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Abstract: This paper is concerned with certain connections between the ensemble ofn×
n unitary matrices – specifically the characteristic function of the random variable tr(U)

– and combinatorics – specifically Ulam’s problem concerning the distribution of the
length of the longest increasing subsequence in permutation groups – and the appearance
of Painlevé functions in the answers to apparently unrelated questions.Among the results
is a representation in terms of a Painlevé V function for the characteristic function of
tr(U) and (using recent results of Baik, Deift and Johansson) an expression in terms of
a Painlevé II function for the limiting distribution of the length of the longest increasing
subsequence in the hyperoctahedral groups.

1. Introduction

The characteristic function of the random variable trU , whereU belongs to the ensemble
U(n) of n × n unitary matrices with Haar measure, is the expected value

En(e
r trU+s trU). (1.1)

In U(n) we have for any functiong with Fourier coefficientsgk,

En


 n∏

j=1

g(eiθj )


 = det Tn(g), (1.2)

whereTn(g) is the associatedn × n Toeplitz matrix defined by

Tn(g) = (gj−k), (j, k = 0, · · · , n − 1).

It follows that the distribution function (1.1) equals the determinant of the Toeplitz matrix
associated with the functionerz+sz−1

. The determinant, which we denote byDn, is a
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function of the productrs (see Sect. 2) and so it is completely determined by its values
whenr = s = t . This functionDn(t) has connections with both integrable systems and
combinatorial theory. To state our results, and these connections, we introduce some
notation.

We set

f (z) = et (z+z−1),

so thatDn(t) = det Tn(f ). Notice thatTn(f ) is symmetric sincef (z−1) = f (z). We
introduce then-vectors

δ+ =




1
0
...

0
0


 , δ− =




0
0
...

0
1


 , f + =




f1
f2
...

fn−1
fn


 , f − =




fn

fn−1
...

f2
f1


 ,

and define

Un =
(
Tn(f )−1f +, δ−) =

(
Tn(f )−1f −, δ+) .

If we set

8n = 1 − U2
n ,

then8n as a function oft satisfies the equation

8′′
n = 1

2

( 1

8n − 1
+ 1

8n

)
(8′

n)
2 − 1

t
8′

n − 88n(8n − 1) + 2
n2

t2

8n − 1

8n

, (1.3)

which is a variant of the PainlevéV equation1, and in terms of itDn has the representation

Dn(t) = exp

(
4
∫ t

0
log(t/τ ) τ 8n(τ) dτ

)
. (1.4)

This is reminiscent of the many representations now in the literature for Fredholm de-
terminants in terms of Painlevé functions. We shall also show that

Wn = Un/Un−1

satisfies

W ′′
n = 1

Wn

(W ′
n)

2 − 1

t
W ′

n + 4
n − 1

t
W2

n − 4n

t
+ 4W3

n − 4

Wn

, (1.5)

which is a special case of the Painlevé III equation.
An important ingredient in the proofs is the following recurrence relation satisfied

by theUn:

n

t
Un + (1 − U2

n ) (Un−1 + Un+1) = 0. (1.6)

1 The substitutiont2 = z and8n = w/(w−1) transforms (1.3) to the standard form ofPV with parameters
α = 0, β = −n2/2, γ = 2 andδ = 0.
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We shall see that this recurrence formula, sometimes known as the discrete Painlevé II
equation (see, e.g. [6]), is equivalent to one first shown to hold forU(n) byV. Periwal and
D. Shevitz [9]. It was rediscovered by M. Hisakado [4], who also derived an equation
equivalent to (1.3) and observed that this was one of the Painlevé V equations which, by
results of K. Okamoto [8], is reducible to Painlevé III. Carrying through the Okamoto
procedure is what led to ourWn, although the proof we give is direct. Our derivations
of (1.3) and (1.6) are different from those in [4] and perhaps more down-to-earth since
we use only the simplest properties of Toeplitz matrices and some linear algebra. (They
cannot be entirely unrelated, though, since the orthogonal polynomials which are central
to the argument of [4] can be defined in terms of Toeplitz matrices.)

A remarkable connection betweenU(n) and combinatorics was discovered by Gessel
[3]. Place the uniform measure on the symmetric groupSN , denote bỳ N(σ) the length
of the longest increasing subsequence inσ , and definefNn by

Prob(`N(σ ) ≤ n) = fNn

N ! .

ThenDn(t) is a generating function for thefNn.2 In fact

Dn(t) =
∑
N≥0

fNn

t2N

(N !)2 . (1.7)

Recently, E. Rains [10] gave an elegant proof that

fNn = En

(
|tr(U)|2N

)
, (1.8)

which can be shown to be equivalent to (1.7) by a simple argument. Using the relationship
(1.7) a sharp asymptotic result for the distribution function of the random variable`N(σ )

was recently obtained by J. Baik, P. Deift and K. Johansson [1]. And at the same time
they discovered yet another connection with Painlevé.

