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Abstract: For any simple Lie algebrag and any complex numberq which is not zero
or a nontrivial root of unity, we construct a dynamical quantum group (Hopf algebroid),
whose representation theory is essentially the same as the representation theory of the
quantum groupUq(g). This dynamical quantum group is obtained from the fusion and
exchange relations between intertwining operators in representation theory ofUq(g),
and is an algebraic structure standing behind these relations.

1. Introduction

One of the most important equations in statistical mechanics is the so-called Star-Triangle
relation, introduced by Baxter. In 1994, G. Felder [F] suggested to write this relation in
the form of the quantum dynamical Yang–Baxter equation (QDYB) (which previously
appeared in some form in physical literature), and proposed the concept of a quantum
group associated to a solution of this equation. He also considered the quasi-classical
limit of this equation, and showed that a solution of the classical dynamical Yang–
Baxter equation (CDYB) appears naturally on the right-hand side of the Knizhnik–
Zamolodchikov–Bernard equations for conformal blocks on an elliptic curve. Since
then, this theory has found many applications in the theory of integrable systems.

In [EV1], we proposed a geometric interpretation of the CDYB equation without
spectral parameter. Namely, we assigned to any solution of this equation, whose sym-
metric part is invariant, a certain Poisson groupoid. This construction is a generalization
of Drinfeld’s construction which assigns a Poisson–Lie group to any solution of the
usual classical Yang–Baxter equation, with invariant symmetric part. We also classified
such solutions for simple Lie algebras and showed that there are two classes of solutions
(without spectral parameter) – rational and trigonometric.
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In [EV2], we quantized the results of [EV1] and presented a “noncommutative ge-
ometric” interpretation of solutions of the QDYB equation without spectral parameter.
Namely, we assigned to any solution of the QDYB equation, satisfying a special “Hecke
type” condition, a certain dynamical quantum group (Hopf algebroid). This construction
is a generalization of the Faddeev–Reshetikhin–Takhtajan–Sklyanin construction which
assigns to any solution of the usual quantum Yang–Baxter equation of Hecke type a
quantum group (Hopf algebra), defined by the so-calledRT T = T T R relations. We
also classified the Hecke type solutions of the QDYB equation and showed that, like
in the classical case, there are two classes of solutions (without spectral parameter) –
rational and trigonometric.

The solutions of the QDYB equation and corresponding dynamical quantum groups
from [EV2] provide quantizations of the solutions of the CDYB equation and Poisson
groupoids from [EV1], but only for the Lie algebrag = slN . For other simple Lie
algebras, especially for exceptional ones, one needs to use a different method to quantize
the Poisson groupoids from [EV1]; this method has to be applicable to any simple Lie
algebrag and should not use its particular matrix realization.

Such a method is suggested in the present paper. Namely, it turns out that with any
simple complex Lie groupG (with the Lie algebrag) and a nonzero complex number
q (which is not a nontrivial root of unity but may be equal to 1) one can associate a
Hopf algebroidFq(G), which is a quantization of the Poisson groupoid associated with
the simple Lie algebrag in [EV1]. More precisely, the caseq = 1 corresponds to the
Poisson groupoid defined by the rational solution, andq 6= 1 corresponds to the Poisson
groupoid defined by the trigonometric solution.

The Hopf algebroidFq(G) is constructed from the representation theory ofG.
Namely, the structure constants of the multiplication inFq(G) are obtained from the
structure constants of the multiplication (fusion) of intertwining operators between a
Verma module overUq(g) and a tensor product of a Verma module with a finite dimen-
sional module overUq(g). These structure constants have been known for a long time
under various names (Racah coefficients, Wigner 6j symbols) and play an important role
in quantum physics.

The commutation relations between generators ofFq(G) are defined by certain dy-
namical R-matrices, which satisfy the quantum dynamicalYang–Baxter equations.These
R-matrices are exactly the matrices which arise in commutation (=exchange) relations
between intertwining operators and are therefore called the exchange matrices. This
makes it natural to call the Hopf algebroidsFq(G) the exchange dynamical quantum
groups.

The results of this paper demonstrate how to use representation theory to construct
new quantum groups, and conversely, how the multiplication of intertwining operators,
one of the main structures in representation theory, is controlled by a dynamical quantum
group.

We note that the main idea of this paper (to use commutation relations between
intertwining operators to obtain new quantum groups) was inspired by the pioneering
paper [FR].

Let us briefly describe the contents of the paper.
In Sect. 2 we introduce, for any polarized Hopf algebra, the fusion and exchange

matricesJ (λ), R(λ) and consider their main properties.
In Sect. 3 we recall the notion of anH -Hopf algebroid and its dynamical represen-

tations introduced in [EV2] (whereH is a commutative, cocommutative Hopf algebra).
In Sect. 4 we construct Hopf algebriods defined by the fusion and exchange matrices.
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In Sect. 5 we specialize our construction to the case of simple Lie groups and quantum
groups, and construct the Hopf algebroidsFq(G).

In Sect. 6 we compute the exchange R-matrix for the vector representation ofG =
GL(N), and show thatFq(GL(N)) is isomorphic to the Hopf algebroidAR defined by
the trigonometric solutionR of the quantum dynamicalYang–Baxter equation in [EV2].

In Sect. 7 we consider the representation theory ofFq(G) for a simple complex group
G and show that its category of rational finite dimensional dynamical representations
contains the category of finite dimensional representations ofUq(g)as a full subcategory.
In the next paper we plan to show that these categories are actually the same.

In Sect. 8, we describe the precise connection between fusion and exchange matrices
(for sl2) and the classical and quantum 6j-symbols.

In Sect. 9, we show that the universal fusion matrixJ (l) satisfies the defining property
of the quasi-Hopf twist discovered in [A]. In particular, this shows that our fusion matrices
are the same as the quasi-Hopf twists introduced in [A].

In a subsequent paper, we plan to consider the analogue of this theory for affine
and quantum affine algebras. This will help one to understand better the monodromy of
classical and quantum Knizhnik–Zamolodchikov equations following the ideas of [FR]
and [TV1-2,FTV].

In conclusion we would like to mention the paper [BBB], in which another algebraic
interpretation of the QDYB equation was given (via quasi-Hopf algebras), and a version
of our main construction for the Lie algebrasl2 was presented. See also [JKOS] where
the approach of [BBB] was generalized to an arbitrary Kac–Moody algebra. We would
also like to point out the recent paper [Xu], where the relationship between the quasi-
Hopf algebra and Hopf algebroid interpretation of the quantum dynamicalYang–Baxter
equation is explained.

2. Exchange Matrices

2.1. Polarized Hopf algebras. A polarized Hopf algebrais a Hopf algebraA over C

with the following properties:

I. The algebra isZ-graded,A = ⊕∞
k=−∞A[k].

II. The algebra is polarized. Namely, there exist graded subalgebrasA0, A+, A− such
that the multiplication mapsA+ ⊗ A0 ⊗ A− → A andA− ⊗ A0 ⊗ A+ → A are
isomorphisms of vector spaces. We also assume that the graded components ofA+
andA− (not ofA0) are finite dimensional.

III. Let ε : A → C be the counit, then Kerε ∩A+ has only elements of positive degree,
Ker ε ∩ A− has only elements of negative degree,A0 has only elements of zero
degree.

IV. The algebraA0 is a commutative cocommutative finitely generated Hopf algebra.
V. A0A+ andA0A− are Hopf subalgebras ofA.

Let T = SpecA0. SinceA0 is finitely generated, commutative and cocommutative,
T is a commutative affine algebraic group [M].

The main examples of polarized Hopf algebras are the universal enveloping algebra
U(g) of a simple Lie algebrag and the corresponding quantum groupUq(g).

If h ⊂ g is a Cartan subalgebra,g = g− ⊕ h ⊕ g+ a polarization andA = U(g),
thenA− = U(g−), A0 = U(h), A+ = U(g+), andT = C

n, wheren =dim h. If
A = Uq(g), thenA− = Uq(g−), A0 = Uq(h), A+ = Uq(g+), andT = (C∗)n.
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2.2. Verma modules.LetA0+ = Ker ε ∩ A+. ThenA+ = C · 1 ⊕ A0+.

Lemma 1. A0A
0+ is the set of elements ofA0A+ of positive degree. Moreover,A0A

0+
is a two-sided ideal inA0A+.

Proof. A0A
0+ obviously lies among the elements of positive degree. We prove the con-

verse statement. Letα = ∑
ai0a

i+ be a homogeneous element of degreeN > 0 inA0A+,
whereai0 ∈ A0 andai+ ∈ A+ has degreeN . SinceA+ = C ·1⊕A0+, we haveai+ ∈ A0+.
The second statement of the Lemma obviously follows from the first.ut
Corollary 2. A0A+/A0A

0+ ∼= A0.

In fact,A0 → A0A+ → A0A+/A0A
0+ is an isomorphism.

Let ϕ+ : A0A+ → A0 be the induced homomorphism,ϕ+ is defined byϕ+(a0) =
a0, ϕ+(a+) = ε(a+), wherea0 ∈ A0, a+ ∈ A+.

Letλ : A0 → C be a homomorphism, henceλ ∈ T . Letχλ be the corresponding one
dimensionalA0-module. Define a homomorphismχ+

λ : A0A+ → C byχ+
λ = λϕ+. We

also denote byχ+
λ the corresponding one-dimensionalA0A+-module. Definea Verma

moduleM+
λ overA byM+

λ = A⊗A0A+ χ
+
λ .

Analogously, consider the homomorphismϕ− : A0A− → A0 and the corresponding
A0A−-moduleχ−

λ . Definea Verma moduleM−
λ overA byM−

λ = A⊗A0A− χ
−
λ .

Let χ+
λ = Cv+

λ .

Lemma 3. M+
λ is a freeA−-module generated byv+

λ .

The lemma follows from Property II.
Similarly,M−

λ is a freeA+-module generated byv−
λ .

Using Lemma 3 induce a grading onM±
λ fromA± such that the degree ofv±

λ is equal
to zero.

2.3. The Shapovalov form.A polarized Hopf algebraA is called nondegenerateif
Verma modulesM+

λ andM−
λ are irreducible for genericλ ∈ T . (This means that the

modules are irreducible for allλ except a countable union of algebraic sets of lower
dimension.) For example,U(g) andUq(g) are nondegenerate.

Let A be polarized and nondegenerate. Consider the vector space(M+
λ )

∗, the re-
stricted dual ofM+

λ with respect to the grading ofA−. Define anA-module structure on
(M+

λ )
∗ by π(M+

λ )
∗(a) = πM+

λ
(S(a))∗, whereS is the antipode inA.

Define(v+
λ )

∗ ∈ (M+
λ )

∗ to be the only degree zero element such that< (v+
λ )

∗, v+
λ >= 1.

Lemma 4. If a− ∈ A0−, thena−(v+
λ )

∗ = 0. If a0 ∈ A0, thena0(v
+
λ )

∗ = (−λ)(a0)(v
+
λ )

∗,
where−λ means the inverse element in the abelian groupT .

In fact, a−(v+
λ )

∗ has degree which does not occur in(M+
λ )

∗. The second statement is
obvious.

Corollary 5. There exists a unique homomorphism ofA-modulesψ− : M−
−λ → (M+

λ )
∗

such thatv−
−λ 7→ (v+

λ )
∗.

Analogously, one can define a homomorphismψ+ : M+
−λ → (M−

λ )
∗ such that

v+
−λ 7→ (v−

λ )
∗.
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Lemma 6. If A is nondegenerate, thenψ+, ψ− are isomorphisms for genericλ.

Proof. For genericλ, the homomorphismsψ+ andψ− are injective sinceM+
−λ andM−

−λ
are irreducible andψ+, ψ− differ from zero.This implies that dimA+[n] 6 dimA−[−n]
and dimA+[n] > dimA−[−n]. ut
Corollary 7. For all n, dimA+[n] = dimA−[−n].

The homomorphismsψ+, ψ− are calledthe Shapovalov forms. They can be consid-
ered as bilinear formsψ+(λ) : A+ ⊗A− → C, ψ−(λ) : A− ⊗A+ → C depending on
λ. The bilinear forms can be defined also byψ+(λ)(a+, a−) =< (v+

λ )
∗, S(a+)a−v+

λ >

andψ−(λ)(a−, a+) =< (v−
λ )

∗, S(a−)a+v−
λ >.

Choose bases inA±[n] and compute the determinants of the Shapovalov forms,

D+
n (λ) = detψ+(λ)[n], D−

n (λ) = detψ−(λ)[n].
The determinants of the Shapovalov forms are regular nonzero functions ofλ ∈ T

defined up to multiplication by a nonzero number.

2.4. Intertwining operators.Let A be polarized and nondegenerate. LetV be aZ-
gradedA-module such thatV is a diagonalizableA0-module,V = ⊕λ∈T V [λ], where
a0v = λ(a0)v for all v ∈ V [λ], a0 ∈ A0.

