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Abstract: For any simple Lie algebrg and any complex numberwhich is not zero

or a nontrivial root of unity, we construct a dynamical quantum group (Hopf algebroid),
whose representation theory is essentially the same as the representation theory of the
quantum groufd/, (g). This dynamical quantum group is obtained from the fusion and
exchange relations between intertwining operators in representation thetpy g,

and is an algebraic structure standing behind these relations.

1. Introduction

One ofthe mostimportant equationsin statistical mechanics is the so-called Star-Triangle
relation, introduced by Baxter. In 1994, G. Felder [F] suggested to write this relation in
the form of the quantum dynamical Yang—Baxter equation (QDYB) (which previously
appeared in some form in physical literature), and proposed the concept of a quantum
group associated to a solution of this equation. He also considered the quasi-classical
limit of this equation, and showed that a solution of the classical dynamical Yang—
Baxter equation (CDYB) appears naturally on the right-hand side of the Knizhnik—
Zamolodchikov—Bernard equations for conformal blocks on an elliptic curve. Since
then, this theory has found many applications in the theory of integrable systems.

In [EV1], we proposed a geometric interpretation of the CDYB equation without
spectral parameter. Namely, we assigned to any solution of this equation, whose sym-
metric part is invariant, a certain Poisson groupoid. This construction is a generalization
of Drinfeld’s construction which assigns a Poisson—Lie group to any solution of the
usual classical Yang—Baxter equation, with invariant symmetric part. We also classified
such solutions for simple Lie algebras and showed that there are two classes of solutions
(without spectral parameter) — rational and trigonometric.
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In [EV2], we quantized the results of [EV1] and presented a “honcommutative ge-
ometric” interpretation of solutions of the QDYB equation without spectral parameter.
Namely, we assigned to any solution of the QDYB equation, satisfying a special “Hecke
type” condition, a certain dynamical quantum group (Hopf algebroid). This construction
is a generalization of the Faddeev—Reshetikhin—Takhtajan—Sklyanin construction which
assigns to any solution of the usual quantum Yang—Baxter equation of Hecke type a
guantum group (Hopf algebra), defined by the so-caRgdl' = T T R relations. We
also classified the Hecke type solutions of the QDYB equation and showed that, like
in the classical case, there are two classes of solutions (without spectral parameter) —
rational and trigonometric.

The solutions of the QDYB equation and corresponding dynamical quantum groups
from [EV2] provide quantizations of the solutions of the CDYB equation and Poisson
groupoids from [EV1], but only for the Lie algebig = siy. For other simple Lie
algebras, especially for exceptional ones, one needs to use a different method to quantize
the Poisson groupoids from [EV1]; this method has to be applicable to any simple Lie
algebrag and should not use its particular matrix realization.

Such a method is suggested in the present paper. Namely, it turns out that with any
simple complex Lie grougs (with the Lie algebray) and a nonzero complex number
g (which is not a nontrivial root of unity but may be equal to 1) one can associate a
Hopf algebroidF, (G), which is a quantization of the Poisson groupoid associated with
the simple Lie algebrg in [EV1]. More precisely, the casg = 1 corresponds to the
Poisson groupoid defined by the rational solution, @aé 1 corresponds to the Poisson
groupoid defined by the trigonometric solution.

The Hopf algebroidF, (G) is constructed from the representation theoryGof
Namely, the structure constants of the multiplicationFj(G) are obtained from the
structure constants of the multiplication (fusion) of intertwining operators between a
Verma module ovet/, (g) and a tensor product of a Verma module with a finite dimen-
sional module ovet/, (g). These structure constants have been known for a long time
under various names (Racah coefficients, Wigner 6j symbols) and play an important role
in quantum physics.

The commutation relations between generator8,4f5) are defined by certain dy-
namical R-matrices, which satisfy the quantum dynamical Yang—Baxter equations. These
R-matrices are exactly the matrices which arise in commutation (=exchange) relations
between intertwining operators and are therefore called the exchange matrices. This
makes it natural to call the Hopf algebroifig(G) the exchange dynamical quantum
groups.

The results of this paper demonstrate how to use representation theory to construct
new quantum groups, and conversely, how the multiplication of intertwining operators,
one of the main structures in representation theory, is controlled by a dynamical quantum
group.

We note that the main idea of this paper (to use commutation relations between
intertwining operators to obtain new quantum groups) was inspired by the pioneering
paper [FR].

Let us briefly describe the contents of the paper.

In Sect. 2 we introduce, for any polarized Hopf algebra, the fusion and exchange
matricesJ (1), R(A) and consider their main properties.

In Sect. 3 we recall the notion of ai-Hopf algebroid and its dynamical represen-
tations introduced in [EV2] (wher# is a commutative, cocommutative Hopf algebra).

In Sect. 4 we construct Hopf algebriods defined by the fusion and exchange matrices.
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In Sect. 5 we specialize our construction to the case of simple Lie groups and quantum
groups, and construct the Hopf algebrofdgG).

In Sect. 6 we compute the exchange R-matrix for the vector representatior=of
GL(N), and show thaf, (GL(N)) is isomorphic to the Hopf algebroidi; defined by
the trigonometric solutio® of the quantum dynamical Yang—Baxter equation in [EV2].

In Sect. 7 we consider the representation theoy,¢6) for a simple complex group
G and show that its category of rational finite dimensional dynamical representations
containsthe category of finite dimensional representatiotig @f) as a full subcategory.

In the next paper we plan to show that these categories are actually the same.

In Sect. 8, we describe the precise connection between fusion and exchange matrices
(for sl2) and the classical and quantum 6j-symbols.

In Sect. 9, we show that the universal fusion maitik) satisfies the defining property
ofthe quasi-Hopftwistdiscoveredin[A]. In particular, this shows that our fusion matrices
are the same as the quasi-Hopf twists introduced in [A].

In a subsequent paper, we plan to consider the analogue of this theory for affine
and quantum affine algebras. This will help one to understand better the monodromy of
classical and quantum Knizhnik—Zamolodchikov equations following the ideas of [FR]
and [TV1-2,FTV].

In conclusion we would like to mention the paper [BBB], in which another algebraic
interpretation of the QDYB equation was given (via quasi-Hopf algebras), and a version
of our main construction for the Lie algeby& was presented. See also [JKOS] where
the approach of [BBB] was generalized to an arbitrary Kac—Moody algebra. We would
also like to point out the recent paper [Xu], where the relationship between the quasi-
Hopf algebra and Hopf algebroid interpretation of the quantum dynamical Yang—Baxter
equation is explained.

2. Exchange Matrices

2.1. Polarized Hopf algebras. A polarized Hopf algelisea Hopf algebrad over C
with the following properties:

I.  The algebraig.-graded A = @72 A[k].

II. The algebra is polarized. Namely, there exist graded subalgelgras,, A_ such
that the multiplication mapd; ® Ao ® A - AandA_ ® Ag® Ay — A are
isomorphisms of vector spaces. We also assume that the graded components of
andA_ (not of Ag) are finite dimensional.

lll. Lete : A — Cbe the counit, then Ker N A has only elements of positive degree,
Ker e N A_ has only elements of negative degrde,has only elements of zero
degree.

IV. The algebradg is a commutative cocommutative finitely generated Hopf algebra.

V. ApA; andApA_ are Hopf subalgebras of.

Let T = Specip. SinceAy is finitely generated, commutative and cocommutative,
T is a commutative affine algebraic group [M].

The main examples of polarized Hopf algebras are the universal enveloping algebra
U (g) of a simple Lie algebrg and the corresponding quantum grdup(g).

If h C gis a Cartan subalgebrg,= g_ @ h & g a polarization andt = U(g),
thenA_ = U(g-), Ao = U(h), A = U(g+), andT = C", wheren =dim b. If
A =Uy(g), thenA_ = U,(g-), Ao = U, (h), A = Uy(g+), andT = (C*)".
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2.2. Verma modulesLet AQ = Kere N A4. Thendy =C- 1@ A9.

Lemma 1. AoA(}r is the set of elements a@fp A of positive degree. Moreoveﬁ,oA(}r
is a two-sided ideal igA .

Proof. AoA(}r obviously lies among the elements of positive degree. We prove the con-
verse statement. Let= " aja’. be ahomogeneous element of deg¥ee 0in ApA+,
wherea)) € Aganda’,. € A has degre#/. SinceA; = C-1& A%, we haver, € A9.

The second statement of the Lemma obviously follows from the first.

Corollary 2. AgA4/ApA% = Ao.

In fact,Ag — ApA, — A0A+/A0A3 is an isomorphism.

Lety, : ApAL — Ag be the induced homomorphisi,. is defined byy (ag) =
aog, ¢+(ay) = €(ay), whereag € Ag,ay € Ay.

LetA : Ag —» Cbeahomomorphism, henges T'. Let x, be the corresponding one
dimensionalo-module. Define a homomorphisgy : AgA4+ — Cby x;t = Agp,. We
also denote b)gx+ the corresponding one-dimensiongJA . -module. Definea Verma
moduleM;" over A by M, = A ®aqa, X,

Analogously, consider the homomorphigm : ApA_ — Ag and the corresponding
AoA_-moduley, . Definea Verma modulé/,” overA by M, = A ®a0a_ X, -

Let X;T = (Cv;f.
Lemma 3. M,' is a freeA_-module generated hy;'".

The lemma follows from Property II.
Similarly, M, is a freeA -module generated by; .

Using Lemma 3 induce a grading M;’t from A such that the degree 0’1IE is equal
to zero.

2.3. The Shapovalov formA polarized Hopf algebraA is called nondegeneratéf
Verma modulesV;” and M, are irreducible for generiz € 7. (This means that the
modules are irreducible for all except a countable union of algebraic sets of lower
dimension.) For examplé/(g) andU, (g) are nondegenerate.

Let A be polarized and nondegenerate. Consider the vector $Mt¢*, the re-
stricted dual oiM;F with respect to the grading @f_. Define anA-module structure on
(M;)* by 7y +y(a) = 7+ (S(a))*, wheres is the antipode ind.

Define(v;")* € (M;")* to be the only degree zero element such thab;")*, v;” >= 1.

Lemma 4. Ifa_ € A®,thena_(v}")* = 0.1fag € Ao, thenag(v;)* = (—1)(ao) (v;)*,
where—) means the inverse element in the abelian gréup

In fact, a_(v;L)* has degree which does not occur(Mf)*. The second statement is
obvious.

