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Abstract: We develop a new way to look at the high-temperature representation of the
Ising model up to the critical temperature and obtain a number of interesting conse-
quences. In the two-dimensional case, it is possible to use these tools to prove results
on phase-separation lines in the whole phase-coexistence regime, by way of a duality
transformation. We illustrate the power of these techniques by studying an Ising model
with a boundary magnetic field, in which a reentrant pinning transition takes place;
more precisely we show that the typical configurations of the model can be described, at
the macroscopic level, by interfaces which are solutions of the corresponding thermo-
dynamic variational problem; this variational problem is solved explicitly. There exist
values of the boundary magnetic field and temperatures 0< T1 < T2 < Tc such that the
interface is not pinned forT < T1 orT > T2, but is pinned forT1 < T < T2; we can also
find values of the boundary magnetic field and temperatures 0< T1 < T2 < T3 < Tc

such that forT < T1 or T2 < T < T3 the interface is pinned, while forT1 < T < T2
or T > T3 it is not pinned. An important property of the surface tension which is used
in this paper is the sharp triangle inequality about which we report some new results.
The techniques used in this work are robust and can be used in a variety of different
situations.

1. Introduction

Let us consider a 2D Ising model in some rectangular box with boundary conditions im-
posing the presence of a phase-separation line crossing the box from one fixed point of a
vertical side to another fixed point of the other vertical side. We suppose that the model
is in the phase-coexistence region; the boundary conditions are chosen so that above
the phase-separation line we have the+ phase and below it the− phase. The bottom
horizontal side of the box, which we call the wall, is subject to a negative boundary mag-
netic field. By varying the temperature or the boundary magnetic field one can observe
an interfacial pinning-depinning or critical wetting transition as established by Abraham
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[A1]. In [A1], however, this surface phase transition was called a “roughening transi-
tion” (although the analysis demonstrated the depinning character); further comments
are made in Sect. 2.3.2 in connection with the work of McCoy and Wu who observed
a related “boundary hysteresis” (see Chapters VI and XIII in [MW]). We now describe
the pinning-depinning transition at the macroscopic level. For values of these parame-
ters for which the+ phase wets partially the wall, and under appropriate geometrical
conditions, the equilibrium shape of the interface changes from a straight line crossing
the box to a broken line touching a macroscopic part of the wall. Moreover, we show
in this paper that there exist values of the boundary magnetic field and temperatures
0 < T1 < T2 < Tc such that the interface is not pinned forT < T1 or T > T2 and
pinned forT1 < T < T2; we can also find values of the boundary magnetic field and
temperatures 0< T1 < T2 < T3 < Tc such that forT < T1 or T2 < T < T3 the
interface is pinned, while forT1 < T < T2 or T > T3 it is not pinned. These reentrant
pinning-depinning transitions are predicted by a macroscopic variational problem for
the interface, which is formulated in terms of the surface tension and wall free energies
of the model. One of the main results of the paper is the derivation of this macroscopic
theory starting from the Boltzmann formula defining the equilibrium states of the model
at the microscopic level.

It is important to distinguish different length-scales. To do so we use two different
words, “interface” and “phase-separation line”. We use the word “interface” to denote
the boundary at the macroscopic scale between the two phases.At this scale the boundary
is fixed (nonfluctuating). The fundamental thermodynamical function associated with
an interface is the surface tension, which is non-zero below the critical temperature.
(In [ABCP] similar ideas are developed). By contrast, the “phase-separation line” is
a stochastic line whose probability distribution is determined by the Gibbs measure; it
describes the boundary between the two phases at the lattice spacing scale. In this respect
it is very interesting to read the introduction of [T], where Talagrand develops a similar
analysis of the Law of Large Numbers for independent random variables.

On the conceptual level one point of our paper is to show that the theory of the Gibbs
states for the infinite volume model is inadequate for discussing some macroscopic
properties of the model. The famous theorem, which states that all Gibbs states are
translation-invariant for the 2D Ising model [Az1,Hi1], is not pertinent when we study
the model at scalesLα, α > 1/2, L being the linear size of the box containing the
system. There are non-translation invariant states at that scale, with well-defined (fixed)
interfaces! Let us illustrate this point by considering the so-called±boundary conditions,
which corresponds to a special case of the present paper, where the phase-separation
line goes from the middle of a vertical side of the box to the middle of the other vertical
side. The definition of the phase separation line in [BLP1] coincides with the one of
Gallavotti in his work [G] about the phase separation in the 2D Ising model; it differs
slightly from the one used here, but in no essential way. (Notice that the terminology
“interface” is sometimes used for “phase-separation line” in [BLP1].) There are three
natural scales in the study of the phase-separation line, which have been first studied by
Abraham and Reed [AR] in a non-perturbative manner.

At the scale of the lattice spacing the phase-separation line is a stochastic geometri-
cal line, which has well-defined properties, which depend strongly on the microscopic
interaction [BLP1]. Its middle point has fluctuations typically of the orderO(L1/2), L

being the linear size of the box3L containing the system [G,AR]. Because of these
fluctuations the projection of the corresponding limiting Gibbs state, at the middle of
the box, whenL → ∞, is translation invariant [G]; in particular the magnetization
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(at the middle of the box) is zero. If we scale the lengths vertically by(1/L)1/2 and
horizontally by 1/L, then in the limitL → ∞ the phase-separation line converges to a
Brownian bridge, [Hi2,DH,D]. The magnetization profile on that scale has been com-
puted by [AR]. At that intermediate scale the phase-separation line is still stochastic,
but its properties show some universal features (Central Limit Theorem). However, at a
scale of orderO(Lα), α > 1/2, the system has a well-defined fixed horizontal interface
and a deterministic macroscopic magnetization profile [AR].

To describe the system at the scaleO(Lα) we partition the box3L into square boxes
Ci of linear sizeO(Lα); the state of the system in each of these boxes is specified by
the empirical magnetization|Ci |−1 ∑

t∈Ci
σ (t). Then we rescale all lengths by 1/L in

order to get a measure for these normalized block-spins in the fixed (macroscopic box)
Q. WhenL → ∞ these measures converge to a deterministic macroscopic magneti-
zation profile showing a well-defined horizontal interface separating the two phases of
the model, characterized by a value±m∗ of the normalized block-spins,m∗ being the
spontaneous magnetization of the model. This coarsed-grained description of the equi-
librium state at the thermodynamic limit is in sharp contrast with the above mentioned
result implying that the equilibrium state converges to a translation invariant measure
at the thermodynamical limit. These two limits are related to properties of the model at
two different scales, the lattice spacing scale and the macroscopic one.

We outline the content of the paper. In Sect. 2 we recall the definitions and some
properties of phase-separation line, duality, surface tension and wall free energy. We
give here no proof. By duality the statistical properties of the phase-separation line at
β > βc between two distant but fixed points, sayt andt ′, are (essentially) the same as the
statistical properties of the high-temperature contourλ in the random-line representation
(1.1) of the two-point correlation function atβ∗ < βc,

〈 σ(t)σ (t ′) 〉(β∗) =
∑

λ:t→t ′
q(λ). (1.1)

In (1.1)λ is an open contour of the high-temperature representation with end-pointst

andt ′; q(λ) is the weight of the contourλ; q(λ) depends of course onβ∗. We can also
interpretλ as the part of the phase-separation line going fromt to t ′ andq(λ) is the weight
at β of that part of the phase-separation line. The sum overλ in (1.1) is the partition
function of the ensemble of stochastic linesλ from t to t ′. We exploit the fact that this
partition function is equal to〈 σ(t)σ (t ′) 〉(β∗); consequently we have a good control
of this sum since we can use information, either from explicit computations or from
correlation inequalities, available for the two-point correlation function. Our (working)
definition of the surface tension of an interface described at the macroscopic level by a
line passing throught andt ′, perpendicular to the directionn, is the thermodynamical
function corresponding to this ensemble of stochastic lines, that is

τ̂ (n; β) := lim
k∈N

k→∞
− 1

k‖t − t ′‖ ln
∑

λ:kt→kt ′
q(λ). (1.2)

This is exactly the quantity, which enters in the macroscopic variational problem. (The
same point of view is taken in [Pf2] and [PV1] in connection with the Wulff shape.) On
the technical side this definition is much simpler to use in our problem than the previous
definitions considered in the literature [A2]. The fact that this definition coincides with
previous definitions considered in the literature is not trivial (Proposition 2.2). The
“physical” reason, why Proposition 2.2 is true, is that the walls of the box are in the
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complete wetting regime; see Sect. 7 where the dual question, equality between the
short and long correlation lengths, is considered. In Sect. 3 we define precisely the main
problem, which we address. In this section we give some references to earlier works.
We formulate the problem from the microscopic viewpoint, but then discuss it from the
macroscopic viewpoint in Sects. 4 and 5. The main physical results are contained in
Sect. 5, in which we prove that the physical situations described at the beginning of
this introduction take place. These two sections dealing with the macroscopic theory
are formulated in terms of surface tension and wall free energy. We use known results,
mostly coming from explicit computations. In fact, we do not know how to predict the
reentrant phenomena, which we display, without knowing explicitly the values of the
surface tension and the wall free energy. In the second part of the paper we derive the
macroscopic theory starting from the microscopic Hamiltonian by analysing the typical
configurations. Our starting point is a new way of dealing with the high-temperature
representation of the model, which has been developed recently in [PV1]. Although
different, our approach is similar in some respect to the random current representation
of the Ising model of Aizenman [Az2]. This method is exposed in Sect. 6; it is the core
of the paper. The method is not restricted to dimension two. Except for two proofs,
which can be read in [PV1], the method is developed from scratch, with new proofs and
new results. This section has its own interest and can be read independently. The major
results are concentration results for the random-line representation (1.1) of the two-point
correlation function above the critical temperature whenD = 2. Let

S(t, t ′; C ln ‖t − t ′‖) := { x ∈ Z
2 : ‖t − x‖ + ‖t ′ − x‖ ≤ ‖t − t ′‖ + C ln ‖t − t ′‖ }.

(1.3)

There existsC, large enough, so that the stochastic lines contributing to the two-point
function〈 σ(t)σ (t ′) 〉(β∗) are those contained inside the ellipse (1.3); more precisely, if
C is large enough, by Lemma 6.10,

lim
‖t−t ′‖→∞

∑
λ:t→t ′

λ 6⊂S(t,t ′;C ln ‖t−t ′‖)

q(λ)

∑
λ:t→t ′

q(λ)
= 0. (1.4)

This result is sharp, since the width of the ellipse isO
(
(‖t − t ′‖ ln ‖t − t ′‖)1/2

)
. Thus

the linesλ contributing to (1.1) are concentrated in a region, whose size is essentially,
that of the normal fluctuations of a random walk going fromt to t ′. When the model
is defined on the half-infinite latticeL := { x ∈ Z

2 : x2 ≥ 0 } we have a random-line
representation similar to (1.1) for the boundary two-point function (Lemma 6.13). There
are two regimes, depending on the value of the boundary magnetic field. If the boundary
coupling constanth∗, dual to the boundary magnetic fieldh, is not too large, then the
concentration result is as above; in that case we know that the lineλ undergoes an
entropic repulsion from the boundary ofL. On the other hand, if the coupling constant
h∗ is high enough, then the lineλ sticks to the boundary ofL. We show that the linesλ
contributing to the boundary two-point correlation function, when‖t − t ′‖ = |t1 − t ′1|
tends to infinity, are those contained in a rectangle (t1 < t ′1)

B(t, t ′; ρ) := { x ∈ L : x1 ∈ [t1 − ρ, t ′1 + ρ], 0 ≤ x2 ≤ ρ } , ρ = C ln |t1 − t ′1|.
(1.5)
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Again, this result is optimal. We stress that the only condition about the temperature is
T > Tc. We give a first application of the results of Sect. 6 in Sect. 7. This section also
contains one of the main estimates, a lower bound for the two-point correlation function
in a finite box in terms of the two-point correlation function of the infinite system. This
bound is essential for Sect. 8. We show that the pinning transition belowTc has a dual
interpretation aboveTc; although there is a unique Gibbs state at the thermodynamical
limit, we may have surface effects. Inspired by [SML] we introduce the notions of
short correlation length and long correlation length. We prove that these two notions
do not necessarily coincide. They differ when at the dual temperature the interface is
pinned. The relevance of these results for the surface tension at the dual temperature is
discussed at the beginning of Sect. 2.3. In Sect. 8 we justify the macroscopic theory of
Sect. 4 starting from the microscopic theory, and we show how the interface emerges
in the statistical description of the model, as a deterministic object in a coarse-grained
description of the microscopic configurations. We add one appendix, Sect. 9, where we
show that our method is robust. We apply it to a generic case withN interfaces.

In this paper we derive results by very different technical tools like exact computa-
tion, correlation inequalities and high-temperature representation. We can treat math-
ematically various interesting physical situations for the 2D Ising model. Each of the
approaches just mentioned has its own strengths and weaknesses. It is certainly advan-
tageous to combine these methods as we do in this paper. It is evident that the method of
the high-temperature representation, combined with duality, is appropriate for studying
interfaces for the 2D Ising model at a scaleLα, α > 1/2. On the other hand we also
show that we need few, but very precise results about specific quantities, like two-point
correlation function, surface tension, wall free energy, values of the boundary magnetic
field where the wetting transition takes place. These results depend on finer properties
of the model at scalesLα, α ≤ 1/2. Here exact computations are appropriate; moreover,
some of these results can be obtained only by exact computations.

[A2] is a good review about exact results on interface problems in general. We also
mention the work by Fisher [F] where deep insight about wetting and pinning problems
and other phenomena in 2D is provided by analysing these questions in terms of random
walks. Some of the results presented here are taken from [V] (see Chapter 6).

2. Definitions and Notations

We introduce the notation used in the paper, which follows essentially that of [PV1]. We
recall the notions of duality, phase-separation line, surface tension and wall free energy.
We also state some fundamental estimates for the two-point correlation function of the
model. A large part of this material is standard; references are given in the text.

Throughout the paper we use the following convention:O(x) denotes a non-negative
function ofx ∈ R

+, such that there exists a constantC with O(x) ≤ Cx; the function
O(x) may be different at different places.

