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Abstract: In this paper we provide general estimates for the errors between the dis-
tribution of the first, and more generally, theK th return time (suitably rescaled) and
the Poisson law for measurable dynamical systems. In the case that the system exhibits
strong mixing properties, these bounds are explicitly expressed in terms of the speed of
mixing. Using these approximations, the Poisson law is finally proved to hold for a large
class of non hyperbolic systems on the interval.

1. Introduction

The investigation of asymptotically rare events is growing up as a new direction in the
understanding of statistical properties of dynamical systems. By “asymptotically rare”
events we mean, in a wide sense and following the terminology in the review paper
of [Coe97], those events which have asymptotically zero probability but which occur
with a well determined asymptotic limit law. In the dynamical setting, where we have a
probability space(X, B, µ) with a measurableµ-preserving mappingT acting on it, the
“events” will usually be the visits into a sequence of sets�k ∈ B of positive measure
but with their measure going to zero in the limit of largek. We call the event “rare”,
when the expected entrance time in�k diverges withk. A well-known result in ergodic
theory shows how abundant are the “asymptotically rare” events. Let us consider in fact
an ergodic measureµ for an endomorphismT and take a measurable subset�: then
Kac’s theorem [CFS82] says that the expectation of the return time to�, starting from
�, is justµ(�)−1.

Kac’s theorem suggests the good normalization to keep in order to study the asymp-
totic distribution of the return time to�. The natural object will thus be the distribution:

F�(t) = µ�

(
x ∈ �

∣∣ τ�(x)µ(�) > t
)
, (1)

whereτ�(x) is the first return time to� provided thatx ∈ � andµ� is the normalized
restriction ofµ to �. The question will be whether the limit ofF�(t) exists when the
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measure goes to zero and what kind of distribution is recovered. The condition that the
starting pointx in (1) belongs to� could be relaxed by asking thatx belongs to the
whole space. In this case,F�(t) will give the distribution of the “visiting time” into
�, but in order to get its asymptotic distribution, a suitable normalization is needed
[GS97]. The situations sketched above could be considerably refined, producing richer
processes (see the quoted paper [Coe97] for an historical account of these questions and
an exhaustive bibliography). We will however explore some of them in this paper under
a more general perspective and successively by giving applications to class of systems
never investigated before.

Let us first come back to formula (1) and replace� with a decreasing sequence of
neighborhoods of a given pointz ∈ X, �ε(z), such that their measure goes to zero
whenε → 0+. Then for some classes of hyperbolic dynamical systems, notably axiom
A diffeomorphisms [Hir93], transitive Markov chains [Pit91], expanding maps of the
interval with a spectral gap [Col96] and in the more general setting of systems verifying
a strong mixing property (“self-mixing” condition andϕ-mixing [Hir95]), and recently
even in the case of rational maps with critical points in the Julia set [Hay98a], it is
possible to prove that the distributionF�ε(z)(t) goes to the exponential-one law e−t and
this for µ-almost everyz ∈ X. A strong improvement of this kind of result appears in
the paper [GS97], where an upper bound for the difference∣∣∣∣µ (

τA(x) >
t

µ(A)λ(A)

)
− e−t

∣∣∣∣
was explicitly computed in the case ofϕ-mixing systems and whereA is a cylinder
set, andλ(A) a suitable normalizing factor. Recently [Hay98b] obtained an exponential
error estimate for the quantity like (1) in the case of parabolic rational maps.

To enrich the process, and the statistics, one successively introduce theK th return
time, τK

�ε
(x), from �ε into itself (see the precise definition in the next section), where

�ε = �ε(z) is still a neighborhood of some pointz ∈ X.
For the dynamical systems quoted above, a Poisson statistics can be proved, by

showing that the distribution of successive return times into�ε satisfies, forz µ-a.e.

µ�ε

(
x ∈ �ε

∣∣ τK
�ε

(x) ≤ t < τK+1
�ε

(x)
)

−→
ε→0+

tK

K!e
−t . (2)

The preceding results deserve further investigations at least in two directions:

1. extend them to non-hyperbolic dynamical systems and, more ambitiously, check their
robustness when the system loses strong mixing properties.

2. prove an error estimate even for the distribution of successive return times (2) and
relate this approximation rate, if possible, to the statistical properties of the system
like correlations decay or spectral properties.

We try to give partial answer to these questions in this paper. The general setting we
put in, is the return(s) times to the set� starting from itself, as expressed in formulas (1)
and (2) (although in Theorem 2.1 we will also consider points starting everywhere). The
first attempt was to give, for measure preserving dynamical systems, a general upper
bound for the difference between the distribution of the (rescaled) first return time and
the exponential-one law e−t and then between the distribution of high-order (rescaled)

return times and the Poisson lawt
K

K!e
−t . We do not make any hypothesis on the set�, nor

on the ergodic properties ofµ; nevertheless these bounds are expressed in terms of the
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self-interactions of the set� and can be explicitly computed when typical rates of mixing
are known (uniform mixing,α-mixing orϕ-mixing). In this context, our bounds greatly
improve and simplify the hypothesis of self-mixing condition of [Hir95], which was a
powerful tool to get sufficient condition for the Poisson statistics. This first part of the
paper is essentially due to one of us (B.S.) and is part of his Ph.D. Thesis [Sau98b]. In the
second part we apply the preceding bounds to new situations. The systems we treat are
some non-uniformly hyperbolic maps of the interval; these maps are characterized by a
structure parameter, sayα, which measures the order of tangency at a neutral fixed point
and governs the algebraic decay of correlations (in our example the order isn1−1/α). If
µ denotes the absolutely continuous invariant measure, we prove Poisson statistics (in
the sense precise above), by giving an explicit approximation of the asymptotic law in
terms of the measure of the set�n, where in this case�n is a decreasing sequence of
cylinder sets chosen around almost all points in the interval. To be precise the error is
of the type:µ(�n)

β , for anyβ < 1 − α, and thereforeβ is explicitly related toα and
optimized just by 1− α. For the distributions of theK th return times the bounds simply
becomeµ(�n)

β/K .
By inspecting these results, we could argue that the non-hyperbolic character of the

maps reflects in the error term; to be more precise we think that as soon as the degree
of non-uniform hyperbolicity of the map is monitored by a structure parameterα, this
parameter will appear explicitly in the approximation to the Poisson law, which suggests,
on the converse, that we could use Poissonian statistics to test lack of hyperbolicity. Our
claim is motivated by two more observations: first, in getting these bounds we proved
a sort ofα-mixing for the map with a rate which was exactly the same as the algebraic
rate for the correlations’ decay. Second, in the forthcoming paper [Sau98a] the return
times is analyzed for a class of piecewise expanding multidimensional maps. Although
the mixing properties are much more difficult to handle with, especially for the presence
of singularity lines and the geometry of their shape, the uniform dilatation will provide
bounds on the form:µ(�n)

β andµ(�n)
β/K for all β < 1, which reflects the fact that all

the quantities involved, and the correlations’decay too, admit exponential estimates. We
will come back to these questions in Sect. 4.As a final remark, we address two questions:

1. Our analysis is local: the events are chosen around almost all points which we could
call, following a widespread tradition, generic (for our statistics). What happens if
we consider non-generic points (discarding of course some trivial situation like fixed
points)? Could we see their (possibly different) statistics by involving some sort of
large deviation argument ?

