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Abstract: We show that the weak detonation waves for a combustion model of Rosales—
Majda are nonlinearly stable. Because of the strongly nonlinear nature of the wave, usual
stability analysis of weakly nonlinear nature does not apply. The chemical switch on-off

is the main feature of nonlinearity. In particular, the propagation of the wave depends
sensitively on the tail behaviour of the flow in front of it. Unlike the strong detonation
waves, a weak detonation is supersonic and there is the separation of the gas waves from
the reacting front. As a consequence, the reacting front needs to be traced.

Contents
1. Introduction . . . . . . . . . 552
2. Structure of Weak Detonation Profiles . . . . . . ... ... ... ..... 553
2.1 Constructionofthe profiles . . . . ... ... ... ... .. ...... 554
2.2 Hypothesisontheprofiles. . . . . .. .. ... ... ... ... ... 556
2.3 Explicit profiles for model with linearflux . . . . .. ... ... .. .. 558
3. Evolution EquationsandWave Fronts . . . . . ... ... ... ...... 559
4. Stability Analysis I: Linear FluxModel. . . . . .. .. ... ... ...... 561
4.1 Initial step: upper bounds of thewave fronts . . . . . ... ... ... 561
4.2 Initial step: rate of the wavefronts . . . . . . .. .. ... ... .... 564
4.3 Initial step: waves carried by detonation wave fronts. . . . . ... .. 569
4.4 Pointwise convergence to viscous profiles. . . . . . .. ... L. 573
5. Stability Analysis II: Nonlinear Flux . . . . .. ... ... .. ........ 577
5.1 Nonlinear fronttracking . . . . . . .. ... ... ... .. ... ... 578
5.2 Updatewavefront . . . . . . .. ... ... ... .. 580
6. Remarks. . . . . . . . 583
T.OApPPENdiX. . ... 584

* The research supported in part by NSF Grant DMS-9803323.
** The research supported in part by NSF Grant DMS-9706827.



552 T.-P. Liu, S.-H. Yu

1. Introduction

Consider the combustion model, Rosales—Majda [15],

ur + (f(u) — gz)x = Uy,
{z; =K ¢¥u) z, (1.1)

whereu represents the lumped gas variable atite density of the reactant. The unburnt
state iy = 1 and the burnt state= 0. The positive constantsandK are the released
energy and the reaction rate, respectively. We assume that there is an ignition temperature
T* so that the reaction functiofi(u) is given by

lifu>T*

(e {o ifu < T*. (2.2)

To model the detonation waves, the flux functipa:) is assumed to satisfy
f" ) >0, f'(u) > 0forallu under consideration. (1.3)

Our purpose is to study the nonlinear stability of weak detonation waves. The detona-
tion waves are travelling waves, z)(x, r) = (0, Z)(x — st) of the model. We consider
the perturbation of the wave:

lim, o0 z(x, 1) =1,

im0 z(x, 1) =0,

u(x,0) = ug(x), with

limy oo uo(x) = ug, limy, uo(x) =ur.

The flow is unburnt in front of the wave and burnt behind:it, < T* < uy. System

(1.1) is derived from the reactive Navier-Stokes equations to model the acoustic mode
of the flow under the limit of low Mach number. For combustion waves for the reactive
Navier Stokes equations, see [2].

There are two types of detonation waves, the strong and weak detonations.A strong
detonation satisfies the same entropy condition as a gas dynamic shock in that it is
supersonic (or subsonic) with respect to the flow in front of (or behind) it. Its stability can
be shown by the same technique as that for the viscous conservation laws, [7,9,5,6]. The
weak detonation is supersonic with respect to both sides of the wave. This is the classical
inviscid Chapman-Jouget theory, [1]. The weak detonation waves are not inviscid waves
and depend on the dissipation parameters. This is the general phenomena for waves which
are either overcompressive, such as intermediate MHD waves, or undercompressive,
such weak detonation waves, cf. [8]. This has two basic implications. A perturbation
produces a gas wave leaving the combustion wave. The one conservation law can not
determine both the location of the detonation wave and the amount of gas wave. Thus
the weak detonation wave needs to be traced. The situation is similar to the interaction of
shock waves with either the boundary, [10,14], or with other nonlinear waves, [17], see
also [11], and [12] on discrete waves. In the study of weak detonation waves in Sect. 2,
we fix all physical variables except for the ignition temperatitewhich is allowed to
vary. This is done for convenience and is equivalent to the usual practice of varying the
energy release, cf. [15].

One thing distinguishes the weak detonation wave is that it generates strongly nonlin-
ear effects. For instance, there is a sensitive dependence of the propagation of the wave
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on the perturbation in front of it. These factors demand new techniques for the stability
analysis. The tracing of the wave requires exact analysis of the chemical nonlinearity,
which is done using the Laplace—Fourier transform.

The paper by Szepessy, [16] also studies the problem of stability of weak detonation
waves. We have adopted his definition of detonation wave fe@ntby u(y (¢),t) =
T*, [16]. The derivation of the integral equation for the wave front in Sect. 3 is also
motivated by the paper. On the other hand, [16] does not require the second condition
in (1.3) and, as a consequence, the strength of the detonation wave can be assumed to
be small. The gas nonlinearit§(u) = u? is emphasized in [16] and is taken care of
through the Hopf-Cole transformation.

A strong detonation, the so-called ZND wave, [1], is a gas dynamic shock followed
by a reacting zone. The shock raises the gas temperature through compression and
thereby sets up the chemical reaction. Thus its stability mechanism is similar to that
of the gas shocks. A weak detonation, on the other hand, runs ahead of the gas waves
and decouples from them. Thus the nonlinearity of a weak detonation wave is mainly
the chemical nonlinearity. To focus on this, we consider in Sect. 4 the simplified model
with linear flux, f”(«) = 0. This is the main part of the present paper. The study of
the general situationf”(u) > 0, requires an iteration scheme to take care of the gas
nonlinearity and is done in Sect. 5.

Consistent with the derivation of the model (1.1), we require the strong seperation of
the detonation frontand the gas waves s— f'(T*) large. The other main assumptionis
that both the reaction rat€ anda /K are large. The precise assumptions, Assumptions
2.1 to 2.7, are listed in Sect. 2. These assumption are verified either numerically for
convex flux in Sect. 2, or analytically for linear flux in Sect. 4. Under these assumptions,
we have the following main theorem:

Theorem 1.1. Suppose that the perturbation of a weak detonation waye) =
u(x, 0) — U(x) is sufficiently small:

vo € CL(R) N Lip?(R),
18l vo(x)| < Sl e*8 fori =0,1,2

for a constants satisfyingd < «~°. Then the solution of (1.1) tends to a translation
y (r) of the detonation wave as timéends to infinity:

_ —Ct ~Clx—si—y ()] 1 _eseon?
u(x,t) —U(x —st —y@)) = O(L)sle et —stvl L _—__ 7 awD |,

Ji+1
for some positive constan€sand A; and y (¢) tends to its limit exponentially fast.

Note that the convergence is at the exponential rate, except for the algebraic rate of
(t + 1)~Y/2 along the gas acoustic directien= 1’ (u)r.

2. Structure of Weak Detonation Profiles

It follows from the system (1.1) that the end states and the speeds of a detonation wave
satisfies thd&kankine—Hugoniot condition:

SZf(“L)_f(”R)+q

Up —URr

(2.1)
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y—=fup)=s@—up—q)

uR::u+ Uy =u— up =u
fur)—q

It is clear that we have

Lemma 2.1. Suppose thatz ands > 0 are given such that
s> f(ug) >0

as well as that
" >0.

Then,u; in (2.1) has two solution&:_, u~} withu_ < u™.

Letu, = ug be given asin Lemma 2.1. The shagk -, 0), (#4, 1)) is supersonic:
s> flu) > f'(uy) >0

and is called a weak detonation wave. The wave , 0), (14, 1)) satisfies the usual
gas dynamics entropy condition:

flw™) >s> f(uy),

and is called a strong detonation wave.

