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Abstract: In this paper we provide general estimates for the errors between the dis-
tribution of the first, and more generally, th&M return time (suitably rescaled) and

the Poisson law for measurable dynamical systems. In the case that the system exhibits
strong mixing properties, these bounds are explicitly expressed in terms of the speed of
mixing. Using these approximations, the Poisson law is finally proved to hold for a large
class of non hyperbolic systems on the interval.

1. Introduction

The investigation of asymptotically rare events is growing up as a new direction in the
understanding of statistical properties of dynamical systems. By “asymptotically rare”
events we mean, in a wide sense and following the terminology in the review paper
of [Coe97], those events which have asymptotically zero probability but which occur
with a well determined asymptotic limit law. In the dynamical setting, where we have a
probability spac€X, B, u) with a measurablg-preserving mappind@ acting on it, the
“events” will usually be the visits into a sequence of sefse B of positive measure
but with their measure going to zero in the limit of largeWe call the event “rare”,
when the expected entrance timeip diverges withk. A well-known result in ergodic
theory shows how abundant are the “asymptotically rare” events. Let us consider in fact
an ergodic measure for an endomorphisnT and take a measurable subSetthen
Kac'’s theorem [CFS82] says that the expectation of the return tirfig sparting from
Q, is justu ()L,

Kac’s theorem suggests the good normalization to keep in order to study the asymp-
totic distribution of the return time t€. The natural object will thus be the distribution:

Fo(t) = pa (v € Q | ta@)u(Q) > 1), (1)

wheretq (x) is the first return time t® provided thatc €  andug, is the normalized
restriction ofu to Q. The question will be whether the limit &g, (¢) exists when the
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measure goes to zero and what kind of distribution is recovered. The condition that the
starting pointx in (1) belongs ta2 could be relaxed by asking thatbelongs to the

whole space. In this casé,(¢) will give the distribution of the “visiting time” into

Q, but in order to get its asymptotic distribution, a suitable normalization is needed
[GS97]. The situations sketched above could be considerably refined, producing richer
processes (see the quoted paper [Coe97] for an historical account of these questions and
an exhaustive bibliography). We will however explore some of them in this paper under

a more general perspective and successively by giving applications to class of systems
never investigated before.

Let us first come back to formula (1) and repl&eavith a decreasing sequence of
neighborhoods of a given poiat € X, Q.(z), such that their measure goes to zero
whene — 07. Then for some classes of hyperbolic dynamical systems, notably axiom
A diffeomorphisms [Hir93], transitive Markov chains [Pit91], expanding maps of the
interval with a spectral gap [Col96] and in the more general setting of systems verifying
a strong mixing property (“self-mixing” condition argmixing [Hir95]), and recently
even in the case of rational maps with critical points in the Julia set [Hay98a], it is
possible to prove that the distributidf, ;) () goes to the exponential-one law'eand
this for u-almost every; € X. A strong improvement of this kind of result appears in
the paper [GS97], where an upper bound for the difference

—1

;> e
H(AA(A)

was explicitly computed in the case gfmixing systems and wherg is a cylinder
set, andv.(A) a suitable normalizing factor. Recently [Hay98b] obtained an exponential
error estimate for the quantity like (1) in the case of parabolic rational maps.

To enrich the process, and the statistics, one successively introdu&g"theturn
time, fslzi. (x), from Q, into itself (see the precise definition in the next section), where
Q. = Q.(2) is still a neighborhood of some pointe X.

For the dynamical systems quoted above, a Poisson statistics can be proved, by
showing that the distribution of successive return times {2tsatisfies, forz u-a.e.

‘u (m(x) >

K
t
ne, (x € Q¢ | rg x)<t< rgﬂ(x)) — —e . (2)
] ¢ ¢ e—>0t K!
The preceding results deserve further investigations at least in two directions:

1. extend them to non-hyperbolic dynamical systems and, more ambitiously, check their
robustness when the system loses strong mixing properties.

2. prove an error estimate even for the distribution of successive return times (2) and
relate this approximation rate, if possible, to the statistical properties of the system
like correlations decay or spectral properties.

We try to give partial answer to these questions in this paper. The general setting we
putin, is the return(s) times to the $ettarting from itself, as expressed in formulas (1)
and (2) (although in Theorem 2.1 we will also consider points starting everywhere). The
first attempt was to give, for measure preserving dynamical systems, a general upper
bound for the difference between the distribution of the (rescaled) first return time and
the exponential-one law & and then between the distribution of high-order (rescaled)

return times and the Poisson Iég@e". We do not make any hypothesis on the@gthor

on the ergodic properties of; nevertheless these bounds are expressed in terms of the
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self-interactions of the s€t and can be explicitly computed when typical rates of mixing

are known (uniform mixingg-mixing or ¢-mixing). In this context, our bounds greatly
improve and simplify the hypothesis of self-mixing condition of [Hir95], which was a
powerful tool to get sufficient condition for the Poisson statistics. This first part of the
paper is essentially due to one of us (B.S.) and is part of his Ph.D. Thesis [Sau98b]. In the
second part we apply the preceding bounds to new situations. The systems we treat are
some non-uniformly hyperbolic maps of the interval; these maps are characterized by a
structure parameter, saywhich measures the order of tangency at a neutral fixed point
and governs the algebraic decay of correlations (in our example the orderig). If

u denotes the absolutely continuous invariant measure, we prove Poisson statistics (in
the sense precise above), by giving an explicit approximation of the asymptotic law in
terms of the measure of the R}, where in this cas&,, is a decreasing sequence of
cylinder sets chosen around almost all points in the interval. To be precise the error is
of the type:u(2,)?, for anyg < 1 — «, and therefores is explicitly related tax and
optimized just by 1 «. For the distributions of th& ™ return times the bounds simply
becomew($2,)P/K.

