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Abstract: We show that the 3-dimensional supersonic gas flow past an infinite cone is
nonlinear staple upon the perturbation of the obstacle. The perturbed flow exists globally
in space and tends to the self-similar flow downstream. There is a thin layer of concen-
tration of vorticities and entropy variation. Our analysis is based on an approximation
scheme using local self-similar solutions as building blocks. This enables us to obtain
global estimates of the nonlinear interactions of waves needed for the stability analysis.

1. Introduction

We are concerned with inviscid gas flow in three space dimension. The compressible
Euler equations are:

ρt +
3∑

i=1

(ρui)xi
= 0 (Conservation of mass), (1.1)

(ρu)t +
3∑

j=1

(ρuiuj )xj
+ Pxi

= 0, i = 1, 2, 3, (Conservation of momentum),

(ρE)t +
3∑

i=1

(ρEui + Pui)xi
= 0, (Conservation of energy), (1.2)

P = f (ρ, S) (Equation of state), (1.3)

where(u1, u2, u3) is the velocity,ρ the density,P the pressure,e the internal energy,
E = e + (u1

2 +u2
2 +u3

2)/2 the total energy, andS the specific entropy. The system is
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quasilinear hyperbolic and a general flow contains shock waves, which greatly compli-
cate the analysis. However, in the presence of symmetries, the flow becomes self-similar
and the system may be reduced to ordinary differential equations. In the present paper,
we are inerested in steady flow past an infinite cone, with axis in thex1 direction, and its
stability with respect to perturbation of the cone. Such flow has cylindrical symmetry,
the dependent variables are functions ofx ≡ x1 and the distancey ≡ √

x2
2 + x3

2 from
the axis. Letu andv represent the axial and radial components of velocity,

u1(x1, x2, x3) ≡ u(x, y), (u2, u3)(x1, x2, x3) ≡ (
x2√

x2
2 + x3

2
,

x3√
x2

2 + x3
2
)v(x, y).

With the additional simplification that the flow is isentropic, the Euler equations are
reduced to:

(ρu)x + (ρv)y = −1

y
(ρv), (1.4)

(ρu2 + P)x + (ρuv)y = −1

y
(ρuv), (1.5)

(ρuv)x + (ρv2 + P)y = −1

y
(ρv2), (1.6)

P = P(ρ). (1.7)

When a uniform supersonic flow

(u, v) = (q0, 0)

hits the obstacle, which is an infinite cone

y/x = θ0,

and the angleθ0 of opening at the vertex is sufficiently small, the conical flow can be
constructed by studying self-similar solutions. The flow is deflected by an attached shock
front beginning at the vertex and is continued so that the state of the air is constant on
each concentric cone behind the shock cone and is parallel to the obstacle cone. The
simplification is due to the fact that, between the shock and obstacle cones, the flow is
isentropicS = S0 and irrotational:

vx = uy, (1.8)

and it follows from (1.4)–(1.7) that

(1 − u2

c2 )ux − 2uv

c2 vx + (1 − v2

c2 )vy + v

y
= 0. (1.9)

Here the sound speedc is a given function ofu andv through Bernoulli’s law. The flow
depends on

σ ≡ x/y

and the equations are further reduced to a system of ordinary differential equations:
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vσ + σuσ = 0, (1.10)

(1 − u2

c2 )uσ − 2uv

c2 vσ − (1 − v2

c2 )σvσ + v = 0. (1.11)

Such self-similar flow is suggested by Busemann([1]), who gave a graphical method for
obtaining them, see Sect. 2.

We consider a more realistic case when the obstacle is a perturbation of the infinite
cone. The shock front and the flow behind it are conical until the expansion wave and the
shock wave coming from the bendings of the obstacle interact with the conical flow and
the shock front. The flow then becomes rotational and, in general, contains infinitly many
interacting shock waves. The main questions are: With all these wave interactions, does
a solution exist globally? Is it stable with respect to the perturbation, for finitex and also
asymptotically asx → ∞? We answer these questions affirmatively and show that the
long-range behavior of the flow is self-similar corresponding to an infinite cone with the
asymptotic angle of the perturbation. In particular, the flow between the leading shock
and the obstacle tends to be irrotational and isentropic. In fact, there is a boundary layer
of high concentration of vorticity and entropy variation. The width of the layer tends to
zero asx → ∞. This can occur, of course, only for inviscid flow; for the viscous flow
the vorticity would propagate into the flow. Nevertheless, experimental evidences show
that the inviscid flow still accurately represents the actual flow, Courant–Friedrichs [3].

System (1.4)–(1.7) can be regarded as one-dimensional hyperbolic conservation laws
with a source. There is a general existence and time-asymptotic theory, Liu [9, 10] and
Lien [7], for a system of the form

ut + f (u)x = g(u, x).

The main idea is to recognize that solutions, which are function ofx only,

f (u)x = g(u, x),

are normal modes. The idea is then to approximate the solution by a piecewise smooth
function consisting of these modes and then to study the nonlinear interaction of waves
resulting form the resolution the discontinuities. This is done modifying the random
choice method of Glimm [4] for hyperbolic conservation laws

ut + f (u)x = 0.

This approach applies when the source is finite, i.e.∫ ∞

−∞
|g(u, x)|dx = O(1).

However, the source term here(
−1

y
(ρv),

−1

y
(ρuv),

−1

y
(ρv2)) is not finite both at the

origin and for largey and the above theory does not apply. (To make the comparison,
the independent variables are related by(x, t) → (y, x).) This simply means that so-
lutions, which are functions ofy only, play no natural role here. Nevertheless, the idea
of identifying the normal modes for approximating the general solutions is shown to
work in the present situation. We choose instead the self-similar solutions for (1.10) and
(1.11) as the building blocks for the construction of solutions to (1.4)–(1.7). Besides the
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difference between the finite source and the present situation, one also notes that, unlike
the finite source case, the system (1.10) and (1.11) is not automous. This reflects the
fact that a self-similar solution is determined not only by its value at a location(x, y),
but also by the origin of the self-similatity. For the perturbation of the infinite cone, the
suitable origin(x0, 0) changes with the location(x, y), x0 = x0(x, y), and so does the
self-similar variable

σ = σ(x, y) = x − x0

y
.

For flow next to the obstacle, there is the clear choice ofσ = 1/θ , θ the slope of the
obstacle. We allow this choice to propagate into the flow by the 3-waves. The numer-
ical grids are moving along the constancy of the self-similar variable. The dominant
shock next to the uniform upstream flow is traced, cf. Chern [2]. The construction of
approximate solutions is done in Sect. 3.

Our analysis is based on the estimates of local wave interactions. Besides the in-
teraction of elementary waves for the Riemann problem, one needs also to study the
interaction of elementary waves and self-similar solutions, as well as the waves pro-
duced due to the changes in the origin(x0, 0) across a 3-wave. As with other studies of
nonlinear waves, stability follows from the decoupling of waves, that is, wave interac-
tions must decay. For hyperbolic conservation laws, this has been extensively studied,
starting with Glimm-Lax [5]. A key observation here is that the angle between the self-
similar rays,σ = constant, and the shock and entropy waves decreases after interaction.
These estimates are studied in Sect. 4.