2.1. Construction of the profilesSo far we have studied the far field states of the
combustion waves. For the actual existence and structure of these waves we need to
study the ODE obtained from (1.1) when the solution is a travelling waye) (x, t) =
(@, 2)(x — s1):
—s@—u_)+ fu) — f(u-) — gz =10y,
Ky (u)z =z,
Iimx%oo(ﬂ, 2)(x) = (quv D),
lim,— (0, 2)(x) = (u_, 0),

Y) =H@u—T%),

2.2)
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where, for definiteness, we have made the normalization

a0 =T%,
andH is the Heaveside function:
Oifu <0,
Hw) = { 1 else.

Lemma 2.2. For anys anduy = ug given in Lemma 2.1, there is a uniqu& e
(u4+, u—) such that (2.2) has a monotone solution.

Proof. Consider the following dynamical system:

X=—-s(X—u )+ f(X)— fu_)—qY,
Y = K7, (2.3)
lim;— oo (X, YV)(t) = (u—,0).

Y
r+
(uy, 1) (T*, 1)
y=1
F(X,Y)=0
X
(u—,0)

The stateu _, 0) is a fixed point of this dynamical system. At this point the dynamical
system has a one-dimensional unstable manifoldet ' be the branch with positive
Y component. Set
It = {((I@), T20)) : t € R).

From the second equation of (2.8)F can be normalized such that
Io(t) = X,

Hence 't will intersecty = 1.
Set
FX,Y)=—-sX—-u_)+ f(X)— f(u-) — qY.

The setF = 0 contains(uy, 1) and (u_, 0). From the phase diagram ¢X, Y), it
follows thatF = 0 never intersect8* in ¥ > 0. Thus,I' T is to the right ofF = 0 and
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I'1(¢) is a monotone decreasing function. Hencg(0) < u_ and(I'1(0), 1) is to the
right of F = 0 and so

'10) € (ug,u_).

The profiles(t, z)(x) and(I'1(x), ¢X¥) are identical forc < 0. Set
T* = I'1(0).

From this choice of"*, the solution(d, 2)(x) for x > 0isz(x) = 1 andi(x) = X (x)
solving

—s(X —u_) + f(X) = flu-) —q = X,
X)) =T*
Clearly, X (¢) is a strictly monotone decreasing function with

im X)) =uy. O
—00

The ignition temperatur&™ is a function depending o, u, s, ¢, andK . With
the additional constraint of the Rankine—Hugoniot condition, we have

T" =T"(uy,s,q, K). (2.4)

2.2. Hypothesis on the profiled.et (0, Z)(x — st) be the normalized weak detonation
profile andx the separation of the combustion and the gas speeds:

a=s— f(TY.
For our stability analysis we need the following hypotheses on the combustion wave.
Assumption 2.3. Assume that the following holds far

gK

= G6.0a "

o),

where the bound (1) is independent of the parameters involved.
Assumption 2.4. Assume that the gradient efu, (0) is sufficiently large.

Note. Wheng, «/K > 1, the quantityd, (0)| is proportional tdu_ —u 4 |K . Thus, this
hypothesis is a consequence of assunkng> 1. About Assumption 2.3 the quantity

0 can not be made arbitrarily small by arranging the values.qfs, ¢, andK. This

will be illustrated by a simplified model in the next subsection. For now we show by
numerics that both Assumption 2.3 and Assumption 2.4 can be satisfied, by calculating
the valueQ for the flux function

f(u) = u?.
The normalized profil@ satisfies

Oy = 2(0 — u_) + (0 — u_)? — ge¥* for x < 0. (2.5)
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By repeating Picard iteration eight times, we have the following approximate values for
T*, 0y, andQ with given (x4, u_) and varying(g, K):

Uy uU— K q K T* U, (0) o (0]

1 2 103 100 1 1.0097 -0.98 100.98 1.0097
1 2 53 50 1 1.0189 -0.96 50.96 1.0189
1 2 28 25 1 1.0358 —0.931 25.92 1.036
1 2 155 125 1 1.0653 -0.88 13.37 1.0661
1 2 103 100 2 1.0192 -1.94 100.96 1.0194
1 2 103 100 4 1.0378 —3.81 100.92 1.04
1 2 103 100 8 1.0729 -7.36 100.85 1.08
1 2 103 100 16 1.1361 —13.73 100.72 1.16

Thevariablesu ., s, ¢, K) inthe above table are the basic variables which determine
uniquely the other variables in the table. Wikh ¢, andu . fixed one can vary such
thatK /a <« 1. One has the following analytic properties of the resulted viscous shock
profile G.

Lemma 2.5. WithK > 0,¢ > 0, andu given, there exist§(K, ¢, uy) > 0such that
for anys > S(K, ¢, uy) the following holds fox > O:

T* —ur(x)  S(K,q,uy)
< s
U_ —uy o

0<

|Ty (0)[e=—F @wDlxl

5 < —0,(x) < 2|0y (0) e,

and forx <0
0 < —0,(x).

See the Appendix for the proof.
To handle the chemical nonlinearity, we pose the following hypothesis:

Assumption 2.6. Assume that
16
o

— > 1

U (0)]

o

—>1

X >
On interaction between the fluid nonlinearity and chemical nonlinearity, the following
assumption is required.

Assumption 2.7. Assume that
K> 1
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2.3. Explicit profiles for model with linear fluxConsider a simplified system with linear
flux

Ur+muy — q2x = Uxx,
{zx = Ky (w2, (26)

u_ >uy, s>m>0,

g=—m)u- —uy).

From the analysis of the profiles in the last section it is easy to see that

T*Eu_—L,
K+s—m

T*—M+=—K(u__u+).
K+s—m

Let (4, 2)(x — st) be the travelling wave solution of (2.6), which connegis_, 0),
(uy,1):

0, = (m —5)(@—u_) — g2,
{zx = Ky (@2 (2.7)

lim,_ (0, 2)(x) = (uq, D),
limy— (0, 2)(x) = (u—, 0).

As before, we make the normalization:

{2 =1 @8)
From the monotonicity of the profile we have
(G(x) —T*)x < Oforx #0. (2.9)
From (2.8) and (2.9),
B 1forx >0,
20 = {eK" forx <O0. (2-10)
Substitute (2.10) into (2.7), we obtain
Uy = (m —s)(@—u_) —qgeX* forx < 0. (2.11)

From (2.8) and (2.11) we have
qux

—forx <0.
s—m+K

Ux)=u_ —

The profile forx > 0 is trivial as in the last section. For this simplified model
o =5—m.
Furthermore, from (2.11) we have

K (m—s)u-—uy)
s—m+ K

Uy (0) = <0.
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10 0)|e
_ gqs—m+K) a+K
T -m2u_ —up) @

Therefore Assumption 2.3 is satisfied under a weak version of Assumption 2.6:
o= 0(DK.

3. Evolution Equations and Wave Fronts

For a small perturbation of a weak detonation wave, the soluti@ns) assumes the
value of the ignition temperature only at one location for each given time and the wave
front y (¢) + st is well-defined by:

u(y(t) +st,t)=T".

Without loss of generality, we assume that

With the change of coordinates:
X — X + St,
t—t,

the system (1.1) becomes

ur — Sy + fU)y = uxy +qzx, (3.1)
7y = K¢ (u)z.
Expandf (u) atT*:
No(u) = f(u) — f(T*) — f/(T"Ywu—T"),
a=s— fI(T.
Substitute this into (3.1):
U — Uy — Uxx = (qIx — No(u)y,
{zx = Y wK:. (32)
The perturbation
vix,t) =u(x,t) — U(x)
of the weak detonation satisfies
Vf — & Uy — Uy = q(2 — 2)x — N1()s, (3-3)

Ni(v) = Na(v +0) — N2(D).
The Green function for the left-hand side of (3.3) is the heat kernel

_ @-y+a—0)?
e 4(t—0)

k(x—y—f-ot(t—a),t—a):m.
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By Duhamel’s principle,

v(x,t)=/k(x—y—i—ott,t)v(y,O)dy (3.4)
R
t

+q/ fk(x—y+a(r—o),r—a)<z—2)ydydo

0 JR

t
—[ fk(x—y+a(t—o),t—U)N1y(v)(y,0)dydo.

