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Abstract: We show that the 3-dimensional supersonic gas flow past an infinite cone is
nonlinear staple upon the perturbation of the obstacle. The perturbed flow exists globally
in space and tends to the self-similar flow downstream. There is a thin layer of concen-
tration of vorticities and entropy variation. Our analysis is based on an approximation
scheme using local self-similar solutions as building blocks. This enables us to obtain
global estimates of the nonlinear interactions of waves needed for the stability analysis.

1. Introduction

We are concerned with inviscid gas flow in three space dimension. The compressible
Euler equations are:

3
pr+ Z(,ou,-)x,. =0 (Conservation of mass) (1.1)
i=1
3
(pu); + Z(,Ouiuj)xj + P, =0 i=123, (Conservation of momentum)
j=1
3
(pE); + Z(pEu,- + Pu;)y, =0, (Conservation of energy) (1.2)
i=1
P = f(p,S) (Equation of state) (1.3)

where(u1, u, usz) is the velocity,p the density,P the pressureg the internal energy,
E = e+ (u1? + u2 4+ u3?) /2 the total energy, ansi the specific entropy. The system is
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quasilinear hyperbolic and a general flow contains shock waves, which greatly compli-
cate the analysis. However, in the presence of symmetries, the flow becomes self-similar
and the system may be reduced to ordinary differential equations. In the present paper,
we are inerested in steady flow past an infinite cone, with axis inthdé@ection, and its
stability with respect to perturbation of the cone. Such flow has cylindrical symmetry,
the dependent variables are functions et x; and the distance = /x22 + x32 from

the axis. Letx andv represent the axial and radial components of velocity,

X2 A3
Vx2? +x32 V/x2? + xg?

With the additional simplification that the flow is isentropic, the Euler equations are
reduced to:

u1(x1, x2, x3) = u(x, y), (uz, us)(x1, x2, x3) = ( Ju(x, y).

-1
(pu)x + (pv)y = 7()011), (1.4)
2 _1
(pu® + P)x + (puv)y = T(puv), (1.5)
-1
(puv)y + (pv? + P), = T(pvz), (1.6)
P = P(p). (1.7)

When a uniform supersonic flow
(u,v) = (40, 0)
hits the obstacle, which is an infinite cone
y/x = bo,

and the angl®g of opening at the vertex is sufficiently small, the conical flow can be
constructed by studying self-similar solutions. The flow is deflected by an attached shock
front beginning at the vertex and is continued so that the state of the air is constant on
each concentric cone behind the shock cone and is parallel to the obstacle cone. The
simplification is due to the fact that, between the shock and obstacle cones, the flow is
isentropicS = Sp and irrotational:

Uy = Uy, (1.8)
and it follows from (1.4)—(1.7) that
2 2
u 2uv v v

Here the sound speeds a given function oft andv through Bernoulli’s law. The flow
depends on

o=x/y
and the equations are further reduced to a system of ordinary differential equations:
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Vg +0U; = 0, (110)
2 2uv v2
1- u—z)m7 — sz(; — (1= —=)ovs +v=0. (1.11)
c c c

Such self-similar flow is suggested by Busemann([1]), who gave a graphical method for
obtaining them, see Sect. 2.

We consider a more realistic case when the obstacle is a perturbation of the infinite
cone. The shock front and the flow behind it are conical until the expansion wave and the
shock wave coming from the bendings of the obstacle interact with the conical flow and
the shock front. The flow then becomes rotational and, in general, contains infinitly many
interacting shock waves. The main questions are: With all these wave interactions, does
a solution exist globally? Is it stable with respect to the perturbation, for firated also
asymptotically ax — oco? We answer these questions affirmatively and show that the
long-range behavior of the flow is self-similar corresponding to an infinite cone with the
asymptotic angle of the perturbation. In particular, the flow between the leading shock
and the obstacle tends to be irrotational and isentropic. In fact, there is a boundary layer
of high concentration of vorticity and entropy variation. The width of the layer tends to
zero asx — oo. This can occur, of course, only for inviscid flow; for the viscous flow
the vorticity would propagate into the flow. Nevertheless, experimental evidences show
that the inviscid flow still accurately represents the actual flow, Courant—Friedrichs [3].

System (1.4)—(1.7) can be regarded as one-dimensional hyperbolic conservation laws
with a source. There is a general existence and time-asymptotic theory, Liu [9, 10] and
Lien [7], for a system of the form

us +f(u)x = g(u, x).

The main idea is to recognize that solutions, which are functionafly,

f(wx =9(u, x),

are normal modes. The idea is then to approximate the solution by a piecewise smooth
function consisting of these modes and then to study the nonlinear interaction of waves
resulting form the resolution the discontinuities. This is done modifying the random
choice method of Glimm [4] for hyperbolic conservation laws

ur + f(u), =0.

This approach applies when the source is finite, i.e.

/ lg(u, x)|dx = O(1).

—00

-1 -1 -1 . _
However, the source term hete— (pv), — (puv), — (pv?)) is not finite both at the

origin and for largey and the above theory does not apply. (To make the comparison,
the independent variables are related(bys) — (v, x).) This simply means that so-
lutions, which are functions of only, play no natural role here. Nevertheless, the idea
of identifying the normal modes for approximating the general solutions is shown to
work in the present situation. We choose instead the self-similar solutions for (1.10) and
(1.11) as the building blocks for the construction of solutions to (1.4)—(1.7). Besides the
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difference between the finite source and the present situation, one also notes that, unlike
the finite source case, the system (1.10) and (1.11) is not automous. This reflects the
fact that a self-similar solution is determined not only by its value at a locétion),

but also by the origin of the self-similatity. For the perturbation of the infinite cone, the
suitable origin(xg, 0) changes with the locatiofx, y), xo = xo(x, y), and so does the
self-similar variable

X — X0

o=0(xy) =

For flow next to the obstacle, there is the clear choice ef 1/6, 6 the slope of the
obstacle. We allow this choice to propagate into the flow by the 3-waves. The numer-
ical grids are moving along the constancy of the self-similar variable. The dominant
shock next to the uniform upstream flow is traced, cf. Chern [2]. The construction of
approximate solutions is done in Sect. 3.