Their main result, which was quite difficult, was an asymptotic formula forDn(t)

which we now describe. Introduce another parameters and suppose thatn and t are
related byn = 2t + s t1/3. Then ast → ∞ with fixed s one has

lim
t→∞ e−t2

D2t+s t1/3(t) = F(s). (1.9)

HereF is the distribution function defined by

F(s) = exp

(
−
∫ ∞

s

(x − s) q(x)2 dx

)
, (1.10)

whereq is the solution of the Painlevé II equation

q ′′ = sq + 2q3 (1.11)

2 Gessel in [3] does not write down the symbol of the Toeplitz matrix, nor does he mention random matrices.
But in light of the well-known formula (1.2) and the subsequent work of Odlyzko et al. [7] and Rains [10],
we believe it is fair to say that the connection with random matrix theory begins with the discovery of (1.7).
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satisfyingq(s) ∼ Ai (s) ass → ∞. (For a proof that such a solution exists, see, e.g. [2].)
Using a “de-Poissonization” lemma due to Johansson [5] these asymptotics for the
generating functionDn(t) led to the asymptotic formula

lim
N→∞ Prob

(
`N(σ ) − 2

√
N

N1/6 ≤ s

)
= F(s) (1.12)

for the distribution function of the normalized random variable(`N(σ ) − 2
√

N)/N1/6.
It is a remarkable fact that this same distribution functionF was first encountered in

random matrix theory where it gives the limiting distribution for the normalized largest
eigenvalue in the Gaussian Unitary Ensemble of Hermitian matrices. More precisely,
we have for this ensemble [11],

lim
N→∞ Prob

((
λmax(N) − √

2N
)√

2N1/6 ≤ s
)

= F(s).

In connection with these results just described, we shall do two things. We show,
first, how one might have guessed the asymptotics (1.12). More precisely, we present a
simple argument that if there is any limit theorem of this type, withF(s)some distribution
function and with some powerNα replacingN1/6, then necessarilyα = 1/6 andF is
given by (1.10) withq a solution to (1.11). (The boundary condition onq, however,
cannot be anticipated.) This conclusion is arrived at by considering the implications of
(1.9) with t1/3 replaced byt2α for the recurrence formula (1.6).

Secondly, we derive analogues of (1.8) and (1.7) for the subgroupON of “odd”
permutations ofSN .3 These are described as follows: ifN = 2k think of SN as acting
on the integers from−k to k excluding 0, and ifN = 2k +1 think ofSN as acting on the
integers from−k tok including 0. In both casesσ ∈ SN is calledoddif σ(−n) = −σ(n)

for all n. The number of elements in the subgroupON of odd permutations equals 2k k!
in both cases. Therefore ifbNn equals the number of permutations inON having no
increasing subsequence of length greater thann,

Prob(`N(σ ) ≤ n) = bNn

2k k! , (1.13)

where the uniform measure is placed onON . Rains [10] proved identities analogous to
(1.8) for these probabilities. Using these we are able to find representations for the two
generating functions

Gn(t) =
∑
k≥0

b2k n

t2k

(k!)2 , Hn(t) =
∑
k≥0

b2k+1n

t2k

(k!)2 , (1.14)

analogous to the representation (1.7). (See Theorem 1 below.) The same determinants
Dn(t) arise as before but in the representation forHn(t), whose derivation uses the
machinery developed in earlier sections, the quantitiesUn also appear. Once the rep-
resentations are established we can use (1.9) and Johansson’s lemma to deduce the

3 Our terminology forON is not standard. ForN = 2k one usually denotesON byBk , the hyperoctahedral
group of order 2kk! which is the centralizer of the reversal permutation inSN . Elements ofBk are commonly
calledsigned permutations. Similar remarks hold forN = 2k + 1.
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Table 1.The mean (µ), standard deviation (σ ), skewness (S) and kurtosis (K) of F andFO := F2

Distr µ σ S K

F −1.77109 0.9018 0.224 0.093

FO −1.26332 0.7789 0.329 0.225
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Fig. 1.The probability densitiesf = dF/ds andfO = dFO/ds

asymptotics of (1.13). We show that asN → ∞ we have for fixeds,

Prob

(
`N(σ ) − 2

√
N

22/3N1/6 ≤ s

)
→ F(s)2, (1.15)

whereF(s) is as in (1.12).
In Table 1 we give some statistics of the distribution functionsF andFO := F 2. In

Fig. 1 we graph their densities.

2. The Integral Representation forDn

We write

3 = Tn(z
−1), 3′ = Tn(z).

Thus3 is the backward shift and3′ is the forward shift. It is easy to see that

Tn(z
−1 f ) = Tn(f ) 3 + f + ⊗ δ+ = 3 Tn(f ) + δ− ⊗ f −, (2.1)

Tn(z f ) = Tn(f ) 3′ + f − ⊗ δ− = 3′ Tn(f ) + δ+ ⊗ f +, (2.2)

whereδ± andf ± were defined above anda ⊗b denotes the matrix withj, k entryaj bk.
Relation (2.1) holds for anyf but (2.2) uses the fact thatf−k = fk.
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To derive (1.4) we temporarily reintroduce variablesr ands and setf (z) = erz+sz−1
,

soDn andTn are functions ofr ands. Of course we are interested inDn(t, t). We shall
compute

∂2
r,s logDn(r, s)

∣∣∣
r=s=t

in two different ways.
Using the fact that

∂s logDn(r, s) = tr Tn(f )−1 Tn(∂sf ) = tr Tn(f )−1 Tn(z
−1f ),

then differentiating with respect tor, we find that

∂2
r,s logDn(r, s) = tr [Tn(f )−1 Tn(f ) − Tn(f )−1 Tn(z f ) Tn(f )−1 Tn(z

−1 f )]
= tr [I − Tn(f )−1 Tn(z f ) Tn(f )−1 Tn(z

−1 f )].
We now setr = s = t . Sincef is now as it was, we can use (2.1) and (2.2). If we multiply
their first equalities on the left byTn(f )−1 and use the notationu± = Tn(f )−1f ± we
obtain

Tn(f )−1 Tn(z
−1 f ) = 3 + u+ ⊗ δ+, Tn(f )−1 Tn(z f ) = 3′ + u− ⊗ δ−.

