Commun. Math. Phys. 207, 665 — 685 (1999) Communications in
Mathematical
Physics
© Springer-Verlag 1999

Random Unitary Matrices, Permutations and Painlevé

Craig A. Tracy 1, Harold Widom 2

1 Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis,
CA 95616, USA. E-mail: tracy@itd.ucdavis.edu

2 Department of Mathematics, University of California, Santa Cruz, CA 95064, USA.
E-mail: widom@math.ucsc.edu

Received: 2 December 1998 / Accepted: 12 May 1999

Abstract: This paperis concerned with certain connections between the ensemlsle of

n unitary matrices — specifically the characteristic function of the random varigblg tr

— and combinatorics — specifically Ulam’s problem concerning the distribution of the
length of the longest increasing subsequence in permutation groups —and the appearance
of Painlevé functions in the answers to apparently unrelated questions. Among the results
is a representation in terms of a Painlevé V function for the characteristic function of
tr(U) and (using recent results of Baik, Deift and Johansson) an expression in terms of
a Painlevé Il function for the limiting distribution of the length of the longest increasing
subsequence in the hyperoctahedral groups.

1. Introduction

The characteristic function of the random variablg tivhereU belongs to the ensemble
U(n) of n x n unitary matrices with Haar measure, is the expected value

En(ertl’U-ﬁ—sﬁ). (ll)

In U (n) we have for any functiog with Fourier coefficientgy,

E, [ e | =detTu(), (1.2)
j=1

whereT), (g) is the associated x n Toeplitz matrix defined by
T.(¢) =(gj—k)» (G, k=0,---,n—1).

Itfollows that the distribution function (1.1) equals the determinant of the Toeplitz matrix
associated with the functioef=+s<"". The determinant, which we denote By, is a
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function of the products (see Sect. 2) and so it is completely determined by its values
whenr = s = ¢. This functionD,, (t) has connections with both integrable systems and
combinatorial theory. To state our results, and these connections, we introduce some
notation.

We set

f(Z) — el (Z+Z_1)’

so thatD, (r) = det T,,(f). Notice thatT, (1) is symmetric sincef (z~1) = f(z). We
introduce the:-vectors

1 0 bl Jn
0 0 fZ fn—l
A B A B P AR B A A E

0 0 Su—1 f2

0 1 fn fl
and define

U= (T(H7Hr*67) = (Tn 7t 6%).

If we set

®, =1- U2
then®,, as a function of satisfies the equation
1 1 1

(D//Z_(_
nT 2 <1>,1—1+<1>n

P, -1
@,

)@/2 1o g 4™ 1.3
(n) —;Cl)n— q)n(q)n_)+t_2 ) ()

which is a variant of the Painlevé V equatipand in terms of iD,, has the representation

t
D, (t) = exp<4/ logt/7) T d>,,(r)dr> . (1.4)
0

This is reminiscent of the many representations now in the literature for Fredholm de-
terminants in terms of Painlevé functions. We shall also show that

W, = Un/Unfl

satisfies

W2— 2 awio o (15)

n

1 1
W”:W(W,/,)z—?w,;+4
n

n

which is a special case of the Painlevé Il equation.
An important ingredient in the proofs is the following recurrence relation satisfied
by theU,:

Uy + (1= UD) U1+ Unt) = 0. (1.6)

1 The substitution? = z and®,, = w/(w — 1) transforms (1.3) to the standard formmf with parameters
o« =0,8=-n?/2,y =2ands =0.
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We shall see that this recurrence formula, sometimes known as the discrete Painlevé Il
equation (see, e.g. [6]), is equivalent to one first shown to hold ey by V. Periwal and
D. Shevitz [9]. It was rediscovered by M. Hisakado [4], who also derived an equation
equivalent to (1.3) and observed that this was one of the Painlevé V equations which, by
results of K. Okamoto [8], is reducible to Painlevé Ill. Carrying through the Okamoto
procedure is what led to oW, although the proof we give is direct. Our derivations
of (1.3) and (1.6) are different from those in [4] and perhaps more down-to-earth since
we use only the simplest properties of Toeplitz matrices and some linear algebra. (They
cannot be entirely unrelated, though, since the orthogonal polynomials which are central
to the argument of [4] can be defined in terms of Toeplitz matrices.)