Our analysis is based on the estimates of local wave interactions. Besides the in-
teraction of elementary waves for the Riemann problem, one needs also to study the
interaction of elementary waves and self-similar solutions, as well as the waves pro-
duced due to the changes in the origig, 0) across a 3-wave. As with other studies of
nonlinear waves, stability follows from the decoupling of waves, that is, wave interac-
tions must decay. For hyperbolic conservation laws, this has been extensively studied,
starting with Glimm-Lax [5]. A key observation here is that the angle between the self-
similar raysp = constant, and the shock and entropy waves decreases after interaction.
These estimates are studied in Sect. 4.

The local estimates allow us to introduce a global functional on nonlinear wave
interactions to control the variation of the approximate solutions and thus prove the global
existence of the solution in Sect. 5. The functional is defined also to take into account the
fact that 1-waves are reflected by the obstacle to become 3-waves, and 3-waves propagate
toward and then are combined with the dominant shock. These global wave estimates
allow us in Sect. 6 to study the asymptotic behaviour of the flowas co. The entropy
waves, 2-waves, approach the obstacle and form the aforementioned boundary layer.
The flow pattern eventually tends to a self-similar solution corresponding to the conical
flow for the infinite cone without any deflections.

2. Self-Similar Solutions

In this section, we briefly review the quantitative analysis of shock polars and the con-
struction of conical flow. We refer the readers to Courant and Friedrichs [3] and the
references therein for more details. For simplicity, we assume that the flow is isen-
tropic and consider the systems (1.4)—(1.7) for general flow, and (1.10) and (1.11) for
self-similar flow. We consider the polytropic gases:

P=Ap", y>1

2.1. Shock polarsConsider a shocls in the (x, y)-plane with the upstream state of
velocity go = (go, 0) and the downstream state of velocity, which makes anglé
with the upstream flow. The angle the shock makes with the upstream flow is denoted

by 8.
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There is a one-parametric family of possible states, with velagitywhich can be
reached through a shock. These possible states are given by the Rankine—Hugoniot
conditions of the conservation of mass, momentum and energy. On the phase space of
the velocityg = (u, v), the stateg lie on a curve, called the shock polar. léandL be

the components of the velocigynormal and tangential to the shock liSeespectively.

We have

uo = qo, vo =0,

u1 = L1cosB + NysinB, vi = L1Sing — N1COSB, (2.2)
L1 = Lo =qocosB (Continuity of tangential component)
No = goSing.

From the conservation laws, Bernoulli's law for steady flow holds across a shock
front:

— — 2.2
2‘]0 +i0= 2‘]1 +i1= 251 ) (2.2)

wherei is the specific enthalpy. For a polytropic g&,) = ApY,y > 1, we have

i = , (2.3)

. -1
wherec = /P’(p) is the sound speed. We et = Y 1 andc, = ug. The above
14

identities yield the Prandtl’s relation:

_ (e)?— 2L

N1 Vo (2.4)
By (2.1)—(2.4), we obtain the relations
ur = (1— p?)gocos B + ;—z
v1 = (go — u1) CotB.
Eliminating the angles, we find
v = (g0 — P (2.5)

U—u
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2
wherei = £ andU = (1— p?)qo+ii. The curve in theu, v)-plane given by Eq. (2.5),

40
the shock polar, is the Folium of Descartes as shown in the following figure:

vi
L
- N
LyL NN
q
B - v
ol d \ N
u Py -
A
Cy q

2.2. Conical flow.Now consider a conical body facing a supersonic stream of air at

a uniform velocitygo = (ug, 0). Assume that the obstacle is an infinite cone with its
vertex located at the origin in the, y)-plane. A shock wav&is formed and situated

on a concentric cone where an abrupt change in density and velocity occurs. Between
the shock and the obstacle cones, the flow is self-similar.

S

The self-similar flow satisfies the ordinary differential equations (1.10) and (1.11).
There are two boundary requirements for the solution: The first requirement is that the
flow velocity next to the obstacle is parallel to the obstacle. This is the natural condition
for the inviscid flow. The second requirement is that the self-similar variablex/y
next to the shock equals/ds, 0s the slope of the shock. This is needed because the
flow variables next to the shock are unchanged and the Rankine—Hugoniot condition is
always satisfied. Such a solution is constructed by the shooting method. Giveng state
on the shock polar through the given upstream stat&ve continue it by solving (1.10)
and (1.11) with the initial conditiog; ate = 1/6s so that the second requirement is
satisfied. In other words, the initial value of (1.10) and (1.11) satisfies,mi¢igarded
as a function ofi,

v, = —o. (2.6)
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Since the shock lin&is perpendicular to the straight line joinirigg, 0) and (11, v1),
the initial slope of the curve is given by

v, = 2—%0 2.7)
U1 — uQ

The solution to (1.10) and (1.11) is continued so that % increases till an end state
y
qend = (u., v.) With the property that, /v, = o, there, or by (1.10),

v = —2, (2.8)
v

In other words, the first requirement would be satisfied if the obstaaledss,y. The
collection of the end statag,, for varying the statg; on the shock polar, forms an
apple curveso called because of its shape. Note from (2.6) that the solution to (1.10)
and (1.11) at an end point on the apple curve is normal to the line through the origin.

v
Apple curve

Shock polar.

Q>

Cx

To construct the conical flow with the sloge of the obstacle given, we locate the
point on the apple curve which intersects with thexdy = 1/6p through the origin. In
general, there are two intersections of which the one corresponding to the weaker shock
is more likely to occur in reality and is our main concern in the present paper.

3. Construction of Approximate Solutions

The approximate solutions to the system (1.4)—(1.7) will be constructed based on the
self-similar solutions and the elementary waves for the homogeneous system

(ou)x + (pv)y =0, (3.1)

(ou” + Py + (puv), =0, (3.2)
(puv)x + (pv° + P)y =0, (3:3)
P = P(p). (3.4)

The self-similar solutions have been considered in the first two sections. We now con-
sider the elementary waves for (3.1). The system (3.1) is strictly hyperbolic and its
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characteristic speeds are:

2 212
uv c(g c%)
A= o2 <0, (3.5)
=2 >0, (3.6)
u
uv c(q? — )12
A3 = 0. 3.7
3 M2—6‘2+ T g 3.7)

Its first and third characteristic fields are genuinely nonlinear and the second character-
istic field is linearly degenerate in the sense of Lax [6]. (For the non-isentropic flow, we
need to consider the energy equation and the system is not strictly hyperbolic with double
linearly degenerate eigenvalues:. Nevertheless, the system is completely hyperbolic
and our analysis can be easily generalized for it.)