By inspecting these results, we could argue that the non-hyperbolic character of the
maps reflects in the error term; to be more precise we think that as soon as the degree
of non-uniform hyperbolicity of the map is monitored by a structure parangtes
parameter will appear explicitly in the approximation to the Poisson law, which suggests,
on the converse, that we could use Poissonian statistics to test lack of hyperbolicity. Our
claim is motivated by two more observations: first, in getting these bounds we proved
a sort ofe-mixing for the map with a rate which was exactly the same as the algebraic
rate for the correlations’ decay. Second, in the forthcoming paper [Sau98a] the return
times is analyzed for a class of piecewise expanding multidimensional maps. Although
the mixing properties are much more difficult to handle with, especially for the presence
of singularity lines and the geometry of their shape, the uniform dilatation will provide
bounds on the formz(£2,,)# andw(2,)?/X forall 8 < 1, which reflects the fact that all
the quantities involved, and the correlations’ decay too, admit exponential estimates. We
will come back to these questions in Sect. 4. As a final remark, we address two questions:

1. Our analysis is local: the events are chosen around almost all points which we could
call, following a widespread tradition, generic (for our statistics). What happens if
we consider non-generic points (discarding of course some trivial situation like fixed
points)? Could we see their (possibly different) statistics by involving some sort of
large deviation argument ?

2. What is the place of Poissonian statistics regarding other ergodic characterizations
of dynamical systems? For example: what is the largest class of ergodic dynami-
cal systems enjoying a Poissonian statistics? Conversely, does an invariant measure
satisfying that behavior imply strong ergodic properties too?

2. General Bounds on the Distribution of Return Times
We will consider in this section a probability spac€, B, 1) together with a measure

preserving transformatiofi acting onX. The basic object will be the return time into a
positive measure séf starting fromU defined by

w(x) = inf [k > 1T x € U} U {o0}.
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ANU
u_ We

_ . ) _

then recall Kac’s theorem which says that the conditional expectation givenU is

finite, and equal to Au(U), wheny is ergodic. As indicated in the introduction, Kac's
result suggests how to properly rescale the return time when we are interested in its
distribution.

We define as usual the conditional measuge on U by uy(A) =

2.1. First return time.We begin to show that the distribution of the first return time
into the setl/ starting fromU is close to an exponential one law if and only if the two
distributions of the first return time starting, respectively frohand everywhere, are
close.

Theorem 2.1. Let us define(k, U) = uy(ty > k) — u(ty > k) and sete(U) =
sup, |c(k, U)|. The distribution of the (rescaled) first return time into the Sediffers
from the exponential-one law by at me&tU) := 4u(U) + c(U)(1 + Iogc(U)—l),
namely:

sup
>0

=dU),

(‘L’ > ;> —e!
P\~ ww)

which is still true starting fron/:

<‘L’ >L>—e"
uu |t )

Conversely, the difference between the two distributions (starting ifisidad every-
where) can be bounded in terms of the distafi@®) := sup.o luy (ty > t/n(U)) —
e~’|, precisely:

sup
>0

<d(U).

c(U) < 2u(U) + SU)(2 + loge(U) ™).

Remark 2.2.Wheneven (U) > 0 the return time's law is discrete and this allow us to
get a lower bound for the rate of convergence. More precisely, we have the following
proposition:

Proposition 2.3. For eachk > 0,
kv = |1 (> k) — O (> k+1/2) — e *H/2RO)
e kn()
>
- 4
In particular, o,y > u(U)/4.

nU).

Proof of Proposition 2.3Let k > 0 be an integer. Sincg; takes only integer values,
the distribution for = ku(U) andt’ = (k + 1/2)u(U) is the same, then
U = |eXp(—kp(U)) — exp(—(k + 1/2)n(U))|
> exp(—ku(U))(1— e (/2
e ku()
>
- 4

wW). O
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Proof of Theorem 2.1.et us remark that for ank > 1 we have
u(ty =k) = n(U N{wy > k —1}). 3)
Since{ty > k} = T-XU° N {ry > k — 1}) by the invariance ofx we get that

wity > k) =u(ty > k-1 — u(U N{ty > k — 1}), whence the result. Next, for all
k > 0 we have

p(y > k) = pu(ty >k -1 —p@pu(tv > k-1
=pu(tv > k=1 —pu@)u(ty > k=1 +ck, U)]
= p(ty >k =D = pn@)] = nW@)ck, U).

Then it follows by an immediate induction that
k .
u(ty > k) = A= pU) = u@W) Y e, U)L— p))*.
j=1
Hence for allr > 0, puttingk; = [t/ (U)], we have

ki

|ty > k) — A= w5 | < w@) Y le(j. V)] < 1e(). (@)
j=1

Settingz = —logc(U), andk, = [z/n(U)], we get
(1 — wO)k < e < c)e"?) < c(U) +2U),
foranyr > z,

n(ty > k) < u(ty > ky)
< 11— U5 + ze(U)
< 2u(U) + c(U)(1 - loge(U))

which gives|u(ty > k) — (1 — w(U)M| < 2u(U) + c(U)(1 - loge(U)). Instead for
any: < z the same estimate holds by inequality (4). Since, by an easy computation

(L= nU)" — €| < 2u),
we get for any > 0,
|ty > k) — €| < 4uU) + c(U)(L - logc(V)),
which proves the first part of the theorem. Moreover, since
lnu (v > k) — ey > k)| = lethy, U)] < e(U),
we finally have for each > 0,

lwu (v > k) — €| < 4u(U) + c(U)(2 — log e (V).
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The converse part is proven in the same way.Aorl,

p(ty > k) =1—pu(ty < k)

k
=1-) uw=)

j=1
k

=1-pW) ) puu(w >j-1,
j=1

where we used in the last equality the relation (3). Hence

k

Gy > k) — e @) < |1—p) Y e VIO — e O 4 U)Ew)
j=1
1 — e ku) B _
< 1wy — Y|+ kr@ED)
- p) N
< 1+ et ‘1 — oy | RO