The local estimates allow us to introduce a global functional on nonlinear wave
interactions to control the variation of the approximate solutions and thus prove the global
existence of the solution in Sect. 5. The functional is defined also to take into account the
fact that 1-waves are reflected by the obstacle to become 3-waves, and 3-waves propagate
toward and then are combined with the dominant shock. These global wave estimates
allow us in Sect. 6 to study the asymptotic behaviour of the flow asx → ∞. The entropy
waves, 2-waves, approach the obstacle and form the aforementioned boundary layer.
The flow pattern eventually tends to a self-similar solution corresponding to the conical
flow for the infinite cone without any deflections.

2. Self-Similar Solutions

In this section, we briefly review the quantitative analysis of shock polars and the con-
struction of conical flow. We refer the readers to Courant and Friedrichs [3] and the
references therein for more details. For simplicity, we assume that the flow is isen-
tropic and consider the systems (1.4)–(1.7) for general flow, and (1.10) and (1.11) for
self-similar flow. We consider the polytropic gases:

P = Aργ , γ > 1.

2.1. Shock polars.Consider a shockS in the (x, y)-plane with the upstream state of
velocity q0 = (q0, 0) and the downstream state of velocityq1, which makes angleθ
with the upstream flow. The angle the shock makes with the upstream flow is denoted
by β.
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There is a one-parametric family of possible states, with velocityq1, which can be
reached through a shock. These possible states are given by the Rankine–Hugoniot
conditions of the conservation of mass, momentum and energy. On the phase space of
the velocityq = (u, v), the statesq1 lie on a curve, called the shock polar. LetN andL be
the components of the velocityq normal and tangential to the shock lineSrespectively.
We have

u0 = q0, v0 = 0,

u1 = L1 cosβ + N1 sinβ, v1 = L1 sinβ − N1 cosβ, (2.1)

L1 = L0 = q0 cosβ (Continuity of tangential component),

N0 = q0 sinβ.

From the conservation laws, Bernoulli’s law for steady flow holds across a shock
front:

1

2
q0

2 + i0 = 1

2
q1

2 + i1 = 1

2
q̂2, (2.2)

wherei is the specific enthalpy. For a polytropic gas,P(ρ) = Aργ , γ > 1, we have

i = c2

γ − 1
, (2.3)

wherec = √
P ′(ρ) is the sound speed. We setµ2 = γ − 1

γ + 1
andc∗ = µq̂. The above

identities yield the Prandtl’s relation:

N1 = (c∗)2 − µ2L2
0

N0
. (2.4)

By (2.1)–(2.4), we obtain the relations

u1 = (1 − µ2)q0 cos2 β + c2∗
q0

,

v1 = (q0 − u1) cotβ.

Eliminating the angleβ, we find

v2 = (q0 − u)2 u − ũ

U − u
, (2.5)
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whereũ = c2∗
q0

andU = (1−µ2)q0+ ũ. The curve in the(u, v)-plane given by Eq. (2.5),

the shock polar, is the Folium of Descartes as shown in the following figure:

2.2. Conical flow.Now consider a conical body facing a supersonic stream of air at
a uniform velocityq0 = (u0, 0). Assume that the obstacle is an infinite cone with its
vertex located at the origin in the(x, y)-plane. A shock waveS is formed and situated
on a concentric cone where an abrupt change in density and velocity occurs. Between
the shock and the obstacle cones, the flow is self-similar.
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The self-similar flow satisfies the ordinary differential equations (1.10) and (1.11).
There are two boundary requirements for the solution: The first requirement is that the
flow velocity next to the obstacle is parallel to the obstacle. This is the natural condition
for the inviscid flow. The second requirement is that the self-similar variableσ = x/y

next to the shock equals 1/θS, θS the slope of the shock. This is needed because the
flow variables next to the shock are unchanged and the Rankine–Hugoniot condition is
always satisfied. Such a solution is constructed by the shooting method. Given a stateq1
on the shock polar through the given upstream stateq0, we continue it by solving (1.10)
and (1.11) with the initial conditionq1 at σ = 1/θS so that the second requirement is
satisfied. In other words, the initial value of (1.10) and (1.11) satisfies, withv regarded
as a function ofu,

vu = −σ. (2.6)
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Since the shock lineS is perpendicular to the straight line joining(u0, 0) and(u1, v1),
the initial slope of the curve is given by

vu = v1 − v0

u1 − u0
. (2.7)

The solution to (1.10) and (1.11) is continued so thatσ = x

y
increases till an end state

qend ≡ (ue, ve) with the property thatue/ve = σe there, or by (1.10),

vu = −u

v
. (2.8)

In other words, the first requirement would be satisfied if the obstacle isx = σey. The
collection of the end statesqe, for varying the stateq1 on the shock polar, forms an
apple curve, so called because of its shape. Note from (2.6) that the solution to (1.10)
and (1.11) at an end point on the apple curve is normal to the line through the origin.

To construct the conical flow with the slopeθ0 of the obstacle given, we locate the
point on the apple curve which intersects with the rayx/y = 1/θ0 through the origin. In
general, there are two intersections of which the one corresponding to the weaker shock
is more likely to occur in reality and is our main concern in the present paper.

3. Construction of Approximate Solutions

The approximate solutions to the system (1.4)–(1.7) will be constructed based on the
self-similar solutions and the elementary waves for the homogeneous system

(ρu)x + (ρv)y = 0, (3.1)

(ρu2 + P)x + (ρuv)y = 0, (3.2)

(ρuv)x + (ρv2 + P)y = 0, (3.3)

P = P(ρ). (3.4)

The self-similar solutions have been considered in the first two sections. We now con-
sider the elementary waves for (3.1). The system (3.1) is strictly hyperbolic and its
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characteristic speeds are:

λ1 = uv

u2 − c2 − c(q2 − c2)1/2

u2 − c2 < 0, (3.5)

λ2 = v

u
> 0, (3.6)

λ3 = uv

u2 − c2 + c(q2 − c2)1/2

u2 − c2 > 0. (3.7)

Its first and third characteristic fields are genuinely nonlinear and the second character-
istic field is linearly degenerate in the sense of Lax [6]. (For the non-isentropic flow, we
need to consider the energy equation and the system is not strictly hyperbolic with double
linearly degenerate eigenvaluesv/u. Nevertheless, the system is completely hyperbolic
and our analysis can be easily generalized for it.)

In the following, (ρ, u, v) is denoted byω. Let Si(ω−) and Ri(ω−) denote the
Rankine–Hugoniot curve and the rarefaction curve for thei-characteristic field, respec-
tively. Set

R+
i (ω−) = {ω : ω ∈ Ri(ω−), andλi(ω) ≥ λi(ω−)},

S−
i (ω−) = {ω : ω ∈ Si(ω−), andλi(ω) < s(ω−, ω) < λi(ω−), s is the shock speed},
Ti(ω−) = R+

i (ω−) ∪ S−
i (ω−), for i = 1, 3,

T2(ω−) = R2(ω−)(= S2(ω−)).

