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Abstract: We develop a new way to look at the high-temperature representation of the
Ising model up to the critical temperature and obtain a number of interesting conse-
guences. In the two-dimensional case, it is possible to use these tools to prove results
on phase-separation lines in the whole phase-coexistence regime, by way of a duality
transformation. We illustrate the power of these techniques by studying an Ising model
with a boundary magnetic field, in which a reentrant pinning transition takes place;
more precisely we show that the typical configurations of the model can be described, at
the macroscopic level, by interfaces which are solutions of the corresponding thermo-
dynamic variational problem; this variational problem is solved explicitly. There exist
values of the boundary magnetic field and temperaturesi9 < 7> < T, such that the
interface is not pinnedfdf < Ty orT > T>, butis pinnedfofly, < T < T»; we can also

find values of the boundary magnetic field and temperaturesi@ < 7> < T3 < T,

such thatfoIT < Ty or To < T < Tz the interface is pinned, while fdfy < T < T»

orT > T3 itis not pinned. An important property of the surface tension which is used

in this paper is the sharp triangle inequality about which we report some new results.
The techniques used in this work are robust and can be used in a variety of different
situations.

1. Introduction

Let us consider a 2D Ising model in some rectangular box with boundary conditions im-
posing the presence of a phase-separation line crossing the box from one fixed point of a
vertical side to another fixed point of the other vertical side. We suppose that the model
is in the phase-coexistence region; the boundary conditions are chosen so that above
the phase-separation line we have th@hase and below it the phase. The bottom
horizontal side of the box, which we call the wall, is subject to a negative boundary mag-
netic field. By varying the temperature or the boundary magnetic field one can observe
an interfacial pinning-depinning or critical wetting transition as established by Abraham



270 C.-E. Pfister, Y. Velenik

[A1]. In [A1], however, this surface phase transition was called a “roughening transi-
tion” (although the analysis demonstrated the depinning character); further comments
are made in Sect. 2.3.2 in connection with the work of McCoy and Wu who observed
a related “boundary hysteresis” (see Chapters VI and XllI in [MW]). We now describe
the pinning-depinning transition at the macroscopic level. For values of these parame-
ters for which thet+ phase wets partially the wall, and under appropriate geometrical
conditions, the equilibrium shape of the interface changes from a straight line crossing
the box to a broken line touching a macroscopic part of the wall. Moreover, we show
in this paper that there exist values of the boundary magnetic field and temperatures
0 < Ty < T» < T, such that the interface is not pinned fbr< Ty or T > T» and
pinned forTy < T < T»; we can also find values of the boundary magnetic field and
temperatures O< Ty < T2 < T3 < T, suchthatforT < Ty orT, < T < T3 the
interface is pinned, while fofy < T < T> or T > T3 it is not pinned. These reentrant
pinning-depinning transitions are predicted by a macroscopic variational problem for
the interface, which is formulated in terms of the surface tension and wall free energies
of the model. One of the main results of the paper is the derivation of this macroscopic
theory starting from the Boltzmann formula defining the equilibrium states of the model
at the microscopic level.

It is important to distinguish different length-scales. To do so we use two different
words, “interface” and “phase-separation line”. We use the word “interface” to denote
the boundary at the macroscopic scale between the two phases. At this scale the boundary
is fixed (nonfluctuating). The fundamental thermodynamical function associated with
an interface is the surface tension, which is non-zero below the critical temperature.
(In [ABCP] similar ideas are developed). By contrast, the “phase-separation line” is
a stochastic line whose probability distribution is determined by the Gibbs measure; it
describes the boundary between the two phases at the lattice spacing scale. In this respect
it is very interesting to read the introduction of [T], where Talagrand develops a similar
analysis of the Law of Large Numbers for independent random variables.

On the conceptual level one point of our paper is to show that the theory of the Gibbs
states for the infinite volume model is inadequate for discussing some macroscopic
properties of the model. The famous theorem, which states that all Gibbs states are
translation-invariant for the 2D Ising model [Az1,Hil], is not pertinent when we study
the model at scale®, @« > 1/2, L being the linear size of the box containing the
system. There are non-translation invariant states at that scale, with well-defined (fixed)
interfaces! Let us illustrate this point by considering the so-callbdundary conditions,
which corresponds to a special case of the present paper, where the phase-separation
line goes from the middle of a vertical side of the box to the middle of the other vertical
side. The definition of the phase separation line in [BLP1] coincides with the one of
Gallavotti in his work [G] about the phase separation in the 2D Ising model; it differs
slightly from the one used here, but in no essential way. (Notice that the terminology
“interface” is sometimes used for “phase-separation line” in [BLP1].) There are three
natural scales in the study of the phase-separation line, which have been first studied by
Abraham and Reed [AR] in a hon-perturbative manner.

At the scale of the lattice spacing the phase-separation line is a stochastic geometri-
cal line, which has well-defined properties, which depend strongly on the microscopic
interaction [BLP1]. Its middle point has fluctuations typically of the ord&i.1/2), L
being the linear size of the bax; containing the system [G,AR]. Because of these
fluctuations the projection of the corresponding limiting Gibbs state, at the middle of
the box, whenL — oo, is translation invariant [G]; in particular the magnetization
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(at the middle of the box) is zero. If we scale the lengths vertically1y.)Y/2 and
horizontally by ¥ L, then in the limitL — oo the phase-separation line converges to a
Brownian bridge, [Hi2,DH,D]. The magnetization profile on that scale has been com-
puted by [AR]. At that intermediate scale the phase-separation line is still stochastic,
but its properties show some universal features (Central Limit Theorem). However, at a
scale of orde O (L%), « > 1/2, the system has a well-defined fixed horizontal interface
and a deterministic macroscopic magnetization profile [AR].

To describe the system at the scalel.*) we partition the box\ ;, into square boxes
C; of linear sizeO (L*); the state of the system in each of these boxes is specified by
the empirical magnetizatiofC;| 1 > iec; o (t). Then we rescale all lengths by in
order to get a measure for these normalized block-spins in the fixed (macroscopic box)
0. WhenL — oo these measures converge to a deterministic macroscopic magneti-
zation profile showing a well-defined horizontal interface separating the two phases of
the model, characterized by a valtte:* of the normalized block-sping;* being the
spontaneous magnetization of the model. This coarsed-grained description of the equi-
librium state at the thermodynamic limit is in sharp contrast with the above mentioned
result implying that the equilibrium state converges to a translation invariant measure
at the thermodynamical limit. These two limits are related to properties of the model at
two different scales, the lattice spacing scale and the macroscopic one.