In the following, (p, u, v) is denoted byw. Let S;(w—_) and R;(w_) denote the
Rankine—Hugoniot curve and the rarefaction curve fori thkaracteristic field, respec-
tively. Set

R (0-) = {0 : w € Ri(w-), andi;(®) = Ai(w-)),

S (w-) ={w:w e Si(w-), andir;(w) < S(w—, w) < A;(w-), sis the shock spegd
Ti(w-) = RN (0_) US; (w-), fori=13,

T2(w-) = Ro(w-)(= S2(w-)).

By straightforward computations, we obtain that
Row)=f{w:P=pP_, 2= (3.8)
u

and thatR;, i = 1, 3, are the integral curve of

du _ 5.
dv — )\1,

‘2—’: = p(Aju — v).

The Riemann problem for (3.1)—(3.4) with initial data a single jump can be solved by the
elementary waves taking values along the wave cufyes = 1, 2, 3, just described,
Lax [6].

To construct approximate solutions to (1.4)—(1.7), we adopt a generalization of the
Glimm scheme [4]. The obstacle is a perturbation of the infinite oghe = 6. In
the following figure, we exhibit the construction of the numerical grids to be described
below for the simplified case when the cone is perturbed only at one locatien:,
and with the change of angfg.
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=

y1(k)

O] 6p xg X1 ks

We now define the difference scheme. Choose the gridssize\ x for the variable
x. Suppose that the obstacle is unperturbed befereNgAx. For 0 < k < No, the grid
points are the intersection of= k Ax with the self-similar rays centered @, 0),

1
= Ut + hiro’

Inthis region, the approximate solution is the unperturbed conical flow centgi@dat
We choose the initial numerical grid an= Nps to satisfy the usual C-F-L condition.
The approximate solutions(x, y) = wa(x, y) and the numerical grids are defined
inductively ink, x = ks, k = No, No+ 1,, ..., as follows:

Choose an equidistributed sequelgeay, . .. in the unit interval(0, 1). Approx-
imate the obstacle by piecewise linear cones with changes in angle=aks, k =
No, No+1, ... . Suppose that the approximate solution and the grid points have been de-
fined forx < ks. Letthe grid points o = ks be denoted by = yo(k) < y1(k) < ...,
with y = yp(k) the location of the obstacle. The approximate solutigfs + 0, y) is
a piecewise smooth solution of the self-similar system (1.10) and (1.11) on each ver-
tical grid linex = Is 4+ 0. As part of the induction hypothesis, we assume that the
center(xg, 0) = (xo(/, & + 1/2), 0) of the self-similar variables = (x — xg)/y for
yn(l) <y < yp+1(1) have also been defined fbx k. We now define the approximate
solution for the regiorts < x < (k + 1)s. Fory, (k) <y < ypt1(k), w(ks +0, y) is
the solution of (1.10) and (1.11) with

w(ks + 0, yp + ar(yp1(k) — yp(k))) =wa (ks — 0, yu (k) + ar (yp1(k) — yn(k))),
h=01,...,. (3.9)

As noted before, the initial value above does not uniquely determine the solution of
the non-autonomous system (1.10) and (1.11) and the center of the self-similar variable
needs to be specified. We specify the center tabe0) = (xo(k, & + 1/2), 0), which

has been defined inductively, and this yields the self-similar variabte (x — xg)/y.

The discontinuities at the grid pointsAx, y,), h = 1,2, ... are resolved by solving

the Riemann problem for (3.1)—(3.4) with initial datai(ks + O, y, (k) — 0), w (ks +

0, y» (k) +0). The solution of the Riemann problem is a functiorof-ks) / (y — v (k))

and consists of rarefaction waves, shock waves or contact discontinuities.

y h=0,-1-2,....
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The approximate solutio@ (x, y), ks < x < (k+ s, yn—1/2(k) <y < yny1/2(k)
is defined according to (1.10) and (1.11) along the(say yj, (k))/(x — ks) = & with
the initial value atc = ks + O given by the solution of the above Riemann problem. As
before, we need to specify the centg¢s) of the self-similar variable. We do it according
to the principle that the center propagates away from the obstacle and toward the leading
shock. Let the upper edge of the 3-wave of the solution of the Riemann problem at
(ks, yn(k)) be(y — yp(k))/(x — ks) = a. Since the 3-wave moves toward the leading
shock, we set the center to bg(&) = xo(k, h — 1/2) (or xo(§) = xo(k, h + 1/2)) for
the region below (or above) the upper edge of the 3-wavea (or & > a.)

The numerical grids onm = (k+1)s are defined to be on the self-similar rays through
the grids onc = ks. The new center om = (k + 1)s inherits thoseg(§) onx = ks +0
through the random choice (3.9). The choice of the centers is natural. The choice of the
grid points is motivated by the study of moving sources in that the grids move along the
constancy of the underlining self-similar flow.

On the obstacle(x — ks)/(y — yo(k)) = og(k), a 3-shock (or 3-rarefaction) wave
emerges when the obstacle changes angle toward (or away from) the flow. For this, we
solve the initial-boundary Riemann problem for (3.1)—(3.4) with initial data:

wa ks +0,0) = wa(ks, ogk)), o < og(k)

and with a boundary condition posedsat= og(k):

u
= = ao(k).
v

The approximate solution is extended(tq y), ks < x < (k + 1s, yok) + (x —
ks)/oo(k) < y < yo(k) + 1/2(y1(k) — yo(k)) as before with centexg(k, 0) = ks —
o0(k)yo(k).

The leading strong shock cone next to the uniform upstream flow is traced contin-
uously, instead of the above random scheme. Suppose that the approximate solution is
constructed for 0< x < ks, k > No. Let (x, yr(x)) denote the locus of the front of
the 3-shock con& Suppose that;, (k) < ys(ks) < yj +1(k). We call the interval
yj;—1(k) <y < y;,+1(k) the front region at = ks. Inside the front region, we first
solve the self-similar solution to (1.10) and (1.11) with the initial value:

w(ks +0,yj,-1(k) + ak(yj, (k) — yj;—1(k))) = oa(ks — 0, yj,—1(k)
+ar(yj, (k) — yj—106))),

and with the same center as the initial value. Denote the solutiar(}y Next we solve
the Riemann problem for (3.1)—(3.4) so that

(po, uo, vo) = w4, for y > yr(x)
w(ks,y) =
o(yr(x)—0),  for ys(x) >y > y;—1(k).