Hence the last trace equals that of

I − (3′ + u− ⊗ δ−)(3 + u+ ⊗ δ+)

= I − 3′ 3 − u− ⊗ 3′δ− − 3′u+ ⊗ δ+ − (δ−, u+) u− ⊗ δ+.

The trace ofI − 3′ 3 equals 1, and

3′δ− = 0, tr 3′u+ ⊗ δ+ = (3′u+, δ+) = (u+, 3δ+) = 0,

so we have

∂2
r,s log Dn(r, s)

∣∣∣
r=s=t

= 1 − (δ−, u+) (u−, δ+).

But (u−, δ+) = (δ−, u+) = (δ−, Tn(f )−1f +) = Un. Therefore

∂2
r,s log Dn(r, s)

∣∣∣
r=s=t

= 1 − U2
n = 8n. (2.3)

Now let us go back to generalr ands. For anyp > 0 Cauchy’s theorem tells us that
thej, k entry ofTn(f ) equals

1

2πi

∫
|z|=p

et(rz+sz−1) z−(j−k+1)dz = p−j 1

2πi

∫
|z|=1

et(prz+p−1sz−1) z−(j−k+1)dzpk.

It follows thatDn(r, s) = Dn(pr, s/p), and by analytic continuation this holds for any
(complex)p. Settingp = √

s/r we see that

Dn(r, s) = Dn(
√

rs,
√

rs).
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It follows thatDn(r, s) is a function of the productrs, as stated in the Introduction, and
that

4∂2
r,s logDn(r, s)

∣∣∣
r=s=t

= d2

dt2 logDn(t, t) + 1

t

d

dt
logDn(t, t).

Comparing this with (2.3) we see that we have shown

d2

dt2 logDn(t, t) + 1

t

d

dt
logDn(t, t) = 48n.

This gives the representation (1.4).
Of course it remains to show that this8n satisfies (1.3). We do this by first finding a

formula fordUn/dt and then finding relations among the various quantities which occur
for different values ofn.

3. Differentiation

In addition tou± = Tn(f )−1f ±, we introducev± = Tn(f )−1δ± and we compute some
derivatives with respect tot . First,

d

dt
Tn(f ) = Tn((z + z−1)f ) = Tn(f ) (3 + 3′) + f + ⊗ δ+ + f − ⊗ δ−

by the first equalities of (2.1) and (2.2), so

dtTn(f )−1 = −Tn(f )−1 dTn(f )

dt
Tn(f )−1

= −(3 + 3′) Tn(f )−1 − u+ ⊗ v+ − u− ⊗ v−.

(3.1)

Next,

df +

dt
=




f0

f1
...

fn−2

fn−1




+




f2

f3
...

fn

fn+1




= Tn(f )δ+ + 3f + + fn+1 δ−.

Hence

Tn(f )−1 df +

dt
= δ+ + Tn(f )−13f + + fn+1 v−. (3.2)

Multiplying the second equality of (2.1) left and right byTn(f )−1 gives

Tn(f )−1 3 = 3 Tn(f )−1 + u+ ⊗ v+ − v− ⊗ u−. (3.3)

Therefore

Tn(f )−13f + = 3 u+ + u+ (v+, f +) − v− (u−, f +),
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and substituting this into (3.2) gives

Tn(f )−1 df +

dt
= δ+ + 3 u+ + u+ (v+, f +) + v− (

fn+1 − (u−, f +)
)
.

Adding this to (3.1) applied tof + gives

du+

dt
= δ+ − 3′ u+ + v− (fn+1 − (u−, f +)) − u− (v−, f +).

Taking inner products withδ− in the last displayed formula we obtain (recall the defini-
tion of Un)

dUn

dt
= −(3′ u+, δ−) + (v+, δ+) (fn+1 − (u−, f +)) − (u+, δ+) (v+, f −).

We used the fact, which follows from the symmetry ofTn(f ), that all our inner products
whose entries have signs as superscripts are unchanged if both signs are reversed.

To find (3′ u+, δ−), which is the same as(3 u−, δ+), we observe that

3 f − =




fn

fn−1
...

f1

0




= Tn(f ) δ− − f0 δ−.

Applying (3.3) tof − therefore gives

δ− − f0 v− = 3 u− + u+ (v+, f −) − v− (u−, f −).

Hence

−(3′ u+, δ−) = −(3 u−, δ+) = (u+, δ+) (v+, f −) + (v−, δ+) (f0 − (u+, f +)).

Thus we have established the differentiation formula

dUn

dt
= (v−, δ+)

(
f0 − (u+, f +)

)+ (v+, δ+)
(
fn+1 − (u−, f +)

)
. (3.4)

4. Relations

New quantities appearing in the differentiation formula are

V ±
n = (v±, δ+).