Corollary 5. There exists a uniqgue homomorphisnefnodulesy_ : M—, — (Mf)*
such that ™, > (v;))*.

Analogously, one can define a homomorphigm : Mfk — (M, )* such that
+ —\k
v, = ()",
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Lemma 6. If A is nondegenerate, thaef,, y_ are isomorphisms for generic

Proof. For generic., the homomorphismg,. andy,_ are injective sincerA andM_,
areirreducible ang ., v _ differ from zero. Thisimplies thatdim  [n] < dim A_[—n]
and dimA;[n] > dmA_[—-n]. O

Corollary 7. Forall n,dimA[n] =dimA_[—n].

The homomorphismg ., ¢_ are calledhe Shapovalov form3hey can be consid-
ered as bilinear form¢ (1) : Ay ® A_ — C, ¥y_(1) : A_® Ay — Cdepending on
2. The bilinear forms can be defined alsopy (A)(a, a—) =< (v;)*, S(a)a_v," >
andy_(A)(a—, ay) =< (v;)*, S(a_)av, >.

Choose bases in.[r] and compute the determinants of the Shapovalov forms,

D, (1) = detyry (W[n], D, (A) = dety_(W)[n].

The determinants of the Shapovalov forms are regular nonzero functiohscofl
defined up to multiplication by a nonzero number.

2.4. Intertwining operatorsLet A be polarized and nondegenerate. letbe aZ-
gradedA-module such thaV is a diagonalizablelp-module,V = &,c7 V[A], where
aov = A(ag)v for all v € V[A], ag € Aop.

Theorem 8.

I. Assume that/_,, is irreducible andV is bounded from above, i.e. the graded
component ofV corresponding a numbeN is equal to zero ifN >> 0. Then
Hom 4 (M;", M;[ ® V) = V[r — ul], whered — u means the difference in the
abelian group? .

II. Assume thaMi“M is irreducible andV is bounded from below. Then

Hom 4 (M, M/: RV)YEVIA—pul.
The isomorphism is given by

Pro< P >=< (vff)* ® 1, CIDUiE > .

Proof. First we prove a lemma. Le® be aZ-graded Hopf algebra. Léf, W be Z-
gradedB-modules bounded from above and such that all homogeneous components of
U are finite dimensional. Define the space Hp*, W) as Homg (U*, W) =
®,Homz(U*, W)[n]. Let (U ® W)® denote the subspace of invariants with respect to

B, i.e. the subspace of all elementssuch thabw = ¢(b)w for anyb € B. The space

(U ® W)B is Z-graded(U ® W)8 = @,(U @ W)B[n].

Lemma9. Letw € U @ W. Letw : U* — W be defined as the composition of the
twomapsl® w:U* > U*QU @ Wand< -,- >QL: U*QU W — W.
Thenw e (U @ W)8[n] for somen if and only ifw € Homg(U*, W)[n]. Thus the
assignmentv — w is an isomorphism ofU ® W)2 andHom g(U*, W).
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Proof. The counit ofB defines a trivial one-dimensionBtmoduleCg. If w e U @ W
is B-invariant, therw defines a homomorphisfiiz — U ® W of B-modules, which
defines a homomorphism ® w : U* - U*Q@ U ® W, u* — u* ® w. Since
<, >:U*® U — Cis a homomorphism oB-modules, so is the compositian =
(<, >®1) (1 ® w). This proves one of the two claims of the lemma.

LetU @ U* = @,U & U*[n], whereU ® U*[n] is the space of all elementof the
formx = > 72, a; ® b; such that for any the element; ® b; € U ® U* has degree
n, the elements;, b; are homogeneous, and deg — —oco asi — oo. There is a
canonicalB-homomorphisnCpz — U ® U*, 1+ Y, a; ® a’, where{q;} is a graded
basis ofU and{a’} is the dual basis of/*.

Letw : U* — W be a homogeneous-homomorphism. Then® w : U @ U* —
U ® W is awell defined3-homomorphism. The compositifty — UQU* — URQW
gives aB invariant element. O

Now we prove the theorem. Introdueg.o = ApA+ andA¢g = AgA—. We have
Hom s (M;", My ® V) = Hom a_,(x;". M;f ® V). The space Hom_,(x,". M} ® V)
can be described as the spacef allw € M,} ® V such that thed > o-submodule of
M} ® V generated by is isomorphic tox, . After tensoring withy *, this submodule
gives a trivial module. Thus the spakes isomorphic to the spac(tle RVE® xfk)A>0.
According to the lemma, the spaégis isomorphic to Hon);>o((M,f)*, Ve xh).
This space is isomorphic to Hom,(M_,,V ® Xf,\) sinceM:,L is irreducible. Now
Hom .o (M~,, V@x1,) = Hom ag(x—u. V®x—1) = HOM a, (o, V) = V[A—pul.
The theorem is provedo

Let V be bounded from above. Lete V[1 — u]. Denoted] : M;r — M;[ ® V the
intertwining operator such that ¢} >=v.

Define®”(1) : A_ — A_® V asthe operator obtained froi{ after identification
of A_ with Mf andMIj. Then®V (1) is a rational function, i.e. for any homogeneous
a_ € A_,a* € A* ,andf € V*, the scalar functiorif* ® a*)®V(1)a_ is a rational
function.

2.5. A gquasitriangular structure and dynamical R-matrickgt A, = ®;>,A[j].
Introduce a system of left-ideals/, = A - A,,.

Introduce a tensor produdi® A = ®; .7 (A & A)[i] asfollows. LetA ® A)[i] be the
projective limit of (A/1, ® A/I,)[i] asn — oo, thatis(A ® A)[i] consist of elements
of the forma = "2, ax ® a;, such that

I. For eachk there isj such thaty ® a; € A[j]® A[i — j].
Il. For eachn there is only finitely many such thata; ® a; does not belong to
AQL +1,® A.

Lemma 10. A® A is an algebra]

Similarly we can definet®" for anyn.
Consider the categor§ of gradedA-modules bounded from above and diagonal-
izable overAg. Let V, W e O, thenA®A acts onV ® W. Similarly, for anyn one

can define an action of the algem§’" in a tensor product of A-modules from the

categoryO.
An elementR € A ® A is calleda quasitriangular structure(QTS) if
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I. RisinvertibleinA & A.
. RA(a) = AP (a)R.
M. (A® DR = RBRZB and(1 ® A)R = RI¥R1Z

Consider the categor§® of gradedA-modules bounded from above and diagonal-
izable overAg. The categon® is a braided tensor category with the braiding equal to
PR.

Let A be a nondegenerate polarized Hopf algebra with a @T&et V, W € O.
Letv € VA, ], w € W[A,]. Assume that, w are homogeneous with respect to the
grading. Consider

! oY, ®
MM, eV =S
v

+
A My -2, ®WRYV

and denote this compositioh".
Define the main object of this paper, a linear operdipy (1) : WV - WV
as follows. Findu € W ® V[, + A,] such thatd}" = &% and set

JwyvQM)w v =u. (2)

Lemma 11. Jw, v (1) is strictly uppertriangular, i.eJy v (L) w®v = w®v+)>_ w; Qu;
where degu; < degw.

Corollary 12. Jw v(x) = 1+ N, whereN is locally nilpotent, hencdw v (1) is in-
vertible and/yt, () =1—- N+ N2 — ...

We call the operatorsgy v (1) fusion matrices
Definea quantum dynamical R-matrRy w (1) : V® W — V @ W by

Ry.w) = T, 5 WORP yew JgHy (V). 3

Theorem 13. Letv € V, w € W be homogeneous elements with respect to the grading
andAp. LetRy w(M) v @ w = ), v; ® w;, wherev;, w; are homogeneous too. Then

(1 ® PRIwgy) @}’ =Y @™, 3)
i

whereP is the operator of permutation.
The proof follows from the definition oRy w (X).

Theorem 14. 1. J satisfies the 2-cocycle condition,

Tvew.u ) (Jywh =)@ 1) = Jy wer M) (1 @ Jw.u(W). 4)

II. R(A) satisfies the quantum dynamical Yang—Baxter equation (QDYB),

R2(. — n®) RB30) R0 — kD) = RB) RB0. — hP) R¥?(0).  (5)
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In these formulagk2(L — h®)vQw @ u = (R(A —A) v @ w) Qu if u € Ulhy]
and other symbols are defined analogously.

Proof. Define

CD)UL” ----- M+_>M+Z” A ®Vn®®V1
1

vy <D”2 ®1
+ + Py +
M 5 M Vi — M L, ®Vo®Vy—
A A— )“Ll )\1/2
In other words
O = (@ L, @ 1TH (92, ® Do
Xigd v
Lemma 15.
Upsoes V1 VnssVig 2 IV v Q= 0 M ) Vi41®V;, Vi1,
@, =P

The proof is by definition off.
Letae V,be W,ce U.Then

cbabc CI)a Jwu)b®c q)JVW@U(}»)(l@JWU(K))a@b@C
5 = =

’

% b,c ®1v wh—A)a®b,c ®JV®W,U()~) Jywh=r)®Da®b®c
A - - ¥ .

This proves the first statement of the theorem.

Fory eV, ®...@ iyl y =3 vj ® ... @ v, set¥y, () = 32, &

.....

Lemma 16.

i—1
Py 1. viRviv, qjvn o ® Ul()‘) ‘Ij;:/,i:.‘./,i;il,(‘/)»z‘JrEi,:\ile)PVHLV[ e (A).
The proof is by definition of the quantum dynamical R-matrix.
In order to prove the second statement of the theorem we apply the lemma to the case
n = 3.Namely, we considerthefunctldq,3®“2®”1(A) and express |tV|a/w1®w2®w3(/\)
in two different ways, using the two differént reduced decompositions oft?'le permutation
123 — 321. Comparing the two answers, we get the theorem.

Remark. The explicit form ofJyy for A = U, (g) has been recently computed in [A].
The fact that the twist in [A] coincides with ouf, w is proved in Sect. 9.
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2.6. The tensor functor and exchange matricé&e recall (in a slightly generalized
form) the setting of Sect. 3 of [EV2]. Letp be a commutative, cocommutative finitely
generated Hopf algebra such that the grdup= Specig is connected. Introduce a
category) of Ap-vector spaces as follows.

The objects of) are diagonalizablelg modules,V = @;c7V[A], V[A] = {v €
V |agv = A(ag)v}.

Let M7 be the field of meromorphic functions dhandV, W e V. Define the
space Homy(V, W) as the space Homy, (V, M7 @ W), thus a homomorphism df to
W (for finite dimensionalvV, W < V) is a meromorphic function off with values in
Hom 4, (V, W).