2. What is the place of Poissonian statistics regarding other ergodic characterizations
of dynamical systems? For example: what is the largest class of ergodic dynami-
cal systems enjoying a Poissonian statistics? Conversely, does an invariant measure
satisfying that behavior imply strong ergodic properties too?

2. General Bounds on the Distribution of Return Times

We will consider in this section a probability space(X, B, µ) together with a measure
preserving transformationT acting onX. The basic object will be the return time into a
positive measure setU starting fromU defined by

τU (x) = inf
{

k ≥ 1| T kx ∈ U
}

∪ {∞}.
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We define as usual the conditional measureµU on U by µU(A) = µ(A ∩ U)

µ(U)
. We

then recall Kac’s theorem which says that the conditional expectation ofτU givenU is
finite, and equal to 1/µ(U), whenµ is ergodic. As indicated in the introduction, Kac’s
result suggests how to properly rescale the return time when we are interested in its
distribution.

2.1. First return time.We begin to show that the distribution of the first return time
into the setU starting fromU is close to an exponential one law if and only if the two
distributions of the first return time starting, respectively fromU and everywhere, are
close.

Theorem 2.1. Let us definec(k, U) = µU(τU > k) − µ(τU > k) and setc(U) =
supk |c(k, U)|. The distribution of the (rescaled) first return time into the setU differs
from the exponential-one law by at mostd(U) := 4µ(U) + c(U)(1 + logc(U)−1),
namely:

sup
t≥0

∣∣∣∣µ (
τU >

t

µ(U)

)
− e−t

∣∣∣∣ ≤ d(U),

which is still true starting fromU :

sup
t≥0

∣∣∣∣µU

(
τU >

t

µ(U)

)
− e−t

∣∣∣∣ ≤ d(U).

Conversely, the difference between the two distributions (starting insideU and every-
where) can be bounded in terms of the distancec̃(U) := supt≥0 |µU(τU > t/µ(U)) −
e−t |, precisely:

c(U) ≤ 2µ(U) + c̃(U)(2 + log c̃(U)−1).

Remark 2.2.Wheneverµ(U) > 0 the return time’s law is discrete and this allow us to
get a lower bound for the rate of convergence. More precisely, we have the following
proposition:

Proposition 2.3. For eachk ≥ 0,

εk,U :=
∣∣∣µ (τU > k) − e−kµ(U)

∣∣∣ +
∣∣∣µ (τU > k + 1/2) − e−(k+1/2)µ(U)

∣∣∣
≥ e−kµ(U)

4
µ(U).

In particular, ε0,U ≥ µ(U)/4.

Proof of Proposition 2.3.Let k ≥ 0 be an integer. SinceτU takes only integer values,
the distribution fort = kµ(U) andt ′ = (k + 1/2)µ(U) is the same, then

εk,U ≥ |exp(−kµ(U)) − exp(−(k + 1/2)µ(U))|
≥ exp(−kµ(U))(1 − e−µ(U)/2)

≥ e−kµ(U)

4
µ(U). ut
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Proof of Theorem 2.1.Let us remark that for anyk ≥ 1 we have

µ(τU = k) = µ(U ∩ {τU > k − 1}). (3)

Since {τU > k} = T −1(Uc ∩ {τU > k − 1}) by the invariance ofµ we get that
µ(τU > k) = µ(τU > k − 1) − µ(U ∩ {τU > k − 1}), whence the result. Next, for all
k > 0 we have

µ(τU > k) = µ(τU > k − 1) − µ(U)µU(τU > k − 1)

= µ(τU > k − 1) − µ(U)[µ(τU > k − 1) + c(k, U)]
= µ(τU > k − 1)[1 − µ(U)] − µ(U)c(k, U).

Then it follows by an immediate induction that

µ(τU > k) = (1 − µ(U))k − µ(U)

k∑
j=1

c(j, U)(1 − µ(U))k−j .

Hence for allt ≥ 0, puttingkt = [t/µ(U)], we have

∣∣µ(τU > kt ) − (1 − µ(U))kt
∣∣ ≤ µ(U)

kt∑
j=1

|c(j, U)| ≤ tc(U). (4)

Settingz = − logc(U), andkz = [z/µ(U)], we get

(1 − µ(U))kz ≤ e−kzµ(U) ≤ c(U)eµ(U) ≤ c(U) + 2µ(U),

for anyt > z,

µ(τU > kt ) ≤ µ(τU > kz)

≤ (1 − µ(U))kz + zc(U)

≤ 2µ(U) + c(U)(1 − logc(U))

which gives
∣∣µ(τU > kt ) − (1− µ(U))kt

∣∣ ≤ 2µ(U) + c(U)(1− logc(U)). Instead for
anyt ≤ z the same estimate holds by inequality (4). Since, by an easy computation

|(1 − µ(U))kt − e−t | ≤ 2µ(U),

we get for anyt ≥ 0,∣∣µ(τU > kt ) − e−t
∣∣ ≤ 4µ(U) + c(U)(1 − logc(U)),

which proves the first part of the theorem. Moreover, since∣∣µU(τU > kt ) − µ(τU > kt )
∣∣ = |c(kt , U)| ≤ c(U),

we finally have for eacht ≥ 0,∣∣µU(τU > kt ) − e−t
∣∣ ≤ 4µ(U) + c(U)(2 − logc(U)).
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The converse part is proven in the same way. Fork ≥ 1,

µ(τU > k) = 1 − µ(τU ≤ k)

= 1 −
k∑

j=1

µ(τU = j)

= 1 − µ(U)

k∑
j=1

µU(τU > j − 1),

where we used in the last equality the relation (3). Hence

|µ(τU > k) − e−kµ(U)| ≤
∣∣∣∣∣∣1 − µ(U)

k∑
j=1

e−(j−1)µ(U) − e−kµ(U)

∣∣∣∣∣∣ + kµ(U)̃c(U)

≤
∣∣∣∣∣1 − µ(U)

1 − e−kµ(U)

1 − e−µ(U)
− e−kµ(U)

∣∣∣∣∣ + kµ(U)̃c(U)

≤ (1 + e−kµ(U))

∣∣∣∣1 − µ(U)

1 − e−µ(U)

∣∣∣∣ + kµ(U)̃c(U)

≤ 2µ(U) + kµ(U)̃c(U).