There are others but we shall see that they may be expressed in terms of these (with
different values ofn), as indeed so willUn. We obtain our relations through several
applications of the following formula for the inverse of a 2× 2 block matrix:

A B

C D




−1

=

 (A − BD−1C)−1 ×

× ×


 . (4.1)



Random Unitary Matrices, Permutations and Painlevé 673

Here we assumeA andD are square and the various inverses exist. Only one block of
the inverse is displayed and the formula shows thatA − BD−1C equals the inverse of
this block of the inverse matrix. At first all that will be used aboutf is thatTn(f ) is
symmetric. (There are modifications which hold in general.)

We apply (4.1) first to the(n + 1) × (n + 1) matrix


0 0 · · · 1

f1 f0 · · · fn−1
...

... · · · ...

fn fn−1 · · · f0


 ,

with A = (0), D = Tn(f ), B = (0 · · · 0 1), C = f +. In this caseA − BD−1C =
−(Tn(f )−1 f +, δ−) = −Un. This equals the reciprocal of the upper-left entry of the
inverse matrix, which in turn equals(−1)n times the lower-leftn × n subdeterminant
divided byDn. Replacing the first row by(f0 f1 · · · fn) gives the matrix



f0 f1 · · · fn

f1 f0 · · · fn−1
...

... · · · ...

fn fn−1 · · · f0


 = Tn+1(f ).

The upper-right entry of its inverse equals on the one handV −
n+1 and on the other hand

(−1)n times the same subdeterminant as arose above divided byDn+1. This gives the
identity

−Un = V −
n+1

Dn+1

Dn

= V −
n+1

V +
n+1

. (4.2)

(If we consider the polynomials on the circle which are orthonormal with respect to the
weight functionf then the right side above is equal to the constant term divided by the
highest coefficient in the polynomial of degreen. Therefore our−Un equals theSn−1
of [4].)

If we now takeA to be the upper-left corner ofTn+1(f ) andD the complementary
Tn(f ), thenC = f + andB is its transpose, and we deduce that

f0 − (u+, f +) = 1

V +
n+1

. (4.3)

To evaluatefn+1 − (u−, f +), the other odd coefficient appearing in (3.4), we consider


f0 f1 · · · fn fn+1

f1 f0 · · · fn−1 fn

...
... · · · ...

...

fn fn−1 · · · f0 f1

fn+1 fn · · · f1 f0




= Tn+2(f ).
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We apply to this an obvious modification of (4.1), whereA is the 2×2 matrix consisting
of the four corners of the large matrix,D is the centralTn(f ), C consists of the two
columnsf + andf − andB consists of the rows which are their transposes. Then

A − BD−1C =

 f0 − (u+, f +) fn+1 − (u−, f +)

fn+1 − (u−, f +) f0 − (u+, f +)


 ,

and our formula tells us that this is the inverse of
V +

n+2 V −
n+2

V −
n+2 V +

n+2


 .

This gives the two formulas

f0 − (u+, f +) = V +
n+2

V +
n+2

2 − V −
n+2

2 , fn+1 − (u−, f +) = −V −
n+2

V +
n+2

2 − V −
n+2

2 .

Comparing the first with (4.3) we see that

V +
n+2

2 − V −
n+2

2 = V +
n+1 V +

n+2, (4.4)

and therefore that the preceding relations can be written

f0 − (u+, f +) = 1

V +
n+1

, fn+1 − (u−, f +) = − 1

V +
n+1

V −
n+2

V +
n+2

. (4.5)

Notice that (4.2) and (4.4) give

1 − U2
n = V +

n

V +
n+1

. (4.6)

This is our8n.
The relations we obtained so far in this section are completely general. The recurrence

(1.6), however, depends on our specific functionf . Integration by parts gives

k fk = t

2πi

∫
(z − z−1) et (z+z−1) z−k−1 dz = t (fk−1 − fk+1). (4.7)

Hence ifM = diag(1 2 · · · n) we have

M Tn(f ) − Tn(f ) M = t Tn((z − z−1) f ),

and by the first identities of (2.1) and (2.2) this equals

t
[
Tn(f ) (3′ − 3) + f − ⊗ δ− − f + ⊗ δ+],

so

Tn(f )−1 M − M Tn(f )−1 = t
[
(3′ − 3) Tn(f )−1 + u− ⊗ v− − u+ ⊗ v+].
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Applying this toδ− gives

n v− − M v− = t
[
(3′ − 3) v− + u− (v−, δ−) − u+ (v+, δ−)

]
. (4.8)

Now (4.7) says

M f + = t




f0 − f2

f1 − f3
...

fn−2 − fn

fn−1 − fn+1




whereas (this is relevant since the transpose of3′ − 3 is 3 − 3′)

(3 − 3′) f + =




f2

f3 − f1
...

fn − fn−2

−fn−1




.

Therefore

M f + + t (3 − 3′) f + = t (f0 δ+ − fn+1 δ−),

and so taking inner products withf + in (4.8) gives

n

t
(v−, f +) = f0(v

−, δ+) − fn+1(v
−, δ−) + (u−, f +)(v−, δ−) − (u+, f +)(v+, δ−),

or equivalently, since(v−, f +) = Un,

n

t
Un = (

f0 − (u+, f +)
)

V −
n − (

fn+1 − (u−, f +)
)

V +
n .

Using (4.5) we rewrite this as

n

t
Un = V −

n

V +
n+1

+ V +
n

V +
n+1

V −
n+2

V +
n+2

= V +
n

V +
n+1

V −
n

V +
n

+ V +
n

V +
n+1

V −
n+2

V +
n+2

.