2.1. Phase-separation line.As explained in the introduction, we study some macro-
scopic features of the 2D Ising model starting from the microscopic description of the
model. It is therefore natural to start by fixing some macroscopic boxQ ⊂ R

2, which
we choose in an asymmetric way for latter purposes,

Q := { x = (x1, x2) ∈ R
2 : |x1| ≤ 1 , 0 ≤ x2 ≤ 2 }. (2.1)
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Let L be an integer and3L ⊂ Z
2,

3L := { x = (x1, x2) ∈ Z
2 : |x1| ≤ L , 0 ≤ x2 ≤ 2L }. (2.2)

Notice that after scaling by 1/L, 3L ⊂ Q. Spin configurations are denoted byω ∈
{−1, +1}3L ; the spin variable atx ∈ Z

2 is σ(x), σ(x)(ω) = ω(x) = ±1. Phase-
separation lines are stochastic lines (see below), whose positions are fixed on the bound-
ary of3L by boundary conditions. The boundary∂3L of 3L is the subset

∂3L := { x ∈ 3L : ∃ y 6∈ 3L max
i=1,2

|yi − xi | = 1}. (2.3)

Boundary conditions (b.c.) for3L consists in prescribing the value of the spin atx ∈
∂3L. For example, the− b.c. means thatω(x) = −1 ∀x ∈ ∂3L. In the general case
boundary conditions are specified byη ∈ {−1, +1}∂3L , so that for all configurations
ω, ω(x) := η(x) ∀x ∈ ∂3L; we refer to that boundary condition as theη b.c.. Free
boundary conditions means absence of boundary conditions.

The Hamiltonian of the model in3L with η b.c. is the function on{−1, +1}3L

H
η
3L

(ω) :=
{

− ∑
〈t,t ′〉⊂3L

J (t, t ′)σ (t)(ω)σ (t ′)(ω) if ω(x) = η(x) ∀x ∈ ∂3L;
+∞ otherwise.

(2.4)

Here〈t, t ′〉 is the standard notation for a pair of nearest neighbour points of the lattice
Z

2, called bond. The coupling constantsJ (t, t ′) are positive; we specify them later on.
The Gibbs measure on{−1, +1}3L with η b.c. is

exp{−βH
η
3L

(ω)}
2η(3L)

; (2.5)

β is the inverse temperature and2η(3L), the partition function, is the normalization
constant in (2.5). Expectation values are written〈 · 〉η3L

.

The dual lattice toZ2 is

Z
2∗ := { x = (x1, x2) ∈ R

2 : x + (1/2, 1/2) ∈ Z
2 }, (2.6)

and the dual box3∗
L ⊂ Z

2∗ is

3∗
L := { x = (x1, x2) ∈ Z

2∗ : |x1| ≤ L − 1/2 , 1/2 ≤ x2 ≤ 2L − 1/2 }. (2.7)

Each bond〈t, t ′〉 defines a unit segmente(t, t ′) ⊂ R
2 with end-pointst, t ′; to each

bond 〈t, t ′〉 such that〈t, t ′〉 ∩ 3L\∂3L 6= ∅, there corresponds a unique dual bond
〈t∗, t ′∗〉 ⊂ 3∗

L, which is defined by the condition thate(t, t ′) ∩ e(t∗, t ′∗) 6= ∅. Given
boundary conditionsη, each configurationω, which is compatible with theη b.c., can
be uniquely specified by giving all segmentse(t, t ′) such thatσ(t)(ω)σ (t ′)(ω) = −1
and {t, t ′} ∩ 3L\∂3L 6= ∅; this is equivalent to specify all dual segmentse(t∗, t ′∗),
or the corresponding dual bonds of3∗

L. The union of these dual segments forms a
set of lines inR

2, which we decompose into connected components. Whenever∃ t ∈
3∗

L, which belongs to four segments, we apply the deformation rule defined in the
picture below, so that each configurationω, compatible with theη b.c., is uniquely
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specified by a finite set of disjoint simple lines calledcontours of the configuration.

- ��

Let B be a set of dual bonds; the boundaryδB of B is the set ofx ∈ Z
2∗ such that

there is an odd number of bonds ofB adjacent tox. B is closedif δB = ∅ andopen
if δB 6= ∅. The contours of a configuration are either closed, or open with end-points
on the boundary of3∗

L. The setVL(η) ⊂ 3∗
L of the end-points of the open contours is

uniquely determined by theη b.c.; its cardinality is even ifVL(η) 6= ∅. The set of closed
contours is writtenγ = {γ1, γ2, . . . , } and the set of open contoursλ = {λ1, λ2, . . . }.
We call the open contours thephase-separation linesof the configuration. Conversely,
a family of contours(γ ′, λ′) is calledη compatible if there existsω compatible with
theη b.c. such thatγ (ω) = γ ′ andλ(ω) = λ′.

The probability ofλ can be computed with the Gibbs measure(2.5). It is however
more convenient to introduce a non-normalized measure on the set of phase-separation
lines, in order to exploit the duality property of the model. Thelength |γ | of a closed
contourγ is

∑
e∈γ J (e). The sum of the lengths of the contours of a familyγ is written

|γ |. Similar notations hold for open contours. Next we define two (normalized) partition
functions,Zη(3L) andZη(3L|λ), whereλ andη are compatible,

Zη(3L) :=
∑

ω: η comp.

exp{−2β|γ (ω)|} exp{−2β|λ(ω)|}; (2.8)

and

Zη(3L|λ) :=
∑

ω: η comp.
λ(ω)=λ

exp{−2β|γ (ω)|}. (2.9)

We define a weightqη
3L

(λ) by setting

q
η
3L

(λ) :=
exp{−2β|λ|}Z

η(3L|λ)

Z−(3L)
if λ andη are compatible,

0 otherwise.
(2.10)

The weightqη
3L

(λ) does not define a probability measure on the set ofη compatible
phase-separation lines, since in (2.10) we divide byZ−(3L) and notZη(3L).

2.2. Duality. A basic property of the 2D Ising model is self-duality. As a consequence
of that property many questions about the model below the critical temperature can be
translated into dual questions for the dual model above the critical temperature. For
example, questions about the surface tension are translated into questions about the
correlation length.

We define the dual objects to3L, β andJ (t, t ′). The dual box3∗
L is defined in (2.7).

The dual inverse temperatureβ∗ is defined by

tanhβ∗ := exp{−2β}. (2.11)
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We recall that the critical inverse temperatureβc of the Ising model with coupling
constantsJ (t, t ′) ≡ 1 is the fixed point of Eq. (2.11). Let〈t, t ′〉 be a bond ofZ2 and
〈t∗, t ′∗〉 its dual bond; the dual coupling constantJ ∗(t∗, t ′∗) is defined by

tanhβ∗J ∗(t∗, t ′∗) := exp{−2βJ (t, t ′)}. (2.12)

Let

H3∗
L

:= −
∑

〈t,t ′〉⊂3∗
L

J ∗(t, t ′)σ (t)σ (t ′) (2.13)

be the Hamiltonian in the dual box3∗
L with free boundary conditions and dual coupling

constants. The expectation value with respect to the corresponding Gibbs measure at the
dual temperatureβ∗ is written〈 · 〉3∗

L
.

A key dual statement is the following one. Letλ be a family of phase-separation lines,
which areη compatible with a givenη b.c. for3L. Then∑

λ

q
η
3L

(λ) = 〈
∏

t∈VL(η)

σ (t) 〉3∗
L
. (2.14)

Formula (2.14) is our starting point for analysing the interfaces of the model. It is proven
in Sect. 6. In that section we identify the weightq

η
3L

(λ) with the weightq3∗
L
(λ) of λ in

the high-temperature representation of the model defined in the dual box3∗
L with free

boundary conditions (see Lemma 6.2).

2.3. Surface tension and wall free energy.We recall the definition of surface tension
as given for example in the review paper [A2] formula (2.14a) (see also [Pf1]), since
this is the definition which is mostly used. In Sect. II.D of [A2] other definitions of
surface tension are reviewed and compared. The heuristic grounds given on p.10 of [A2]
(see also note 12 in [Pf1]) lead to a definition of the surface tension as the logarithm
of the ratio of two partition functions with different boundary conditions. The results
of Sect. 7 show that this may lead to a wrong definition of the surface tension for an
Ising model with modified coupling constants on one part of the boundary. The heuristic
grounds give a correct definition only if the walls of the box are in the complete wetting
regime, a crucial physical condition, which has been so far overlooked in the literature.
See Sect. 7 where we consider explicitly the dual question of equivalence of short and
long correlation length, but the results apply to the definition of the surface tension. As
explained in the Introduction our working definition of the surface tension is different.
The fact that we get the same quantity is a consequence of Proposition 2.2. The ultimate
justification for the definition of the surface tension is that it should be equal to the
quantity, which enters into the formulation of the variational problem describing the
behaviour of the interface at the macroscopic level. This is the subject of this paper.

2.3.1. Surface tension.Consider the model defined in3′
L,

3′
L := { x ∈ Z

2 : |xi | ≤ L , i = 1, 2 }, (2.15)
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with coupling constantsJ (t, t ′) ≡ 1 and inverse temperatureβ. Let n ∈ R
2 be a unit

vector; denote byDn the straight line perpendicular ton and passing through the origin
of R

2. Theηn b.c. for3′
L is defined by

ηn(x) :=
{

−1 if x ∈ ∂3′
L is below or onDn,

+1 if x ∈ ∂3′
L is aboveDn.

(2.16)

Let Dn be the Euclidean length of the segment{x ∈ R
2 : |xi | ≤ 1} ∩ Dn. If ω is

compatible with theηn b.c. there is a unique phase-separation lineλ(ω). The limit
τ̂ (n; β)

τ̂ (n; β) := − lim
L→∞

1

LDn

ln
Zηn(3′

L)

Z−(3′
L)

(2.17)

exists and is called thesurface tensionat inverse temperatureβ. By symmetry of the
model we have (n = (n1, n2))

τ̂ (n1, n2; β) = τ̂ (−n1, −n2; β) = τ̂ (n2, −n1; β) = τ̂ (n2, n1; β). (2.18)

We extend the definition of̂τ(n; β) to R
2 by homogeneity (‖ · ‖ is the Euclidean norm),

τ̂ (x; β) := ‖x‖τ̂ (x/‖x‖; β). (2.19)

Proposition 2.1. Let J (t, t ′) ≡ 1. The surface tension is a uniformly Lipschitz convex
function onR

2 such thatτ̂ (x; β) = τ̂ (−x; β). It is identically zero ifβ ≤ βc, and
strictly positive for allx 6= 0 if β > βc. In the latter casêτ defines a norm onR2. The
main property of̂τ is the sharp triangle inequality. For allβ > βc there exists a strictly
positive constantκ = κ(β) such that for anyx, y ∈ R

2,

τ̂ (x; β) + τ̂ (y; β) − τ̂ (x + y; β) ≥ κ(‖x‖ + ‖y‖ − ‖x + y‖). (2.20)

Letx(θ) := (cosθ, sinθ) and τ̂ (θ; β) := τ̂ (x(θ); β). Then the best constantκ is

κ := inf
θ

(
d2

dθ2 τ̂ (θ; β) + τ̂ (θ; β)

)
> 0. (2.21)

The first part of the proposition is proved in [LP] and [Pf2] (Lemma 6.4). The argu-
ments are not restricted to the 2D Ising model. Ioffe [I1] proved an equivalent form of
inequality (2.20), but with a non-optimal value ofκ. Inequality (2.20) as stated here first
appeared in [V]. The strict positivity of the optimal constantκ given in (2.21) follows
from the exact expression ofτ̂ (θ; β) [AA]; it is called thepositive stiffness property.

Remark.Geometrically (2.21) means that the curvature of the Wulff shape is bounded
above by 1/κ. It is well-known that the surface tension is the support function of the
Wulff crystal. The following result of Convex Theory is interesting, and appears to be
new as far as we know [V]. It characterizes the compact convex bodiesW in R

2 which
have a support function̂τ ,

τ̂ (x) := sup
y∗∈W

〈 y∗, x 〉, (2.22)

satisfying the sharp triangle inequality

τ̂ (x) + τ̂ (y) − τ̂ (x + y) ≥ K ′(‖x‖ + ‖y‖ − ‖x + y‖). (2.23)
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In (2.22)〈 ·, · 〉 is the Euclidean scalar product. No smoothness of the boundary ofW

is assumed. LetW1 andW2 be two convex bodies; we say that∂W1 is tangent to∂W2
at x∗ if W1 andW2 have a common support plane atx∗. We recall the notion of radius
of curvature ofW at x∗. Let U be an open neighborhood ofx∗. Let Ti (x

∗, U) be the
family of discsD with the following properties:

1. ∂D is tangent to∂W atx∗;
2. W ∩ U ⊃ D ∩ U .

We allow the degenerate cases where the disc is a single point or a half-plane. Conse-
quentlyTi (x

∗, U) 6= ∅. We denote byρ(D) the radius of the discD and set

ρ(x∗, U) := sup{ρ(D) : D ∈ Ti (x
∗, U)}. (2.24)

Clearlyρ(x∗, U1) ≤ ρ(x∗, U2) if U1 ⊃ U2. The lower radius of curvature at x∗ is
defined as

ρ(x∗) := sup{ρ(x∗, U) : U open neighborhood ofx∗}. (2.25)

Theorem 2.1. LetW be a convex compact body andτ̂ be its support function. Then the
following statements are equivalent:

1. The lower radius of curvature of∂W is uniformly bounded below byK > 0.
2. There exists a positive constantK ′ such that for anyx, y ∈ R

2,

τ̂ (x) + τ̂ (y) − τ̂ (x + y) ≥ K ′(‖x‖ + ‖y‖ − ‖x + y‖). (2.26)

There is a well-known dual relation between the surface tension at inverse temperature
β and the decay-rate of the two-point function at the dual temperatureβ∗, which we
recall here. Consider the 2D Ising model on the dual lattice, with coupling constants
J ∗(t, t ′) ≡ 1, inverse temperatureβ∗ and free b.c..The two-point function, or covariance,
is

〈σ(t)σ (t ′)〉(β∗) , t, t ′ ∈ Z
2∗, (2.27)

where〈 · 〉(β∗) denotes expectation value with respect to the infinite volume free b.c.
Gibbs measure at inverse temperatureβ∗. Thedecay-rateof the two-point function is
defined for allt, t ′ ∈ Z

2∗ as

τ(t − t ′; β∗) := − lim
k∈N

k→∞

1

k
ln〈σ(kt)σ (kt ′)〉(β∗). (2.28)

Proposition 2.2. Let J (t, t ′) ≡ 1. The surface tension̂τ(x; β) of the 2D Ising model
and the decay-rateτ(x; β∗) are equal,

τ̂ (x; β) = τ(x; β∗) ∀x. (2.29)

Remark.Identity (2.29) has been noticed several times; we refer the reader to [ZA]
where a brief historical account with references is given at the beginning of their paper.
However, a proof of formula (2.29) does not follow from duality only. There is an
exchange of limits, which must be justified (see e.g. [BLP2]). We show in Sect. 7 that
there are cases where the exchange of limits is not valid and such a relation does not
hold.
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2.3.2. Wall free energy.There is another thermodynamical quantity, which enters into
the description of the properties of the interface, the wall free energy. In the phase-
coexistence regime it depends on the nature of the bulk phase. Only the difference of
wall free energies when the bulk phase is either the+ phase or the− phase has an
intrinsic meaning. In order to have interesting surface phenomena we single out one part
of the boundary of the box3L, the bottom part. (This is the reason for our asymmetrical
choice of3L.) We choose here the coupling constants of the model as follows.