This gives, wheneverk ≤ k0 := log c̃(U)−1/µ(U):

|c(k, U)| ≤ 2µ(U) + c̃(U) log c̃(U)−1.

Fork > k0 we simply have

|c(k, U)| ≤ µ(τU > k0) + µU(τU > k0)

≤ 2µ(U) + c̃(U) log c̃(U)−1 + e−k0µ(U) + c̃(U). ut

The last theorem gives anecessary and sufficient conditionto obtain the exponential
law, that isd(U) → 0. However, such a quantity is not very transparent for dynamical
systems, that is why we give a criterion to estimate it. This kind of condition is a
generalization of the so-called “self-mixing condition” introduced in [Hir95].

Lemma 2.4. LetU ⊂ X a measurable set. The following estimate holds:

c(U) ≤ inf {aN(U) + bN(U) + Nµ(U)|N ∈ N},
where the quantities are defined by

aN(U) = µU(

N⋃
j=1

T −jU) = µU(τU ≤ N),

bN(U) = sup
V ∈U∞

|µU(T −NV ) − µ(V )|

with U = {U, Uc}, Un = ∨n−1
k=0 T −kU andU∞ = ∪nσ (Un).
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Proof. Let N ∈ N. If k < N , we just boundc(k, U) by

|µU(τU > k) − µ(τU > k)| = |µU(τU ≤ k) − µ(τU ≤ k)|
≤ |µU(τU ≤ k)| + |µ(τU ≤ k)|
≤ aN(U) + kµ(U) ≤ aN(U) + Nµ(U).

Otherwise, let us remark that{τU > k} and{τU ◦T N > k−N} differ only on{τU ≤ N},
and by hypothesis

|µU(τU > k) − µU(τU ◦ T N > k − N)| ≤ µU(τU ≤ N) = aN(U).

Moreover

|µU(τU ◦ T N > k − N) − µ(τU > k − N)| =
|µU(T −N(τU > k − N)) − µ(τU > k − N)| ≤ bN(U).

But {τU > k − N} and{τU > k} differs only on{τU ◦ T k−N ≤ N}, hence

|µ(τU > k − N) − µ(τU > k)| ≤ µ(τU ◦ T k−N ≤ N) = µ(τU ≤ N) ≤ Nµ(U).

We finally get for eachk, N ∈ N,

|µU(τU > k) − µ(τU > k)| ≤ aN(U) + bN(U) + Nµ(U),

which concludes the proof, sinceN is arbitrary. ut
We remark thatbN(U) is bounded byα(N) if the partitionU = {U, Uc} isα-mixing,

and byγ (N) if it is uniformly mixing (see Definition 2.1 below). To simplify, we could
say that the exponential law holds when there exists someN so small that only few points
of U come back inU beforeN steps, but large enough such thatT NU is uniformly spread
out.

Definition 2.1 (Speed of mixing).Let (X, B, T , µ) be a dynamical system andξ a
finite or countable measurable partition ofX. We setξk = ∨k−1

j=0 T −j ξ andσ(ξk) the
σ -algebra generated byξk.

1. Uniform mixing. The partitionξ is uniformly mixing with speedγ (n) going to zero
for n going to infinity if for anyn,

γ (n) = sup
k,l

sup
R∈σ(ξk)

S∈T −(n+k)σ (ξl )

|µ(R ∩ S) − µ(R)µ(S)|.

2. α-mixing. The partitionξ is α-mixing with speedα(n) going to zero forn going to
infinity if for anyn,

α(n) = sup
k,l

sup
R∈ξk

S∈T −(n+k)σ (ξl )

∣∣∣∣µ(R ∩ S)

µ(R)
− µ(S)

∣∣∣∣ .
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3. ϕ-mixing. The partitionξ is ϕ-mixing with speedϕ(n) going to zero forn going to
infinity if for anyn,

ϕ(n) = sup
k,l

sup
R∈σ(ξk)

S∈T −(n+k)ξl

∣∣∣∣ µ(R ∩ S)

µ(R)µ(S)
− 1

∣∣∣∣ .
4. Weak-Bernoulli. The partitionξ is weak-Bernoulli with speedβ(n) going to zero

whenn goes to infinity, if for anyn,

β(n) = sup
k,l

∑
R∈ξk

S∈T −(n+k)ξl

|µ(R ∩ S) − µ(R)µ(S)|.

Remark 2.5.We state some general implications and results verified by the preceding
types of mixing.

1. ϕ-mixing impliesα-mixing which implies uniform mixing. For anyn,γ (n) ≤ α(n) ≤
ϕ(n).

2. ϕ-mixing implies weak-Bernoulli which implies uniform mixing. For anyn, γ (n) ≤
β(n) ≤ ϕ(n).

3. If ξ is a generating partition of an uniformly mixing dynamical system, then the
system is mixing.

4. If ξ is a generating weak-Bernoulli partition then the system is metrically conjugated
with a Bernoulli shift.

2.2. Successive return times.We will now investigate the properties of successive return
times to the setU . For this purpose, let us define thekth return time inU by

τ
(k)
U (x) =

{
0 if k = 0,

τU (x) + τ
(k−1)
U (T τU (x)(x)) if k > 1.

Observe that the difference between two consecutive return times follows the same law
than the first, for the simple reason that

τ
(K+1)
U − τ

(K)
U = τU ◦ T τ

(K)
U

and the measureµU is invariant with respect to the induced application onU .

Theorem 2.6. Let U ⊂ X be a measurable set, andU = {U, Uc} the partition asso-
ciated to it. Given an integerK and a rectangleQK in R

K , the differences between
successives normalized return times inU are independent and exponentially distributed
up to f (K, U) (see (5) below), wheref (K, U) is defined depending on the type of
mixing by

(α) When(X, T , µ) is α-mixing forU , with speedα 1, then

f (K, U) = K

(
3d(U) + inf

M∈N

{α(M) + 3Mµ(U)}
)

.

1 We just need that mixing property for some special sets, more precisely, we are interested by

α′(N) = sup

{ ∣∣∣∣µ(R ∩ S)

µ(R)
− µ(S)

∣∣∣∣ ∣∣∣∣ j, N ∈ N, R ∈ Uj , T j R ⊂ U, V ∈ T −j−NU∞
}
.
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(γ ) When the partitionU is uniformly mixed by(X, T , µ) with speedγ , then

f (K, U) =

K

4d(U) + inf
M∈N

γ (M)<µ(U)2

{
γ (M)

µ(U)2

(
2 − K log

γ (M)

µ(U)2

)
+ 3Mµ(U)

} .

Indeed the following inequality holds:∣∣∣∣∣µU

(
(τ

(1)
U , τ

(2)
U −τ

(1)
U , . . . , τ

(K)
U −τ

(K−1)
U ) ∈ 1

µ(U)
QK

)
−

∫
QK

K∏
i=1

e−si dsK

∣∣∣∣∣
≤ f (K, U).