Using this, (4.6) and (4.2) we arrive at (1.6).
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5. Painlevé V and Painlevé III

We first show that8n satisfies (1.3). Our formula (3.4) fordUn/dt can now be written

dUn

dt
= V −

n

V +
n+1

− V +
n

V +
n+1

V −
n+2

V +
n+2

= V +
n

V +
n+1

(V −
n

V +
n

− V −
n+2

V +
n+2

)
= −(1 − U2

n ) (Un−1 − Un+1),

(5.1)

by (4.5), (4.6) and (4.2). Adding and subtracting (1.6) gives us the two formulas

dUn

dt
= n

t
Un + 2Un+1 (1 − U2

n ), (5.2)

dUn

dt
= −n

t
Un − 2Un−1 (1 − U2

n ). (5.3)

These are Eqs. (4.5) and (4.6) of [4]. As was done there, we solve (5.2) forUn+1 in
terms ofUn anddUn/dt and substitute this into (5.3) withn replaced byn + 1. We
get a second-order differential equation forUn which is equivalent to Eq. (1.3) for
8n = 1 − U2

n .
Next we show thatWn = Un/Un−1 satisfies (1.5). In computing the derivative of

Wn we use (5.3) to compute the derivative ofUn and (5.2) withn replaced byn − 1 to
compute the derivative ofUn−1. We get

W ′
n = −2n − 1

t
Wn − 2 + 4U2

n − 2W2
n . (5.4)

Using (5.3) once again we compute

(U2
n )′ = 2Un

(
−n

t
Un − 2Un−1 (1 − U2

n )
)

= −2
n

t
U2

n − 4
U2

n (1 − U2
n )

Wn

.

Differentiating (5.4) and using this expression for(U2
n )′ we obtain a formula forW ′′

n in
terms ofWn, W ′

n andU2
n . Then we solve (5.4) forU2

n in terms ofWn andW ′
n. Substituting

this into the formula forW ′′
n gives (1.5).

In order to specify the solutions of the Eqs. (1.3) and (1.5) we must determine the
initial conditions att = 0. Clearly8n(0) = 1, but this does not determine8n uniquely.
One can see that8(k)

n (0) = 0 for k < 2n and that what determines8n uniquely is
8

(2n)
n (0). We shall show that

8(2n)
n (0) = − (2n)!

n!2 . (5.5)

By (4.2),Un = V −
n+1/V +

n+1. Now V +
n+1 is the upper-left corner ofTn+1(f )−1 and

so tends to 1 ast → 0. So let us see howV −
n+1, which is the upper-right corner of

Tn+1(f )−1, behaves. More exactly, let us find the term in its expansion with the lowest
power oft .
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We have

e2t cosθ =
∑

k

tk

k! (eiθ + e−iθ )k

=
∑

0≤j≤k

tk

k! C(k, j) e−i(2j−k)θ =
∑
|j |≤k

tk

k! C(k, (j + k)/2) e−ijθ .

This gives

Tn(f ) =
∑
|j |≤k

tk

k! C(k, (j + k)/2) 3j = I +
∑
k>0
|j |≤k

tk

k! C(k, (j + k)/2) 3j . (5.6)

(Here3j denotes the usual power whenj ≥ 0, but whenj < 0 it denotes3′|j |.)
We use the Neumann expansion

Tn(f )−1 = I +
∑
l≥1

(−1)l


∑

k>0
|j |≤k

tk

k! C(k, (j + k)/2) 3j




l

.

If we expand this out we get a sum of terms of the form coefficient times

tk1+···+kl 3j1 · · · 3jl .

Now the product3j1 · · · 3jl can only have a nonzero upper-right entry whenj1+· · ·+
jl ≥ n. Since each|ji | ≤ k, the power oft must be at leastn, and this power occurs
only when eachji = k. That means that we get the same lowest power oft term for the
upper-right entry if in (5.6) we only take the terms withj = k, in other words of we
replaceTn+1(f ) by

∑
k≥0

tk

k! 3k = et 3.

The inverse of this operator ise−t 3 and the upper-right corner of this matrix is exactly
(−1)n tn/n!. This shows that

Un = −V −
n+1/V +

n+1 = (−1)n+1 tn/n! + O(tn+1),

and so

8n = 1 − U2
n = 1 − t2n

(n!)2 + O(t2n+1),

which gives (5.5). We also see thatWn = Un/Un−1 satisfies the initial condition

Wn(t) = − t

n
+ O(t2).

Using the differential equation (1.5) together with this initial condition we find

Wn(t) = − t

n
− t3

n2(n + 1)
− 2t5

n3(n + 1)(n + 2)

− (5n + 6)t7

n4(n + 1)2(n + 2)(n + 3)
+ O(t9).
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6. Painlevé II

We present a heuristic argument that if there is any limit theorem of the type (1.12), with
some distribution functionF(s) and some powerNα replacingN1/6, then necessarily
α = 1/6 andF is given by (1.10). First we note that Johansson’s lemma (which we
shall state in the next section) leads from (1.12) to (1.9) with the powert1/3 replaced by
t2α. We assume thatF is smooth and that the limit in (1.9) commutes withd/ds, so that
taking the second logarithmic derivative gives

lim
t→∞

d2

ds2 log D2t+s t2α = −q(s)2,

whereq2 is nowdefinedby −q2 = (log F)′′ andq is defined to be the positive square
root ofq2 (for larges).