Define a tensor structure on the categbryNamely, let the tensor product of two
objectsV ® W be the standard tensor product of two diagonalizalglenodules. Define
the tensor produc® of two morphismsf : V — V' andg : W — W' as

&) = fP0 - @)1 @ g, (6)

wherefD( — @)L @ g u®@v=(f( — wu) ® gBvif g)v € W'pul.

Let A be a nondegenerate polarized Hopf algebra. Consider the catégdigraded
A-modules bounded from above and diagonalizable e\ugerWe construct a tensor
functor from the categor{) to the category’'.

By definition a tensor functor fron® to V is a functorF : O — V and for any
V, W € O anisomorphism/y w : F(V)® F(W) — F(V ® W) such that{Jy w} is
functorial and the two compositions(U)® F(V)Q F(W) — F(U @ V)® F(W) —
FUQVW)andF(U)Q F(V)@ FIWW) - FIU)QF(VRW) - FURV QW)
coincide. TherV is calleda tensor structure oi'.

Define a tensor functoF : O — V by sending an object € O to F(V) =V,
considered as atip-module, and sending airhomomorphisna : V. — W to F(a) =
a:V —>W.

Define a tensor structure dnby

Jvw) : FV)@ F(W) > F(VQW), (7
whereJy w (1) is defined by(1).

Lemma 17. Formula (7) defines a tensor structure of, i.e. the two compositions
FU)®F(V)@F(W) - FU® V)@F(W) - FU®V ® W) and F(U)®
FWVQFW) - FU)RF(V®W) - F(U®V ® W) coincide.

Proof. The statement of the lemma is equivalent to formdla O
Define a braiding irO by 8 = PR. Introduce
F(B): FIV)® F(W) — F(W)® F(V)
as the composition

-1
FOne Fon P rv e w) TR Fow e vy S PO F(V). (8)

Thus we have (B)y.w = ‘IVT/.lV M) Py wRlvewJv.w(X). In particular,F (8)v,w Pw.v

= JV;}V (WRPyew JZ, (1) = Rw,v (%), cf.(2). Notice thatin Theorem 14 we showed
that the R-matrixR (1) satisfies the QDYB equation; now it also follows from this tensor
category construction and Theorem 3.3 in [EV2].

The operator®y w (1) will be calledthe exchange matrices
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3. H-Hopf Algebroids

3.1. Definitions.In this section we recall the definition of ati-Hopf algebroid, cf.
[EV2]. Let H be a commutative and cocommutative Hopf algebra &ye&f = Spedd

a commutative affine algebraic group. Lt denote the field of meromorphic func-
tions onT. An H-algebra is an associative algebr& over C with 1, endowed with
anT-bigradingA = @« ger Aop (called the weight decomposition), and two algebra
embeddingsy;, u, : My — Ago (the left and the right moment maps), such that for
anya € Aqg and f € My, we have

w(f)a =aw(f(h+a), p-(fA))a=ap-(f(r+p)). 9)

Here Oe T denotes the unit element ahd+ o denotes the sum ifi.

A morphismp : A — B of two H-algebras is an algebra homomorphism, preserving
the moment maps.

Let A, B be twoH- algebras anqic, ,u, , Mz , uB their moment maps. Define their
maitrix tensor produgtA® B, which is also arH-algebra. Let

(A®B)ys := DpAap @My Bgs, (10)

where ®Mr means the usual tensor product modulo the reIaLigﬁ‘er)a ®b =

a ®M1 (f)b, foranya € A,b € B f € Mry. Introduce a multiplication iA® B

by the rule(e ® b)(a’ ® b) = aa’ ® bb'. Define the moment maps fot®B by
pBB () = 1t () ® L BB (f) = L@ uB ().

A coproducbn anH -algebraA is a homomorphism off -algebrasA : A — AQA.

Let Dy be the algebra of difference operatals — M7y, i.e. the operators of
the form)_7_,; fi(1)Tp,, where f; € My, and forg € T we denote by7g the field
automorphism oMy given by (7 f)(A) = f (A + B).

The algebraD7 is an example of af/-algebra if we define the weight decomposition
by D7 = ®(Dr)ap, Where(Dr)ag = Oif & # B,and(Dr)ae = (fM T, 1 f € Mr},
and the moment maps = u, : M7 — (Dr)oo to be the tautological isomorphism.

For any H-algebraA, the algebrasi® Dy and Dr®A are canonically isomorphic
to A. In particular, D7 is canonically isomorphic t@7®Dr. Thus the category of
H-algebras equipped with the prodigtis a monoidal category, where the unit object
is Dr.

A counit on anH-algebraA is a homomorphism off-algebras : A — Dy.

An H-bialgebroid is a H-algebraA equipped with a coassociative coprodicti.e.
such thatA ® Idg) o A = (Id4 ® A) o A, and a counit such thatle ® Id4) o A =
(ds ®€)o A =1dy.

For example D is an H-bialgebroid whereA : Dy — Dr® Dy is the canonical
isomorphism and = Id.

Let A be anH-algebra. A linear mag : A — A is calledan antiautomorphisnof
an H-algebra if it is an antiautomorphism of algebras and S = u;, w0 S = ;.
From these conditions it follows th&(Aug) = A_g,—a.

Let A be anH -bialgebroid, and lef, € be the coproduct and counit 4f Fora € A,
let

A@) =) a} ®al. (11)
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An antipodeon theH -bialgebroidA is an antiautomorphism d@f -algebrass : A —
A such that for any: € A and any presentatiafll) of A(a), one has

Y alSap) = we@), Y Saha? = pr(e(@)l),

wheree(a)l € M7y is the result of the application of the difference operatan to the
constant function 1.

An H-bialgebroid with an antipode is callesh H-Hopf algebroid.

Let W be a diagonalizablé/-module,W = @crWI[A], WA] = {w € W |aw =
Aa)w, foralla € H},andletD%’W C Homg (W, W® D7) be the space of all difference
operators orf’ with coefficients in End (W), which have weightt € T with respect
to the action off in W.

Consider the algebr@r w = @, D7 . This algebra has a weight decomposition
D7 w = ®q,8(D1,w)ap defined as follows: ig € Homg (W, W @ M7) is an operator
of weight 8 — «, theng7;;1 € (Dr.w)ap-

Define the moment maps;, u, : Mt — (D1,w)oo by the formulasu,(f (1)) =
SO, m(fR) = f(r —h),wheref(A —hw = f(L —wwif we Wul, peT.
The algebraDr w equipped with this weight decomposition and these moment maps is
an H-algebra.

Let f e Hom(W, W ® M7) andg € Hom(U, U ® Mr). Definef®g € Hom(W ®
U WRU®®Mr7r)as

f&s() = fY0 - @)1 ® g, (12)

where fO L -1 Qg ) wu = (f(h—pw) ® gM)uif gW)u € Ulul, cf.
(6).

Lemma 18 (EV2]). There is a natural embedding &f-algebrasdw v : Dr.w®Dr.u
— Dr.weu, given by the formulaf 7z ® ¢ 75 — (f®g)Ts. This embedding is an
isomorphism iW, U are finite-dimensional.

A dynamical representatioof an H-algebraA is a diagonalizablgZ-module W
endowed with a homomorphism éf-algebrasty : A — Dz w. A homomorphisrof
dynamical representatiogs: W1 — W is an element of Hog(W1, Wo ® M7) such
thaty o ww, (x) = w,(x) o g for all x € A.

Example.If A has a counit, thed hasthe trivial representationW = C, 7 = €.

If AisanH-bialgebroid,W andU are two dynamical representationsafthen the
H-moduleW ® U is a dynamical representationy g (x) = 0wy o (Tw @ my) o A(x).

If f: Wy — Wrandg : U1 — U, are homomorphisms of dynamical representations,
then so isf®g : W1 ® Uy — W» ® Us. Thus, dynamical representationsAform a
monoidal category Re@), whose identity object is the trivial representation.

If AisanH-Hopfalgebroid and’ is a dynamical representation, then one can define
the left and right dual dynamical representatidié and W* as follows, see [EV2].

If (W, rw) is a dynamical representation of &halgebraA, we denotergv A —>
Hom(W, W ® Mt) the map defined by%(x)w = aw(x)w, w € W (the difference
operatorry (x) restricted to the constant functions). It is clear that is completely
determined byry,.
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Let (W, 7w) be a dynamical representation4f Thenthe right dual representation
to W is (W*, mw+), whereW* is the H-graded dual taV, and

70 (1)) = 7H (S + h — )’ (13)

forx € Ayp, wherer denotes dualization. The left dual representatidiis (W, w«w ),
where*W = W*, and

70 ) =78 (ST + h — ) (14)

for x € Agg. Heren%(S(x))(A + h — a)' denotes the result of two operations applied
successively t@rSV(S(x)): shifting of the argument, and dualization.

Formulas(13) and(14) define dynamical representationsAfMoreover, ifA(L) :
W1 — W, is amorphism of dynamical representations, thém) := A(A+h)’ defines
morphismsW; — Wi and*W, — *Wi.

3.2. AnH -bialgebroid associated to a functigt: T — End(V ® V). In this Section
we recall a construction from [EV2] of gili-bialgebroidA g associated to a meromorphic
functionR : T — End(V ® V), whereV is a finite dimensional diagonalizablé-
module andr (1) is invertible for generia..

By definition the algebrai ; is generated by two copies 817 (embedded as sub-
algebras) and matrix elements of the operaiofs € End(V) ® Az. We denote the
elements of the first copy aff; by f(11) and of the second copy bg(12), where
f € Mz.We denotg L*1),4 the weight components @f*! with respect to the natural

T-bigrading on EndV), so that.*1 = (Lil) wher Lil € Home (V[B], VIa]) @ Ag.

Introduce the moment maps fotg by wi(f) = f(xl) w-(f) = f(x?), and
the weight decomposition by (A1), f(A?) € (Ar)oo, Leg € Home(VIB], Vie]) ®

(AR)ap-
The defining relations foA  are:
FODLap = Lap fO1 + o) FOALap = Lap fOZ+B);  (15)
LL =1L =1, [f(h. g(H)] = 0; (16)
and the dynamical Yang—Baxter relation

Here the :: sign means that the matrix element& should be put on the right of the
matrix elements oR. Thus if{v,} is ahomogeneous basis¥fandL = > E;, ® Lap,

R(M)(va ® vp) =) RS (k)vC ® vg, then(17) has the form
D Rl OMLgpLya =Y RY(GP)LeyLax,

where we sum over repeated indices. y
Define the coproduct oAg, A : Ag — AR® Ag, by

Define the counit by
€(Lap) = Supldyia) ® T, L, e (L ™Y gp) = Supldyie) ® Ta,

whereld/[o] : V] — V][a]isthe |dent|ty operator. On an antipode fog see Sect. 4.5
in [EV2].
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3.3. ArationalH -bialgebroid associated to a rational functigh: T — End(V ® V).
Assume that a functioR : T — End(V ® V) is a rational function of., whereV is a
finite dimensional diagonalizablé-module andr (1) is invertible for generia..