Aremarkable connection betwegfitn) and combinatorics was discovered by Gessel
[3]. Place the uniform measure on the symmetric gr&np denote by y (o) the length
of the longest increasing subsequence jiand definefy,, by

an

Prob(¢{y (o) < n) = NI

ThenD, (¢) is a generating function for thgy,.2 In fact

2N
Dn(t) = Z an(jv_!)2~ (17)

N>0

Recently, E. Rains [10] gave an elegant proof that

fan = Eq (Ir@)2), (1.8)

which can be shown to be equivalentto (1.7) by a simple argument. Using the relationship
(1.7) a sharp asymptotic result for the distribution function of the random vardglite)
was recently obtained by J. Baik, P. Deift and K. Johansson [1]. And at the same time
they discovered yet another connection with Painlevé.

Their main result, which was quite difficult, was an asymptotic formulaligtt)
which we now describe. Introduce another parametend suppose that and: are
related byn = 2r + s t1/3. Then ag — oo with fixed s one has

im e Dy, s ua(t) = F(s). (1.9)

t—00

Here F is the distribution function defined by

o
F(s) = exp(—/ (x — s)q(x)zdx>, (1.10)
whereg is the solution of the Painlevé Il equation

q" =sq +2q° (1.11)

2 Gesselin [3] does not write down the symbol of the Toeplitz matrix, nor does he mention random matrices.
But in light of the well-known formula (1.2) and the subsequent work of Odlyzko et al. [7] and Rains [10],
we believe it is fair to say that the connection with random matrix theory begins with the discovery of (1.7).
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satisfyingg (s) ~ Ai(s) ass — oo. (For a proof that such a solution exists, see, e.g. [2].)
Using a “de-Poissonization” lemma due to Johansson [5] these asymptotics for the
generating functiorD,, (¢) led to the asymptotic formula

(eN(a) —2JN

lim Prob /6 < s) = F(s) (1.12)

N—o0

for the distribution function of the normalized random varial#lg (o) — 2/N)/N/6.

Itis a remarkable fact that this same distribution functfbwas first encountered in
random matrix theory where it gives the limiting distribution for the normalized largest
eigenvalue in the Gaussian Unitary Ensemble of Hermitian matrices. More precisely,
we have for this ensemble [11],

Jim Prob ((AmaX(N) — «/ﬂ) V2NV < s) — F(s).

In connection with these results just described, we shall do two things. We show,
first, how one might have guessed the asymptotics (1.12). More precisely, we present a
simple argumentthatifthere is any limittheorem of this type, \fith) some distribution
function and with some powe¥“ replacingN /%, then necessarily = 1/6 andF is
given by (1.10) withg a solution to (1.11). (The boundary condition gnhowever,
cannot be anticipated.) This conclusion is arrived at by considering the implications of
(1.9) with+1/3 replaced by2* for the recurrence formula (1.6).

Secondly, we derive analogues of (1.8) and (1.7) for the subgé@upf “odd”
permutations oSy .2 These are described as followsNf= 2« think of Sy as acting
on the integers from-k to k excluding 0, and iV = 2k + 1 think of Sy as acting on the
integers from-k to k including 0. In both cases € Sy is calledoddif o (—n) = —o (n)
for all n. The number of elements in the subgralp of odd permutations equal$ 2!
in both cases. Therefore ¥y, equals the number of permutationsdhy, having no
increasing subsequence of length greater than

_ an
T2k kY

Prol(¢y (o) < n) (1.13)

where the uniform measure is placed®@p. Rains [10] proved identities analogous to
(1.8) for these probabilities. Using these we are able to find representations for the two
generating functions

2k

(IZW’ (1.14)

2k
G,(t) = Zban(ll;?a H,() = Zb2k+ln

k>0 k>0

analogous to the representation (1.7). (See Theorem 1 below.) The same determinants
D, (¢) arise as before but in the representation 1), whose derivation uses the
machinery developed in earlier sections, the quantiigslso appear. Once the rep-
resentations are established we can use (1.9) and Johansson’s lemma to deduce the

3 Our terminology foiO y is not standard. Fa¥ = 2k one usually denot&8 y by By, the hyperoctahedral

group of order 2k! which is the centralizer of the reversal permutatiojn. Elements of3; are commonly
calledsigned permutationsSimilar remarks hold fov = 2k + 1.
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Table 1. The mean g), standard deviatioru(), skewness) and kurtosis K) of F andFp := F?

Distr n o S K
F —1.77109 0.9018 0.224 0.093
Fo —1.26332 0.7789 0.329 0.225

S

2

Fig. 1. The probability densitieg = dF/ds and fp = dFp/ds

asymptotics of (1.13). We show that &s— co we have for fixed,

ty(o) — 2N
PrOb(NZZ/ST < S) — F(S)za (115)

whereF (s) isasin (1.12).
In Table 1 we give some statistics of the distribution functidhand Fp := F2. In
Fig. 1 we graph their densities.