By straightforward computations, we obtain that

R2(ω−) = {ω : P = P−,
v

u
= v−

u−
} (3.8)

and thatRi , i = 1, 3, are the integral curve of

{
du
dv

= −λi,

dP
dv

= ρ(λiu − v).

The Riemann problem for (3.1)–(3.4) with initial data a single jump can be solved by the
elementary waves taking values along the wave curvesTi, i = 1, 2, 3, just described,
Lax [6].

To construct approximate solutions to (1.4)–(1.7), we adopt a generalization of the
Glimm scheme [4]. The obstacle is a perturbation of the infinite coney/x = θ0. In
the following figure, we exhibit the construction of the numerical grids to be described
below for the simplified case when the cone is perturbed only at one locationx = x1
and with the change of angleθ1.
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We now define the difference scheme. Choose the grid sizes = 1x for the variable
x. Suppose that the obstacle is unperturbed beforex = N01x. For 0≤ k ≤ N0, the grid
points are the intersection ofx = k1x with the self-similar rays centered at(0, 0),

y = x
1

1/θ0 + h1σ
, h = 0, −1, −2, . . . .

In this region, the approximate solution is the unperturbed conical flow centered at(0, 0).
We choose the initial numerical grid onx = N0s to satisfy the usual C-F-L condition.
The approximate solutionsω(x, y) = ω1(x, y) and the numerical grids are defined
inductively ink, x = ks, k = N0, N0 + 1, , . . . , as follows:

Choose an equidistributed sequencea1, a2, . . . in the unit interval(0, 1). Approx-
imate the obstacle by piecewise linear cones with changes in angle atx = ks, k =
N0, N0+1, . . . . Suppose that the approximate solution and the grid points have been de-
fined forx ≤ ks. Let the grid points onx = ks be denoted byy = y0(k) < y1(k) < . . . ,
with y = y0(k) the location of the obstacle. The approximate solutionω(ls + 0, y) is
a piecewise smooth solution of the self-similar system (1.10) and (1.11) on each ver-
tical grid line x = ls + 0. As part of the induction hypothesis, we assume that the
center(x0, 0) = (x0(l, h + 1/2), 0) of the self-similar variableσ = (x − x0)/y for
yh(l) < y < yh+1(l) have also been defined forl ≤ k. We now define the approximate
solution for the regionks < x ≤ (k + 1)s. Foryh(k) < y < yh+1(k), ω(ks + 0, y) is
the solution of (1.10) and (1.11) with

ω(ks + 0, yh + ak(yh+1(k) − yh(k))) =ω1(ks − 0, yh(k) + ak(yh+1(k) − yh(k))),

h = 0, 1, . . . , . (3.9)

As noted before, the initial value above does not uniquely determine the solution of
the non-autonomous system (1.10) and (1.11) and the center of the self-similar variable
needs to be specified. We specify the center to be(x0, 0) = (x0(k, h + 1/2), 0), which
has been defined inductively, and this yields the self-similar variableσ = (x − x0)/y.
The discontinuities at the grid points(k1x, yh), h = 1, 2, . . . are resolved by solving
the Riemann problem for (3.1)–(3.4) with initial data:(ω(ks + 0, yh(k) − 0), ω(ks +
0, yh(k)+0). The solution of the Riemann problem is a function of(x−ks)/(y−yh(k))

and consists of rarefaction waves, shock waves or contact discontinuities.
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The approximate solutionω(x, y), ks < x ≤ (k + 1)s, yh−1/2(k) < y < yh+1/2(k)

is defined according to (1.10) and (1.11) along the ray(y − yh(k))/(x − ks) = ξ with
the initial value atx = ks + 0 given by the solution of the above Riemann problem. As
before, we need to specify the centerx0(ξ) of the self-similar variable.We do it according
to the principle that the center propagates away from the obstacle and toward the leading
shock. Let the upper edge of the 3-wave of the solution of the Riemann problem at
(ks, yh(k)) be(y − yh(k))/(x − ks) = a. Since the 3-wave moves toward the leading
shock, we set the center to bex0(ξ) = x0(k, h − 1/2) (or x0(ξ) = x0(k, h + 1/2)) for
the region below (or above) the upper edge of the 3-wave,ξ < a (or ξ > a.)

The numerical grids onx = (k+1)s are defined to be on the self-similar rays through
the grids onx = ks. The new center onx = (k + 1)s inherits thosex0(ξ) onx = ks + 0
through the random choice (3.9). The choice of the centers is natural. The choice of the
grid points is motivated by the study of moving sources in that the grids move along the
constancy of the underlining self-similar flow.

On the obstacle,(x − ks)/(y − y0(k)) = σ0(k), a 3-shock (or 3-rarefaction) wave
emerges when the obstacle changes angle toward (or away from) the flow. For this, we
solve the initial-boundary Riemann problem for (3.1)–(3.4) with initial data:

ω1(ks + 0, σ ) = ω1(ks, σ0(k)), σ < σ0(k)

and with a boundary condition posed atσ = σ0(k):

u

v
= σ0(k).

The approximate solution is extended to(x, y), ks < x ≤ (k + 1)s, y0(k) + (x −
ks)/σ0(k) < y < y0(k) + 1/2(y1(k) − y0(k)) as before with centerx0(k, 0) ≡ ks −
σ0(k)y0(k).

The leading strong shock cone next to the uniform upstream flow is traced contin-
uously, instead of the above random scheme. Suppose that the approximate solution is
constructed for 0≤ x < ks, k ≥ N0. Let (x, yf (x)) denote the locus of the front of
the 3-shock coneS. Suppose thatyjf

(k) < yf (ks) < yjf +1(k). We call the interval
yjf −1(k) < y < yjf +1(k) the front region atx = ks. Inside the front region, we first
solve the self-similar solution to (1.10) and (1.11) with the initial value:

ω(ks + 0, yjf −1(k) + ak(yjf
(k) − yjf −1(k))) = ω1(ks − 0, yjf −1(k)

+ ak(yjf
(k) − yjf −1(k))),

and with the same center as the initial value. Denote the solution byω(y). Next we solve
the Riemann problem for (3.1)–(3.4) so that

ω(ks, y) =
{

(ρ0, u0, v0) = ω+, for y > yf (x)

ω(yf (x) − 0), for yf (x) > y > yjf −1(k).

The solutionω(x, y) thus contains a relatively strong 3-shock wave,(ω+, ω−), with
speeds. Solve again Eqs. (1.10) and (1.11) in the intervalyjf −1(k) < y < yf (x) with
the initial value

ω(yf (x) − 0) = ω−.
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Denote the solution byω−(y). Now, we can define the approximate solution in the front
region as follows:

ω1(x, y) =
{

ω+, for y > yf (x)

ω−(y), for yf (x) > y > yjf −1(k),

yf (x) = s(x − ks) + yf (ks)

for ks ≤ x < (k + 1)s. And the discontinuity aty = yjf −1(k) is resolved by the same
construction as before.