The H-bialgebroidAy is defined over the field of meromorphic functiok . We
replace the field of meromorphic functions; by the field of rational function€(T)
and define in the same walye rational H#-bialgebroid A,.; g associated to a rational
function R.

4. The Exchange Dynamical Quantum Groups

4.1. The definition of an exchange dynamical quantum grdugi.A be a polarized and
nondegenerate Hopf algebra as in Sect. 1. AssumdthaSpecAg is connected.

Let R € A® A be a quasitriangular structure en We always assume th& e
A0 ® A<o.

Let Op € O be a full abelian tensor subcategory which is semisimple and such that
all modules inOg are finite dimensional. (Recall that a full subcateg@yconsists of
some objects o) and for anyV, W € Op we have Honp,(V, W) = Homp(V, W).)

Let Ir C Og be the set of all irreducible modules.

Examples of such categorié€ are provided by the categories of finite dimensional
representations of semisimple Lie algebras and corresponding quantum groups ( not at
roots of unity).

The goal of this section is to define ay-Hopf algebroidE = E(Op) calledan
exchange dynamical quantum group

Define E as a vector space to be

Mr ®c My ®c E,

whereE = @ye;,UQU* andU* is the dual module to/. A T-bigrading ok is defined
bYE = @y ger En,p, WhereEy g = M7 @c Mr ®c E g pandE o g C QueirUQU™
is the subspace generated by all elements of the ficgm € Ula] Q@ (U[B)*, U € Ir.

Let C4 be the trivial A-module,C4 = Ce. The subspacé& o has a component
coming from the trivial moduleMr ® M7 ® C4 ® C’. For a meromorphic function
f(A) € My, theelementy (L) @ 1® e ® ¢* and 1® f(A) ® e ® e* will be denoted
FO1 and £ (12), respectively.

Let vl.U be a basis inJ € Ir, which is homogeneous with respect foand the
Z-grading. Then/ ® (vf)* form a basis in£ . Letw[ € T be the weight ob;’.

SetL}; = 1®1®v/ ®(v))*. Definealinearmag,;, : U — U by Efjv/ = 8;xv.
IntroduceLY € End (U) ® E by

% U 1%
LY =Y EJ®L].
ij

The relations inE betweenf (A1), £(12), andLl.Lj’. are defined by

FONFGH = FOA 0, (18)
FOHLY = LG for + o), fOAOLY =L 02 +0Y).  (19)
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In order to define the product of two elememﬁ andL}’,"j, we will consider

L3V e End (V) ® End (W) ® E.

LetU € Ir, V,W € Op and H{,, = Hom,(U,V ® W). Then we have an
isomorphismry w : ®yerrHY y ® U — V ® W given by ty w(h ® u) = h(u).

let{, : V® W — H{, ® U be the projection along the other summands,

w7y « HY  ®U — VW therestriction oty w to the isotypic componer|/ ;, ®U.

We have
T L‘f’Wt‘l,{W =d, ‘K‘L//’Wf “f’W = pu,
wherepy is the projection on thé&-isotypical component.
Define the product of elements in the exchange quantum group by a formula analagous
to the formula for the product of matrix elements of representations of a group considered
as functions on the group. Namely, define the prO(lLXFL}’,Vj, by

(LV)23(LW)13 = (J%/Z’V()\.l))_l

> (t%’v)lz(ld[{vz‘?v ® LYYz, 12U, 05 . (20)
Uelr

This is an identity in EndW) ® End (V) ® E. Here the :: sign (“normal ordering”)
means that the matrix elementsidf should be put on the right of the matrix elements
of Jy.w(Y), Jy.w(*?). Thus, if

WA =Y Bl @ B @ ajuh,

Y @wPdyy @ LY@y =) ENy @ Efp @a"i e,
Uelr '

12 2 1% w 2
vaw()\‘ ) = Z Ei/j/ ® Ek/l/ ® al{/j/k/l/()" )s
then(20) has the form
L]?]/’Ll‘;/ = Zai./kl (Al)a‘/j"j/["l/ ()\42)61"/'./'"”".

More generally, let = a; . . . a, be amonomial in generators Bf so each of the factors
has the formf (A1), f(12), orL};. Define the normal ordering: : as the product of the

same elementsy, . . ., a, in which all elements of the forni (A1), 7 (12) are put on the
left and the remaining elements of the fo[rﬁ are put on the right in the same order as
in a. Extend by linearity the normal ordering operation to all polynomials in generators
in E.If v=(v1,...,v)Iis avector whose coefficients are polynomials in generators of
E, then define the normal ordering : as: v:= (G v1:,...,: v ).

Let C4 be the trivial module. Sincéc, v = Jy c, = Idy we have

Corollary 19. The element ® 1 ® ¢ ® ¢* of E corresponding to the trivial module is
the unit element of the algebia.
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Theorem 20. E is an associative algebra.

Proof. We start with preliminary lemmas.

Lemma?2l.l. LetV’ C V be objectsirOg, thenJy wlyiegw = Jv/.w.LetW Cc W
be A-modules, thedly wlvew = Jy.w'.

II. LetV =Vi& Vo, thenJy w = Jvi,w ® Jv,w. LetW = W1 @ W, thenJy w =
Jv,wi @ Jv,w,.

. ForU e Ir, V,W,Z € Op, themapZ @ W ® V — H,, ® U ® V given by

(T lZ/’W ® Idy) Jzew.v and(IngW ®Juy) (T g’W ® Idy) coincide.
IV. The mapZ ® H%,v QU — Z® W ® V given byJz wey (Idz ® r‘%’v) and
(dz ® t ) (Jz,0)*3 coincide. In particular,JZ‘%,[,@V (dz @ty ) = (dz ®
U 113 ' '
twv) Uz )

The lemma follows from functorial properties #f Now we prove the theorem. We want
to show that

LHH@MHaHM = @H*am*HaH*. (22)
We have
RHS =:
Uy GNP Y~ @y ?0d gy @ LYPE )P0, 0H )M 1. (23)
Uelr '

First we replace {j, | )23J33, (A2)(L#)M with (L%)M(z {} | )237E3,, (A2). Consider
(dpy ® LY)3%17%)!4 as an element of the tensor product EAd ® End(H{j ) ®
End(U) ® E, then the eIemen(tIdH%y ® LY)234(12)14 takes the forn(IdH%’V)z'
(LY)34 (LZ)14 where? , 3 label these new tensor factors. Applying formg29) to
the first, third and fourth factors, we get

LH¥HLAHM= 30Ty dyy @ L) @) 1307 1
Yelr
Returning to(23) we get

RHS=: (J;;% 02 Y i ,)?
Uelr

Uz O™y @B dyy @ L) (G L)1 0HGE G )P Iiy 0% -
Yelr ’

Applying Lemma 21 we get

RHS = (J;, 5 NP7 Gy W2 Y~ (o )22 Y (g )P (dyy ® L)%

Uelr Yelr
_ - 1,23
@ DB E NPT Rey WDIEE, (0P - (24)
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Now we compute the left-hand side @?2),

LHS = > (E/D)3L!)*: (7750t Y (rgw)lz(lngW ®LY) x
ij Uelr

@Y w2 I 07 1= YED? G0 oW Y (™
i Uelr
(|ngW LYz %W)lz ]%,ZW(KZ —w)) =
U O =h )Ty (@ )ALy ®LY)E G )P I5R (1P —h®) =
Uelr

O R e B (S A O/ 0

Uelr
Y @B adyy @ LY @ )P IRy OHE Sy I 02 =) =
Yelr '

O A AV O A v el B G A
Uelr

_ - 12,3
Z W= (dyy ® LY@ )2 @S w2 5w v 02 135,02 = h®) -

Yelr
(25)

Formulas(24) and(25) and Theorem 14 imply the theorenm
Theorem 22. For V, W € Ir, we have
Ry GHLNHBAM)? = B PR (02 1, (26)

where the normal ordering sign :: as before means that the matrix elemehtstajuld
be put on the right of the matrix elementsfThus, ifLY = Y E; ® L), LY =

Y Eu® Ly, ROy = Y Ejj ® Ejf ® Riju(2), then(26) has the form
Z Rijxi (Al)Lyj/lel‘{ = Z R ()‘Z)Ll‘cal/Li‘;'
jil il
Proof.
RHS=: (L")Z(L) BRI, 02 =
PO Y @) P d gy @ LO@Y )2 155 (AR 02) 1=

Uelr
:(Jx},zw()‘l))_lz (T‘[/],W)lz(ldl-]‘[//w ® LY)(7 [J,W)lzRZlW@WPW,vPv,wfvzvl,v(/\z)I
Uelr '

SinceR?Y|yow Pw.v is an intertwiner, the last expression is equal to

(VA ON TR vew Pwv) (tip ) d gy @ LY@ G ) 2Py w Ity 02):=
Uelr '
L (T3 O IR ygw Py I3y OB LY)ZLY)BPy =

LU O T R vew Iy (DL BLY) P = LHS. o
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We proved thaf is anAp-algebra. Henc&® E is anAp-algebra. Defin@ comul-
tiplication A : E — E® E by

AfOH =roh, AfeAH =red, aah)y=w"Hra"®,
whereA (L") means that acts in the second factor.
Theorem 23. The mapA preserves the defining relations i

Proof. Relations(9) are obviously preserved. We check that relati@®) is preserved.
Compute the image under@ 1 ® A of the LHS and RHS 0f20). The elements
(1®1® A)LHS, (1® 1® A)LHS, liein W ® V ® E® E. Denoterl, A2 the A-
variables of the third factor, arid, 23 the A-variables of the fourth. We have

Uy T Y )P dgy ®© LY )P I (D) 1 x

Uelr
Uy 0T YD @y P adyy @ L@, PRI 0) (27)
Yelr

We cancel/3?, (A1) and(J37, (A3)) ! since inE® E we have a relatiotf (A1)a® b =
a® f(13)b. We replacez {j, ;, Yy, 7y With Id,u  ® Idy and use the relation
F(A®)(@®b) =a® f(A3)bin EQ E. Thus,

(1®1@A)LHS = (JiZy D)™ Y (rp )Py @ LYY

Uelr
(dgy ®LYPEE )PP 05) = 1@ 1@ ARHS O

ForV e Og, define Id/,; : V — V by ldylvie = Id and Idy,;|v, = O for
vV £ WL

Definea counite : E — Dy, where Dy is the Ag-algebra of scalar difference
operators otT'. Set

e(LV)=@uldy ® T, e(f ) = f(). (28)

Theorem 24. ¢ is a counitinE.