The solutionw(x, y) thus contains a relatively strong 3-shock wage, , w_), with

speeds. Solve again Egs. (1.10) and (1.11) in the interwgl1 (k) < y < yy(x) with
the initial value '

wyrx)—0) =ow_.
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Denote the solution by_(y). Now, we can define the approximate solution in the front
region as follows:

oy, for y>ysx)
wa(x,y) = {w_(y), for ys(x) >y > yj,—1(k),

yfx) =S(x —ks) + yy(ks)

for ks < x < (k + 1)s. And the discontinuity ay = y;,_1(k) is resolved by the same
construction as before.

4. Local Interaction Estimates

We first study the interaction among the weak waves between the shock eodehe
obstacle cone. In order to obtain the desired estimates, we consider space-like curves,
which are piecewise linear curves consisting of line segments joinino ax+1,n-+1

or to ax—1.n+1, Whereay, = (ks, yn(k) + ax(yn+1(k) — yn(k)). The shock cone in

the first quadrant is covered by "diamonds," the corners of which are the mesh points,
ax,- Let A denote a diamond centered(&t, yj, (k)). We consider the following case.
Suppose that the waves enteringare denoted by and 8, which are centered at

((k — Vs, yp—1(k — 1)) and((k — 1)s, y, (k — 1)) respectively. Let denote the set of
waves issuing frontks, y, (k)) ands; the strength of the-wave ins. Let w1 (o), w2(6)
andws(6) represent the self-similar solutions centere®at O, and O, respectively

such that

a = (w2(01), w1(01)),
B = (w3(02), w2(02)),
3 = (w3(02), w1(02)).
o ando are the self-similar variables with the corresponding cenfgrand O» re-

spectively. To measure the potential nonlinear wave interaction, we use the following
notations:

0°%aA) = 0%, B)
= > {lesllB;1 : @ and; are approaching,
0X(A) = |a1|Ac + |ag| Ao,
0%(A) = |az| Ao,
¢ | x0Ao, if O1 ;é 0o,
Q (A)={o, it 01 = 05,
0(A) = 0°%A) + 0X(A) + Q3(A) + 0°(A),

whereAo = |o2 — 01| andxg denotes the change of the location for different centers.
Here, 00 measures the wave interaction between elementary waeand 02 mea-

sure the wave interaction between self-similar solutions and elementary wave3S and
measures the effect of the change of centers for self-similar solutions. Our interaction
estimate is as follows:

Lemma 4.1. For some constan® (1) depending only on system (1.4)—-(1¥x i < 3,
Si=oi+ Bi + 0(D)QO(A). (4.1)
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Proof. By the interaction estimates of elementary waves for conservation laws [12],

3i = (w3(02), w1(02));
= (03(02), w2(02)); + (w2(52), w1(02));
+ 0(1) 0%((3(62), W2(62)), (W2(62), W1(02))). (4.2)

It follows from the elementary theory of ordinary differential equations that

w2(02) — w1(02) = w2(01) — w1(o1) + O(D)(|a| + x0)(Jo2 — 01| + |02 — 51|)(- )
4.3

Note that|a, — 1| is equivalent tgo2 — 01| whenxg is sufficiently small. Since the
solution of the Riemann problem depends continuously on its end states, (4.2) and (4.3)
yield

Si=ai + i +0D)QO(A).
This completes the proofo

Remark 4.1.For the other cases, such as wheissues from((k — 1)s, ys+1(k — 1)) or
whenw2 andws have different centers, th@/’s can be defined with the same meaning
and the interaction estimate (4.1) holds by the same argument.

Remark 4.2 Whenh = 0, that is,A covers a part of the boundary of the obstacle cone,
we need to solve the boundary Riemann problemaol&tdg denote the waves issuing
from ((k — 1)s, y1(k — 1)) and ((k — 1)s, yo(k — 1)) respectively. By an analogous
argument, we have the interaction estimate:

§=383=pB+Coax+ 0O(1)Q(A), (4.4)
whereCo depends only on system (3.1)—(3.4).

As for the case involving the relatively strong 3-shock w8yvihe estimate is similar
to the above lemma except that instead of advancing one diamond, we need to advance
three diamonds in the front region simultaneously. We still denote these three diamonds
by A. LetAy , representthe diamond whose centegkis yj, (k)). Assumey1 € (O, %).
Then,

A= Apy1j-1U Apgnj, U Akgg jrt1

The case foug1 € [%, 1) can be treated by the same analysis. gestand for the
relatively strong 3-shock wave issuing froths, y ¢ (ks)). We denote byr the set of
waves issuing frontks, y;,—1(k)). The waves inx enteringA,1,;, are denoted by

o/ anda’ are the waves enteringx+1,j,+1. Let y be the set of waves issuing from
(ks, yj,—2(k)) and entering&kﬂ,jf(k)ﬂ. Setw1(y) (or w1(6)) andwaz(y) (or wz(o)) to
be the self-similar solutions such thit connectsog = (oo, o, vo) andws (y), anda!
connectsor (y) andwz(y) atx = ks. Let Bi4+1 denote the strong 3-shock issuing from
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((k +1)s, ys((k + 1)s)). § denotes the wave issuing froftk + 1)s, y;,—1(k + 1)). In
this case, we set
0°%(A) = Q% o) + Q%" ).
0'(A) = |o!|Acy + |y1l Aoy, + |y3] Aoy,
0%(A) = |y2|Acy,
0°(A) = x0Aoy, if w1(y) andwz(y) have different centers,
— 10, if w1(y) andw>(y) have the same center.

Here, Ao simply means the change of the self-similar variable for the corresponding
wave as it propagates through the self-similar solution. In this @e&ge = |o (y;, (k +

1) —o(yj,—1k)andAoy, = |o(yj,—1(k+1) —o(yj,—2(k)|. Aog, = |oy(k+1)—
or(k)|, whereo s (k) represents the value of the self-similar variabléor the shock

Br . In the following, O (1) always represents a constant depending only on system
(1.4)—-1.7).

