that is also oriented.

Proposition 3.2.The following diagram is commutative:

HP*(CP(V x X) x T) «—— H*((V x X)r)

,T T”* . (3.11)

HP*(CP(V)xT) <«——  H*(Vp)

Herer : (V x X)r — Vr isinduced by thel{-equivariant) projectiorV x X x EI" —
V x ET.

Proof. We can consideV x X with action of[" x I'. We start with showing that the
following diagram is commutative:

HP*(CP(V x X) (T x T) «—— H* ((V x X)rxr))
UTT Tﬂ* . (3.12)

HP*(CP(V) x T) P H* (Vr)

Here we identifyC3°(V x X) x (I' x I') with (C°(V) x T') ® (C3°(X) x I') and
(V x X)rxr) with Xr x Vr. This is verified by the direct computation, using the
Eilenberg-Silber theorem and shuffle map in cyclic cohomology, cf. [11].

Now we note that the commutativity of the following diagram is clear:

HP*(CE(V x X) x (D x 1)) «—2— H*((V x X)ur)

l l , (3.13)

HP*(CF(V x X) xT) <2 H*((V x X)r)
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where both vertical arrows are induced by the diagonal niaps I' x I' and B —
EI" x ET'. This ends the proof.o

Proposition 3.3.LetE be an equivariant vector bundle éhwith connectiorv. Lety €
HC"(Cg°(V)«T') bethe character of the associated cycle, ang et HC"tk (C°(Vx
X) »x T') be the character of the cycle constructed with the bupd{gE and connection
pryV,wherepry : X x V. — V.Thenl (x) = x'. (Heren andk are dimensions oV
and X respectively.)

Proof. LetC denote the corresponding cycle ovg°(V) x T', andT -transverse fun-
damental cycle ofX. ThenC x T is a cycle over(Cg°(V) x I') ® (Cg°(X) x I),
and

Ch(C x T) = Ch(C) U t

by Corollary 2.8. If bypr*C we denote the corresponding cycle o@GP(V x X) x T,
we have

Ch(pr*C) = A*(Ch(C® T)) = A*(Ch(C)Ut) =I1(Ch(C)). O

Lemma 3.4.Suppose in addition to the conditions of Theorem 3.1fhetts freely and
properly onV. Then the statement of the theorem holds.

Proof. Since the group acts freely and properly, one can find a connectiéhvaimich
is [-invariant. For the class of the cocyctewritten with the invariant connection the
result follows easily from the definition of the ma@p o

Proof of Theorem 3.XComparison of the construction from [7], [14] with the definition
of the map® implies that (class of) is in the image of®d, [x] = ®(&) for some
(necessarily uniqued € H*(V xr EI'). We need to verify tha = Chr(E). We do
this by showing that for any oriented manifdi and any map continuoys: W — Vr
f*& = f*Chr(E).

Let W be the principal™-bundle obtained by pullback of the bundfex EI" — Vr,
so that the following diagram is commutative, afids I"-equivariant:

W —' vxEr

l l . (3.14)

w4 w

We can writef as a composition of twd-equivariant mapgy : W — W x V x ET,
which embedsV as the graph off andpr : W x V x EI' — V x EI, projection.
Letz : (Wx V)r - Vrandfi : W — (W x V)r be the induced maps. We have
f=nf1 ~

Construct now the clasg’ € HP"(C3°(W x V) x T') using the bundlgr* E with
conneqtionpr*v. By Proposition 3.3¢" = I(x), wherel : HP*(CP(V) xT) —
HP*+AmW (o (W x V) x T). By Proposition 3.2 = 1(x) = I(®(£§)) = &(7*¢).
By Lemma 3.4, sincdv x V is acted byl freely and properlyyx’ = ®(Ch(pr*E)).
But since Clipr*(E)) = n* Ch(E), and using injectivity ofb we conclude that

7*Ch(E) = *&.
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Hence

f*Ch(E) = fin*Ch(E) = fin"¢ = f*¢. O

Remark 3.1 (Relation with Connes’ Godbillon-Vey cocydie)the paper [5] Connes
considers (in particular) the case of the cirsfeacted on by the group of its diffeo-
morphisms DiffS1) . Here we present the Connes construction in the multidimensional
case and indicate some relations with our construction of cyclic cocycles representing
equivariant classes.