4. Local Interaction Estimates

We first study the interaction among the weak waves between the shock coneSand the
obstacle cone. In order to obtain the desired estimates, we consider space-like curves,
which are piecewise linear curves consisting of line segments joiningakh to ak+1,h+1
or to ak−1,h+1, whereakh = (ks, yh(k) + ak(yh+1(k) − yh(k)). The shock cone in
the first quadrant is covered by "diamonds," the corners of which are the mesh points,
akh. Let 1 denote a diamond centered at(ks, yh(k)). We consider the following case.
Suppose that the waves entering1 are denoted byα and β, which are centered at
((k − 1)s, yh−1(k − 1)) and((k − 1)s, yh(k − 1)) respectively. Letδ denote the set of
waves issuing from(ks, yh(k)) andδi the strength of thei-wave inδ. Letω1(σ ), ω2(σ̄ )

andω3(σ̄ ) represent the self-similar solutions centered atO1, O2 andO2 respectively
such that

α = (ω2(σ̄1), ω1(σ1)),

β = (ω3(σ̄2), ω2(σ̄2)),

δ = (ω3(σ̄2), ω1(σ2)).

σ and σ̄ are the self-similar variables with the corresponding centersO1 andO2 re-
spectively. To measure the potential nonlinear wave interaction, we use the following
notations:

Q0(1) = Q0(α, β)

≡
∑{|αi ||βj | : αi andβj are approaching

}
,

Q1(1) ≡ |α1|1σ + |α3|1σ,

Q2(1) ≡ |α2|1σ,

Qc(1) ≡
{

x01σ, if O1 6= O2,

0, if O1 = O2,

Q(1) ≡ Q0(1) + Q1(1) + Q2(1) + Qc(1),

where1σ = |σ2 − σ1| andx0 denotes the change of the location for different centers.
Here,Q0 measures the wave interaction between elementary waves,Q1 andQ2 mea-
sure the wave interaction between self-similar solutions and elementary waves, andQc

measures the effect of the change of centers for self-similar solutions. Our interaction
estimate is as follows:

Lemma 4.1. For some constantO(1) depending only on system (1.4)–(1.7),1 ≤ i ≤ 3,

δi = αi + βi + O(1)Q(1). (4.1)
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Proof. By the interaction estimates of elementary waves for conservation laws [12],

δi = (ω3(σ̄2), ω1(σ2))i

= (ω3(σ̄2), ω2(σ̄2))i + (ω2(σ̄2), ω1(σ2))i

+ O(1)Q0((ω3(σ̄2), ω2(σ̄2)), (ω2(σ̄2), ω1(σ2))). (4.2)

It follows from the elementary theory of ordinary differential equations that

ω2(σ̄2) − ω1(σ2) = ω2(σ̄1) − ω1(σ1) + O(1)(|α| + x0)(|σ2 − σ1| + |σ̄2 − σ̄1|).
(4.3)

Note that|σ̄2 − σ̄1| is equivalent to|σ2 − σ1| whenx0 is sufficiently small. Since the
solution of the Riemann problem depends continuously on its end states, (4.2) and (4.3)
yield

δi = αi + βi + O(1)Q(1).

This completes the proof.ut

Remark 4.1.For the other cases, such as whenα issues from((k − 1)s, yh+1(k − 1)) or
whenω2 andω3 have different centers, theQj ’s can be defined with the same meaning
and the interaction estimate (4.1) holds by the same argument.

Remark 4.2.Whenh = 0, that is,1 covers a part of the boundary of the obstacle cone,
we need to solve the boundary Riemann problem. Letα andβ denote the waves issuing
from ((k − 1)s, y1(k − 1)) and ((k − 1)s, y0(k − 1)) respectively. By an analogous
argument, we have the interaction estimate:

δ = δ3 = β + C0α + O(1)Q(1), (4.4)

whereC0 depends only on system (3.1)–(3.4).

As for the case involving the relatively strong 3-shock waveS, the estimate is similar
to the above lemma except that instead of advancing one diamond, we need to advance
three diamonds in the front region simultaneously. We still denote these three diamonds
by1. Let1k,h represent the diamond whose center is(ks, yh(k)).Assumeak+1 ∈ (0, 1

2).
Then,

1 = 1k+1,jf −1 ∪ 1k+1,jf
∪ 1k+1,jf +1.

The case forak+1 ∈ [1
2, 1) can be treated by the same analysis. Letβk stand for the

relatively strong 3-shock wave issuing from(ks, yf (ks)). We denote byα the set of
waves issuing from(ks, yjf −1(k)). The waves inα entering1k+1,jf

are denoted by
αl andαr are the waves entering1k+1,jf +1. Let γ be the set of waves issuing from
(ks, yjf −2(k)) and entering1k+1,jf (k)+1. Setω1(y) (or ω1(σ̄ )) andω2(y) (or ω2(σ )) to
be the self-similar solutions such thatβk connectsω0 = (ρ0, u0, v0) andω1(y), andαl

connectsω1(y) andω2(y) at x = ks. Let βk+1 denote the strong 3-shock issuing from
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((k + 1)s, yf ((k + 1)s)). δ denotes the wave issuing from((k + 1)s, yjf −1(k + 1)). In
this case, we set

Q0(1) = Q0(βk, α
l) + Q0(αr , γ ),

Q1(1) = |αl |1σα + |γ1|1σγ + |γ3|1σγ ,

Q2(1) = |γ2|1σγ ,

Qc(1) =
{

x01σα, if ω1(y) andω2(y) have different centers,
0, if ω1(y) andω2(y) have the same center.

Here,1σ simply means the change of the self-similar variable for the corresponding
wave as it propagates through the self-similar solution. In this case,1σα = |σ(yjf

(k +
1))−σ(yjf −1(k))| and1σγ = |σ(yjf −1(k+1))−σ(yjf −2(k))|. 1σβk

= |σf (k+1)−
σf (k)|, whereσf (k) represents the value of the self-similar variableσ for the shock
βk . In the following,O(1) always represents a constant depending only on system
(1.4)–(1.7).

Lemma 4.2. Suppose thatβk is sufficiently small. Then there exists a small constant
c0 = O(1)|βk| such that

βk+1 = βk + αl
1 + O(1)Q0(βk, α

l)

+O(1)1σβk
+ O(1)|αl |1σα + O(1)Qc(1),

δj = αr
j + γj + O(1)

{
Q0(βk, α

l) + Q0(αr , γ )
}

+ O(1)c01σβk

+O(1)|αl |1σα + O(1)|γ |1σγ + O(1)Qc(1), for 1 ≤ j ≤ 3.