J (t, t ′) :=
{

h > 0 if t2 = 0 or t ′2 = 0,

1 otherwise.
(2.30)

We compare the free energy for two different b.c., one being the− b.c. and the other
one theη± b.c., defined as

η±(x) :=
{

−1 if x ∈ ∂3L andx2 = 0,

1 if x ∈ ∂3L andx2 > 0.
(2.31)

We set1

τ̂bd(β, h) := − lim
L→∞

1

2L + 1
ln

Zη±(3L)

Z−(3L)
. (2.32)

The quantityτ̂bd(β, h), which gives the difference of two free energies, verifies the
fundamental inequalities (2.34) for anyD ≥ 2, [FP1] and [FP2]. Letnw := (0, 1) and
set

τ̂ (β) := τ̂ (nw; β); (2.33)

for anyβ and anyh,

|τ̂bd(β, h)| ≤ τ̂ (β). (2.34)

If β > βc andh > 0, then

0 < τ̂bd(β, h) ≤ τ̂ (β). (2.35)

Suppose thatβ > βc. The difference between the two free energies, per unit length,
is interpreted as the free energy, per unit length, of the horizontal interface produced
by the boundary conditionη±. If τ̂bd(β, h) = τ̂ (β), then this free energy is equal to
the surface tension of an horizontal interface. This indicates that the interface produced
by the boundary conditionη± b.c. is not pinned; or in other terms, we have complete
wetting of the wall by the− phase. On the other hand, ifτ̂bd(β, h) < τ̂ (β), then this
indicates that the interface is pinned, or in other words, that we have partial wetting.
What we just described is Cahn’s criterion for the wetting transition: whenh > 0 there
is partial wetting of the wall if and only if̂τbd(β, h) < τ̂ (β). In terms of Gibbs states one
can prove, [FP1] and [FP2], that near the wall all Gibbs states are identical if and only
if |τ̂bd(β, h)| = τ̂ (β). Intuitively this is easy to understand: at themicroscopiclevel the
state of the system near the wall is always the state of the− phase near the wall, since
the wall is in the complete wetting regime. By contrast, in the partial wetting regime

1 The definition ofτ̂bd differs from the analogous quantity used in [PV1] or [PV2], because in these papers
the reference bulk phase is the+ phase and here it is the− phase.
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the state near the wall depends on the nature of the bulk phase. The behaviour of Gibbs
states near the wall can be distinguished by the order parameter

lim
L→∞〈 σ(0, 1) 〉η3L

(β, h). (2.36)

Fröhlich and Pfister in [FP2] proved that there are several Gibbs states near the bottom
wall if and only if

lim
L→∞〈 σ(0, 1) 〉−3L

(β, h) 6= lim
L→∞〈 σ(0, 1) 〉η±

3L
(β, h). (2.37)

This occurs if and only ifh < hw, with hw = hw(β), a temperature dependent coupling,
which is defined by (see (2.27) in [FP2])

hw(β) = inf { h ≥ 0 : lim
L→∞〈 σ(0, 1) 〉−3L

(β, h) = lim
L→∞〈 σ(0, 1) 〉η±

3L
(β, h) }. (2.38)

Using the results of Fröhlich and Pfister [FP1] and [FP2], and those of Pfister and Penrose
[PP] one can show that the surface magnetizations computed by McCoy and Wu (see
Chapter VI in [MW]) can be identified with the above quantities

lim
L→∞〈 σ(0, 1) 〉−3L

(β, h) and lim
L→∞〈 σ(0, 1) 〉η±

3L
(β, h).

Thereforehw can be computed from their work,hw being given by formula (5.44), p.137
of [MW]; it is not difficult to show that an equivalent form of this expression is (2.39),
which is the formula given byAbraham for the value ofhw, where the pinning-depinning
transition occurs,

exp{2β}{cosh 2β − cosh 2βhw(β)} = sinh 2β. (2.39)

An equivalent computation ofhw based on Cahn’s criterion is given in [AC].

Remark.At the time when McCoy and Wu discovered this surface phase transition no-
body understood what was physically implied: the transition was interpreted as a bound-
ary hysteresis phenomenon. This interpretation is, however, misleading, the transition
is not related to any kind of metastability. The plot of the quantities corresponding to

limL→∞〈 σ(0, 1) 〉−3L
(β, h) and limL→∞〈 σ(0, 1) 〉η±

3L
(β, h) is given in Fig. 6.6, Chapter

VI of [MW].

Besides the extensive computations for the semi-infinite Ising model of McCoy and
Wu, Abraham, Abraham and coworkers, we also mention [AY] and [AF]; this list is not
exhaustive.

As for the surface tension there is a dual expression forτ̂bd. We first introduce the
two-point function of the model on the half-infinite lattice

L
∗ := { x ∈ Z

2∗ : x2 ≥ 1/2 }, (2.40)

as

〈σ(t)σ (t ′)〉L∗(β∗, h∗) := lim
L→∞〈σ(t)σ (t ′)〉3∗

L
(β∗, h∗). (2.41)
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Fig. 1. τ̂bd as a function of the magnetic fieldh, for β = 1.4βc

Proposition 2.3. Let the coupling constants be given by (2.30),h > 0, and letβ > βc.
Let β∗, h∗ be the dual coupling constants,t, t ′ ∈ 3∗

L, t (2) = t ′(2) = 1/2. Then the
limit

− lim
n→∞

1

n
ln〈σ(nt)σ (nt ′)〉L∗(β∗, h∗) = |t1 − t ′1| · τbd(β

∗, h∗) (2.42)

exists andτbd(β
∗, h∗) = τ̂bd(β, h).

See [PV1] for a proof.

2.4. Two-point correlation function.There are close relations between surface tension,
resp. wall free energy, and decay-rate of the two-point correlation function, resp. bound-
ary two-point correlation function (Propositions 2.2 and 2.3). The next proposition states
fundamental estimates about the two-point correlation functions, which we need later
on. As in the previous section, see (2.33),τ̂ (β) := τ̂ (nw; β) andτ(β∗) = τ̂ (β).

Proposition 2.4. LetJ (e) ≡ 1. Letβ∗ < βc.

1. There exist positive constantsK andab such that for allx, y ∈ Z
2∗,

K
exp{−τ(y − x; β∗)}

‖x − y‖ab
≤ 〈σ(x)σ (y)〉(β∗) ≤ exp{−τ(y − x; β∗)}. (2.43)

2. Let the coupling constants be given by (2.30), withh = h∗, 0 < h∗ < ∞. If
τbd(β

∗, h∗) = τ(β∗), then there exists a constantK ′ such that for allx, y ∈ L
∗, with

x2 = y2 = 1/2,

K ′ exp{−τ(β∗)|x1 − y1|}
‖x − y‖3/2 ≤ 〈σ(x)σ (y)〉L∗(β∗, h∗)

≤ exp{−τ(β∗)|x1 − y1|}.
(2.44)
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3. Let the coupling constants be given by (2.30), withh = h∗, 0 < h∗ < ∞. If
τbd(β

∗, h∗) < τ(β∗), then there exists a constantK ′′ such that for allx, y ∈ L
∗,

with x2 = y2 = 1/2,

K ′′ exp{−τbd(β
∗, h∗)|x1 − y1|} ≤ 〈σ(x)σ (y)〉L∗(β∗, h∗)

≤ exp{−τbd(β
∗, h∗)|x1 − y1|}. (2.45)

Remarks.1. The upper bounds are well-known consequences of sub-additivity and GKS
inequalities, see e.g. [PV1].

2. The lower bound (2.43) has been proved recently by Alexander [Al]; his method is
robust and can be applied to different models of statistical mechanics, e.g. percolation,
Potts or random-cluster models. The value obtained by this method is not optimal (see
the next remark).

3. The optimal value in (2.43) isab = 1/2. Notice that for our purpose the bound
(2.43) derived by Alexander is sufficient. However, the determination of the asymptotic
behaviour of the two-point function is an important theoretical question. A detailed
asymptotic study of the two-point function of the Ising model whenD = 2 is made in
Chapter XII of [MW] (in particular (4.39) therein); see the very informative discussion of
their results in Sect. 5 of the same chapter. For dimensionD ≥ 2 the expected behaviour
is

〈σ(x)σ (y)〉(β∗) = ϕ(n(y − x); β∗)exp{−τ(y − x; β∗)}
‖x − y‖D−1

2

, (2.46)

with n(y − x) = (x − y)/‖x − y‖. Recently Ioffe [I2] proved such a formula for the
simple self-avoiding walk onZD, D ≥ 2, with ϕ : SD−1 → R

+ an analytic function.

4. The lower bound (2.44) follows again from the work of [MW] whenh∗ = 1 (Chapter
VII, in particular the discussion pp.144–145). Using correlation inequalities, it can be
extended to the general case as shown in [PV1, Prop. 7.1].

5. The lower bound in (2.45) is proven in [PV1, Prop. 7.1].

3. A Microscopic Model for the Pinning Transition

We define a microscopic model for a system with two coexisting phases, separated by an
interface, where we have a reentrant pinning-depinning transition. Our model is inspired
by the work of Patrick [Pa1], who showed that there is a reentrant pinning-depinning
transition for the SOS model corresponding to our settings. In a recent work, Patrick and
Upton [PU] studied in the Ising model questions similar to those investigated here. The
interesting fact that we can have reentrant pinning-depinning transition for an Ising model
with ferromagnetic coupling constants only is not new. This is for example proved in
[ACD] for a different choice of the coupling constants; in our notations this corresponds
to

J (t, t ′) :=


c > 0 if t2 = 0 andt ′2 = 1 or vice-versa,
0 if t2 = t ′2 = 0 or t2 = t ′2 = 1,

b > 0 if t2 = 1 andt ′2 = 2 or vice-versa,
1 otherwise.

(3.1)
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In [ACD] the two boundary conditionsη± are considered

η±(x) :=
{

±1 if x ∈ 3L, x2 = 0,

1 otherwise.
(3.2)

This model differs from our model; if we integrate over the spins of the row{x ∈ 3L,
x2 = 1}, then the resulting Hamiltonian is equivalent to our Hamiltonian defined by
the coupling constants (3.3), but with now an effective nonlinear temperature dependent
couplingh = h(T ) (see formula (11) in [ACD]).

Our method proceeds in two steps. First, we derive a macroscopic variational prob-
lem characterizing the typical configurations. This part of the analysis is based on the
probabilistic methods developed in Sect. 6 and following. The main advantage we gain
is that these methods are robust (see for example the Appendix). In the second step,
we solve explicitly the variational problem. It is at that point that we need the exact
expressions of the surface tension and wall free energy.

Let Q be the macroscopic box (2.1) and denote byWQ := { x ∈ Q : x(2) = 0 } its
bottom wall. We want to describe at the macroscopic level an interface going from the
point A := (−1, a), 0 < a < 2, to the pointB := (1, b), 0 < b < 2, which can be
pinned by the bottom wallWQ. The idea is to introduce a grid inQ with lattice spacing
1/L, L ∈ N, and to consider an Ising model on that grid. WhenL tends to infinity we
hope to have a good microscopic description of the macroscopic physical situation. It is
however more convenient to work with a fixed lattice with lattice spacing unity, when
we investigate asymptotic properties of the model forL tending to infinity. Therefore
we define the model in the box3L (see (2.2)). We choose the coupling constants of the
model as follows,

J (t, t ′) :=
{

h > 0 if t2 = 0 or t ′2 = 0,

1 otherwise.
(3.3)

The boundary conditions specify the end-points of one phase-separation line, which is
the microscopic manifestation of the interface. The boundary conditions areηab,

ηab(x) :=


+1 if x ∈ 3L, x2 = 2L,

+1 if x1 = −L andaL ≤ x2 ≤ 2L,

+1 if x1 = L andbL ≤ x2 ≤ 2L,

−1 otherwise.

(3.4)

In each spin configuration compatible withηab there is a unique phase-separation
line λ with end-points inVL(ηab) := {uL, vL}, uL

1 = −L andvL
1 = L. The normalized

partition function is denoted byZab(3L) ≡ Zηab (3L).

Problem. Describe the statistical properties of the phase-separation lineλ and show that
there is reentrant pinning-depinning transition. Derive the macroscopic theory developed
in Sect. 4 from the microscopic theory.

Remark.In [AK] the same model is studied, with similar, but different boundary con-
ditions; the pinning of the interface is used in order to define the contact angle and give
an exact derivation of the modified Young equation for partial wetting.
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4. The Variational Problem

The interface is a macroscopic deterministic object, whose properties are described by
a functional involving the surface tension or the wall free energy. The equilibrium state
of the interface is given by the minimum of this functional.

In Q the interface is a simple rectifiable curveC with end-pointsA = (−1, a),
0 < a < 2, andB = (1, b), 0 < b < 2. We denote by|C ∩ WQ| the length of
the portion of the interface in contact with the wallWQ. Suppose that[0, t] → Q,
s 7→ C(s) = (u(s), v(s)), is a parameterization of the interface. The free energy of the
interfaceC can be written

W(C) :=
∫ t

0
τ̂ (u̇(s), v̇(s))ds + |C ∩ WQ| ·

[
τ̂bd − τ̂ (1, 0)

]
, (4.1)

because the function̂τ(x1, x2) is positively homogeneous andτ̂ (x1, x2) = τ̂ (−x2, x1).
The interface at equilibrium is the minimum of this functional. Therefore we have to
solve the

Variational problem.Find the minimum of the functionalWamong all simple rectifiable
open curves inQ with extremitiesA = (−1, a) andB = (1, b).