In the situation of the previous example take the budtite be \" T*X. Thisisa 1 -
dimensional trivial bundle, naturally equipped with the action of the gidepDiff (X).
Let¢ be anowhere O section of this bundle, i.e. a volume form. Define a flat connection
V onE by

V(fp) =df¢, ¢ € CT(X). (3.15)

We can thus define the cydleover the algebr& > (X).
Let nowd(g) be defined as above, and put

wie) = - e cx 00, (3.16)
Thenp is a cocycle, i.e.

n(gh) = nw(h)® u(g). 3.17)
We also have

8(g) =dlogu(g). (3.18)
Indeed,
8(8)p% =Vt — (V(9)* = V(u(g)p) = du(g)¢

and

_ du(g)e _ du(g)
@8 n(g)

For everyr we define a homomorphism : C®°(X) x I' — End(E) x I by

3(g)

= dlog(u(g)).

pr(alUy) = a(u(g)) U,. (3.19)

This is a homomorphism due to the cocycle property pivhich according to [5] is the
Tomita-Takesaki flow associated with the state given by the volume ¢orm

Consider now the transverse fundamental cyblever the algebrad = C*(X)
defined by the following data:

the differential graded algebg*(X) x I" with the differentiald (wU,) = (dw) U,
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the graded trac?[ on Q*(X) x I' defined by

Jo ifg=1
][ng: X

0 otherwise

the homomorphismp = pg = id from A = C®(X) x I'to C*°(X) x I.

The flow (3.19) acts on the cycie, by replacingog by p,. We call the cycle thus obtained
®,. Using the identities

d(pi(aUy)) = (da + ta dlogu(g))u(g)' Uy = (da +ta 5(g))u(g)'U;  (3.20)

and

(g0 (g1)%0 1 (g2)%08t .. ju(gr)B081 841 = 1i(gog1 - - - 8k): (3.21)

we can explicitly compute Qld,). This is the cyclia:-cocycle with the only component
of degree:. The result is:

Ch(®,) =Y t/p;. (3.22)
j=0

wherep; is the cyclic cocycle given by

pj(agUgq, a1Uyg,, ..., a,U,,) =
1 . , .
Y13 V2 Yip-1 Yip Yig+1
o Z apdaj day” .. .dal-lfl a;, dai1+1 .
’ l§i1<i2<-~<ij§nx

Oiyig,.i; V1, - Vi) (3.23)

for gog1...gx = 1and 0 otherwise, where we define as befgre= gog1 ... g;-1,and
the j-form Oiyigoniy (V15 -5 VE) is given by

Oigigeeni; (V1o - V&) = 8(8iy)18(8i) "2 ... 8(gi;) 7. (3.24)

In particular,pg is the transverse fundamental class. Comparing these formulas from the
formulas in the previous example we obtain

Proposition 3.5.Let ®1 be the image of the transverse fundamental cgclender the
action of the Tomita-Takesaki flow for the time 1. Cdie the cycle ove€*>°(X) x T’
associated to the equivariant bunghe’ 7* X with the connection fror(8.15) Then, on
the level of cocycle€h(®1) = Ch(C).

We now sketch a construction of a family of chaifrs providing the cobordism
betweend and®,, s € R. The algebra2* = Q « ([0, s]))@Q*(X) x I'. The homo-
morphism fromA to Q° mapsaU, € Q*(X) x I' toau(g)' Uy, wherer is the variable
on[0, s]. The connection is given byRlV + d®1, whered is the de Rham differential,
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and the curvature is 0 . The restriction map is given by the restriction to the endpoints
of the interval and the graded trace is given by

][ot@(a)Ug) = (—1)de9e f a/w
0.s] X

ifdegx = 1 andg = 1 and 0 otherwise. This chain provides a cobordism betwigen
and®;,. Its character is given by the formula

n+1

Ch(wy) =Y s/q;, (3.25)
j=1

wheregq; is the cyclic cochain given by

Qj(aOUgo, alUgl, e, anUgn) =

1 , . .
Y1 Y2 Yig-1 Yip ; Vig+1l
] E apday day” .. .dailfl a; dai1+1 ...