Proof. The relation
ERDA=(1Qe)A=Id

is obviously true.
We check that the counitpreserves the relatiaf20). We have

e(LHS) = e(LV)BULMB) = @, ldwpy ® v ® T2,

e(RHS) = (Jiy 0™ Y (@l )*?
Uelr

D (dyy ®ldupe ® T (@ i) P I3ty 02) 1 (29)
9 :
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Notice that
GBUeervL;i,deHvzév ® ldye)T %IV,V = ldwev)e)-

Returning to(29) we get

€(RHS) = : (Ji7y 0™ D Udwevye ® Ty D Jity (32 -
0

=Y ldwevin ®T; * = e(LHS).
%

The theorem is proved

4.2. The antipode itk .

Lemma25. If S : E — E is an antipode, theis(L") = (LV)~1, where(LV)"1 ¢
End(V) ® E is such that
LV 1=1dy®1and(LV) 1LY = 1dy ® 1.

Proof. The axioms of the antipode are
mo(ld® S)o A(x) = wi(e(x)-1), mo(S®Id) o A(x) = u,(e(x) - 1).
Applying the first axiom ta.” we get
LHS : LY — (L")2L")13 28 (LV)2g V)13 1 1V s(LY),

RHS : LV — Z |dV[9] ® 7;71 — ldy ® 1.
0

Thus,LV S(LY) = Idy ® 1. Similarly, applying the second axiom, we g&t." )LV =
Idy ® 1. O

ForV e Oq define operator& (1) : *V — *V andK’(A) : *V — *V by
K =m(3% ,0), K'0)=m}.,0), (30)

where’i means the dualization in thd" component(d a; ® b;))* =) a’ ® b;, and
m(a @ b) = ab. ~
If K (0) is invertible, then denot& (L) = (K (. — h))~L. Set
LY = KDHLYV (kP02 yn, (31)
LV = ¢ k'PohL kPt (32)

Theorem 26. Suppose thak or K’ is invertible for any modulé’ € Ir. ThenE
E(Op) is an Ag-Hopf algebroid with the antipod§(f(x1) = f(12), S(f(12))

fohandsLY)y =@y 1=L" = LV. Moreoverk = K'.

The theorem is proved by direct verifications.
The Ap-Hopf algebroidE (Op) will be calledthe exchange dynamical quantum group
associated to the categoyp.



Exchange Dynamical Quantum Groups 37

4.3. The two point function ank’(1). Define a bilinear fromB, v : V@ *V — C.
For homogeneous € V, v* € *V, with weightsi, + A+ # 0 setB; v (v, v*) = 0. If
Ay + Ayx = 0, then defingB, v (v, v*) by the property

I® <, >ygv)o q’f\’v* = B) v(v,v")Idyy; .

Notice that(1® <, >V®*V)oc1>§’”* is an intertwiner, hence it has the form: ConsyJd
The bilinear formB,_v is calledthe two point function

Lemma 27. B, y (v, v*) =< v, K'(A)v* >, whereK’(}) is defined in(30).

. * Jy xy (A *
Proof. Since®;"" = &;" v e ), we haveB; y (v, v*) = Y < ajv, biv* >=

<v, K’')v* >. O

Remark.Letk, n be natural numberg] the vector representation of the quantum group
U,(sly).LetV = Sk be thekn™ symmetric power of/. ThenV [0] is one dimensional
and B, v|vio) is a scalar function ok equal to the squared norm of a Macdonald
polynomial, see Theorem 2.4 in [EK].

5. Exchange Quantum Groups Associated to Simple Lie Algebras

5.1. The exchange quantum groupgg), F,(g). In this section we consider the ex-
change dynamical quantum groups associated to the category of finite dimensional rep-
resentations of simple Lie algebras and their quantum groups. We consider two types of
polarized Hopf algebras.

I. Let g be a simple Lie algebray;,i = 1,...,r, simple rootse;, fi, h; the cor-
responding Chevalley generatogs,= n, @ h & n_ the polar decomposition.
Consider the polarized Hopf algebra= U (g) with the Z-grading and polariza-
tions defined by de@;) = 1, deq f;) = —1,dedh;) =0,A, =Umy), A_ =
Um_), Ag=U(h), Aso=U(by), Aco=U(b_),whereby = h @n.. Inthis
casel = Specig = h*. Fix on A the quasitriangular structufe = 1€ A® A.

Il. Fix ¢ € C and sefy = ¢°. Assume thag is not a root of unity. Lefy be a simple Lie
algebrag;,i =1,...,r, simple rootsg = n; & h & n_ the polar decomposition.
Consider the quantum group = U, (g) with the Chevalley generatoes, f;, Kl.i1
as defined on p. 280 in [CP]. Fix #aa counite, a comultiplicatiomA, and an antipode
S as defined on p. 281 in [CP]. We consideas a polarized Hopf algebra with tie
grading and polarizations defined by deg) = 1, deg(f;) = —1, deg(K;—Ll) =0,
AL =U;my), A =U;mn_), Ao =Us(h), Axo = Uy(by), Ao = Uy(bo).

Remark.Leta;; = 2 < a;, aj > / < a;, ; > be the Cartan matrix. Lel; be coprime
positive integers such that the matt;; is symmetric. Leti; € b be the elements
such thaty; (k) = a;;. Then one can think of the generatdi:f;tl as of elements of the
form g4 see p. 281 in [CP].

ForA = U,(g), the spectrunT = SpecAg is the spectrum of the algebra of Laurent
polynomialsC[K}™, ..., KF1]. The spectrunf can be identified witth* /L, whereL
is the lattice such that its dual lattiée' is generated by elemenis;, i.e. the latticel
consists of the points, whergi" are equal to 1.

Fix on A the quasitriangular structuf® € A ® A, whereR is the universal R-maitrix
of the quantum group/, (g).
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Remark.If ¢ = 1, then sometimes we shall use the notatign.1(g) for the universal
enveloping algebrd& (g) considered above.

If A = U(g),then letOg be the category of finite dimensional modules oV/&l).
If ¢ #1andA = U,(g), then letOp(q) be the category of finite dimensional modules
over U, (g) such that all of the eigenvalues &f are integer powers af, i.e. Oo(q) is
the category of finite dimensional modules oUgK(g) which are quantizations of finite
dimensional modules df (g) wheng tends to 1.

Consider the exchange dynamical quantum grBy{do) associated to the category
0o of modules ovet/ (g) and denote if(g). The exchange dynamical quantum group
F(g) is defined over the field of meromorphic functiobs, T = h*. We replace the
field of meromorphic functiong/y by the field of rational function€(7") and define
in the same waghe rational exchange dynamical quantum grag:(Oo). We denote
the rational exchange dynamical quantum gréug).

If ¢ # 1, then consider the exchange dynamical quantum ged(q)) associated
to the categoryo(g) of modules ovet/, (g) and denote iﬁq (g). The exchange dynam-
ical quantum groug (g) is defined over the field of meromorphic functiaifs:, where
the torusT has the forn" = §*/L. We replace the field of meromorphic functiois
by the field of rational function€ (7)) and define in the same wéye rational exchange
dynamical quantum groupai(Oo(q)). The fieldC(T') can be considered as the subfield
C(T) C My of "trigonometric" functions with respect to the lattiteC h*. We denote
the rational exchange dynamical quantum gréypg).

According to Theorem 26, the exchange quantum grBug) (resp.F,(g)) has a
well defined antipode if forany € Ir C Og (resp.V € Ir C Op(q) ) the operator
K’'(A) : *V — *V is invertible for generic values df. By Lemma 4.3 this property
holds if the two point functiorB, v is a nondegenerate bilinear form for generic values
of A.

Theorem 28. For anyV € Og (resp.V € Oy(gq) for genericg) the two point function
B,v : V®*V — Cis a nondegenerate bilinear form for generic values of

Proof. For F(g) the theorem follows from the next lemma.
Recall thatB; v (v, v*) = > < a;v, bijv* > if Jy«y(X) = > a; @ b;. Letp € h*
be the half sum of positive roots.

Lemma 29. For A = U(g) and anyV, W € Og, we havely w(tp) — 1whenr € C
andr tends to infinity.

Proof. In [ES1], the intertwining operatcob? (1) was computed in terms of the Shapo-
valov form (formula (3-5) in [ES1]). From formula (3-5) in [ES1] it is easy to obtain the
following asymptotic expansion @b (1):

1

DY) = Vacwrw) @ W+ O(W),

WhereO(ﬁ) denotes terms of degree -1 and lowe#iThis implies the lemma.o
Corollary 30. B, v(, ) —<, > ast tends to infinity.

For F,(g) and|q| < 1 or|g| > 1 the theorem follows in a similar way from [ESZ2],
Sect. 2. However, in the g-case, the above lemma holds only fer+oo if |¢] < 1
and fort - —occif ¢ > 1. O
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5.2. The exchange groups arg-bialgebroids associated with R-matriceket V ¢
Ir C Og (resp.V € Ir C Op(q)). LetR(A) = Ryy(AM) : VOV — V ® V be the
R-matrix defined in(2). R is a rational function of. € T. Consider the rationad-
bialgebroidA,,; g constructed in Sect. 3.2. Recall that,, r is generated by matrix
elements of operatos™ and rational functions of®, 12 € T.

Theorem31.Forany V € Ir C Op (resp.V € Ir C Op(g) ), there exists a
unique homomorphism : A,.; g — F(g) (resp.¢ : Arur,r — F4(g)) of rational
Ao-bialgebroids such thatl ® ¢)(L) = LY. Moreover,(1® ¢)(L™Y) = (LV)1,
P(fOD) = fFOD, o(F02) = fGA).