LetD be the straight line fromA toB andW be the curve composed of three straight
line segments: fromA to a pointP1 ∈ WQ , fromP1 toP2 ∈ WQ, and fromP2 toB. The
pointsP1 resp.P2 are such that the angles between the first segment and the wall resp.
between the last segment and the wall are equal toθY ∈ [0, π/2], which is a solution of
the Herring–Young equation (4.2)

cosθY τ̂ (θY ) − sinθY τ̂ ′(θY ) = τ̂bd. (4.2)

W is a simple curve inQ if and only if

θY ∈ [arctan
a + b

2
, π/2). (4.3)

Remarks.1. The choice,θY ∈ [0, π/2], leads to a different sign at the right-hand side of
the Herring–Young equation (4.2) than in [PV2] formulae (1.5) or (4.60); in these latter
references we useπ − θ instead ofθ .

2. For the case under consideration the existence ofθY is an immediate consequence
of the Winterbottom construction. In our case we have supposed thath > 0, so that
τ̂bd > 0. Sinceτ ′(π/2) = 0 the caseθY = π/2 never occurs.

Proposition 4.1. Let θY be the solution of the Herring–Young equation (4.2).

1. If tanθY ≤ a+b
2 , then the minimum of the variational problem is given by the curve

D.
2. If π/2 > θY > arctan( a+b

2 ), then the minimum of the variational problem is given by
D if W(D) < W(W), byW if W(D) > W(W) and by bothD andW if W(D) = W(W).

Proof. The proof is an easy consequence of the two following lemmas. Lemma 4.1 states
that the minimum is a polygonal line.
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Lemma 4.1. LetC be some simple rectifiable parameterized curve with initial pointA

and final pointB. If C does not intersect the wall, then

W(C) ≥ W(D) (4.4)

with equality if and only ifC=D. If C intersects the wall, lett1 be the first timeC touches
the wall andt2 the last timeC touches the wall. Let̂C be the curve defined by three
segments fromA to C(t1), fromC(t1) to C(t2) and fromC(t2) to B. Then

W(C) ≥ W(Ĉ). (4.5)

Equality holds if and only ifC = Ĉ.

Proof. Sinceτ̂ is convex and homogeneous, we have in the first case by Jensen’s in-
equality

W(C) = t
1

t

∫ t

0
τ̂ (u̇(s), v̇(s))ds ≥ t τ̂ (

1

t

∫ t

0
u̇(s)ds,

1

t

∫ t

0
v̇(s)ds) = W(D). (4.6)

The inequality is strict ifC 6= D as is seen using the sharp triangle inequality (2.20).
In the second case we apply Jensen’s inequality to the part ofC betweenA andC(t1)

and betweenC(t2) andB to compare with the corresponding straight segments ofĈ.
Combining Jensen’s inequality and the fact thatτ̂bd ≤ τ̂ , we can also compare the part
of C betweenC(t1) andC(t2) with the corresponding straight segment ofĈ. ut
Lemma 4.2. Let Ĉ be a polygonal line fromA to P̂1 ∈ WQ, then fromP̂1 to P̂2 ∈ WQ,
and finally fromP̂2 to B. LetθY be the solution of the Herring–Young equation (4.2). If
π/2 > θY > arctan( a+b

2 ) then

W(Ĉ) ≥ W(W), (4.7)

with equality if and only if̂C = W. If arctan( a+b
2 ) ≥ θY ,

W(Ĉ) > W(D). (4.8)

Proof. Let θ1 be the angle of the segment of̂C from A to P̂1 with the wall WQ, and
θ2 be the angle of segment from̂P2 to B with the wallWQ. A necessary and sufficient
condition, that the polygonal linêC is a simple polygonal line, is

a

tanθ1
+ b

tanθ2
≤ 2. (4.9)

In particular, we certainly haveθ1 ≥ θa , whereθa := arctana/2, andθ2 ≥ θb, where
θb := arctanb/2. Since we suppose thata > 0 andb > 0 we haveθa > 0 andθb > 0.
We suppose thatθY ∈ (0, π/2), sinceθY = 0 occurs only ifτ̂ (0) = τ̂bd, and in that case
by Lemma 4.1W(Ĉ) > W(D). We compute

W(Ĉ) = τ̂ (θ1)
a

sinθ1
+ τ̂bd(2 − a

tanθ1
− b

tanθ2
) + τ̂ (θ2)

b

sinθ2
(4.10)

= g(θ1, a) + g(θ2, b),
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where

g(θ, x) := τ̂ (θ)
x

sinθ
+ τ̂bd(1 − x

tanθ
). (4.11)

SinceθY is a solution of (4.2),

∂

∂θ
g(θY , x) = x

sin2 θY

(
sinθY τ̂ ′(θY ) − cosθY τ̂ (θY ) + τ̂bd

)
= 0. (4.12)

The second derivative ofg(θ, x) is

∂2

∂θ2g(θ, x) = x(τ̂ (θ) + τ̂ ′′(θ))

sinθ
− 2

tanθ

∂

∂θ
g(θ, x). (4.13)

Therefore, forθ ∈ (0, π/2], we have

∂

∂θ
g(θ, x) = x

∫ θ

θY

exp{−
∫ θ

γ

2

tanα
dα} τ̂ (γ ) + τ̂ ′′(γ )

sinγ
dγ. (4.14)

Sinceτ̂ has positive stiffness, i.e.τ̂ (θ)+ τ̂ ′′(θ) > 0, (4.14) implies thatθY is an absolute
minimum ofg(θ, x) over the interval(0, π/2], and thatg is strictly monotonous over
the intervals(θY , π/2] and(0, θY ). Therefore

W(Ĉ) ≥ g(θY , a) + g(θY , b). (4.15)

If (4.3) holds, then (4.15) impliesW(Ĉ) ≥ W(W), because in that case

g(θY , a) + g(θY , b) = W(W). (4.16)

If (4.14) does not hold,W is not a simple line and is not even necessarily insideQ. The
two segments fromA to the wall and fromB to the wall intersect at some pointP ∈ Q.
Let Ŵ be the simple polygonal curve going fromA to P , then fromP to B. A simple
application of Lemma 4.1, using the fact thatτ̂ (1, 0) ≥ τ̂bd, gives

g(θY , a) + g(θY , b) ≥ W(Ŵ). (4.17)

Applying again Lemma 4.1 we get

W(Ŵ) > W(D). (4.18)

ut
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5. Reentrance and Pinning Transition

The results of Sect. 4 show that, when the parametersa andb are well-chosen, the system
under consideration can undergo a phase transition from a phase in which the interface
is pinned to the wall on a macroscopic distance to a phase in which it does not touch the
wall. It is interesting to consider the corresponding phase diagram, which is obtained
using the explicit expressions for the mass gap of the 2-point function and the mass
gap of the boundary 2-point function (by duality this provides exact expressions for the
surface tension and wall free energy). The expressions we use are the following:

τ̂ (θ; β) = | cosθ | sinh−1(α| cosθ |) + | sinθ | sinh−1(α| sinθ |), (5.1)

α = 2

b

(
(1 − b2)/(1 +

√
sin2 2θ + b2 cos2 2θ)

)1/2
,

b = 2 sinh 2β cosh−2 2β,

and for 0≤ h < hw(β), with β∗ andh∗ the dual coupling constants toβ andh,

coshτ̂bd(β, h) = cosh2(β∗) coth(2β∗h∗) − sinh2(β∗) coth[2β∗(h∗ − 1)]. (5.2)

They can be found, for example, in [MW] [Eq. (4.39) of Chap. XII and Eq. (5.29) of
Chap.VII]. Figure 2 shows a set of phase-transition lines, depending on the parametersa

andb, in theT -h plane (T = 1/kβ being the temperature). The shaded area corresponds
to the set of parameters

{(T , h) : τ̂bd(β, h) < τ̂ ((1, 0); β)}. (5.3)

In other words, the boundary of that region is the wetting transition line: If we set
a = b = 0, then for values of the temperature and boundary magnetic field inside this
set, the phase-separation line is pinned to the wall microscopically (partial wetting),

h

0:8

0:2

Tc T

i

ii

iii

iv

Fig. 2. A sequence of phase-transition lines, separating the phase in which the interface is a straight line
and the phase in which it is pinned to the wall. Theshaded areacorresponds to the values of(T , h) so that
τ̂bd(β, h) < τ̂ ((1, 0); β). The four curves correspond to: i)a = 0.1,b = 0.1; ii) a = 0.1,b = 0.2; iii) a = 0.1,
b = 0.4; iv) a = 0.4, b = 0.4. Observe that the system in case i) exhibits reentrance (see also Fig. 3)
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Fig. 3. This figure shows part of the phase-transition line fora = 0.1, b = 0.1 (left), anda = 0.1, b = 0.12
(right). For values of the parametersT andh below these curves the interface is pinned, while it is a straight
line above these curves. Increasing the temperature along the dashed lines, we see that the system exhibits
reentrance; this corresponds to the two situations discussed in the introduction

while for values of the parameters outside this set it takes off and fluctuates far from
the wall (complete wetting). Notice that in the macroscopic limit, the interface lies
always along the wall in this case. The four curves i) to iv) in Fig. 2 represent the phase-
transition line for various values of the parametersa > 0 andb > 0. For any value of the
parametersβ andh above the phase-transition line, the system’s interface is the straight
line, while, for any value of these parameters below the curve, it is pinned. Clearly, since
a andb are strictly positive, the phase-transition line must be inside the shaded region
(whenτ̂bd(β, h) = τ̂ ((1, 0); β), Jensen’s inequality implies that the interface is always
a straight line).
The phenomenon of reentrance described in the introduction can be seen in Figs. 2 and 3.
Supposea = b = 0.2 andh is slightly above 0.8 (this corresponds to the dashed line of
the first picture in Fig. 3). At very low temperature, the interface does not touch the wall;
if we increase the temperature, then there is a first transition and the interface becomes
tied to the wall; if we increase further the temperature, then a second transition takes
place and the interface is again the straight line; finally, atT = Tc, the system becomes
disordered. In fact for slightly different values ofa andb, there can even be one more
transition, as shown in the second picture of Fig. 3.

6. High-Temperature Representation

We give the main results about the high-temperature representation of the Ising model.
These results are not restricted to dimension 2, but for simplicity we consider only this
case; we also use a definition of contour adapted to this particular case. We stress that
the high-temperature representation is a non-perturbative approach; the basic objects
in the high-temperature representation are defined for all positiveβ and we apply this
representation for allβ < βc. The results are essential for the rest of our analysis,
in particular Lemmas 6.9 and 6.11 about random-line representations of the two-point
correlation function, and Lemmas 6.10 and 6.13, which characterize those random-lines,
which give the main contribution to the two-point correlation function.
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6.1. Ising model on a finite graph.We consider here the high-temperature representa-
tion of the Ising model with free boundary conditions, but we could treat+ boundary
conditions. The correct point of view is to define the model on a graphG = (V , B);
to each vertext ∈ V of the graph we associate a spin variableσ(t) and to each bond
e = 〈t, t ′〉 ∈ B a nonnegative coupling constantK(e) = K(t, t ′), which takes into
account the inverse temperature, so that in the applicationsK(e) = β∗J ∗(e). The Gibbs
measure onG is

exp{∑e=〈t,t ′〉∈B K(e)σ (t)σ (t ′)}
4(G)

. (6.1)

The constant4(G) is the partition function,

4(G) : =
∑

σ(t)=±1, t∈V

exp{
∑

e=〈t,t ′〉∈B

K(e)σ (t)σ (t ′)} (6.2)

=
∑

σ(t)=±1, t∈V

∏
e=〈t,t ′〉∈B

coshK(e)(1 + σ(t)σ (t ′) tanhK(e)).

Expectation values with respect to the probability measure (6.1) are denoted by〈 · 〉G .
All graphs are subgraphs of(Z2∗, E∗), whereZ

2∗ is the lattice

Z
2∗ := { x = (x1, x2) ∈ R

2 : x + (1/2, 1/2) ∈ Z
2 }; (6.3)

E∗ the set of all bonds ofZ2∗, i.e. the set of alle = 〈t, t ′〉, {t, t ′} a pair of nearest
neighbours points ofZ2∗. We make the following convention. IfV ⊂ Z

2∗, thenE(V ) :=
{ 〈t, t ′〉 ∈ E∗ : t, t ′ ∈ V } and the graph generated byV isG(V ) := (V , E(V )). Similarly,
if B ⊂ E∗, thenV (B) := { t ∈ Z

2∗ : ∃t ′, 〈t, t ′〉 ∈ B } and the graph generated byB is
G(B) := (V (B), B).

Let G = (V , B) be a graph. We need the following geometric notions. LetB1 ⊂ B.
The index of a sitet in B1 is the number of bonds ofB1, which are adjacent tot . The
boundary of B1 is the subset ofV δB := { t ∈ V : index oft in B1 is odd}. A path
is an ordered sequence of sites and bonds,t0, e0, t1, e1, . . . , tn, whereti ∈ V for all
i = 0, . . . n, andej = 〈tj , tj+1〉 ∈ B, j = 0, . . . , n − 1. By definition all bonds of a
path are different, but not necessarily all sites of the path. The initial point of the path
is t0 and the final point istn. A path isclosedif its final point coincides with its initial
point; otherwise it isopen. Unoriented paths are calledcontours. GivenB1 ⊂ B we can
decomposeB1 uniquely into a finite number of contours by the following procedure.

1. If δB1 = ∅, then choose a bonde = 〈t, t ′〉 in B1 and sett0 := t , e0 := e andt1 = t ′.
The path is uniquely continued using ruleA specified in the picture below and by
requiring that it is maximal and that its final point ist0. We have thus defined a closed
path; forgetting the orientation this defines uniquely a closed contour. Repeat this
construction until all bonds ofB1 belong to some contour.