Proof. Owing to the interaction estimates of the elementary waves for conservation
laws, we have

(ω0, ω2(σf (k + 1)))j = (ω0, ω1(σf (k + 1))j + (w1(σf (k + 1)), w2(σf (k + 1)))j

+ O(1)Q0((ω0, ω1(σf (k + 1)), (w1(σf (k + 1)), w2(σf (k + 1))). (4.5)

And by (2.7), there exists a small constantc0 = O(1)|βk| such that

(ω0, ω1(σf (k + 1)))j = (ω0, ω1(σf (k)))j +
{

O(1)c01σβk
, j = 1, 2,

O(1)1σβk
, j = 3,

(4.6)

whenβk is sufficiently small. Also,

(w1(σf (k + 1)), (w2(σf (k + 1)))j = (ω1(yjf −1(k)), ω2(yjf −1(k)))j

+O(1)|αl |1σα + O(1)Qc(1). (4.7)

Thus, (4.5)–(4.7) imply that

βk+1 = (ω0, ω2(σf (k + 1)))3 = (ω0, ω∗)
= βk + αl

1 + O(1)Q0(βk, α
l)

+O(1)1σβk
+ O(1)|αl |1σα + O(1)Qc(1). (4.8)
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Denote the end states ofδ by (δ−, δ+). To estimate the strength ofδ, we first apply
Lemma 4.1 to obtain

(ω2(yjf −1(k)), δ+)j = αr
j + γj + O(1)Q0(αr , γ ) + O(1)|γ |1σγ . (4.9)

By the elementary theory of ordinary differential equations, we have

(δ−, ω2(yjf −1(k)))j = (ω∗, ω2(σf (k + 1)))j + O(1)|ω∗ − ω2(σf (k + 1))|1σα.

(4.10)

Hence, (4.5)–(4.10) yield

δj = (δ−, δ+)j

= αr
j + γj + O(1)

{
Q0(β, αl) + Q0(αr , γ )

}
+O(1)c01σβk

+ O(1)|αl |1σα + O(1)|γ |1σγ + O(1)Qc(1).

This completes the proof.ut
We now establish the basic estimates on the change of speed of 3-waves and 2-waves.

As 3-waves (or 2-waves) propagate along self-similar solutions, the characteristic speed
λ3 (or λ2) is monotonely increasing with respect toσ .

Lemma 4.3. Suppose thatω(σ) = (ρ(σ ), u(σ ), v(σ )) is a self-similar solution to
(1.10) and (1.11). Then,

(i)
d

dσ
λ2(σ ) > 0,

(ii)
d

dσ
λ3(σ ) > 0.

Proof. (i) By (1.10),

d

dσ
λ2(σ ) = d

dσ

{
v(σ )

u(σ )

}
= vσ u − vuσ

u2 = −(σu + v)uσ

u2 > 0.

(ii) To compute
d

dσ
λ3(σ ), we need to know

dρ

dσ
and

dc

dσ
. Applying Bernoulli’s law, we

obtain

udu + vdv = −c2dρ/ρ.

It thus follows from (1.10) and (i) that

dρ

dσ
= (uuσ + vvσ )

−ρ

c2

= (u − σv)uσ

−ρ

c2 > 0.

Hence,

dc

dσ
= 1

2c
P ′′(ρ)

dρ

dσ
> 0.
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Sinceλ3 satisfies

(v − λ3u)2 − c2(1 + λ2
3) = 0,

differentiating this equation with respect toσ yields

(c2λ3 + u(v − λ3u))
d

dσ
λ3(σ ) = (v − λ3u)(vσ − λ3uσ ) − ccσ (1 + λ2

3). (4.11)

Substitutingλ3, we have

c2λ3 + u(v − λ3u) = (c2 − u2)λ3 + uv

= −uv − c

√
q2 − c2 + uv

= −c

√
q2 − c2 < 0.

Applying (1.10) again, it is easy to check that the RHD of (4.11) is negative. Hence, it
follows that

d

dσ
λ3(σ ) > 0.

This completes the proof.ut
We now turn to the interaction between self-similar solutions and elementary waves.

To quantitatively measure how the elementary waves weave through self-similar solu-
tions, we estimate the change of the angle between the elementary wave and the ray
through the center of the wave itself, as shown in the following figure.

-
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���
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���
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r

x0 x

α

θα(x)
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θα(x) denotes the angle associated with the waveα issuing fromx. The self-similar
variableσ is employed in place ofy to describe the coordinate in the(x, y)-plane. The
following lemmas show thatθ(x) is decreasing with respect tox for 2-waves and the
relatively strong 3-shockS.

Lemma 4.4. Suppose that S =(ω0, ω1) at (x, σ1). At the next step, S =(ω0, ω2) at
(x + 1x, σ2) by the construction described in Sect. 3. Then we have

θS(x) − θS(x + 1x) = |O(1)||σ1 − σ2|.
Proof. Let si denote the shock speeds(ω0, ωi), i = 1, 2. Assume thatsi > 1

σ1
. The

other case can be proved by analogous arguments.
Let ω(σ) denote the self-similar solution with the initial data

ω(σ1) = ω1.
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Due to the construction of approximate solutions in Sect. 3, we need to solve the Riemann
problem(ω0, ω(σ2)). Hence,

(ω0, ω2) = (ω0, ω(σ2))3.

Asσ1 decreases toσ2, ω(σ) moves along the integral curve(u, v(u)) to (1.10) and (1.11)
and below the shock curveS3(ω0) on the(u, v)-plane. By (1.10),vu < 0. This property
together with the fact thatT1 andT2 have positive slopes on the(u, v)-plane implies that
s2 < s1 and thus

s1 − s2 = |O(1)||σ1 − σ2|.
Therefore, we have

θS(x) − θS(x + 1x) = |O(1)||σ1 − σ2|. ut
Lemma 4.5. Suppose thatα = (ωl, ωr) is a contact discontinuity at(x, σ1). At the next
step,α = (ω̂l, ω̂r ) at (x + 1x, σ2) by the construction described in Sect. 3. Then we
have

θα(x) − θα(x + 1x) = |O(1)||σ1 − σ2|.
Proof. Sets1 = s(ωl, ωr) ands2 = s(ω̂l, ω̂r ). Assume that the wave speeds1 > 1

σ1
and

σ1 > σ2. The other cases can be proved by analogous arguments. Letωl(σ ) andωr(σ )

denote the self-similar solutions to (1.10) and (1.11) with the initial data

ωl(σ1) = ωl,

ωr(σ1) = ωr,

respectively. Due to the construction of approximate solutions, we obtain

(ω̂l, ω̂r ) = (ωl(σ2), ωr(σ2))2.

It follows from Lemma 4.3 that

λ2(ωl(σ2)) < λ2(ωl), (4.12)

λ2(ωr(σ2)) < λ2(ωr). (4.13)

And by Lemma 4.1, we have

(ωl(σ2), ωr(σ2))j = O(1)|ωl − ωr ||σ1 − σ2| (4.14)

for j = 1, 3. Hence, (4.12)–(4.14) yield thats2 < s1 and

s2 − s1 = O(1)|σ1 − σ2|.
It thus implies that

θα(x) − θα(x + 1x) = |O(1)||σ1 − σ2|.
This completes the proof.ut
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5. Global Existence

In this section, we adopt the difference scheme described in Sect. 3 to prove the global
existence of the solution to (1.4)–(1.7). The obstacle is approximated by piecewise
linear cones with the change of angleθi , i = 1, · · · , n, atx = N0s, · · · , (N0 + n− 1)s

respectively, and the corresponding centers for these linear cones arex1
0, x2

0, · · · , xn
0

respectively. For convenience, we prove the simplified case when the cone is perturbed
only at one locationx = x1 and after the perturbation, the obstacle is the infinite cone
x − x0

y
= σ0 with its corresponding center located atx = x1

0 = x0; hence, the self-

similar variableσ equals
x − x0

y
. Nevertheless, the functionals to be constructed below

are also true for general situations.
The proof requires estimates on the total variations of the approximate solutions