The theorem follows from definitionso

Theorem 32. For V € Ir C Og (resp.V € Ir C Oo(q)), let V and*V generate the
tensor categon®g (resp.Oo(gq)) in the sense that any object I is a sub-object in
Ve @ (*V)®™ for suitablen, m. Then the homomorphisgis surjective.

Proof. Clearly the matrix components @ andL"" belong to the image af, since
(LY) Yis LV up to some invertible factors int, A2.

LetU e Ir andU is a sub-object iv®" @ (*V)®™" for suitablen, m. Consider the
product

(L*V)m+n,m+n+1 (L*V)n+1,m+n+l (LV)n,m+n+l (LV)l,m+n+1'

It is clear that the matrix components &f are linear combinations of the matrix
components of this product with coefficients in rational functions’ofi2. o

5.3. The exchange groups corresponding to classical Lie groupsV), SL(N), O(N),
SP(2N). In this section we modify the construction of Sect. 5.1.

Consider the Lie algebr@ (N). Lete;, f;, i =1,...,N—1,andh;,i=1,..., N,
be its standard Chevalley generators.QetG L (N)) be the category of all finite dimen-
sional modules ovegl(N) which can be integrated to a representation of the Lie group
GL(N). Consider the rational exchange dynamical quantum giup Oo(GL(N)))
associated to the categaBp(GL(N)) and denote i (GL(N)).

Fix ¢ € C and sety = ¢°. Assume thay is not a root of unity. Consider the
quantum groupA = U,(gl(N)) with the standard Chevalley generatefs f;, i =
1,...,N -1, andk, i = 1,...,N. Let Oo(GL(N), q) be the category of all
finite dimensional modules ovey, (g/(N)) which are g-deformations of finite di-
mensional modules over L(N). Consider the rational exchange dynamical quantum
group E,.:(Oo(GL(N), q)) associated to the catego€yo(GL(N), g) and denote it
F,(GL(N)).

Similarly, let G be a simple complex Lie group anglits Lie algebra. Consider the
categoryOo(G) of all finite dimensional modules oveywhich can be integrated to a
module ovelG. Consider the rational exchange dynamical quantum gEpuEOo(G))
associated to the categoBy(G) and denote it (G). If ¢ € C, g = ¢, andq is not a
root of unity, consider the quantum grodp= U, (g) and the categor{o(G, ¢) of all
finite dimensional modules ovér, (g) which are g-deformations of finite dimensional
modules ovelG. The rational exchange dynamical quantum gréip (Oo(G, ¢)) as-
sociated to the categoo(G, q) is denotedr, (G).

LetG bealiegroupoftyp&L(N), SL(N), SO(N), SP(2N) andgits Lie algebra.
Let V be the vector representation Gi(g) (resp.U,(g)). We haveV e Ir C Og(G)
(resp.V € Ir C Oo(G, q)).
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Lemma 33. V and*V generateOy(G) (resp.Oo(G, q)).

The Lemma follows from the fact that the vector representation is faithful as a represen-
tation of G.

Corollary 34. Let V be the vector representation @f(g) (resp. U,(g)), R(A) =
Ryyv(h) : V®V — V ® V the R-matrix defined if2), A,4 g the rational Ap-
bialgebroid constructed in Sect. 3.2. Then the homomorplismA,,; g — F(G)
(resp.¢ : Arqr,r — F4(G)) of Theorem 31 is an epimorphism.

Theorem 35. LetG = GL(N). Then

I. For F(G), the homomorphism : A,,; g — F(G) of Corollary 34 is injective.
Il. For F,(G), the homomorphism : A, g — F,(G) of Corollary 34 is injective for
all g except a countable set.

Proof. To prove the theorem faF (G) recall that in this casg € T = h*. Fory € C*
introduce a new variable = /y. Then, by the results of Sect. 3 in [ES1], for any
modulesV, W € O(GL(N)), we haveJy (L) = Id+y J1(A) +y2J2(A) +. ... Hence
Jy.w(h) — Idasy — 0.

Let AY F”(G) be the algebras defined by the same relationg,asg, F(G)

rat,R’
with X replaced by./y andg,, : Afm’R — FY(G) the corresponding homomorphisms.

Itis easy to see that the algebr&$, .. F°(G) are well defined,

A%, x = F(G) = C(h") ® C(h*) ® C[G]

andg, — ¢g = Id asy — 0. HereC[G] is the algebra of polynomials d@.

The algebrasAfa[,R, F7(G) and the homomorphism, are deformations of the
algebrasAfm,R, FO%(G) and the homomorphism. Elementary reasonings of the de-
formation theory imply that the homomorphigm is an isomorphism.

The theorem foiF, (G) is deduced from the theorem fér(G) by taking the limit

qg—1 0O

Now consider the case SfL(N).
ForG = GL(N), consider the exchange grolip(G). Let C € Og(G, q) be a one

dimensional module. ThehC is a 1x 1-matrix and can be considered as an element of
Fy(G).

Lemma 36. L€ is a central element itF, (G) and L€ is invertible,(L¢) = = L"C.

Proof. For anyW € O(G, q), L€ andL" satisfy the R-matrix relatioi26). In this
case the R-matri®c w (1) is a scalar constant, henté& is central. O

For F,(GL(N)), consider the one dimensional moddle= /\ZIVV overU, (gl(N)),
which is the N quantum exterior power of the vector representatiorFor generic

g, consider the isomorphisw vy : AN . F,(GL(N)) of Theorem 35. Define

rat,R
GL(N) -1 c
D e ApR by D = g7 (LO).

Consider the quantum grodfy, (s/(N)). There is a natural embedding@f (s/(N))
to U, (gl (N)) sending the Chevalley generators

ei, fi, Ki € Ug(sl(N)) 10e;, fi, kiv1/ki € Ug(gl(N)).
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LetV be the vector representation@f (s/(N)) C U, (gl(N)). Consider the correspond-
ing R-matricesRCLM () = RN (), & € Toray = (CHY and RSEM (1) =
Rf,ﬁﬂN)(A), A e Tspavyy = (CHN/C*(1, ..., 1). Any rational function on(C*)N/
C* (1, ..., 1) can be considered as a rational function(@)”" invariant with respect
to the diagonal action of*. It is easy to see that R-matrix>2(V) (1) considered as a
function onTg () coincides with the R-matriR L) (1) up to a multiplicative scalar
constant. This construction allows us to define a natural embeadifig, — AZL ¢,
Clearly, the elemenb belongs to the image of the imbedding.

Theorem 37.1. For F(SL(N)), the kernel of the epimorphismn: A°2") — F(SL(N)
of Corollary 34 is generated by the relatian = 1. ’

Il. For F,(SL(N)), the kernel of the epimorphism : A’ . F (SL(N)) of
Corollary 34 contains the ideal generated by the relatibn= 1. Moreover, the
kernel is generated by this relation for allexcept a countable set.

Proof. For F(SL(N)), clearly the kernel contains the relatiGh= 1, since forsl(N),
the modulen™ V is trivial.

Introduce (as before) the algebrad-Y)”

ek FV(SL(N)) and a homomorphism, :
SLIN)Y FY(SL(N)) depending on a parametgr € C*. It is easy to see that

Arat R
for y = 0, the homomorphism,, o : Aféft(’g)”’zo/{D =1} - FY=0(SL(N))is an

isomorphism. This statement (as before) implies the theorem.

Now letG be a Lie group of typ€ O (N) or SP(2N). LetV be the vector representa-
tion of its Lie algebray (resp.U, (g)). In this case there is an isomorphi§m *V — Vv
of g-modules (respl/, (g)-modules).

Theorem 38. Let G be a Lie group of typ€ O (N) or SP(2N). Then

I.  For F(G) and F;(G) the kernel of the epimorphism: A,., g — F(G) of Corol-
lary 34 contains the ideal generated by the relations

[ = T(l)(K(l) (}Ll))—l(L—l)tlK(l)()hz)(T(l))—l : (33)

whereK is defined in Sect. 4.2.
Il. For F(G) and F,;(G), the elemenD defined above equals 1 modyRB8) for G =
SP(2N),andis acentral grouplike element of order 2 mod#8) for G = SO (N).
lll. For F(G)andF,(G) withg outside of a countable set, the kernepa¢ generated by
relations(33) inthe case o = SP(2N),and by(33) andD = 1forG = SO(N).

Proof.
Lemma 39. Relations(33) belong to the kernel.
Proof. In fact, by Theorem 26 we have
LV = &PeH) @) HEDe?) .
SinceT : *V — V is an isomorphism, we have

ToLVTtey=L". 0o
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Let I C A,qu r be the ideal generated by relatio(®3). Consider the quotient
Arqr,r/1 and the homomorphisgn: A, r/I — F,(G). One can prove as f@ L(N)
thatthe homomorphisgis anisomorphismfaj = 1 andforgenerigif G = SP(2N),
and has kernel generated by= 1if G = SO(N).

Remark.If G = SO(N), thenitis natural to denote the quotieht,, /I by F,(O(N))

Remark.If g = 1, then in the limity — 0 we haveJ = 1. In this case relation&3)
take the form
L=TeolhL H(rtel,

which is the defining relation for the orthogonal and symplectic groups.

6. The R-Matrix Ry, y (1) for the Vector Representation ofU, (gl (N))

6.1. MatricesJy v (1) and Ry y(1). Let V.= CV be the vector representation of
A = Uy(gl(N)). Letv; = (0,...,0,1;,...,0) be the standard basis In. We have
fivj =8i jviy1, ejv; = 8iy1, jvi, wheref;, e; are the Chevalley generatorslgf((N)).
Introduce a basi&;; in End(V) by E;jvx = §v;.