We outline the content of the paper. In Sect. 2 we recall the definitions and some
properties of phase-separation line, duality, surface tension and wall free energy. We
give here no proof. By duality the statistical properties of the phase-separation line at
B > B. between two distant but fixed points, sand:’, are (essentially) the same as the
statistical properties of the high-temperature contauarthe random-line representation
(1.1) of the two-point correlation function gt < 8.,

(o ()(B) =D q@). (1.1)

rt—t

In (1.1) A is an open contour of the high-temperature representation with end-points
and:’; g(1) is the weight of the contour; ¢ (1) depends of course g#. We can also
interpret. as the part of the phase-separation line going fremm’ andg (1) is the weight

at g of that part of the phase-separation line. The sum avier (1.1) is the partition
function of the ensemble of stochastic linefrom  to ¢’. We exploit the fact that this
partition function is equal tdo (t)o (¢') ) (B8*); consequently we have a good control
of this sum since we can use information, either from explicit computations or from
correlation inequalities, available for the two-point correlation function. Our (working)
definition of the surface tension of an interface described at the macroscopic level by a
line passing through and¢’, perpendicular to the direction is the thermodynamical
function corresponding to this ensemble of stochastic lines, that is

1

t(n; B) ;= lim ————1n A). 1.2

20 )= im — =i 3 q0) (1.2)
k—o0 Akt—kt'

This is exactly the quantity, which enters in the macroscopic variational problem. (The
same point of view is taken in [Pf2] and [PV1] in connection with the Wulff shape.) On
the technical side this definition is much simpler to use in our problem than the previous
definitions considered in the literature [A2]. The fact that this definition coincides with
previous definitions considered in the literature is not trivial (Proposition 2.2). The
“physical” reason, why Proposition 2.2 is true, is that the walls of the box are in the
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complete wetting regime; see Sect. 7 where the dual question, equality between the
short and long correlation lengths, is considered. In Sect. 3 we define precisely the main
problem, which we address. In this section we give some references to earlier works.
We formulate the problem from the microscopic viewpoint, but then discuss it from the
macroscopic viewpoint in Sects. 4 and 5. The main physical results are contained in
Sect. 5, in which we prove that the physical situations described at the beginning of
this introduction take place. These two sections dealing with the macroscopic theory
are formulated in terms of surface tension and wall free energy. We use known results,
mostly coming from explicit computations. In fact, we do not know how to predict the
reentrant phenomena, which we display, without knowing explicitly the values of the
surface tension and the wall free energy. In the second part of the paper we derive the
macroscopic theory starting from the microscopic Hamiltonian by analysing the typical
configurations. Our starting point is a new way of dealing with the high-temperature
representation of the model, which has been developed recently in [PV1]. Although
different, our approach is similar in some respect to the random current representation
of the Ising model of Aizenman [Az2]. This method is exposed in Sect. 6; it is the core
of the paper. The method is not restricted to dimension two. Except for two proofs,
which can be read in [PV1], the method is developed from scratch, with new proofs and
new results. This section has its own interest and can be read independently. The major
results are concentration results for the random-line representation (1.1) of the two-point
correlation function above the critical temperature wiikes- 2. Let

St t;Cinft—t')i={xeZ2: |t —x|+ It —x|| <t = +ClInlit — || }.
(1.3)

There exist”, large enough, so that the stochastic lines contributing to the two-point
function (o (1)o (') )(B*) are those contained inside the ellipse (1.3); more precisely, if
C is large enough, by Lemma 6.10,

> q()

rt—t!
“m AZS (@, Cln|lt—1"|) _ 0 (14)
lt—t'||— o0 Z q(n)
rt—t’

This result is sharp, since the width of the ellips@ib(||r — ¢'|| In ||z — ¢'|[)/2). Thus

the linesi contributing to (1.1) are concentrated in a region, whose size is essentially,
that of the normal fluctuations of a random walk going freno '. When the model

is defined on the half-infinite lattice := {x € Z2 : x, > 0} we have a random-line
representation similar to (1.1) for the boundary two-point function (Lemma 6.13). There
are two regimes, depending on the value of the boundary magnetic field. If the boundary
coupling constant*, dual to the boundary magnetic field is not too large, then the
concentration result is as above; in that case we know that the.lunedergoes an
entropic repulsion from the boundary lof On the other hand, if the coupling constant
h* is high enough, then the linesticks to the boundary df. We show that the lines
contributing to the boundary two-point correlation function, whien- t'|| = |r1 — 1|

tends to infinity, are those contained in a rectangle<(;)

B(t,t';p):={xeL:x1e[n—p.13+pl,0<x2<p}, p=Clnjy — 1.
(1.5)
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Again, this result is optimal. We stress that the only condition about the temperature is
T > T.. We give a first application of the results of Sect. 6 in Sect. 7. This section also
contains one of the main estimates, a lower bound for the two-point correlation function
in a finite box in terms of the two-point correlation function of the infinite system. This
bound is essential for Sect. 8. We show that the pinning transition bEldws a dual
interpretation abové,; although there is a unique Gibbs state at the thermodynamical
limit, we may have surface effects. Inspired by [SML] we introduce the notions of
short correlation length and long correlation length. We prove that these two notions
do not necessarily coincide. They differ when at the dual temperature the interface is
pinned. The relevance of these results for the surface tension at the dual temperature is
discussed at the beginning of Sect. 2.3. In Sect. 8 we justify the macroscopic theory of
Sect. 4 starting from the microscopic theory, and we show how the interface emerges
in the statistical description of the model, as a deterministic object in a coarse-grained
description of the microscopic configurations. We add one appendix, Sect. 9, where we
show that our method is robust. We apply it to a generic caseMithterfaces.

In this paper we derive results by very different technical tools like exact computa-
tion, correlation inequalities and high-temperature representation. We can treat math-
ematically various interesting physical situations for the 2D Ising model. Each of the
approaches just mentioned has its own strengths and weaknesses. It is certainly advan-
tageous to combine these methods as we do in this paper. It is evident that the method of
the high-temperature representation, combined with duality, is appropriate for studying
interfaces for the 2D Ising model at a scdl®, « > 1/2. On the other hand we also
show that we need few, but very precise results about specific quantities, like two-point
correlation function, surface tension, wall free energy, values of the boundary magnetic
field where the wetting transition takes place. These results depend on finer properties
of the model at scalels®, « < 1/2. Here exact computations are appropriate; moreover,
some of these results can be obtained only by exact computations.