Lemma 4.2. Suppose thag; is sufficiently small. Then there exists a small constant
co = O(1)|Bx| such that

Brr1 = B +af + 0D Q°(B, o)
+0(1)Acg, + 0L)|a'|Acy + O(1)Q°(A),
8 = o +7;+ 0 { 0B @) + 0°@", 1)} + OWcoray,
+0(1)|a’|Aaa + 0(1)|y|Aoy +01)Q°(A), for 1<j<3.

Proof. Owing to the interaction estimates of the elementary waves for conservation
laws, we have

(wo, w2(or(k +1)); = (wo, w1(op(k + 1)) ; + (walopk + 1)), walor(k + 1)));
+ 0(1) Q°%((wo, w1(opk + 1)), (wioypk + 1)), walor(k + 1))). (4.5)

And by (2.7), there exists a small constagt= O (1)|B«| such that

0(DcoAog,, j =1,2,

’ k+1)): = ’ ) 4.6
(@0, er(@s D0y = (00, o1 0r NI+ g gy, j—3 OO

when gy, is sufficiently small. Also,

(wi(ofk + 1)), (walofk + 1)) = (@1(yj;-1(k)), w2(yj,-1(k))),
+O0D)d!|Acy + O(DQ°(A).  (4.7)
Thus, (4.5)—(4.7) imply that
Bi+1 = (w0, w2(0f (k + 1)))3 = (wo, w)

= Br +ai + 0%k, o)
+0(DAcg, + 0! |Acy + O(D) O (A). (4.8)
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Denote the end states 8fby (5_, §1). To estimate the strength éf we first apply
Lemma 4.1 to obtain

(02(yj;-1(K)), 84); = +yj + 0% ¥) + 0)ly|Acy,.  (4.9)
By the elementary theory of ordinary differential equations, we have

(60—, w2(yj,;—1(k)))j = (ws, w2(05(k + 1)) ; + O(D)|wx — w2(0r(k + 1))[Aoy.
(4.10)

Hence, (4.5)—(4.10) yield
8j = (6-,84);
= o) + 75+ 0 {0°B.a) + %", )]
+0(DcoAcg, + O |Ace + O(D)ly|Ac, + O()Q(A).
This completes the proofo

We now establish the basic estimates on the change of speed of 3-waves and 2-waves.
As 3-waves (or 2-waves) propagate along self-similar solutions, the characteristic speed
A3 (or A2) is monotonely increasing with respectd¢o

Lemma 4.3. Suppose thatv(c) = (p(0), u(o), v(o)) is a self-similar solution to
(1.10) and (1.11). Then,

@) %)»2(0) >0,
(ii) ik( )>0
i 7o 3(o0) > 0.

Proof. (i) By (1.10),

d d
—A2(0) = —

do do

v(o) Vgl — Vg —(ou + v)uy
u? - u?

u(o)

N d d d . .
(i) To compute—A3(o), we need to know-> and £<.. Applying Bernoulli's law, we
do do do

obtain
udu + vdv = —czdp/p.
It thus follows from (1.10) and (i) that

dp —p
Jo (uus + UUo)c—z

=(u —av)ug_—f > 0.
c

Hence,

dc 1 dp
— = _—_P"(p)— > 0.
do 2c ('O)da -
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Sincels satisfies
(v — rgu)® — c2(L+23) =0,

differentiating this equation with respectdoyields
d
(®r3+u— ha) ——a(0) = (v — hau)(vy — Agto) — e (1+ A3).  (4.11)
o

Substitutingr3, we have

czkg +u(v— A3zu) = (C2 — uz)kg + uv

= —uv —c,/qz—cz—l-uv
= —cy/qg?—c? <.

Applying (1.10) again, it is easy to check that the RHD of (4.11) is negative. Hence, it
follows that

d
Ekg(a) > 0.

This completes the proofo

We now turn to the interaction between self-similar solutions and elementary waves.
To quantitatively measure how the elementary waves weave through self-similar solu-
tions, we estimate the change of the angle between the elementary wave and the ray
through the center of the wave itself, as shown in the following figure.

A
o
/Z/
T W
——

X0 X

04 (x) denotes the angle associated with the wavesuing fromx. The self-similar
variableo is employed in place of to describe the coordinate in tiee, y)-plane. The
following lemmas show thai(x) is decreasing with respect iofor 2-waves and the
relatively strong 3-shock.

Lemma 4.4. Suppose that S fwg, 1) at (x, o1). At the next step, S fwo, wp) at
(x + Ax, 02) by the construction described in Sect. 3. Then we have

Os(x) — Os(x + Ax) = [0(D)||or — o2].

Proof. Let s; denote the shock speatwg, w;), i = 1, 2. Assume that;, > U—ll The
other case can be proved by analogous arguments.
Let w (o) denote the self-similar solution with the initial data

w(o1) = w1.
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Due to the construction of approximate solutions in Sect. 3, we need to solve the Riemann
problem(wo, w(02)). Hence,

(w0, w2) = (wo, w(02))3.
As o1 decreases @, w (o) moves along the integral cur¢e, v(u)) to (1.10) and (1.11)
and below the shock curn&(wp) on the(u, v)-plane. By (1.10)p, < 0. This property

together with the fact thaft; andT» have positive slopes on thig, v)-plane implies that
$ < s and thus

st — 2 =|0(1)|lor — o2
Therefore, we have
Os(x) — Os(x + Ax) = [0O(D)]|lo1 —0o2|. O
Lemma 4.5. Suppose that = (wy;, w,) is a contact discontinuity atc, o1). At the next
step,a = (0, @) at (x + Ax, o) by the construction described in Sect. 3. Then we
have
0o (x) — Oy (x + Ax) = |O(D)||o1 — 02.