ω1(x, y). Our strategy is to use induction on certain nonlinear functionals constructed
to detect global wave interactions. Once this uniform bound is established, with the aid of
Helly’s theorem, we can extract a convergent subsequence ofω1(x, y) in L1

loc(R
2), and

by the consistency theorem (Liu [10]), this subsequence converges to a weak solution
ω(x, y) to the system (1.4)–(1.7). LetJ be a space-like curve. To establish the uniform
bound, we define a nonlinear functionalF(J ) as follows:

F(J ) ≡ L(J ) + KQ(J ),

L(J ) ≡ L0(J ) + L1(J ),

L0(J ) ≡
∑

{cα|α| : α is the strength of any elementary waves crossing

J andα 6= S} ,

L1(J ) ≡ θS(J ) +
∑

{θα : α is a contact discontinuity crossingJ },
Q(J ) ≡ Q0(J ) + Q1(J ) + Q3(J ) + Qc(J ),

Q0(J ) ≡
∑

{|αβ| : α andβ are strengths of elementary waves which are

approaching, and crossJ } ,

Q1(J ) ≡
∑

{|α|(σ0 − σα) : α is a 1-wave crossingJ } ,

Q3(J ) ≡
∑

{|α|(σα − σε) : α is a 3-wave crossingJ andα 6= S} ,

Qc(J ) ≡
n∑

i=1

Qi
c(J ),

Qi
c(J ) ≡ (xi

0 − xi−1
0 )(σ i

c (J ) − σε), (x0
0 = 0).

Here

cα =
{

C0, whenα is a 1-wave or 2-wave.

1, whenα is a 3-wave.

C0 is the same constant as in Remark 4.2, which depends only on system (1.4)–(1.7).
σα denotes theσ -coordinate of the center for the waveα. σ i

c (J ) is theσ -coordinate of
the grid point where the center of the self-similar solutions passing throughJ changes
from xi−1

0 to xi
0. If the centers do not change anymore,Qc(J ) ≡ 0. And σS(J ) is the
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σ -coordinate of the 3-shockS whenS crossesJ . σε ≡ σS(0) − ε, for some suitably
chosen small constantε. And K is some large number to be determined later.

The termsQ’s are defined to detect the potential amount of wave interactions in
the solution. Since 3-waves and 1-waves betweenS and the obstacle move upwards
and downwards respectively with respect to theσ coordinate,Q3(J ) andQ1(J ) are so
defined according to the domain of influence.Q0(J ) is the amount of the usual waves
interactions between elementary waves. AndQc(J ) is defined to measure the effect
of the change of centers for self-similar solutions, which also reflects the fact that this
effect propagates upwards. As for the 2-waves nearby the obstacle boundary and the
relatively strong shockS, we do not know a priori how they move ahead. Consequently,
we cannot foresee their potential wave interactions. However, the local analysis gives
us a decreasing quantityθ , which constitutesL1(J ). We will show that the decrease in
L1(J ) is sufficient to dominate the increase in the remaining parts ofF(J ).

We now give the global interaction estimates. Let 0 stand for the space-like curve in
the stripN0s ≤ x ≤ (N0 + 1)s. 3 represents the region between 0 andJ . AndQ(3) is
the sum over allQ(1), 1 any diamond in3.

Lemma 5.1. Suppose thatL(0), σ0 − σε and
∑n

i=1 θi are sufficiently small. For suffi-
ciently largeK, we have

F(J ) ≤ F(0) − 1

2
Q(3) + C1

n∑
i=1

θi − c1

(∑
k

1σS(Jk) +
∑
α2

1σα2

)
, (5.1)

Q(J) ≤ Q(0) − 1

2
Q(3) + Q2(3) +

n∑
i=1

θi + 1

2

∑
k

1σS(Jk), (5.2)

whereC1 andc1 are positive constants depending only on system (1.4) -(1.7), andJk ’s
are all the space-like curves between 0 andJ .

∑
k 1σS(Jk) is the sum taken over the

change ofσS(Jk). And
∑

α2
1σα2 is the sum over the change ofσ for all the contact

discontinuities in3.

Proof. We choose

ε ≡
(

F(0) + C1

n∑
i=1

θi

)
c−1

1 .

K, C1 and c1 will be determined later. We will prove by induction. ForJ = 0, we
can chooseL(0) andQ(0) as small as needed. Suppose that (5.1) and (5.2) have been
shown forJ = J1. It thus follows from (5.1) thatσS(J1) > σε. Let J2 be an immediate
successor and1 denote the diamond betweenJ1 andJ2. To show that (5.1) and (5.2)
hold forJ = J2, we divide the proof into three cases:

Case 1.1 is between the shock coneSand the obstacle cone.
Let us consider the case when1 is under the same setting as Lemma 4.1. The other

cases can be proved similarly. With the help of Lemma 4.1 and 4.5, we obtain

L0(J2) − L0(J1) = O(1)Q(1),

L1(J2) − L1(J1) = −|O(1)|1σ + O(1)Q(1),
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where the term−|O(1)|1σ is due to the change of the angleθα2 if the contact discon-
tinuity α2 6= 0 in Lemma 4.1,

Q0(J2) − Q0(J1) ≤ O(1)L0(J1)Q(1) − Q0(1),

(Q1 + Q3)(J2) − (Q1 + Q3)(J1) ≤ O(1)Q(1)(σ0 − σε) − Q1(1),

Qc(J2) − Qc(J1) = −Qc(1).

It follows from the above inequalities that

Q(J2) − Q(J1) ≤ O(1) (L0(J1) + (σ0 − σε)) Q(1) −
(
Q(1) − Q2(1)

)
,

and thus

Q(J2) − Q(J1) ≤ −3

4
Q(1) + Q2(1), (5.3)

provided thatL(J1) andσ0 − σε are sufficiently small. Therefore,

F(J2) − F(J1) ≤ (O(1) − K

2
)Q(1) + KQ2(1) − |O(1)|1σ. (5.4)

Note thatQ2(1) is a quadratic term andQ2(1) ≤ L0(J1)1σ . Hence, whenF(J1) is
sufficiently small, by choosing suitably large constantK, we have

F(J2) − F(J1) ≤ −1

2
Q(1) − c11σ

for some positive constantc1. By the induction hypothesis, it thus follows that

F(J2) ≤ F(0) − 1

2
Q(32) + C1

n∑
i=1

θi − c1

(∑
k

1σS(Jk) +
∑
α2

1σα2

)
,

Q(J2) ≤ Q(0) − 1

2
Q(32) + Q2(32) +

n∑
i=1

θi + 1

2

∑
k

1σS(Jk),

where32 is the region between 0 andJ2. Thus, (5.1) and (5.2) hold forJ = J2.

