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Abstract: For any discrete time dynamical system with a rational evolution, we define
an entropy, which is a global index of complexity for the evolution map. We analyze its
basic properties and its relations to the singularities and the irreversibility of the map.
We indicate how it can be exactly calculated.

1. Introduction

Exploring the behaviour of dynamical systems is an old subject of mechanics [1,2].
Turning to discrete systems has triggered a huge activity and the notions of sensitivity
to initial conditions, numerical (in)stability, Lyapunov exponents and various entropies
remained at the core of the subject (see for example [3]).

We describe here the construction of a characterizing number associated to discrete
systems having a rational evolution (the state at timie 1 is expressible rationally
in terms of the state at tima: it is defined in an algebraic way and we call it the
algebraic entropyof the map. It is linked to global properties of the evolution map,
which usually is not everywhere invertible. It is not attached to any particular domain
of initial conditions and reflects its asymptotic behaviour. Its definition moreover does
not require the existence of any particular object like an ergodic measure.

In previous works [4-7], a link has been observed between the dynamical complexity
[8] and the degree of the composed map. The naive compositierdefjreed maps
is of degread”, but common factors can be eliminated without any change to the map
on generic points. This lowers the degree of the iterates. For maps admitting invariants,
the growth of the degree was observed to be polynomial, while the generic growth is
exponential.

We first define the algebraic entropy of a map from the growth of the degrees of
its iterates, and give some of its fundamental properties. From the enumeration of the
degrees of the first iterates, it is possible to infer the generating function and extract the
exact value of the algebraic entrogyen for systems with a large number of degrees of
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freedom The reason underlying this calculability is the existence of a finite recurrence
relation between the degrees.

After reviewing basic properties of birational maps and of their singularities, we
prove such recurrences for specific families. The proof relies on the analysis of the
singularities.

We describe the relations between the factorization process governing the growth of
the degrees of the iterates and the geometry of the singularities of the evolution. This
put a new light on the analysis of [9-11]. See also [12].

2. Algebraic Entropy

2.1. Definition. The primary notion we use is the degree of a rational map. In order to
assign a well defined degree to a map, we require that all the components of the map
are reduced to a common denominator of the smallest possible degree. The maximum
degree of the common denominator and the various numerators is called the degree of the
rational maps and it is the common degree of the homogeneous polynomials describing
the map inprojective spacelFrom this definition we obtain the two basic properties:

e The degree is invariant by projective transformations of the source and image spaces.
e The degree of the composition of two maps is bounded by the product of the degrees
of the maps.

From now on, rational maps will always be defined by homogeneous polynomials act-
ing on homogeneous coordinates of the projective completion of affine space. When
calculating the composition of two maps, common factors may appear which lower the
degree of the resulting map. We then define a reduced compogitianp; of ¢, and

@2 by:

$2 0 p1 = m(¢2, P1) - (P2 X $1). 1)

We denote by!"! the “true”n™ iterate of a mag, once all factors have been removed.
For atransformatior, we can define the sequent;eof the degrees of the successive
iteratesp!™! of ¢.

Defining Proposition. The sequenci/n logd, always admits a limit aa — co. By
definition, we call this limit the algebraic entropy of the map

The proof is straightforward and is a consequence of the inequility, < dn,dy,.

The algebraic entropy is independent of the particular representation of the rational
map¢. Indeed, if we take the conjugation @fby some birational transformatiop,
¢ = v~1 x ¢ x ¥, the degreel/ of ¢'"! will satisfy &’ < kd, for some constant
k depending on the degree ¢f. A similar inequality can be obtained when writing
¢ = v¢'v L. In other words, the entropy istarational invariantassociated tg.

This quantity can be rather easily computed by taking the images of an arbitrary line.
The convergence to the asymptotic behavior is quite fast and can be obtained from the
first iterates for which the degree can be exactly calculated.

The growth ofd,, measures the complexity of the evolution, siagds the number
of intersections of the™ image of a generic line with a fixed hyperplane. It is related
to the complexity introduced by Arnol'd [8], with the difference that we are not dealing
with homeomorphisms.
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The algebraic entropy also has an analytic interpretation. An invariant Kéhler metric
exists on the complex projective spd@eand the volume of &-dimensional algebraic
variety is given by the integral of the" power of the Kahler form. This volume is
proportional to the degree of the variety [13]. The area of the imageébpf a complex
line can be expressed as the integral of the squared modulus of the differemptidl &f
is proportional tad, by the above argument. The algebraic entropy can then be viewed
as an averaged exponent: it does not depend on the choice of a starting point and it has
the advantage of being of a global nature.