Proof. Sets; = s(w;, w,) ands; = sy, o, ). Assume that the wave spegd> 0—11 and

o1 > oz. The other cases can be proved by analogous arguments; (bgtandw, (o)
denote the self-similar solutions to (1.10) and (1.11) with the initial data

wy(01) = wy,

wr(01) = wr,
respectively. Due to the construction of approximate solutions, we obtain
(@1, &) = (w1(02), ®r(02))2.
It follows from Lemma 4.3 that

r2(wi(02)) < A2(wp), (4.12)
r2(wr(02)) < A2(wy). (4-13)

And by Lemma 4.1, we have
(wi(02), wr(02))j = O(D]w; — wrllo1 — 02| (4.14)
for j =1, 3. Hence, (4.12)—(4.14) yield that < s; and
S —s1= 0(D]o1 — 02|
It thus implies that
Oo (x) — b (x + Ax) = [0 (D)]|o1 — 02|

This completes the proofo
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5. Global Existence

In this section, we adopt the difference scheme described in Sect. 3 to prove the global
existence of the solution to (1.4)—(1.7). The obstacle is approximated by piecewise
linear cones with the change ofanglgi = 1,--- ,n, atx = Nps, --- , (No+n —1)s
respectively, and the corresponding centers for these linear coneé,aaga N 74
respectively. For convenience, we prove the simplified case when the cone is perturbed

only at one locationr = x; and after the perturbation, the obstacle is the infinite cone
X — X0

= op With its corresponding center locatedxat= xé = xo; hence, the self-

X — X0
S

similar variabler equal . Nevertheless, the functionals to be constructed below

Y
are also true for general situations.

The proof requires estimates on the total variations of the approximate solutions
wa(x, y). Our strategy is to use induction on certain nonlinear functionals constructed
to detect global wave interactions. Once this uniform bound is established, with the aid of
Helly’s theorem, we can extract a convergent subsequengg @f, y) in L}OC(RZ), and
by the consistency theorem (Liu [10]), this subsequence converges to a weak solution
w(x, y) to the system (1.4)—(1.7). Ldtbe a space-like curve. To establish the uniform
bound, we define a nonlinear functionfa{J) as follows:

F(J)=LWJ)+K0(),
L(J) = Lo(J) + L1(J),
Lo(J) = Z {cqla| : a is the strength of any elementary waves crossing
J anda # S},
L1(J) =06s(J) + Z{Ga : 0 IS a contact discontinuity crossing,
Q(J) = Qo(J) + Q1(J) + Q3(J) + Qc(J),
Qo(J) = Z {laB| : @ andpB are strengths of elementary waves which are
approaching, and crosy ,

01(J) = Z {la|(00 — 0y) : & is a 1-wave crossing},
03(J) = Z {la|(oq — 0c) : @ is a 3-wave crossing anda # S},

Qc() =) 0L,
i=1

QL) = (xh — x6 D(OL() —00), (=0
Here

{ Co, whena is a 1-wave or 2-wave.
Cq =

1, whena is a 3-wave.

Co is the same constant as in Remark 4.2, which depends only on system (1.4)—(1.7).
o, denotes the -coordinate of the center for the waueag(J) is theo-coordinate of
the grid point where the center of the self-similar solutions passing thréugtanges
from x(’)‘l to x{). If the centers do not change anymo,(J) = 0. Andos(J) is the
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o-coordinate of the 3-shocB whenS crosses/. o, = os(0) — ¢, for some suitably
chosen small constaat And K is some large number to be determined later.

The termsQ’s are defined to detect the potential amount of wave interactions in
the solution. Since 3-waves and 1-waves betwSemd the obstacle move upwards
and downwards respectively with respect to éheoordinate Q3(J) andQ1(J) are so
defined according to the domain of influené®(J) is the amount of the usual waves
interactions between elementary waves. ApdJ) is defined to measure the effect
of the change of centers for self-similar solutions, which also reflects the fact that this
effect propagates upwards. As for the 2-waves nearby the obstacle boundary and the
relatively strong shocks, we do not know a priori how they move ahead. Consequently,
we cannot foresee their potential wave interactions. However, the local analysis gives
us a decreasing quantify which constituted.1(J). We will show that the decrease in
L1(J) is sufficient to dominate the increase in the remaining pars(df).

We now give the global interaction estimates. Let O stand for the space-like curve in
the stripNgs < x < (No + 1)s. A represents the region between 0 andnd Q(A) is
the sum over alD (A), A any diamond inA.

Lemma 5.1. Suppose thak(0), oo — o and ) _;_, 6; are sufficiently small. For suffi-
ciently largeK , we have

1 n
FU) = FO =500 +C1) 60— (Z Aos(Ji) + ) A%) ., (5.2)
k

i=1 o2

1 - 1
QW) = Q0) = 50(M) + Q*(M) + ) 6: + 5 ) Aos(i), (5.2)
k

i=1

whereC; andc; are positive constants depending only on system (1.4) -(1.7)/@sd
are all the space-like curves between 0 ahd) _, Aos(Ji) is the sum taken over the
change ofos(J;). And Zaz Aoy, is the sum over the change @ffor all the contact
discontinuities inA.

Proof. We choose

€= (F(0)+C129i) cl_l.

i=1

K, C1 and ¢y will be determined later. We will prove by induction. Fér= 0, we

can choosd.(0) and Q(0) as small as needed. Suppose that (5.1) and (5.2) have been
shown forJ = J;. It thus follows from (5.1) thats(J1) > oc. Let Jo be an immediate
successor and. denote the diamond betwedn and J>. To show that (5.1) and (5.2)
hold for J = J, we divide the proof into three cases:

Case 1. A is between the shock coisand the obstacle cone.
Let us consider the case whenis under the same setting as Lemma 4.1. The other
cases can be proved similarly. With the help of Lemma 4.1 and 4.5, we obtain

Lo(J2) — Lo(J1) = 0(DQ(A),
L1(J2) — L1(J1) = —|0(D)]Ac + 0(1H) Q(A),
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where the term-| O (1)| Ao is due to the change of the andlg if the contact discon-
tinuity ap # 0in Lemma 4.1,

Qo(J2) — Qo(J1) < O(DLo(J1)Q(A) — Q%(A),
(Q1+ 03)(J2) — (Q1+ 03)(J1) < O(D)Q(A) (00 — 0c) — QH(A),
0c(J2) — Qc(J1) = —Q°(A).

It follows from the above inequalities that
0(J2) — Q(J1) < O(1) (Lo(J1) + (00 — 0¢)) Q(A) — (Q(A) - QZ(A)) )

and thus
3
Q) = Q(J1) = =7 0(A) + 0%(A), (5.3)

provided thatZ (/1) andog — o, are sufficiently small. Therefore,
K
F(J2) — F(J1) = (01 — E)Q(A) + K Q%(A) —0(D)|Ao. (5.4)

Note thatQ?(A) is a quadratic term an@?(A) < Lo(J1)Ao. Hence, wherF (Jy) is
sufficiently small, by choosing suitably large const&ntwe have

1
F(J2) — F(Jy) = _EQ(A) —c1Ao

for some positive constani. By the induction hypothesis, it thus follows that

1 n
F(J) < F(O) = 50(A2) +C1) 6 —c1 (Z Aos(Ji) + ) A%) ,
k

i=1 o2

1 - 1
Q()2) = 0(0) = 50(A2) + Q*(A2) + ) _6i + 5 ) Aos(p),
k

i=1

whereA is the region between 0 andd. Thus, (5.1) and (5.2) hold fof = J».