(5)

Remark 2.7.Note that the mixing assumption is made only for the special partitionU .
If the system has a partitionZ (not necessarily with two elements), uniformly mixing
with speedγZ , then for any cylinderU ∈ Zn of ordern, the partitionU = {U, Uc}
is still uniformly mixing with speedγU (M) ≤ γZ (M − n). The proof of the theorem
is inspired by [CG93], with the following differences: 1)U is any measurable set; 2)
we take care of the approximations to get an estimation of the error; 3) we still get an
estimation even if the system is uniformly mixing; however, it is interesting whenever
γ (M) = o(1/M2).

Proof of Theorem 2.6.Let us remark first that if we denote byF = T τU the induced
application onU , then for eachk ∈ N,

τ
(k+1)
U − τ

(k)
U = τU ◦ Fk.

We setτk = (τU , τU ◦ F, · · · , τU ◦ Fk−1). We will show that the inequality (5) holds
by induction onK.

ForK = 1, we apply Theorem 2.1 which gives, settingQ1 = [u, v],

|µU(τU ∈ [u, v]) −
∫ v

u

e−sds|
= |µU(τU > v) − µU(τU > u) − (e−u − e−v)| ≤ 2d(U).

Let’s suppose that the inequality (5) is true forK; we want to prove that it is also
true forK + 1. Let [r, s] be the projection ofQK+1 onto the last coordinate, and for
k = K, K + 1 denote:

Dk = U ∩ τ−1
k (

1

µ(U)
Qk).

For anyM ∈ N, the set defined by

EK+1(M) = DK ∩
{

x ∈ U | τU ◦ T M ◦ FK(x) ∈ [r, s]/µ(U) − M
}

verifies the inclusions

EK+1(M) ∩ {τU ◦ FK > M} ⊂ DK+1 ⊂ EK+1(M) ∪ {τU ◦ FK ≤ M}.
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Theorem 2.1 shows that the two sets which boundDK+1 do not differ too much, namely,

µU(τU ◦ FK ≤ M) = µU(τU ≤ M) ≤ 1 − e−Mµ(U) + d(U) ≤ Mµ(U) + d(U).

Therefore we get the first bound

|µU(DK+1) − µU(EK+1(M))| ≤ Mµ(U) + d(U). (6)

So the problem reduces to prove thatµU(EK+1(M)) follows the expected law. We
decompose the setsEK+1(M) overAj

K = U ∩ {τ (K)
U = j}. We have

EK+1(M) ∩ A
j
K = DK ∩ A

j
K ∩ T −(M+j){τU ∈ [r, s]

µ(U)
− M}.

We can now use the mixing withR = DK ∩ A
j
K ∈ σ(Uj ) andS = T −(M+j){τU ∈

[r, s]/µ(U) − M}. According to the type of mixing, we get two approximations:

(α) When the partitionU is α-mixing:

|µU(EK+1(M) ∩ A
j
K) − µU(DK ∩ A

j
K)µ(τU ∈ [r, s]

µ(U)
− M)|

≤ α(M)µU(DK ∩ A
j
K).

Summing over the possible values ofj we get:

|µU(EK+1(M)) − µU(DK)µ(τU ∈ [r, s]
µ(U)

− M)| ≤ α(M)µU(DK) ≤ α(M). (7)

Now Theorem 2.1 gives

|µ(τU ∈ [r, s]
µ(U)

− M) − (e−r − e−s)| ≤ |µ(τU ∈ [r, s]
µ(U)

) − (e−r − e−s)| + 2Mµ(U)

≤ 2(Mµ(U) + d(U)).

We briefly recall the approximations done with their respective errors

µU(DK+1)→µU(EK+1(M))→µU(DK)µ{τU ∈ [r,s]
µ(U)

}→µU(DK)(e−r − e−s)

↓ ↓ ↓
Mµ(U) + d(U) α(M) 2(Mµ(U) + d(U))

This allows us to show that the difference∣∣∣∣∣µU(DK+1) −
∫

QK+1

K+1∏
i=1

e−si dsK+1

∣∣∣∣∣ (8)

is bounded by the quantityf (K, U) + 3Mµ(U) + α(M) + 3d(U) ≤ f (K + 1, U),
which proves the induction and concludes the proof of this first case.

(γ ) We now consider the case whenU is uniformly mixing:
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Let M be such thatγ (M) < µ(U)2. As a first step, we can restrict ourselves to the case

whenQK ⊂ [0, z]K , with z = − log
γ (M)

µ(U)2 > 0. In fact,

QK \ [0, z]K ⊂
K⋃

k=1

R
k−1+ ×]z, ∞] × R

K−k+

which implies using Theorem 2.1

µU(µ(U)τK ∈ QK \ [0, z]K) ≤
K∑

k=1

µU(τ
(k+1)
U − τ

(k)
U > z/µ(U))

= KµU(τU > z/µ(U))

≤ K(e−z + d(U)).

Moreover∫
QK\[0,z]K

K∏
i=1

e−si dsK ≤
K∑

k=1

∫
R

k−1+ ×]z,∞]×R
K−k+

K∏
i=1

e−si dsK ≤ Ke−z.

Next, by decomposing according to

µU(µ(U)τK ∈ QK) = µU(µ(U)τK ∈ QK ∩ [0, z]K)

+ µ(µ(U)τK ∈ QK \ [0, z]K),

we getf (K, U) ≤ K(2e−z + d(U)) + f ′(K, U), wheref ′(K, U) is the maximum of
the difference (5) for the boxesQK ⊂ [0, z]K . We then estimatef ′(K, U). First by
uniform mixing we get

|µU(EK+1(M) ∩ A
j
K) − µU(DK ∩ A

j
K)µ(τU ∈ [r, s]/µ(U) − M)| ≤ γ (M)

µ(U)

and then we sum over all possible2 valuesj of τ (K),

|µU(EK+1(M)) − µU(DK)µ(τU ∈ [r, s]/µ(U) − M)| ≤ Kzγ (M)

µ(U)2 .

The same computation performed after estimation (7) (where nowα(M) is replaced

by Kzγ (M)/µ(U)2 in inequality (7)), gives the boundf ′(K + 1, U) ≤ K
zγ (M)

µ(U)2 +
3(d(U) + Mµ(U)). Then for eachM,

f ′(K, U) ≤ K2zγ (M)

µ(U)2 + 3K(d(U) + Mµ(U)).

SinceM is arbitrary, our choice ofz implies that the inequality (5) is verified with

f (K, U) = K

4d(U) + inf
M∈N

γ (M)<µ(U)2

{
γ (M)

µ(U)2

(
2−K log

γ (M)

µ(U)2

)
+3Mµ(U)

}. ut

2 SinceQK ⊂ [0, z]K , theK th return time is less or equal toKz, hence it takes at most[Kz] different
values.
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We are now ready to give the most important result of this section, namely, to prove
the Poisson statistics for successive return times. LetN(t) be the number of visits into
U up to the normalized timet/µ(U),

N(t) = sup
{

K > 0| τ (K)
U ≤ t/µ(U)

}
.