Theorem 8.

I. Assume thatM−−µ is irreducible andV is bounded from above, i.e. the graded
component ofV corresponding a numberN is equal to zero ifN >> 0. Then
HomA(M

+
λ ,M

+
µ ⊗ V ) ∼= V [λ − µ], whereλ − µ means the difference in the

abelian groupT .
II. Assume thatM+−µ is irreducible andV is bounded from below. Then

HomA(M
−
λ ,M

−
µ ⊗ V ) ∼= V [λ− µ].

The isomorphism is given by

8 7→< 8 >:=< (v±
µ )

∗ ⊗ 1, 8v±
λ > .

Proof. First we prove a lemma. LetB be aZ-graded Hopf algebra. LetU,W be Z-
gradedB-modules bounded from above and such that all homogeneous components of
U are finite dimensional. Define the space HomB(U∗,W) as HomB(U∗,W) =
⊕nHomB(U

∗,W)[n]. Let (U ⊗W)B denote the subspace of invariants with respect to
B, i.e. the subspace of all elementsw such thatbw = ε(b)w for anyb ∈ B. The space
(U ⊗W)B is Z-graded,(U ⊗W)B = ⊕n(U ⊗W)B [n].
Lemma 9. Letw ∈ U ⊗ W . Let w̃ : U∗ → W be defined as the composition of the
two maps:1 ⊗ w : U∗ → U∗ ⊗ U ⊗ W and< ·, · > ⊗ 1 : U∗ ⊗ U ⊗ W → W .
Thenw ∈ (U ⊗ W)B [n] for somen if and only if w̃ ∈ HomB(U

∗,W)[n]. Thus the
assignmentw → w̄ is an isomorphism of(U ⊗W)B andHomB(U

∗,W).
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Proof. The counit ofB defines a trivial one-dimensionalB-moduleCB . If w ∈ U ⊗W

is B-invariant, thenw defines a homomorphismCB → U ⊗W of B-modules, which
defines a homomorphism 1⊗ w : U∗ → U∗ ⊗ U ⊗ W , u∗ 7→ u∗ ⊗ w. Since
< , >: U∗ ⊗ U → C is a homomorphism ofB-modules, so is the compositioñw =
(< , > ⊗ 1) (1 ⊗ w). This proves one of the two claims of the lemma.

LetU ⊗̃U∗ = ⊕nU ⊗̃U∗[n], whereU ⊗̃U∗[n] is the space of all elementsx of the
form x = ∑∞

i=1 ai ⊗ bi such that for anyi the elementai ⊗ bi ∈ U ⊗ U∗ has degree
n, the elementsai, bi are homogeneous, and degai → −∞ as i → ∞. There is a
canonicalB-homomorphismCB → U ⊗̃U∗, 1 7→ ∑

i ai ⊗ a∗
i , where{ai} is a graded

basis ofU and{a∗
i } is the dual basis ofU∗.

Let w̃ : U∗ → W be a homogeneousB-homomorphism. Then 1⊗ w̃ : U ⊗̃U∗ →
U⊗W is a well definedB-homomorphism. The compositionCB → U ⊗̃U∗ → U⊗W
gives aB invariant elementw. ut

Now we prove the theorem. IntroduceA>0 = A0A+ andA60 = A0A−. We have
HomA(M

+
λ ,M

+
µ ⊗V ) = HomA>0(χ

+
λ ,M

+
µ ⊗V ). The space HomA>0(χ

+
λ ,M

+
µ ⊗V )

can be described as the spaceX of all w ∈ M+
µ ⊗ V such that theA>0-submodule of

M+
µ ⊗V generated byw is isomorphic toχ+

λ . After tensoring withχ+
−λ this submodule

gives a trivial module. Thus the spaceX is isomorphic to the space(M+
µ ⊗V ⊗χ+

−λ)A>0.
According to the lemma, the spaceX is isomorphic to HomA>0((M

+
µ )

∗, V ⊗ χ+
−λ).

This space is isomorphic to HomA>0(M
−−µ, V ⊗ χ+

−λ) sinceM−−µ is irreducible. Now
HomA>0(M

−−µ, V⊗χ+
−λ) ∼= HomA0(χ−µ, V⊗χ−λ) ∼= HomA0(χλ−µ, V ) ∼=V [λ−µ].

The theorem is proved.ut
LetV be bounded from above. Letv ∈ V [λ−µ]. Denote8vλ : M+

λ → M+
µ ⊗V the

intertwining operator such that< 8vλ >= v.
Define8v(λ) : A− → A− ⊗V as the operator obtained from8vλ after identification

of A− with M+
λ andM+

µ . Then8v(λ) is a rational function, i.e. for any homogeneous
a− ∈ A−, a∗− ∈ A∗−, andf ∈ V ∗, the scalar function(f ∗ ⊗ a∗−)8v(λ)a− is a rational
function.

2.5. A quasitriangular structure and dynamical R-matrices.Let A>n = ⊕j>nA[j ].
Introduce a system of leftA-idealsIn = A · A>n.

Introduce a tensor productA⊗̂A= ⊕i∈Z(A ⊗̂A)[i] as follows. Let(A ⊗̂A)[i] be the
projective limit of(A/In ⊗ A/In)[i] asn → ∞, that is(A ⊗̂A)[i] consist of elements
of the forma = ∑∞

k=1 ak ⊗ a′
k such that

I. For eachk there isj such thatak ⊗ a′
k ∈ A[j ] ⊗ A[i − j ].

II. For eachn there is only finitely manyk such thatak ⊗ a′
k does not belong to

A⊗ In + In ⊗ A.

Lemma 10. A ⊗̂A is an algebra.�

Similarly we can defineA⊗̂n for anyn.
Consider the categoryO of gradedA-modules bounded from above and diagonal-

izable overA0. Let V,W ∈ O, thenA⊗̂A acts onV ⊗ W . Similarly, for anyn one
can define an action of the algebraA⊗̂n in a tensor product ofn A-modules from the
categoryO.

An elementR ∈ A ⊗̂A is calleda quasitriangular structure(QTS) if
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I. R is invertible inA ⊗̂A.
II. R1(a) = 1op(a)R.
III. (1⊗ 1)R = R13R23 and(1 ⊗1)R = R13R12.

Consider the categoryO of gradedA-modules bounded from above and diagonal-
izable overA0. The categoryO is a braided tensor category with the braiding equal to
PR.

Let A be a nondegenerate polarized Hopf algebra with a QTSR. Let V,W ∈ O.
Let v ∈ V [λv], w ∈ W [λw]. Assume thatv,w are homogeneous with respect to the
grading. Consider

M+
λ

8vλ−→ M+
λ−λv ⊗ V

8wλ−λv⊗ 1−→ M+
λ−λv−λw ⊗W ⊗ V

and denote this composition8w,vλ .
Define the main object of this paper, a linear operatorJW,V (λ) : W ⊗ V → W ⊗ V

as follows. Findu ∈ W ⊗ V [λv + λw] such that8w,vλ = 8uλ and set

JW,V (λ)w ⊗ v = u. (1)

Lemma 11. JW,V (λ) is strictly upper triangular, i.e.JW,V (λ)w⊗v = w⊗v+∑
wi⊗vi

where degwi < degw.

Corollary 12. JW,V (λ) = 1 + N , whereN is locally nilpotent, henceJW,V (λ) is in-
vertible andJ−1

W,V (λ) = 1 −N +N2 − · · · .

We call the operatorsJW,V (λ) fusion matrices.
Definea quantum dynamical R-matrixRV,W (λ) : V ⊗W → V ⊗W by

RV,W (λ) = J−1
V,W (λ)R21|V⊗WJ 21

W,V (λ). (2)

Theorem 13. Letv ∈ V,w ∈ W be homogeneous elements with respect to the grading
andA0. LetRV,W (λ) v ⊗ w = ∑

i vi ⊗ wi , wherevi, wi are homogeneous too. Then

(1 ⊗ PR|W⊗V )8w,vλ =
∑
i

8
vi ,wi
λ , (3)

whereP is the operator of permutation.

The proof follows from the definition ofRV,W (λ).

Theorem 14. I. J satisfies the 2-cocycle condition,

JV⊗W,U (λ) (JV,W (λ− h(3))⊗ 1) = JV,W⊗U(λ) (1 ⊗ JW,U (λ)). (4)

II. R(λ) satisfies the quantum dynamical Yang–Baxter equation (QDYB),

R12(λ− h(3)) R13(λ)R23(λ− h(1)) = R23(λ)R13(λ− h(2)) R12(λ). (5)
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In these formulaeR12(λ− h(3)) v⊗w⊗ u = (R(λ− λu) v⊗w) ⊗ u if u ∈ U [λu]
and other symbols are defined analogously.

Proof. Define

8
vn,...,v1
λ : M+

λ → M+
λ−∑n

i=1 λvi
⊗ Vn ⊗ . . .⊗ V1

as the composition

M+
λ

8
v1
λ−→ M+

λ−λv1 ⊗ V1

8
v2
λ−λv1 ⊗ 1
−→ M+

λ−λv1−λv2 ⊗ V2 ⊗ V1 → . . . .

In other words,

8
vn,...,v1
λ = (8

vn

λ−∑n−1
i=1 λvi

⊗ 1n−1) · · · (8v2
λ−λv1 ⊗ 1)8v1

λ .

Lemma 15.

8
vn,...,v1
λ = 8

vn,...,vi+2,JVi+1,Vi (λ−
∑i−1
j=1 λvj ) vi+1⊗vi ,vi−1,...,v1

λ .

The proof is by definition ofJ .
Let a ∈ V, b ∈ W, c ∈ U . Then

8
a,b,c
λ = 8

a,JW,U (λ) b⊗ c

λ = 8
JV,W⊗U (λ) (1⊗ JW,U (λ)) a⊗ b⊗ c

λ ,

8
a,b,c
λ = 8

JV,W (λ−λc) a⊗ b,c

λ = 8
JV⊗W,U (λ) (JV,W (λ−λc)⊗ 1) a⊗ b⊗ c

λ .

This proves the first statement of the theorem.

Fory ∈ Vn ⊗ . . .⊗ V1[ν], y = ∑
i v
i
n ⊗ . . .⊗ vi1, set9yVn,...,V1

(λ) = ∑
i 8

vin,...v
i
1

λ .

Lemma 16.

PVi+1,ViRVi+1,Vi9
vn ⊗ ...⊗ v1
Vn,...,V1

(λ) = 9
RVi ,Vi+1(λ−

∑i−1
j=1 λvj )PVi+1,Vi vn ⊗ ...⊗ v1

Vn,...,Vi ,Vi+1,...,V1
(λ).

The proof is by definition of the quantum dynamical R-matrix.
In order to prove the second statement of the theorem we apply the lemma to the case

n = 3. Namely, we consider the function9v3⊗v2⊗v1
V3,V2,V1

(λ)and express it via9w1⊗w2⊗w3
V1,V2,V3

(λ)

in two different ways, using the two different reduced decompositions of the permutation
123→ 321. Comparing the two answers, we get the theorem.ut

Remark.The explicit form ofJVW for A = Uq(g) has been recently computed in [A].
The fact that the twist in [A] coincides with ourJVW is proved in Sect. 9.
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2.6. The tensor functor and exchange matrices.We recall (in a slightly generalized
form) the setting of Sect. 3 of [EV2]. LetA0 be a commutative, cocommutative finitely
generated Hopf algebra such that the groupT = SpecA0 is connected. Introduce a
categoryV of A0-vector spaces as follows.

The objects ofV are diagonalizableA0 modules,V = ⊕λ∈T V [λ], V [λ] = {v ∈
V | a0v = λ(a0)v}.

Let MT be the field of meromorphic functions onT andV,W ∈ V. Define the
space HomV (V ,W) as the space HomA0(V ,MT ⊗W), thus a homomorphism ofV to
W (for finite dimensionalV,W ∈ V) is a meromorphic function onT with values in
HomA0(V ,W).

Define a tensor structure on the categoryV. Namely, let the tensor product of two
objectsV ⊗̄W be the standard tensor product of two diagonalizableA0 modules. Define
the tensor product̄⊗ of two morphismsf : V → V ′ andg : W → W ′ as

f ⊗̄g(λ) = f (1)(λ− h(2))(1 ⊗ g(λ)), (6)

wheref (1)(λ− h(2))(1 ⊗ g(λ)) u⊗ v = (f (λ− µ)u) ⊗ g(λ)v if g(λ)v ∈ W ′[µ].
LetA be a nondegenerate polarized Hopf algebra. Consider the categoryO of graded

A-modules bounded from above and diagonalizable overA0. We construct a tensor
functor from the categoryO to the categoryV.