2. If δB1 6= ∅, then choose firstt ∈ δB1, and sett0 := t . Then choosee0 among
the adjacent bonds tot0 according to rulesA′ specified in the picture below. Initial
points are marked by dots in the picture specifying the rulesA′. The path is uniquely
continued using rulesA andA′ and by requiring that it is maximal and its final point
tn ∈ δB1. We have thus defined an open path, sincet0 6= tn; forgetting the orientation
this defines uniquely an open contour. Repeat this construction starting with a new
point of δB1 until all points ofδB1 belong to some open contours; if there are still
bonds ofB1 which do not belong to some contours, then do Construction 1 above.
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- ��

ruleA

- �q - �q - �q - q�

rulesA′
the dots denote initial points of open paths

Let θ = { θ1, . . . , θn } be a family of contours; we denote byE(θ1, . . . , θn) the
set of all bonds of the contoursθ1, . . . , θn. We say thatθ is compatible if either
E(θ1, . . . , θn) = ∅ or { θ1, . . . , θn } is the decomposition into contours of the set
E(θ1, . . . , θn). If we want to stress the condition that each contour is a contour of
the graphG, then we say thatθ is G-compatible. Notice that the notion of compatibility
introduced here is purely geometrical; it is different from the notion of compatibility
defined in Subsect. 2.1.

Let e be a bond andB(e) the set formed bye and all bonds ofE∗, which are adjacent
to e. The edge-boundaryof e is the set of bonds of the contour1(e) 3 e of the
decomposition ofB(e) into contours. LetB1 ⊂ E∗; theedge-boundary1(B1) of B1 is
1(B1) := ∪e∈B11(e). The next lemma is proven in [PV1]; its proof is not difficult.

Lemma 6.1. Let θ be a family of compatible contours. Then a non-empty compatible
family of n closed contoursγ = { γ1, . . . , γn } is compatible withθ , that isγ ∪ θ is
compatible, if and only if no bond ofγi is a bond of1(θ), ∀i = 1, . . . , n.

Two bondse, e′ and a contourθ with their edge-boundaries1(e), 1(e′), 1(θ)

We define the high-temperature representation of the model. The partition function
4(G) is given in (6.2). We expand the product in (6.2). Each term of the expansion
is labeled by a set of bonds〈t, t ′〉: we specify the bonds corresponding to the factors
tanhK(e). Then we sum overσ(t), t ∈ V ; after summation only terms labeled by sets of
bonds with empty boundary give a non-zero contribution. Any term of the expansion of
(6.2), which gives a non-zero contribution, can be uniquely labeled by aG-compatible
family γ of closed contours. Lete be a bond,θ a contour andθ a compatible family of
contours; we set

w(e) := tanhK(e) , w(θ) :=
∏
e∈θ

w(e) , w(θ) :=
∏
θ∈θ

w(θ). (6.4)
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If θ = ∅, thenw(θ) := 1. 4(G) can be written as (|V | is the cardinality ofV )

4(G) = 2|V | ∏
e∈B

coshK(e)
∑

γ : δγ=∅
G−comp.

w(γ ) ≡ 2|V | ∏
e∈B

coshK(e) · Z(G), (6.5)

with Z(G) thenormalized partition function ,

Z(G) :=
∑

γ : δγ=∅
G−comp.

w(γ ). (6.6)

Notice thatZ(G1) = Z(G2) if the two graphsGi = (Vi, Bi), i = 1, 2, have the same set
of closed contours. More generally, given anyG-compatible familyθ of contours, we
set

Z(G|θ) :=
∑

γ : δγ=∅
γ ∪θ G−comp.

w(γ ). (6.7)

We define aweight qG(θ) for an arbitrary familyθ ,

qG(θ) :=
{

w(θ)
Z(G|θ)
Z(G)

if θ is G-compatible,

0 otherwise.
(6.8)

The usefulness of the weightsqG(θ) comes from the following representation of the
correlation function〈 ∏

t∈A σ(t) 〉G . If the cardinality ofA is odd, then by symmetry
〈 ∏

t∈A σ(t) 〉G = 0. Suppose that|A| = 2m, m ≥ 1. We expand the numerator of
〈 ∏

t∈A σ(t) 〉G as above. The presence of the variablesσ(t), t ∈ A, implies that the
only terms in the expansion of the numerator of〈 ∏

t∈A σ(t) 〉G , which give non-zero
contributions, are those labeled by compatible families of contours containing a sub-
family λ = { λ1, . . . , λm } of m open contours such thatδλ = A. Summing over all
closed contours for a given family ofm open contoursλ, we get a contribution to the
numerator equal tow(λ)Z(G|λ). We can therefore write the key-identity, arandom-line
representationfor the even correlation function,

〈
∏
t∈A

σ(t) 〉G =
∑

λ: δλ=A

qG(λ). (6.9)

From now on, if we specify the graphG by its set of verticesV ⊂ Z
2∗, then we write

〈 · 〉V andqV (λ) instead of〈 · 〉G(V ) andqG(V )(λ). Our first application of (6.9) is

Lemma 6.2. Let 3L be the square box (2.2) and3∗
L its dual box. Letη be boundary

conditions for3L andVL(η) ⊂ Z
2∗ the set of end-points of the phase-separation lines

of the configurations in3L with η boundary conditions. Then∑
λ

q
η
3L

(λ) = 〈
∏

t∈VL(η)

σ (t) 〉3∗
L
. (6.10)
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Proof. Since3L is a square box, the set ofη compatible families of contours in3L

coincides with the set of compatible families of contoursθ of the graphG(3∗
L) such that

δθ = VL(η). By duality (compare (2.10) and (6.9)),

q
η
3L

(λ) = q3∗
L
(λ). (6.11)

ut
Lemma 6.3. LetG = (V , B) be a graph andθ aG-compatible family of contours. Then
Z(G|θ)
Z(G)

is a decreasing function ofK(e) for anye ∈ B. If G′ = (V ′, B ′) andV ⊂ V ′,
B ⊂ B ′, thenqG(θ) ≥ qG′(θ).

Proof. Let B1 := B\1(θ) andG(B1) be the graph defined by this setB1 of bonds. Let
V (B1) be the set of vertices ofG(B1). By Lemma 6.1 we have,

Z(G|θ) = Z(G(B1)). (6.12)

Therefore

ln
Z(G|θ)

Z(G)
= ln

4(G(B1))

4(G)
+ ln

∏
e∈1(θ)

coshK(e) + ln 2 (|V | − |V (B1)|). (6.13)

If e = 〈t, t ′〉 ∈ B1, then

∂

∂K(e)
ln

Z(G|θ)

Z(G)
= 〈σ(t)σ (t ′)〉G(B1) − 〈σ(t)σ (t ′)〉G ≤ 0, (6.14)

by GKS-inequalities, sinceV (B1) ⊂ V . If e = 〈t, t ′〉 ∈ 1(θ), then

∂

∂K(e)
ln

Z(G|θ)

Z(G)
= −〈σ(t)σ (t ′)〉G + tanhK(e) ≤ 0, (6.15)

since by GKS-inequalities

〈σ(t)σ (t ′)〉G ≥ 〈σ(t)σ (t ′)〉{t,t ′} = tanhK(e). ut (6.16)

We make the following convention. Ifθ1 and θ2 are two compatible families of
contours, such thatE(θ1) ∩ E(θ2) = ∅, then the decomposition ofE(θ1) ∪ E(θ2) into
contours does not coincide necessarily withθ1 ∪ θ2. In such a situation we interpret
qG(θ1∪θ2) as the weight of the family of contours of the decomposition ofE(θ1)∪E(θ2)

if necessary.

Lemma 6.4. Let θ1 and θ2 be two compatible families of contours of the graphG =
(V , B), such thatE(θ1) ∩ E(θ2) = ∅. Let G′ be the graph defined by the set of bonds(
B\1(θ2)

)
∪

(
1(θ2) ∩ E(θ1)

)
. If 1(θ2) ∩ E(θ1) = ∅, then

qG(θ1 ∪ θ2) = qG′(θ1) qG(θ2). (6.17)

If 1(θ2) ∩ E(θ1) 6= ∅, then

qG(θ1 ∪ θ2) ≥ qG′(θ1) qG(θ2). (6.18)

In both cases

qG(θ1 ∪ θ2) ≥ qG(θ1) qG(θ2). (6.19)
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Proof. We have

qG(θ1 ∪ θ2) = w(θ1)w(θ2)
Z(G|θ1 ∪ θ2)

Z(G)
= w(θ1)

Z(G|θ1 ∪ θ2)

Z(G′)
w(θ2)

Z(G′)
Z(G)

. (6.20)

A family of closed contoursγ of G contributes toZ(G|θ1 ∪ θ2) if and only if

γ ∩
(
1(θ1) ∪ 1(θ2)

)
=

(
γ ∩ 1(θ1)

)
∪

(
γ ∩ 1(θ2)

)
= ∅. (6.21)

This is equivalent to say thatγ is a family of closed contours of the graphG′ and
γ ∩ 1(θ1) = ∅. Therefore (see Lemma 6.1)

Z(G|θ1 ∪ θ2) = Z(G′|θ1). (6.22)

If 1(θ2) ∩ E(θ1) = ∅, thenG′ is the graph defined by the set of bondsB\1(θ2); hence

Z(G′) = Z(G|θ2). (6.23)

If 1(θ2) ∩ E(θ1) 6= ∅, then

Z(G′) ≥ Z(G|θ2), (6.24)

since the graphG′ contains some bonds of1(θ2). The last affirmation follows from the
above results and Lemma 6.3.ut

Let λ1 andλ2 be two open contours such thatδλ1 = {x, y} andδλ2 = {u, v}. We
say thatλ1 andλ2 aredisjoint if either they are compatible orE(λ1) ∩ E(λ2) = ∅
and the decomposition ofE(λ1) ∪ E(λ2) into contours is a single contour. Ifλ1 and
λ2 are disjoint, then we writeλ1 q λ2 the family{ λ1, λ2 } or the single contour of the
decomposition into contours ofE(λ1)∪E(λ2). Notice that whenλ1 qλ2 = λ is a single
contour, then{x, y} ∩ {u, v} 6= ∅.

Lemma 6.5. Let λ1 andλ2 be two open contours such thatδλ1 = {x, y} and δλ2 =
{u, v}. Then ∑

λ : λ=λ1qλ2
δλ1={x,y}, δλ2={u,v}

qG(λ) ≤
∑
λ1:

δλ1={x,y}

qG(λ1)
∑
λ2:

δλ2={u,v}

qG(λ2). (6.25)

Proof. The proof is easy ifλ1qλ2 = { λ1, λ2 }. Indeed, from Lemma 6.4, sinceE(λ1)∩
1(λ2) = ∅,

qG(λ) = qG′(λ1) qG(λ2). (6.26)

Summing overλ1, keepingλ2 fixed, we get from the basic formula (6.9) and GKS
inequalities ∑

λ1 :
λ=λ1qλ2

qG(λ) ≤ 〈 σ(x)σ (y) 〉G′ qG(λ2) (6.27)

≤ 〈 σ(x)σ (y) 〉G qG(λ2)

=
∑
λ1:

δλ1={x,y}

qG(λ1) qG(λ2).
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We can now sum overλ2. Whenλ1 q λ2 is a single contourλ, then the proof is more
delicate, since the second case in Lemma 6.4 occurs. However, the proof is similar. For
details we refer to the proof of Lemma 5.4 in [PV1].ut
Lemma 6.6. Let G = (V , B) andB1 ⊂ B. LetG′ = (V1, B1) be the graph generated
byB1. Letx, y ∈ V1. Then∑

λ : δλ={x,y}
E(λ)⊂B1

qG(λ) ≤
∑

λ : δλ={x,y}
qG′(λ) = 〈 σ(x)σ (y) 〉G′ . (6.28)

Proof. The result follows directly from Lemma 6.3.ut
The next lemma gives a concentration result for the random-line representation (6.9).

Let G = (V , B) andV1 ⊂ V . We define

∂extV1 := { t ∈ V \V1 : ∃t ′ ∈ V1, 〈 t, t ′ 〉 ∈ B }. (6.29)

Similarly, if B1 ⊂ B, then we set

∂extB1 := ∂extV (B1). (6.30)

We say thatB1 is connectedif for any pair of sitesx, y ∈ V (B1), there is a path from
x to y with all its bonds inB1.

Lemma 6.7. Let G = (V , B), B1 ⊂ B be a connected subset andx, y two sites of the
bonds ofB1. Suppose that all bonds incident tox andy belong toB1. Then

0 ≤ 〈 σ(x)σ (y) 〉G −
∑

λ:δλ={x,y}
E(λ)⊂B1

qG(λ) (6.31)

≤
∑

z∈∂extB1

∑
λ:δλ1={x,y}

λ3z

qG(λ)

≤
∑

z∈∂extB1

〈 σ(x)σ (z) 〉G 〈 σ(z)σ (y) 〉G .

Proof. Equations (6.9) gives

〈 σ(x)σ (y) 〉G =
∑

λ:δλ={x,y}
E(λ)⊂B1

qG(λ) +
∑

λ:δλ={x,y}
E(λ)6⊂B1

qG(λ). (6.32)

We estimate the second sum. For anyλ contributing to this sum, letz(λ) be the first
point of ∂extB1 of the path fromx to y defined by the contourλ. Any such a path can
be decomposed intoλ1 such thatδλ1 = {x, z} andλ2 such thatδλ2 = {z, y} so that
λ = λ1 q λ2. The result then follows from Lemma 6.5 and (6.9).ut

There is a useful formula for the weightqG(θ), which is a consequence of the fol-
lowing elementary remarks. LetK denote the functione ∈ V 7→ K(e) ∈ R. Given a
compatible family of contours, we introduce a new functionKs , 0 ≤ s ≤ 1,

Ks :=
{

K(e) if e 6∈ 1(θ),

sK(e) if e ∈ 1(θ).
(6.33)
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ThenZ(G|θ)(K) = Z(G)(Ks)|s=0. On the other hand we have

ln 4(G)(K) − ln 4(G)(K0) =
∫ 1

0

d

ds
ln 4(G)(Ks) ds (6.34)

=
∑

e=〈 t,t ′ 〉∈1(θ)

K(e)

∫ 1

0
〈 σ(t)σ (t ′) 〉G(Ks) ds.

Therefore, for a compatible family of contoursθ ,

qG(θ) = w(θ)
∏

e∈1(θ)

coshK(e) exp
(

−
∑

e=〈 t,t ′ 〉∈1(θ)

K(e)

∫ 1

0
〈 σ(t)σ (t ′) 〉G(Ks) ds

)
.