[A2] is a good review about exact results on interface problems in general. We also
mention the work by Fisher [F] where deep insight about wetting and pinning problems
and other phenomena ir2is provided by analysing these questions in terms of random
walks. Some of the results presented here are taken from [V] (see Chapter 6).

2. Definitions and Notations

We introduce the notation used in the paper, which follows essentially that of [PV1]. We

recall the notions of duality, phase-separation line, surface tension and wall free energy.

We also state some fundamental estimates for the two-point correlation function of the

model. A large part of this material is standard; references are given in the text.
Throughout the paper we use the following conventi@iit) denotes a non-negative

function ofx € R*, such that there exists a constéhtvith O (x) < Cx; the function

O (x) may be different at different places.

2.1. Phase-separation linéAs explained in the introduction, we study some macro-
scopic features of the 2D Ising model starting from the microscopic description of the
model. It is therefore natural to start by fixing some macroscopic@®ax R?, which

we choose in an asymmetric way for latter purposes,

Q:={x=(x1,x) €R?: x| <1, 0<x2<2}. 2.1)



274 C.-E. Pfister, Y. Velenik

Let L be an integer and.; C Z2,
Ap:={x=(1x)€Z%: |x1] <L, 0<x»<2L}. (2.2)

Notice that after scaling by/L, Ay C Q. Spin configurations are denoted bye

{—1, +1}¢; the spin variable at € Z? is o(x), 0 (x)(w) = w(x) = +1. Phase-
separation lines are stochastic lines (see below), whose positions are fixed on the bound-
ary of A1, by boundary conditions. The boundar ;, of A is the subset

0Ap :={xeArL: 3Ty &AL mii)2(|yi—xi|=l}. (23)
i=1,

Boundary conditions (b.c.) faf;, consists in prescribing the value of the spincat
dA . For example, the- b.c. means thab(x) = —1Vx € dA. In the general case
boundary conditions are specified hye {—1, +1}7AL, so that for all configurations
w, w(x) := n(x) Vx € 0Ar; we refer to that boundary condition as thé.c.. Free
boundary conditions means absence of boundary conditions.

The Hamiltonian of the model in ; with 7 b.c. is the function ofi—1, +1}¢

H) (o) := {_ ZW’)(AL J (@, o () (w)o () (w) if a)(x)-z n(x) Vx € dAL;
' +o0 otherwise
(2.4)

Here(z, ') is the standard notation for a pair of nearest neighbour points of the lattice
72, called bond. The coupling constanté, 1) are positive; we specify them later on.
The Gibbs measure dr-1, +1}2% with 5 b.c. is

exp—fHJ, ()} -
OI(AL) '

B is the inverse temperature amd (A ), the partition function, is the normalization
constant in (2.5). Expectation values are Writtem;’\L.

The dual lattice t&? is
7% = {x = (x1,x2) € R? : x + (1/2,1/2) € 7?}, (2.6)
and the dual box\3 € Z? is
A ={x=(x1.x2) €Z%: x1| <L —1/2, 1/2<xp <2L—1/2}. (2.7)

Each bond(z, t') defines a unit segmesrtz, ') C R? with end-pointst, ¢’; to each
bond (¢, t') such that(r, ") N A \dA; # @, there corresponds a unique dual bond
(t*,1"*) C A%, which is defined by the condition thatr, ') N e(t*, 1'*) # ¢. Given
boundary conditiong, each configurationw, which is compatible with the b.c., can

be uniquely specified by giving all segmests, ") such thab (¢) (w)o (') (w) = —1
and{t,t'} N AL\dAL # @; this is equivalent to specify all dual segmeats*, t'*),

or the corresponding dual bonds af;. The union of these dual segments forms a
set of lines inR?2, which we decompose into connected components. Whedever

A7, which belongs to four segments, we apply the deformation rule defined in the
picture below, so that each configuratian compatible with thep b.c., is uniquely



Reentrant Pinning Transition 275

specified by a finite set of disjoint simple lines calleahtours of the configuration.
L
—
-

Let B be a set of dual bonds; the bounda® of B is the set ofc € Z2* such that
there is an odd number of bonds Bfadjacent tox. B is closedif §B = ¢ andopen
if B # (. The contours of a configuration are either closed, or open with end-points
on the boundary oA\ . The setV; (1) C A] of the end-points of the open contours is
uniquely determined by theb.c.; its cardinality is even iV () # @. The set of closed
contours is writtery = {y1, y2, ... , } and the set of open contouxs= {A1, A2, ...}.

We call the open contours tipase-separation line®f the configuration. Conversely,
a family of contourgy’, \') is calledn compatible if there existsw compatible with
then b.c. such thay (w) = y’ andi(w) = A'.

The probability ofA can be computed with the Gibbs meas@). It is however
more convenient to introduce a non-normalized measure on the set of phase-separation
lines, in order to exploit the duality property of the model. Témgth |y | of a closed
contoury is ., J(e). The sum of the lengths of the contours of a fangilis written
|y |. Similar notations hold for open contours. Next we define two (normalized) partition
functions,Z"(A ) andZ" (A1 |1), wherex andn are compatible,

Z'AL) = Y expl=2Bly (@)} expl—281(w)]); (2.8)
w: n comp
and
ZUAL) = Y exp(—28ly (@)]}. (2.9)
: 1 comp
Alw)=L

We define a WeighryZL (1) by setting

n
exp{—2ﬂ|&|}M if A andn are compatible

qx, Q) = Z7(AL) (2.10)

otherwise

The weightqZL (1) does not define a probability measure on the set ocbmpatible
phase-separation lines, since in (2.10) we divid&ZbyA ;) and notZ"(A ).

2.2. Duality. A basic property of the 2D Ising model is self-duality. As a consequence
of that property many questions about the model below the critical temperature can be
translated into dual questions for the dual model above the critical temperature. For
example, questions about the surface tension are translated into questions about the
correlation length.