0 JR

Set
W(x) = (1 — H(x)) eX*.

From the reaction equation afin (3.2), bothz(y, o) andz(y) can be represented in
terms of the detonation wave locations:

2, (v,0) = KW(y — y(0),
{zy(y) = KW(y). (3.5)

Sinceu(y(t),t) = T*:

v(y(0), ) =u(y(t), 1) = U(y (1)) =00 —a(y @) = T* — U(y (1)),
we obtain, from (3.4) and (3.5) , the equation fdr),

00) — 07 @) = [ ky®) =y +ar, 00,0y

t
+qK/O/o(k(J/(t)—V(G)—y+0t(t—6),t—0)
y<
—k(y(t) —y+at—o0),t —0)W(y)dydo (3.6)

'
—/O /Rk(y(t) —y+a( —o0),t—0)N1(v)y(y,o)dydo.

The same Duhamel’s principle applies for the special solutioi) of (3.2):

u(x — p) —0(x) =/Rk(x—y+Ott,t)(U(y—,0)—U(y))dy
t
+qK/ / k(x—p—y+a(t—o),t—0)
0 Jy<0
—k(x—y+a(t—o0),t—0))W(y) dydo

t
_ /0 fR K(x—y +a(i—0), 1—0) N1(l(y—p)—G()),dydo.

Set bothx andp above equal tg/(r), and subtract (3.6) from the resulting identity.
We obtain a refined equation fer(r):
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0= /Rk(y(t) CyHan, {0 — () — GO — v(y. 0)) dy

13
+qK/‘/ (k(=y +a(t —0),t—0) (3.7
0 Jy<0
—k(y(@®) —y(0)—y+alt—o0).t—0)W(y)dydo
t
- /O f Ky () —y+a(t—0), 1—0) (N1 (A —7 (1) ~T() — N1}, dydo.
R
Equation (3.7) contains not only the fropir) but also the gradient of the fluid
variablel. Thus, the study of the qualitative behavior of the wave front requires the
global stability of the fluid. The idea is to utilize the local stability to trace the wave
fronts in each small time interval. This is then used to show the local stability of the

fluid. The time asymptotic stability is studied by repeating the local analysis. In the next
section we carry out the analysis for the model with linear flux.

4. Stability Analysis I: Linear Flux Model

To concentrate on the analysis of the switch on-off reaction nonlinearity, we consider
the simplified model with linear fluxf’(u) = m.
In the moving coordinate, the system (3.1) is

U =0 Uy — Uxx = (qZx,
zx = Ky (u)z,

whereae = m — s > 0. The integral equation (3.7) of the detonation wave fiof) is
self-contained for this simplified model:

0= ka(Otf—y,t) () —aly +yN] —v(y +y@®),0) dy

t
+qK/ / {k(x(t —0) —y,t —0)
0 Jy<0
—k(a(t —o)+y@)—y(0)—y,t —0)}-W(y) dydo. (4.1)

4.1. Initial step: upper bounds of the wave frontset § be a small positive number:
§<ab (4.2)
and assume that the initial perturbatigy{x) = u(x, 0) — G(x) satisfies:

v0(0) =0, wg € CY(R) N Lip?(R),

. Y 4.3
18ivo(x)| < 8o e fori =0,1,2. (4.3)
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Rewrite (4.1) as

1
y(® {—/R k(at—y, ) (/O 0, (7 (1)6) de) dy}

t 1
+/ a0 {qK/ (/ k(@(y(t)—y(a))—i—a(t—a)—y,t—a)d@) Ky dy}da
0 y<0 0 y

t 1
:/ y (o) {qK/ (/ kOy@)—y©@)+a(t—o)—y,t—0) d9> Ky dy}da
0 y<0 0 y

- /R k(@i —y. Duoly+y (1)) dy. (4.4)

Lemma 4.1. Suppose that is sufficiently large. Then, there exists a constagt> 0
such that forp| < §,

o2 1
—Lglux(O) e~ 4 min (1, —) < —/ k(p +at —y,t) 0y(y) dy,
R

at
_ Salyl _ok 1
/ k(p+oat —y,t)e” 8 dy < Lope” 4 min (1, —) , (4.5)
R avt
alyl LT 1
k(p+oat —y,t)e 3dy <Lge” 4 mn(l ——|. (4.6)
y<0 Ol\/;
Proof. Expandk(p + at — y, t) as follows:
k(lo+at_yat): 1 k(P—yJ)e_T-
ez

The lemma follows from plugging Lemma 2.6 and the above expansion into the integrals.
|

Lemma 4.2. Suppose that is sufficiently large and that (4.2) holds. Then, ok ¢ <
2loga/ o?,

t 1
qK/ f (/ k(@(y(z)—y(a))+a(t—a)—y,t—a)d9) XV dy do
t—% y<0 0 y

1
/ k(at —y, 1) (/ 0, (y + y (1)6) d@) dy ’ .
R 0

Proof. Exchange the order of the last integrations and apply Lemma 4.1 to the resulting
integral to yield

[Ty (0)]
4L00l%
Set

1
=7
o2

1
§/k(at—y,t) (f |Uy(y+y(t)9)|d9>dyfor0§t5 2'03“. @.7)
R 0 o

1
II(t,a)E/ (/ k@) —y(@)+alt—0c)—y,t—o0) d9> Ky dy.
y<0 0

y
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Using integration by parts we have
1
(¢, 0)= / k@ @) —y()+at —0),t —o)do
0

1
— / / kO (1) —y@©@) +alt —o)—y,t —o) KeX¥ do dy
y<0J0
2
< —.
V({t —o0)
This and (4.2) yield

t
qK/ (o) do < q1<4,/i—‘S — 8200, (0)|v/3a < 8v20|0, (0)|a"3.
=
(4.8)

The lemma follows from combining Assumption 2.3, (4.7), and (4.8) and the assumption
thata is sufficiently large. O

Proposition 4.3. Suppose that > 0 is sufficiently large. Then,
fort e (O, 2 loga ('fg“),

2

4135
YOl < G5 (4.9)

whereL is the constant given in Lemma 4.1.

Proof. We first relax (4.9) and make the a priori assumption

8L2s 2 loga
f —. 4.1
YOl < 5y forr € [O, 2 } (4.10)
Set

Iy Illz = sup |y(o)l.
oe(0,1]

Case 10 <t < 8§/a. By applying Lemma 4.1, Lemma 4.2, (4.3) and (4.4), one obtains

140 0 —2a8 ly ()] 1 Lod
Lominvia D O - — =0 —_—
Lomingre D Q1 = 3 om = WO iyl + e

(4.11)
Due to Assumption 2.4, (4.11), and largenesa oive have
4133
[Ux (0)]

and the proposition holds in this case.