Case 2. A covers a part of the obstacle boundary.
Let us consider the case whenis under the same setting as Remark 4.2. The other
cases can be proved similarly. Using Remark 4.2 and Lemma 4.5, we have

Lo(J2) — Lo(J1) = 0(DQ(A),
L1(J2) — L1(J1) = —|0(D)]Ac + 0(1H) Q(A),

where the term-|O(1)| Ao is due to the change of the anglg if the contact discon-
tinuity oz # 0 in Remark 4.1. Also,

Q0(J2) — Qo(J1) < O(DLo(J1)Q(A) — 0%(A),
(Q1+ 03)(J2) — (Q1+ Q3)(J1) < O (el + Q(A)) (00 — o) — QH(A),
0c(J2) — Qc(J1) = —Q°(A).
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Thus,
0(J2) ~ Q1) = O) (LolJ) + (00 — 6)) O(A) — (2(A) - 0*(4))
+ 0lalloo — ocl.

WhenL(J1) andog — o, are sufficiently small, the last inequality yields

3
Q) — Q1) = =70(A) + 0%(A) + 0(V)|al|oo — oc|. (5.5)

Therefore,

K
F(J2) = F(J1) = (0(D) = 5)Q(A) + K 0*(8) = |0(1)| Ao + O(D)K al oo — oc].
(5.6)

By telescoping the estimates of the three cases for every step betweenJp, anel
obtain from (5.3)—(5.8) (see also Case 3)

K
F(Jl2) = F(0) = (0(D) — 5)Q(A2)

+ 0K (Z 0+ Q(A2) +coy Aos(fk)> o0 — oc|

i=1 k

+>° (K 0%@an - 10W)ac)
k

+10M| (K (00— 00) + co— 1) Y Aos(Ji)
k

+ (Z 0 + 0(HQ(A2) + O(D)eo Y AUSUk)) :
i=1 k

3
Q) = 0(0) = =3 0(A2) + 0%(A2) + 0(D)

Z 1
: (Z 0+ Q(A2) +co) Aasuk)> o0 — el + 5 ; Aos(Ji),

i=1 k

whereAy is any diamond between 0 anfd. When F (J3) is sufficiently small andk
sufficiently large, we obtain

1 n
F(J) < FO) = 500 +C1) 6 —c1 (Z Aos(Ji) + ) A%) :
k

i=1 a2

1 " 1
Q()2) = Q(0) — 50(A2) + Q*(A2) + Y _6i + 5 ) 05Uk,
k

i=1

where A3 is the region between 0 anid. C1 andc; are positive constants depending
only on system (1.4)—(1.7). Thus, (5.1) and (5.2) holdfot J>.
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Case 3. A is in the shock front region as in Lemma 4.2.
Let us consider the case whanis under the same setting as Lemma 4.2. The other
cases can be proved similarly. By Lemma 4.2 and 4.4, we have

Lo(J2) — Lo(J1) = O(1)Q(A) + O(D)cpAos(J1),
whereAos(J1) = |os(J2) — os(J1)|. And
L1(J2) — L1(J1) = —[0(D[Ac+0(D) Q(A)+ O Q)coAos(J1)+ (0s(J2) —Os(J1)),

where the sum-| O (1)| Ao is due to the change of the anglg if the contact disconti-
nuity y» # 0in Lemma 4.2. And

Q0(J2) — Qo(J1) < O(D)Lo(J1)Q(A) — 0°%(A)
(01+ 03)(J2) — (Q1+ 03)(J1) < O(1)Q(A) (00 — 0¢)
— 01(A) + 0(V)Acg(J1) (00 — 0¢)
0c(J2) — Qc(J1) = —Q°(A).

Hence,

0(J2) = Q1) = 0D (Lo(J) + (00— 50)) Q(A)
~ (08 = Q%)) + 0 ATy ()l - ocl.

If L(J1) andog — o, are sufficiently small, we have

3 1
0(J2) — 0 = _ZQ(A) +0%(A) + ZAU/S(-/ZL)- (5.7)
Thus,
K
F(J2) — F(J1) = (0 — E)Q(A) +K0%(A) — |0(D)]|Ac
+O(D)(K (00 — 0¢) + co) Aos(J1) — |0 ()| Aos(J1) + |o'(5.8)
By telescoping the estimates of the three cases for every step betweenf) aechave

K
F(J2) < FO) +(0() = 5)Q(h2) + ) (K QX&) — 10(D)| Aoy )
k

+H O (K (00— 0e) +co—1) Y Aos(i)
k

+O(DK (Z 0+ Q(A2) +co ) AUSUk)) oo — o

i=1 k

+ (Z 0 + 0(HQ(A2) + O()co Y Aos(Jk)> :

i=1 k

3 1
0(J2) = Q(0) = 70(A2) + 0%(Ap) + 2 ; Aos(Ji)

+0(D) (Z 0+ Q(A2) +co )y | Aasma) loo — ol

i=1 k
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Thus,

1 n
F(J) < FO) = 500 +C1) 6 —c1 (Z Aos(Ji) + ) A%) :
k

i=1 o2

1 " 1
Q(J2) = 0(0) — 50(A2) + Q* (M) + ) 6i + 5 ;as(fk),

i=1

provided thatk is large enough. Thus, (5.1) and (5.2) hold fo&= J>.
Furthermore, by Lemma 4.2, (5.1) and (5.2), we can establish the estimate of the
strength of the relatively strong shock:

IS = 0D Sl (5.9)

where|S| denotes the initial strength.
This completes the proofo

Remark 5.1.It is to be noted that the assumption in Lemma 5.1 can be achieved by
choosing the Mach numbeéf = go/co sufficiently large. For simplicity in the presen-
tation, we assume that the gas is polytropic. As the shock stré®gttends to zero, its
correspondings tends to go_—u by (2.5). By direct computation, we obtain

—4q0

- 2
oo (o)
U—-qo o
Hence, we can choos& — o, in Lemma 5.1 sufficiently small by simultaneously
requiring|S| sufficiently small and the Mach number sufficiently closedo

The global existence theorem thus follows from Lemma 5.1 and the consistency
theorem [8].