’ 1<ii<iz<--<ij<n X

Bitig,.nij (V1 Vi) (3.26)

for gog1...gx = 1and 0 otherwise, where we define as befgre= gog1...g;-1, and
thej — 1-form E; i, i, (v1. ..., vk) is given by

Eiryigyonii (V1o Vi) =
J

1 _ _ , .
- > (=1)!6(2i)718(8i)"2 .. log (g1 ... 8(gi)" . (3.27)
=1

Comparing this formula with (3.22) we obtain:

Proposition 3.6.Let p;, j = 1,...,n be the chains, defined {8.22) (3.23) andg;,
j=1,...,n+ 1be from(3.25) (3.26) Then forj =1, ..., n we have

Bg; = pjandbg; =0. (3.28)
Also
Bqgni1 = Oandb qn+l1 = 0. (329)

In particular all p; define trivial classes in periodic cyclic conomology, and is a
cyclic cocycle.

The cocycleg, 1 should represent (up to a constant) the Godbillon-Vey class in the
cyclic cohomology (i.e. class defined bycy, while p; andg; represent forms{ and
hici, j =1,..n, see [2]).
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Remark 3.2 (Transverse fundamental clashg construction of the equivariant charac-
teristic classes works equally well in the case of a foliation. The new ingredient required
here is the Connes’ construction of the transverse fundamental (generalized) cycle. We
now will write a simple formula for the character of this cycle.

We start by briefly recalling Connes’ construction from [6]. Details can be found
in [6]. Let (V, F) be a transversely oriented foliated manifold being an integrable
subbundle off V. The graph of the foliatio is a groupoid, whose objects are points
of V and morphisms are equivalence classes of paths in the leaves, with equivalence
given by holonomy. Equipped with a suitable topology it becomes a smooth (possibly
non-Hausdorff) manifold. By ands we denote the range and source mgps> V.

By Q,lp/z we denote the line bundle ovi of the half-densities in the direction af.

Let A = Cf° (g, s*(QIlF/Z) ® r*(szllp/z)) be the convolution algebra ¢f. We define
a (nonunital) generalized cycle over the algelras follows. Thek" component of
the graded algebr&* is given by C3° (g, s*(szllp/z) ® r*(Qllr/z) ® r*(/\k r*)). Here
t = TV/F is the normal bundle, and the prodzt ® @ — Q! is induced by the
convolution and exterior product.
The definition of the transverse differentiation (connection) requires a choice of a
subbundleH c TV, complementary taF. This choice allows one to identifg >
(V, N* TV*) with C®(V, \* F* ® A\* t*). We say that formw € C>®(V, A*TV*)
is of the type(r, s) ifitisin C*°(V, A" F* ® A\’ t*) under this identification. For such
a form we have

do=dyw+dyow + ow, (3.30)

wheredyw, dgw, ocw are defined to be components @b of the types(r + 1, s),
(r,s + 1), (r — 1,5 + 2) respectively (our notations are slightly different from those
of [6]). Now, writing locally p € C*(V, Qllp/z) asp = flo|¥?, f € C®(V), w €
c®v, A\U™F F*) we define

dup = (du o2 + flo| (3.31)

Finally, dg can be extended uniquely as a graded derivation of the graded algebra

Cy° (g, s*(Qﬁ/Z) ® r*(QIlV/Z) R r*(\* r*)) so that the following identities are satis-

fied:

dy (r*(p1) fs*(p2)) =
r*(du p1) f5*(p2) + r*(p1)dp f5*(p2) + r*(o1) f5* (dy p2)
for p1, p2 € CP(V, @Y%), f € C&G) (3.32)

and

dy (¢r(w)) = du(P)r*(w) + ¢r*(dnw)

forg e C&° (6.5* @ @ (@) we c=(v, ). (3.33)
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Now, for the formw d%w = —(dyo + ody)w. The operatod = —(dvo + ody)
contains only longitudinal Lie derivatives, and hence defines a multiplier (of degree 2)
of the algebracg® (g, QY @ r (Y% @ rr(A\* r*)).