Since changingn = 2t + s t2α by 1 is the same as changings by t−2α, we have the
larget asymptotics

log Dn+1 + log Dn−1 − 2 log Dn ∼ t−4α d2

dt2 log D2t+s t2α ∼ −t−4α q(s)2.

On the other handV +
n = Dn−1/Dn and so

Dn+1 Dn−1

D2
n

= V +
n

V +
n+1

= 1 − U2
n , (6.1)

by (4.6). We deduce

log(1 − U2
n ) ∼ −t−4α q(s)2, U2

n ∼ t−4α q(s)2. (6.2)

Now theUn are of variable sign, as is clear from (1.6). Let us consider thosen going
to infinity such that

Un−1 ≥ 0, Un ≤ 0, Un+1 ≥ 0, (6.3)

and write (1.6) as

t (Un+1 + Un−1 + 2Un) (1 − U2
n ) = −(n − 2t) Un − 2t U3

n . (6.4)

Because of (6.3), (6.2) and the fact that changingn = 2t + s t2α by 1 is the same as
changings by t−2α, we have whent is large,

Un+1 + Un−1 + 2Un ∼ t−6α q ′′(s).

Since also

n − 2t ∼ s t2α, Un ∼ −t−2α q(s),

(6.4) becomes the approximation

t1−6α q ′′(s) ≈ s q(s) + 2 t1−6α q(s)3. (6.5)

Let us show thatα = 1/6. If α > 1/6 then lettingt → ∞ in (6.5) givesq(s) = 0 and
soF is the exponential of a linear function and therefore not a distribution function. If
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α < 1/6 then dividing byt1−6α and lettingt → ∞ in (6.5) givesq ′′(s) = 2q3. Solving
this gives two sets of solutions

s = ±
∫ q0

q

dq√
q4 + c1

+ c2,

whereq0, c1 andc2 can be arbitrary. Nowq is small whens is large and positive, so
s is large and positive whenq is small. Therefore we have to have the + sign and we
must havec1 = 0. ThenF(s) is of the form|s − c|−1 times the exponential of a linear
function and therefore is not a distribution function. The only remaining case isα = 1/6,
and then (6.5) becomes (1.11). It follows thatF(s) must be given by (1.10) times the
exponential of a linear function. This extra factor must be 1 since (1.10) is already a
distribution function.

Now to derive this we assumed that then under consideration were such that (6.3)
held. We would have reached the same conclusion if all the inequalities were reversed.
If n → ∞ in such a way that, say,Un−1 andUn have one sign andUn+1 the other, then
(the reader can check this) we would have reached the conclusionq = 0. Thus the only
possibility for q to give a distribution function occurs whenα = 1/6 andq satisfies
(1.11).

7. Odd Permutations

Recall thatbNn equals the number of permutations inON having no increasing subse-
quence of length greater thann. The representations of Rains [10] for these quantities
are

b2k n = En

(
|tr (U2)k|2

)
, (7.1)

b2k+1n = En

(
|tr (U2)k tr (U)|2

)
. (7.2)

Theorem 1.LetGn(t) andHn(t) be the generating functions defined in (1.14). Then

Gn(t) =

Dn

2
(t)2, n even,

Dn−1
2

(t)Dn+1
2

(t), n odd,
(7.3)

Hn(t) =

Dn

2−1(t)Dn
2+1(t), n even,

Dn−1
2

(t)Dn+1
2

(t), n odd.
(7.4)

We prove a lemma which gives a preliminary representation for the generating func-
tions in terms of other Toeplitz determinants. Let

g(z, t1, t2) = g(z) = et1(z+z−1)+t2(z
2+z−2)

and define

D̂n(t1, t2) = D̂n = detTn(g).
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Lemma. We have

Gn(t) = D̂n(0, t), (7.5)

Hn(t) = 1

4

∂2D̂n

∂t2
1

(0, t) + 1

4

∂2D̂n

∂t2
1

(0, −t). (7.6)

The proof of (7.5) is essentially the same as the proof that (1.7) and (1.8) are equiv-
alent. First observe that

En

((
tr(U2) + tr(U2)

)2k
)

=
2k∑

m=0

(
2k

m

)
En

(
tr(U2)mtr(U2)

2k−m
)

.

Each summand withm 6= k vanishes since by the invariance of the Haar measure
replacing eachU by ζU , with ζ a complex number of absolute value 1, does not change
the summand but at the same time multiplies it byζ 4m−4k. Thus,

En

((
tr(U2) + tr(U2)

)2k
)

=
(

2k

k

)
En

(
tr(U2)ktr(U2)

k
)

.

Hence (7.1) is equivalent to

b2k n = (k!)2

(2k)! En

((
tr(U2) + tr(U2)

)2k
)

.

Therefore if the eigenvalues ofU areeiθ1, · · · , eiθn , we have

Gn(t) =
∑
k≥0

b2k n

t2k

(k!)2 =
∑
k≥0

En

((∑
cos 2θj

)2k
)

(2t)2k

(2k)!

= En


 n∏

j=1

e2t cos 2θj


 = D̂n(0, t).