By definition a tensor functor fromO to V is a functorF : O → V and for any
V,W ∈ O an isomorphismJV,W : F(V )⊗̄F(W) → F(V ⊗W) such that{JV,W } is
functorial and the two compositionsF(U)⊗̄F(V )⊗̄F(W) → F(U ⊗ V )⊗̄F(W) →
F(U ⊗V ⊗W) andF(U)⊗̄F(V )⊗̄F(W) → F(U)⊗̄F(V ⊗W) → F(U ⊗V ⊗W)
coincide. ThenJ is calleda tensor structure onF .

Define a tensor functorF : O → V by sending an objectV ∈ O to F(V ) = V ,
considered as anA0-module, and sending anA-homomorphismα : V → W toF(α) =
α : V → W .

Define a tensor structure onF by

JV,W (λ) : F(V )⊗̄F(W) → F(V ⊗W), (7)

whereJV,W (λ) is defined by(1).

Lemma 17. Formula (7) defines a tensor structure onF , i.e. the two compositions
F(U)⊗̄F(V )⊗̄F(W) → F(U ⊗ V )⊗̄F(W) → F(U ⊗ V ⊗ W) and F(U)⊗̄
F(V )⊗̄F(W) → F(U)⊗̄F(V ⊗W) → F(U ⊗ V ⊗W) coincide.

Proof. The statement of the lemma is equivalent to formula(4). ut
Define a braiding inO by β = PR. Introduce

F(β) : F(V )⊗̄F(W) → F(W)⊗̄F(V )

as the composition

F(V )⊗̄F(W)
JV,W (λ)−→ F(V ⊗W)

PRV,W−→ F(W ⊗ V )
J−1
W,V (λ)−→ F(W)⊗̄F(V ). (8)

Thus we haveF(β)V,W = J−1
W,V (λ)PV,WR|V⊗WJV,W (λ). In particular,F(β)V,WPW,V

= J−1
W,V (λ)R21|V⊗WJ 21

V,W (λ) = RW,V (λ), cf.(2). Notice that inTheorem 14 we showed
that the R-matrixR(λ) satisfies the QDYB equation; now it also follows from this tensor
category construction and Theorem 3.3 in [EV2].

The operatorsRV,W (λ) will be calledthe exchange matrices.
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3. H -Hopf Algebroids

3.1. Definitions.In this section we recall the definition of anH -Hopf algebroid, cf.
[EV2]. LetH be a commutative and cocommutative Hopf algebra overC, T = SpecH
a commutative affine algebraic group. LetMT denote the field of meromorphic func-
tions onT . AnH -algebra is an associative algebraA over C with 1, endowed with
anT -bigradingA = ⊕α,β∈T Aαβ (called the weight decomposition), and two algebra
embeddingsµl, µr : MT → A00 (the left and the right moment maps), such that for
anya ∈ Aαβ andf ∈ MT , we have

µl(f (λ))a = aµl(f (λ+ α)), µr(f (λ))a = aµr(f (λ+ β)). (9)

Here 0∈ T denotes the unit element andλ+ α denotes the sum inT .
A morphismϕ : A → B of twoH -algebras is an algebra homomorphism, preserving

the moment maps.
LetA,B be twoH -algebras andµAl , µ

A
r , µ

B
l , µ

B
r their moment maps. Define their

matrix tensor product, A⊗̃B, which is also anH -algebra. Let

(A⊗̃B)αδ := ⊕βAαβ ⊗MT
Bβδ, (10)

where ⊗MT
means the usual tensor product modulo the relationµAr (f ) a ⊗ b =

a ⊗ µBl (f )b, for any a ∈ A, b ∈ B, f ∈ MT . Introduce a multiplication inA⊗̃B
by the rule(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. Define the moment maps forA⊗̃B by
µA⊗̃B
l (f ) = µAl (f )⊗ 1,µA⊗̃B

r (f ) = 1 ⊗ µBr (f ).
A coproducton anH -algebraA is a homomorphism ofH -algebras1 : A → A⊗̃A.
Let DT be the algebra of difference operatorsMT → MT , i.e. the operators of

the form
∑n
i=1 fi(λ)Tβi , wherefi ∈ MT , and forβ ∈ T we denote byTβ the field

automorphism ofMT given by(Tβf )(λ) = f (λ+ β).
The algebraDT is an example of anH -algebra if we define the weight decomposition

byDT = ⊕(DT )αβ , where(DT )αβ = 0 if α 6= β, and(DT )αα = {f (λ)T −1
α : f ∈ MT },

and the moment mapsµl = µr : MT → (DT )00 to be the tautological isomorphism.
For anyH -algebraA, the algebrasA⊗̃DT andDT ⊗̃A are canonically isomorphic

to A. In particular,DT is canonically isomorphic toDT ⊗̃DT . Thus the category of
H -algebras equipped with the product⊗̃ is a monoidal category, where the unit object
isDT .

A counit on anH -algebraA is a homomorphism ofH -algebrasε : A → DT .
AnH -bialgebroid is aH -algebraA equipped with a coassociative coproduct1 (i.e.

such that(1⊗ IdA) ◦1 = (IdA ⊗1) ◦1, and a counitε such that(ε ⊗ IdA) ◦1 =
(IdA ⊗ ε) ◦1 = IdA.

For example,DT is anH -bialgebroid where1 : DT → DT ⊗̃DT is the canonical
isomorphism andε = Id.

LetA be anH -algebra. A linear mapS : A → A is calledan antiautomorphismof
anH -algebra if it is an antiautomorphism of algebras andµr ◦ S = µl, µl ◦ S = µr .
From these conditions it follows thatS(Aαβ) = A−β,−α.

LetA be anH -bialgebroid, and let1, ε be the coproduct and counit ofA. Fora ∈ A,
let

1(a) =
∑
i

a1
i ⊗ a2

i . (11)
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An antipodeon theH -bialgebroidA is an antiautomorphism ofH -algebrasS : A →
A such that for anya ∈ A and any presentation(11) of 1(a), one has∑

i

a1
i S(a

2
i ) = µl(ε(a)1),

∑
i

S(a1
i )a

2
i = µr(ε(a)1),

whereε(a)1 ∈ MT is the result of the application of the difference operatorε(a) to the
constant function 1.

An H -bialgebroid with an antipode is calledanH -Hopf algebroid.
LetW be a diagonalizableH -module,W = ⊕λ∈T W [λ], W [λ] = {w ∈ W | aw =

λ(a)w, for all a ∈ H }, and letDαT,W ⊂ HomC(W,W⊗DT )be the space of all difference
operators onT with coefficients in EndC(W), which have weightα ∈ T with respect
to the action ofH in W .

Consider the algebraDT,W = ⊕αD
α
T,W . This algebra has a weight decomposition

DT,W = ⊕α,β(DT,W )αβ defined as follows: ifg ∈ HomC(W,W ⊗MT ) is an operator
of weightβ − α, thengT −1

β ∈ (DT,W )αβ .
Define the moment mapsµl, µr : MT → (DT,W )00 by the formulasµr(f (λ)) =

f (λ), µl(f (λ)) = f (λ − h), wheref (λ − h)w = f (λ − µ)w if w ∈ W [µ], µ ∈ T .
The algebraDT,W equipped with this weight decomposition and these moment maps is
anH -algebra.

Let f ∈ Hom(W,W ⊗MT ) andg ∈ Hom(U,U ⊗MT ). Definef ⊗̄g ∈ Hom(W ⊗
U,W ⊗ U ⊗MT ) as

f ⊗̄g(λ) = f (1)(λ− h(2))(1 ⊗ g(λ)), (12)

wheref (1)(λ− h(2))(1 ⊗ g(λ))w⊗ u = (f (λ− µ)w) ⊗ g(λ)u if g(λ)u ∈ U [µ], cf.
(6).

Lemma 18 ([EV2]). There is a natural embedding ofH -algebrasθW,U : DT,W ⊗̃DT,U
→ DT,W⊗U , given by the formulaf Tβ ⊗ g Tδ → (f ⊗̄g)Tδ. This embedding is an
isomorphism ifW,U are finite-dimensional.

A dynamical representationof anH -algebraA is a diagonalizableH -moduleW
endowed with a homomorphism ofH -algebrasπW : A → DT,W . A homomorphismof
dynamical representationsϕ : W1 → W2 is an element of HomC(W1,W2 ⊗MT ) such
thatϕ ◦ πW1(x) = πW2(x) ◦ ϕ for all x ∈ A.

Example.If A has a counit, thenA hasthe trivial representation: W = C, π = ε.
If A is anH -bialgebroid,W andU are two dynamical representations ofA, then the

H -moduleW⊗U is a dynamical representation,πW⊗U(x) = θWU ◦(πW ⊗πU)◦1(x).
If f : W1 → W2 andg : U1 → U2 are homomorphisms of dynamical representations,
then so isf ⊗̄g : W1 ⊗ U1 → W2 ⊗ U2. Thus, dynamical representations ofA form a
monoidal category Rep(A), whose identity object is the trivial representation.

If A is anH -Hopf algebroid andV is a dynamical representation, then one can define
the left and right dual dynamical representations∗W andW ∗ as follows, see [EV2].

If (W, πW) is a dynamical representation of anH -algebraA, we denoteπ0
W : A →

Hom(W,W ⊗MT ) the map defined byπ0
W(x)w = πW(x)w, w ∈ W (the difference

operatorπW(x) restricted to the constant functions). It is clear thatπW is completely
determined byπ0

W .
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Let (W, πW) be a dynamical representation ofA. Thenthe right dual representation
toW is (W ∗, πW ∗), whereW ∗ is theH -graded dual toW , and

π0
W ∗(x)(λ) = π0

W(S(x))(λ+ h− α)t (13)

for x ∈ Aαβ , wheret denotes dualization.The left dual representation toW is(∗W,π∗W),
where∗W = W ∗, and

π0∗W(x)(λ) = π0
W(S

−1(x))(λ+ h− α)t (14)

for x ∈ Aαβ . Hereπ0
W(S(x))(λ+ h− α)t denotes the result of two operations applied

successively toπ0
W(S(x)): shifting of the argument, and dualization.

Formulas(13) and(14) define dynamical representations ofA. Moreover, ifA(λ) :
W1 → W2 is a morphism of dynamical representations, thenA∗(λ) := A(λ+h)t defines
morphismsW ∗

2 → W ∗
1 and∗W2 → ∗W1.

3.2. AnH -bialgebroid associated to a functionR : T → End(V ⊗V ). In this Section
we recall a construction from [EV2] of anH -bialgebroidAR associated to a meromorphic
functionR : T → End(V ⊗ V ), whereV is a finite dimensional diagonalizableH -
module andR(λ) is invertible for genericλ.

By definition the algebraAR is generated by two copies ofMT (embedded as sub-
algebras) and matrix elements of the operatorsL±1 ∈ End(V ) ⊗ AR. We denote the
elements of the first copy ofMT by f (λ1) and of the second copy byf (λ2), where
f ∈ MT . We denote(L±1)αβ the weight components ofL±1 with respect to the natural
T -bigrading on End(V ), so thatL±1 = (L±1

αβ ), whereL±1
αβ ∈ HomC(V [β], V [α])⊗AR.

Introduce the moment maps forAR by µl(f ) = f (λ1), µr(f ) = f (λ2), and
the weight decomposition byf (λ1), f (λ2) ∈ (AR)00, Lαβ ∈ HomC(V [β], V [α]) ⊗
(AR)αβ .

The defining relations forAR are:

f (λ1)Lαβ = Lαβf (λ
1 + α); f (λ2)Lαβ = Lαβf (λ

2 + β); (15)

LL−1 = L−1L = 1; [f (λ1), g(λ2)] = 0; (16)

and the dynamical Yang–Baxter relation

R12(λ1)L13L23 =: L23L13R12(λ2) : . (17)

Here the :: sign means that the matrix elements ofL should be put on the right of the
matrix elements ofR. Thus, if{va} is a homogeneous basis ofV , andL = ∑

Eab⊗Lab,
R(λ)(va ⊗ vb) = ∑

Rabcd (λ)vc ⊗ vd , then(17) has the form∑
R
xy
ac (λ

1)LxbLyd =
∑

Rbdxy (λ
2)LcyLax,

where we sum over repeated indices.
Define the coproduct onAR,1 : AR → AR⊗̃AR, by

1(L) = L12L13,1(L−1) = (L−1)13(L−1)12.

Define the counit by

ε(Lαβ) = δαβ IdV [α] ⊗ T −1
α , ε((L−1)αβ) = δαβ IdV [α] ⊗ Tα,

where IdV [α] : V [α] → V [α] is the identity operator. On an antipode forAR see Sect. 4.5
in [EV2].
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3.3. A rationalH -bialgebroid associated to a rational functionR : T → End(V ⊗V ).
Assume that a functionR : T → End(V ⊗ V ) is a rational function ofλ, whereV is a
finite dimensional diagonalizableH -module andR(λ) is invertible for genericλ.