The definition of the algebraic entropy can be generalized to sequences of maps
(¢x)x such that the degree @, is bounded. We defing!"! to be the regularized map
dn X ... X P2 X 1. This allows the extension to non-autonomous iterations and to maps
which are the product of elementary steps, in which case the sequiangés periodic.

In the cases wher&, grows polynomially withn, the algebraic entropy is zero, but
we can make use of a new invariant, the degree of this polynomialAs the algebraic
entropy, it is a birational invariant.

2.2. Entropy of the Hénon mag-or a simple confrontation of the algebraic entropy
with more usual approaches, let us consider the much studied Hénon map [14]. Since
it is a polynomial map, it is usually considered as having no singularities. This is a
misconception: using projective space shows that singularities exist and are located on
the line at infinity.

t — 12, (2
x > 12+ ty — ax?, 3)
y — bix. 4)

Herer is the homogenizing coordinate. We immediately see on this expression that the
line at infinity r = 0O is sent to the point with homogeneous coordindtes, y) =

(0, 1, 0). This point is stillon the line = 0, soitis a fixed point of the transformation. It

will therefore never be mapped 0, 0, 0) and there cannot be any factorization. Tiffe
iterate of this map is of degreé and the algebraic entropy is I(®). The remarkable
thing is that this number is independent of the parameteand b, contrary to usual
dynamical exponents.

3. Birational Maps

Among rational maps, we mainly use birational ones. They are almost everywhere in-
vertible and are therefore quite appropriate for modeling systems possessing a certain
amount of reversibility.

3.1. Alittle bit of algebraic geometryRational relations between two algebraic séts
andY are relations with a grap# which is an algebraic subset &f x Y. It would be

too restrictive to impose that this defines a map fr&no Y. In fact, the only rational
maps which are defined on the whole sp&€eare linear. One therefore only requires
that a rational map is one to one on the complement of an algebraic variety, that is a
Zariski open set. A birational map defines a bijection from an open sufyset X to

an open subséfy of Y.
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If we call p; and p, the projection on the components of the Cartesian products
restricted toZ, the pointx will correspond tOpz(le(x)). When this subset of is
not reduced to a point; is by definition in the singular locus df. If we solve for
the homogeneous coordinates of the image point, we get homogeneous polynomials
in the coordinates af. We therefore get a map defined@i*1. Homogeneity makes
it compatible with the scale relation defining projective space. Some vector lines in
C"*+1 however are identically mapped to zero: they are projective points without definite
images. The set of these points is exactly the singular locus.

If ¢ is the homogeneous polynomial representation of a rational mapPaisda
homogeneous polynomial {m + 1) variables, we denoig* P the pull-back ofP by ¢.
It is simply obtained by the compositidho ¢. The hypersurface of equatigit P = 0
is the image byp~! of the hypersurface® = 0. If x; is one of the homogeneous
coordinates oP”, ¢* x; is simply the indexi component of the polynomial functigh
Homogeneous polynomials do not define function®bnbut sections of a line bundle
which only depends on the homogeneity degree.

3.2. Two exampleslLet us describe two examples of birational maps. The first one is
the generalized Hadamard inverselit. Take two copies of” with homogeneous
coordinategxog, x1, ... , x,) and(yo, y1, . .. , ¥,) and defineZ by then equations in

P" x P

Xiyi = xoyo, i=1...,n (5)

On the subset where all the are different from zero, we can use affine coordinates by
fixing xo = 1 andZ defines the map

(x1, ..., xp) = (I/x1,...,1/x,). (6)

If any of thex; is zero, then all the products y; must be zero. Let be the set of
indices for whichx; is zero.Z induces a correspondence betwgehand the linear
space( ;... nj—s Hi (H; is the hyperplang; = 0). Instead of Egs. (5), it is often
more convenient to give a functional definition of this correspondence. A polynomial

definition is:
vi =[x (7)
J#i
They;’s are polynomial functions of the's of degreen — 1 and they satisfy Egs. (5).
But no formula can give the proper relationship for singular points. For these, at least

two of thex;’s are zero and therefore all thgs vanish.
The second example is given in two dimensions by

X — X, (8)
y—= fx) -y, 9)

with f(x) any rational function aof . Here again, we can give ahomogeneous polynomial
formulation. We will have a third variabkewhich will be multiplied by the denominator
of f(x).