The U, (gl(N))-moduleV ® V has the weight decomposition,

VROV=0Y Vi ®®ixbVa, (34)

whereV,, = Cv, ® v, andV,, = Cv, @ vp ® Cvp @ v, -
The action of the quasi-triangular structi®ec AQA onV ® V takes the form

N
quzEaa ® Ega + Z Euu ® Epp + Z(CI _q_l)Eab®Eba-
a=1 a#b a<b

Consider the maps
JAV=JyyQ): VRV >VRV, RAM=RyyR): VRV ->VRV

defined in(1) and (2). Herex € T = (C*)V,if g # 1,andr € T = CV, if g = 1.
We shall use the coordinatés= (¢*1, ..., ¢*") on (C*)" and the coordinates =
(A, ..., An) ONCYV,

Recall thatR(x) = J~1R?1y2L,

Theorem 40. 1. For F,(GL(N)), we have

-1
q9 " —4
J()\) = E Eaa ® Ehb + E qZ()na—)»b-i-b—a) _1 Eba ® Eaba
a,b

a<b
al 9 t—q
R(A\) =gq Z Ei @ Equ + Z 200 —rata—b) _ 1 Epa @ Egp
a=1 a#b q
+ D Eaa ® Eppy + (35)
a<b

(QZ()»hf)»a+a7b) _ qu)(QZ()»bf)»a+a*b) _ q2)

(qz()&b—)na-i-a—b) _ 1)2 Euu @ Epp.

a>b
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Il. For F(GL(N)), we have

1
J() ZZ Euu @ Epp + Z mEba‘@Eaby
a<b a

a,b
l 1
R(\) = E E —FE E
() Z aa @ aa+Z)Lu_)Lb+b_a ba ® Eap
a=1 a#b
+ Z Euu @ Epp (36)
a<b

M—Ag+a—-b—-—1D0Op—Ag+a—-b+1
+Z(b a YAy — A )Eaa®Ehh-

o (Ao — Aa +a—b)?
The theorem is proved by direct calculations. More precisely, the coefficients of
corresponding to simple roots (i.e. with= a + 1) are easily calculated explicitly, after
which all other coefficients are found using the classification of dynamical quantum
R-matrices of Hecke type given in [EK2].
SetRY (L) = PR()),whereP : V® V — V ® V is the permutation of factors.

Lemma4l.l. The operatorRY (1) preserves the weight decompositi@).

Il. Foranya=1,...,N,wehaveR¥(\)v, ® v; = q v, ® vg.

lll. Foranya # b, the operatorR" (1) restricted to the two dimensional spakg, has
eigenvalueg and—p, wherep = ¢ 1.

A meromorphic functionk : T — End(V ® V) with these three properties and
satisfying the dynamical Yang—Baxter equati®h is calledan R-matrix of Hecke type
with parameterg and p. We classified such R-matrices in [EV2] up to gauge transfor-
mations.

6.2. Gauge transformations of R-matrices of Hecke typensider the torug = (C*)V
with coordinates. = (¢*1, ..., ¢*¥). A multiplicativek-formon T is a collection,

@ = {@ar, (@ o g™V},

of meromorphic functions off, whereay, . . ., a; run through alk element subsets of
{1,..., N}, such that for any subset, ..., a; and anyi, 1 <i < k, we have

A A A A
Pay,...,a;11,4;,..., ak(q 1’ - q N)(pal ..... ak(q 1a e q N) =1

Let QF be the set of all multiplicativé-forms.
If ¢ andyr are multiplicativek-forms, then

(Qarar @ @) - Var, (@ g™))

and
@ar,oan @ @) [V, (@7 @)

are multiplicativet-forms. This gives an abelian group structur&dnThe zero element
in QK is the form{g,, ... 4, (¢, ..., ¢"V) = 1}.
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Foranya = 1,...., N, introduce an endomorphisép of the multiplicative group
of nonzero meromorphic function&g’t, ..., ¢*~)onT by
f(q)"j-? AR q)\N)

8a  f(@M, .. g™ >

flgh,....q*/q,...,q*N)
and a homomorphisah : Q¥ — QK1 ¢ > dg, by

k+1
i=1

We haved? = 0 (0 means the trivial homomorphism which maps everything to the zero
element). A multiplicative fornp is calledclosedif dgp = 0.
Introduce gauge transformations of R-matrides, 7 — End(V ® V), of the form

N
R = Zaaa (M) Egq ® Egq + Zaab(k) Eua ® Epp
a=1 a#b (37)

+ Y Bab(W)Epa ® Eap,
a#b

wherea,;, (1), Bap(A) are suitable functions.

I. Let{gp.} be a meromorphic closed multiplicative 2-form @nSet

N
R(G) = Y aaM) Eaa ® Eaa + Y 9ab (M) dap(X) Eaa ® Epp
a=1 a#b
+ Z Bab(X) Epa @ Eap.
a#b

II. Letthe symmetric groufy , the Weyl group of/y, actonT andV by permutation
of coordinates. For any permutatienc Sy, set

RM) — (6®0)Re -0 tee™.

lll. For a nonzero complex numbery set

R(X) = cR().

IV. Foranelemeni € T, set
R(A) = R + w),

(recall that we always use the additive notation for the standard group structure on
7).
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By Theorem 1.1 in [EV2] any gauge transformation transforms a matrix satisfying
the QDYB (5) to a matrix satisfying the QDYR5). In all cases, if the R-matrix is of
Hecke type, then the transformed matrix is of Hecke type. If the transformation is of type
[Il and the Hecke parameters of the R-matrix ar@nd p, then the Hecke parameters of
the transformed matrix arg; andcp. For all other types of transformations the Hecke
parameters do not change.

Two R-matrices will be callethtionally equivalentf one of them can be transformed
into another by a sequence of gauge transformations of types II-IV and of type | with
only rational functiong,; ().

The R-matrices of Hecke type were classified in [EV2] up to gauge transformations.
Here are two main examples of that classification.

Examples.l. Forg # 1, let the R-matrixR? : (C*)N — V ® V have the form37),
where

g -1
Par) = a1

oga = 1andag,(A) = Bap(X) + g2 fora # b. R1()) is an R-matrix of Hecke type
with parameterg andp = ¢~ 1.
Il. Forg = 1, let the R-matrixk : CV — V ® V have the form37), where
1
Aa — Ap
dqq = 1 andogy () = Bap(X) + 1 fora # b. R(A) is an R-matrix of Hecke type
with parameterg = p = 1.

ﬁab ()‘) =

’

Lemma 42. 1. TheR-matrixk (1) in (35) is rationally equivalent to the R-matri? (1)
of the first example.

II. The R-matrixR (1) in (36) is rationally equivalent to the R-matri® (1) of the second
example.

Proof. To transformR? (1) to the R-matrix in(35) one needs to make the gauge trans-
formation of type IV withu equal to the half sum of positive roots, then the gauge
transformation of type Il withe = ¢, and finally, the gauge transformation of type |
corresponding to the closed multiplicative 2-fogg, (1), where

2(hg—rp+a—b—1) __ 1

Vap(A) = ¢q 200 — 1 fora > b (38)

andy,; (1) fora < b arereconstructed from the multiplicative "skew symmetry" relation
opa M eap(A) = 1. The second statement of the lemma is proved analogously.

6.3. Gauge transformations d@fy-bialgebroids corresponding to R-matricebor g #
1,letR, R : (CYHNY — V ® V be two R-matrices having the for87). Consider
the Lie algebrag/(N) and its Cartan subalgebia generated by elements. Con-
sider the polarized algebr& = U, (g/(N)) with the earlier distinguished polarization
Ay, Ag = Uy(h). LetAg andA; be theAg = U, (h)-bialgebroids associated and

R, respectively, and constructed in Sect. 3.2. Assume that the R-niatsxobtained
from the R-matrixR by a gauge transformation of type I, lll, or IV, then clearly the
Ap-bialgebroidsA g andA 5 are isomorphic.
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Theorem 43. Assume that the R-matrik is obtained from the R-matriR by a gauge
transformation of type | associated to a multiplicative 2-fdkpp, (1)} which is exact,
{papr (M)} = d {£,(V)}, where{g, (X))} isamultiplicative 1-form. Then th&g-bialgebroids
Agr and A ; are isomorphic.

Proof. Leté = ) &, E,,. If L satisfies the QDYB equatiofi7), andL is such that
L=Y0HLEDeH) ™,

thenL satisfies
RlZ(Al)ZBLZB = L23il31§12()\2) .
where
R = ED 0.~ h) HED 0N TTRWED MED G~ h D).

This means that iR (1) has the forn{37), thenR (1) is obtained fromR (1) by the gauge
transformation of type | corresponding to the 2-fofm, (M)} = d {&,(V)}. O

Notice that the multiplicative 2-form given b§88) is exact,{p.»,(A)} = d {£,(V)},

where
G =TT a7 (gPFetorert=b 1),

b<a

Hence the corresponding bialgebroids are isomorphic.

7. Elements of Representation Theory of Exchange Groupk, (G)

7.1. A construction of representationket G be a simple group ang its Lie algebra.
Consider an exchange grodp = F,(G).

A dynamical representatiomy : F, — Dr w is calledrational if the image of
w consists of difference operators with rational coefficients. A homomorphism of
dynamical representations: Wi — W is calledrational if the matrix elements of
are rational functions.

Denote Rep ¢ (F,) the tensor category of rational finite dimensional (dynamical)
representations af, and rational morphisms between the representations.

Let W € Oo(G, q). Define a rational dynamical representationfgfon W. Recall
that a rational dynamical representation is a diagonalizagle= U, (h)-module W
and a homomorphism odo-algebrasty : F, — Dr w such that the image of the
homomorphism consists of difference operators with rational coefficients. We consider
W e Oo(G, q) with the Ag-module structure induced by, (h) C U,(g) and define
Tw by

aw(fOh) = ), mw(f (%) = f(r—h), (39)
A rd)LYYRN) = Ry.w(h), (40)
foranyV e Ir C Op(G, q).

Recall that for a dynamical representatiop : F, — D7 w,0ne definesamapg, :
F, — End(W, W ® Mr) as explained in Sect. 3.1 and this map uniquely determines

Tw.

Theorem 44. Formulas(39) and (40) define a structure of a rational dynamical repre-
sentation ofF;, on W.
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The theorem follows from definitions.

Define a functorF’ from the category)o (G, ¢) of finite dimensional modules over
U, (g) (defined in Sect. 5.3) to the categaryp 1 (F,;) sending an objedV € Oy(G, q)
to (W, mw) and sending a morphism: W — U to the same linear map: W — U.

Theorem 45. I.  This construction defines a tensor functorOo(G, g) — Rep s (F;)
with a tensor structure

Jw,u : FW)®FU) — F(W ®U),

whereJw y is defined in(1).

Il. For genericg the magHom o, (G,¢) (W, U) — HOM gep (£, (F (W), F(U)) defined
by F is an isomorphism. Thug; defines a tensor equivalence@§(G, ¢) onto a
full subcategory oRep ¢ (F).

Remark 1.In the next paper we plan to show tifais an equivalence of categories, i.e.
that any object oRep ¢ (F,) is in the image of.

Remark 2.We see that the representation categor§aiG) is essentially the same as

for U, (g). A similar result was obtained in [BBB], where itis shown that the quasi-Hopf
algebra associated to the dynamical R-matrix is twist equivaldnitg) (for g = s1(2)).