TheH -bialgebroidAR is defined over the field of meromorphic functionsMT . We
replace the field of meromorphic functionsMT by the field of rational functionsC(T )
and define in the same waythe rationalH -bialgebroid Arat,R associated to a rational
functionR.

4. The Exchange Dynamical Quantum Groups

4.1. The definition of an exchange dynamical quantum group.LetA be a polarized and
nondegenerate Hopf algebra as in Sect. 1. Assume thatT =SpecA0 is connected.

Let R ∈ A ⊗̂A be a quasitriangular structure onA. We always assume thatR ∈
A>0 ⊗̂A60.

Let O0 ⊂ O be a full abelian tensor subcategory which is semisimple and such that
all modules inO0 are finite dimensional. (Recall that a full subcategoryO0 consists of
some objects ofO and for anyV,W ∈ O0 we have HomO0(V ,W) = HomO(V ,W).)
Let Ir ⊂ O0 be the set of all irreducible modules.

Examples of such categoriesO0 are provided by the categories of finite dimensional
representations of semisimple Lie algebras and corresponding quantum groups ( not at
roots of unity).

The goal of this section is to define anA0-Hopf algebroidE = E(O0) calledan
exchange dynamical quantum group.

DefineE as a vector space to be

MT ⊗C MT ⊗C Ē ,

whereĒ = ⊕U∈IrU⊗U∗ andU∗ is the dual module toU .A T -bigrading onE is defined
byE = ⊕α,β∈T Eα,β , whereEα,β = MT ⊗CMT ⊗C Ē α,β andĒ α,β ⊂ ⊕U∈IrU⊗U∗
is the subspace generated by all elements of the formu⊗v ∈ U [α]⊗ (U [β])∗, U ∈ Ir.

Let CA be the trivialA-module,CA = Ce. The subspaceE0,0 has a component
coming from the trivial module,MT ⊗MT ⊗ CA ⊗ C

∗
A. For a meromorphic function

f (λ) ∈ MT , the elementsf (λ)⊗ 1 ⊗ e ⊗ e∗ and 1⊗ f (λ)⊗ e ⊗ e∗ will be denoted
f (λ1) andf (λ2), respectively.

Let vUi be a basis inU ∈ Ir, which is homogeneous with respect toT and the
Z-grading. ThenvUi ⊗ (vUj )

∗ form a basis inĒ . LetωUi ∈ T be the weight ofvUi .

SetLUij = 1⊗1⊗vUi ⊗(vUj )∗. Define a linear mapEUij : U → U byEUij v
U
k = δjkv

U
i .

IntroduceLU ∈ End (U)⊗ Ē by

LU =
∑
ij

EUij ⊗ LUij .

The relations inE betweenf (λ1), f (λ2), andLUij are defined by

f (λ1)f (λ2) = f (λ2)f (λ1), (18)

f (λ1)LUij = LUij f (λ
1 + ωUi ), f (λ2)LUij = LUij f (λ

2 + ωUj ). (19)
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In order to define the product of two elementsLVij andLW
i′j ′ we will consider

(LV )23(LW)13 ∈ End (V )⊗ End (W)⊗ E.

Let U ∈ Ir, V ,W ∈ O0 andHU
V,W = HomA(U, V ⊗ W). Then we have an

isomorphismτV,W : ⊕U∈IrHU
V,W ⊗ U → V ⊗ W given by τV,W (h ⊗ u) = h(u).

Let τ̄ UV,W : V ⊗ W → HU
V,W ⊗ U be the projection along the other summands,

τUV,W : HU
V,W⊗U → V⊗W the restriction ofτV,W to the isotypic componentHU

V,W⊗U .
We have

τ̄ UV,W τ
U
V,W = Id, τUV,W τ̄

U
V,W = pU,

wherepU is the projection on theU -isotypical component.
Define the product of elements in the exchange quantum group by a formula analagous

to the formula for the product of matrix elements of representations of a group considered
as functions on the group. Namely, define the productLVijL

W
i′j ′ by

(LV )23(LW )13 = : (J 12
W,V (λ

1))−1∑
U∈Ir

(τUW,V )
12 (IdHU

W,V
⊗ LU) (τ̄ UW,V )

12J 12
W,V (λ

2) : . (20)

This is an identity in End(W) ⊗ End (V ) ⊗ E. Here the :: sign (“normal ordering”)
means that the matrix elements ofLU should be put on the right of the matrix elements
of JV,W (λ1), JV,W (λ

2). Thus, if

(J 12
V,W (λ

1))−1 =
∑

EVij ⊗ EWkl ⊗ aijkl(λ
1),∑

U∈Ir
(τUV,W )

12 (IdHU
V,W

⊗ LU) (τ̄ UV,W )
12 =

∑
EVi"j " ⊗ EWk"l" ⊗ a"i"j "k"l",

J 12
V,W (λ

2) =
∑

EVi′j ′ ⊗ EWk′l′ ⊗ a′
i′j ′k′l′(λ

2),

then(20) has the form

LWkl′L
V
ij ′ =

∑
aijkl(λ

1)a′
j "j ′l"l′(λ

2)a"jj "ll" .

More generally, leta = a1 . . . an be a monomial in generators ofE; so each of the factors
has the formf (λ1), f (λ2), orLVij . Define the normal ordering: a : as the product of the

same elementsa1, . . . , an in which all elements of the formf (λ1), f (λ2) are put on the
left and the remaining elements of the formLVij are put on the right in the same order as
in a. Extend by linearity the normal ordering operation to all polynomials in generators
in E. If v = (v1, . . . , vl) is a vector whose coefficients are polynomials in generators of
E, then define the normal ordering: v : as: v := (: v1 :, . . . , : vl :).

Let CA be the trivial module. SinceJCA,V = JV,CA = IdV we have

(LCA)23(LW)13 = (LW )13, (LV )23(LCA)13 = (LV )23. (21)

Corollary 19. The element1 ⊗ 1 ⊗ e⊗ e∗ ofE corresponding to the trivial module is
the unit element of the algebraE.
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Theorem 20. E is an associative algebra.

Proof. We start with preliminary lemmas.

Lemma 21. I. LetV ′ ⊂ V be objects inO0, thenJV,W |V ′⊗W = JV ′,W . LetW ′ ⊂ W

beA-modules, thenJV,W |V⊗W ′ = JV,W ′ .
II. LetV = V1 ⊕ V2, thenJV,W = JV1,W ⊕ JV2,W . LetW = W1 ⊕W2, thenJV,W =

JV,W1 ⊕ JV,W2.

III. For U ∈ Ir, V ,W,Z ∈ O0, the mapsZ ⊗W ⊗ V → HU
Z,W ⊗ U ⊗ V given by

(τ̄ UZ,W ⊗ IdV ) JZ⊗W,V and(IdHU
Z,W

⊗ JU,V ) (τ̄
U
Z,W ⊗ IdV ) coincide.

IV. The mapsZ ⊗ HU
W,V ⊗ U → Z ⊗ W ⊗ V given byJZ,W⊗V (IdZ ⊗ τUW,V ) and

(IdZ ⊗ τUW,V ) (JZ,U )
13 coincide. In particular,J−1

Z,W⊗V (IdZ ⊗ τUW,V ) = (IdZ ⊗
τUW,V )(J

−1
Z,U )

13

The lemma follows from functorial properties ofJ . Now we prove the theorem. We want
to show that

(LV )34((LW )24(LZ)14) = ((LV )34(LW )24)(LZ)14. (22)

We have

RHS=:
(J−1
W,V (λ

1))23
∑
U∈Ir

(τUW,V )
23(IdHU

W,V
⊗ LU)234(τ̄ UW,V )

23J 23
W,V (λ

2)(LZ)14 : . (23)

First we replace(τ̄ UW,V )
23J 23

W,V (λ
2)(LZ)14 with (LZ)14(τ̄ UW,V )

23J 23
W,V (λ

2). Consider

(IdHU
W,V

⊗LU)234(LZ)14 as an element of the tensor product End(Z)⊗ End(HU
W,V )⊗

End(U) ⊗ Ē , then the element(IdHU
W,V

⊗ LU)234(LZ)14 takes the form(IdHU
W,V
)2

′

(LU)3
′4 (LZ)14, where2′

, 3′
label these new tensor factors. Applying formula(20) to

the first, third and fourth factors, we get

(LU)3
′4(LZ)14=: (J 13′

Z,U (λ
1))−1

∑
Y∈Ir

(τYZ,U )
13′
(IdHY

Z,U
⊗ LY ) (τ̄ YZ,U )

13′
J 13′
Z,U (λ

2) : .

Returning to(23) we get

RHS=: (J−1
W,V (λ

1))23
∑
U∈Ir

(τUW,V )
23

(J 13
Z,U (λ

1))−1
∑
Y∈Ir

(τYZ,U )
13 (IdHY

Z,U
⊗ LY ) (τ̄ YZ,U )

13J 13
Z,U (λ

2)(τ̄ UW,V )
23J 23

W,V (λ
2) : .

Applying Lemma 21 we get

RHS= : (J−1
W,V (λ

1))23(J−1
Z,W⊗V (λ

1))1,23
∑
U∈Ir

(τUW,V )
23

∑
Y∈Ir

(τYZ,U )
13 (IdHY

Z,U
⊗ LY )×

(τ̄ YZ,U )
13 (τ̄ UW,V )

23J
1,23
Z,W⊗V (λ

2)J 23
W,V (λ

2) : . (24)
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Now we compute the left-hand side of(22),

LHS =
∑
ij

(EVij )
3(LVij )

4 : (J 12
Z,W (λ

1))−1
∑
U∈Ir

(τUZ,W )
12 (IdHU

Z,W
⊗ LU) ×

(τ̄ UZ,W )
12J 12

Z,W (λ
2) : =

∑
ij

(EVij )
3 : (J 12

Z,W (λ
1 − ωi))

−1 (LVij )
4

∑
U∈Ir

(τUZ,W )
12 ×

(IdHU
Z,W

⊗ LU) (τ̄ UZ,W )
12J 12

Z,W (λ
2 − ωj ) : =

: (J 12
Z,W (λ

1−h(3)))−1
∑
U∈Ir

(τUZ,W )
12(LV )34(IdHU

Z,W
⊗LU)(τ̄ UZ,W )12J 12

Z,W (λ
2−h(3)) :=

: (J 12
Z,W (λ

1 − h(3)))−1
∑
U∈Ir

(τUZ,W )
12 (J 23

U,V (λ
1))−1

∑
Y∈Ir

(τYU,V )
23 (IdHY

U,V
⊗ LY ) (τ̄ YU,V )

23J 23
U,W (λ

2)(τ̄ UZ,W )
12J 12

Z,W (λ
2 − h(3)) : =

: (J 23
Z,W (λ

1 − h(3)))−1 (J
12,3
Z⊗W,V (λ

1))−1
∑
U∈Ir

(τUZ,W )
12

∑
Y∈Ir

(τYU,V )
23 (IdHY

U,V
⊗ LY ) (τ̄ YU,V )

23 (τ̄ UZ,W )
12J

12,3
Z⊗W,V (λ

2) J 12
Z,W (λ

2 − h(3)) : .
(25)

Formulas(24) and(25) and Theorem 14 imply the theorem.ut
Theorem 22. For V,W ∈ Ir, we have

R12
V,W (λ

1)(LV )13(LW )23 =: (LW)23(LV )13R12
V,W (λ

2) :, (26)

where the normal ordering sign :: as before means that the matrix elements ofL should
be put on the right of the matrix elements ofR. Thus, ifLV = ∑

Eij ⊗ LVij , L
W =∑

Ekl ⊗ LWkl , R(λ) = ∑
EVij ⊗ EWkl ⊗ Rijkl(λ), then(26) has the form∑

j,l

Rijkl(λ
1)LVjj ′LWll′ =

∑
j,l

Rjj ′ll′(λ
2)LWkl L

V
ij .

Proof.

RHS=: (LW )23(LV )13R12
V,W (λ

2) :=
:(J 12

V,W (λ
1))−1

∑
U∈Ir

(τUV,W )
12 (IdHU

V,W
⊗ LU)(τ̄ UV,W )

12J 12
V,W (λ

2)R12
V,W (λ

2) :=

:(J 12
V,W (λ

1))−1
∑
U∈Ir

(τUV,W )
12(IdHU

V,W
⊗ LU)(τ̄ UV,W )

12R21|V⊗WPW,V PV,WJ 21
W,V (λ

2) :

SinceR21|V⊗WPW,V is an intertwiner, the last expression is equal to

:(J 12
V,W(λ

1))−1R21|V⊗WPW,V
∑
U∈Ir

(τUW,V )
12(IdHU

W,V
⊗ LU)(τ̄ UW,V )

12PV,WJ
21
W,V (λ

2):=

: (J 12
V,W (λ

1))−1 R21|V⊗WPW,V J 12
W,V (λ

1)(LV )23(LW )13PV,W :=
: (J 12

V,W (λ
1))−1 R21|V⊗WJ 21

W,V (λ
1)(LV )13(LW )23 := LHS. ut
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We proved thatE is anA0-algebra. HenceE⊗̃E is anA0-algebra. Definea comul-
tiplication1 : E → E⊗̃E by

1f (λ1) = f (λ1), 1f (λ2) = f (λ2), 1(LV ) = (LV )12 (LV )13,

where1(LV ) means that1 acts in the second factor.