(6.35)

Formula (6.35) allows to compareqG(θ)(K) for different functionsK or different
graphsG′. For example we get immediately the lower bound

qG(θ) ≥ w(θ)
∏

e∈1(θ)

1

2

(
1 + e−2K(e)

)
. (6.36)

Lemma 6.8. Let G = (V , B), V1 ⊂ V andG′ be the graph generated byV \V1. Let θ
be a compatible family of contours ofG such that no site ofθ belongs to∂extV1. We set
for all t ∈ ∂extV1,

K(t) :=
∑

t ′∈V1:〈 t,t ′ 〉∈B

K(〈 t, t ′ 〉). (6.37)

Then

| ln qG′(θ) − ln qG(θ) | ≤ (6.38)∑
e=〈t,t ′〉∈1(θ)

K(e)
∑

t ′′∈∂extV1

K(t ′′)
(
〈 σ(t)σ (t ′′) 〉G′ + 〈 σ(t ′)σ (t ′′) 〉G′

)
.

Proof. Formula (6.35) gives

ln
qG′(θ)

qG(θ)
=

∑
e=〈 t,t ′ 〉∈1(θ)

K(e)

∫ 1

0

(
〈 σ(t)σ (t ′) 〉G(Ks) − 〈 σ(t)σ (t ′) 〉G′(Ks)

)
ds.

(6.39)

We put a magnetic fieldh′ on eacht ∈ V1 and leth′ → ∞. We have

〈 σ(t)σ (t ′) 〉G(Ks) ≤ 〈 σ(t)σ (t ′) 〉+G′(Ks), (6.40)

where〈 σ(t)σ (t ′) 〉+G′(Ks) is the expectation with respect to a Gibbs measure onG′ with
coupling constants given byKs on the bonds ofG′ and magnetic fieldK(t) for t ∈ ∂extV1.
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Since−σ(t)σ (t ′) + σ(t) + σ(t ′) is an increasing function we get by FKG inequalities

〈 σ(t)σ (t ′) 〉+G′(Ks) − 〈 σ(t)σ (t ′) 〉G′(Ks)

≤ 〈 σ(t) 〉+G′(Ks) − 〈 σ(t) 〉G′(Ks) + 〈 σ(t ′) 〉+G′(Ks) − 〈 σ(t ′) 〉G′(Ks).
(6.41)

We define an interpolating magnetic field fort ∈ ∂extV1,

Ka(t) := aK(t) , 0 ≤ a ≤ 1. (6.42)

Let 〈 · 〉+G′(Ks; a) be the expectation value with respect to this new measure and set

〈 σ(t); σ(t ′) 〉+G′(Ks; a) := 〈 σ(t)σ (t ′) 〉+G′(Ks; a)

− 〈 σ(t) 〉+G′(Ks; a) 〈 σ(t ′) 〉+G′(Ks; a).
(6.43)

We have〈 σ(t) 〉G′(Ks) = 〈 σ(t) 〉+G′(Ks; 0) and 〈 σ(t) 〉+G′(Ks) = 〈 σ(t) 〉+G′(Ks; 1);
therefore

〈 σ(t) 〉+G′(Ks) − 〈 σ(t) 〉G′(Ks) =
∑

t ′′∈∂extV1

K(t ′′)
∫ 1

0
〈 σ(t); σ(t ′′) 〉+G′(Ks; a) da.

(6.44)

GHS inequalities imply that〈 σ(t); σ(t ′′) 〉+G′(Ks; a) is decreasing ina; thus

〈 σ(t); σ(t ′′) 〉+G′(Ks; a) ≤ 〈 σ(t); σ(t ′′) 〉+G′(Ks; 0) = 〈 σ(t)σ (t ′′) 〉G′(Ks), (6.45)

since by symmetry〈 σ(t) 〉+G′(Ks) = 0. The lemma follows from (6.39), (6.41), (6.44)
and (6.45). ut

6.2. Ising model onZ2∗ aboveTc. We consider the model on(Z2∗, E∗) and choose
as coupling constantsK(e) := β∗ ∀e, with β∗ < βc. We recall that the decay-rate
τ(y − x) = τ(y − x; β∗) is strictly positive for suchβ∗ and that for any3 ⊂ Z

2∗ (see
Proposition 2.4)

〈 σ(x)σ (y) 〉3(β∗) ≤ exp{−τ(y − x; β∗)}. (6.46)

Given any3 ⊂ Z
2∗ and a family of compatible contoursθ in G(3), we define weights

q3(θ) (see Lemma 6.3),

q3(θ) := lim
3n↑3

q3n(θ), (6.47)

where3n is an increasing sequence of finite subsets3n of 3, such that eventually every
site of3 is contained in some3n. When3 = Z

2∗ we writeq(θ) instead ofqZ2∗(θ).
Lemmas 6.3 to 6.8 are still valid for the weightsq3(θ). On the other hand the random-line
representation does not extend automatically in the infinite case.
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Lemma 6.9. LetK(e) := β∗ ∀e andβ∗ < βc. Then the two-point correlation function
of the Ising model has a random-line representation,

〈 σ(t)σ (t ′) 〉 =
∑

λ:δλ={t,t ′}
q(λ). (6.48)

A formula similar to (6.9) is true for even correlation functions.

Proof. The hypothesisβ∗ < βc is equivalent to∑
t∈Z2∗

〈 σ(0)σ (t) 〉 < ∞. (6.49)

Let31 ⊂ 32 be two finite subsets and suppose thatt, t ′ ∈ 31. LetB1 be the set of bonds
between sites of31; suppose furthermore thatB1 is connected. Then formula (6.9) and
Lemma 6.7 give

0 ≤ 〈 σ(t)σ (t ′) 〉32 −
∑

λ:δλ={t,t ′}
E(λ)⊂B1

q32(λ) (6.50)

≤
∑

s∈∂extB1

〈 σ(t)σ (s) 〉 〈 σ(s)σ (t ′) 〉.

Given ε > 0, we can find31 so that the last sum in (6.50) is smaller thanε. Letting
32 ↑ Z

2∗ we get

0 ≤ 〈 σ(t)σ (t ′) 〉 −
∑

λ:δλ={t,t ′}
E(λ)⊂B1

q(λ) ≤ ε. (6.51)

The result now follows by letting31 ↑ Z
2∗. ut

Lemma 6.10. LetK(e) := β∗ ∀e andβ∗ < βc. Set

S(x, y; ρ) := { t ∈ Z
2∗ : ‖x − t‖ + ‖y − t‖ ≤ ‖x − y‖ + ρ}, (6.52)

with ‖ · ‖ the Euclidean norm. Then∑
λ:δλ={x,y}

E(λ)6⊂E(S(x,y;ρ))

q(λ) ≤ |∂extS(x, y; ρ)|
K

‖x − y‖1/2e−κρ 〈 σ(x)σ (y) 〉. (6.53)

K is the constant of Proposition 2.4.

Proof. By Lemma 6.7,∑
λ:δλ={x,y}

E(λ)6⊂E(S(x,y;ρ))

q(λ) ≤
∑

t∈∂extS(x,y;ρ)

〈 σ(x)σ (t) 〉 〈 σ(t)σ (y) 〉 (6.54)

=
∑

t∈∂extS(x,y;ρ)

〈 σ(x)σ (t) 〉 〈 σ(t)σ (y) 〉
〈 σ(x)σ (y) 〉 〈 σ(x)σ (y) 〉.
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We apply the sharp triangle inequality to the numerator of the last expression,

〈 σ(x)σ (t) 〉 〈 σ(t)σ (y) 〉 ≤ e−τ(x−t)−τ(y−t)+τ(x−y)e−τ(x−y) (6.55)

≤ e−τ(x−y)−κρ.

Finally we apply Proposition 2.4 to the denominator,

e−τ(x−y) ≤ ‖x − y‖1/2

K
〈 σ(x)σ (y) 〉. (6.56)

ut
Lemma 6.10 characterizes those random-lines, which give the main contribution to

the two-point correlation function. Ifρ ≥ C ln ‖x − y‖, with C large enough, then the
coefficient in front of〈 σ(x)σ (y) 〉 in (6.53) tends to zero when‖x − y‖ diverges. The
result is sharp.

6.3. Ising model onL∗ aboveTc. Let β∗ < βc andh∗ > 0. We consider the model on
subsets3∗

L ⊂ L
∗ and choose as coupling constants

K(e) :=
{

h∗β∗ ∀ e = 〈 t, t ′ 〉, with t2 = t ′2 = 1/2,

β∗ otherwise.
(6.57)

We set

6∗
L := { t ∈ 3∗

L : t2 = 1/2 } , 6∗ := { t ∈ L
∗ : t2 = 1/2 }. (6.58)

The weightqL∗(θ) is defined by (6.47). Lemma 6.11 establishes the random-line
representation for the two-point function, its proof is similar to that of Lemma 6.9.

Lemma 6.11. Let β∗ < βc, h∗ > 0 and the coupling constants be given by (6.57).
Then the two-point correlation function of the Ising model onL

∗ has a random-line
representation,

〈 σ(t)σ (t ′) 〉L∗ =
∑

λ:δλ={t,t ′}
qL∗(λ). (6.59)

A formula similar to (6.59) is true for even correlation functions.

Lemma 6.12. Letβ∗ < βc,h∗ > 0,3∗
L ⊂ L

∗ andθ be a family of compatible contours.
Let q3∗

L
(θ) be the weight for the model defined on3∗

L with coupling constants (6.57).

Letq(θ) be the weight for the model onZ2∗ with coupling constantsK(e) ≡ β∗.

1. If h∗ ≤ 1, thenq3∗
L
(θ) ≥ q(θ).

2. Letd(θ) := min{ |t2 − 3/2| : t ∈ 1(θ)} ≥ 1. If h∗ ≥ 1, then

ln
q3∗

L
(θ)

q(θ)
≥ −O(L2) exp{−O(d(θ))}. (6.60)
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Proof. The first case follows directly from Lemma 6.3. The second case follows from
Lemma 6.8. By Lemma 6.3q3∗

L\6∗
L
(θ) ≥ q(θ). Since

q3∗
L
(θ) ≥ q3∗

L
(θ)

q3∗
L\6∗

L
(θ)

q(θ), (6.61)

we must compareq3∗
L
(θ) andq3∗

L\6∗
L
(θ). We apply Lemma 6.8 withG the graph gen-

erated by3∗
L andG′ the graph generated by3∗

L\6∗
L. Notice that

〈 σ(t)σ (t ′) 〉G′ ≤ 〈 σ(t)σ (t ′) 〉; (6.62)

therefore, ift ∈ 1(θ),∑
t ′∈3∗

L:t ′2=3/2

〈 σ(t)σ (t ′) 〉G′ ≤
∑

t ′: t ′2=3/2

〈 σ(t)σ (t ′) 〉 (6.63)

≤
∑

t ′: t ′2=3/2

∑
λ:

δλ={t,t ′}

q(λ)

≤
∑

t ′: t ′2=3/2

∑
s: s2=3/2

∑
λ: z(λ)=s
δλ={t,t ′}

q(λ),

with z(λ) the first sitez of the path defined byλ with initial point t , such thatz2 = 3/2.
To estimate the last sums we use Lemma 6.5. We have∑

t ′: t ′2=3/2

〈 σ(t)σ (t ′) 〉 ≤
∑

t ′:t ′2=3/2

∑
s:s2=3/2

exp{−τ(t − s) − τ(s − t ′)}. (6.64)

We sum overt ′ and get a finite contribution independent ofs; then the sum overs gives
a contribution exp{−O(d(θ))}. Since|1(θ)| ≤ O(L2) we get (6.60). ut

The next lemma characterizes those random-lines, which give the main contribution
to the boundary two-point correlation function. We consider the caseβ∗ < βc and
h∗ > hw(β)∗, when the random-lines stick to6∗. In the other cases there is a result
similar to that of Lemma 6.10.

Lemma 6.13. Let β∗ < βc, h∗ > hw(β)∗ and the coupling constants given by (6.57).
Letx, y ∈ 6∗, x1 < y1 andρi ∈ N, i = 1, 2; we set

B(x, y; ρ1, ρ2) := { t ∈ L
∗ : x1 − ρ1 ≤ t1 ≤ y1 + ρ1, 1/2 ≤ t2 ≤ 1/2 + ρ2 }. (6.65)

Then ∑
λ:δλ={x,y}
E(λ)6⊂E(B)

qL∗(λ) ≤ 〈 σ(x)σ (y) 〉L∗

K ′′
(
2ρ2 exp{−2ρ1τ̂bd} (6.66)

+ O
(
ρ2|x1 − y1|

)
exp{−κρ2}

)
.

K ′′ is the constant of Proposition 2.4;τ̂bd = τ̂bd(β, h) with β andh the dual values of
β∗ andh∗; κ the constant in the sharp triangle inequality andC := τ̂ ((1, 0))− τ̂bd > 0.
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Proof. We decompose∂extB into two parts:

V1 := { t ∈ ∂extB : t1 = x1 − ρ1 − 1 or t1 = y1 + ρ1 + 1} , V2 := ∂extB\V1. (6.67)

We considerλ as a unit-speed parametrized curve,s ∈ [0, |λ|] 7→ λ(s), with initial point
λ(0) = x; we suppose thats∗ is the first time such thatλ ∈ ∂extB; we sett = λ(s∗). We
have ∑

λ:δλ={x,y}
E(λ)6⊂E(B)

qL∗(λ) ≤
∑

t∈∂extB:
t∈V1

∑
λ:δλ={x,y}

λ3t

qL∗(λ) +
∑

t∈∂extB:
t∈V2

∑
λ:δλ={x,y}

λ3t

qL∗(λ). (6.68)

We treat these two sums separately. By Lemma 6.7, symmetry and GKS inequalities,∑
t∈∂extB:

t∈V1

∑
λ:δλ={x,y}

λ3t

qL∗(λ) ≤ 2
∑

t∈∂extB
t1=x1−ρ1−1

〈 σ(x)σ (t) 〉L∗ 〈 σ(t)σ (y) 〉L∗ (6.69)

= 2
∑

t∈∂extB
t1=x1−ρ1−1

〈 σ(x)σ (t) 〉L∗ 〈 σ(t)σ (y)〉L∗

≤ 2
∑

t∈∂extB
t1=x1−ρ1−1

〈 σ(x)σ (y) 〉L∗

≤ 2ρ2

K ′′ exp{−2ρ1τ̂bd}〈 σ(x)σ (y) 〉L∗ ,

wherex is the image ofx under a reflection of axis{u : u1 = x1 − ρ1 − 1}.
Let t ∈ V2, with t = λ(s∗). Let s1 be the last time befores∗ such thatλ(s1) ∈ 6∗

ands2 the first time afters∗ such thatλ(s2) ∈ 6∗. We setu := λ(s1) andv := λ(s2);
we havex1 − ρ1 ≤ u1 ≤ y1 + ρ1. By definition no bond ofλ between timess1 ands∗
belong toE(6∗). Therefore Lemma 6.6 and GKS inequalities give∑

λ′:δλ′={u,t}
E(λ′)∩E(6∗)=∅

qL∗(λ′) ≤ 〈 σ(u)σ (t) 〉. (6.70)

The hypothesish∗ > h∗
w implies thatC := τ̂ ((1, 0)) − τ̂bd > 0. Using Lemma 6.5,

(6.70) and the sharp triangle inequality we get∑
λ:λ3t

δλ={x,y}

qL∗(λ) ≤
∑
u,v

〈 σ(x)σ (u) 〉L∗〈 σ(u)σ (t) 〉〈 σ(t)σ (v) 〉〈 σ(v)σ (y) 〉L∗ (6.71)

≤
∑
u,v

exp{−τ̂bd(|u1 − x1| + |y1 − v1|)}

· exp{−τ̂ (t − u) − τ̂ (v − t)}
≤

∑
u,v

exp{−τ̂bd(|u1 − x1| + |y1 − v1|)} exp{−τ̂ (u − v)}

· exp{−κ(‖u − t‖ + ‖t − v‖ − ‖u − v‖)}.
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We haveτ̂ (u − v) = C|u1 − v1| + τ̂bd|u1 − v1|. Therefore

exp
(

− τ̂bd(|u1 − x1| + |y1 − v1|) − τ̂ (u − v)
)

≤ 〈 σxσy 〉L∗

K ′′ (6.72)

· exp
(

− τ̂bd(|u1 − x1| + |y1 − v1| + |u1 − v1| − |x1 − y1|) − C|u1 − v1|
)
.