< 2u(U) + kp(U)c(U).
This gives, whenevek < ko := logc(U) "1/ u(U):
le(k, U] < 2u(U) + EU) loge(U) .
Fork > kg we simply have
lek, U)| = u(ty > ko) + pu(tu > ko)

< 2u(U) 4+ U) loge(U) L + e *orW) L ). o

The last theorem givesreecessary and sufficient condititmobtain the exponential
law, that isd (U) — 0. However, such a quantity is not very transparent for dynamical
systems, that is why we give a criterion to estimate it. This kind of condition is a
generalization of the so-called “self-mixing condition” introduced in [Hir95].

Lemma 2.4. LetU C X a measurable set. The following estimate holds:
c(U) <inf{ay(U) +by(U) + Nu(U)| N € N},
where the quantities are defined by

N
an(U) = pu (| JT77U) = py(tw < N,
j=1

by(U) = sup luy (T~ NV) — w(v)|
Vel

withtd = {U, U}, Uy, = /{23 T U andUoe = U,o Uy).
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Proof. Let N € N. If k < N, we just bound:(k, U) by

luy(ty > k) — pu(ty > k)| = luy(tv < k) — u(ty < k)|
< vty =B+ pn(ty < b))l
<ayWU) +kuU) <anU) + Nu(U).

Otherwise, let us remark thty > k} and{ty o TV > k— N} differ only on{ry < N},
and by hypothesis

Iy (ty > k) — py(ty o TV > k — N)| < py(ty < N) = ay(U).
Moreover

lwy(y o TV >k —N) — u(zy > k— N)| =
iy (TN (ty > k — N)) — u(ty > k — N)| < by(U).

But {ty > k — N} and{ry > k} differs only on{zyy o T*= < N}, hence
Iu(ty > k= N) = p(wy > b < w0 TN < N) = u(zy < N) < Nu(U).
We finally get for eaclt, N € N,
lwu(ty > k) — u(ty > k)| <anU) +by(U) + Nu(U),
which concludes the proof, sinéeis arbitrary. O

We remark thaby (U) is bounded by (W) if the partition/ = {U, U} isa-mixing,
and byy (N) if it is uniformly mixing (see Definition 2.1 below). To simplify, we could
say that the exponential law holds when there exists S8m@small that only few points
of U come back ir/ beforeN steps, but large enough such tiatu is uniformly spread
out.

Definition 2.1 (Speed of mixing).Let (X, B, T, 1) be a dynamical system arida
finite or countable measurable partition &f. We set;, = V§;%, T—J/¢ ando (&) the
o-algebra generated b§;.

1. Uniform mixing. The partition¢ is uniformly mixing with speef(n) going to zero
for n going to infinity if for anyx,

y(n) =sup  sup [W(RNS) — w(R)u(S)|.
k1l Reo (&)
SeT~+hg (&)

2. a-mixing. The partition¢ is a-mixing with speed:(n) going to zero fom going to
infinity if for anyn,

w(RNS)
a(n) = sup sup — —u(S)|.
k.l Regy n(R)
SeT~ 0o (&)
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3. p-mixing. The partitioné is ¢-mixing with spee@(n) going to zero fom going to
infinity if for anyn,

RNS
¢(n) =sup sup ‘M—‘
ki Reo(g) |MH(R)(S)
SET_W+“&

4. Weak-Bernoulli. The partition¢ is weak-Bernoulli with speefi(rn) going to zero
whenrn goes to infinity, if for any:,

Bny=sup > |w(RNS) = pu(R)u(S)!.
kI Reg,
SET’W+H5

Remark 2.5.We state some general implications and results verified by the preceding
types of mixing.
1. ¢-mixing impliesa-mixing which implies uniform mixing. Forany, y (n) < a(n) <

p(n).
2. p-mixing implies weak-Bernoulli which implies uniform mixing. For anyy (n) <

Bn) < ¢(n).
3. If & is a generating partition of an uniformly mixing dynamical system, then the

system is mixing.
4. If ¢ is a generating weak-Bernoulli partition then the system is metrically conjugated

with a Bernoulli shift.

2.2. Successive return time®ve will now investigate the properties of successive return
times to the set/. For this purpose, let us define thi® return time inU by

if k=0,
(k=1)

() =
v wx) +1; (T %) if k> 1

Observe that the difference between two consecutive return times follows the same law
than the first, for the simple reason that

(K+1) (K) (K)
T —1, =tyoTW

and the measurey is invariant with respect to the induced applicationldén

Theorem 2.6. LetU C X be a measurable set, aidd = {U, U} the partition asso-
ciated to it. Given an integeK and a rectangleQx in RX, the differences between
successives normalized return timed/irare independent and exponentially distributed
up to (K, U) (see (5) below), wherg (K, U) is defined depending on the type of
mixing by

() When(X, T, u) is a-mixing fori{, with speedy 1 then
f(K,U)=K <3d(U) + Ai4an {a(M) + 3MM(U)}) .
€

1we just need that mixing property for some special sets, more precisely, we are interested by

u(RNS)
w(R)

o' (N) = sup{ ‘ — u(S)

jNeN,ReU; T'RCU,Ve T_j_NUoo}.



Statistics of Return Times 41

(y) When the partitiord/ is uniformly mixed byX, T, u) with speed/, then
F(K,U) =

K|4dWw)+ inf { v (M) (2— K log L M) ) +3M,u(U)}
M n(U)?
y (M) <p(U)?