Theorem 23. The map1 preserves the defining relations inE.

Proof. Relations(9) are obviously preserved. We check that relation(20) is preserved.
Compute the image under 1⊗ 1 ⊗ 1 of the LHS and RHS of(20). The elements
(1 ⊗ 1 ⊗ 1)LHS, (1 ⊗ 1 ⊗ 1)LHS, lie in W ⊗ V ⊗ E⊗̃E. Denoteλ1

1, λ
2
1 the λ-

variables of the third factor, andλ1
2, λ

2
2 theλ-variables of the fourth. We have

(1 ⊗ 1 ⊗1)LHS= (LV )23(LV )24(LW )13(LW )14=(LV )23(LW )13(LV )24(LW)14=
: (J 12

W,V (λ
1
1))

−1
∑
U∈Ir

(τUW,V )
12 (IdHU

W,V
⊗ LU)123(τ̄ UW,V )

12J 12
W,V (λ

2
1) : ×

: (J 12
W,V (λ

1
2))

−1
∑
Y∈Ir

(τYW,V )
12 (IdHY

W,V
⊗ LY )124(τ̄ YW,V )

12J 12
W,V (λ

2
2) : . (27)

We cancelJ 12
W,V (λ

2
1) and(J 12

W,V (λ
1
2))

−1 since inE⊗̃E we have a relationf (λ2
1)a⊗̃ b =

a⊗̃ f (λ1
2)b. We replaceτ̄ UW,V

∑
Y∈Ir τ YW,V with IdHU

W,V
⊗ IdU and use the relation

f (λ2)(a⊗̃ b) = a⊗̃ f (λ2
2)b in E⊗̃E. Thus,

(1 ⊗ 1 ⊗1)LHS =: (J 12
W,V (λ

1
1))

−1
∑
U∈Ir

(τUW,V )
12 (IdHU

W,V
⊗ LU)123

(IdHU
W,V

⊗ LU)124(τ̄ UW,V )
12J 12

W,V (λ
2
2) : = (1 ⊗ 1 ⊗1)RHS. ut

ForV ∈ O0, define IdV [µ] : V → V by IdV [µ]|V [µ] = Id and IdV [µ]|V [ν] = 0 for
ν 6= µ.

Define a counit ε : E → DT , whereDT is theA0-algebra of scalar difference
operators onT . Set

ε(LV ) = ⊕µIdV [µ] ⊗ T −1
µ , ε(f (λj )) = f (λ). (28)

Theorem 24. ε is a counit inE.

Proof. The relation
(ε ⊗ 1)1 = (1 ⊗ ε)1 = Id

is obviously true.
We check that the counitε preserves the relation(20). We have

ε(LHS) = ε((LV )23(LW )13) = ⊕µ,ν IdW [µ] ⊗ IdV [ν] ⊗ T −1
µ+ν,

ε(RHS) =: (J 12
W,V (λ

1))−1
∑
U∈Ir

(τUW,V )
12

∑
θ

(IdHU
W,V

⊗ IdU [θ ] ⊗ T −1
θ ) (τ̄ UW,V )

12J 12
W,V (λ

2) : . (29)
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Notice that
⊕U∈IrτUW,V (IdHU

W,V
⊗ IdU [θ ])τ̄ UW,V = Id(W⊗V )[θ ].

Returning to(29) we get

ε(RHS) = : (J 12
W,V (λ

1))−1
∑
θ

(Id(W⊗V )[θ ] ⊗ T −1
θ ) J 12

W,V (λ
2) :

=
∑
θ

Id(W⊗V )[θ ] ⊗ T −1
θ = ε(LHS).

The theorem is proved.ut

4.2. The antipode inE.

Lemma 25. If S : E → E is an antipode, thenS(LV ) = (LV )−1, where(LV )−1 ∈
End(V )⊗ E is such that
LV (LV )−1 = IdV ⊗ 1 and(LV )−1LV = IdV ⊗ 1.

Proof. The axioms of the antipode are

m ◦ (Id ⊗ S) ◦1(x) = µl(ε(x) · 1), m ◦ (S ⊗ Id) ◦1(x) = µr(ε(x) · 1).

Applying the first axiom toLV we get

LHS : LV → (LV )12(LV )13 1⊗S−→ (LV )12S(LV )13 m−→ LV S(LV ),

RHS : LV →
∑
θ

IdV [θ ] ⊗ T −1
θ → IdV ⊗ 1.

Thus,LV S(LV ) = IdV ⊗ 1. Similarly, applying the second axiom, we getS(LV )LV =
IdV ⊗ 1. ut

ForV ∈ O0 define operators̃K (λ) : ∗V → ∗V andK ′(λ) : ∗V → ∗V by

K̃ (λ) = m(J
t2∗V,V (λ)), K ′(λ) = m(J

t1
V,∗V (λ)), (30)

wheretj means the dualization in thej th component,(
∑
ai ⊗ bi)

t1 = ∑
a∗
i ⊗ bi , and

m(a ⊗ b) = ab.
If K̃ (λ) is invertible, then denoteK(λ) = (K̃ (λ− h))−1. Set

L̄V = (: K(1)(λ1)L
∗V (K(1)(λ2))−1 :)t1, (31)

L̂V = (: K ′(1)(λ1)L
∗V (K ′(1)(λ2))−1 :)t1. (32)

Theorem 26. Suppose that̃K or K ′ is invertible for any moduleV ∈ Ir. ThenE =
E(O0) is anA0-Hopf algebroid with the antipodeS(f (λ1)) = f (λ2), S(f (λ2)) =
f (λ1) andS(LV ) = (LV )−1 = L̄

V = L̂V . Moreover,K = K ′.

The theorem is proved by direct verifications.
TheA0-Hopf algebroidE(O0)will be calledthe exchange dynamical quantum group

associated to the categoryO0.
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4.3. The two point function andK ′(λ). Define a bilinear fromBλ,V : V ⊗ ∗V → C.
For homogeneousv ∈ V, v∗ ∈ ∗V , with weightsλv + λv∗ 6= 0 setBλ,V (v, v∗) = 0. If
λv + λv∗ = 0, then defineBλ,V (v, v∗) by the property

(1⊗ < , >V⊗∗V ) ◦8v,v∗
λ = Bλ,V (v, v

∗) IdMλ.

Notice that(1⊗ < , >V⊗∗V )◦8v,v∗
λ is an intertwiner, hence it has the form: Const IdMλ .

The bilinear formBλ,V is calledthe two point function.

Lemma 27. Bλ,V (v, v∗) =< v,K ′(λ)v∗ >, whereK ′(λ) is defined in(30).

Proof. Since8v,v
∗

λ = 8
JV,∗V (λ)(v⊗v∗)
λ , we haveBλ,V (v, v∗) = ∑

< aiv, biv
∗ >=

< v,K ′(λ)v∗ >. ut
Remark.Let k, n be natural numbers,U the vector representation of the quantum group
Uq(sln). LetV = SknU be theknth symmetric power ofU . ThenV [0] is one dimensional
andBλ,V |V [0] is a scalar function ofλ equal to the squared norm of a Macdonald
polynomial, see Theorem 2.4 in [EK].

5. Exchange Quantum Groups Associated to Simple Lie Algebras

5.1. The exchange quantum groupsF(g), Fq(g). In this section we consider the ex-
change dynamical quantum groups associated to the category of finite dimensional rep-
resentations of simple Lie algebras and their quantum groups. We consider two types of
polarized Hopf algebras.

I. Let g be a simple Lie algebra,αi, i = 1, . . . , r, simple roots,ei, fi, hi the cor-
responding Chevalley generators,g = n+ ⊕ h ⊕ n− the polar decomposition.
Consider the polarized Hopf algebraA = U(g) with the Z-grading and polariza-
tions defined by deg(ei) = 1, deg(fi) = −1, deg(hi) = 0, A+ = U(n+), A− =
U(n−), A0 = U(h), A>0 = U(b+),A60 = U(b−), whereb± = h ⊕ n±. In this
caseT = SpecA0 = h∗. Fix onA the quasitriangular structureR = 1 ∈ A ⊗̂A.

II. Fix ε ∈ C and setq = eε. Assume thatq is not a root of unity. Letg be a simple Lie
algebra,αi, i = 1, . . . , r, simple roots,g = n+ ⊕ h ⊕ n− the polar decomposition.
Consider the quantum groupA = Uq(g) with the Chevalley generatorsei, fi,K

±1
i

as defined on p. 280 in [CP]. Fix inAa counitε, a comultiplication1, and an antipode
S as defined on p. 281 in [CP]. We considerA as a polarized Hopf algebra with theZ-
grading and polarizations defined by deg(ei) = 1, deg(fi) = −1, deg(K±1

i ) = 0,
A+ = Uq(n+), A− = Uq(n−), A0 = Uq(h), A>0 = Uq(b+), A60 = Uq(b−).

Remark.Let aij = 2< αi, αj > / < αi, αi > be the Cartan matrix. Letdi be coprime
positive integers such that the matrixdiaij is symmetric. Lethi ∈ h be the elements
such thatαi(hj ) = aij . Then one can think of the generatorsK±1

i as of elements of the
form q±dihi , see p. 281 in [CP].

ForA = Uq(g), the spectrumT = SpecA0 is the spectrum of the algebra of Laurent
polynomialsC[K±1

1 , . . . , K±1
r ]. The spectrumT can be identified withh∗/L, whereL

is the lattice such that its dual latticeL∗ is generated by elementsdihi , i.e. the latticeL
consists of the points, whereqdihi are equal to 1.

Fix onA the quasitriangular structureR ∈ A ⊗̂A, whereR is the universal R-matrix
of the quantum groupUq(g).
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Remark.If q = 1, then sometimes we shall use the notationUq=1(g) for the universal
enveloping algebraU(g) considered above.

If A = U(g), then letO0 be the category of finite dimensional modules overU(g).
If q 6= 1 andA = Uq(g), then letO0(q) be the category of finite dimensional modules
overUq(g) such that all of the eigenvalues ofKi are integer powers ofq, i.e.O0(q) is
the category of finite dimensional modules overUq(g) which are quantizations of finite
dimensional modules ofU(g) whenq tends to 1.

Consider the exchange dynamical quantum groupE(O0) associated to the category
O0 of modules overU(g) and denote itF̂ (g). The exchange dynamical quantum group
F̂ (g) is defined over the field of meromorphic functionsMT , T = h∗. We replace the
field of meromorphic functionsMT by the field of rational functionsC(T ) and define
in the same waythe rational exchange dynamical quantum groupErat(O0). We denote
the rational exchange dynamical quantum groupF(g).

If q 6= 1, then consider the exchange dynamical quantum groupE(O0(q)) associated
to the categoryO0(q) of modules overUq(g) and denote it̂Fq(g). The exchange dynam-
ical quantum group̂F(g) is defined over the field of meromorphic functionsMT , where
the torusT has the formT = h∗/L. We replace the field of meromorphic functionsMT

by the field of rational functionsC(T ) and define in the same waythe rational exchange
dynamical quantum groupErat(O0(q)). The fieldC(T ) can be considered as the subfield
C(T ) ⊂ Mh∗ of "trigonometric" functions with respect to the latticeL ⊂ h∗. We denote
the rational exchange dynamical quantum groupFq(g).

According to Theorem 26, the exchange quantum groupF(g) (resp.Fq(g)) has a
well defined antipode if for anyV ∈ Ir ⊂ O0 (resp.V ∈ Ir ⊂ O0(q) ) the operator
K ′(λ) : ∗V → ∗V is invertible for generic values ofλ. By Lemma 4.3 this property
holds if the two point functionBλ,V is a nondegenerate bilinear form for generic values
of λ.

Theorem 28. For anyV ∈ O0 (resp.V ∈ O0(q) for genericq) the two point function
Bλ,V : V ⊗ ∗V → C is a nondegenerate bilinear form for generic values ofλ.

Proof. ForF(g) the theorem follows from the next lemma.
Recall thatBλ,V (v, v∗) = ∑

< aiv, biv
∗ > if JV,∗V (λ) = ∑

ai ⊗ bi . Let ρ ∈ h∗
be the half sum of positive roots.