The last step follows from (1.2).
This gives (7.5). To prove (7.6) we use (7.2):

b2k+1n = En

(
tr(U)tr(U2)ktr(U)tr(U2)

k
)

= 1

2

(k!)2

(2k)! En

((
tr(U) + tr(U)

)2 (
tr(U2) + tr(U2)

)2k
)

,

by expanding the right side as before. Hence

Hn(t) = 1

2

∑
k≥0

t2k

(2k)!En

((
tr(U) + tr(U)

)2 (
tr(U2) + tr(U2)

)2k
)

= 2En

((∑
cosθj

)2
cosh

(
2t
∑

cosθj

))

= En


(∑ cosθj

)2 n∏
j=1

e2t cos 2θj


+ En


(∑ cosθj

)2 n∏
j=1

e−2t cos 2θj




= 1

4

∂2

∂t2
1

En


 n∏

j=1

g(eiθj , t1, t2)


 (0, t) + 1

4

∂2

∂t2
1

En


 n∏

j=1

g(eiθj , t1, t2)


 (0, −t).
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From the last equality (7.6) follows.
To prove the theorem we consider (7.3) first. Observe thatD̂n(0, t) is the determinant

of Tn(h), whereh(z) = f (z2). It has Fourier coefficients

h2k = fk, h2k+1 = 0.

Let us rearrange the basis vectorse0, e1, · · · , en−1 of our underlyingn-dimensional
space as

e0, e2, · · · ; e1, e3, · · · . (7.7)

Then we see from the above thatTn(h) becomes the direct sum of two Toeplitz matrices
associated withf , the orders of these matrices being the sizes of the two groups of basis
vectors in (7.7). Ifn is even both groups have sizen/2 whereas ifn is odd the sizes
are(n ± 1)/2. SinceD̂n(0, t) = detTn(h) is the product of the corresponding Toeplitz
determinants associated withf , we have (7.3).

The proof of (7.4) is not so simple. We have

1

D̂n

∂2D̂n

∂t2
1

= ∂2
t1

logD̂n +
(
∂t1 logD̂n

)2
.

Now, as in the computation leading to (2.3),

∂2
t1

logD̂n(t1, t2) = tr
(
Tn(g)−1 Tn(∂

2
t1
g) − Tn(g)−1 Tn(∂t1g) Tn(g)−1 Tn(∂t1g)

)
= tr

[
Tn(g)−1 Tn((z + z−1)2g) − Tn(g)−1 Tn((z + z−1)g) Tn(g)−1 Tn((z + z−1)g)

]
.

This is to be evaluated first att1 = 0, t2 = t . Sinceg(z, 0, t) = f (z2) = h(z) we must
compute

tr
[
Tn(h)−1 Tn((z + z−1)2h) − Tn(h)−1 Tn((z + z−1)h) Tn(h)−1 Tn((z + z−1)h)

]
.

We write w± = Tn(h)−1h±, so that thew± are associated withh just asu± are
associated withf . Using (2.1) and (2.2) we find that

Tn(h)−1 Tn((z + z−1)h) Tn(h)−1 Tn((z + z−1)h)

= (3′ + w− ⊗ δ− + 3 + w+ ⊗ δ+)2,

and from this that

tr
(
Tn(h)−1 Tn((z + z−1)h) Tn(h)−1 Tn((z + z−1)h)

)
=

2n − 2 + 2(w−, 3δ−)

+2(w+, 3′δ+) + 2(δ−, w+) (w−, δ+) + (δ−, w−)2 + (δ+, w+)2.

Consequently

tr
[
Tn(h)−1 Tn((z + z−1)2h) − Tn(h)−1 Tn((z + z−1)h) Tn(h)−1 Tn((z + z−1)h)

]
= tr

(
Tn(h)−1 Tn((z

2 + z−2)h)
)
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+2 − 2(w−, 3δ−) − 2(w+, 3′δ+) − 2(δ−, w+) (w−, δ+) − (δ−, w−)2 − (δ+, w+)2.

This is∂2
t1

logD̂n(0, t). Similarly, we find

∂t1 logD̂n(0, t) = (w+, δ+) + (w−, δ−),

so that whent1 = 0, t2 = t ,

1

D̂n

∂2D̂n

∂t2
1

= ∂2
t1

logD̂n +
(
∂t1 logD̂n

)2 = tr
(
Tn(h)−1 Tn((z

2 + z−2)h)
)

+ 2 − 2(w−, 3δ−) − 2(w+, 3′δ+) − 2(w+, δ−) (w−, δ+) + 2(w+, δ+) (w−, δ−).

SinceTn(h) is symmetric all superscripts in the symbols in the inner product may be
reversed as long as we interchange3 and3′. We therefore have shown

1

D̂n(0, t)

∂2D̂n(0, t)

∂t2
1

= tr
(
Tn(h)−1 Tn((z

2 + z−2)h)
)

+ 2 − 4 (w+, 3′δ+) − 2 (w+, δ−)2 + 2 (w+, δ+)2.

Let us rearrange our basis elements as in (7.7) and suppose the first group hasn1
vectors and the second group hasn2. ThenTn(h)−1 becomes the matrix direct sum

Tn1(f )−1 0

0 Tn2(f )−1


 ,

andTn(h)−1Tn ((z2 + z−2)h) becomes
Tn1(f )−1 Tn1((z + z−1)f ) 0

0 Tn2(f )−1 Tn2((z + z−1)f )


 .