2. The Integral Representation for D,
We write
A=TzY, AN =T ().
ThusA is the backward shift and’ is the forward shift. It is easy to see that

L H=T(HA+ TR =AT(/H+5 ®f, (2.1)
L) =T (HN+f @5 =NT,(/H+5t® T, (2.2)

wheres® and f* were defined above andy b denotes the matrix witl, k entrya; by.
Relation (2.1) holds for any but (2.2) uses the fact thgt , = f;.
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To derive (1.4) we temporarily reintroduce variabtesds and setf (z) = /<52 ",
so D, andT, are functions of ands. Of course we are interested i, (z, ). We shall
compute

32, log Dy (r, 5)

r=s=t

in two different ways.
Using the fact that

35 10g Dy (r, ) = tr T, ()2 T, (05 f) = tr T, ()2 T (271 1),

then differentiating with respect tq we find that

07, 109 Dy (r, 5) =t [T, () To(f) = Tn( ) T T2 ) Tn(H) T Tu (@t )]
=tr [l = T,() TG ) T TGN

We now set = s = t. Sincef is now as itwas, we can use (2.1) and (2.2). If we multiply
their first equalities on the left by, (/)1 and use the notatiom™ = 7,,(f)~1f* we
obtain

LA TG H=A+u" @87, Tu(H T fl=A+u 6.
Hence the last trace equals that of
I— (AN +u" @5 )A+ut®sh
=T -ANA—u QA —Aut@sT -6, uNHu" 5T,
The trace off — A’ A equals 1, and
AST =0, trAuT™®8T=(Aut,87)=wr, AsT) =0,
so we have

92,109 Dy(r,s)| =1 (7, u") (™, 8,

=s5=f

But(u—,8t) = (", ut) =", T,(f)"1f+) = U,. Therefore

92 1og D (r, s)‘ —1-U2=,. 2.3)
’ r=s=t
Now let us go back to generalands. For anyp > 0 Cauchy’s theorem tells us that
the j, k entry of T, (/) equals

1

—1 . 1
: et(rz—&-sz )Z_(‘/_k+1)d2 — p—J
2ri

“1-1y (i
: ! (Pretp sz —(j k+1)dzpk.
2l=p 271 Jiz)=1

It follows that D, (r, s) = D, (pr, s/p), and by analytic continuation this holds for any
(complex)p. Settingp = /s/r we see that

Dy(r,s) = Du(Nrs, /rs).
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It follows that D, (r, s) is a function of the produats, as stated in the Introduction, and
that

492 log D, (r, s) —dZIOD(tt)+1d|0D(tt)
rs 109 P SN = G2 090 rar 9o,

Comparing this with (2.3) we see that we have shown

d2I0 D(tt)+1d|0 D,(t,t) =4
a2 090 rar o9t =a%n

This gives the representation (1.4).

Of course it remains to show that this, satisfies (1.3). We do this by first finding a
formula ford U, /dt and then finding relations among the various quantities which occur
for different values of..

3. Differentiation

In addition tou™ = T;,(f)~1 f*, we introduca* = T, (f)~1s* and we compute some
derivatives with respect to First,

i — -1 _ / + + — —
7 N =T+ )N =T A+ A)+ [R5+ [ ®

by the first equalities of (2.1) and (2.2), so
1 dTy (f )

1_ 1
dtT,(f) " =—-T.(f)~ T.(f)~ (3.1)
= —(A+A)Tn(f) Lutevt—u v .
Next,
fo 12
1 /3
art | ] o .
dt__ + . =Ta(f)8" + AfT + fuyr16.
fn—Z fn
Jn-1 Jnt+1
Hence
adft “1p et -
T.(f) F—S + T () "AfT + fagav. (3.2)
Multiplying the second equality of (2.1) left and right By( f)~* gives
TN T A=AT, (N +ut @vth —v @u”. (3.3)

Therefore

Tu(H AT = Aut +ut b fH—vm @, ),
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and substituting this into (3.2) gives
_pdft + + 4yt Tt - -
T.(f) F:a AT +ut L v (farr— @, f).
Adding this to (3.1) applied tg T gives
dut
dt

Taking inner products with~ in the last displayed formula we obtain (recall the defini-
tion of U,,)

dU, , _ _ -
— = WU+ ) (= 7 ) = @8 07 ).
We used the fact, which follows from the symmetryIgf 1), that all our inner products
whose entries have signs as superscripts are unchanged if both signs are reversed.
To find (A’ u™t, §7), which is the same as\ u—, §7), we observe that

=8t —Aut+v (o=@ ) —u v, fH.

fn
Jn—1
AfT= : =Tu(f)8" — fod™.