These two involutions give rise to interesting evolution maps when combined with
simple linear transformations. The exchange of the two variablesd y combined
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with (8) gives a family of transformation which contains for suitapldiscrete versions

of some Painlevé equations [11]. The transformation (5) and its conjugation by the
Fourier transformation yields a birational transformation which appears naturally as a
symmetry of then + 1)-state chiral Potts model [15].

3.3. Singularities.The singular points of a birational map are the vector lineg'of!
which are sent to the origi(D, O, ... , 0). This singular set is of codimension at least 2.
In fact, if there was an algebraic set of codimension 1 sent to the origin, the equation
of this set could be factored out of all the components of the image, allowing a reduced
description of the map without this singularity.

There is a bigger set where the map is not bijective ¢Lbé a birational map angt
be its inverse. Then the compositigno ¢ of their representations as polynomial maps
in C**1is a map of degreé?. It is however equivalent to the identity, so that each of the
components of the image are of the fokpx;, whereK 4 is a homogeneous polynomial
of degreei? — 1. The set of zeroes ®y, V(Ky), is a set where the compositigno ¢
is a priori not defined and it plays a fundamental role.

K4 is an example of a multiplier. When composing two birational mgpandés,
a common factom(¢2, ¢1) may appear in the componentsg@f o ¢1. In the case of
inverse birational transformationg, x ¢ is the identity andn (v, ¢) is K.

Afundamental property ofi(¢2, ¢1) is thatit cannot vanish out & (K, ). Otherwise
¢1 would map an open subset of the set of zeros:@f,, ¢1) to a codimension 1 set
wheregs is singular, sincep; is a diffeomorphism outside df (K4,). This gives us
a contradiction since the singular set of rational maps are of codimension at least 2.
Determining the multiplying factor amount to determining the exponents of the different
irreducible components &y, in m(¢2, ¢1).

In fact we obtain a definition of the map on a number of apparently singular hyper-
surfaces, which is a natural continuous extension of the map.

3.4. The meaning of factorizatiorConsider the successive iteratg8! of a birational
mapg¢. Suppose we have the following pattern of factorization:

pop=0¢xd=0?, (10)
¢ ol =¢ x¢ld =3 (11)
popl¥ =r. o (12)

with « different from 1. Equation (12) means that the variety: O is sent to singular
points ofg by 131, In other wordsx = 0 is blown down to some variety of codimension
higherthan one by. The latter is non singular for the actiongfindg!?! butis eventually
blown up byg!3.

Two situations may occur: it may happen that the imageByof the varietyx = 0
is again of codimension 1 and we have a self-regularization of the map. Such a situa-
tion was called singularity confinement in [9,10]. We would rather ca#isolution of
singularities Reversibility is recovered on the singular sepddfter a finite number of
time steps. The other possibility is that the image of the variety 0 by ¢4 remains
of codimension larger than one, a situation depicted in Fig. 1.

In the scheme of Fig. 1, the equation®fs x = 0, and the factox appears anew in
¢ o p14. The fifth iteratep!® is regular onx.
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Fig. 1.A possible blow-down blow-up schemeli?

The drop of the degree of the iterates is due to the presence of singularities on the
successive images of a generic surface under the repeated acfiomadther words,
these images are less and less generic.

4. Recurrence Relations for the Degree

One of the basic properties of the sequence of degrees is that it seemingly always verifies
a finite linear recurrence relation with integer coefficients. If this is true, the algebraic
entropy is the logarithm of an algebraic number.

4.1. A simple case iR2. Consider the map = ¢o$1 with ¢1 andg» given by:

~

=xy+ 3ty +3tx
xy+atx + pty,
=xy+Btx+aty

~ 0~

t
¢1: | x
LY

[+ = xy + 3ty +3tx
¢2: | X' =xy+Btx+oary,
v =xy+atx+ Bty

with « and g the roots%(—l + iv/7) of z2+ z + 2 = 0. It was used as an example
of chaotic behavior in [15] and its singularities have been studied in [4]. The first few
elements of the sequendg are:

1,2,4,7,12,20,33 54,... (13)
This sequence can be coded in the generating function:

1

12,53 (14)

8(2) =
The rationality of the generating function is equivalent to the existence of a finite linear
recurrence relation for the degrees, at least after a finite number of steps. The determi-
nation of the entropy is straightforward once the recurrence relation is known.
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The iterated map is a produgs o ¢1 of two linearly related transformatiorg and
¢2 of degree 2. It is useful in this case to look at the sequence of iterateasfthe
sequence built frontgs, ¢2, d1, P2, ...).