Case 2.1 covers a part of the obstacle boundary.
Let us consider the case when1 is under the same setting as Remark 4.2. The other

cases can be proved similarly. Using Remark 4.2 and Lemma 4.5, we have

L0(J2) − L0(J1) = O(1)Q(1),

L1(J2) − L1(J1) = −|O(1)|1σ + O(1)Q(1),

where the term−|O(1)|1σ is due to the change of the angleθα2 if the contact discon-
tinuity α2 6= 0 in Remark 4.1. Also,

Q0(J2) − Q0(J1) ≤ O(1)L0(J1)Q(1) − Q0(1),

(Q1 + Q3)(J2) − (Q1 + Q3)(J1) ≤ O(1)(|α| + Q(1))(σ0 − σε) − Q1(1),

Qc(J2) − Qc(J1) = −Qc(1).
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Thus,

Q(J2) − Q(J1) ≤ O(1) (L0(J1) + (σ0 − σε)) Q(1) −
(
Q(1) − Q2(1)

)
+ O(1)|α||σ0 − σε |.

WhenL(J1) andσ0 − σε are sufficiently small, the last inequality yields

Q(J2) − Q(J1) ≤ −3

4
Q(1) + Q2(1) + O(1)|α||σ0 − σε |. (5.5)

Therefore,

F(J2) − F(J1) ≤ (O(1) − K

2
)Q(1) + KQ2(1) − |O(1)|1σ + O(1)K|α||σ0 − σε |.

(5.6)

By telescoping the estimates of the three cases for every step between 0 andJ2, we
obtain from (5.3)–(5.8) (see also Case 3)

F(J2) − F(0) ≤ (O(1) − K

2
)Q(32)

+ O(1)K

(
n∑

i=1

θi + Q(32) + c0

∑
k

1σS(Jk)

)
|σ0 − σε |

+
∑

k

(
KQ2(1k) − |O(1)|1σk

)

+ |O(1)| (K(σ0 − σε) + c0 − 1)
∑

k

1σS(Jk)

+
(

n∑
i=1

θi + O(1)Q(32) + O(1)c0

∑
k

1σS(Jk)

)
,

Q(J2) − Q(0) ≤ −3

4
Q(32) + Q2(32) + O(1)

·
(

n∑
i=1

θi + Q(32) + c0

∑
k

1σS(Jk)

)
|σ0 − σε | + 1

4

∑
k

1σS(Jk),

where1k is any diamond between 0 andJ2. WhenF(J1) is sufficiently small andK
sufficiently large, we obtain

F(J2) ≤ F(0) − 1

2
Q(3) + C1

n∑
i=1

θi − c1

(∑
k

1σS(Jk) +
∑
α2

1σα2

)
,

Q(J2) ≤ Q(0) − 1

2
Q(32) + Q2(32) +

n∑
i=1

θi + 1

2

∑
k

σS(Jk),

where32 is the region between 0 andJ2. C1 andc1 are positive constants depending
only on system (1.4)–(1.7). Thus, (5.1) and (5.2) hold forJ = J2.
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Case 3.1 is in the shock front region as in Lemma 4.2.
Let us consider the case when1 is under the same setting as Lemma 4.2. The other

cases can be proved similarly. By Lemma 4.2 and 4.4, we have

L0(J2) − L0(J1) = O(1)Q(1) + O(1)c01σS(J1),

where1σS(J1) = |σS(J2) − σS(J1)|. And

L1(J2) − L1(J1) = −|O(1)|1σ +O(1)Q(1)+O(1)c01σS(J1)+(θS(J2)−θS(J1)),

where the sum−|O(1)|1σ is due to the change of the angleθγ2 if the contact disconti-
nuity γ2 6= 0 in Lemma 4.2. And

Q0(J2) − Q0(J1) ≤ O(1)L0(J1)Q(1) − Q0(1)

(Q1 + Q3)(J2) − (Q1 + Q3)(J1) ≤ O(1)Q(1)(σ0 − σε)

− Q1(1) + O(1)1σβ(J1)(σ0 − σε)

Qc(J2) − Qc(J1) = −Qc(1).

Hence,

Q(J2) − Q(J1) ≤ O(1) (L0(J1) + (σ0 − σε)) Q(1)

−
(
Q(1) − Q2(1)

)
+ O(1)1σβ(J1)|σ0 − σε |.

If L(J1) andσ0 − σε are sufficiently small, we have

Q(J2) − Q(J1) ≤ −3

4
Q(1) + Q2(1) + 1

4
1σβ(J1). (5.7)

Thus,

F(J2) − F(J1) ≤ (O(1) − K

2
)Q(1) + KQ2(1) − |O(1)|1σ

+O(1)(K(σ0 − σε) + c0)1σS(J1) − |O(1)|1σS(J1) + |αl |.(5.8)

By telescoping the estimates of the three cases for every step between 0 andJ2, we have

F(J2) ≤ F(0) + (O(1) − K

2
)Q(32) +

∑
k

(
KQ2(1k) − |O(1)|1σk

)

+|O(1)| (K(σ0 − σε) + c0 − 1)
∑

k

1σS(Jk)

+O(1)K

(
n∑

i=1

θi + Q(32) + c0

∑
k

1σS(Jk)

)
|σ0 − σε |

+
(

n∑
i=1

θi + O(1)Q(32) + O(1)c0

∑
k

1σS(Jk)

)
,

Q(J2) ≤ Q(0) − 3

4
Q(32) + Q2(32) + 1

4

∑
k

1σS(Jk)

+O(1)

(
n∑

i=1

θi + Q(32) + c0

∑
k

1σS(Jk)

)
|σ0 − σε |.
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Thus,

F(J2) ≤ F(0) − 1

2
Q(3) + C1

n∑
i=1

θi − c1

(∑
k

1σS(Jk) +
∑
α2

1σα2

)
,

Q(J2) ≤ Q(0) − 1

2
Q(32) + Q2(32) +

n∑
i=1

θi + 1

2

∑
k

σS(Jk),

provided thatK is large enough. Thus, (5.1) and (5.2) hold forJ = J2.
Furthermore, by Lemma 4.2, (5.1) and (5.2), we can establish the estimate of the

strength of the relatively strong shock:

|S(x)| ≤ O(1)|S0|, (5.9)

where|S0| denotes the initial strength.
This completes the proof.ut

Remark 5.1.It is to be noted that the assumption in Lemma 5.1 can be achieved by
choosing the Mach numberM = q0/c0 sufficiently large. For simplicity in the presen-
tation, we assume that the gas is polytropic. As the shock strength|S0| tends to zero, its

correspondingσS tends to

√
q0 − ũ

U − q0
by (2.5). By direct computation, we obtain

√
q0 − ũ

U − q0
=
√(

q0

c0

)2

− 1.

Hence, we can chooseσ0 − σε in Lemma 5.1 sufficiently small by simultaneously
requiring|S0| sufficiently small and the Mach number sufficiently close toσ0.

The global existence theorem thus follows from Lemma 5.1 and the consistency
theorem [8].