1

0
Applying (3.3) tof~ therefore gives

S~ —fov  =Au +ut @ ) —v (T, f).
Hence
—(ANut, 8 ==(Au", 87 = @, 8 T, )+ (07, 8) (fo— (T, f)).

Thus we have established the differentiation formula

du,

7 = 85) (fo— @™, )+ @85 (furr— @™, f1). 3.4

4. Relations
New quantities appearing in the differentiation formula are
vE =t 6").

There are others but we shall see that they may be expressed in terms of these (with
different values ofz), as indeed so willJ,,. We obtain our relations through several
applications of the following formula for the inverse of a2 block matrix:

-1
(A B) ((A—BD—lc)—l x)
- . 4.1)
CD X X
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Here we assumd and D are square and the various inverses exist. Only one block of
the inverse is displayed and the formula shows that BD~1C equals the inverse of
this block of the inverse matrix. At first all that will be used abguts that 7, (f) is
symmetric. (There are modifications which hold in general.)

We apply (4.1) first to thén + 1) x (n 4+ 1) matrix

0 0 --- 1
fi fo - fuma
Sa fac1 fo

with A = (0), D = T,(f),B =0 --- 01),C = f*.Inthis caseA — BD"1C =
—(T,(f)~Y f*,87) = —U,. This equals the reciprocal of the upper-left entry of the
inverse matrix, which in turn equals-1)" times the lower-lefz x n subdeterminant
divided by D,,. Replacing the first row byfo f1 --- f.) gives the matrix

fo i
fi fo - fua
. : : = n+1(f)~
Jo fom1-- Jfo

The upper-right entry of its inverse equals on the one Hgnd and on the other hand
(—1" times the same subdeterminant as arose above dividéy,by. This gives the
identity

— Dn+l Vn7+1
T TV o

(If we consider the polynomials on the circle which are orthonormal with respect to the
weight functionf then the right side above is equal to the constant term divided by the
highest coefficient in the polynomial of degreeTherefore ourU, equals theS,_1
of [4].)
If we now takeA to be the upper-left corner @,1(f) and D the complementary
T.(f), thenC = f* andB is its transpose, and we deduce that
1
fo— @ fH=—". (4.3)
Vn+l

To evaluatef, .1 — (u—, f), the other odd coefficient appearing in (3.4), we consider

fo fi fu famr
fi fo oo famr Sa
o : = Thy2(f).
fn fomio fo A
favr oo S SO



674 C. A. Tracy, H. Widom

We apply to this an obvious modification of (4.1), wherés the 2x 2 matrix consisting
of the four corners of the large matrig is the centrall,,(f), C consists of the two
columnsf* and f~ and B consists of the rows which are their transposes. Then

nppoie_ [ @A fn+1—(u—,f+>)

forr— @™, fT) fo— @™, fh)
and our formula tells us that this is the inverse of
+ p—
Vn+2 n+2
Vo,V
n+2 "n+42
This gives the two formulas

V"r V-

fo— @™, M= +2n—+2_2 for1— @™, fH = +2—n+2_2
n+2 =~ 'nt2 Vn+2 - Vn+2
Comparing the first with (4.3) we see that
2 _ 2
Vﬂ—:—Z - vn-|-2 = Vn—:—l Vn—:—Z’ (4'4)
and therefore that the preceding relations can be written
_ 1 V.
fo— ¥, [N =5 fem @ [ = V":Z. (4.5)
n+1 n+1l "n+42
Notice that (4.2) and (4.4) give
V+
1-Uf= 2. (4.6)
n+1

This is our®,,.
The relations we obtained so far in this section are completely general. The recurrence
(1.6), however, depends on our specific functfarintegration by parts gives

t _
kfi=5— /(Z — e @D g — y (fia = fir) (4.7)
Hence ifM = diag(1 2 --- n) we have
MT,(f) = Tu(H)M =1 T(z —27H /),
and by the first identities of (2.1) and (2.2) this equals
(L@ =0+ 88 - [T o6t
o]

() *M —MT,(f) =1 [(A’ —NT(N) v —ut® v+].
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Applying this toé~ gives
nv——A4v'=tBAC-A)fﬂ+u—w—ﬁ—)—u+@+ﬁ—ﬂ. (4.8)

Now (4.7) says

fo—f2
fi—fs
Mft=1t :
fn—Z - fn
Jo-1— for1

whereas (this is relevant since the transpos&’of A is A — A’)