Lemma 29. For A = U(g) and anyV,W ∈ O0, we haveJV,W (tρ) → 1 whent ∈ C

andt tends to infinity.

Proof. In [ES1], the intertwining operator8v(λ) was computed in terms of the Shapo-
valov form (formula (3-5) in [ES1]). From formula (3-5) in [ES1] it is easy to obtain the
following asymptotic expansion of8v(λ):

8wλ vλ = vλ−wt(w) ⊗ w +O(
1

|λ| ),

whereO( 1
|λ| ) denotes terms of degree -1 and lower inλ. This implies the lemma.ut

Corollary 30. Btρ,V ( , ) →< , > ast tends to infinity.

ForFq(g) and|q| < 1 or |q| > 1 the theorem follows in a similar way from [ES2],
Sect. 2. However, in the q-case, the above lemma holds only fort → +∞ if |q| < 1
and fort → −∞ if q > 1. ut



Exchange Dynamical Quantum Groups 39

5.2. The exchange groups andA0-bialgebroids associated with R-matrices.Let V ∈
Ir ⊂ O0 (resp.V ∈ Ir ⊂ O0(q)). Let R(λ) = RV,V (λ) : V ⊗ V → V ⊗ V be the
R-matrix defined in(2). R is a rational function ofλ ∈ T . Consider the rationalA0-
bialgebroidArat,R constructed in Sect. 3.2. Recall thatArat,R is generated by matrix
elements of operatorsL±1 and rational functions ofλ1, λ2 ∈ T .

Theorem 31. For any V ∈ Ir ⊂ O0 (resp. V ∈ Ir ⊂ O0(q) ), there exists a
unique homomorphismϕ : Arat,R → F(g) (resp.ϕ : Arat,R → Fq(g)) of rational
A0-bialgebroids such that(1 ⊗ ϕ)(L) = LV . Moreover,(1 ⊗ ϕ)(L−1) = (LV )−1,
ϕ(f (λ1)) = f (λ1), ϕ(f (λ2)) = f (λ2).

The theorem follows from definitions.ut
Theorem 32. For V ∈ Ir ⊂ O0 (resp.V ∈ Ir ⊂ O0(q)), let V and∗V generate the
tensor categoryO0 (resp.O0(q)) in the sense that any object inIr is a sub-object in
V⊗n ⊗ (∗V )⊗m for suitablen,m. Then the homomorphismϕ is surjective.

Proof. Clearly the matrix components ofLV andL
∗V belong to the image ofϕ, since

(LV )−1 isL
∗V up to some invertible factors inλ1, λ2.

LetU ∈ Ir andU is a sub-object inV⊗n ⊗ (∗V )⊗m for suitablen,m. Consider the
product

(L
∗V )m+n,m+n+1 . . . (L

∗V )n+1,m+n+1 (LV )n,m+n+1 . . . (LV )1,m+n+1.

It is clear that the matrix components ofLU are linear combinations of the matrix
components of this product with coefficients in rational functions ofλ1, λ2. ut

5.3. The exchange groups corresponding to classical Lie groupsGL(N),SL(N),O(N),

SP (2N). In this section we modify the construction of Sect. 5.1.
Consider the Lie algebragl(N). Letei, fi, i = 1, . . . , N−1, andhi, i = 1, . . . , N,

be its standard Chevalley generators. LetO0(GL(N)) be the category of all finite dimen-
sional modules overgl(N) which can be integrated to a representation of the Lie group
GL(N). Consider the rational exchange dynamical quantum groupErat (O0(GL(N)))

associated to the categoryO0(GL(N)) and denote itF(GL(N)).
Fix ε ∈ C and setq = eε. Assume thatq is not a root of unity. Consider the

quantum groupA = Uq(gl(N)) with the standard Chevalley generatorsei, fi, i =
1, . . . , N − 1, and k±1

i , i = 1, . . . , N . Let O0(GL(N), q) be the category of all
finite dimensional modules overUq(gl(N)) which are q-deformations of finite di-
mensional modules overGL(N). Consider the rational exchange dynamical quantum
groupErat (O0(GL(N), q)) associated to the categoryO0(GL(N), q) and denote it
Fq(GL(N)).

Similarly, letG be a simple complex Lie group andg its Lie algebra. Consider the
categoryO0(G) of all finite dimensional modules overg which can be integrated to a
module overG. Consider the rational exchange dynamical quantum groupErat (O0(G))

associated to the categoryO0(G) and denote itF(G). If ε ∈ C, q = eε, andq is not a
root of unity, consider the quantum groupA = Uq(g) and the categoryO0(G, q) of all
finite dimensional modules overUq(g) which are q-deformations of finite dimensional
modules overG. The rational exchange dynamical quantum groupErat (O0(G, q)) as-
sociated to the categoryO0(G, q) is denotedFq(G).

LetGbe a Lie group of typeGL(N), SL(N), SO(N), SP (2N)andg its Lie algebra.
Let V be the vector representation ofU(g) (resp.Uq(g)). We haveV ∈ Ir ⊂ O0(G)

(resp.V ∈ Ir ⊂ O0(G, q)).
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Lemma 33. V and∗V generateO0(G) (resp.O0(G, q)).

The Lemma follows from the fact that the vector representation is faithful as a represen-
tation ofG.

Corollary 34. Let V be the vector representation ofU(g) (resp.Uq(g)), R(λ) =
RV,V (λ) : V ⊗ V → V ⊗ V the R-matrix defined in(2), Arat,R the rationalA0-
bialgebroid constructed in Sect. 3.2. Then the homomorphismϕ : Arat,R → F(G)

(resp.ϕ : Arat,R → Fq(G)) of Theorem 31 is an epimorphism.

Theorem 35. LetG = GL(N). Then

I. For F(G), the homomorphismϕ : Arat,R → F(G) of Corollary 34 is injective.
II. For Fq(G), the homomorphismϕ : Arat,R → Fq(G) of Corollary 34 is injective for

all q except a countable set.

Proof. To prove the theorem forF(G) recall that in this caseλ ∈ T = h∗. Forγ ∈ C
∗

introduce a new variablẽλ = λ/γ . Then, by the results of Sect. 3 in [ES1], for any
modulesV,W ∈ O(GL(N)), we haveJV,W (λ̃) = Id+γ J1(λ̃)+γ 2J2(λ̃)+ . . . . Hence
JV,W (λ̃) → Id asγ → 0.

Let Aγrat,R, F
γ (G) be the algebras defined by the same relations asArat,R, F (G)

with λ replaced byλ/γ andϕγ : Aγrat,R → Fγ (G) the corresponding homomorphisms.

It is easy to see that the algebrasA0
rat,R, F

0(G) are well defined,

A0
rat,R = F 0(G) = C(h∗)⊗ C(h∗)⊗ C[G]

andϕγ → ϕ0 = Id asγ → 0. HereC[G] is the algebra of polynomials onG.
The algebrasAγrat,R, F

γ (G) and the homomorphismϕγ are deformations of the

algebrasA0
rat,R, F

0(G) and the homomorphismϕ0. Elementary reasonings of the de-
formation theory imply that the homomorphismϕγ is an isomorphism.

The theorem forFq(G) is deduced from the theorem forF(G) by taking the limit
q → 1. ut

Now consider the case ofSL(N).
ForG = GL(N), consider the exchange groupFq(G). LetC ∈ O0(G, q) be a one

dimensional module. ThenLC is a 1× 1-matrix and can be considered as an element of
Fq(G).

Lemma 36. LC is a central element inFq(G) andLC is invertible,(LC)−1 = L
∗C .

Proof. For anyW ∈ O0(G, q), LC andLW satisfy the R-matrix relation(26). In this
case the R-matrixRC,W (λ) is a scalar constant, henceLC is central. ut

ForFq(GL(N)), consider the one dimensional moduleC = ∧Nq V overUq(gl(N)),
which is theN th quantum exterior power of the vector representationV . For generic
q, consider the isomorphismϕGL(N) : AGL(N)rat,R → Fq(GL(N)) of Theorem 35. Define

D ∈ AGL(N)rat,R byD = ϕ−1
GL(N)(L

C).
Consider the quantum groupUq(sl(N)). There is a natural embedding ofUq(sl(N))

toUq(gl(N)) sending the Chevalley generators

ei, fi,Ki ∈ Uq(sl(N)) to ei, fi, ki+1/ki ∈ Uq(gl(N)).
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LetV be the vector representation ofUq(sl(N)) ⊂ Uq(gl(N)). Consider the correspond-

ing R-matricesRGL(N)(λ) = R
GL(N)
V,V (λ), λ ∈ TGL(N) = (C∗)N andRSL(N)(λ) =

R
SL(N)
V,V (λ), λ ∈ TSL(N) = (C∗)N/C∗(1, . . . ,1). Any rational function on(C∗)N/

C
∗ (1, . . . ,1) can be considered as a rational function on(C∗)N invariant with respect

to the diagonal action ofC∗. It is easy to see that R-matrixRSL(N)(λ) considered as a
function onTGL(N) coincides with the R-matrixRGL(N)(λ) up to a multiplicative scalar

constant. This construction allows us to define a natural embeddingA
SL(N)
rat,R → A

GL(N)
rat,R .

Clearly, the elementD belongs to the image of the imbedding.

Theorem 37. I. ForF(SL(N)), the kernel of the epimorphismϕ : ASL(N)rat,R →F(SL(N))

of Corollary 34 is generated by the relationD = 1.
II. For Fq(SL(N)), the kernel of the epimorphismϕ : ASL(N)rat,R → Fq(SL(N)) of

Corollary 34 contains the ideal generated by the relationD = 1. Moreover, the
kernel is generated by this relation for allq except a countable set.

Proof. ForF(SL(N)), clearly the kernel contains the relationD = 1, since forsl(N),
the module∧NV is trivial.

Introduce (as before) the algebrasASL(N),γrat,R , F γ (SL(N)) and a homomorphismϕγ :
A
SL(N),γ

rat,R → Fγ (SL(N)) depending on a parameterγ ∈ C
∗. It is easy to see that

for γ = 0, the homomorphism̄ϕγ=0 : ASL(N),γ=0
rat,R /{D = 1} → Fγ=0(SL(N)) is an

isomorphism. This statement (as before) implies the theorem.ut
Now letG be a Lie group of typeSO(N) orSP (2N). LetV be the vector representa-

tion of its Lie algebrag (resp.Uq(g)). In this case there is an isomorphismT : ∗V → V

of g-modules (resp.Uq(g)-modules).

Theorem 38. LetG be a Lie group of typeSO(N) or SP (2N). Then

I. For F(G) andFq(G) the kernel of the epimorphismϕ : Arat,R → F(G) of Corol-
lary 34 contains the ideal generated by the relations

L =: T (1)(K(1)(λ1))−1(L−1)t1K(1)(λ2)(T (1))−1 :, (33)

whereK is defined in Sect. 4.2.
II. For F(G) andFq(G), the elementD defined above equals 1 modulo(33) for G =

SP (2N), and is a central grouplike element of order 2 modulo(33) forG = SO(N).
III. ForF(G)andFq(G)withq outside of a countable set, the kernel ofϕ is generated by

relations(33) in the case ofG = SP (2N), and by(33) andD = 1 forG = SO(N).

Proof.

Lemma 39. Relations(33) belong to the kernel.

Proof. In fact, by Theorem 26 we have

L
∗V =: (K(1)(λ1))−1((LV )−1)t1K(1)(λ2) : .

SinceT : ∗V → V is an isomorphism, we have

(T ⊗ 1)L
∗V (T −1 ⊗ 1) = LV . ut



42 P. Etingof, A. Varchenko

Let I ⊂ Arat,R be the ideal generated by relations(33). Consider the quotient
Arat,R/I and the homomorphism̄ϕ : Arat,R/I → Fq(G). One can prove as forGL(N)
that the homomorphism̄ϕ is an isomorphism forq = 1 and for genericq if G = SP (2N),
and has kernel generated byD = 1 if G = SO(N).

Remark.If G = SO(N), then it is natural to denote the quotientArat,R/I byFq(O(N))

Remark.If q = 1, then in the limitγ → 0 we haveJ = 1. In this case relations(33)
take the form

L = (T ⊗ 1)(L−1)t1(T −1 ⊗ 1),

which is the defining relation for the orthogonal and symplectic groups.ut

6. The R-Matrix RV,V (λ) for the Vector Representation ofUq(gl(N))

6.1. MatricesJV,V (λ) and RV,V (λ). Let V = C
N be the vector representation of

A = Uq(gl(N)). Let vj = (0, . . . ,0,1j , . . . ,0) be the standard basis inV . We have
fivj = δi,j vi+1, eivj = δi+1,j vi , wherefi, ei are the Chevalley generators ofUq((N)).
Introduce a basisEij in End(V ) byEij vk = δjkvi .