Indeed the following inequality holds:

nwu ((1:[(/1), Tl(/Z) (1), e, rl(/K) (K l)) e ) / He‘é’ds
0

Kj=1

= (K, U).
(5)

Remark 2.7.Note that the mixing assumption is made only for the special partition

If the system has a partitiof (not necessarily with two elements), uniformly mixing
with speedyz, then for any cylindeU € Z, of ordern, the partitionl{ = {U, U¢}

is still uniformly mixing with speed/;(M) < yz(M — n). The proof of the theorem

is inspired by [CG93], with the following differences: 1) is any measurable set; 2)

we take care of the approximations to get an estimation of the error; 3) we still get an
estimation even if the system is uniformly mixing; however, it is interesting whenever
y (M) = o(1/M?).

Proof of Theorem 2.6.et us remark first that if we denote by = T the induced
application onU, then for eaclt € N,

l(]k+1) T((Jk) =Ty © Fk.
We setr, = (ty, ty o F, - -+, Ty o F¥1). We will show that the inequality (5) holds

by induction onk.
For K = 1, we apply Theorem 2.1 which gives, settigg = [u, v],

(o € [, vl) — / & ds|
=|puy(ty >v) —puy(ty >u) —(€" —€e ") <2dU).

Let's suppose that the inequality (5) is true f&r we want to prove that it is also
true for K + 1. Let[r, s] be the projection ofD 1 onto the last coordinate, and for
k=K, K + 1 denote:

=UNrt (WQ)

For anyM e N, the set defined by
Ex41(M) = Dg N {x ceUltyoTY o FX(x) € [r, sl/uU) — M}
verifies the inclusions

Ex11(M) N{ty o FX > M} C Dg41 C Ex4a(M) U {1ty o FX < M},
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Theorem 2.1 shows that the two sets which boimd ; do not differ too much, namely,
nu(ty o FX < M) = py(y < M) <1—-e ™ 4 4U) < Mu(U) +dU).

Therefore we get the first bound

luu (D +1) — pu(Ex+1(M))| < Mp(U) +d(U). (6)
So the problem reduces to prove 'thajz(EKH(M)) follows the expected law. We
decompose the sefdx 1(M) overAf( =UnN {r[(]K) = j}. We have
Exs1(M)N AL = Dg N AL NT- M+, ¢ sl M),
K K n(U)

We can now use the mixing witR = Dg N A{< € o) andS = T- Mg, €
[r,s1/u(U) — M}. According to the type of mixing, we get two approximations:

(o) When the partitiord{ is «-mixing:

. . [r’ S]
Iy (Ex+1(M) N Ay) — py(Dgx N Ag)u(ty € w0 M)|

< a(M)uy(Dg N A%).
Summing over the possible values jofve get:

[r, 5]
u)

Iy (Ex4+1(M)) — py(Dg)u(ty € —M)| <a(M)uy(Dg) <a(M). (7)

Now Theorem 2.1 gives

ol py - e — o)) = ey € 22
n() = )

< 2MuU) +dU)).

)— (" —e )| +2Mu)

lu(ty €

We briefly recall the approximations done with their respective errors

1o (D +1) = o (Ex+1(M) = pu (D) pfto € k)= py (D) (e —e™)

" .
MuU) +dU) a (M) 2MpuU) +dU))

This allows us to show that the difference

K+1

nu(Dk+1) / [Teias®+
Ok+1 ;1

(8)

is bounded by the quantity(K, U) + 3Mu(U) + a(M) + 3d(U) < f(K +1,U),
which proves the induction and concludes the proof of this first case.

(y) We now consider the case wh&fis uniformly mixing:
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Let M be such thay (M) < (U)2. As afirst step, we can restrict ourselves to the case

M
) > 0. In fact,

- Y
when c [0, z]X, withz = —lo
Ok 9wy

K
0k \[0.21¥ ¢ | JRA ]z, 00] x RE*
k=1

which implies using Theorem 2.1

K
po )tk € Ok \10.21%) < Y pu @ — 1 > 2/u))
k=1

= Kuy(tw > z/pnU))
< K(€e*+d)).

Moreover
K

K K
/Q He‘sids’( < kZl/R"l ] l—[e‘sidsK < Ke?.

[(\[O,Z]K i=1 — 3 X ZsOO]XRfik i=1
Next, by decomposing according to

pnu(u)tk € Qk) = pu(nU)tgx € Qk N[O, z1%)
+ n(uw@)tk € Ok \ [0, 215),

we getf(K,U) < KQe *+dU))+ f'(K,U), wheref/'(K, U) is the maximum of
the difference (5) for the boxe@x < [0, z]X. We then estimate’(K, U). First by
uniform mixing we get
j j y (M)
lwu(Eg+1(M) N Ag) — npu(Dx N Ap)u(ty € [r, s1/nU) — M)| < )
and then we sum over all possibiealues; of 75,
Kzy (M)
pU)? -
The same computation performed after estimation (7) (where ai@d) is replaced
M
by Kzy (M)/u(U)? in inequality (7)), gives the bound’ (K + 1, U) < KZV(EJ)Z) +
"
3dU) + Mu(U)). Then for eachv,
M
K, U) < KZ% + 3K (dU) + Mp(U)).

SinceM is arbitrary, our choice of implies that the inequality (5) is verified with

lnu (Eg+1(M)) — py (Dx)p(ty € [r,s1/n(U) — M)| <

f(K,U)=K |4d(U) + inf {
MeN

y (M) <2—K|og y (M)
y(M)<p(U)?

—_— —_— 3Mu(U .
W(U)2 M(U)2)+ e )} .