Finally, the graded trace af{® (g, s*(Qllr/Z) ® r*(Szllp/z) ®r*(A\? 1:*)) ,q = codimF

is given by][a) = [o.

\%4
Lemma 3.7 (6]). <C8° (g, s*(Q}:/Z) ® r*(QllV/Z) ® r*(N\? f*)) ,dy, 0, ][> is a gen-
eralized cycle of degreg over the algebrad .

We can now write an explicit formula for the character of this cycle.

Proposition 3.8.The following formula defines a (reduced) cyclic cocyclim the (b,
B)-bicomplex of the algebral (with adjoined unit),

q—k

= ‘ .
oon oo =20 Y [adun . dn@oot. (330

atky
27 )" iottir=1E Y

Herek = ¢q,q — 2, ..., and¢;, j > 1 are elements af{, while ¢g is an element of4
with unit adjoined.

Recall, that foiy even to define the cocycle ovdrwith the unit adjoined we extend
by requiring that}-09/? = 0. The resulting class is independent of the choicH oft

follows from the fact that by varying the subbundfesmoothly we obtain the cobordism
between the corresponding cycles, satisfying the conditions of Lemma 2.7. Note that
the equality here is in cyclic cohomology, not only periodic cyclic cohomology.

The results of Sect. 2 imply thatthe class of the cocydiethe transverse fundamental
class of the foliation, as defined in [6].

4. Fredholm Modules

In this section we write formulas for the character of the generalized cycle associated
with a finitely summable bounded Fredholm module (cf. [4]) . In other words we obtain
a formula for the character of a Fredholm module. We show that this definition agrees
with Connes’ definition [4].

Let (H, F, y) be an even finitely summable bounded Fredholm module over the
algebraA. Here? is a Hilbert space, on which the algeb#daacts,y is aZ»-grading
on?, andF is an odd selfadjoint operator ¢. We assume thatl is represented by
the even operators iK, and since we almost always consider only one representation
of A, we drop this representation from our notations, and do not distinguish elements
of the algebra and corresponding operators. We suppose that the alpishraital. Let

p be a number such thaF, a] € £F and(F2 — 1) £%. We remark that for any
summable Fredholm module one can achieve these summability conditions by altering
the operatorF and keeping all the other data intact. We associate with the Fredholm
module a generalized cycle similarly to [4] where it is done in the case Wikes 1.
Consider aZ-graded algebr&2 = @, _, ™ generated by the symbois € A of
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degree O [F, a], a € A of degree 1 and symboF?2 — 1) of degree 2 , with a relation
[F,ab] = a[F, b] + [F, alb. This algebra can be naturally represented on the Hilbert
spaceH, and we will not distinguish in our notations between elements of the algebra
and the corresponding operatofsis equipped with a natural connecti®h) given by

the formulaVv (¢) = [F, &] (graded commutator) in terms of the representatiof adr

on generators by the formulas

V(a) = [F, al, (4.1)
V([F,a]) = ((F2 —1a — a(F? — 1)) = [(F2 = 1), al, (4.2)
v ((F2 _ 1)) —0. (4.3)

Notice thatV2(¢) = [(F2 — 1), €] for & € Q. Hence we define the curvatufeto be
(F? — 1). Clearly,& € Q" is of trace class if: > p. Here we need to chooseto be

even,n = 2m. Hence we can define the graded tracezinby ][é = m!Tr y&. The

equalityTr y V(&) = 0 for £ € Q"1 follows from the relation
1
Tryw=STryFV() —Tr y(F2 = Do

which holds forw of trace class). Indeed, fgre Q"1 V(¢) is of trace class and

1
TryvE =3Tr yFV2(§) + TryV(§)
= %Tr yFI(F?=1),1—Try(F>—1)[F,£] =0. (4.4)

Now we can apply the formula (2.4) to obtain a cyclic cocycle,@t) in the cyclic
bicomplex of the algebral. Its components CQJI(F) k=0,2,4,...,2n are given
by the formula