TheUq(gl(N))-moduleV ⊗ V has the weight decomposition,

V ⊗ V = ⊕N
a=1Vaa ⊕ ⊕a<bVab , (34)

whereVaa = C va ⊗ va andVab = C va ⊗ vb ⊕ C vb ⊗ va .
The action of the quasi-triangular structureR ∈ A⊗̂A onV ⊗ V takes the form

R = q

N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

Eaa ⊗ Ebb +
∑
a<b

(q − q−1) Eab ⊗ Eba.

Consider the maps

J (λ) = JV,V (λ) : V ⊗ V → V ⊗ V, R(λ) = RV,V (λ) : V ⊗ V → V ⊗ V

defined in(1) and(2). Hereλ ∈ T = (C∗)N , if q 6= 1, andλ ∈ T = C
N , if q = 1.

We shall use the coordinatesλ = (qλ1, . . . , qλN ) on (C∗)N and the coordinatesλ =
(λ1, . . . , λN) onC

N .
Recall thatR(λ) = J−1R21J 21.

Theorem 40. I. For Fq(GL(N)), we have

J (λ) =
∑
a,b

Eaa ⊗ Ebb +
∑
a<b

q−1 − q

q2(λa−λb+b−a) − 1
Eba ⊗ Eab,

R(λ) = q

N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

q−1 − q

q2(λb−λa+a−b) − 1
Eba ⊗ Eab

+
∑
a<b

Eaa ⊗ Ebb + (35)

∑
a>b

(q2(λb−λa+a−b) − q−2)(q2(λb−λa+a−b) − q2)

(q2(λb−λa+a−b) − 1)2
Eaa ⊗ Ebb.
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II. For F(GL(N)), we have

J (λ) =
∑
a,b

Eaa ⊗ Ebb +
∑
a<b

1

λb − λa + a − b
Eba ⊗ Eab,

R(λ) =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

1

λa − λb + b − a
Eba ⊗ Eab

+
∑
a<b

Eaa ⊗ Ebb (36)

+
∑
a>b

(λb − λa + a − b − 1)(λb − λa + a − b + 1)

(λb − λa + a − b)2
Eaa ⊗ Ebb.

The theorem is proved by direct calculations. More precisely, the coefficients ofJ

corresponding to simple roots (i.e. withb = a+ 1) are easily calculated explicitly, after
which all other coefficients are found using the classification of dynamical quantum
R-matrices of Hecke type given in [EK2].

SetR∨(λ) = PR(λ), whereP : V ⊗ V → V ⊗ V is the permutation of factors.

Lemma 41. I. The operatorR∨(λ) preserves the weight decomposition(34).
II. For anya = 1, . . . , N , we haveR∨(λ)va ⊗ va = q va ⊗ va .
III. For anya 6= b, the operatorR∨(λ) restricted to the two dimensional spaceVab has

eigenvaluesq and−p, wherep = q−1.

A meromorphic functionR : T → End(V ⊗ V ) with these three properties and
satisfying the dynamical Yang–Baxter equation(5) is calledan R-matrix of Hecke type
with parametersq andp. We classified such R-matrices in [EV2] up to gauge transfor-
mations.

6.2. Gauge transformations of R-matrices of Hecke type.Consider the torusT = (C∗)N
with coordinatesλ = (qλ1, . . . , qλN ). A multiplicativek-form onT is a collection,

ϕ = {ϕa1,...,ak (q
λ1, . . . , qλN )} ,

of meromorphic functions onT , wherea1, . . . , ak run through allk element subsets of
{1, . . . , N}, such that for any subseta1, . . . , ak and anyi, 1 6 i < k, we have

ϕa1,...,ai+1,ai ,...,ak (q
λ1, . . . , qλN ) ϕa1,...,ak (q

λ1, . . . , qλN ) = 1.

Let�k be the set of all multiplicativek-forms.
If ϕ andψ are multiplicativek-forms, then

{ϕa1,...,ak (q
λ1, . . . , qλN ) · ψa1,...,ak (q

λ1, . . . , qλN )}
and

{ϕa1,...,ak (q
λ1, . . . , qλN ) /ψa1,...,ak (q

λ1, . . . , qλN )}
are multiplicativek-forms. This gives an abelian group structure on�k. The zero element
in �k is the form{ϕa1,...,ak (q

λ1, . . . , qλN ) ≡ 1}.
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For anya = 1, . . . ., N , introduce an endomorphismδa of the multiplicative group
of nonzero meromorphic functionsf (qλ1, . . . , qλN ) onT by

δa : f (qλ1, . . . , qλN ) 7→ f (qλ1, . . . , qλN )

f (qλ1, . . . , qλa /q, . . . , qλN )

and a homomorphismd : �k → �k+1, ϕ 7→ dϕ, by

(dϕ)a1,...,ak+1(q
λ1, . . . , qλN ) =

k+1∏
i=1

(δai ϕa1,...,ai−1,ai+1,...,ak+1(q
λ1, . . . , qλN ))(−1)i+1

.

We haved2 = 0 (0 means the trivial homomorphism which maps everything to the zero
element). A multiplicative formϕ is calledclosedif dϕ = 0.

Introduce gauge transformations of R-matrices,R : T → End(V ⊗V ), of the form

R(λ) =
N∑
a=1

αaa(λ)Eaa ⊗ Eaa +
∑
a 6=b

αab(λ)Eaa ⊗ Ebb

+
∑
a 6=b

βab(λ)Eba ⊗ Eab,

(37)

whereαab(λ), βab(λ) are suitable functions.

I. Let {ϕab} be a meromorphic closed multiplicative 2-form onT . Set

R(λ) 7→
N∑
a=1

αaa(λ)Eaa ⊗ Eaa +
∑
a 6=b

ϕab(λ) αab(λ)Eaa ⊗ Ebb

+
∑
a 6=b

βab(λ)Eba ⊗ Eab.

II. Let the symmetric groupSN , the Weyl group ofglN , act onT andV by permutation
of coordinates. For any permutationσ ∈ SN , set

R(λ) 7→ (σ ⊗ σ)R(σ−1 · λ) (σ−1 ⊗ σ−1).

III. For a nonzero complex numberc, set

R(λ) 7→ c R(λ).

IV. For an elementµ ∈ T , set
R(λ) 7→ R(λ + µ) ,

(recall that we always use the additive notation for the standard group structure on
T ).
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By Theorem 1.1 in [EV2] any gauge transformation transforms a matrix satisfying
the QDYB (5) to a matrix satisfying the QDYB(5). In all cases, if the R-matrix is of
Hecke type, then the transformed matrix is of Hecke type. If the transformation is of type
III and the Hecke parameters of the R-matrix areq andp, then the Hecke parameters of
the transformed matrix arecq andcp. For all other types of transformations the Hecke
parameters do not change.

Two R-matrices will be calledrationally equivalentif one of them can be transformed
into another by a sequence of gauge transformations of types II-IV and of type I with
only rational functionsϕab(λ).

The R-matrices of Hecke type were classified in [EV2] up to gauge transformations.
Here are two main examples of that classification.

Examples.I. For q 6= 1, let the R-matrixRq : (C∗)N → V ⊗ V have the form(37),
where

βab(λ) = q−2 − 1

q2(λb−λa) − 1
,

αaa = 1 andαab(λ) = βab(λ)+ q−2 for a 6= b.Rq(λ) is an R-matrix of Hecke type
with parametersq andp = q−1.

II. For q = 1, let the R-matrixR : C
N → V ⊗ V have the form(37), where

βab(λ) = 1

λa − λb
,

αaa = 1 andαab(λ) = βab(λ) + 1 for a 6= b. R(λ) is an R-matrix of Hecke type
with parametersq = p = 1.

Lemma 42. I. The R-matrixR(λ) in (35) is rationally equivalent to the R-matrixRq(λ)
of the first example.

II. The R-matrixR(λ) in (36) is rationally equivalent to the R-matrixR(λ) of the second
example.

Proof. To transformRq(λ) to the R-matrix in(35) one needs to make the gauge trans-
formation of type IV withµ equal to the half sum of positive roots, then the gauge
transformation of type II withc = q, and finally, the gauge transformation of type I
corresponding to the closed multiplicative 2-formϕab(λ), where

ϕab(λ) = q
q2(λa−λb+a−b−1) − 1

q2(λa−λb+a−b) − 1
for a > b (38)

andϕab(λ) for a < b are reconstructed from the multiplicative "skew symmetry" relation
ϕba(λ)ϕab(λ) = 1. The second statement of the lemma is proved analogously.ut

6.3. Gauge transformations ofA0-bialgebroids corresponding to R-matrices.Forq 6=
1, letR, R̃ : (C∗)N → V ⊗ V be two R-matrices having the form(37). Consider
the Lie algebragl(N) and its Cartan subalgebrah generated by elementshi . Con-
sider the polarized algebraA = Uq(gl(N)) with the earlier distinguished polarization
A±, A0 = Uq(h). LetAR andA

R̃
be theA0 = Uq(h)-bialgebroids associated toR and

R̃, respectively, and constructed in Sect. 3.2. Assume that the R-matrixR̃ is obtained
from the R-matrixR by a gauge transformation of type II, III, or IV, then clearly the
A0-bialgebroidsAR andA

R̃
are isomorphic.
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Theorem 43. Assume that the R-matrix̃R is obtained from the R-matrixR by a gauge
transformation of type I associated to a multiplicative 2-form{ϕab(λ)} which is exact,
{ϕab(λ)} = d {ξa(λ)}, where{ξa(λ)} is a multiplicative 1-form.Then theA0-bialgebroids
AR andA

R̃
are isomorphic.

Proof. Let ξ = ∑
ξaEaa . If L satisfies the QDYB equation(17), andL̃ is such that

L =: ξ (1)(λ1)L̃(ξ (1)(λ2))−1 : ,
thenL̃ satisfies

R̃12(λ1)L̃13L̃23 =: L̃23L̃13R̃12(λ2) : ,
where

R̃(λ) = (ξ (1)(λ− h(2)))−1(ξ (2)(λ))−1R(λ)ξ (1)(λ)ξ (2)(λ− h(1)).

This means that ifR(λ) has the form(37), thenR̃(λ) is obtained fromR(λ) by the gauge
transformation of type I corresponding to the 2-form{ϕab(λ)} = d {ξa(λ)}. ut

Notice that the multiplicative 2-form given by(38) is exact,{ϕab(λ)} = d {ξa(λ)},
where

ξa(λ) =
∏
b<a

q−λb ( q2(λa−λb+a−b−1) − 1).

Hence the corresponding bialgebroids are isomorphic.

7. Elements of Representation Theory of Exchange GroupsFq(G)

7.1. A construction of representations.LetG be a simple group andg its Lie algebra.
Consider an exchange groupFq = Fq(G).

A dynamical representationπW : Fq → DT,W is calledrational if the image of
πW consists of difference operators with rational coefficients. A homomorphism of
dynamical representationsϕ : W1 → W2 is calledrational if the matrix elements ofϕ
are rational functions.

DenoteRepf (Fq) the tensor category of rational finite dimensional (dynamical)
representations ofFq and rational morphisms between the representations.

LetW ∈ O0(G, q). Define a rational dynamical representation ofFq onW . Recall
that a rational dynamical representation is a diagonalizableA0 = Uq(h)-moduleW
and a homomorphism ofA0-algebrasπW : Fq → DT,W such that the image of the
homomorphism consists of difference operators with rational coefficients. We consider
W ∈ O0(G, q) with theA0-module structure induced byUq(h) ⊂ Uq(g) and define
πW by

πW(f (λ
1)) = f (λ), πW (f (λ

2)) = f (λ− h), (39)

(1 ⊗ π0
W)(L

V )(λ) = RV,W (λ), (40)

for anyV ∈ Ir ⊂ O0(G, q).
Recall that for a dynamical representationπW : Fq → DT,W , one defines a mapπ0

W :
Fq → End(W,W ⊗MT ) as explained in Sect. 3.1 and this map uniquely determines
πW .

Theorem 44. Formulas(39) and(40) define a structure of a rational dynamical repre-
sentation ofFq onW .
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The theorem follows from definitions.
Define a functorF from the categoryO0(G, q) of finite dimensional modules over

Uq(g) (defined in Sect. 5.3) to the categoryRepf (Fq) sending an objectW ∈ O0(G, q)

to (W, πW) and sending a morphismα : W → U to the same linear mapα : W → U .

Theorem 45. I. This construction defines a tensor functorF :O0(G, q) → Repf (Fq)

with a tensor structure

JW,U : F(W)⊗̃F(U) → F(W ⊗ U),

whereJW,U is defined in(1).
II. For genericq the mapHomO0(G,q)(W,U) → HomRepf (Fq)(F (W), F (U)) defined

byF is an isomorphism. Thus,F defines a tensor equivalence ofO0(G, q) onto a
full subcategory ofRepf (Fq).