Theorem 5.1. Suppose that the opening angleθ0 of the obstacle cone and the initial
strength|S0| of the relatively strong shock are sufficiently small and the Mach number
M = q0

c0
is sufficiently close toσ0. Then the initial boundary value problem (1.4)–(1.7)

as stated in Sect. 3 has a global solutionω(x, y) satisfying

T otal V ariation {ω(x, y) : 0 < y < ∞} = O(1)|S0|,
provided that the perturbation is small as compared to the shock strength|S0|.

6. Decay of Solutions

In this section, we study the rate of the convergence of the solutionω(x, y) to a self-
similar solution. We use the following notations.χi denotes ani-generalized character-
istic curve [5], which is a Lipschitz continuous curve traveling either withi-shock speed
or with i-characteristic speed. The one-sided limits of the weak solution exist along any



Nonlinear Stability of Self-Similar 3-D Gas Flow 547

such curves except possibly for a countable set ofx and ani-wave may crossχi only
due to interactions. We set

χS
3 ≡ (x, yS(x)), x ≥ x1

≡ the 3-generalized characteristic curve issued from(x1, σS) ,

χ0
3(x) ≡ the 3-generalized characteristic curve issued from(x, σ0) ,

χ1
j (x) ≡ thej -generalized characteristic curve issued from(x, yS(x)).

Suppose thatχ1
1(x) ends atx = x̂ whenσ = σ0. We set

χ2
3(x) ≡ the 3-generalized characteristic curve issued from(x̂, σ0).

The Lax entropy condition implies thatχ0
3 (x) andχ2

3(x) enter the relatively strong shock
SbeforeO(1)|S|−1x.

To study the decay rate of the solutionω(x, y), we define the following functions:

X(x) =
∑

{|α| : α is a 3-wave or a 1-wave atx, α 6= S},
Ȳ (x) =

∑
{|α| : α is a 2-wave atx},

Y (x) =
∑

{|α|θα(x) : α is a 2-wave atx},
Z(x) = |S(x)|θS(x),

whereS(x) is the strength of the relatively strong shockSat x. Q(x̃) denotes the limit
of Q(J) as the mesh lengthsr, s tend to zero, whereJ is a space-like curve approaching
x = x̃. We choose a sufficiently large numberx2 such thatQc(x) = 0 for x > x2.

Lemma 6.1. There exist some constantsM > 1, k1, k2 depending only on system (1.4)–
(1.7), andC = O(1)|S0|−1 depending on system (1.4)–(1.7) and the shock strength|S0|
such that forx > x2,

X(Cx) ≤ MI(x), (6.1)

Y (Cx) ≤ C−k1σ
2
ε Y (x) + M|S0|2(X(x) + I (x)), (6.2)

Z(Cx) ≤ C−k2σ
2
ε Z(x) + M|S0|(X(x) + I (x)). (6.3)

Here S0 is the initial strength of the relatively strong shock, andI (x) is due to wave
interactions defined by

I (x) ≡ X(x)2 + |S0|X(x) + Y (x) + Z(x).

Proof. According to Lemma 5.1, there exists some constantC2 depending only on
system (1.4)–(1.7) such that

F(J ) ≤ C2|S0|2,
for any space-like curveJ provided that the hypothesis of Theorem 5.1 holds. It thus
implies that

Ȳ (x) ≤ C2|S0|2, (6.4)
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θS(x) +
∑

{θα(x) : α is a 2-wave.} ≤ C2|S0|2. (6.5)

Sinceχ0
3 (x) andχ2

3(x) enterχS
3 beforeCx, C = O(1)|S0|−1, 1-waves and 3-waves in

X(Cx) are those produced by wave interactions; hence, we have from (6.4), Lemma 4.1
and 4.2,

X(Cx) ≤ O(1)
(
X(x)2 + |S0|X(x) + Y (x) + Z(x)

)
.

for x > x2. Applying Lemma 4.5, we obtain the decay rate ofθα:

θα(Cx) = θα(x)
( x

Cx

)k1σ
2
ε

, (6.6)

provided that a contact discontinuityα interacts only with a self-similar solution. Here,
k1 is a constant depending only on system (1.4)–(1.7). It follows from (6.4)–(6.6) that

Y (Cx) ≤ C2|S0|2I (x) +
∑

α: 2-wave
α(x)θα(x)C−k1σ

2
ε + O(1)C2|S0|2(X(x) + I (x))

≤ C−k1σ
2
ε Y (x) + O(1)|S0|2(X(x) + I (x)).

By Lemma 4.4, we can derive the decay rate ofθS:

θS(Cx) = θS(x)
( x

Cx

)k2σ
2
ε

, (6.7)

provided that the relatively strong shockS interacts only with a self-similar solution.k2
is a constant depending only on system (1.4)–(1.7). Therefore, (6.7), Lemma 4.1, 4.2,
and 5.1 yield

Z(Cx) ≤ |S(Cx)|
(
θS(x)C−k2σ

2
ε + O(1)X(x) + O(1)I (x)

)
≤ C−k2σ

2
ε Z(x) + O(1)|S0|(X(x) + I (x)).

Now, we can choose a sufficiently large numberM such that (6.1)–(6.3) hold forx > x2.
This completes the proof.ut
Theorem 6.1. For given ε > 0, suppose that the hypothesis of Theorem 5.1 holds,
the solutionω(x, y) to system (1.4)–(1.7) converges to a self-similar solution at the
following rate:

X(x) ≤ M1x
− 1

2+ε ,

Y (x) ≤ M2x
− 1

2+ε , (6.8)

Z(x) ≤ M3x
− 1

2+ε ,

whereMi, i = 1, 2, 3, are some constants depending onε, |S0| and system (1.4)–(1.7).
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Proof. We shall prove by induction. Set

M1 = C2|S0|(Cx2)
1

2+ε , M2 = M3 = C2|S0| 3
2 (Cx2)

1
2+ε ,

so that (6.8) holds forx ≤ Cx2. Suppose that (6.8) holds forx ≤ Cpx2, p ≥ 1. We want
to establish (6.8) forCpx2 < x ≤ Cp+1x2. By Lemma 6.1 and the induction hypothesis,
for x ≤ Cpx2,

X(Cx) ≤ MI(x)

≤ M(X(x)2 + |S0|X(x) + Y (x) + Z(x))

≤ M
(
M2

1x
−2
2+ε + |S0|M1x

−1
2+ε + M2x

−1
2+ε + M3x

−1
2+ε

)
≤ M1(Cx)

−1
2+ε

when|S0| is sufficiently small, which depends also onε. Also by the same argument,
we have

Y (Cx) ≤ C−k1σ
2
ε Y (x) + M|S0|2(X(x) + I (x))

≤ C−k1σ
2
ε M2x

−1
2+ε + M|S0|2

(
M1x

−1
2+ε + M1(Cx)

−1
2+ε

)
≤ M2(Cx)

−1
2+ε ,

Z(Cx) ≤ C−k2σ
2
ε Z(x) + M|S0|(X(x) + I (x))

≤ C−k2σ
2
ε M3x

−1
2+ε + M|S0|

(
M1x

−1
2+ε + M1(Cx)

−1
2+ε

)
≤ M3(Cx)

−1
2+ε .

Therefore, (6.8) holds forCpx2 < x ≤ Cp+1x2. The proof is complete.ut
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