2 SinceQg C [0, z]X, the K" return time is less or equal &z, hence it takes at mo$K z] different
values.
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We are now ready to give the most important result of this section, namely, to prove
the Poisson statistics for successive return timesM(e} be the number of visits into
U up to the normalized time/u(U),

N@t) = sup| K>075 < t/,u(U)}.

It turns out thatN (¢) is a discrete random variable whose law is close to a Poissonian
one, more precisely we have

Theorem 2.8. The distribution of the number of visidé(z) differs from the Poissonian
law by

K

[
nu(N(@) = K) — —e

where for eactk > 0 g(t, k, U) = (12tk/k + k"_l) Vfk, U).

Proof. It is a consequence of the weak dependence of the differences of successives
return times established by Theorem 2.6. We first remark that

t t
ny(N @) = K) = py (ifz‘f“ <@ "t > u<u>}>

= puu (r(K) < t/M(U)> — pu (r‘K“) < t/M(U)) :

It is then sufficient to compute the measure of points whdseescaled return time is
smaller thary, for k = K, K + 1. If we put P(¢z) the distribution of the sum of the
differences of successive return times, we know that when the latter are i.i.d. random
variables with the same exponential law, then setting

L) = {65150 € RE [sp o+ <1

we get

k

Ay =rwi= [ [leas

Li(1) i=1

K
which gives the classical resu (1) — Pg+1(t) = t—'e".

The difficulty comes now from the fact that we have to translate Theorem 2.6 given
for boxes on the simplek, (¢).

Let’s suppose thay (k, U) < 1, otherwise there is nothing to prove. Hence the
integer defined byV = [k/f(k, U)*™] is bigger thank. We consider the uniform
partition of[0, 71¥ by cubes of size/N. Let A, be the union of those cubé, included
in the interior of L, (¢), for which for any(s1, ... ,sx) € Ok, Zf.‘zl s; < tand Xy
those which intersect the boundary, i.e. the union of those cubes such that there exists
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g2

S
1

t
Fig. 1. Partition of the cubg0, 11* for k = 2. 3k is the union of dotted squares ang the union of shaded
rectanglesR; (Qy).-

(s1,...,8%) € O with Zle s; = t. By using the notationy, introduced in the proof
of Theorem 2.6 we have,

k
8= |y <t/u(U))—/ [Teas*
Lm),- 1
< |uy(tx € / e %idsk| + ny (tx € )+ e %idsk
(U) Ar; l_[ (U) ol ll_ll
< 81+ 82+ 83.

To estimate’1, we putll for the projection over thé — 1 last coordinates; then the
SetsRx(Qr) = {Q} € Ax|TI(Q)) = I1(Qx)} are boxes, and their number is bounded
by N*~1 (see Fig. 1). For each of these boxes Theorem 2.6 gives an error smaller than
f(k, U), and then we get; < N*~1f(k, U).

To computes, andds, we first remark that a straightforward combinatorial calculus
gives, for the numbe€?, of cubes insidegy, Ck < 6N 1 (see [Sau98b]). But for each
cubeQ; C X Theorem 2.6 gives

Ho(e Qo < | ]‘[e—*tds + [k, U).
k=1

Summing over aII the cubes containedipone has, < 6N*~1f(k, U)+83. Moreover

the integral He‘sl ds* is bounded by the volume af; equal to(s/N)*, which
Ok ; i=1
givessz < 6N¥~1¢k/N*. We then deduce that

8§ <8148 +083<N1fk,U)+125/N
which impliess < (12t*/k + k*) f(k, U) by the previous choice af. O
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3. Applications

In the preceding chapter we gave general estimates for the error between the distribution
of the number of visits into a sét and the Poissonian law. We could wonder whether
this law is attained in the limit oft (U) — 0. Put in this way the question is not very
clear. What we need is instead to localize a sequence of neighborbipedshrinking

to zero and ask whether the Poisson law holds in the kmit 0. This approach was
successfully carried out by several authors as reminded in the introduction. Although their
results were applied to dynamical systems, the inspiration and some of the techniques of
the proofs were of probabilistic nature (theory of moments, Laplace transform). Here we
follow a purely dynamical direction, trying to extract all the statistical information by
the ergodic properties of the system. In this way we are able, for example, to exhibit the
Poissonian statistics for a large class of non uniformly hyperbolic maps of the interval,
widely studied in the last years especially to determine the rate of decay of correlations
and the central limit theorem.

Some statistical properties of these maps have been studied in the paper [LSV97]
(this paper contains a quite complete bibliography on the subject), where an absolutely
continuous invariant probability measures{m) is first constructed, and then it is shown
that it enjoys a polynomial decay of correlations.

One feature of these maps is that they are characterized by a structure parameter (the
order of tangency at an indifferent fixed point), which governs the statistical properties,
and that can be viewed as an indicator of the “weak” hyperbolicity of the map. Actually,
it turns out that this parameter appears even in the approximation to the Poissonian law.

Let’s then consider for & « < 1 the following map of the unit interval:

_Jx(@+2%x%) vx €0, 1/2)
T = {Zx —1 Vx €[1/2, 1]

We recall some properties and results which we will need in the following, and we refer
the reader to the quoted paper for more informations and proofs. This application has a
finite Markov partition (with two elements), but for our purposes it is more convenient to
work with the countable onggenerated by the left preimagesof 1,£ = {A,,| m € N}
with A, =la,+1, a,]. We will often use in the following the easy bougﬁ—1 < 2.

We can associate to each pointe X =]0, 1] an unique infinite sequence =
w1wy... with the property that™ 1z € A,, for all integerm > 1. We denote by,
the dynamical partitios v 7-1¢ ... 7-"*1¢ and call its elements:-cylinders. We
denote withg,, (z) € &, them-cylinder which containg. The sequence satisfies the
admissibility conditionw,, w,, 11 appears i if and only if w,, = 0 orw;;,+1 = w, — 1.
We say that a non empty cylindér = [w1 ... wi] € & is maximalif it maps ontoX
after exactlyk iterations, which is easily seen to be equivalenbto= 0.