Theorem 5.1. Suppose that the opening andg of the obstacle cone and the initial
strength|Sy| of the relatively strong shock are sufficiently small and the Mach number
M = Z—g is sufficiently close teg. Then the initial boundary value problem (1.4)—(1.7)
as stated in Sect. 3 has a global solutiorx, y) satisfying

Total Variation {w(x,y):0<y < oo} = 01|,

provided that the perturbation is small as compared to the shock strefgth

6. Decay of Solutions

In this section, we study the rate of the convergence of the solutiany) to a self-
similar solution. We use the following notationg.denotes amn-generalized character-
istic curve [5], which is a Lipschitz continuous curve traveling either vigihock speed

or with i-characteristic speed. The one-sided limits of the weak solution exist along any
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such curves except possibly for a countable set ahd ani-wave may crosg; only
due to interactions. We set

X3 = (x,ys(x), x=x
the 3-generalized characteristic curve issued ftamos) ,

Xg(x) the 3-generalized characteristic curve issued ftonwg) ,

X}(x) = the j-generalized characteristic curve issued framys(x)).
Suppose tha,tll(x) ends atc = X wheno = op. We set
Xs?(x) = the 3-generalized characteristic curve issued ftdnay).

The Lax entropy condition implies thgg(x) andxg(x) enter the relatively strong shock
Shefore0(1)|S1x.
To study the decay rate of the solutierix, y), we define the following functions:

X(x) = Z{|a| :aisa3-wave ora l-wave at o # S},
Y(x) =) {la| : a is a 2-wave ak},

Y(x) =) {lolfu(x) : o is a 2-wave ak},

Z(x) = |S(x)|0s(x),

whereS(x) is the strength of the relatively strong shdghkt x. Q(x) denotes the limit
of O(J) as the mesh lengthss tend to zero, wheré is a space-like curve approaching
x = X. We choose a sufficiently large numbersuch thatQ.(x) = 0 forx > x».

Lemma 6.1. There exist some constamis > 1, k1, ko depending only on system (1.4)—
(1.7), andC = 0(1)|S|~* depending on system (1.4)—(1.7) and the shock streéBgth
such that forx > xop,

X(Cx) < MI(x), (6.1)
Y(Cx) < C7M9Y (x) + M| 2(X (x) + 1 (x)), (6.2)
Z(Cx) < C™*% Z(x) + M|S|(X (x) + I (x)). (6.3)

Here $ is the initial strength of the relatively strong shock, ahg) is due to wave
interactions defined by

1(x) = X ()% + 1Sl X (x) + Y (x) + Z(x).

Proof. According to Lemma 5.1, there exists some constagntdepending only on
system (1.4)—(1.7) such that

F(J) < Ca|S0l%,

for any space-like curved provided that the hypothesis of Theorem 5.1 holds. It thus
implies that

Y(x) < C2lSl%, (6.4)
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Os(x) + > {fa(x) : o is @ 2-wave) < Ca|Sl*. (6.5)

Sincex2(x) and2(x) enterys beforeCx, C = 0(1)|S|~2, 1-waves and 3-waves in
X (Cx) are those produced by wave interactions; hence, we have from (6.4), Lemma 4.1
and 4.2,

X(Cx) < O(1) (X(x)2 +1SIX () + Y (x) + Z(x)) .

for x > x2. Applying Lemma 4.5, we obtain the decay ratedpf

a >k103 , (6.6)

0o (Cx) = Oy (x) (a

provided that a contact discontinuityinteracts only with a self-similar solution. Here,
k1 is a constant depending only on system (1.4)—(1.7). It follows from (6.4)—(6.6) that

V() < ISP+ Y a@)a(n)C % 4 01)CIS2(X (x) + 1(x)
a: 2-wave

< CM%y (x) + 0(1)|S12(X (x) + 1 (x)).

By Lemma 4.4, we can derive the decay rat@of

il )k”‘z , 6.7)

Bs(Cx) = O(x) (a

provided that the relatively strong shoSknteracts only with a self-similar solutioky
is a constant depending only on system (1.4)—(1.7). Therefore, (6.7), Lemma 4.1, 4.2,
and 5.1 yield
Z(Cx) < |S(Cx)| (e)s(x)c—k%’e2 +OMX(x)+ 0(1)](x))
< C_kz"GZZ(X) + O(DISI(X (x) + I (x)).

Now, we can choose a sufficiently large numbgsuch that (6.1)—(6.3) hold far > x».
This completes the proofo

Theorem 6.1. For givene > 0, suppose that the hypothesis of Theorem 5.1 holds,
the solutionw (x, y) to system (1.4)—(1.7) converges to a self-similar solution at the
following rate:

X(x) < Mix~ 7,
Y(x) < sz*Tis, (6.8)

Z(x) < Magx~ 7,

whereM;, i =1, 2, 3, are some constants dependingspfSy| and system (1.4)—(1.7).
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Proof. We shall prove by induction. Set

My = Co|Sol(Cx2) 7%, My = M3 = C|S|2(Cxp) 257,

so that (6.8) holds far < Cx». Suppose that (6.8) holds for< C?xz, p > 1. We want
to establish (6.8) fo€ x> < x < CP*1x,. By Lemma 6.1 and the induction hypothesis,
forx < CPxop,

X(Cx) < MI(x)
< M(X (%)% + Sl X (x) 4+ Y (x) + Z(x))
<M (foﬁze + S| M1x T + Mox T + ngﬁ)

< My(Cx)7

when|S| is sufficiently small, which depends also enAlso by the same argument,
we have

Y(Cx) < CM9%2y () + MISA(X (x) + 1 (x))
—k10'2 -1 2 -1 -1
< C7M9% Mox 7T + M|S|? (Max T + M1(Cx) T

—1
< M3(Cx)Ze,

Z(Cx) < C™%% Z(x) + M|So|(X (x) + 1 (x))
< €727 Mg 7i% + M|Sol (M1x 7% + Ma(Cx) 77 )

< M3(Cx) %

Therefore, (6.8) holds fofx < x < CP*1x,. The proof is complete.o
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