We define the dual objects 1o;,, g andJ (¢, t'). The dual boxA’ is defined in (2.7).
The dual inverse temperatugé is defined by

tanhg* := exp{—28]}. (2.11)
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We recall that the critical inverse temperatise of the Ising model with coupling
constants/ (¢, t') = 1 is the fixed point of Eq. (2.11). Lét, ') be a bond of? and
(t*,t'") its dual bond; the dual coupling constakit(t*, +'*) is defined by

tanhg* J*(t*, 1) := exp(—2BJ (1, 1)}. (2.12)
Let
Hyr == Y J*(t.tho)o () (2.13)
(t.t)CAT

be the Hamiltonian in the dual bax; with free boundary conditions and dual coupling
constants. The expectation value with respect to the corresponding Gibbs measure at the
dual temperaturg™ is written ( - INE

A key dual statement is the following one. Lelbe a family of phase-separation lines,
which aren compatible with a givem b.c. forAr. Then

doal, =[] o). (2.14)
A

reVr(m)

Formula (2.14) is our starting point for analysing the interfaces of the model. Itis proven
in Sect. 6. In that section we identify the weiglitL (1) with the weighthz (M) ofrin

the high-temperature representation of the model defined in the dual paxth free
boundary conditions (see Lemma 6.2).

2.3. Surface tension and wall free energife recall the definition of surface tension

as given for example in the review paper [A2] formula (2.14a) (see also [Pf1]), since
this is the definition which is mostly used. In Sect. I1.D of [A2] other definitions of
surface tension are reviewed and compared. The heuristic grounds given on p.10 of [A2]
(see also note 12 in [Pf1]) lead to a definition of the surface tension as the logarithm
of the ratio of two partition functions with different boundary conditions. The results
of Sect. 7 show that this may lead to a wrong definition of the surface tension for an
Ising model with modified coupling constants on one part of the boundary. The heuristic
grounds give a correct definition only if the walls of the box are in the complete wetting
regime, a crucial physical condition, which has been so far overlooked in the literature.
See Sect. 7 where we consider explicitly the dual question of equivalence of short and
long correlation length, but the results apply to the definition of the surface tension. As
explained in the Introduction our working definition of the surface tension is different.
The fact that we get the same quantity is a consequence of Proposition 2.2. The ultimate
justification for the definition of the surface tension is that it should be equal to the
guantity, which enters into the formulation of the variational problem describing the
behaviour of the interface at the macroscopic level. This is the subject of this paper.

2.3.1. Surface tensionConsider the model defined it ,

AN, ={xeZ?: |xji|<L,i=12}, (2.15)
L
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with coupling constantd (7, /') = 1 and inverse temperatuge Letn € R? be a unit
vector; denote b, the straight line perpendicular #toand passing through the origin
of R2. Then, b.c. for A} is defined by

—1 ifx € dA) is below or onD,,

. . 2.16
+1 ifx € 9A/ is aboveD,. ( )

Nn(x) :=

Let D, be the Euclidean length of the segménte R? : |x;| < 1} N D,. If w is
compatible with then, b.c. there is a unique phase-separation hi@). The limit
T(n; B)

1 Z™(A))

exists and is called theurface tensionat inverse temperature. By symmetry of the
model we haver = (n1, n2))

T(n1, ng; B) = t(—n1, —nz; ) = t(n2, —n1; B) = t(nz, n1; p). (2.18)
We extend the definition df(n; 8) to R2 by homogeneity|( - | is the Euclidean norm),
T(x; B) = llxIT(x /x5 B). (2.19)

Proposition 2.1. Let J (¢, t') = 1. The surface tension is a uniformly Lipschitz convex
function onR? such that? (x; B) = (—x; B). It is identically zero if < f., and
strictly positive for allx # 0if 8 > B.. In the latter case defines a norm oi®?2. The
main property oft is the sharp triangle inequality. For aB > 8. there exists a strictly
positive constant = « () such that for any, y € R?,

T B+ Ty B) —t(x +y; B) = c(llxll + Iyl = llx + yID. (2.20)
Letx(9) := (cosp, sink) andz(9; B) := T(x(0); B). Then the best constantis

2
o= inf (%f(@; B) + £ (6; ﬁ)) > 0. (2.21)

The first part of the proposition is proved in [LP] and [Pf2] (Lemma 6.4). The argu-
ments are not restricted to the 2D Ising model. loffe [I1] proved an equivalent form of
inequality (2.20), but with a non-optimal valuesofinequality (2.20) as stated here first
appeared in [V]. The strict positivity of the optimal constangiven in (2.21) follows
from the exact expression 6f0; ) [AA]; it is called thepositive stiffness property.

Remark.Geometrically (2.21) means that the curvature of the Wulff shape is bounded
above by J«. It is well-known that the surface tension is the support function of the
Wuff crystal. The following result of Convex Theory is interesting, and appears to be
new as far as we know [V]. It characterizes the compact convex bdidigsR2 which

have a support functiof,

T(x) := sup(y*, x), (2.22)
yeW

satisfying the sharp triangle inequality

T+ 1) =T +y) = K'(xl + Iyl = llx + yID. (2.23)
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In (2.22) (-, -) is the Euclidean scalar product. No smoothness of the boundad#y of
is assumed. LeW; and W» be two convex bodies; we say thall/; is tangent tod W
atx* if W1 andW> have a common support planexgt We recall the notion of radius
of curvature of W atx*. Let U be an open neighborhood ef. Let 7;(x*, U) be the
family of discsD with the following properties:

1. 9D istangenttd W atx™;
2. wWnuo>DnNU.

We allow the degenerate cases where the disc is a single point or a half-plane. Conse-
quently7; (x*, U) # . We denote by (D) the radius of the dis® and set

p(x*, U) :=sufp(D): D e Ti(x*, U)}. (2.24)

Clearly p(x*, U1) < p(x*, Up) if Uy D Us. Thelower radius of curvature at x* is
definedas -

p(x*) :=supp(x*, U) : U open neighborhood of*}. (2.25)

Theorem 2.1. Let W be a convex compact body afdbe its support function. Then the
following statements are equivalent;

1. The lower radius of curvature @&W is uniformly bounded below h¥ > 0.
2. There exists a positive constakit such that for any, y € R?,

T+ () =t +y) = K (Il + Iyl = lIx + yID. (2.26)

There is awell-known dual relation between the surface tension at inverse temperature
B and the decay-rate of the two-point function at the dual tempergttirevhich we
recall here. Consider the 2D Ising model on the dual lattice, with coupling constants
J*(t,t") = 1,inverse temperatups and free b.c.. The two-point function, or covariance,
is
(oo ()P , 1.1 €L, (2.27)

where( - )(8*) denotes expectation value with respect to the infinite volume free b.c.
Gibbs measure at inverse temperatate Thedecay-rateof the two-point function is
defined for allr, ' € Z%* as