CH(F)(ag, a1, . . .ax) =

(m T—k)v Y. Trya(l— F)°[F,a1l(1—- FA" .. [F,a](L— F?)™.
z .

iotiz+-tig=m—5%

(4.5)

Note that for the case whe? = 1 we get the formula from [4], normalized as in [6].
We will now associate the generalized chain with homotopy between Fredholm
modules. If the two Fredholm modul€${, Fp, y) and (H, F1, y) are connected by
a smooth operator homotopy ( meaning that there exigt$ gamily F; of operators
with [Fy,a] € £P and(F2 — 1) € £2, 1 € [0, 1] with F,|,—o = Fo, F;|,—1 = F1), this
generalized chain will provide cobordism between cycles corresponding to the modules.
We start by constructing, exactly as before, an alg€hrgenerated by the elements
a,[F;, al, (F? — 1), with the connectioiV, and the curvaturé, = (F? — 1). For each
t € [0, 1] one constructs a natural representatipif this algebra on the Hilbert space
H. Let Q*([0, 1]) be the DGA of the differential forms on the intenj@l, 1] with the
usual differentiald. We can form a graded tensor prod§zt([0, 1])®£2,. Choose an
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odd numben = 2m + 1 so that: > p + 2; if in addition we suppose théf: € L7,
we can choose > p + 1. In order to define the connection and the curvature we will

have to adjoin to our algebra an element of degreﬁ@‘% and an element of degree

3 di®(F, ‘% + ”ii—Ft’Ft). The algebra with the adjoined elements will be den&tedlhe
homomorphisnp, : A — €. is given byp.(a) = 1®a. We define the connectiovi.
as% A dt 4+ V,, i.e. on the generators the definition is the followiggg 2* ([0, 1])):

V.(B8a) = dB®a + (~1)%9P R F,, a], (4.6)
. - N __dF,
V. (BBIF, al) = dBB[F,, al + (—1)®9P BR[(F2 — 1), al + B A dr®[d_f’ al.
4.7)
R . . dF, dF
Vo(BO(FF — 1)) = dBB(F? — 1) + B A dr@(Ftd—tf + d—t’m, (4.8)
AdF[ —~ dF[ dF[
Vo(dt®—1L) = —dt@(F,—L + =L F)), 4.9
c(®dt) ®(tdt+dtz) (4.9)
o~ dFt dFt ~ 2 dFt
\Y F—ly 2 'py) = F2 1), 1. 4.1
The curvaturd, of this connection is defined as
R _dF,
b =1R(F? — 1) + di®—- (4.11)

dt’
and the identity(V.)2- = [6., -] is verified by computation. One then defines the graded
trace][ on (Q*([0, 1)®;)" by the formula

c

[0.1]

R (—D9IOmt [ (BTrym&)) if peQ(0,1])
][ BRE = .
c 0 if 8 € Q9([0, 1))

The restriction mapsgg : Q. — Qo andri : Q. — Q1 are defined as follows.
ro(BRE)) is 0 if B is of degree 1, anfl(0)&o whereg is obtained front by replacing
F, by Fo if B is of degree 0, and similarly for;. One can check that the map® ro
identifiesd Q. with Q1 @ QO and provides required cobordism.

Now we can use Theorem 2.1 to study the properties afFChvith respect to the
operator homotopy.

Theorem 4.1.Suppos€?H, Fo, y) and(H, Fi, y) are two finitely summable Fredholm
modules over an algebrd which are connected by the smooth operator homotgpy
andp isanumber such thai;] € LP and(F,z—l) € L7 for0 <t < 1. Choosen such
that2m > p + 1. ThenChy,, (Fo) = Chp,,(F1) in HC?"(A). If moreover% e LP
one can choosa such tha2m > p.