Case 288 a ! <t < 2« 2loge. Whens — o > 83/a, due to (4.10) the function
dyk(0(y (1)—y (@) +a(t—0)—y,1—c) IS @ positive function fory < 0 andé < [0, 1]. Thus,
Il (¢, o) is a positive function foft — o) > 85§/«. It yields that

t—85/a t
< </ Il(t,a)do+f |||(t,6)|d0)|||7/|||t-
0 1—85/a

Myl < forO <t < 85/«,

t
‘/ (¢, o0)y(o)do
0
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Applying this, Lemma 4.1, Lemma 4.2, (4.3) and (4.4), we conclude that

1 _ o t—85/a
|V(f)|<m|ux(o)|€ a +61K‘/0 ||(f,0)d0> (4.12)

1
— 10,0 - [y ()]

5
o2
1 0 1—85/a | J Loe*“tha
<|—|0 + K/ t,o)do | - +
(agl x(O)| +4¢g | (t,0) ) Iy Il min(Via. D)

Suppose thally|ll; = |y (to)| for o € [0, t], then from (4.12), Assumption 2.4, and
largeness of:

|J/(T0)|<

5
o2

27 1—85/a 0. (0
10, (0)] e~ 7° +-qu/ ||a,a)do-—|UX()'>
0

270

Lomin(y/ta, 1)
e_aTts

1 _
< ((x—g|ux(0>|+ql</0 min(vza, 1)

By canceling the integrals withK coefficients in both sides, it yields the uniform bound
for |y (t0)]. Thus, the estimate dfly |||, follows in this case. O

t—85/a
I, 0) dU) ly (t0)| + Lo

Differentiate (4.1) with respect toto result in the equation for' (¢):

0=—y'(t) {/R k(at, 1) (Oy(y + ¥ (1) + vy (y + (1), 0)) dy} (4.13)
d
+Agﬂﬂw—wJH{MW—U@+VOD—v@+yULm}@
t
+‘1K/0 / Ay k(y@) =yt —1)+at —y, 1) (' (1) =y ¢ — )W (y)dy.
y

Applying the same arguments for obtaining the uniform boung(of to (4.13), one
obtains the following proposition about the uniform boung-&f).

Proposition 4.4. Suppose that is sufficiently large. Then, there exists a constiant-
0 such that for e [0, 2 '23“],

8LyL%a®

ly ()] < W

(4.14)

4.2. Initial step: rate of the wave frontdn the above we have obtained the uniform
bound of the detonation wave locatiptir) in a finite time interval0, 2 |Oga/a2]. The
analysis tries to minimize the chemical effect, the terms in (4.4) with coeffigi€nT his
uniform bound is not refined enough to trace the wave front. We need to obtain sharper
estimates oj/’ by using the Proposition 4.4 to obtain a refined wave front tracing. This

is done by using the Laplace—Fourier transformation, [3], to make a full account of the
chemical nonlinearity.
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Let G(r) be a function satisfying
IG(1)] < eP'.

LetG (s) be the Laplace—Fourier transformation@f
o
G(s) = / e 'G(t)dt fors e Candi s > B. (4.15)
0
One has the following Parseval's relation.

Lemma 4.5. Forn > B,

/OO e 21 G(1)|%dt = L /oo IG(n + i€)|? dE.
0 27 J o

See Appendix A.2 of [3].
Rewrite (4.13) as follows:

y'() /oo {ql(/ dy (k(at—y, t)eKy) dy} dt
0 y<0
t
_/ vy (t—1) {qK/ dy (k(ar—y, r)eKy) dy}dr
0 y<0
=y'(1) {fR Oy +y @) +vy(y+y (1), 0)) dy}
d
+fRE{k(0U—y,f)} {Gy)—a(y+y@®)—v(y+y(@),0)} dy

t
+{6]K/0 /3}:((k(y(t)—y(t—t)+at—y, ) —k(y()—y(t—1)+at—y, 1))
y

(YO =y (t=))W(y))dydr

+y’(z)q1<foo/ 3, (k(ar—y, r)eKy) dydr}
t y<0

= j1tj2+J3.
(4.16)

From the uniform bounds gf andy’ in Propositions 4.3 and 4.4, one can see {hat
andj, in (4.16) satisfy, for € (0, 2loga /a?),

2 a?§L1LE

U (0)]

et
Z

jal < e (1.1 +a%),

otzt
lj2l < 8e™ % a®8(L5+ 2),

2
. gKa? Se= T 8%a®
= = o1 + 0(1)— 4.17
3l = 16, 0] ( D= a0 (417

21
— O(Da2se /4 fort ¢ [0, &} )
o
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Here we have noticed from (4.14) and (4.9) that

ook [ d—01‘f’K°‘2 " (o
y'(t)q /t (r)dt = ()|Ux(0)|/z (r)dt

_ gKoa _o& B 5 W
= O( )|Gx(o)|e T =0Dae 4,
t
qK/o / O == D)0 =yt = Dk (L IWdyde
y<
qK 8%’ 5%
=01)——— =01 )
Yiaor = °Pino)
Set
”I (r) = -/ 8,‘7k(at - y? T)eKy dy9
y<0
(4.18)

E(r) =l (tr) — k(at, 1),
/ k(at —y, 1)K eXY dy‘
y<0

0(2‘[

-4t

E(D)| =

e
<001)—— ,
- ()a—i—Kﬁ

VQE/OOIII (v)dr
0

= /00 E(t)drt —1—/00 k(at, t)dt = 1 <1+ 0(1)£> ,
0 0 o o

k(at, 1) _E
et Eo(r) = 70, (4.19)

P(t) =
G =y'®.
From the above estimates abqgut j», andjs , (4.16) can be rewritten as
G(@) = (P*G))+ (Box G)(1) + F(0), (4.20)

o ...

Ft = 0 1 —_ + + . h a t ,
(1) ( )|ux(0)|(Jl J2+Jj3)-c ar[ongg ]()
2
Se—%1/442

F@O)=00)————

[Ux (0)]

Let’s rewrite (4.20) in terms of convolution operators

1-P)-G=Ep-G+F, (4.21)

P-G(r) =P xG,

Eo-G(t) =Eo*xG.

We study (4.21) by formally expressirg as
e .
G = Z[(l —P) e 1-P)IF. (4.22)

i=0
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One needs to construct a special functional space such that the opérateh ~Lis a
bounded linear operator and thgtL—P) ~1Eq]’ (1— P)‘lF},-Zo is a Cauchy’s sequence.
Consider the Fourier—Laplace transformation (4.15) of (4.20) with

s =—a’/8+if, £€R.
Both P andEg are convolution operators, and so

PoEo(s) = P(s) - Eo(s).
and (4.22) yields

S Bt =
G(s) = go APy F(s).

The function space is defined by the norm:

2 o0 OtZT
nwm:LeTmnm

By Lemma 4.5
oo ) 1/2
umm5</cmﬂ“%o (4.23)
0
1 [ [Eo@)I*[F(s)? . o
= — ——d thRs = ——.
_§<2N ﬁoo 11— P(s) 20D 3 with 9t s 5
From (4.20),
Sa
Fllle = O(1) — . 4.24
0, (0] (4.24)

Thus, it is sufficient to show that — P(s)| 1 is bounded fofi s = —a?/8.
Lemma 4.6. For any¢ € R there is positive constardfy such that

|(1—P(—a?/8+i)| 7t < Co,

_ K
Eo(—a?/8+i C .
|[Eo(—a”/8+i§)| < 0 TK

Proof. Sets = —a?/8 + i£ in (4.15),
~ ~ o0 @2 .
P@)zP@>=/'e*—@H9fpu)m
0

Z/we—(—%"‘ié)t k(()[[,t) di
0 Vo

’

PO) =« (1+ 0(1)()[%() fooo kat,7) e dt = <1+ 0(1)(1%{) V2.
(4.25)
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Differentiate’F;(é) with respect t& to yield

P =i [ N %e—“i’—féf dr
P(£)

26 —i2)

o~ | 2
(P(é),/s = %) =0.

3

From this,

Combine this with (4.25) to obtain
= 1+ 0X)V2

P@&) = e

(4.26)

From (4.26), it follows that
~ 1
[1-PE&)| > 1—6f0r$ eR
and|(1 — P(£))~1| is bounded.