By a now familiar computation we find from this that

tr
(
Tn(h)−1 Tn((z

2 + z−2)h)
)

= 2 (u+
n1

, δ+
n1

) + 2 (u+
n2

, δ+
n2

),

whereu+
m andδ+

m denote the quantitiesu+ andδ+ associated with the indexm. We use
similar notation below. To continue, after rearranging our basis we have the replacements

h+ →

 0

f +
n2


 , w+ →


 0

u+
n2


 , δ+ →


 δ+

n1

0


 , 3′δ+ →


 0

δ+
n2




and

δ− →

 0

δ−
n2


 if n is even, δ− →


 δ−

n1

0


 if n is odd.

It follows from these that

(w+, δ+) = 0, (w+, 3′δ+) = (u+
n2

, δ+
n2

),
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and that(w+, δ−) = (u+
n2

, δ−
n2

) if n is even and(δ−, w+) = 0 if n is odd.
If we modify our notation by writing

U±
n = (u+

n , δ±
n ),

so thatU−
n is what we have been denoting byUn, the above gives

1

2

1

D̂n(0, t)

∂2D̂n(0, t)

∂t2
1

= 1 + U+
n1

− U+
n2

− (w+, δ−)2

=



1 − U−
n
2
(t)2, n even,

1 + U+
n+1

2
(t) − U+

n−1
2

(t), n odd.

To evaluate our quantities at(0, −t) we observe that ifC is the diagonal matrix
with diagonal entries 1, −1, 1, · · · , (−1)n, and we replacet by −t , then we have the
replacementsTn(f ) → CTn(f )C andf + → −Cf + and thereforeu+ → −Cu+.
Therefore alsoU+

n = (u+, δ+) → −U+
n andU−

n = (u+, δ−) → (−1)n+1 U−
n . Hence

in the last displayed formulaU−
n/2

2
is an even function oft whereasU+

(n±1)/2 are odd

functions oft . Also, D̂n(0, t) is an even function oft . Thus

Hn(t) = Gn(t) ×

1 − U−

n
2
(t)2, n even,

1, n odd.

Recalling (4.6) and the general factV +
m (t) = Dm−1(t)/Dm(t) we obtain (7.4).

Theorem 2.Let`N(σ ) denote the length of the longest increasing subsequence ofσ in
the subgroupON of SN . Then

lim
N→∞ Prob

(
`N(σ ) − 2

√
N

22/3N1/6 ≤ s

)
= F(s)2,

whereF(s) is as in (1.12).

For the proof we shall apply Johansson’s lemma [5], which we now state:

Lemma. Let{Pk(n)}k≥0 be a family of distribution functions defined on the nonnegative
integersn andϕn(λ) the generating function

ϕn(λ) = e−λ
∑
k≥0

Pk(n)
λk

k! .

(SetP0(n) = 1.) Suppose that for alln, k ≥ 1,

Pk+1(n) ≤ Pk(n). (7.8)

If we defineµk = k + 4
√

k logk andνk = k − 4
√

k logk, then there is a constantC
such that

ϕn(µk) − C

k2 ≤ Pk(n) ≤ ϕn(νk) + C

k2

for all sufficiently largek, 0 ≤ n ≤ k.
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This allows one to deduce thatPk(n) ∼ ϕn(k) asn, k → ∞ under suitable conditions,
and is how one obtains the equivalence of (1.9) and (1.12). We shall apply the lemma to
the distributions functions

ϕe
n(λ) = e−λGn

(√
λ/2

)
= e−λ

∑
k≥0

F2k(n)
λk

k! ,

ϕo
n(λ) = e−λHn

(√
λ/2

)
= e−λ

∑
k≥0

F2k+1(n)
λk

k! ,

where

FN(n) = Prob(`N(σ ) ≤ n) = bNn

2k k! (7.9)

whenN = 2k or 2k + 1. To apply this lemma we must prove another

Lemma. We haveFN+2 ≤ FN for all N .

We show this simultaneously forN = 2k andN = 2k + 1. Take aσ ∈ ON+2 and
remove the two-point set{−1, 1} from its domain. Thenσ maps the remainingN -point
set one-one onto anotherN -point set. If we identify both of these sets with the integers
from−k tok (including or excluding 0 depending on the parity ofN ) by order-preserving
maps, then under this identification the restriction ofσ becomes an element ofSN . In
fact it becomes an odd permutation because the two identification maps are odd. Thus
we have described a mappingσ → F(σ ) from ON+2 to ON . The mapping is 2k + 2 to
1 and is clearly onto. It is also clear that`N(F(σ )) ≤ `N+2(σ ), from which it follows
thatbN+2 n ≤ (2k + 2) bN n for all n. The assertion of the lemma follows upon using
(7.9).

Theorem 1 tells us that

e2t2
ϕe

n(2t2) =

Dn

2
(t)2, n even,

Dn−1
2

(t)Dn+1
2

(t), n odd,

e2t2
ϕo

n(2t2) =

Dn

2−1(t)Dn
2+1(t), n even,

Dn−1
2

(t)Dn+1
2

(t), n odd.

From the asymptotics (1.9) we find that if we set

n

2
= 2t + st1/3,

then

lim
t→∞ ϕe

n(2t2) = F(s)2.

Settingt = √
2k/2 gives

lim
k→∞ ϕe

n(k) = F(s)2.
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Johansson’s lemma tell us that whenN runs through the even integers 2k,

lim
N→∞ FN(2

√
N + 22/3sN1/6) = lim

N→∞ FN(n) = F(s)2.

ForN running through the odd integers we obtain the same relation. Thus the proof
is complete.
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