3.1. Some mixing propertied\e begin with a brief survey of some results proved by
two of us (B.S., S.V) in the joint paper [LSV97] with Carlangelo Liverani. We showed
that the density: of the acim belongs to a certain cone of functio@s(a), which will

be characterized later (see Lemma 3.2), providésibig enough, and satisfies

3 We recall the formal definition of the Perron Frobenius oper&tarcting on functionf : [0, 1] — R:
Pf(x) = ZT},:X ﬁf(y). One easily check that is anacim iff & = % is a fixed point ofP on L1(dx).
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LemmaA (Lemma 2.2 in [LSV97). The cone’,(a) is left invariant by the Perron-
Frobenius operatoiP, i.e. P(Ci(a)) C Cy(a).

LemmaB (Lemma 2.3 in [LSV97). The density: belongs to the coné,(a), and
verifies in particular whenever < vy,

@ a+1
) = /0", )
h(x) <ax™?. (20)

Proposition C (Distortion inequality, proof of Proposition 3.3 in [LSV97There exists
some constanh such that for allk andx, y € C € &,

D, Tk
Dka <A < oo. (11)
y

We will suppose without loss of generality that 4A.

Theorem D (Theorem 4.1 in [LSV97)] In the proof of this theorem we in particular
got that for f € Cy(a),

(s -200)

LGy =PI fllrp (12)

with ®(n) = Cn—a*(logn)s = Oy (n~=*1), where we define by
OL(e) = O(e(loge™ 1))
in the limite — 0, for any constant.

We then need a few more results on the speed of mixing which turn out to be useful
for the statistics of return times and also to establish the weak-bernoullicity of the map.

Lemma 3.1. For anyz € X, and for anym such thatt,, (z) is maximal, the partition
U = {&,(2), & (2)°} satisfies a property close to themixing, namely

_N—j
o'y =sup sup sup [LEOL 8 )l o, (v —myih),

jeN Rell; Selln w(R)
T/IRCU

Proof. Let z be a point ofX andm be an integer such thgt, (z) is maximal. Let/
be the partition given by, (z) and its complement, ard; the refinement o#/. For

R € U; such thatT/R C U, we haveR € o(&,+;) andR is a union of maximal
cyIindersVn’iﬂ. € &y, chooseV e &, ; one of these maximal cylinders. For any

S € T~ N+ B there exists a sa¥ < B such thatr = 7-V+) W, We then have
) = u (VNS — u(V)u(s)
= /IVIWOTN+jhdA—/u(V)h1WdA
- / PNHI(Ly — (V) Lwdh

< IPYH @y — (V)] 110y
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By exploiting the fact that’ is maximal we continue the preceding bound as

@) = | PV L) = (V]|

+ | PY v = |

L1 L1(3)

< 4a®(N —m)u(V),
with ® given by inequality (12), provide®”+/ (h1y) € Ci(a), which is the case by

Lemma 3.2 below. We conclude the proof by summing over all the maximal cylinders
of R. O

Lemma 3.2. For any maximal cylinde¥ € &,
PP (hly) € Cy(a).

Proof. We first setf := PP(hly) andT‘f : V — X the restriction ofl'? to V. Since
T? is injective overV we can rewritef as

f) =hoT,"(x)D:T, "

which in particular shows that is continuous. To prove that belongs to the cone of

smooth functiong’, (a) we must verify the following four properties which just define

the cone:

1. fis continuous and positive, that is clear in our case.

2. f is decreasing. Sinck € C.(a), h decreases. In additiomv_” is decreasing and
concave, therefore o T,,” and DT, ” decrease.

3. x — x*t1 f(x)increases. Sinc:EV’p : X — Visincreasing, an equivalent statement
is that

1
Tp Ol+lh -
(TP h0 57

is increasing with: € V. Observing that

TPu a+1l 1
( u ) D,TpP
increases oveV € &, (which is true forp = 1 and the general case is proved by

recurrence), and — u®t1h(u) increases, we obtain the result.
4. f(x) <ax~® [ f.Sincef is continuous, there existse V such that

1
D, TP’

/f=f(Tpv)=h(v)

The distortion estimate (11) fare V < &, gives

D, TP
<
D, TP =

Moreover sinceé: decreases, inequality (9) yields

hw) _ hd+1) _ < oy )“*1
h) = hlaey)

Aw+1
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As a consequence, we get foe= TV_”x,

1 A By
£ =0 s < ) 55 < [ .

because <land A <a. O

We finally prove that the countable partitignand therefore the two-elements one,
is weakly Bernoulli.

Theogerln 3.3. The partition¢ is weakly Bernoulli for(X, T, 1) with speed8(n) =
O (nt=Ye),

Proof. We begin to recall the following result by Hofbauer and Keller [HK82] which
permits to boung(n) as

Bn) < sup Y [ P"" (g — w(R)M)|| 2 (13)

meN Reéy,
Then it will be enough to bound
[P (Xr — (RN
with R € &,. Let pr > m be the integer for whicl® € £, is maximal. We decompose
the sum over all the cylinde#® € &,, into two blocks. LetV (m, n) be the set of maximal

cylinders forpg < m 4+ n/2. WhenR € M (m, n), the same computation performed in
Lemma 3.1 gives

1P (Xg = wRYM 2 < m(R)OL(m +n — pr)* ™) = p(R)YOL (™).

Then the set of cylinders which do not belongMt(m, n) is exactlyT—"+1[0, ans2],
whose measure is equal to

Aan/2
(T "0, an/2]) = ([0, anj2]) = fo h(x)dx = O(n*~1/*).