From the definition o€y in (4.20) and (4.21),

2 , 2
G Ky it

o0
|Eo(—a2/8+i§)|:Ka/ / ¢ dydt
0 Jy<o At

2

<k /ooeastdt—oa) K
= a+2K |Jo JAm: | a+ K’

This proves the lemman

From Lemma 4.6, the series in (4.23) converges, and together with (4.24),

1
00 o2 3
<f0 Y (1) e“dl) = ||Gllle (4.27)
<ows|1- 3K\«
- a+ K [T, (0)]

With this we may improve Proposition 4.3:

Proposition 4.7. For ¢ € [t9/2, to] , to = %gr“, there exists> > 0, which is indepen-

dent ofa, such that

1
a~88./loga]
— Co———.

ly () —y ()| < C2 G, 0)]
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Proof. Fort € [tp/2, 1o], (4.27) yields

1
(1) — y(10)] < /°|y’<p>|dp
t 2 1/2
ea“py/(p)zdp>
od

0, (0)
o~ 85,/TTogal

FROI

a?ig
<Jtg—te 16

o logef -
o

—
>
o

=

=001

By introducing a parametey,

1
J1loga| o 8
—log (CZ [0, (0)] )

Po=

’

2loga

Proposition 4.7 becomes

1
¥ (1) — y(10)] < e P for 1 [EO fo} .

4.3. Initial step: waves carried by detonation wave fronthie analytic properties
given in Propositions 4.3 and 4.7 are sufficient to obtain a fine wave structure at
fo = 2loga/a?. We first update the initial data at time= 1o as a perturbation of
u(x —y (o),

v(x,t) =u(x,t) —U(x — y(tg)).
With the front updated, the estimate of the perturbation can be improved when compared
with the initial data in (4.3):

Proposition 4.8. There exists a positive constatiy such that, forx > 0,

_1 _ Salx]
8,/loga de” 8 .

lv(x, 10)| < Coa

Proof. Similar to (3.4) forv(x, t), one gets
v(x, 1) = /Rk(x —y+4at, ) [v(y,0) + @) — Uy — (y(10))] dy (4.28)

1
+f]K/ / (k(x +at—y{o—1)—y,7)
0 Jy<0
—k(x +at — y(f0) — y, 7))eX dydr.

The proof uses Proposition 4.7 for the integral oier2, ro] and the separation of
the fluid and the combustion wave speed s3> 1, for the time interval0, 7o/2]. By
integration by parts and by mean value theorem,
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I
gk / 0/ kx4+at —y(to—1)—y,7) —k(x +at —y(to) — y, 7)) Ky dydrt
0 <0
’ 1o prl
= —qK/O /O k(x +at +0(y(to—1) —y (@), 1)(y(t0) — y(to — 7)) dbdt

o 1
+‘1K2/0 / O/O k(x +at +60(y(to— 1) —y(10) — y, )
(y(to) — y(to — 7))eXY dodydr.

Expand the kernel functioh(x — y 4+ a1, ) as follows:

1 _ a2 e?r_aG-y
k(x+at—y, 1) = e g 2
4t
1 36c-02  302c  alx—y) _ alx—yl
< e~ T Ie 16
Vart

Substitute this into the last integral of (4.29) and apply (4.9), together with Assump-
tion 2.6, to yield, forx > 0,

o
qK/ / (k(x +at —y(r) —y,7) —k(x + @t — y(t0) — y, 7)) XY dydt
0 y<0

2
. K 0/2 5. /loga a~Se 15"
< 0e F gk (1+ 0(1)—) l/ gaox B¢ P e
o 0

+K 10x(0)|y/T
3a2r
/fo Se 16 4
+ T
to/2 \/?

— o) (1+ 0(1)—) 5 ¢K \/log <| o —1—1“‘6) 5% loga
— 0(1),/loga a8 (1+ |ux(0)|a*1*e) se= 5"
— O(L)a b loga se 5", (4.29)

The last two integrals are obtained by using Proposition 4.7 and the largeness of
Similarly, forx > 0,

/Rk(x —y +at, 10) ([UY) — Uy — y(10)) +v(y.0)) dy (4.30)

2, Salx|

— 0D (|0:](0) + Dse 1% e .

Equations (4.30) and (4.30) imply the propositior.
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As before, the above proposition can be rewritten as

_ Bt — Dalxl
[9(x, 10)] < e P19 0e="8 forx > 0,

—log (CQ«/| loga] a—%)
B =

2 logax

From the conditionr > 1,
B1 € (0, Bo).
Before investigating the situation < 0, we derive an estimate from (4.28). The
following lemma will be used to show that, due to the supersonic speed of the combustion

wave, the information to the left of the combustion does not influence the propagation
of the combustion wave.

Lemma4.9. For x < 0anda > 0it holds

_ ()r+a1)2 _ ofxtoat|
/k(x+at—yt)e_%dy=0(l) e T e (4.31)
R ’ a4t N ’ '
/ k(x +at —y, 1) e K gy (4.32)
y<0
7(x+¢:1)2
o
o rT if x +at >0,
- _ (x+1(g[t)2 _ Klxtor|
e e 2
T + X elsex + ar < 0O,
ax azt
e 2 e &
k(x +at —y,1) e~ KWl dy <2——MM——. (4.33)
/)1<O (¢ + K)~/4rt

Proof. The proofs of (4.31) and (4.32) are identical. So, one just needs to prove (4.32)
and (4.33). When + ot > 0,

1
/ k(x +at —y, 1) e KVgy < / k(x +at,t) e XV dy < = k(x + at, 1).
y<0 y<0 K
Whenx + af < 0,

/ k(x +at —y, 1) e XPlay
y<0

/ +/ k(x +at —y, 1) e XD gy
vt JEay<0

_ Klxtat|
2

e

2
< ——— 4+ — k(x + at, 4t).
K4t K



572 T.-P. Liu, S.-H. Yu

Hence, (4.32) follows:

/ k(x +at —y, 1) e XPlay
y<0

0(2[

a(x—y)
y<0

()(2[

oax
2 e 27 d

< P
T o+ K  Ant

and (4.33) follows. O

If & is sufficiently small, then

[v(x, f0)| < /Rk(x — v +ato, 10) [[v(y, 0) + [O(y) — Uy — ¥ (10))]] dy

+ 6 w1(x),

where

10 %0 >
w1(x) = LoKgq /:O —i—/ e Poa’io

=5 0

2

(k(x +oat, 7)) + Kf k(x +at —y, 1)ek? dy) dr.
y<0

From (4.32) and (4.33) we have

Lemma 4.10. The functiornw; (x) satisfies that
(4.34)

w1(x) = O(1) |0, (0)] for x < O,
(4.35)

2 o
w1(x) < e P10 .77 forx < 0.

From Lemma 4.10 and Proposition 4.8, we have the following proposition.

Proposition 4.11. The wave structure af(x, 7o) is

JVEWO)Z _ Sulx+arg|
o | wi(x) + 0 aj% 1 for x <0,

[v(x,10)] <6
2 Slx|
e P10 o8 forx > 0.
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4.4. Pointwise convergence to viscous profilBsopositions 4.11 and 4.7 provide a
decaying structure of a perturbation in front of the detonation wave atitimeg as

well as the analytic property of the detonation wave location. In fact, the facian be
realized as the strength of the perturbation in front the detonation wave, and the updated

perturbation in front of the detonation wave is of ordefie’nog, Finally, it results in
the convergence of the wave front to a fixed location exponentially fast as well as time
asymptotic stability of the weak detonation wave. In this subsection, we will generalize
both Propositions 4.7 and 4.11 to show this.

The above reasoning suggests the a priori assumption on the wave {rogt

ly (ntg) — y(¢)] = O(1) § b(z) for ¢ € [0, ntol,
e‘[%]ﬁlazto fort e [[%] 1o, ([%] + %) to) )
o (lslprem)eo o, [([%] + %) fo, ([é] + 1) to,) :

where[x] is the largest integer less than or equaktdrhe solution to the left of the
detonation wave front is analyzed by resolving an initial boundary value problem with
boundary value bounded by the a priori boufidl)sb. The consideration of such an
initial boundary value problem is motivated by the device in [4] for studying the stability
of a viscous shock profile.