Sf2
fz— N
(A=A fH= :

fn - fn—2
_fn—l

Therefore
M T+t =A) [T =1(fo8" = fur187),
and so taking inner products witfi+ in (4.8) gives
;(vi fH=fo07,8") = 10, 87) + @, fH@T,87) — @, fHT,8),
or equivalently, sincév—, f1) = U,,
ZUs = (fo— Gt ) Vi = (fusn = @™ £) V-

Using (4.5) we rewrite this as

ﬁ U, = Vn_ + Vn+ an 2 Vn+ Vn_ Vn+ anr 2
nT o+ + + T oyt + + +
t Vn+1 Vn+1 Vn+2 Vn+l Va Vn+l Vn+2

Using this, (4.6) and (4.2) we arrive at (1.6).

675
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5. Painlevé V and Painlevé Il

We first show thatb,, satisfies (1.3). Our formula (3.4) fdU, /dt can now be written

n —_—

dt Vn—:—l Vn-:-l Vn—:—Z Vn—:-1 V"+ Vn-:-Z (5'1)
=—1—U?) (Uy-1— Unp1),

dU, V- Vn+ Vn7+2 _ Vn+ Vi Vnii-Z)

by (4.5), (4.6) and (4.2). Adding and subtracting (1.6) gives us the two formulas

du, n

= Un +2Una (L= U, (5.2)
du, n

d_t” == Uy =201 (1~ U?). (5.3)

These are Egs. (4.5) and (4.6) of [4]. As was done there, we solve (5.2),farin
terms ofU,, anddU, /dt and substitute this into (5.3) with replaced by: + 1. We
get a seconzd—order differential equation fd; which is equivalent to Eq. (1.3) for
o, =1-U2

Next we show thaW, = U,/U,_1 satisfies (1.5). In computing the derivative of
W, we use (5.3) to compute the derivativel@f and (5.2) withn replaced by: — 1 to
compute the derivative df,_1. We get

2n—1
Wéz_”t W, —2+4U%—2W2. (5.4)

Using (5.3) once again we compute

2 2
U2 =2U, (—; Uy, —2U, 1 (1— Unz)) = —2? U2 — 4%’1%).
Differentiating (5.4) and using this expression {6f%)’ we obtain a formula foi” in
terms ofW,,, W, andU2. Then we solve (5.4) fdv2 in terms ofW,, andW,, . Substituting
this into the formula foW,’ gives (1.5).

In order to specify the solutions of the Egs. (1.3) and (1.5) we must determine the
initial conditions at = 0. Clearly®,,(0) = 1, but this does not determird, uniquely.
One can see thab,(f) (0) = 0 fork < 2n and that what determines,, uniquely is
®?Y (0). We shall show that

(2!

PO = —— .

(5.5)

By (4.2),U, = V, 4/ V,",. Now V,\. | is the upper-left corner of;,;1(f)~* and
so tends to 1 as — 0. So let us see how,_ ;, which is the upper-right corner of

T+1(f)~1, behaves. More exactly, let us find the term in its expansion with the lowest
power oft.
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We have
k
2rcosd _ N~ L i —if\k
e = Xk: o @’ +e™)
! [(2j—K)0 tt 176
_ N —i(2j— _ i . —i
= ) G Ch peT@0= % Clk, (j+K)/2) 7.
O<j=<k ljl=k
This gives
tk . tk .
L(f)= ) HCk G+ N =1+ ZCk (G+h/DN.  (56)

ljl<k ™ k>0
|j1=k

(Here A/ denotes the usual power wher= 0, but when;j < 0 it denotesA"j'.)
We use the Neumann expansion
!

k .
() =1+ (D' %C(k, (+k/2) A

I>1 k>0
ljl=k

If we expand this out we get a sum of terms of the form coefficient times
katethk a0 AL
Now the product\/1 --- A’ can only have a nonzero upper-right entry whies - - - +
Ji > n. Since eachyj;| < k, the power off must be at least, and this power occurs
only when eacly; = k. That means that we get the same lowest powetefm for the

upper-right entry if in (5.6) we only take the terms with= k, in other words of we
replaceT;, +1(f) by

The inverse of this operator is’ and the upper-right corner of this matrix is exactly
(=1)"¢*/n!. This shows that

Up ==V, 1/ Vi = (D" nl+ 0",

and so
2 12 2n+1
(bn=1—Un=1—W+0(t ),

which gives (5.5). We also see tHat, = U,/ U,,_1 satisfies the initial condition
! 2
W, (1) = - + 0 @°).

Using the differential equation (1.5) together with this initial condition we find

W) = t 13 25
T n2(n + 1) _7n3(n +D(n+2)
(5n + 6)¢ L o).