It turns out thatN(t) is a discrete random variable whose law is close to a Poissonian
one, more precisely we have

Theorem 2.8. The distribution of the number of visitsN(t) differs from the Poissonian
law by ∣∣∣∣µU(N(t) = K) − tK

K!e
−t

∣∣∣∣ ≤ g(t, K, U) + g(t, K + 1, U),

where for eachk ≥ 0 g(t, k, U) =
(
12tk/k + kk−1

)
k
√

f (k, U).

Proof. It is a consequence of the weak dependence of the differences of successives
return times established by Theorem 2.6. We first remark that

µU(N(t) = K) = µU

(
{τ (K)

U ≤ t

µ(U)
} ∩ {τ (K+1)

U >
t

µ(U)
}
)

= µU

(
τ (K) ≤ t/µ(U)

)
− µU

(
τ (K+1) ≤ t/µ(U)

)
.

It is then sufficient to compute the measure of points whosekth rescaled return time is
smaller thant , for k = K, K + 1. If we put P̃k(t) the distribution of the sum of the
differences of successive return times, we know that when the latter are i.i.d. random
variables with the same exponential law, then setting

Lk(t) =
{

(s1, . . . , sk) ∈ R
k+
∣∣∣ s1 + · · · + sk ≤ t

}
we get

P̃k(t) = Pk(t) :=
∫

Lk(t)

k∏
i=1

e−si dsi

which gives the classical resultPK(t) − PK+1(t) = tK

K!e
−t .

The difficulty comes now from the fact that we have to translate Theorem 2.6 given
for boxes on the simplexLk(t).

Let’s suppose thatf (k, U) < 1, otherwise there is nothing to prove. Hence the
integer defined byN = [k/f (k, U)k+1] is bigger thank. We consider the uniform
partition of[0, t]k by cubes of sizet/N . Let1k be the union of those cubesQk included
in the interior ofLk(t), for which for any(s1, . . . , sk) ∈ Qk,

∑k
i=1 si < t and6k

those which intersect the boundary, i.e. the union of those cubes such that there exists
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2

t

t

s
1

s

Fig. 1. Partition of the cube[0, t]k for k = 2. 6k is the union of dotted squares and1k the union of shaded
rectanglesRk(Qk).

(s1, . . . , sk) ∈ Qk with
∑k

i=1 si = t . By using the notationτk introduced in the proof
of Theorem 2.6 we have,

δ :=
∣∣∣∣∣µU(τ

(k)
U ≤ t/µ(U)) −

∫
Lk(t)

k∏
i=1

e−si dsk

∣∣∣∣∣
≤

∣∣∣∣∣µU(τk ∈ 1k

µ(U)
) −

∫
1k

k∏
i=1

e−si dsk

∣∣∣∣∣ + µU(τk ∈ 6k

µ(U)
) +

∫
6k

k∏
i=1

e−si dsk

≤ δ1 + δ2 + δ3.

To estimateδ1, we put5 for the projection over thek − 1 last coordinates; then the
setsRk(Qk) = {Q′

k ∈ 1k|5(Q′
k) = 5(Qk)} are boxes, and their number is bounded

by Nk−1 (see Fig. 1). For each of these boxes Theorem 2.6 gives an error smaller than
f (k, U), and then we getδ1 ≤ Nk−1f (k, U).

To computeδ2 andδ3, we first remark that a straightforward combinatorial calculus
gives, for the numberCk

N of cubes inside6k, Ck
N ≤ 6Nk−1 (see [Sau98b]). But for each

cubeQk ⊂ 6k Theorem 2.6 gives

µU(τk ∈ Qk) ≤
∫

Qk

k∏
i=1

e−si dsk + f (k, U).

Summing over all the cubes contained in6k one hasδ2 ≤ 6Nk−1f (k, U)+δ3. Moreover

the integral
∫

Qk

k∏
i=1

e−si dsk is bounded by the volume ofQk equal to(t/N)k, which

givesδ3 ≤ 6Nk−1tk/Nk. We then deduce that

δ ≤ δ1 + δ2 + δ3 ≤ Nk−1f (k, U) + 12tk/N

which impliesδ ≤ (
12tk/k + kk

)
f (k, U) by the previous choice ofN . ut
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3. Applications

In the preceding chapter we gave general estimates for the error between the distribution
of the number of visits into a setU and the Poissonian law. We could wonder whether
this law is attained in the limit ofµ(U) → 0. Put in this way the question is not very
clear. What we need is instead to localize a sequence of neighborhoodsUε(z) shrinking
to zero and ask whether the Poisson law holds in the limitε → 0. This approach was
successfully carried out by several authors as reminded in the introduction.Although their
results were applied to dynamical systems, the inspiration and some of the techniques of
the proofs were of probabilistic nature (theory of moments, Laplace transform). Here we
follow a purely dynamical direction, trying to extract all the statistical information by
the ergodic properties of the system. In this way we are able, for example, to exhibit the
Poissonian statistics for a large class of non uniformly hyperbolic maps of the interval,
widely studied in the last years especially to determine the rate of decay of correlations
and the central limit theorem.

Some statistical properties of these maps have been studied in the paper [LSV97]
(this paper contains a quite complete bibliography on the subject), where an absolutely
continuous invariant probability measure (acim) is first constructed, and then it is shown
that it enjoys a polynomial decay of correlations.

One feature of these maps is that they are characterized by a structure parameter (the
order of tangency at an indifferent fixed point), which governs the statistical properties,
and that can be viewed as an indicator of the “weak” hyperbolicity of the map. Actually,
it turns out that this parameter appears even in the approximation to the Poissonian law.

Let’s then consider for 0< α < 1 the following map of the unit interval:

T (x) =
{

x(1 + 2αxα) ∀x ∈ [0, 1/2)

2x − 1 ∀x ∈ [1/2, 1]
.

We recall some properties and results which we will need in the following, and we refer
the reader to the quoted paper for more informations and proofs. This application has a
finite Markov partition (with two elements), but for our purposes it is more convenient to
work with the countable oneξ generated by the left preimagesan of 1,ξ = {Am| m ∈ N}
with An =]an+1, an]. We will often use in the following the easy boundan

an+1
≤ 2.

We can associate to each pointz ∈ X =]0, 1] an unique infinite sequenceω =
ω1ω2... with the property thatT m−1z ∈ Aωm for all integerm ≥ 1. We denote byξm

the dynamical partitionξ ∨ T −1ξ · · · T −m+1ξ and call its elementsm-cylinders. We
denote withξm(z) ∈ ξm them-cylinder which containsz. The sequenceω satisfies the
admissibility condition:ωmωm+1 appears inω if and only ifωm = 0 orωm+1 = ωm −1.
We say that a non empty cylinderC = [ω1 . . . ωk] ∈ ξk is maximalif it maps ontoX

after exactlyk iterations, which is easily seen to be equivalent toωk = 0.