We sum overu, v and t , which are sums overu1, v1 and t1. We set fors ∈ R and
[a, b] ⊂ R,

d(s, [a, b]) := min{ |t − s| : t ∈ [a, b] }. (6.73)

First notice that

|u1 − x1| + |y1 − v1| + |u1 − v1| − |x1 − y1| ≥ 2d(v1, [x1, y1]) if v1 6∈ [x1, y1],
(6.74)

and

|u1 − x1| + |y1 − v1| + |u1 − v1| − |x1 − y1| ≥ 2d(u1, [x1, y1]) if u1 6∈ [x1, y1].
(6.75)

Let α := κ/(C + κ); if |u1 − v1| ≤ αρ2, then

exp{−κ(‖u − t‖ + ‖t − v‖ − ‖u − v‖)} ≤ exp{−κ(2 − α)ρ2}. (6.76)

If t1 6∈ [u1, v1] or t1 6∈ [v1, u1], then

‖u − t‖ + ‖t − v‖ − ‖u − v‖ ≥ ρ2 + min{|u1 − t1|, |v1 − t1|}. (6.77)

Let v1 6∈ [x1, y1]. We consider two cases. First suppose that|u1 − v1| ≥ αρ2. We sum
over t1 using (6.77), getting at most a contributionO(|u1 − v1|); then we sum overu1,
such that|u1 − v1| ≥ αρ2, using the factor exp{−C|u1 − v1|}; finally we sum overv1
using (6.74). Thus we get a contribution

O
(

exp{−κ(2 − α)ρ2}
)
. (6.78)

Suppose that|u1 − v1| ≤ αρ2. We sum overt1, using now (6.77) and (6.76), getting at
most a contribution

O(ρ2|u1 − v1|) exp{−κ(2 − α)ρ2}; (6.79)

then we sum overu1 using the factor exp{−C|u1 − v1|}; finally we sum overv1 using
(6.74), getting a contribution (6.78). The caseu1 6∈ [x1, y1] is similar. It remains to
consider the case wherex1 < u1 < v1 < y1. We proceed in the same manner, but this
time the last sum gives a factor|x1 − y1| since in this case

|u1 − x1| + |y1 − v1| + |u1 − v1| − |x1 − y1| = 0. (6.80)

Therefore we get a contribution

O
(
ρ2|x1 − y1|

)
exp{−κρ2}. (6.81)

ut
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7. On the Correlation Length AboveTc

Let β∗ < βc and 0< h∗ < ∞. The model is defined in the box3∗
L with free boundary

conditions and coupling constants (6.57). We study the influence of the boundary effect
on the correlation length due to the coupling constantsK(e) = h∗β∗, e ∈ E(6∗

L).
We consider two definitions, which we call short correlation length and long correlation
length, following a similar terminology introduced in [SML] about the long range-order.

Theshort correlation length is the standard correlation length. Lett, t ′ ∈ Z
2∗; we

define

1

ξsh(t, t ′; β∗)
:= − lim

k→∞
k∈N

1

k‖t − t ′‖ ln〈 σ(kt)σ (kt ′) 〉(β∗). (7.1)

In (7.1) we compute the expectation value with respect to the infinite volume Gibbs
state onZ2∗, which is unique. Then we take the limitk → ∞. We haveξsh(t, t

′; β∗) =
ξsh(s, s

′; β∗) if s − s′ is a multiple oft − t ′. In the case of the long correlation length we
perform the thermodynamical limit and the limitk → ∞ simultaneously. Lett, t ′ ∈ 3∗

L;
the long correlation length is defined by

1

ξlg(t, t ′; β∗, h∗)
:= − lim

k→∞
k∈N

1

k‖t − t ′‖ ln〈 σ(kt)σ (kt ′) 〉3∗
kL

(β∗, h∗). (7.2)

ξlg(t, t ′; β∗, h∗) depends on the position of the sitest andt ′ in the box3∗
L.

The next lemma contains one of the main estimate of the paper, which we shall use
later on, when discussing phase-separation lines.

Lemma 7.1. Letβ∗ < βc and0 < h∗ < ∞.

(1) There exist constantsc1, c2, c′, c′′ with the following property. Lett, t ′ ∈ 3∗
L;

suppose that there existp, p′ ∈ 3∗
L such that

1. ‖p − t‖ ≤ c1 ln L and‖p′ − t ′‖ ≤ c2 ln L,
2. S(p, p′; c′ ln L) ⊂ 3∗

L ∩ { t ∈ L
∗ : t2 ≥ c′′ ln L} (see (6.53)).

Then there existC andL0 such that∀L ≥ L0 and∀ t, t ′ as above,

〈 σ(t)σ (t ′) 〉3∗
L
(β∗, h∗) ≥ 1

LC
e−τ(p − p′; β∗). (7.3)

(2) Leth∗ > hw(β)∗. There existc3, c4 with the following property. Letm = (m1, 1/2)

∈ 3∗
L andn = (n1, 1/2) ∈ 3∗

L; suppose that (see (6.65))

B(m, n; c3 ln L, c4 ln L) ⊂ 3∗
L. (7.4)

Then there existC andL0 such that∀L ≥ L0 and∀ m, n as above,

〈 σ(m)σ(n) 〉3∗
L
(β∗, h∗) ≥ Ce−τ̂bd(β

∗, h∗)|n1 − m1|. (7.5)

Proof. By GKS inequalities

〈 σ(t)σ (t ′) 〉3∗
L

≥ 〈 σ(t)σ (p) 〉3∗
L

〈 σ(p)σ(p′) 〉3∗
L

〈 σ(p′)σ (t ′) 〉3∗
L
. (7.6)

From (6.36) we have

〈 σ(t)σ (p) 〉3∗
L

≥ exp{−O(ln L)} (7.7)
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and

〈 σ(p′)σ (t ′) 〉3∗
L

≥ exp{−O(ln L)}. (7.8)

Let SL := S(p, p′; c′ ln L); by Lemmas 6.12, 6.10, Proposition 2.4 and takingc′ and
c′′ large enough, there existsL0 such that∀L ≥ L0,

〈 σ(p)σ(p′) 〉3∗
L

≥
∑

λ:E(λ)⊂E(SL)
δλ={p,p′}

q3∗
L
(λ) (7.9)

≥ 1

2

∑
λ:E(λ)⊂E(SL)

δλ={p,p′}

q(λ)

= 1

2

∑
λ:δλ={p,p′}

q(λ) − 1

2

∑
λ:E(λ)6⊂E(SL)

δλ={p,p′}

q(λ)

≥ 1

4
〈 σ(p)σ(p′) 〉

≥ K

4‖p − p′‖1/2 e−τ(p − p′).

This proves(1), since‖p − p′‖ ≤ O(L).
We estimate〈 σ(m)σ(n) 〉3∗

L
by Lemma 6.3, 6.13 and Proposition 2.4. LetBL :=

B(m, n; c3 ln L, c4 ln L); by takingc3 andc4 large enough, there existsL0 such that
∀L ≥ L0,

〈 σ(m)σ(n) 〉3∗
L

≥
∑

λ:E(λ)⊂E(BL)

δλ:={m,n}

q3∗
L
(λ) (7.10)

≥
∑

λ:E(λ)⊂E(BL)

δλ:={m,n}

qL∗(λ)

= 1

2

∑
λ:δλ={m,n}

qL∗(λ) − 1

2

∑
λ:E(λ)6⊂E(BL)

δλ={m,n}

qL∗(λ)

≥ 1

4
〈 σ(m)σ(n) 〉L∗

≥ K ′′

4
e−τ̂bd|n1 − m1|.

This proves(2). ut
Let t, t ′ ∈ 3∗

L. Suppose thath∗ > hw(β)∗. We apply Lemma 7.1 to show that we
may have (depending on the choice oft andt ′)

ξlg(t, t ′; β∗, h∗) > ξsh(t, t
′; β∗). (7.11)
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We assume thatt1 < t ′1 and choosem = (m1, 1/2) andn = (n1, 1/2), m1 < n1,
m, n ∈ 3∗

L. By GKS inequalities

〈 σ(kt)σ (kt ′) 〉3∗
kL

≥ 〈 σ(kt)σ (km) 〉3∗
kL

〈 σ(km)σ(kn) 〉3∗
kL

〈 σ(kn)σ (kt ′) 〉3∗
kL

.

(7.12)

If k is large enough, then we can use Lemma 7.1 to estimate (7.12). There existsC̃ such
that

〈 σ(kt)σ (kt ′) 〉3∗
kL

≥ 1

O(kC̃)
e−k(τ (t − m) + τ(n − t ′))e−kτ̂bd|n1 − m1|. (7.13)

Therefore

1

ξlg(t, t ′; β∗, h∗)
≤ τ(t − m) + τ(n − t ′) + τ̂bd|n1 − m1|

‖t − t ′‖ . (7.14)

We can optimize this upper bound by taking the minimum overm andn. On the other
hand

1

ξsh(t, t ′; β∗)
= τ(t − t ′)

‖t − t ′‖ . (7.15)

The results of Sect. 4 show that there existt, t ′, whenh∗ > hw(β)∗, such that for suitable
m andn,

τ(t − m) + τ(n − t ′) + τ̂bd|n1 − m1| < τ(t − t ′), (7.16)

and so

ξlg(t, t ′; β∗, h∗) > ξsh(t, t
′; β∗). (7.17)

8. From Microscopic to Macroscopic Theory

We show that the phase-separation lineλ is concentrated in a neighborhood of the solution
of the variational problem of Sect. 4, scaled byL, with probability tending to 1 when
L → ∞. The thickness of the neighborhood is at mostO((L ln L)1/2). Consequently,
if we do a coarse-grained description of the configurations, using cells of linear size
Lα, 1/2 < α < 1, then we see the emergence of an interface, which coincides with the
solution of the variational problem. This justifies the macroscopic theory, starting from
the microscopic theory. It is possible to consider even a more general situation. Suppose
that we prescribe a curveC ⊂ Q from A to B. We can estimate the probability that the
phase-separation line is in a neighborhood of this curve scaled byL, the thickness of
the neighborhood being at mostO((L ln L)1/2). Using the method developed fully in
[PV1], this probability is roughly equal to

exp
(

− L(W(C) − W∗)
)
, (8.1)

whereW∗ is the minimum of the variational problem. We shall not give the details of
that estimate here.



Reentrant Pinning Transition 305

8.1. Main result.The weight of a separation lineλ in 3∗
L, going fromuL to vL, is given

byq3∗
L
(λ). These weights define a measure on the set of the phase-separation lines, such

that the total mass is ∑
E(λ)⊂E(3∗

L):
δλ={uL,vL}

q3∗
L
(λ) = 〈σ(uL)σ (vL)〉3∗

L
. (8.2)

Consequently we can introduce the following probability measure:

P ab
L [λ] = q3∗

L
(λ)

〈σ(uL)σ (vL)〉3∗
L

. (8.3)

Let D andW be the curves inQ introduced in Sect. 4. We set

IL
i := { x ∈ 6∗

L : ‖x − wL
i ‖ ≤ (ML logL)1/2 } , i = 1, 2, (8.4)

with wL
i = (LPi, 1/2) and[P1, P2] = W ∩ WQ. We set

ρL := M ln L. (8.5)

We define two sets of phase-separation lines. The setTD contains allλ, E(λ) ⊂ E(3∗
L),

such that

a1. δλ = {uL, vL};
a2. E(λ) is insideE(S(uL, vL; ρL)).

The setTW contains allλ,E(λ) ⊂ E(3∗
L), considered as parameterized curvess 7→ λ(s),

such that

b1. δλ = {uL, vL}, λ(0) := uL;
b2. ∃s1 such thatλ(s1) ∈ IL

1 and for alls < s1, λ(s) ∩ 6∗
L = ∅;

b3. λ1 := {λ(s) : s ≤ s1} is insideS(uL, λ(s1); ρL);
b4. ∃s2 such thatλ(s2) ∈ IL

2 and for alls2 < s, λ(s) ∩ 6∗
L = ∅;

b5. λ3 := {λ(s) : s2 ≤ s} is insideS(λ(s2), v
L; ρL);

b6. λ2 := {λ(s) : s1 ≤ s ≤ s2} is inside

{x ∈ 3∗
L : x(2) ≤ ρL , λ(s1)(1) − ρL ≤ x(1) ≤ λ(s2)(1) + ρL}.

Theorem 8.1. Let β > βc, h > 0, 0 < a < 1, 0 < b < 1. There existM > 0 and
L0 = L0(h, β, M) such that, for allL ≥ L0, the following statements are true.