This proves the theoremn

3.2. Statistics of return timediMe now come back to the study of return times and the
first step will be the estimation of the quantities involved in the error term given by
Lemma 2.4.

Lemma 3.4. There exists a constaBtsuch that for ang andC € & withT=*CNC #
Ql

supP¥1c < Bk, (14)
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Proof. Let kg be such thaDakoT < 2,and putr = Dg,, T > 1. LetC = [w1...wi] be

a k-cylinder such thal =*C N C # @. This implies thatw,w; is admissible. We want
to estimate sup*Ic = 1/infc DT*. If w; < ko for all j = 1.k, thenDT* > 7k,
Else, takej such thatw; = max ;< ;. Either j = 1, and consequentky; = 0 or
wj—1 = 0. Inthe last case we have

irclfDT"z inf DT/"1 inf DT¥17 > A1 inf DTk,

[w1..0j-1] [w)...ox] lwj...orw1...0;-1]

By this argument we are led to consider the worst case which is given by a cylinder of
type C = [(k — 1)(k — 2)...0]. For T*C = [0, 1], the distortion formula (11) and the
estimationa;, < ck~“ given by Lemma 3.2 in [LSV97] we geb,, T* = k1«

for some constant’, from which the lemma follows by taking > A /¢’ such that

Bkl Y2 > rkforallk > 0. O

We now introduce the first return time of a cylindérwhich plays a crucial role in
[Hir95]. We defineitag (U) = inf {ty (x)|x € U}.

Lemma 3.5. The quantityay (U) defined in Lemma 2.4 fdV = &,,(z) is bounded by,

4N NpU)

() = oF SO0y

Proof. We suppos&V > t(U) otherwiseay (U) = 0. Sett = 7(U); for eachz in X
we have

N

1 .
U ——uw(T'UNU
an( )sz:lu(U)M( )

N 1 '
= Z—/Pf(zuh)zud,\
— u(U)
J=T
Pi(1yh
<N sup supﬂ.
j=t.N U h
Now the distortion (11) and the regularity of the density (9) give

P'(Iyh) =ho TU_TDTU_TITTU

< 4A hoT "DT " Ireydh
=TCNTUY Sy DU Pl ST

u()
MTTU)

Finally, Ph = h and sinceP is a positive operator one has

Pi(Iyh) PITT1 . pi—t i 4N w(U)
< SupP*(Iyh) < — L supP*(Iyh) < — .
no = SuPP ol = =R SUPE o) < e 5 ey
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The next step will be to show thatU) is almost everywhere big enough to give a
good upper bound in the previous lemmadar(U).

We first define in full generality thiocal rate of return for cylindersAs a matter
of fact, we would like to point out that the first return time of a set into itself allows
to define and compute an interesting dimension-like characteristic which we called the
Afraimovich-Pesin dimension in [PSV93].

Definition 3.1. Let ¢ a partition of X. Denote withz, (x) the element of v T-1¢ v
... v T7"*1¢ which contains: € X. We then define the local (lower and upper) rate of
return for cylinders as

R (x) = m )

n—o00 n

Proposition 3.6. (i) Both R, and R; are sub-invariant, namelR, o7 < R, and
ﬁ; oT < EC .

(i) Assume that is a measurable partition of the measurable spaGeand u is an
invariant probability, thenk,. and R, are n-a.e. invariant.

(iii) Moreover, whenevet is ergodicR,. and R, are u-a.e. constant

Proof. (i) Let x € X. For each integet > 0, we have:

G () N TR (x0) # 0 = 61 (Tx) N Tr ¢, 1 (Tx) # 0,

which implies thatr (¢,—1(Tx)) < 7(Z,(x)).
(i) is a standard property of sub-invariant functions on finite measure spaces and then
(iii) follows immediately. O

We state the following result which can be improved for some sub$hifts

Proposition 3.7. For u-almost every, € X, the lower rate of return for cylinders is
equal tol.

R.(2) =1
Proof. Let 1/2 < § < 1. Consider the set (we denatg, (z) = t(&,(2))),

Ly :={z € Ag| Nu(2) < dm}.

Z w(Ly) < 00, (15)

m=1

then the Borel-Cantelli Lemma ensures that for almost eyery g, we havev,, > dm,
up to finitely manym. By sendings to 1 we show thaR; (z) > 1 almost everywhere
on Ag. Then for the preceding proposition (iii) and the ergodicity of the meagsuvee

4 We have in fact the following:
Theorem. Suppose that is a Gibbs state for the Holder potential on some irreducible and aperiodic
subshift of finite type with finite alphabgttheny.-almost everywhereR, = R, =1

Proof. An easiest version of the Proposition 3.7 gives the lower bound, while the uniform upper bound
©(Cp) < n+ ng holds, where), is a cylinder of order, andng is the lowest power for which the transition
matrix becomes strictly positive.
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get the same bound almost everywhere. The equality finally follows since each time that
T™=17 € Ag, we havel ™, (z) = X henceN,,(z) < m.