Remark 1.In the next paper we plan to show thatF is an equivalence of categories, i.e.
that any object ofRepf (Fq) is in the image ofF .

Remark 2.We see that the representation category ofFq(G) is essentially the same as
forUq(g). A similar result was obtained in [BBB], where it is shown that the quasi-Hopf
algebra associated to the dynamical R-matrix is twist equivalent toUq(g) (forg = sl(2)).
These two results are closely related, because as follows from [Xu], representation theory
of the Hopf algebroidFq(G) is tautologically equivalent to representation theory of the
corresponding quasi-Hopf algebra.

Remark 3.Theorem 45 raises a question: why is it interesting to study dynamical quan-
tum groups if they have the same representation theory as the usual ones? In our opinion,
it is interesting to study not only tensor categories but also their realizations (e.g. tensor
functors on them to other tensor categories), which contain extra structure. In particular,
Fq(G) andUq(G) correspond to two different realizations of the same tensor category.
In other words, dynamical quantum groups do not provide new tensor categories, but do
provide new realizations of already known tensor categories.

Now let us prove the theorem. The first part of the theorem is trivial. The second part
of the theorem is proved in Sect. 7.4. In order to prove the second part we first prove
that any rational morphismb : F(W) → F(U) does not depend onλ and then show
that there existsa ∈ HomO0(G,q)(W,U) such thatb = F(a).

7.2. Rational morphisms.LetW ∈ O0(G, q). LetπW , π0
W be representation maps. By

definition

(1 ⊗ π0
W)(L

V )(λ) = RV,W (λ) = J−1
V,W (λ)R21|V⊗WJ 21

W,V (λ).

Let vVi be a homogeneous basis ofV , andvV0 be the highest weight vector. Let(vVi )
∗

be the dual basis. Consider the matrix elementR00
V,W (λ) ∈ End(W) defined by

< y∗, R00
V,W (λ)x >=< (vV0 )

∗ ⊗ y∗, RV,W (λ) vV0 ⊗ x >,

wherex ∈ V, y∗ ∈ V ∗.
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Lemma 46. R00
V,W (λ) is a nonzero scalar operator on each weight subspaceW [α], α ∈

T , ofW . Moreover, the value of the scalar is determined byα and does not depend on
W .

Proof. We have

< (vV0 )
∗ ⊗ y∗, J−1

V,W (λ)R21|V⊗WJ 21
W,V (λ) v

V
0 ⊗ x >=

< (J−1
V,W (λ))

∗ (vV0 )∗ ⊗ y∗,R21|V⊗WJ 21
W,V (λ) v

V
0 ⊗ x > . (41)

Since degJ = 0 andJ = 1 + ∑
ai ⊗ bi , degai < 0, we haveJ 21 = 1 + ∑

bi ⊗ ai
and(J−1)∗ = 1 + ∑

ci ⊗ di , where degci < 0. Continuing(41), we get

< y∗, R00
V,W (λ)x > = < (vV0 )

∗ ⊗ y∗,R21|V⊗W vV0 ⊗ x >

= < (R21|V⊗W)∗ (vV0 )∗ ⊗ y∗, vV0 ⊗ x > .

It is well known that the operator(R21|V⊗W)∗ has the formR0Q, whereR0 = 1+
(a strictly upper triangular element inUq(n+)⊗̂Uq(n−)) andQ ∈ Uq(h)⊗̂Uq(h).
Hence,

< (R21|V⊗W)∗ (vV0 )∗ ⊗ y∗, vV0 ⊗ x >=< Q(vV0 )
∗ ⊗ y∗, vV0 ⊗ x > .

This proves the lemma.ut
Lemma 47. Leta(λ) : F(W) → F(U) be an intertwining operator, thena(λ) does not
depend onλ.

Proof. We haveR00
V,W = π0

W(L
V
00), whereLV00 is the matrix component ofLV cor-

responding to the highest weight vectorvV0 . Hence,πW(LV00) = R00
V,WT −1

wt(vV0 )
, where

wt(vV0 ) is the weight ofvV0 .
The intertwining operator has to satisfya(λ) ◦ πW(LV00) = πW(L

V
00) ◦ a(λ). Hence,

a(λ) = a(λ− wt(vV0 )) for anyV ∈ Ir ⊂ O0(G, q). Sincea(λ) is rational, this means
thata(λ) does not depend onλ. ut

7.3. Asymptotics ofJV,W (λ) andRV,W (λ). First assume thatq = 1 andA = U(g).
ConsiderJV,W (λ). Change variablesλ → λ/γ , whereγ ∈ C

∗. ThenJV,W (λ/γ ) has
the form

JV,W (λ/γ ) = 1 + γjV,W (λ)+O(γ 2).

To describejV,W (λ)we fix notations. Namely, we fix an invariant nondegenerate bilinear
form (·, ·) on g. The bilinear form identifiesg and g∗. For any positive rootα, fix
generatorseα ∈ gα, fα ∈ g−α, such thathα = [eα, fα] has the property< hα, λ >=
(α, λ) for all λ ∈ h∗.

Theorem 48. We havejV,W (λ) = j (λ)|V⊗W , wherej (λ) ∈ n− ⊗ n+ and

j (λ) = −
∑
α>0

fα ⊗ eα

(λ, α)
.
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Corollary 49. For q = 1 andA = U(g), we have

JV,W (u⊗ w) = u⊗ w −
∑
α>0

fα ⊗ eα

(λ, α)
u⊗ w +O(

1

|λ|2 ) ,

RV,W (u⊗ w) = u⊗ w +
∑
α>0

fα ⊗ eα − eα ⊗ fα

(λ, α)
u⊗ w +O(

1

|λ|2 ).

Proof of the theorem.Let w ∈ W . Consider the intertwining operator8wλ : Mλ →
Mλ−wt(w) ⊗ W . Let vλ ∈ Mλ be the highest weight vector (we writeMλ for M+

λ ). It
follows from [ES1], Sect. 3 that

8wλ vλ = vλ−wt(w) ⊗ w −
∑
α>0

1

(λ, α)
fαvλ−wt(w) ⊗ eαw +O(

1

|λ|2 ).

Now computing the leading term of the composition8uλ−wt(w)8
w
λ vλ we conclude that

JV,W (u⊗ w) = u⊗ w −
∑
α>0

fα ⊗ eα

(λ, α)
u⊗ w +O(

1

|λ|2 ).

This proves the theorem.ut
Let q 6= 1,A = Uq(g) andr =dim h. It is well known thatR ∈ A⊗̂A has the form

R = R0Q, whereQ ∈ Uq(h)⊗̂Uq(h) is a suitable invertible element, andR0 = 1+
(a strictly upper triangular element inUq(n+)⊗̂Uq(n−)).

Theorem 50. For |q| < 1 andA = Uq(g),

I. JV,W (λ) → 1, whenλ ∈ T = (C∗)r tends to infinity along the positive alcove, and
JV,W (λ) → R21

0 , whenλ tends to infinity along the negative alcove.
II. RV,W (λ) → R21, whenλ tends to infinity along the positive alcove, andRV,W (λ) →

QRQ−1, whenλ tends to infinity along the negative alcove.

Proof. It is clear that statement II follows from I. The first statement of I follows
from [ES2], Sect. 2, as explained in the proof of Theorem 28. So it remains to prove the
second statement of I.

It follows from Proposition 19.3.7 in [L] that the asymptotics of the Shapovalov form
onMλ = Uq(n−) for λ tending to∞ in the negative alcove equals to the Drinfeld form
onUq(n−) (i.e. the form which defines an injective map of Hopf algebrasUq(b+) to its
dual). This fact together with the explicit formula for the intertwining operator via the
Shapovalov form ([ES2], Sect. 2) implies the second statement of I.ut

7.4. Proof of part II of Theorem 45.First assume thatq = 1 andA = U(g). Let
W,U ∈ O0(G) andb ∈ HomRepf (Fq)(F (W), F (U)). Recall thatb ∈ EndC(W,U)

does not depend onλ by Lemma 47.

Lemma 51. The linear operatorb commutes with the action of elementseα, fα where
α is any positive root.

Corollary 52. b ∈ HomO0(G,q)(W,U).
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The corollary implies part II of Theorem 45 forq = 1.

Proof of the lemma.We prove the lemma forW = U . For W 6= U , the proof is
similar. For anyV ∈ Ir ⊂ O0(G), we have[1 ⊗ b,RV,W (λ)] = 0. Hence,[1 ⊗ b,

(RV,W (λ)− 1)|λ|] = 0. Settingλ = tλ0 and taking the limitt → ∞, we get

∑
α>0

fα ⊗ [b, eα] − eα ⊗ [b, fα]
(λ, α)

= 0.

Since there existsV such that the linear operatorseα|V , fα|V are linear independent in
EndC(V ), we get the lemma.ut

Part II of Theorem 45 for|q| < 1 follows similarly from Theorem 50. Namely, from
Theorem 50 we get that any intertwining operatorb must commute with all elements of
the form(f ⊗1)(R21) and(f ⊗1)(QRQ−1) (f ∈ Uq(g)∗), which obviously generate
Uq(g). (Here ifX = ∑

ai ⊗ bi then(f ⊗ 1)(X) denotes
∑
f (ai)bi .) Thus,b has to

commute withUq(g), Q.E.D.
For |q| > 1, the proof is analogous.

8. Appendix: Fusion Matrices and 6j-Symbols

In this appendix we discuss the relationship between fusion matrices introduced in
Sect. 2, and 6j-symbols, for the Lie algebrasl(2). For quantumsl(2), the relationship is
the same.

Recall the definition of 6j-symbols (see e.g. [CFS], p. 29). LetVa , a ∈ Z+/2, be the
irreducible representation ofsl(2) with spina. Let va be the highest weight vector of
Va , andva,n = f nva . Let ϕbca : Va → Vb ⊗ Vc be the intertwiner such thatϕbca va =
vb ⊗ vc,b+c−a + l.o.t. (here l.o.t. is “lower order terms”).The 6j-symbol is defined by
the formula

(1 ⊗ ϕbcj )ϕ
aj
k =

∑
n

(
a b n

c k j

)
(ϕabn ⊗ 1)ϕnck .

The 6j-symbols not defined in this way are defined to be zero.

Remark.Our definition coincides with the standard one only up to normalization.
Namely, it is more common to use a different normalization of the operatorsϕbca , which
results in a different normalization of the 6j-symbols.

Now defineJbc(λ) := JVbVc (λ). The next proposition, which gives a connection
between fusion matrices and 6j-symbols, follows easily from the definitions.

Proposition 53. For anyk ∈ Z+/2, one has

∑
n

(
a b n

c k j

)
(vb,b−n+a ⊗ vc,c−k+n) = J−1

bc (k)ϕ
bc
j vj,j−k+a.

ThusJbc(k) is the unique rational function ofk which satisfies the above equation
for k ∈ Z+/2.

It is easy to check that under this correspondence, the 2-cocycle condition forJ (λ)

corresponds to the Elliott-Biedenharn identity for 6j-symbols [CFS] (known to mathe-
maticians as the Maclane pentagon relation). The dynamical Yang–Baxter equation for
R(λ) = J−1(λ)J 21(λ) corresponds to the star-triangle relation.
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9. Appendix: Recursive Relations for Fusion Matrices

In [A], the authors defined fusion matrices as unique solutions of certain linear equations,
and checked that they satisfy the 2-cocycle condition. In this appendix, we will show
that our fusion matrices satisfy the same linear equations, which implies that they are
the same fusion matrices as in [A].

We will use a finite-dimensional version of the quantum Knizhnik-Zamolodchikov
equations, which were deduced by Frenkel and Reshetikhin for quantum affine algebras.
Consider the function9wv(λ) ∈ End(W ⊗ V ) given by

9wv(λ) := JWV (λ)(w ⊗ v) =< (8wλ−λv ⊗ 1)8vλ >,

where the notation<,> was defined in Sect. 2.4. It follows from a finite dimensional
degeneration of the Frenkel-Reshetikhin theorem (Theorem 10.3.1 in [EFK]) that this
function satisfies the following version of the quantum Knizhnik-Zamolodchikov equa-
tions:

q2(λv,λ+ρ)−(λv,λv)9wv(λ) = R21
VW (1 ⊗ q2λ−λv−λw+2ρ)9wv(λ).

This implies that

JWV (λ)(1 ⊗ q2(λ+ρ)−∑
x2
i ) = R21

VWq
− ∑

xi⊗xi (1 ⊗ q2(λ+ρ)−∑
x2
i )JWV (λ).

It is easy to see that the last equation is (up to simple changes of variable) the same as
relation (18) in [A].

A similar computation is valid for an arbitrary quantized Kac–Moody algebra. This
computation yields the linear relation forJ discussed in [JKOS].

Acknowledgements.We are grateful to the referee for several interesting questions, the answers to which have
enriched the paper.
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