A+ 12 +2)(n +3)
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6. Painlevé Il

We present a heuristic argument that if there is any limit theorem of the type (1.12), with
some distribution functior¥ (s) and some poweN® replacingN/8, then necessarily

a = 1/6 andF is given by (1.10). First we note that Johansson’s lemma (which we
shall state in the next section) leads from (1.12) to (1.9) with the poW&replaced by

2% We assume thaft is smooth and that the limit in (1.9) commutes withis, so that
taking the second logarithmic derivative gives

_d? 2
t|l>moo W |Og D2t+.§‘ 120 = —q (S) .
whereg? is nowdefinedoy —g? = (log F)” andq is defined to be the positive square
root of g2 (for larges).
Since changing = 2r + s 1% by 1 is the same as changindpy r—2*, we have the
larger asymptotics
a0 @ “da 2
log D,,+1+log D,—1 — 2 log D, ~ ¢ o2 log Dy, 20 ~ —t" " q(s)”.

On the other han#,” = D,_1/D, and so

Dypi1 Dy _ /A

=1 —1-U2 (6.1)
D'% Vn_:-l
by (4.6). We deduce
log(1— U2) ~ 7% q(s)%, UZ~17%q(s)%. (6.2)

Now theU,, are of variable sign, as is clear from (1.6). Let us consider thageng
to infinity such that

Up-1= 0, U, < Oa Un+1 = 0, (63)
and write (1.6) as
t (Ups1+Up1+2U) A= U2 = —(n—20) U, — 2t U2, (6.4)

Because of (6.3), (6.2) and the fact that changing 2r + s 12 by 1 is the same as
changings by —¢, we have when is large,

Upi1+ Un—1 42U, ~ 175 ¢"(s).
Since also
n—2t~st®, U, ~—t"%q(s),
(6.4) becomes the approximation
1178 g () A~ s q(s) + 21178 g (s)°. (6.5)

Letus showthat = 1/6. If « > 1/6 then letting — oo in (6.5) givesy(s) = 0 and
SO F is the exponential of a linear function and therefore not a distribution function. If
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o < 1/6 then dividing byr1=% and lettingg — oo in (6.5) givesy” (s) = 24°. Solving
this gives two sets of solutions

w0 g
S:i/ _q +C21
q

Vat+ el

wherego, c1 andcz can be arbitrary. Nowy is small whens is large and positive, so

s is large and positive whedq is small. Therefore we have to have the + sign and we
must haver; = 0. ThenF (s) is of the form|s — ¢|~! times the exponential of a linear
function and therefore is not a distribution function. The only remaining case-i4/6,

and then (6.5) becomes (1.11). It follows thfats) must be given by (1.10) times the
exponential of a linear function. This extra factor must be 1 since (1.10) is already a
distribution function.

Now to derive this we assumed that theinder consideration were such that (6.3)
held. We would have reached the same conclusion if all the inequalities were reversed.
If n — oo in such a way that, sa¥j,_1 andU,, have one sign antl, 1 the other, then
(the reader can check this) we would have reached the conclysio@. Thus the only
possibility forg to give a distribution function occurs when= 1/6 andqg satisfies
(1.11).

7. Odd Permutations
Recall thathy, equals the number of permutations; having no increasing subse-

quence of length greater than The representations of Rains [10] for these quantities
are

ban = En (1t W21?). (7.1)
bai1n = Eq (Itr 02 tr)?). (7.2)

Theorem 1.Let G, (¢) and H, (t) be the generating functions defined in (1.14). Then

D (1)2, n even

G,(t) = 2 (7.3)
DLE:L([)DLJZAL([), n odd,

Hy (1) = Dy_1(t)Dyy1(1), neven (7.4)

D%([)D%(l), n odd

We prove a lemma which gives a preliminary representation for the generating func-
tions in terms of other Toeplitz determinants. Let

8z 11 12) = g(z) = D TREED

and define

Dy(11,12) = D, = detT;,(g).
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Lemma. We have

Gn(t) = D, (0, 1), (7.5)
192D, 192D,
Hi(®) =35 2 0.0+ oz ——+(0, —1). (7.6)

The proof of (7.5) is essentially the same as the proof that (1.7) and (1.8) are equiv-
alent. First observe that

2k
E, <(tr(U2) + tr(U2)>2k> = 2:;) (’2/:) E, (tr(UZ)mmz{_m> .