For this we consider the Green functiof,

b(t) =

G*(x,t;y,a)Ek(ﬁix—era(t—G),t—O) (4.36)
- kx+y—oa(t—o0),t—o0),
for the initial-boundary value problems:
u; —ouy —uy, =0forx <0, >0

with homogeneous boundary value®, r) = 0 for¢ > 0, and the solutiof2, of the
initial-boundary value problem:

Uy —auy —uyy = gKW(x),
u(0,1) = Lb(t), u(x,0)=0,

t
Q*(x,t; L) = qK/ b(o) - (G*(x, t;0,0) + K/
0

Gi(x,1;y, o)eky dy) do
y<0

t
— L/ b(o) - 9,G«(x,1;0,0) do.
0
We introduce comparison functiong (x) for the estimate of2*(x, ¢; L):
ntg
wy(x) = qK/O b(o)-

(k(x +a(ntg—o),ntg— o) + K/

k(x —y + a(ntg — o), ntg — J)eKydy> do.
y<0
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Lemma4.12. For x < 0,

Xtant 2
<01 06,0 e 1 -l 4.37
lwp (x)] < O(1) O [0,(0)] N +Km€ . (437)
_ Ixl
lwn (x)] < O(1) Q|Ux(0)|e 3 b(nto), (4.38)

forany A > max(16, 32/81).

Proof. From Lemma 4.9, the double integral defining(x) can be bounded by a single
integral:

nto
onx) = OWaK [ bio)- (4.39)
0
_ Klxta(ng—o)|
k(x +a(ntg —o),ntg — o) + ¢ _° H(—x — a(ntg — 0)) | do.
nto — o

Break the integration into two parts: € [0, ntg/2) ando € [ntg/2, ntg]. For the
first parto € [0, ntp/2),

ntg/2
/ b(o) - k(x +a(ntg—o),ntg — o) do
0

ntg/2
< 4/ b(o) - k(x + a(ntg — o), ntg) do
0

aBlx+antg|
0 e 2
= ? (k(x + anty, 4ntg) + W) . (440)

Wheno € [ntp/2, ntp], breakx in two casesx + ntg < 0 and O< x + ntg < ntp.
Whenx + ntg < 0, since

k(x +a(ton — o), ton — o) < O(D)k(x + aton, ton — o),

we have

nto
/ b(o) - k(x + a(ntg — o), ntg — o) do
nto/2

nto
< 4/ b(o) - k(x + antg, ntg — o) do
n

to/2

n 0 1 n
= 0(1)ntoe—?/31“2’0k(x + antog, ntg) = #e_zﬂl"z’ok(x + anto, nty). (4.41)
o

When O< x + nfg < ntg, due to choice oo, we have

B1n
e~ F 90 « O(Dk(x + anto, Anto).
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Therefore,

nto

nro 1
b(o) - k(x +a(ntg — o), ntg — o) do < 4/ b(o)  ——=do
/nto/Z nto/2 Jnig —o
— & P1a?t

) 1
< 0(1) e #1200 Jugo < 0()E——— < OV =k(x + anto, Antg). (4.42)
o o

Equations (4.40), (4.41), and (4.42) yield that

nto
/ b(o) - k(x + a(ntg — o), ntg — o) do
ntg/2

afq|x+antg|
1 e 2
=om-= [k to, Anto) + ———— | . 4.43
()a((x+omo nto) + NG > ( )

From a direct calculation one can have

nto o —K\x+o¢2(nrofa)\ 0(1) e—K\X+Ulnt0|
b(o)  ——— H(—x — —0)do < ————— . (4.44
[ o) e M —atmo —on do = ZRE a4
Combiningg K /o = Q|0,(0)| with (4.43) and (4.44), one has (4.37).
The estimate (4.38) follows by plugging the inequality
kx—y+oalt—o0),t—0)
,%+ﬂ,0‘2“*5)
- \Ek(x— Falt—0), St —on <o "
V2t 2 = Ji—o
into (4.4) withg, < 1/8. O
Lemma 4.13. It holds forx < OandL > 1that
_K|x;—m|
Q*(x,t; L) = O(L) |0, (0) (k(x + at, At) + 67> , (4.45)
Q*(x, nto; L) < Lb(nig+)e’s, (4.46)

whereA > max(16, 32/81).
Proof. The function2*(x, ¢; L) can be identified with the solutiofi(x, r) of

Uy —aUy — Upy = gK(eX¥ +8(x))b(t) forx <0, 1 > 0,
U, 1) = Lb(@),
Ux,0 =0,

whereé (x) is a delta function.
Consider

Vi—aVy — Vi =logK(W(x) +8(x))b@) forx e R, t > 0,
V(x,0 =0.
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Duhamel’s representation df(x, ¢) is identical to the representaties), (x) in (4.4).
Hence, the estimate af, (x) in Lemma 4.12 is applicable 18 (x, r) with nty replaced
by ¢. According to (4.38) in Lemma 4.12, one can findig- L such that the solution
V(x, t) satisfies

V(0,t) > Lb(z).

By maximal principle, one has
Ux,t) <V(x,t)forx <0, r > 0.
So, (4.45) follows. Equation (4.46) is rather straightforward. Its proof is omitted.
The perturbation at each updated detonation wave froaty (nt) is:

Up(x,t) =u(x,t) —U(x — y(ntg)).

The following proposition yields both the convergence of the wave locations and the
time asymptotic pointwise convergence to the viscous weak detonation profile.

Proposition 4.14. There is an. > 1 such that for allz € N,

412
ly (n10) — v ((n — Dig)| < ——0—e= (= D10 (4.47)
[Ty (0)]
2Q* (x — y(ntg), nto; L)
15, (x. nto)| < 8 +k(x + anty — y (nto), 4ntg) for x < y (nrg), (4.48)
_ Slx—y(nig)]

0(1)e’"’31°‘2’0 e 8 forx > y(nip).
Proof. We will prove Proposition 4.14 by induction. Due to (4.9) and Proposition 4.11,
the proposition holds for = 1. Assume that (4.47) and (4.48) hold for< j. For
simplicity in notation, we take (jzo) = 0. Set

T=1t— jto,
v(x,7) =v;(x, T + jto),

- . 4.49
volx) = 3 (x. jto), (4.49)
y(@) =y(to+1).

The equation fog (7) is identical to (4.4) foty (¢) with vg(x) provided by (4.49) instead
of (4.3):

vo(0) =0,
181 vo(x)| < o e~ F19"0e =% forx > 0, i = 0,1,2, (4.50)

- e L .
|8ivp(x)| < afe /Pre"023 for x <0, i =0,1,2.

The conditions involve derivatives up to second order. However, the induction hypotheses
of the proposition yield only the information about Z8rorder. Nevertheless, since the
equation is parabolic, the zero-th order information is enough to recover the higher order
derivatives in any positive time. The recovery of the higher order derivatives is routine
and is omitted. Here, the third condition is due to Lemma 4.13.

Dueto (4.5) and (4.6), the consequences of (4.11) and (4.12) remain vajidtfor

with & replaced byse—/£19%0 for ¢ € [0, 1o]:

2

: Gt = 17 ALo -~ jpro
ly ((j + Do) V(Jt0)|—|)/(fo)|<5|ux(0)|E 1w,
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Thus, (4.47) holds for = j + 1.
All the conditions for Proposition 4.7 are still valid for(z) and one has, for €

[3. 1ol
17(7) — 7 (to)| < e—(jﬂl-i-ﬂo)azto < 56—(j+1)/31<x2t0. (4.51)

In deriving this estimate, one also has the following estimate as a by-product:

[0(0, )| < O(1) § e=P12*0 for 1 € [0, 10/2], (4.52)
[0(0, )] < O(L) § e~ UPLHPIT*10 for 1 ¢ [10/2, 10].

Now, we change thecoordinate ta—y ((j+1)7g). Therefore, we takg ((j +1)79) = 0O,
again.

Combining (4.48) fon < j, (4.52),y((j + D1o) = 0, and (4.51) together, we have

obtained the information of (r) andv;1(z) for ¢ € [0, (j + Drol.
This leads to the boundary value problem:

[0j+1(0] = O(1) 8 b(1), (4.53)
ly()] = 0(1) 8 b(®)/]0,(0)].