Proof. Let Tch% = denote thé™ component of the character of the constructed above
chain, providing the cobordism between the cycles associated (#thp, y) and

(H, F1,y),k=1,3,...,2n+ 1. It can be defined under the conditionsespecified

in the theorem. According to Theorem 2.1,

Chy,, (F1) — Chy,, (Fo) = (b + B) Tchoy,.
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Now,

Tchgﬁﬂ(ao, ai, ...axp41) = COﬂSt][ pc(@g)Ve(pe(a)) ... Ve(pe(azm+1)) =0
C

(since the term under th¢ does not contaidz). HenceT chy,, can be considered as
the 2n — 1 chain (is in thecimage af), and the result follows.o

Remark 4.1Suppose we have two Fredholm modules Fo, y) and(H, F1, y) such
thatFo— F1 € £P andF? — 1€ £%,i = 0,1 . Then Ch, (Fo) = Chp, (F1), 2m > p.
Indeed, we can apply Theorem 4.1 to the linear homotBpy: Fo + ¢ (F1 — Fp), and
need only to verify thaF2 — 1 € £Z. But

F?—1=(F§ — 1) + t(Fo(F1 — Fo) + (F1 — Fo)Fo) + t*(F1 — Fo)?.

The firstand the last terms in the right-hand side are alwa¥§ irand since the left-hand
sideisinCz fort =1, (Fo(F1— Fo) + (F1— Fo)Fo) € Lz,

Corollary 4.2. Lete be an idempotent iMy (A), and(H, F, y) be an even Fredholm
module overA. Construct the Fredholm operatdf, = ¢(F @ 1)e : HT @ CV —
H~ ® CN (whereH+ andH~ are determined by the grading). Then

index(F,) =< Ch*(F), Ch.(e) > .
HereCh, (e) is the usual Chern character in the cyclic homology.

Proof. By replacingA by My (A) we reduce the situation to the case when A. Now
we apply Connes’ construction, which uses the homotBpy= F + t(1 — 2¢)[F, e]
which connectg” (obtained whem = 0) with the operatoF; = eFe+(1—e)F(1—e),

obtained whenm = 1. Note that - F2 € £%. Indeed,
F2—1=(F2— 1)+ (t(1L— 20)[F, e])* + ¢ (IF. (1 - 2¢)[F, e]]).

The first two terms are clearly if2. As for the third one, it can be rewritten as
—2[F, e][F, e] + (1 — 2¢)[F, [F, e]] = —2[F, e]> + (1 — 2e)[(F2 — 1), e] € L5

The operato#; commutes witle, and homotopy does not change the pairing. Hence
it is enough to prove the result in the case whéande commute. In this case in the
formula for the pairing all of the terms involving commutators are 0, hence the only term
with nonzero contribution is GiF)(e) = Tr ye(l — F2)" = Tr y(e — (eFe)®)™ =
index(F,) by the well known formula. o

In [4] Connes provides canonical construction, allowing one to associate with every
p-summable Fredholm module such t##t— 1 # 0 another one for whicliZ2—1 = 0,
and which defines the sani&-homology class. This allows to reduce the definition of
the character of a general Fredholm module to the case wRea 1. The construction
is the following. Given the Fredholm moduié., F, y) one first constructs the Hilbert
spaceH = H @ H with the grading given by = y & (—y). An elementz € A acts

by (g 8) Then one constructs an operafarsuch that” — F’ € £7 andF2 = 1; here

F O
0-F

by F’ we denote(
definedto be the character of th@{, F, ).

). The character of the Fredholm modul, F, y) is then
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Theorem 4.3.Let (H, F, y) be an even finitely summable Fredholm module over the

algebraA, and letp be a real number such théF, a] € £? and(F2—1) € £%.Then
the class ofCh*(F) defined in(4.5) in the periodic cyclic cohomology coincides with
the Chern character, as defined by Connes [4].

Proof. First, let us consider the Fredholm modmé, F’,y) over the algebraz- the
algebraA with adjoined unit (acting by the identity operator). Thenp26F") defines
a class in the cyclic conomology of, where we choosen2 > p. SinceTr y (1 —
(F")2y™ =0, it defines a class in the reduced cyclic cohomologgApénd hence in the
cyclic cohomology ofA. It coincides with the class defined by the Fredholm module
(H. F.,y).