(t —t'; B*) i= — ]I(iglI %ln(o(kt)a(kt’))(ﬁ*). (2.28)

k— o0

Proposition 2.2. Let J (¢, t') = 1. The surface tensiofi(x; 8) of the 2D Ising model
and the decay-rate(x; *) are equal,

T(x; B) = t(x; B*) Vx. (2.29)

Remark.Identity (2.29) has been noticed several times; we refer the reader to [ZA]
where a brief historical account with references is given at the beginning of their paper.
However, a proof of formula (2.29) does not follow from duality only. There is an
exchange of limits, which must be justified (see e.g. [BLP2]). We show in Sect. 7 that
there are cases where the exchange of limits is not valid and such a relation does not
hold.
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2.3.2. Wall free energyThere is another thermodynamical quantity, which enters into
the description of the properties of the interface, the wall free energy. In the phase-
coexistence regime it depends on the nature of the bulk phase. Only the difference of
wall free energies when the bulk phase is either-thphase or the- phase has an
intrinsic meaning. In order to have interesting surface phenomena we single out one part
of the boundary of the box ;. , the bottom part. (This is the reason for our asymmetrical
choice ofA.) We choose here the coupling constants of the model as follows.

h>0 ifrp,=00rz =0,

2.
1 otherwise (2:30)

J(,t) = {

We compare the free energy for two different b.c., one being-tbec. and the other
one then. b.c., defined as

-1 ifxedAp andxy =0,
= 2.31
(%) {1 if x € 9A, andxy > O. (2.31)
We set
1 VAZION
Tod(B, h) == — i in Z-A) (2.32)

m .
L—oc 2L +1 Z—(Ar)

The quantitytpg(8, k), which gives the difference of two free energies, verifies the
fundamental inequalities (2.34) for a®y > 2, [FP1] and [FP2]. Let,, := (0, 1) and
set

T(B) := T(nw; B); (2.33)
for any 8 and anyn,
1Tod(B, M| < T(B). (2.34)
If 8 > B, andh > 0, then
0 < Toa(B, h) < T(B). (2.35)

Suppose thag > B.. The difference between the two free energies, per unit length,
is interpreted as the free energy, per unit length, of the horizontal interface produced
by the boundary condition. If T,q(8, ) = 7(B), then this free energy is equal to

the surface tension of an horizontal interface. This indicates that the interface produced
by the boundary condition. b.c. is not pinned; or in other terms, we have complete
wetting of the wall by the- phase. On the other hand,#@ifg(8, #) < T(B), then this
indicates that the interface is pinned, or in other words, that we have partial wetting.
What we just described is Cahn'’s criterion for the wetting transition: whenO there

is partial wetting of the wall if and only if,q(8, #) < 7(B). Interms of Gibbs states one

can prove, [FP1] and [FPZ2], that near the wall all Gibbs states are identical if and only
if |7pd(B, k)| = T(B). Intuitively this is easy to understand: at tmécroscopidevel the

state of the system near the wall is always the state of-tpbase near the wall, since

the wall is in the complete wetting regime. By contrast, in the partial wetting regime

1 The definition offpq differs from the analogous quantity used in [PV1] or [PV2], because in these papers
the reference bulk phase is thephase and here it is the phase.
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the state near the wall depends on the nature of the bulk phase. The behaviour of Gibbs
states near the wall can be distinguished by the order parameter

li 1)1 . 2.
Linoo(o-(o’ ))AL(ﬁvh) ( 36)
Frohlich and Pfister in [FP2] proved that there are several Gibbs states near the bottom
wall if and only if

. _ . +
lim (o(0,1)),, (B, h) # lim (0(0,1) )ZL(ﬁ, h). (2.37)

L—00 L—o00

This occursifand only it < h,,, with h,, = h,,(8), atemperature dependent coupling,

which is defined by (see (2.27) in [FP2])

hy(B) =inf{h >0 : Llim (0(0,1)),, (B, h) = Llim (g(0, 1) )TL B,h)}. (2.38)

Using the results of Frohlich and Pfister [FP1] and [FP2], and those of Pfister and Penrose
[PP] one can show that the surface magnetizations computed by McCoy and Wu (see
Chapter VI in [MW]) can be identified with the above quantities

. _ X nt

L'E“m(“(o’l))m(ﬁ’h) andLlTo(G(O,lﬂAL(ﬂ,h)-

Thereforer,, can be computed from their work,, being given by formula (5.44), p.137
of [MW]; it is not difficult to show that an equivalent form of this expression is (2.39),
which is the formula given by Abraham for the valué:gf, where the pinning-depinning
transition occurs,

exp{2B}{cosh B — cosh Bh,(B)} = sinh 28. (2.39)
An equivalent computation df,, based on Cahn'’s criterion is given in [AC].

Remark.At the time when McCoy and Wu discovered this surface phase transition no-
body understood what was physically implied: the transition was interpreted as a bound-
ary hysteresis phenomenon. This interpretation is, however, misleading, the transition
is not related to any kind of metastability. The plot of the quantities corresponding to
lim;_o0(o(0,1) Yo, (B, 1) andlimy_, (o (0, 1) )”AiL (B, h)isgiveninFig. 6.6, Chapter

VI of [MW].

Besides the extensive computations for the semi-infinite Ising model of McCoy and
Wu, Abraham, Abraham and coworkers, we also mention [AY] and [AF]; this list is not
exhaustive.

As for the surface tension there is a dual expressiorfggrWe first introduce the
two-point function of the model on the half-infinite lattice

L*:={x € Z% : xp > 1/2}, (2.40)
as

(oo (@)L (B*, h*) = L|i_l)”ﬂoo<0(t)0(t’))Az(ﬂ*, h*). (2.41)
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Thd
7(1,0)

hy(B) 1 h

Fig. 1. 7pq as a function of the magnetic field for g = 1.48,

Proposition 2.3. Let the coupling constants be given by (2.30) 0, and letg > 8.
Let 8*, h* be the dual coupling constants,t’ € A%, 1(2) = ¢'(2) = 1/2. Then the
limit

1
— lim r—lIn(o(nt)a(nt’))p(ﬂ*,h*) = |ta — t;] - wa(B*, 1*) (2.42)

n—oo
exists andryg(B*, h*) = Tha(B, h).

See [PV1] for a proof.