When calculatingdy x ¢2 x ¢1, t will appear as a factor, sing® x ¢1 send the line
t = 0 to a singular point o$;.

We want to know the degree of the factotp!"!, ¢) orm (¢, ¢!"1). The former factor
can only contain the facter but the exponent is not readily known, so we rather examine
m(¢, ). We have to determine the curve which is senighy 2! to the liner = 0.
This is just the first component of the polynomial expressiapif2! and can be written
(¢"=2)*¢. It has degred,_». In two steps, the line = 0 is mapped to a singular point
of the following ¢, . The curve with equatioty!"!)* ¢ is therefore mapped to a singular
point by¢!" 2! and its equation can be factorized in the calculatiop6t3!. This gives:

(¢[n—2])* ‘- ¢[”+1] = ¢ oo (15)
and consequently the following recurrence relationdgar
dn+1 = 2d, — dy_2. (16)

This relation proves formula (14) and yields an exponential growth of the degrees and
the value logj (1 + +/5) of the entropy.

4.2. Factors in the factorsThe previous analysis is simple because the image of
remains an irreducible polynomial. This cannot be true in general, since the factors in
K4 generally break into pieces under further transformatiot .

Let us take two birational transformatioss and¢, with respective inverseg; and
Yo and calculate); o ¢1 o ¢ in two different ways:

Yiopro¢r = (K¢, - Id)o g2 = ¢5 Ky, - P2
= m(¢1, p2)71 - Y10 (P1 X $2). 17)

Since the components¢$ cannot have any common factor, we deduceithat, ¢»)%1
divides¢; K, .

Geometricallym (¢1, ¢2) is the equation of a hypersurface whighsends to singular
points of¢;. SinceKy, vanishes on the singular pointsdgf, its imageps Ky, vanishes
on the zero locus ofi(¢1, ¢2).

In the example of the previous section, each new factor appearigpgpip!*! is
the equation of a hypersurface whigh*! sends to the pointl, 0, 0). Thex andy
components ap!"! therefore have a common faciaté, ¢!"). Consequently, the image
" Ky of Ky =t x y by ¢ contains the expected factan(@, ¢"1)2, while ¢!"1* ¢
does not contain this factor.

4.3. An example iPN~1. Consider the algebra of the finite grody, its generic

elementz(x) = Zf]vz_ol x4 0, withx = (xg, x1, ..., xy—1) ando the generator df.y .
The algebra has two homomorphic products:
a(xoy) =a(x)oa(y), (18)

N-1
alx-y) = Z xgyq 0. (19)
q=0
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The producto just comes from the product iy, and verifiess? o 09 = ¢+,

while 6? - ¢4 = 8501’. In terms of cyclic matrices, these two products respectively
correspond to the matrix product and the element by element (Hadamard) product. The
homomorphism between these two products is realized by the Fourier transform.

¢1 andg, will be the two inverses constructed from these products. The components
(xo0, x1, ... , xy—1) Of x are the natural coordinates of projective space gndnd ¢,
are involutions of degre® — 1. K4, andK, are products of linear factors. These linear
factors are the equations of hyperplanes which are sent by the correspgndirg
points which we call maximally singular.

The important fact is that these maximally singular points are permuted by the other
involution. As an example, the maximally singular points of the Hadamard inverse are
of the formo?, i.e., with only one non zero component. The matrix inverse permutes
such points by? — oV 4.

If p has one vanishing component, saythen!? (p) will have all its coordinates
vanishing excepiy_;. It follows thatx; is a common factor to all these coordinates.
The j1 coordinate of!? (p) can be writtef:

¢*(p); =x ] xi (20)
i£EN—j
The Hadamard inverse is easily calculated on such an expression. The coordinates of
#3(p) are given by:

o) = ([Tx)av—i( [T )2 (21)

i) i=0..N—1

The common factor is simpli(y, and this suggests that®l is a local diffeomorphism
on the zeroes oKy, .

We now want to determine the structure of the components’dffor anyn. The
situation forn odd andn even will be similar, since the conjugation by the Fourier
transform exchanges the two inverses. From the expression (26) pf, we see that

this point is a generic element of the plane= 0 if and only ifx}z] = 0. We define

polynomialsx"*# generalizing the!?’s appearing in (20) such tffat
"2 p); =i T 5 22)
i£N—j

If g, is the degree of theﬁ.”]’s, then Eq. (22) yields:

dy = g+ (N — 1)gn—2- (23)
The generalization of (21) gives:
N—2
m(g, oy = (1’[ xl.["_z]> . (24)

J
1 Asin Sect. 4.1, we writg” (resp.¢l™]) for the composition of alternatively the two inverses (resp. the

reduced composition).