In order to prove (15) it is sufficient to consider the Lebesgue measure instgad of
(since the density is bounded from below). We have

[m/2] Sm
ML) = D ANw =0+ D AN = k).
k=1 k=[m/2]+1
@O + @

We now perform a detailed analysis of the sets appearing in the preceding formula.
(1): In this case, the cylindes;, (z) with N, = k must be of the form

En(2) = [(w1.. .0p) (@1...0F)...(w1. ..0p)...].
[m/k]

Therefore whet < [m /2], the cylinder is completely determined by its fikstymbols.
PutC = [w1...w¢]; we say that a cylinder of lengthis admissible (admis) when it is
the beginning of a cylinder af,,, with N,, = k. Then we can bound (1) by

[m/2]
Q) < Z Z rCcnT*cn...nrm/k=likey
k=1 C admis
[m/2] [m/k]—1
< Z Z (supP"Ic> A(C)
k=1 C admis > €

[m/2] [m/k]—1
<) sup (supP"IC> .
r—1 Cadmis\ C

We first remark thal'* being injective over e &, we have

Pk1e <1/ i/r;f DT <1/2.
0

R

We split the last sum in three pieces by fixitigas the biggest integer forwhidz@Jr

>
e®, whereB is the constant in Lemma 3.4. We then have by using Lemma 3.4,

ko m/3 (m/2]
1 < Z(l/z)[m/k]—l+ Z(Bk—l—l/a)m/k—2+ Z Bi-1-Ve
k=1 k=ko m/3

The first and the last sum are easily shown to be summable with respectar the
second term, we observe that the teqig —1~1/¢)"/k=2 gre increasing it whenk is
bigger tharko. A direct estimation of the sum B3, ~1/« which is summable with
respect ton.

(2): In this case, the cylindes;, (z) has the form

Em(2) = [01..0m—k Om—k+1..- Ok ©1...0Op—k].
[N NN )

m—k 2k—m m—k
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As before, we sef = [w1...w,,—¢], and we say thaf is admissible (admis) when it is
the beginning of a cylinder of,,, with N,,, = k,

Sm
@< Y > ucnr*o
k=[m/2]+1 C admis
sm
< > sup supP'1c.
k:[m/2]+1c admis C

Letfirst p = p(C) = m — k be such thaC € &, is maximal (i.e.p(C) is the smallest
p forwhichC € £,). Whenp < k, since 1e C,(a) the inequality (12) and Lemma 3.4
give

supP*1c < supPP1c supP¥P1 < a2*Bp 1Y% < q2*B(m — k)1,
c c

Whenp > k, C € & andT~*C N C # ¥ we have
P*1c < BE1Ye,
Butk > m — k > (1 — §)m, and then the sum (15) is summable for d@ny 1. O

We are now ready to state and prove the main theorems of this section

Theorem 3.8. For u-almost every € X andg < B(a),

= O(u(Em(2)P),

t
M (2) (%(z) > m) — exp(—1)

where the critical exponerit(e) = 1 — o.

sup
t>0

Proof. Lete be a positive number. Letbe a typical point for Proposition 3.7 and for the
Shannon—-McMillan—Breiman theorem. We want to apply Lemma 2.4pi(e) such
that for anym > m(e) we have(l — e)m < 1(£,(2)), n(€n(2)) < exp(—m?2h,/3) and
alsopu (e (T1=IM2)) > exp(—(2[em])hy,).

For the sake of simplicity, we put for amy, U,, = &,,(z). For anym > m(¢g) such
thatU,, is maximal, we haveél — )m < t(U,) < m, and all the iterateg/U,, for
1 < j < m are at a distance bigger thap from the neutral fixed point (becausk, is
maximal). If 7 (U,,) < m then the density stays bounded on the oftit/,, by ba,,* so
we have

o o
MUY, > %M(T’(UM)U,,,) > %exp(—ZsmhM).

On the other hand, whenU,,) = m we still get
aﬁt
AMTTUI )y =1 > f exp(—2emh,,).

Lemma 3.5 gives us the following estimation with= (U,,) %",

an (Up) = O(u(Uy) =273,
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Lemma 3.1 withR = U,, gives us

by (Un) = OL(u(Up) ™4 = m)1™) = Op (u(U,) "+,
We can then apply Lemma 2.4, which gives
c(Un) =< anUn) + by (Un) = O(u(Un)?)
forp<l—a—3candB <1—a—2¢(1/a —1). We finally end up with
d(Un) = O(uUn)P) (16)

forany 8 < 1 — «, sincee is arbitrary small, which conclude the proof by applying
Theorem 2.1. O

Remark 3.9.The preceding theorem shows that the critical exporséad is smaller
than 1.We point out that, by using Proposition 2.3 the pgsveannot exceed 1.

Theorem 3.10. For u-almost every: € X, we have for any > 0 and K > 0 and
B < B,
tK
M) (New 0 (0) = K) = 2 eXp(—0)| = O (@) D),

with the critical exponeng(a) = 1 — a.

Proof. Let z be a typical point satisfying the preceding theorem mrglich that/,, =
£n(2) is maximal.
By invoking the footnote of Theorem 2.6, it will be sufficient to use the weakened
a-mixing condition
o (M) = OL(M — m)*~7)
given by Lemma 3.1 to apply Theorem 2.6. Take = wu(U,,)~%; we thus find for
B < 1— «, and by the estimation (16) and Theorem 2.6 an error of the order

f(K, Up) = const[d(Uy) + ' (M) + Mpu(U)] = O(u(Up)"P).

By applying Theorem 2.8, the error for the probability to h&/successive visits is of
the ordenu(U,)?/&+tD forall p <1 —«. O

4. Concluding Remarks

We conclude with few observations. First, the proofs for the exponential-one law and the
Poisson law given in Sect. 3 for a class of non uniform hyperbolic maps, can be easily
adapted, and they are even easier, to all the cases quoted in the introduction, namely:
Axiom A diffeomorphisms, transitive Markov chains, expanding maps of the interval
with a spectral gap and in general to @lmixing dynamical systems.

For such systems, an estimation for the error can also be done: following the argu-
ments of Theorems 3.8 and 3.10, one can easily see that the critical expaaeuual
to 1. This supports our beliefs that: (i) the error terms of ty&)# could be optimal
and (ii) the non uniform hyperbolicity of the map reflects in the critical exponent: in that
case, in fact, it should be strictly smaller than one.
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