3.1. Some mixing properties.We begin with a brief survey of some results proved by
two of us (B.S., S.V) in the joint paper [LSV97] with Carlangelo Liverani. We showed
that the densityh of theacim belongs to a certain cone of functionsC∗(a), which will
be characterized later (see Lemma 3.2), provideda is big enough, and satisfies3:

3 We recall the formal definition of the Perron Frobenius operatorP acting on functionf : [0, 1] → R:
Pf (x) = ∑

Ty=x
1

DyT
f (y). One easily check thatµ is anacim iff h = dµ

dx
is a fixed point ofP onL1(dx).
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Lemma A (Lemma 2.2 in [LSV97]). The coneC∗(a) is left invariant by the Perron-
Frobenius operatorP , i.e.P(C∗(a)) ⊂ C∗(a).

Lemma B (Lemma 2.3 in [LSV97]). The densityh belongs to the coneC∗(a), and
verifies in particular wheneverx ≤ y,

h(x)

h(y)
≤ (y/x)α+1, (9)

h(x) ≤ ax−α. (10)

Proposition C (Distortion inequality, proof of Proposition 3.3 in [LSV97]).There exists
some constant1 such that for allk andx, y ∈ C ∈ ξk,

DxT
k

DyT k
≤ 1 < ∞. (11)

We will suppose without loss of generality thata ≥ 41.

Theorem D (Theorem 4.1 in [LSV97]). In the proof of this theorem we in particular
got that forf ∈ C∗(a),∥∥∥P n

(
f − λ(f )

)∥∥∥
L1(λ)

≤ 8(n)‖f ‖L1(λ) (12)

with 8(n) = Cn− 1
α
+1(logn)

1
α = OL(n− 1

α
+1), where we define by

OL(ε) = O(ε(logε−1)r )

in the limit ε → 0, for any constantr.

We then need a few more results on the speed of mixing which turn out to be useful
for the statistics of return times and also to establish the weak-bernoullicity of the map.

Lemma 3.1. For anyz ∈ X, and for anym such thatξm(z) is maximal, the partition
U = {ξm(z), ξm(z)c} satisfies a property close to theα-mixing, namely

α′(N) = sup
j∈N

sup
R∈Uj

T j R⊂U

sup
S∈U∞

∣∣∣∣µ(R ∩ T −N−j S)

µ(R)
− µ(S)

∣∣∣∣ = OL((N − m)1− 1
α ).

Proof. Let z be a point ofX andm be an integer such thatξm(z) is maximal. LetU
be the partition given byξm(z) and its complement, andUj the refinement ofU . For
R ∈ Uj such thatT jR ⊂ U , we haveR ∈ σ(ξm+j ) andR is a union of maximal
cylindersV k

m+j ∈ ξm+j ; chooseV ∈ ξm+j one of these maximal cylinders. For any

S ∈ T −(N+j)B there exists a setW ∈ B such thatR = T −(N+j)W . We then have

(∗) := µ(V ∩ S) − µ(V )µ(S)

=
∫

1IV 1IW ◦ T N+j hdλ −
∫

µ(V )h1IWdλ

=
∫

P N+j [h(1IV − µ(V ))]1IWdλ

≤ ‖P N+j [h(1IV − µ(V ))]‖L1(λ).
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By exploiting the fact thatV is maximal we continue the preceding bound as

(∗) ≤
∥∥∥P N−m[P j+m(h1IV ) − µ(V )]

∥∥∥
L1(λ)

+
∥∥∥P N−m[µ(V )h − µ(V )]

∥∥∥
L1(λ)

≤ 4a8(N − m)µ(V ),

with 8 given by inequality (12), providedP m+j (h1IV ) ∈ C∗(a), which is the case by
Lemma 3.2 below. We conclude the proof by summing over all the maximal cylinders
of R. ut
Lemma 3.2. For any maximal cylinderV ∈ ξp,

P p(h1IV ) ∈ C∗(a).

Proof. We first setf := P p(h1IV ) andT
p
V : V → X the restriction ofT p to V . Since

T p is injective overV we can rewritef as

f (x) = h ◦ T
−p
V (x)DxT

−p
V

which in particular shows thatf is continuous. To prove thatf belongs to the cone of
smooth functionsC∗(a) we must verify the following four properties which just define
the cone:

1. f is continuous and positive, that is clear in our case.
2. f is decreasing. Sinceh ∈ C∗(a), h decreases. In addition,T −p

V is decreasing and

concave, thereforeh ◦ T
−p
V andDT

−p
V decrease.

3. x 7→ xα+1f (x) increases. SinceT −p
V : X → V is increasing, an equivalent statement

is that

(T pu)α+1h(u)
1

DuT p

is increasing withu ∈ V . Observing that(
T pu

u

)α+1 1

DuT p

increases overV ∈ ξp (which is true forp = 1 and the general case is proved by
recurrence), andu 7→ uα+1h(u) increases, we obtain the result.

4. f (x) ≤ ax−α
∫

f . Sincef is continuous, there existsv ∈ V such that∫
f = f (T pv) = h(v)

1

DvT p
.

The distortion estimate (11) foru ∈ V ∈ ξp gives

DvT
p

DuT p
≤ 1.

Moreover sinceh decreases, inequality (9) yields

h(u)

h(v)
≤ h(aω1+1)

h(aω1)
≤

(
aω1

aω1+1

)α+1

≤ 4.
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As a consequence, we get foru = T
−p
V x,

f (x) = h(u)
1

DuT p
≤ 4h(v)

1

DvT p
≤ ax−α

∫
f,

becausex ≤ 1 and 41 ≤ a. ut
We finally prove that the countable partitionξ , and therefore the two-elements one,

is weakly Bernoulli.

Theorem 3.3. The partitionξ is weakly Bernoulli for(X, T , µ) with speedβ(n) =
OL(n1−1/α).

Proof. We begin to recall the following result by Hofbauer and Keller [HK82] which
permits to boundβ(n) as

β(n) ≤ sup
m∈N

∑
R∈ξm

‖P n+m((1IR − µ(R))h)‖L1
λ
. (13)

Then it will be enough to bound

‖P m+n((1IR − µ(R))h)‖

with R ∈ ξm. LetpR ≥ m be the integer for whichR ∈ ξpR
is maximal. We decompose

the sum over all the cylindersR ∈ ξm into two blocks. LetM(m, n) be the set of maximal
cylinders forpR < m + n/2. WhenR ∈ M(m, n), the same computation performed in
Lemma 3.1 gives

‖P m+n((1IR − µ(R))h)‖L1
λ

≤ µ(R)OL((m + n − pR)1−1/α) = µ(R)OL(n1−1/α).