2 In this formula, the coordinates are different according to the parity Fhey are always such that the
following ¢ is the Hadamard inverse in those coordinates.
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The factor is therefore of degré@&(N — 2)g,. Finally:

gl =dpr1— (N —=Dgp1=WN—-Ddy, — NN —2gy—2— (N —-Dgn1
=N -Dgy, — (N —-Dgu_1+gn2. (25)

It is easy from this recurrence relation to determine thatMog 3, (g,) and therefore
(d,) are periodic sequences of period 6. The sequence aplths is known to have
this periodicity. ForN = 4, g, is a polynomial of degree 2 im, and for biggemv, the

sequences are growing lig#, with g the larger root ofk? — (N — 2)x + 1.

4.4. Another proof.There is another way to prove the previous result, relating directly
to the study of the singularities and the blow-down blow-up process.

We first need to introduce some notations, using a homogeneous coordinates system
for PN—1. The Hadamard invers® sends(xg, x1, . .. , xy_1) into (X0 X795 -+ Xy_q),
wherex; = [], . xo. The square of, is the multiplication byK, .

DefineC to be the projective linear transformation constructed from the matrix

1 1 1 ... 1
1 w o ... N1

c=1. . : . : ’ (26)
£I. a)’\}’l wz("vfl) Ce a)(N"l)z

with w = exp(2i/N). The inverse o is its complex conjugaté€. The involutiong,
is linearly related t@; by

$2="C ¢1C. (27)

The producips o ¢1 may thus be rewrittep; o p2, with p1 = C o ¢1 andps = Co¢1.
Denote byy1 = ¢1 0o C andy, = ¢1 o C the inverses op; andpz respectively.

The maximally singular points of the Hadamard inverse are the p&intsith x;
the only non vanishing component. They are the blow dowkpbgf the planed]; :
{xy; =0} fori =0,...,(N —1). They are singular points gf; and p2. Denote by
Qi,i = 0..(N — 1) the pointsQ; = (1, &', »%, ..., o™ =D/ The Q;s are singular
points ofyrq andirp.

We have the following straightforward relations:

CP = 0, CPi=Q-;, CQi=P=C0, (28)
$1(I1;) = Pi. (29)

The relevant singularity structure is entirely described by the two sequences:

D PRAY I, W) NN S (30)
mAPreS ol 0hS P B, (31)

The first squiggly line indicates blow down from hyperplane to point and the last one
indicates blow up from point to hyperplane.

Consider now a sequenés;} of varieties of codimension one, constructed by the
successive action qfi, p2, p1, and so on. Suppose the ordering is such thatcts on
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the S’s with even index ang, on theS’s with odd index. The successive images in the
sequence are supposed to be regularized by continuity. We dendtey/(S,) the
degree of the equation ¢f;,.

Denote by (n) (resp.Bi(n)) the order ofP; (resp.Qy) on S,. If a is the running
point of PV =1, then we have the defining relations

N-1
San(p2(@)) = Szn-1(@) - [ | 42" (@), (32)
u=0
N-1
Son-1(¥2(a)) = Sau(a) - [ [ x22@=D(C a). (33)
v=0

Using the fact thap; andv; are inverse of each other, and relations (32, 33), we get by
evaluatingSy, (p2v2(a)) = szz" - 82, (a), the following relation on the degrees:

(N-Ddy=ay@n—D+ Y pp(2n). (34)
b#—v

Similarly, calculatingS2, (¥101(a)) produces

(N =1 doy = Bun+ D)+ Y au(2n). (35)
k#u

Let®y(n) = Y, ax(n) and®g(n) = >, Br(n). Relations (34,35) yield

N(N — 1) dg, = Oy (21 — 1) + (N — 1) Op(2n),
N(N — 1) dz, = Op(2n + 1) + (N — 1) ©,(2n). (36)

From the singularity pattern (30,31), we see tha®n) = B_;(2n—1) andy; (2n+1) =
Bi(2n), so that®y (2n) = Og(2n — 1) and® (2n + 1) = Og(2n). It follows that

Ou (k) = Op(k — 1). (37)
This combined with (36) yields
dpy3 — (N — Ddpi2 + (N — Ddyi1 — dy, (38)
which is the recurrence relation on the degrees of the iterates, with generating function