These two results are closely related, because as follows from [Xu], representation theory
of the Hopf algebroid7, (G) is tautologically equivalent to representation theory of the
corresponding quasi-Hopf algebra.

Remark 3.Theorem 45 raises a question: why is it interesting to study dynamical quan-
tum groups if they have the same representation theory as the usual ones? In our opinion,
it is interesting to study not only tensor categories but also their realizations (e.g. tensor
functors on them to other tensor categories), which contain extra structure. In particular,
F,(G) andU,(G) correspond to two different realizations of the same tensor category.

In other words, dynamical quantum groups do not provide new tensor categories, but do
provide new realizations of already known tensor categories.

Now let us prove the theorem. The first part of the theorem is trivial. The second part
of the theorem is proved in Sect. 7.4. In order to prove the second part we first prove

that any rational morphisrb : F(W) — F(U) does not depend ahand then show
that there exista € Hom o, (g,¢)(W, U) such thab = F(a).

7.2. Rational morphismsLet W € Og(G, g). Letmy, ng, be representation maps. By
definition

ALY = Ry.w®) = T, 5 WORP vew JGHy (V).

Letv) be a homogeneous basisf andv} be the highest weight vector. Lat))*
be the dual basis. Consider the matrix elerri%?,ﬂw (1) € End(W) defined by

< ¥ RPy(Mx >=< (v9)* ® y*, Rv.w (M) vy ® x >,

wherex € V, y* € V*.
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Lemma 46. R?,?W (1) is a nonzero scalar operator on each weight subspéi¢e], o <
T, of W. Moreover, the value of the scalar is determinedsgnd does not depend on
w.

Proof. We have

< (W) ® y*, Iy OORP yew gt () vy @ x >=

< Uy " ) @ y* . R¥Yvew JGHy () vy ®x > . (41)

Sincedeg/ =0andJ =1+ Y ¢; ® b;, dega; < 0, we have/?! = 1+ b ® a;
and(J bH* =1+ > ¢; ® d;, where deg; < 0. Continuing(41), we get

< ¥ Ry Vx > = < (00)* ® y*, R vew vy @ x >

= < R?%Yvew)* §) @ y*, vy @x > .

It is well known that the operatafR?!|ygw)* has the formRoQ, whereRg = 1+
(a strictly upper triangular element iti, (m )®U,(n_)) and Q € U,(h)QU,(h).
Hence,

< (R21|V®W)* (vg)* Q y*, vg Qx >=<Q (vc‘,/)* ® y*, Uc‘)/ Rx >.
This proves the lemmano

Lemma 47. Leta(r) : F(W) — F(U) be an intertwining operator, thes(i) does not
depend ori..

Proof. We haveRr)%,, = n{, (L), whereL(, is the matrix component of " cor-

responding to the highest weight vectgf. Hence,rw (L) = R?,OW%‘[%UV), where
’ 0

wt (vy) is the weight ofv] .

The intertwining operator has to satisfy)) o nW(L(‘)’O) = nW(L(‘)’O) oa()). Hence,
a) =a(lr — wt(v(‘)/)) foranyV € Ir C Oo(G, gq). Sincea(2) is rational, this means
thata()) does not depend on O

7.3. Asymptotics afy w(A) and Ry w (). First assume thaj = 1 andA = U(g).
ConsiderJy w()). Change variables — A/y, wherey € C*. ThenJy w(x/y) has
the form

TvwO/y) =1+ vjvw) + 0G>).
To describgy w (A) we fix notations. Namely, we fix an invariant nondegenerate bilinear
form (-, -) on g. The bilinear form identifiegy and g*. For any positive rootr, fix

generatorg, € gq, fo € 9—o, SUCh thath, = [ey, fi] has the property hy, A >=
(a, 2) forall & € b*.

Theorem 48. We havejy w (L) = j(A)|vew, Wherej (1) € n_ @ ny and
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Corollary 49. Forg = 1andA = U(g), we have

z:ft)(@ea 1
JVyW(M@U)):M@U)— (}L’()[) M®U)+0(W),
a>0
fot®ea_ea®fa l
R = O(—s).
vow (U ® w) u®w+a§>o o u®w+ 03

Proof of the theoremLet w € W. Consider the intertwining operatdry : M; —

My —wiw) @ W. Letv, € M) be the highest weight vector (we wrile, for M{). It
follows from [ES1], Sect. 3 that

1

1
) fotv)\—wt(w) Q eqw + O(W)

Qi = Vi—wr(w) @ W — Z
a>0

Now computing the leading term of the compositidf ®¥v, we conclude that

wt(w)

Jo ® ey
A, @)

Jvww@w) =u®@w — Y ®u+0(—)
u w)=1u w — u w -—5)-
o a>0 |)\|2

This proves the theoremno

Letg # 1,A = U,(g) andr =dim §. It is well known thatR e A®A has the form
R = RoQ, WhereQ € U, (h)®U, (h) is a suitable invertible element, afith = 1+
(a strictly upper triangular element i, (n4)®U, (n_)).

Theorem 50. For |g| < 1andA = U,(g),

. Jy.w) — 1, whenr e T = (C*)" tends to infinity along the positive alcove, and
Jv.w(A) — R2%, whenx tends to infinity along the negative alcove.

Il. Ry.w(2) — R?L, whem tends to infinity along the positive alcove, aRg y (1) —
QR Q~1, whenx tends to infinity along the negative alcove.

Proof. It is clear that statement Il follows from I. The first statement of | follows
from [ES2], Sect. 2, as explained in the proof of Theorem 28. So it remains to prove the
second statement of .

It follows from Proposition 19.3.7 in [L] that the asymptotics of the Shapovalov form
onM, = U,(wm_) for A tending tooo in the negative alcove equals to the Drinfeld form
onU,(n_) (i.e. the form which defines an injective map of Hopf algel#faéb | ) to its
dual). This fact together with the explicit formula for the intertwining operator via the
Shapovalov form ([ES2], Sect. 2) implies the second statement af I.

7.4. Proof of part Il of Theorem 45First assume thay = 1 andA = U(g). Let
W,U € Op(G) andb € HOM gep ,(F,) (F (W), F(U)). Recall thath € Endc (W, U)
does not depend onby Lemma 47.

Lemma 51. The linear operatob commutes with the action of elemeads f, where
« is any positive root.

Corollary 52. b € Hom o, (g,q)(W, U).
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The corollary implies part Il of Theorem 45 fgr= 1.

Proof of the lemmaWe prove the lemma foW = U. For W # U, the proof is
similar. For anyV e Ir C Op(G), we have[l ® b, Ry w(r)] = 0. Hence[1 ® b,
(Ry,.w(x) — D)|r|]] = 0. Settingh = rAg and taking the limit — oo, we get

Z Ja ®1b,eq] — ey ® D, fol
(*, 0)

=0.

a>0

Since there exist¥ such that the linear operatatg|y, f,|v are linear independent in
Endc(V), we get the lemma.o

Part Il of Theorem 45 fofg| < 1 follows similarly from Theorem 50. Namely, from
Theorem 50 we get that any intertwining operatonust commute with all elements of
the form(f ® 1)(R?Y) and(f ® (QRQ™Y) (f € U,(g)*), which obviously generate
U,(g). (Here ifX = > a; ® b; then(f ® 1)(X) denotes) _ f(a;)b;.) Thus,b has to
commute withU, (g), Q.E.D.

For|g| > 1, the proof is analogous.

8. Appendix: Fusion Matrices and 6j-Symbols

In this appendix we discuss the relationship between fusion matrices introduced in
Sect. 2, and 6j-symbols, for the Lie algebté&?). For quantum/(2), the relationship is
the same.

Recall the definition of 6j-symbols (see e.g. [CFS], p. 29).Xgta € Z,. /2, be the
irreducible representation ef(2) with spina. Let v, be the highest weight vector of
Va, andug, = f"v,. Lete? : V, — V, ® V, be the intertwiner such that‘v, =
Vb ® Vebtc—a + [.0.t. (here l.o.t. is “lower order terms”).The 6j-symbol is defined by

the formula
i b
Lo =) (Z X ';) (" ® Dy,
n

The 6j-symbols not defined in this way are defined to be zero.

Remark.Our definition coincides with the standard one only up to normalization.
Namely, it is more common to use a different normalization of the operaf6rsvhich
results in a different normalization of the 6j-symbols.

Now defineJp.(1) = Jy,v.(1). The next proposition, which gives a connection
between fusion matrices and 6j-symbols, follows easily from the definitions.

Proposition 53. For anyk € Z. /2, one has

Z <i i 7]1) (Vb,b—n+a ® Ve,c—k+n) = Jbzl(k)(/’?cvj,jkara-
n

Thus Jy (k) is the unique rational function df which satisfies the above equation
fork e Z4/2.

It is easy to check that under this correspondence, the 2-cocycle conditidwor
corresponds to the Elliott-Biedenharn identity for 6j-symbols [CFS] (known to mathe-
maticians as the Maclane pentagon relation). The dynamical Yang—Baxter equation for
R(}) = J~1(0)J% (1) corresponds to the star-triangle relation.
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9. Appendix: Recursive Relations for Fusion Matrices

In [A], the authors defined fusion matrices as unigue solutions of certain linear equations,
and checked that they satisfy the 2-cocycle condition. In this appendix, we will show
that our fusion matrices satisfy the same linear equations, which implies that they are
the same fusion matrices as in [A].

We will use a finite-dimensional version of the qguantum Knizhnik-Zamolodchikov
equations, which were deduced by Frenkel and Reshetikhin for guantum affine algebras.
Consider the functiow,,,,(A) € End(W ® V) given by

Wy (W) 1= Jwy (W (w @ v) =< (¥}, @ 1P} >,

where the notatior:, > was defined in Sect. 2.4. It follows from a finite dimensional
degeneration of the Frenkel-Reshetikhin theorem (Theorem 10.3.1 in [EFK]) that this
function satisfies the following version of the quantum Knizhnik-Zamolodchikov equa-
tions:

G20, (1) = R (L@ g7 20wy, ().

This implies that
2 s _ 2
Twv(M)(A® g?TP7L) = R g~ LN®N (1@ g?HTATL ) Ty ().

It is easy to see that the last equation is (up to simple changes of variable) the same as
relation (18) in [A].

A similar computation is valid for an arbitrary quantized Kac—Moody algebra. This
computation yields the linear relation f@rdiscussed in [JKOS].

AcknowledgementsWe are grateful to the referee for several interesting questions, the answers to which have
enriched the paper.
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