Then the set of cylinders which do not belong toM(m, n) is exactlyT −m+1[0, an/2],
whose measure is equal to

µ(T −m+1[0, an/2]) = µ([0, an/2]) =
∫ an/2

0
h(x)dx = O(n1−1/α).

This proves the theorem.ut

3.2. Statistics of return times.We now come back to the study of return times and the
first step will be the estimation of the quantities involved in the error term given by
Lemma 2.4.

Lemma 3.4. There exists a constantB such that for anyk andC ∈ ξk withT −kC∩C 6=
∅,

supP k1IC ≤ Bk−1−1/α. (14)
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Proof. Let k0 be such thatDak0
T ≤ 2, and putr = Dak0

T > 1. LetC = [ω1...ωk] be

a k-cylinder such thatT −kC ∩ C 6= ∅. This implies thatωkω1 is admissible. We want
to estimate supP k1IC = 1/ inf C DT k. If ωj ≤ k0 for all j = 1..k, thenDT k ≥ rk.
Else, takej such thatωj = max1≤i≤k ωi . Eitherj = 1, and consequentlyωk = 0 or
ωj−1 = 0. In the last case we have

inf
C

DT k ≥ inf[ω1...ωj−1]
DT j−1 inf[ωj ...ωk]

DT k+1−j ≥ 1−1 inf[ωj ...ωkω1...ωj−1]
DT k.

By this argument we are led to consider the worst case which is given by a cylinder of
typeC = [(k − 1)(k − 2)...0]. For T kC = [0, 1], the distortion formula (11) and the
estimationak ≤ ck−1/α given by Lemma 3.2 in [LSV97] we getDak

T k = c′k1+1/α

for some constantc′, from which the lemma follows by takingB ≥ 1/c′ such that
Bk1−1/α ≥ rk for all k > 0. ut

We now introduce the first return time of a cylinderU which plays a crucial role in
[Hir95]. We define it asτ(U) = inf {τU (x)| x ∈ U}.
Lemma 3.5. The quantityaN(U) defined in Lemma 2.4 forU = ξm(z) is bounded by,

aN(U) = 41

inf h

Nµ(U)

λ(T τ(U)U)
.

Proof. We supposeN > τ(U) otherwiseaN(U) = 0. Setτ = τ(U); for eachz in X

we have

aN(U) ≤
N∑

j=1

1

µ(U)
µ(T −jU ∩ U)

=
N∑

j=τ

1

µ(U)

∫
P j (1IUh)1IUdλ

≤ N sup
j=τ..N

sup
U

P j (1IUh)

h
.

Now the distortion (11) and the regularity of the density (9) give

P τ (1IUh) = h ◦ T −τ
U DT −τ

U 1IT τ U

≤ 41
1

λ(T τU)

∫
T τ U

h ◦ T −τ
U DT −τ

U 1IT τ Udλ

≤ 41
µ(U)

λ(T τU)
.

Finally, Ph = h and sinceP is a positive operator one has

P j (1IUh)

h
≤ P j−τ 1I

h
supP τ (1IUh) ≤ P j−τ h

inf h

h
supP τ (1IUh) ≤ 41

inf h

µ(U)

λ(T τU)
.

ut
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The next step will be to show thatτ(U) is almost everywhere big enough to give a
good upper bound in the previous lemma foraN(U).

We first define in full generality thelocal rate of return for cylinders. As a matter
of fact, we would like to point out that the first return time of a set into itself allows
to define and compute an interesting dimension-like characteristic which we called the
Afraimovich-Pesin dimension in [PSV98].

Definition 3.1. Let ζ a partition ofX. Denote withζn(x) the element ofζ ∨ T −1ζ ∨
· · · ∨ T −n+1ζ which containsx ∈ X. We then define the local (lower and upper) rate of
return for cylinders as

Rζ (x) = lim
n→∞

τ(ζn(x))

n
.

Proposition 3.6. (i) Both Rζ and Rζ are sub-invariant, namelyRζ ◦ T ≤ Rζ and

Rζ ◦ T ≤ Rζ .
(ii) Assume thatζ is a measurable partition of the measurable spaceX, andµ is an

invariant probability, thenRζ andRζ areµ-a.e. invariant.

(iii) Moreover, wheneverµ is ergodicRζ andRζ areµ-a.e. constant

Proof. (i) Let x ∈ X. For each integern > 0, we have:

ζn(x) ∩ T kζn(x) 6= ∅ H⇒ ζn−1(T x) ∩ T kζn−1(T x) 6= ∅,

which implies thatτ(ζn−1(T x)) ≤ τ(ζn(x)).
(ii) is a standard property of sub-invariant functions on finite measure spaces and then
(iii) follows immediately. ut

We state the following result which can be improved for some subshifts4.

Proposition 3.7. For µ-almost everyz ∈ X, the lower rate of return for cylinders is
equal to1.

Rξ (z) = 1.

Proof. Let 1/2 < δ < 1. Consider the set (we denoteNm(z) = τ(ξm(z))),

Lm := {z ∈ A0| Nm(z) ≤ δm}.
If

∞∑
m=1

µ(Lm) < ∞, (15)

then the Borel-Cantelli Lemma ensures that for almost everyz ∈ A0, we haveNm > δm,
up to finitely manym. By sendingδ to 1 we show thatRξ (z) ≥ 1 almost everywhere
onA0. Then for the preceding proposition (iii) and the ergodicity of the measureµ, we

4 We have in fact the following:
Theorem. Suppose thatµ is a Gibbs state for the Hölder potentialϕ on some irreducible and aperiodic
subshift of finite type with finite alphabetζ , thenµ-almost everywhere,Rζ = Rζ = 1.

Proof. An easiest version of the Proposition 3.7 gives the lower bound, while the uniform upper bound
τ(Cn) ≤ n + n0 holds, whereCn is a cylinder of ordern, andn0 is the lowest power for which the transition
matrix becomes strictly positive.
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get the same bound almost everywhere. The equality finally follows since each time that
T m−1z ∈ A0, we haveT mξm(z) = X henceNm(z) ≤ m.

In order to prove (15) it is sufficient to consider the Lebesgue measure instead ofµ

(since the densityh is bounded from below). We have

λ(Lm) =
[m/2]∑
k=1

λ(Nm = k) +
δm∑

k=[m/2]+1

λ(Nm = k).

(1) + (2)

We now perform a detailed analysis of the sets appearing in the preceding formula.
(1): In this case, the cylinderξm(z) with Nm = k must be of the form

ξm(z) = [(ω1.. .ωk)(ω1...ωk)...(ω1.︸ ︷︷ ︸
[m/k]

..ωk)...].