Each summand witlm # k vanishes since by the invariance of the Haar measure
replacing eaclV by ¢ U, with ¢ a complex number of absolute value 1, does not change
the summand but at the same time multiplies it8§~%. Thus,

E, ((tr(U2> +W)2k) - (ZZC)E (A @),

Hence (7.1) is equivalent to

_(k? o =\
bakn = sy En <(tr(U )+ tr(U )) )

Therefore if the eigenvalues of aree’®, - - . | ¢! we have

2\ (21)%
Gn (t)—Zban(k,)z ZE ((Zcoszj) ) (2%)!
(l—[ 2100529) ﬁn(o’ 1).

The last step follows from (1.2).
This gives (7.5). To prove (7.6) we use (7.2):

boeiin = En (tr(U)tr(Uz)ktr(U)tr(UZ)k>
B 1 (k')2 _\2 2 | o 2k
= 5 & <(tr(U)+tr(U)> (tr(U ) + (U )) )
by expanding the right side as before. Hence

2k -
H, () = 12(;]{)' n((tr(U)+W)2(tr(U2)+tr(U2))2k>

2E, <<Z cosej) cosh<2t Z cosGJ-))
E, ((Z cosej>2 li[ eZ’COSZ’f) + E, ((Z cosé'j)2 ﬁ e2’°0529/)

j=1

1 32 32
=202 Ey (]_[ g(e%, n, tz)) 0.n+7 v (H g(e'” tl,tz)) 0, —0).

1
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From the last equality (7.6) follows.

To prove the theorem we consider (7.3) first. Observeltha0, 1) is the determinant
of T,,(h), whereh(z) = f(z?). It has Fourier coefficients

hor = fi, has1=0.

Let us rearrange the basis vectegs e, - -- , e,—1 of our underlyingn-dimensional
space as

€0, €2, e1, €3, . (7.7)

Then we see from the above tHatk) becomes the direct sum of two Toeplitz matrices
associated witty, the orders of these matrices being the sizes of the two groups of basis
vectors in (7.7). lfn is even both groups have siz¢2 whereas ifn is odd the sizes
are(n £ 1)/2. Sinceﬁn (0, t) = detT, (h) is the product of the corresponding Toeplitz
determinants associated with we have (7.3).

The proof of (7.4) is not so simple. We have

192D, 5, = L \2
PRT =92 IogDn+<8,1 IogDn> .

Now, as in the computation leading to (2.3),

02 log Dy (11, 12) = tr (T(8) ™ T (028) = T(®) ™ Tu(038) To(8) ™ T (0118 )
=t [T Tl + 27H%0) = Tu(@) L Tu( + D) Tu(@) T Tl + 27 H9)

This is to be evaluated firstat= 0, 1 = 7. Sinceg(z, 0, 1) = f(z%) = h(z) we must
compute

tr [T L T+ 2752 = T A Tl + 27D T ™ T + 275 |

We write w® = T, (h)~1h*, so that thew® are associated with just asu® are
associated withy. Using (2.1) and (2.2) we find that

T, (W) Tz + 27 H) T Tz + 27Hh)
=N +w ®5 +A+wt®5H)2

and from this that
tr (T,, W) TG+ 27 HR) T Tz + z_l)h)) -
2n—24+2(w,A87)
+2wt, AT + 267, wh) ™, 8N + (6, w )P+ (61 w2,
Consequently
tr [ 1,007 (@ + 2792 = T ™ Tz + 2D T ™ Tz + 275 |

=tr (Tn W12+ Z’Z)h))
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+2—2w ,A8T) —2wT, A8 =267, whH) (w,8H) — ", w2 — 61, wh)2
This is2 log D, (0, 1). Similarly, we find
3y 109 D, (0,1) = (w, 87) + (w™,87),
so thatwhem; =0, 1 =1,
1 92D,
b, ot
+2-2w ,A87) —2(wT, A'8T) —2(wT,87) (w, 8T) + 2(w™T, 8T) (w, 87).

=92 log D, + (a,l log bn)z —tr (Tn )1, (2 + z*z)h))

SinceT, (h) is symmetric all superscripts in the symbols in the inner product may be
reversed as long as we interchangand A’. We therefore have shown

1 92D,(0,1)
D,©,1) 32

—tr (T,, W)L T (22 + z—z)h))
+2— 4@t AT — 2w, 87)2+ 2T, 62

Let us rearrange our basis elements as in (7.7) and suppose the first group has
vectors and the second group asThenT,, ()~ becomes the matrix direct sum