2.4. Two-point correlation functionThere are close relations between surface tension,
resp. wall free energy, and decay-rate of the two-point correlation function, resp. bound-
ary two-point correlation function (Propositions 2.2 and 2.3). The next proposition states
fundamental estimates about the two-point correlation functions, which we need later
on. As in the previous section, see (2.38)8) := T(ny; B) andt(8*) = 7(B).

Proposition 2.4. Let J(e) = 1. Let8* < B..
1. There exist positive constarksanday, such that for allx, y € 72,

KeXp{—f(y —x; B}

=yl < (oMo M)(B) =expl—t(y —x; BH}. (243

2. Let the coupling constants be given by (2.30), with= 4*, 0 < h* < oo. If
d(B*, h*) = (B*), then there exists a constakit such that for allx, y € IL*, with
x2=y2=1/2,

sexpl—t(B")|x1 — y1l} N
K T < (e@o())(B", h™) (2.44)

< exp{—t(B)|x1 — y1l}.
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3. Let the coupling constants be given by (2.30), with= 2*, 0 < h* < oo. If
d(B*, h*) < T(B*), then there exists a constakt’ such that for allx, y € L*,
with xp = yp = 1/2,

K" exp{—tpd(B*, h*)|x1 — y11} < (0 (x)o ()L« (B, ™)

.k (2.45)
< exp(—tbd(B™, ™) |x1 — y1l}.

Remarks.1. The upper bounds are well-known consequences of sub-additivity and GKS
inequalities, see e.g. [PV1].

2. The lower bound (2.43) has been proved recently by Alexander [Al]; his method is
robust and can be applied to different models of statistical mechanics, e.g. percolation,
Potts or random-cluster models. The value obtained by this method is not optimal (see
the next remark).

3. The optimal value in (2.43) is, = 1/2. Notice that for our purpose the bound
(2.43) derived by Alexander is sufficient. However, the determination of the asymptotic
behaviour of the two-point function is an important theoretical question. A detailed
asymptotic study of the two-point function of the Ising model whzna= 2 is made in
Chapter XII of [MW] (in particular (4.39) therein); see the very informative discussion of
their results in Sect. 5 of the same chapter. For dimenBign2 the expected behaviour

is

Xp{—1(y — x; B%)}

D-1
llx —yll2

(0 ()T (M)(B) = p(n(y — x); ﬂ*)e ; (2.46)

with n(y — x) = (x — y)/|lx — y|l. Recently loffe [I2] proved such a formula for the
simple self-avoiding walk oZ”, D > 2, with¢ : SP~1 — R* an analytic function.

4. The lower bound (2.44) follows again from the work of [MW] whigh= 1 (Chapter

VI, in particular the discussion pp. 144—-145). Using correlation inequalities, it can be
extended to the general case as shown in [PV1, Prop. 7.1].

5. The lower bound in (2.45) is proven in [PV1, Prop. 7.1].

3. A Microscopic Model for the Pinning Transition

We define a microscopic model for a system with two coexisting phases, separated by an
interface, where we have a reentrant pinning-depinning transition. Our model is inspired
by the work of Patrick [Pal], who showed that there is a reentrant pinning-depinning
transition for the SOS model corresponding to our settings. In a recent work, Patrick and
Upton [PU] studied in the Ising model questions similar to those investigated here. The
interesting fact that we can have reentrant pinning-depinning transition for an Ising model
with ferromagnetic coupling constants only is not new. This is for example proved in
[ACD] for a different choice of the coupling constants; in our notations this corresponds
to

c¢>0 ifr,=0ands = 1 orvice-versa
0 fro=t,=00rn,=1,=1,

b >0 ifrp=1ands = 2 orvice-versa
1 otherwise

J(t, 1) = (3.1)
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In [ACD] the two boundary conditiong.. are considered

+1 ifxeAr,x2=0,

2
1 otherwise (32)

n+(x) = {

This model differs from our model; if we integrate over the spins of thefrow Ay,

x2 = 1}, then the resulting Hamiltonian is equivalent to our Hamiltonian defined by
the coupling constants (3.3), but with now an effective nonlinear temperature dependent
couplingh = h(T) (see formula (11) in [ACD]).

Our method proceeds in two steps. First, we derive a macroscopic variational prob-
lem characterizing the typical configurations. This part of the analysis is based on the
probabilistic methods developed in Sect. 6 and following. The main advantage we gain
is that these methods are robust (see for example the Appendix). In the second step,
we solve explicitly the variational problem. It is at that point that we need the exact
expressions of the surface tension and wall free energy.

Let Q be the macroscopic box (2.1) and denoteyy := {x € Q : x(2) =0} its
bottom wall. We want to describe at the macroscopic level an interface going from the
pointA := (—1,a),0 < a < 2, to the pointB := (1,b), 0 < b < 2, which can be
pinned by the bottom wal,. The idea is to introduce a grid i2 with lattice spacing
1/L, L € N, and to consider an Ising model on that grid. WHetends to infinity we
hope to have a good microscopic description of the macroscopic physical situation. It is
however more convenient to work with a fixed lattice with lattice spacing unity, when
we investigate asymptotic properties of the modelZaiending to infinity. Therefore
we define the model in the bax; (see (2.2)). We choose the coupling constants of the
model as follows,

h>0 ifrp=00rt,=0,

. 3.3
1 otherwise (33)

J(t, 1) = {

The boundary conditions specify the end-points of one phase-separation line, which is
the microscopic manifestation of the interface. The boundary conditiong,are

+1 ifxeAr,xp=2L,

+1 ifxy=—-Landal < x» <2L,
+1 ifxy=LandbL <x» <2L,
—1 otherwise

Nab(x) 1= (3.4)

In each spin configuration compatible with, there is a unique phase-separation
line A with end-points iV, (nqs) := {u’, vt} ut = —L andv} = L. The normalized
partition function is denoted bg’ (A ;) = Z"b (Ap).

Problem. Describe the statistical properties of the phase-separatioh &ind show that
there is reentrant pinning-depinning transition. Derive the macroscopic theory developed
in Sect. 4 from the microscopic theory.

Remark.In [AK] the same model is studied, with similar, but different boundary con-
ditions; the pinning of the interface is used in order to define the contact angle and give
an exact derivation of the modified Young equation for partial wetting.
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4. The Variational Problem

The interface is a macroscopic deterministic object, whose properties are described by
a functional involving the surface tension or the wall free energy. The equilibrium state
of the interface is given by the minimum of this functional.