Therefore whenk ≤ [m/2], the cylinder is completely determined by its firstk symbols.
PutC = [ω1...ωk]; we say that a cylinder of lengthk is admissible (admis) when it is
the beginning of a cylinder ofLm with Nm = k. Then we can bound (1) by

(1) ≤
[m/2]∑
k=1

∑
C admis

λ(C ∩ T −kC ∩ · · · ∩ T −[m/k−1]kC)

≤
[m/2]∑
k=1

∑
C admis

(
sup
C

P k1IC

)[m/k]−1

λ(C)

≤
[m/2]∑
k=1

sup
C admis

(
sup
C

P k1IC

)[m/k]−1

.

We first remark thatT k being injective overC ∈ ξk, we have

P k1IC ≤ 1/ inf
A0

DT k ≤ 1/2.

We split the last sum in three pieces by fixingk0 as the biggest integer for whichk
1+ 1

α

0 ≥
eB , whereB is the constant in Lemma 3.4. We then have by using Lemma 3.4,

(1) ≤
k0∑

k=1

(1/2)[m/k]−1 +
m/3∑
k=k0

(Bk−1−1/α)m/k−2 +
[m/2]∑
m/3

Bk−1−1/α.

The first and the last sum are easily shown to be summable with respect tom. For the
second term, we observe that the terms(Bk−1−1/α)m/k−2 are increasing ink whenk is
bigger thank0. A direct estimation of the sum isB31/αm−1/α which is summable with
respect tom.
(2): In this case, the cylinderξm(z) has the form

ξm(z) = [ω1...ωm−k︸ ︷︷ ︸
m−k

ωm−k+1...ωk︸ ︷︷ ︸
2k−m

ω1...ωm−k︸ ︷︷ ︸
m−k

].
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As before, we setC = [ω1...ωm−k], and we say thatC is admissible (admis) when it is
the beginning of a cylinder ofLm with Nm = k,

(2) ≤
δm∑

k=[m/2]+1

∑
C admis

λ(C ∩ T −kC)

≤
δm∑

k=[m/2]+1

sup
C admis

sup
C

P k1IC.

Let first p = p(C) ≥ m − k be such thatC ∈ ξp is maximal (i.e.p(C) is the smallest
p for whichC ∈ ξp). Whenp < k, since 1∈ C∗(a) the inequality (12) and Lemma 3.4
give

sup
C

P k1IC ≤ supP p1IC sup
C

P k−p1 ≤ a2αBp−1−1/α ≤ a2αB(m − k)−1−1/α.

Whenp ≥ k, C ∈ ξk andT −kC ∩ C 6= ∅ we have

P k1IC ≤ Bk−1−1/α.

But k ≥ m − k ≥ (1 − δ)m, and then the sum (15) is summable for anyδ < 1. ut
We are now ready to state and prove the main theorems of this section

Theorem 3.8. For µ-almost everyz ∈ X andβ < β̄(α),

sup
t≥0

∣∣∣∣µξm(z)

(
τξm(z) >

t

µ(ξm(z))

)
− exp(−t)

∣∣∣∣ = O(µ(ξm(z))β),

where the critical exponent̄β(α) = 1 − α.

Proof. Let ε be a positive number. Letz be a typical point for Proposition 3.7 and for the
Shannon–McMillan–Breiman theorem. We want to apply Lemma 2.4; Letm(ε) such
that for anym > m(ε) we have(1− ε)m ≤ τ(ξm(z)), µ(ξm(z)) ≤ exp(−m2hµ/3) and
alsoµ(ξεm(T [(1−ε)m]z)) ≥ exp(−(2[εm])hµ).

For the sake of simplicity, we put for anym, Um = ξm(z). For anym > m(ε) such
thatUm is maximal, we have(1 − ε)m ≤ τ(Um) ≤ m, and all the iteratesT jUm for
1 ≤ j < m are at a distance bigger thanam from the neutral fixed point (becauseUm is
maximal). Ifτ(Um) < m then the density stays bounded on the orbitT jUm by ba−α

m so
we have

λ(T τ(Um)Um) ≥ aα
m

b
µ(T τ(Um)Um) ≥ aα

m

b
exp(−2εmhµ).

On the other hand, whenτ(Um) = m we still get

λ(T τ(Um)Um) = 1 ≥ aα
m

b
exp(−2εmhµ).

Lemma 3.5 gives us the following estimation withN = µ(Um)−α+ε,

aN(Um) = O(µ(Um)1−α−3ε).
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Lemma 3.1 withR = Um gives us

bN(Um) = OL((µ(Um)−α+ε − m)1− 1
α ) = OL(µ(Um)(−α+ε)(1− 1

α
)).

We can then apply Lemma 2.4, which gives

c(Um) =≤ aN(Um) + bN(Um) = O(µ(Um)β)

for β ≤ 1 − α − 3ε andβ ≤ 1 − α − 2ε(1/α − 1). We finally end up with

d(Um) = O(µ(Um)β) (16)

for any β < 1 − α, sinceε is arbitrary small, which conclude the proof by applying
Theorem 2.1. ut
Remark 3.9.The preceding theorem shows that the critical exponentβ̄(α) is smaller
than 1.We point out that, by using Proposition 2.3 the powerβ̄ cannot exceed 1.

Theorem 3.10. For µ-almost everyz ∈ X, we have for anyt ≥ 0 and K ≥ 0 and
β < β̄(α),∣∣∣∣µξm(z)

(
Nξm(z)(t) = K

) − tK

K! exp(−t)

∣∣∣∣ = O(µ(ξm(z))β/(K+1)).

with the critical exponent̄β(α) = 1 − α.

Proof. Let z be a typical point satisfying the preceding theorem andm such thatUm =
ξm(z) is maximal.

By invoking the footnote of Theorem 2.6, it will be sufficient to use the weakened
α-mixing condition

α′(M) = OL((M − m)α− 1
α )

given by Lemma 3.1 to apply Theorem 2.6. TakeM = µ(Um)−α; we thus find for
β < 1 − α, and by the estimation (16) and Theorem 2.6 an error of the order

f (K, Um) = const[d(Um) + α′(M) + Mµ(U)] = O(µ(Um)β).

By applying Theorem 2.8, the error for the probability to haveK successive visits is of
the orderµ(Um)β/(K+1) for all β < 1 − α. ut

4. Concluding Remarks

We conclude with few observations. First, the proofs for the exponential-one law and the
Poisson law given in Sect. 3 for a class of non uniform hyperbolic maps, can be easily
adapted, and they are even easier, to all the cases quoted in the introduction, namely:
Axiom A diffeomorphisms, transitive Markov chains, expanding maps of the interval
with a spectral gap and in general to allϕ-mixing dynamical systems.

For such systems, an estimation for the error can also be done: following the argu-
ments of Theorems 3.8 and 3.10, one can easily see that the critical exponentβ̄ is equal
to 1. This supports our beliefs that: (i) the error terms of typeµ(U)β could be optimal
and (ii) the non uniform hyperbolicity of the map reflects in the critical exponent: in that
case, in fact, it should be strictly smaller than one.
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