By the Duhamel principle, the representatiorvef (x, (j + Dfo) is

{ 0j41 — @dx¥jp1 — 02041 = gK W(x — y (1)) —W(x)),

vjt1(x, (j + Do) = /R Gi(x, (j + Dro; y,0) vj41(y, 0) dy
(j+Dro
+qK/O Gi(x, (j + Dio; y,0) W(y — y(0)) —W(y)) dydo

(+Drwo
= [ 0,6 1+ D16t 00974200, 1o
0

Substitute the conditions about?) andv;1(0, 1) in (4.53) into the above representa-
tion. Then, (4.48) is verified for = j + 1 and the proposition follows.oo

5. Stability Analysis II: Nonlinear Flux

When the flux is nonlinear, one needs to linearize the problem at the left end state of the
detonation wave profile as well as at the ignition point. The first is for studying waves
propagating to the left far field, the other is for the purpose of tracing the wave fronts.
About the wave travelling to the left far field, we need consider it as a boundary value
problem with the boundary values provided by the front tracing.

Similar to the setting of an initial boundary value problem in the previous section,
we introduce
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a_=s5— f'u_),
G_(x,t;y,0)=k(x —y+a_(t—0),t—0) — e k(x+y —a_(t—0),t—0),

t
Q (x,1; L) = qK/ B(o)-(G(x, t; 0, o)—I—K/ G_(x,t;y, o)eKy dy) do
0 y<0

t
— L/ B(o)-3,G_(x,1;0,0) do. (5.1)
0

Note. The estimate fo€2*(x, t; L) in Lemma 4.13 can be applied o~ by replacing
o andb(ntg) in the lemma byx_ and B(ntp)) respectively.

Let v(x, #) be the solution of (3.3) with initial values which satisfy (4.3) and (4.2);
andv, (x, t) stands for the same meaning as that in Proposition 4.14.

Proposition 5.1. There is a constant > 10such that it holds for alk € N,

812 B1 2
ly (nto) — y (n — Drg)| < —2—~ 1"V 2705, 5.2
vy RETTRG)] (5:2)
2Q7 (x — y(nto), nto; L)
|Un (x, ntg)| < § { +k(x + antg — y (nio), 4nto) for x < y(nto), (5.3)

B 2 5lx—y (n1g)|
OQ)e " 2*0 e85  forx > y(nt).

We will also prove this proposition by mathematical induction. The procedure is similar
to those in obtaining Proposition 4.14. However, one still needs to modify the wave
front tracing and the stability analysis regarding the presence of the fluid nonlinearity.
It should be mentioned that for weak detonatithve chemical nonlinearitieand fluid
nonlinearities aredecoupledin terms of wave front tracingbecausaeveak detonation
wave is faster than any other non-chemical waves.

5.1. Nonlinear front tracking.In order to proceed with the wave front tracing for non-
linear flux, one makes the a priori assumption that

1850, (x, 1)] < 2270, (x)|, i = 1,2, for ¢ € (nto, (n + D). (5.4)

Proposition 5.2. Under the hypothesis of Proposition 4.3 and under (5.4), it holds for
the nonlinear problem that

ge—@aztoa

8L
ly () — y(nto)| < fort € (nto, (n + Do), (5.5)

Uy (0)]
and
2 _ (nﬂl;ﬂw 0621‘05

06‘
|x (0)]

1 1
ly(@®) —y((n+ E)to)l < fort e ((n + E)to’ (n+ l)to) . (5.6)
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Proof. The equation of the front (¢) is given by (3.7). The difference between (3.7)
and (4.4) is the fluid nonlinearity, which shows up in the last double integral in R.H.S.
of (3.7). However, the influence of this nonlinearity can be ignored in deriving the
uniformly bound estimate of the wave front, provided that this nonlinearity satisfies, for
t € (0, 1g),

t
fo / ket —0) =y, 1—0) (= N1(in(y. y (nto+))), dydo (65.7)
R
_npy 2t
_ e 70 —Bay/8
(<) / k(at—y, )2 (y,nto; LYdy+——~— k(at—y,t)e ¥/ dy]).
y<0 Uy (O y>0

With this, (4.11) and (4.12) are still valid by lettidg, twice the value of that in Propo-
sition 4.3. This results in (5.5), the uniform bound of the detonation wave location.
Similarly, if

(5.8)

d t
—/ /k(a(t —0)—=y,t —0)N1(vy(y, t + ntg))y dydo
dt o JR

nfy 2

- 10

% / k(at—y, Q" (y.nto; Ly dy+——— [ k(at—y, ne /8 ay ) |
y<0 U (O)] Jy>0

then (4.24) remains valid. Thus, Proposition 4.4 and Proposition 4.7 hold for this non-
linear flux, too. This proves (5.6). It remains to prove (5.7) and (5.8).

From the definitionVy (v,,) in (3.3), one can write

N1(Up) (v, nto +1) = f(0a(y, 1) + Uy — ¥ (n0))) — f (U — y (nt0))) — U f'(4(0))

1
ﬁn/ f'@v, +0) — f'(U0)) do
0

1,1
f)n/ / " ({900, +0—0(0) + U(0)}) [0, + {0 — T(O0)}] do db.
0 Jo

By this identity and (5.4), one has that

[N1y(vn (¥, nto + 1)) (5.9)
np; Sa|y—y (ntg)|
= 0(1) 8¢ 2900, (0) + Sarfe b2
np; Saly—y(ntg)|
— O se= 700, (O)|e™" T fory > y(nt),
aIy—J;(mo)\

IN1y(Va (y, nto + 1)) |e”
nBy

= 0(1) 8¢~ 20|, (0)| for y < y (nto),
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|ley(vn(y» nip +1))| (510)

Saly—y(ntg)|

np
— O(1) Sae™ 20| (O)|e=" T fory > y(nto),
a\,vﬂé(nro)\

|ley(vn(ya ntg +1))|e”
— 0(1) sae~ 20|, ()| for y < y (nto).
Substitute (5.9) into the double integral in the L.H.S. of (5.7), then by a straight calcu-
lation (5.7) follows.

Similarly, by (5.10) and by applying integration by parts, (5.8) follows. This completes
the proof of the proposition.o

5.2. Update wave frontLetw = w(x, t) + G(x) be the solution of

W, — sWy + f(W), — W,y = qgKW(x —loc()) for —x,t >0,
max(18.(0) - foe ()], “P2L) < 6B(), (5.11)
lw(x,0)| < e KM,

The equation ofv(x, 1) is

Wy — a—wy — Wyy = KW (x —loc(t)) — W(x))
+ (s = f/(@(x) —a)w)  — N(w)y, (5.12)

where

N(w) = f(0(x) +w) — f(0(x)) — f'(@x)) w,
s — f1(0(x)) —a_ = O(L)eX* forx < 0.

Lemma 5.3. Suppose that Assumption 2.7 holds. Then, there exists coiistanich
that

lw(x, )| < 2C38 (Q_(x, nto; L) + k(x + a_nty, Znto)) for t € (ntg, (n + Drg).