T,(f)t 0
0 TNt

andT, (h) 1T, ((z% + z~%)h) becomes

0 Ty (F) 1Tz + 27D f)

By a now familiar computation we find from this that

(Tnl(f)‘l To(z+ 25 1) 0

tr (T ™ T2+ 2721)) = 25 67) + 26,67,

whereu,! ands;} denote the quantities™ ands* associated with the index. We use
similar notation below. To continue, after rearranging our basis we have the replacements

0 0 5t 0
ht - , wh > st M), AT >
s u;) 0 S

and

_ 0 o _ S\ . .
5T — if niseven 6~ — 1] if nisodd
5, 0

It follows from these that

wt, 6T =0, (wh, A'6T) =], 8h),

np’ “np
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and thattw™,87) = (u,, 8 ) if nisevenands~, w™) = 0if n is odd.

n2’ “n

If we modify our notation by writing

UE = (uf,85),

so thatU," is what we have been denoting by, the above gives

1 92D,(0,1)

1
== =1+U —US —(w',8)2
2D,0,1) d? m Uy = )

1-U,; (1) n even
2

1+ U, (1) — UL (t), nodd
2 2

2

To evaluate our quantities &0, —z) we observe that ifC is the diagonal matrix
with diagonal entries 1-1,1, --- , (—1)", and we replace by —¢, then we have the
replacementd, (f) — CT,(f)C and f+ — —Cf* and therefores™ — —Cu™.
Therefore alsd/,” = (u*, 8%) — —U}F andU,; = (u*,87) — (=" 1 U,". Hence

in the last displayed formulaf,j/z2 is an even function of Whereaslj(j;ﬂ)/2 are odd
functions ofz. Also, D, (0, t) is an even function of. Thus

1— U, ()% neven
2
1, n odd

H, () = Gn(t) X

Recalling (4.6) and the general facf (r) = Dy,—1(1)/ Dy (t) we obtain (7.4).

Theorem 2.Let{y (o) denote the length of the longest increasing subsequencénof
the subgroug®y of Sy . Then

lim Prob(M < s) = F(s)z,

N—o00 22/3N1/6

whereF (s) is asin (1.12).
For the proof we shall apply Johansson’s lemma [5], which we now state:

Lemma. Let{Px(n)}i>0 be afamily of distribution functions defined on the nonnegative
integersn andg;, (1) the generating function

(SetPy(n) = 1.) Suppose that for alt, k > 1,
Pry1(n) < Pr(n). (7.8)

If we defineuy, = k + 4/klogk andv, = k — 4,/klogk, then there is a constarni
such that

C C
On (i) — ﬁ < Pr(n) < @u(vp) + k_2

for all sufficiently largek, 0 < n < k.
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This allows one to deduce thBt(n) ~ ¢, (k) asn, k — oo under suitable conditions,
and is how one obtains the equivalence of (1.9) and (1.12). We shall apply the lemma to
the distributions functions

k
0500 =Gy (Vif2) =Y FZk(n)%,

k>0
)»k
on%) = e, (Vij2) = e Y Fanan 77
k>0
where
b
Fy(n) = Probly (o) < n) = " (7.9)

~ 2k p

whenN = 2k or 2k + 1. To apply this lemma we must prove another

Lemma. We haveFy o < Fy forall N.

We show this simultaneously fa¥ = 2k and N = 2k + 1. Take ac € Oy42 and
remove the two-point s¢t-1, 1} from its domain. Therw maps the remainingy -point
set one-one onto anothar-point set. If we identify both of these sets with the integers
from —k tok (including or excluding 0 depending on the parity\ofby order-preserving
maps, then under this identification the restrictiomdfecomes an element 6§y . In
fact it becomes an odd permutation because the two identification maps are odd. Thus
we have described a mappiag— F(o) from Oy .2 to Oy. The mapping isR+ 2 to
1 and is clearly onto. It is also clear thg} (F (o)) < €y+2(0), from which it follows
thatby 2, < (2k + 2) by, for all n. The assertion of the lemma follows upon using
(7.9).

Theorem 1 tells us that

n(1)2
e2t2(p:;(2t2) _ D? ()%, n even
D%(t)D%(t), n odd
Dn_q(t)Dn4(t), neven
eztz(prrl)(th) — 2 1 2+1

D%(t)D%(t), n odd
From the asymptotics (1.9) we find that if we set
% =2t + st/3,
then
lim ¢¢(2%) = F(s).
—00
Settingr = +/2k/2 gives

klim gt (k) = F(s)2.
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Johansson’s lemma tell us that whrruns through the even integerk, 2
lim Fy@VN +2%3sNY®) = lim Fy(n) = F(s)°.
N—o00 N—o00

For N running through the odd integers we obtain the same relation. Thus the proof
is complete.
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