1+ z2(N — 1)
1-2)EF2—z(N-2+1)°

fe@@) = (39)
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4.5. Discrete Painlevé IThe discrete Painlevé | system is given by the following trans-
formations:

Cn
X —> —+b—x—y,
X
y — X, (40)

wherec, depends on three parameters and is givem, by ¢ + an + d(—1)". The
transformation is just an involution of the form (8) followed by the exchange arfid
y. The homogeneous form ds, given by:

(t,x,y) — (xt,cntz—{—bxt—i—xz—yx,xz). (42)

It is easy to obtain thaks is simply x3, so thatx is the only factor which can appear
inm(y, ¢). The linex is sent to the point of coordinatés, 1, 0), but it is not sufficient
to characterize a possible blowing up. In fact, at leading order the image of points
approaching this line satisfy the equation = ¢,r2. We therefore have to follow the
image up to second order.remains a factor in the successive transformatiors lof
(¢%)* x, x? appears as a factor. This gives a factor ®in the transformation ok, and
is the signal according to Sect. 4.2 of the factdappearing inn (¢, ¢3). Thex? factor
is however not sufficient to guarantee the factorizatiarfoh the next composition. The
factorization oft® depends on the relatian. 3 — c,42 — cnt1+ cx Which characterizes
the form of thec, given in [11].

We may now establish the recurrence relation obeyed by the degrees. We introduce
the polynomialsc”! of degreeg, such that the component ot is x["1(x["=31)2, As
in the preceding case, the factor which will replaci the successive factorization is
x["1, The factorsc”—3! have disappeared i+ and the images of"~3! = 0 are not
singular. Sincel, = g, + 2g,—3, we have:

dpy1=2d, — 38,3 =28, + gn-3. (42)
whose solution is:
gn =1+ 302 — gL — (=DM, (43)
dy = 3%+ 3 — §(=D". (44)
These results agree with the explicit calculations, producing the sequence of degrees:
1,2,4,8,13,20,28 38 49,62, 76, ... . (45)

We can also consider a slight generalization introduced in [6]. The pole part of the
transformation of is replaced by a double pole but we do not use variable coefficients,

x — iz—l—b—x—y,
x
y — X. (46)

This is now a degree 3 birational map, wily = x3. It was shown that we still have the

same pattern, but with higher powersiofippearing. I3, thex component gets &2
factor and we can factoriz€ from ¢*. Defining similarlyx"! such that the component
of o is x["(xI"=31)3 we get the following recurrence relation for its deggge

gn+1—3gn +3gn—2—8gn-3=0. (47)

The solution of this equation allows to recover the results of [6]. The algebraic entropy is

given by the logarithm of the largest solutiorudf— 3x2 + 3x — 1 which is%(3+ V5),
the square of the golden ratio.
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5. Conclusion and Perspectives

We have not produced the general proof of the existence of a finite recurrence on the
degrees. We have however shown that its origin lies in the singularity structure of the
evolution and the possible recovering of reversibility.

In numerous examples which we will not enumerate, we have been able either to
establish recurrence equations or to infer a generating function from the first degrees
which successfully predict the following ones. This supports the following conjecture.

Conjecture. The generating function of the sequence of the degrees is always a rational
function with integer coefficients.

This may even be the case for rational transformation which are not birational [16]. The
algebraic entropy is in this case the logarithm of an algebraic number and in the case of
vanishing entropy, the sequence of the degrees is of polynomial growth.

There is a keyword which we did not use yet: integrability. Proving integrability in
our setting amounts to showing that the motion is a translation on a torus. From the
numerous examples we have examined, we believe the algebraic entropy measures a
deviation from this type of integrability. We can actually propose the following:

Conjecture 2. If the birational transformationp is equivalent to a bijection defined
on an algebraic variety deduced fron” by a finite sequence of blow-ups, then the
sequence of degreesg'! has at most a polynomial growth.

There also is the question of the relation of the algebraic entropy to other dynamical
entropies [3]. The fact that the algebraic maps we study do not necessarily admit an
ergodic measure precludes the definition of the Kolmogorov-Sinai entropy in many
cases. The most natural correspondence would be with the topological entropy, but
requires more work. We must also stress that in any case, the algebraic entropy is a
property of the map in the complex domain.

The special properties of rational maps allow to characterize the complexity of the
dynamics from the study of a single number, the degree, and to control it through the
study of the behaviour of the map in a small number of singular points.
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