Theorem 4.1 and Remark 4.1 show that the classes defined by the Fredholm modules
Ch(F) and CHF’) coincide. To finish the proof we note that(m coincides with the
Chern character as defined in [4f

The proof of Theorem 4.1 also provides an explicit transgression formula. We just
need to compute explicitly formula for

Tchb, (ao, a1, ... ax) =
(—)"=*Z (m)!

ot 5 > ][ pe(a0)02V(pe(@r))0it . .. Velpelar))oik.

ioti1+- +tk—m—k%

(4.12)

Sinced! = Y di®(F? — 1)" 4% (F2 — 1)7 one can rewrite this formula as
r+q=i;—1

(—1)m_k;21(m)! 1 l
Tt S /0( 2 Z Y. (“Y'Tryao(F? -1

ig+i1+--+ig=m— k—zl r+q=ij—1

[Fr.a1)(F2 — D . [Fy, a))(F2 — 1)’d—t’(F,2 — [ ad(FE = D )dr
(4.13)

Finally we can write the answer as

k
Tchs,, (ap, a1, ...ar) =

(m)* /1 : i 2 i
T o+ KLy -'T F2 _ 1yio
(m + &1 o< 2 Y _(D'Tryao(F?-1)

io+»--+ik+ik+1—m—m =0

[F},a1](1— th)il AF, a](1— Fz)” (1 Fz)”Jr1 Fr, ar (1= th)ikﬂ)dt
(4.14)
wherek is an odd number between 1 and 2- 1.

All the considerations above can be repeated in the case of an odd finitely summable
Fredholm modul€?, F) over an algebrad . Here as before we suppose that a] €
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Ll (F2—1) ¢ £%. We choose the number such that: = 2m + 1 > p. The trace
now is given by][g =2iT(n/2+ DTré.

The corresponding Chern charactengh; (F) has components %H fork =1,
3,...,2m+ 1, given by the formula

F(m+ V2
(m + 54!
> Trag(l— F2)O[F, a1](1 — FAH .. [F, a (1 — F?)*. (4.15)

ioti1t-t+ig=m— k;zl

Ch,,11(a0, a1, ... ax) =

If the two Fredholm modules are connected via the operator homdippye has
the transgression formula

Chpyy1(F1) — Chyyi1(Fo) = (b + B) Tchapqa, (4.16)

whereT chap1 is @ 2n cyclic cochain having componerﬂ?z:h’ém for k even between
0 and Zn, given by the formula:

k
TCth—i—l(aO, ai,...ay) =

32 [l :
Ton+pv2 f (X XevTraw?-pe
0

- k
m+ 5+ 1)!
( 2+t 1 io-rtigigg1=m—5 1=0

. . dF . .
[Fr a1l — F?)* . [F, a](1— F?)! d_zt(l — F2)it | [Fy, a)(1— th)‘k“)dt.
(4.17)

The proof of Theorem 4.3 works in the odd situation as well and shows th&#Ch
coincides with the Chern character as defined by Connes. In particular, this allows to
recover the spectral flow via the pairing wikii"eory. More precisely, let € My (A)
be a unitary. Let SfF ® 1, (F ® 1)*) be the spectral flow of the operatafs® 1 and
(F® 1" = u((F ® 1)u* acting on the spacl ® C". The Chern character of the class
of u in K1(A) is the periodic cyclic cycle defined by

Chy(u) = 1 S DA -l ((u Qu H —wle u)l) ) (4.18)
=1

23/ 2mi
Then we have the following

Corollary 4.4. Letu € A be a unitary, and’, F) be an odd Fredholm module over
the algebrad. Then< Ch*(F), Ch,(u) >=sf(F ® 1, (F ® 1)*).

Remark 4.2This is a finitely summable analogue of the result of Getzler [8]. In the
finitely summable case analytic formula for the spectral flow was derived in [3]; use of
Theorem 4.3 allows to give a proof of Corollary 4.4 without using this formula.
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