1. Suppose that the solution of the variational problem inQ is the curveD. Then

P ab
L [TD] ≥ 1 − L−O(M). (8.6)

2. Suppose that the solution of the variational problem inQ is the curveW. Then

P ab
L [TW ] ≥ 1 − L−O(M). (8.7)
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3. Suppose that the solution of the variational problem inQ is either the curveD or the
curveW. Then

P ab
L [TD ∪ TW ] ≥ 1 − L−O(M). (8.8)

Comment.The results of Theorem 8.1 are optimal in the following sense: At a finer
scale we do not expect the phase-separation line to converge to some non-random set,
but rather to some random process. It is known that fluctuations of a phase-separation line
of lengthO(L), which is not in contact with the wall, areO(L1/2) (see [Hi2] and [DH]).
On the other hand, if the phase-separation line is attracted by the wall on a lengthO(L),
then we expect that its excursions away from the wall have a size typically bounded by
O(logL).

Proof. 1. Suppose that the minimum of the variational problem is given byD, W(D) =
W∗. Let W∗∗ be the minimum of the functional over all simple curves inQ, with end-
pointsA andB, and which touch the wallWQ. By hypothesis there existsδ > 0 with
W∗∗ = W∗ + δ.

We setS1 := S(uL, vL; ρL); for L large enoughS1 ∩ 6∗
L = ∅, sincea > 0 and

b > 0. We apply Lemma 7.1. We have

P ab
L [{λ 6∈ TD}] = 1

〈σ(uL)σ (vL)〉3∗
L

∑
λ6∈TD

q3∗
L
(λ) (8.9)

≤ LC exp{W∗L}
∑

λ6∈TD

q∗
L(λ).

We estimate the numerator ofP ab
L [{λ 6∈ TD}]. There are two cases, eitherλ∩6∗

L 6= ∅ or
λ ∩ 6∗

L = ∅. The first case is easy to estimate. Considerλ as a unit-speed parametrized
curve fromuL to vL and suppose thatz1(λ), resp.z2(λ), is the first, resp. last, point of
λ ∩ 6∗

L 6= ∅. Then by Lemmas 6.5 and 6.6,∑
λ∩6∗

L 6=∅
q3∗

L
(λ) ≤

∑
z1,z2∈6∗

L

e−τ̂ (z1 − uL)e−τ̂bd(z2 − z1)e−τ̂ (vL − z2). (8.10)

We can bound above this sum byO(L2) exp{−LW∗∗}. In the second case we have
λ ∩ 6∗

L = ∅. Using Lemmas 6.7, 6.6, GKS inequalities and Lemma 6.10,∑
λ 6∈TD

λ∩6∗
L

=∅

q3∗
L
(λ) ≤

∑
z∈∂extS1

∑
z∈λ, λ∩6∗

L
=∅

δλ={uL,vL}

q3∗
L
(λ) (8.11)

≤
∑

z∈∂extS1

〈 σ(uL)σ (z) 〉3∗
L\6∗

L
〈 σ(z)σ (vL) 〉3∗

L\6∗
L

≤
∑

z∈∂extS1

〈 σ(uL)σ (z) 〉 〈 σ(z)σ (vL) 〉

≤ O(L3/2− κM)〈 σ(uL)σ (vL) 〉
≤ O(L3/2− κM) exp{−W∗L}.

This proves the first statement.
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2. Suppose that the minimum of the variational problem is given byW, W(W) = W∗.
Then there existsδ > 0 such thatW(D) = W∗+δ. We estimateP ab

L [{λ 6∈ TW }] in several
steps. Notice that conditionb1 is always satisfied.
1. The probability that conditionb2 is satisfied, but notb3, can be estimated as in (8.11)
using Lemma 6.6; it is smaller thanO(LC+1)/L1M .
2. The probability that conditionb4 is satisfied, but notb5, is estimated in the same way;
it is smaller thanO(LC+1)/L1M .
3. The probability that conditionsb2 andb4 are satisfied, but notb6, can be estimated
by Lemma 6.13; it is smaller thanL−O(M).
4. We estimate the probability that conditionb2 is not satisfied. The case with con-
dition b5 is similar. If λ does not intersect6∗

L, then this probability is smaller than
O(LC) exp{−δL}, sinceW(D) = W∗ + δ. Suppose that there exists1 and s2, with
λ(si) ∈ 6∗

L, λ(s) ∩ 6∗
L = ∅ for all s < s1 andλ(s) ∩ 6∗

L = ∅ for all s2 < s. Let
pL

i := λ(si), i = 1, 2. Under these conditions,b2 is not satisfied if and only ifpL
1 6∈ IL

1 .
Let C(pL

1 , pL
2 ) be the polygonal curve fromuL to pL

1 , then frompL
1 to pL

2 and finally
from pL

2 to vL. Then the probability of this event is bounded above by

∑
pL

1 ∈6∗
L

:
pL

1 6∈IL
1

∑
pL

2 ∈6∗
L

exp{−W(C(pL
1 , pL

2 ))} ≤ (8.12)

O(L2) max{exp{−W(C(pL
1 , pL

2 ))} |pL
1 ∈ 6∗

L\IL
1 , pL

2 ∈ 6∗
L}.

Suppose thatC denotes the polygonal line giving the maximum; scaled by 1/L we get a
polygonal line inQ, denoted byC∗, from A to some pointP ∗

1 , then fromP ∗
1 to P ∗

2 and
finally from P ∗

2 to B. Let θ∗ be the angle between the straight line fromA to P ∗
1 with

the wall. We have

W(C) = LW(C∗) ≥ L(g(θ∗, a) + g(θY , b)). (8.13)

By hypothesis

|θ∗ − θY | ≥ 1

L1/2O((M logL)1/2). (8.14)

Therefore (use a Taylor expansion ofg aroundθY and the monotonicity ofg(θ, x) on
[0, θY ], respectively[θY , π/2]) there exists a positive constantα such that

W(C∗) ≥ g(θY , a) + g(θY , b) + αM logL

L
(8.15)

= W∗ + αM logL

L
.

We conclude that the probability, that conditionb2 is not satisfied, is bounded above by
O(LC+2)/LαM . If M is large enough, the second statement of the theorem is true.

3. The proof of the third statement of the theorem is similar.ut
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9. Appendix: N Phase-Separation Lines

In this appendix we indicate how we can treat problems withN phase-separation lines.
We consider the simplest case, in order to illustrate the basic ideas.We reduce the question
of finding typical configurations to a similar questions for a single phase separation line.

We assume in this section that all coupling constants are equal,K(e) = β, β > βc.
We fix 2N pointsAi , i = 1, . . . , 2N , on the boundary ofQ. Then we scale the boxQ

by L ∈ N and get 2N pointsAL
i , i = 1, . . . , 2N . We assume thatAL

i , i = 1, . . . , 2N ,
are at the middle of bonds of the latticeZ

2. Consequently, these points give naturally
a partition of∂3L into 2N subsets (see Fig. 4), which we denote by[AL

i , AL
i+1], i =

1, . . . , 2N , with AL
2N+1 ≡ AL

1 . Let η be the boundary conditions for3L,

η(x) =
{

+1 if x ∈ [AL
i , AL

i+1] andi is odd,
−1 if x ∈ [AL

i , AL
i+1] andi is even.

(9.1)

This boundary condition definesN phase-separation linesλi(ω) i = 1, . . . , N , in any
configurationω compatible withη. The setVL(η) := { aL

i : i = 1, . . . , 2N } of end-
points of these phase-separation lines is uniquely determined by the pointsAL

i . Givenω

compatible withη, theN phase-separation linesλi(ω) give a partition ofVL(η) into two-
point subsetsδλj (ω) = {aL

j1
, aL

j2
}. The set of all possible partitions ofVL(η) compatible

with N phase-separation lines is denoted byP(VL(η)) and an element ofP(VL(η)) by
aL = (aL

11
, aL

12
; . . . ; aL

N1
, aL

N2
).

Fig. 4.The box3L, the pointsAL
i

(white dots) and the pointsaL
i

(black dots). A family of phase-separation
lines is also drawn
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Lemma 9.1. Let η be a b.c. withN phase-separation lines for3L. Let bL =
(bL

11
, bL

12
; . . . ; bL

N1
, bL

N2
) ∈ P(VL(η)). Then

〈 {
λ : δλj = {bL

j1
, bL

j2
} , j = 1, . . . , N

} 〉η
3L

≤

∏
j≥1

〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L

max
aL∈P(VL(η))

∏
j≥1

〈 σ(aL
j1

)σ (aL
j2

) 〉∗3L

.

(9.2)

Proof. Letqη
3L

(λ) be the weight of the compatible familyλ of N phase-separation lines.
We estimate the denominator of the left-hand side of (9.2). Let

aL = (aL
11

, aL
12

; . . . ; aL
N1

, aL
N2

) ∈ P(VL(η)).

By Lemma 6.2 and GKS inequalities∑
λ

q
η
3L

(λ) = 〈
∏

t∈VL(η)

σ (t) 〉∗3L
(9.3)

≥
∏
j≥1

〈 σ(aL
j1

)σ (aL
j2

) 〉∗3L
.

We estimate the numerator of the left-hand side of (9.2). By Lemma 6.5,∑
λ :

δλj ={bL
j1

,bL
j2

}

q
η
3L

(λ) ≤
∏
j≥1

〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L
. (9.4)

ut
WhenJ (e) ≡ β it is easy to analyze the right-hand side of (9.2). Let

aL = (aL
11

, aL
12

; . . . ; aL
N1

, aL
N2

) ∈ P(VL(η));
we set

W(aL) := 1

L

N∑
j=1

τ(aL
j2

− aL
j1

), (9.5)

and

Wη := min{ W(aL) : aL ∈ P(VL(η))}. (9.6)

Then by Proposition 2.4 and Lemma 7.1,〈 {
λ : δλj = {bL

j1
, bL

j2
} , j = 1, . . . , N

} 〉η
3L

≤ LO(N) exp{−L(W(bL) − Wη)}. (9.7)

In the generic case the minimum in (9.6) is attained at a singlebL ∈ P(VL(η)); there
existsε > 0 such that

W(aL) ≥ Wη + ε , aL 6= bL. (9.8)
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We can use Lemma 6.5 to bound above the denominator of the left-hand side of (9.2),∑
λ

q
η
3L

(λ) ≤
∑

p∈P(VL(η))

∏
j≥1

〈 σ(aL
pj1

)σ (aL
pj2

) 〉∗3L
. (9.9)

Notice that this is slightly better than what we would have obtained using the Gaussian
inequality. ForL large enough only a single term dominates in (9.9), namely the term
given by the partitionp such that

bL = (aL
p11

, aL
p12

; . . . ; aL
pN1

, aL
pN2

). (9.10)

Therefore in the generic case, for fixedN and largeL,∏
j≥1

〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L
≤

∑
λ

q
η
3L

(λ) ≤ (1 + O(e−εL))
∏
j≥1

〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L
. (9.11)

Let λ be a family of compatible phase-separation lines, such thatδλj = {bL
j1

, bL
j2

},
j = 1, . . . , N . Formula (6.11) and Lemma 6.4 imply that

q
η
3L

(λ) = q3∗
L
(λ) ≥

∏
j≥1

q3∗
L
(λj ). (9.12)

Notice that the factor〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L
in (9.11) is equal to

〈 σ(bL
j1

)σ (bL
j2

) 〉∗3L
=

∑
λ :

δλ={bL
j1

,bL
j2

}

q3∗
L
(λ). (9.13)

We summarize the results obtained so far.

1. In the generic situation described above the typical phase-separation linesλ compat-
ible with the b.c.η are those such thatδλj = {bL

j1
, bL

j2
}, j = 1, . . . , N , wherebL =

(bL
11

, bL
12

; . . . ; bL
N1

, bL
N2

) is the element ofP(VL(η)), which minimizesW(aL) :=
1
L

∑N
j=1 τ(aL

j2
− aL

j1
).

2. The probability of the occurrence ofλ compatible with the b.c.η, assuming that
δλj = {bL

j1
, bL

j2
}, j = 1, . . . , N , is bounded below by

∏
j≥1

q3∗
L
(λj )∑

λ :
δλ={bL

j1
,bL

j2
}

q3∗
L
(λ)

≥
∏
j≥1

q(λj )∑
λ :

δλ={bL
j1

,bL
j2

}

q(λ)
. (9.14)

We suppose that we are in the generic case. Then there areN segments with total
length minimal, which do not intersect. Therefore the distance between two segments is
at leastδL, δ > 0. We also suppose that for each pair of points{bL

j1
, bL

j2
} we can apply

Case 1 of Lemma 7.1. IfL is large enough, then the ellipsesSj := S(bL
j1

, bL
j2

; c′ ln L),
j = 1, . . . , N , are disjoint two by two. Let

{ λ : δλj = {bL
j1

, bL
j2

}, λj ⊂ Sj , j = 1, . . . , N }. (9.15)
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We can easily estimate the probability of the event (9.15) using (9.14). Indeed, we can
reduce the estimate to an estimate for an event concerning a single interface,

{ λ : δλ = {bL
j1

, bL
j2

}, λ ⊂ Sj }. (9.16)

We have, using Lemma 6.7, GKS inequalities and Lemma 6.10,∑
E(λ) 6⊂E(Sj ):
δλ={bL

j1
,bL

j2
}

q3∗
L
(λ) ≤

∑
z∈∂extSj

∑
λ3z:

δλ={bL
j1

,bL
j2

}

q3∗
L
(λ)

≤
∑

z∈∂extSj

〈 σ(bL
j1

)σ (z) 〉3∗
L

〈 σ(z)σ (bL
j2

) 〉3∗
L

≤
∑

z∈∂extSj

〈 σ(bL
j1

)σ (z) 〉 〈 σ(z)σ (bL
j2

) 〉

≤ O(L3/2− κc′
)〈 σ(bL

j1
)σ (bL

j2
) 〉.

On the other hand, by Lemma 7.1 and Proposition 2.4,∑
E(λ)⊂E(3∗

L
):

δλ={bL
j1

,bL
j2

}

q3∗
L
(λ) = 〈 σ(bL

j1
)σ (bL

j2
) 〉3∗

L
(9.17)

≥ L−Ce−τ(bL
j1

−bL
j2

)

≥ L−C−1/2〈 σ(bL
j1

)σ (bL
j2

) 〉.
Choosingc′ so large that 3/2 − κc′ + C + 1/2 = α < 0, the probability of the event
(9.16) is larger than 1− O(L−α). Therefore, the probability of the event (9.15) is also
larger than 1− O(L−α).
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