Proof. By Duhamel’s principle,
w(x, 1) = f OG_(x, 1y, Ow(y, 0dy
y<
+61K/0t/ OG—(x, t;y,0) W(y —loc(o)) —W(y)) dydo
y<
- /Ot /;<0 0yG_(x,t;y,0) (0(1)eKyw + N(w)) (y,0)dydo

t
—/ 0yG_(x,1;0,0)w(0, 0) do.
0
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We introduce a standard iteration scheme to construct the solutioyr),
wlx, 1) = / G_(x,t;y,0w(y, 0)dy (5.13)
y<0
t
+61K/ / G_(x,15y,0) W(y —loc(o)) —W(y)) dydo
0 Jy<0
t
—/ 9y,G_(x,1;0,0)w(0, 0) do.
0
Forj > 1,
wj+1(x,t) = / G_(x,t;y,0w(y, 0)dy (5.14)
y<0
t
+61K/ / G_(x,1;y,0) W(y —loc(o)) = W(y)) dydo
0 Jy<0
t
—/ 9,G_(x,1;0,0)w(0,0) do
0
t . .
—f / 0,G_(x,1;y,0) (0(1)eKwa + N(w/)) (v, 0)dydo,
0 Jy<0

From the definition of2™ (x, #; L), there existgg such that
[wh(x, 1) < AGx, 1),

1
A(x, 1) = cod (Q_(x, t; L)+ —k(x +a_t, 2t)) .
o

This leads to a priori assumption @ (x, r) for j > 1:
lw’ (x,1)] <28 A(x, 1). (5.15)

It is sufficient to show that
t
[ [ 106-an0 (2 a4Nw) o)y do < A,
0 Jy<0
Due to the quadratic nonlinearity bf, one can easily show that
t
/ / 10yG-(x,1;y,0)N(A)(y,0)l dy do < A(x,1).
0 Jy<0

Aboutfé fy<0 IyG_(x,1;y,0)eX7 Ay, o) dydao, it is sufficient to show that

t
3/ / 10yG_(x.1; y,0)|eXY k(y + a_0, do)dydo < A(x, ).
0 Jy<0
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For showing this, first we break the space integral into two parts,

t 0
5/ (/ +/ ) 10,G_(x, 1 y, )XY k(y + aor, 40)dydo

2

From the definition ofz_, (5.1), one has

kx—y+oa_(t—0),2(t—0))
Al —0O

—a(l_g)|eaxk(x+y_a_([—0),(f_0))>
t—o

10yG—(x,1; y,0)] = O(1) (

x +
+| y

<0Q) <k(x — +°‘:/(;_;;’)’ 2029) | ok(x— y+a_(t — o). (t — o))) .
From this,

t
r1§80(1)[/
0 y<f%

(k(x —y+oa_(t—0),2(t—0))
NE— O

a_o

+ak(x—y+oa_(t—0),t— o)) e K2

1 1
-k(y + a_o,40)dydo = O(1)§ (\/m + ?> k(x +a_t, 4t).
Therefore, whew, K > 1,
rn < A(x, t). (5.16)

Wheny € (-%7, 0), we have

o (%—K)ly+ao]

K (y+ao)
eV k(y +ao,40) <
\/E

This yields

0
/ k(x +at — (y—l—aa),t—a)eKyk(y—i—ao,élo) dy

ao

2

1 o
—Kao _ —(55—K)|x+at|/2
< 0)e _aﬁ <k(x +oat, 4t —0))+e '3 ) .

This yields, wherx > 1,
rop L A(x,t). (5.17)

Thus, (5.16) and (5.17) imply (5.15). By a similar calculation as above one can show
that the iteration scheme converges.
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Proof of Proposition 5.1The analysis for the case= 1 is similar to the following and
is omitted.

Assume the proposition holds fer< j and suppose that (5.4) is satisfied/ioe ;.
Then, Proposition 5.2 yields (5.5) and (5.6). We need to update the detonation wave front
and consided;1(x, t) in order to justify that (5.4) holds for = j. The verification of
the ansatz fox > y ((j + D)1) is straightforward. We also omit it.

For convenience we assumé(j + 1)ro) = 0. Thus,y (¢) satisfies the same property
of loc(t), given in (5.11), for € (0, (j + Dio). The value ofv;1(0, ) also share the
same property ofv(0, ), given in (5.11), forr € [0, jtol. The property ofv;11(0, )
fort € [jto, (j + Dol can be obtained through verifying the ansatz1(x, t) in the
regionx > 0. This results in

" 1
v;41(0,1) < LS e~ 70 for t ¢ [jto, (j + §>> ,

By -+ 1
3010,1) < Ls e~ 7 0 for 1 € [(1 + 5) LG+ 1)to> ;

and also implies (5.4) fot = j, x > 0. It remains to show that (5.4) holds fer= j,
x < 0. Sincev;11(x, t) satisfies the criterion fap(x, 7) in (5.11) forz € [0, (j + D1ol,
one can apply Lemma 5.3 @ 1(x, t). So, (5.4) is true for = j. Proposition 5.1 is
true forn = j + 1. Thus, the proposition followso

From Proposition 5.1 we have proved Theorem 1.1.

6. Remarks

In a physical setting, the parametegrsk, and7T* are given, while the statasu_, and

u depend on the physical situation. In our setting of a weak detonation profile,12.4),

is a function ofu, s, g, andK . Keeping the ignition temperatu", ¢, andK as fixed
constants, then (2.4) gives an implicit function foir hus, one can write as a function
s(uy). Then, by (2.1) the left state of the weak detonation wave is given uniquely. We
note this state as’ .

On the other hand, the weak detonation wawe, « ) seems so special compared to
the usual fluid shock wave: _, u ), for which both states can vary independently; for
a weak detonation wave only one state can. Thus, it seems very difficult to produce such
a weak detonation wave pattern. However, the weak detonation wave pattenn, )
is generic and is a key wave pattern for a Riemann problem.

Consider the Riemann probleta_, u) with u; € {Domain ofs}. The decom-
posed wave pattern is a weak detonation wave followed either by a shock wave or by a
rarefaction wave. The decomposed wave pattern is

(U—suy) = (u—,uy) + Wl uy),
——— ——

Slow Fast
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where(u_, u%) is a shock wave or a rarefaction wave depending on whather u7
oru_ < u’ . See the following diagram.

A Y

] Weak Detonation Wave

=N

U+
Rarefaction Wave
X

- Shock Wave *

1 Weak Detonation Wave

Uy

X

Our analysis can be refined to support such wave patterns by repiaginin (5.11)
either by aviscous shock profile or by a viscous rarefaction wave. Thus, a weak detonation
profile is generic.

7. Appendix

Proof of Lemma 2.8.etl(x) the solution of (2.2). In order to obtain an analytic property
of the profile, one needs an analytic property about, K, (u—, u), andT* in term
of the fluid nonlinearityf («). We assuméu_ — u4| = O(1) andg > 1. From (2.1),

s=—2— 1 0. (7.1)

U_ —uy
Whenx < 0, the normalized profilé = v + u_ is given by
Ve = (f'(u-) =) - Vx — qe"" (@), (7.2)
where
nW = fV+u)— fu)— fu-)v,
m_ = f'(u_).

Transform this into an integral equation and use (7.1),

V(x) :f e(Tstm-)x—y) (—qu>'+n(V(y))) dy

geX* b CstmO)—y)
- _ =s+m )&= v d
[ e @)y

=y —u_) <1+ O(K +m_)%) ek~

X
+/ IO (y)) dy.
—00



Nonlinear Stability of Weak Detonation Waves for Combustion Model 585
By a priori assumption
V()| < 20u_ —ui| ek, forx <0

one obtains
N O |u_ —upl?(K +m_)
p .

V(O0) = (uy —u_)

This yields that

_ O(K +m)u_—usP)
q

T* — U4+ (73)

By a straightforward calculation, one can verify this assumption and also (7.3).
Next we consider the profile in the unburnt zone. Denote
\_/+ =0-— Uuy.

The equation fow ™ is

Vi = (=s+ ffup))vt +nt @),
ntOT) = fluy +V5) — fuy) — vt

By the smallness of * — u in (7.3) and by Picard’s iteration,

X
\7;:—+1(x) = VT (0)el ST/ w)x +/0 o5 t+S (”+))(x_y)n+(\7:)(y)dy,

this yields
1 "
Vi) =vT(0) (1 + &2)> (s w)x,
q

Roughly, this yields, fox > 0,

_\7+(x)x - s~ f,(u"')\7+(0)e(—S+f,(“+))X
2

— _1 <1+ 0(%)) T, (0)e ST/ x|
2 q

The lemma follows. o
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