In Q the interface is a simple rectifiable cur@ewith end-pointsA = (-1, a),
0 <a< 2 andB = (1,b),0 < b < 2. We denote byC N Wy| the length of
the portion of the interface in contact with the walllp. Suppose that0, 1] — Q,
s = C(s) = (u(s), v(s)), is a parameterization of the interface. The free energy of the
interfaceC can be written

t
WC) := /0 2(1i(s), D(s))ds + |C N Wol - [fbd — (1 0)], (4.1)

because the functiof(x1, x2) is positively homogeneous addx1, x2) = 7(—x2, x1).
The interface at equilibrium is the minimum of this functional. Therefore we have to
solve the

Variational problem. Find the minimum of the function&/among all simple rectifiable
open curves i with extremitiesA = (-1, a) andB = (1, b).

Let D be the straight line from to B andWV be the curve composed of three straight
line segments: from to a pointP; € Wy , from Py to P> € Wy, and fromP, to B. The
points Py resp. P, are such that the angles between the first segment and the wall resp.
between the last segment and the wall are equat te [0, /2], which is a solution of
the Herring—Young equation (4.2)

coshy f(@y) — sinfy ‘I?/(Qy) = ‘Ebd. (42)

W is a simple curve irQ if and only if
a+b
Oy € [arctanT, w/2). (4.3)

Remarks.1. The choicedy € [0, /2], leads to a different sign at the right-hand side of
the Herring—Young equation (4.2) than in [PV2] formulae (1.5) or (4.60); in these latter
references we use — 0 instead ob.

2. For the case under consideration the existeneg 6§ an immediate consequence
of the Winterbottom construction. In our case we have supposed: that0, so that
Tpg > 0. Sincer’(/2) = 0 the cas®y = /2 never occurs.

Proposition 4.1. Let8y be the solution of the Herring—Young equation (4.2).

1. If tandy < #, then the minimum of the variational problem is given by the curve
D.

2. Ifx/2 > 0y > arctar(‘%”), then the minimum of the variational problem is given by
Dif WD) < WIW), by W if WD) > WW) and by bothD andW if WD) = WW).

Proof. The proofis an easy consequence of the two following lemmas. Lemma 4.1 states
that the minimum is a polygonal line.
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Lemma 4.1. LetC be some simple rectifiable parameterized curve with initial pgint
and final pointB. If C does not intersect the wall, then

WC) = WD) (4.4)

with equality if and only i€=D. If C intersects the wall, lety be the first time touches
the wall andz, the last timeC touches the wall. Lef be the curve defined by three
segments from to C(#1), fromC(#1) to C(¢2) and fromC(z2) to B. Then

WC) = WO). (4.5)
Equality holds if and only i€ = C.
Proof. Sincet is convex and homogeneous, we have in the first case by Jensen’s in-

equality

t t t
V\(C):t%/ f(b't(s),i)(s))dsztf(%/ L't(s)ds,%/ i(s)ds) = WD).  (4.6)
0 0 0

The inequality is strict i€ # D as is seen using the sharp triangle inequality (2.20).
In the second case we apply Jensen’s inequality to the pdrbetweenA andC(ry)
and betweer€ () and B to compare with the corresponding straight segments. of
Combining Jensen’s inequality and the fact that< 7, we can also compare the part

of C betweerC (1) andC(2) with the corresponding straight segmentof o

Lemma 4.2. LetC be a polygonal line fromi to Py € Wy, then fromPy to Py € Wy,

and finally fromP; to B. Letdy be the solution of the Herring—Young equation (4.2). If
7/2 > Oy > arctar(“?) then

WC) = W), 4.7)
with equality if and only i€ = W. If arctan$2) > 6y,
WC) > WD). (4.8)

Proof. Let 61 be the angle of the segment ©ffrom A to P1 with the wall Wo, and
62 be the angle of segment frofy to B with the wall Wo. A necessary and sufficient
condition, that the polygonal lin€ is a simple polygonal line, is

a b

< 4.9
tanfy + tanf, — (4.9)

In particular, we certainly havey > 6,, whered, := arctanz/2, andd, > 6, where
0y := arctanb/2. Since we suppose that- 0 andb > 0 we have, > 0 andf, > O.
We suppose tha, € (0, 7/2), sincefly = 0 occurs only ift (0) = 7pq, and in that case
by Lemma 4.0(C) > WD). We compute

—~ a a b
0) = £(67)— fg2— — 4 2
WO = 2600 Gg + d@ = oo ~ ang,

= g(01,a) + (62, D),

)+ 7(02) (4.10)

sind,
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where

X X
0, =7(0)—— + Tpg(1 — —). 4.11
g0, x) :=1( )sme + Thd( tane) (4.11)

Sincedy is a solution of (4.2),

0 X
—g(fy,x) = sinfy t’(6y) — cosy 7 (0 ?od) = O. 4.12
86)g(YX) sin29Y< Yy T (Oy) y T( Y)+de> (4.12)

The second derivative @f(9, x) is

92 x(T(0) + t"(9)) 2 9
00, x) = : - ~ (0, x). 4.13
5250 sinG tang 395 @+ %) (4.13)

Therefore, fo € (0, /2], we have

da}

0 2 A Al
/ t WETw ., (4.14)
, tana siny

9 6
ﬁg(é,x) =x/ exp{—

Oy

Sincet has positive stiffness, i.€(0) +t”(9) > 0, (4.14) implies thafly is an absolute
minimum of g(9, x) over the interval0, /2], and thatg is strictly monotonous over
the intervalq90y, = /2] and (0, 6y). Therefore

WC) = g(0y.a) + g(By. b). (4.15)
If (4.3) holds, then (4.15) implieWCA) > WW), because in that case
gy, a) + g0y, b) =WV). (4.16)

If (4.14) does not holdyV is not a simple line and is not even necessarily ingiddhe
two segments from to the wall and fromB to the wall intersect at some poiftte Q.
Let W be the simple polygonal curve going framto P, then fromP to B. A simple
application of Lemma 4.1, using the fact tHdt., 0) > 74, gives

g(y.a) + g(By. b) = WWV). (4.17)
Applying again Lemma 4.1 we get

W) > WD). (4.18)
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5. Reentrance and Pinning Transition

The results of Sect. 4 show that, when the parametanslb are well-chosen, the system
under consideration can undergo a phase transition from a phase in which the interface
is pinned to the wall on a macroscopic distance to a phase in which it does not touch the
wall. It is interesting to consider the corresponding phase diagram, which is obtained
using the explicit expressions for the mass gap of the 2-point function and the mass
gap of the boundary 2-point function (by duality this provides exact expressions for the
surface tension and wall free energy). The expressions we use are the following:

#(6; B) = | cos| sinh*(a| cosA|) + | siné| sinh~* (| sing), (5.1)
o« §<<1 — ) /(A + VsiP 20 + b2 co2 26)) 2,

b = 2sinh 28 cosh? 28,
and for 0< h < hy,(B), with 8* andh™ the dual coupling constants fhand#,
coshtpg(B, h) = costf(8*) coth(2B*h*) — sintP(B*) coth28*(h* — 1)].  (5.2)

They can be found, for example, in [MW] [Eqg. (4.39) of Chap. XIl and Eq. (5.29) of
Chap. VII]. Figure 2 shows a set of phase-transition lines, depending on the parameters
andb, intheT-h plane ' = 1/ kB being the temperature). The shaded area corresponds
to the set of parameters

{(T.h) = Toa(B, h) < T((1,0); B} (5.3)

In other words, the boundary of that region is the wetting transition line: If we set
a = b = 0, then for values of the temperature and boundary magnetic field inside this
set, the phase-separation line is pinned to the wall microscopically (partial wetting),

h A

Fig. 2. A sequence of phase-transition lines, separating the phase in which the interface is a straight line
and the phase in which it is pinned to the wall. Bieded arexorresponds to the values @f, ) so that

bd(B, h) < T((1, 0); B). The four curves correspond toui)}= 0.1, = 0.1;ii)a = 0.1,b = 0.2;iii) a = 0.1,
b=0.4;iv)a = 0.4,b = 0.4. Observe that the system in case i) exhibits reentrance (see also Fig. 3)
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h h
0.82 0.82
0.80 0.80
0.78 e 0.78 T

Fig. 3. This figure shows part of the phase-transition linedet 0.1, b = 0.1 (left), anda = 0.1, 5 = 0.12

(right). For values of the parametefsand/ below these curves the interface is pinned, while it is a straight

line above these curves. Increasing the temperature along the dashed lines, we see that the system exhibits
reentrance; this corresponds to the two situations discussed in the introduction

while for values of the parameters outside this set it takes off and fluctuates far from
the wall (complete wetting). Notice that in the macroscopic limit, the interface lies
always along the wall in this case. The four curves i) to iv) in Fig. 2 represent the phase-
transition line for various values of the parametets 0 andb > 0. For any value of the
parameterg andh above the phase-transition line, the system’s interface is the straight
line, while, for any value of these parameters below the curve, itis pinned. Clearly, since
a andb are strictly positive, the phase-transition line must be inside the shaded region
(whentpg(B, h) = 7((1, 0); B), Jensen’s inequality implies that the interface is always

a straight line).

The phenomenon of reentrance described in the introduction can be seen in Figs. 2 and 3.
Supposer = b = 0.2 andh is slightly above 8 (this corresponds to the dashed line of

the first picture in Fig. 3). At very low temperature, the interface does not touch the wall;

if we increase the temperature, then there is a first transition and the interface becomes
tied to the wall; if we increase further the temperature, then a second transition takes
place and the interface is again the straight line; finall{; at 7, the system becomes
disordered. In fact for slightly different values @fandb, there can even be one more
transition, as shown in the second picture of Fig. 3.

6. High-Temperature Representation

We give the main results about the high-temperature representation of the Ising model.
These results are not restricted to dimension 2, but for simplicity we consider only this
case; we also use a definition of contour adapted to this particular case. We stress that
the high-temperature representation is a non-perturbative approach; the basic objects
in the high-temperature representation are defined for all pogltaed we apply this
representation for alB < B.. The results are essential for the rest of our analysis,

in particular Lemmas 6.9 and 6.11 about random-line representations of the two-point
correlation function, and Lemmas 6.10 and 6.13, which characterize those random-lines,
which give the main contribution to the two-point correlation function.
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6.1. Ising model on a finite graphNe consider here the high-temperature representa-
tion of the Ising model with free boundary conditions, but we could tre@bundary
conditions. The correct point of view is to define the model on a g@aph (V, B);

to each vertex € V of the graph we associate a spin variablg) and to each bond

e = (t,t') € B a nonnegative coupling constakitte) = K (z,t’), which takes into
account the inverse temperature, so that in the applicakigas= g*J*(e). The Gibbs
measure ol is

exp{Ze:(l,t’)eB K(e)o(t)o (1)}

6.1
E(9) ©.1)
The constanE (G) is the partition function,
B@:= ) el Y Koo (6.2)
o(t)=x1,teV e=(t,t’")eB

- Z ]_[ coshk (e)(1+ o (t)o (') tanhK (e)).

o(t)=x1,teV e=(t,t')eB

Expectation values with respect to the probability measure (6.1) are denoted by
All graphs are subgraphs 6£2*, £*), whereZ2* is the lattice

7% = {x = (x1,x2) € R? : x +(1/2,1/2) € Z?}; (6.3)

&* the set of all bonds of.%*, i.e. the set of ale = (¢, ), {t,#'} a pair of nearest
neighbours points ¢£2*. We make the following convention. ¥ c Z?*, then(V) :=
{(t,t')y € &* : 1, € V }andthe graph generated Byis G (V) := (V, £(V)). Similarly,
if B C & thenV(B) := {r € Z* : 3¢, (t,¢') € B} and the graph generated Byis
g(B) := (V(B), B).

LetG = (V, B) be a graph. We need the following geometric notions.Ret- B.
Theindex of a siter in B is the number of bonds a#;, which are adjacent ta The
boundary of B; is the subset of/ §B := {¢t € V : index oft in By is odd}. A path
is an ordered sequence of sites and bond%y, 1, €1, ... , t,, Wherer; € V for all
i=0,...n,ande; = (tj,tj4y1) € B, j = 0,...,n — 1. By definition all bonds of a
path are different, but not necessarily all sites of the path. The initial point of the path
is 1o and the final point ig,. A path isclosedif its final point coincides with its initial
point; otherwise itimpen Unoriented paths are calledntours. GivenB1 C B we can
decomposeB; uniquely into a finite number of contours by the following procedure.

1. If §By = @, then choose a borwd= (¢, ') in By and setg :=t, eqg := e andr; = ¢'.
The path is uniquely continued using ridespecified in the picture below and by
requiring that it is maximal and that its final pointgs We have thus defined a closed
path; forgetting the orientation this defines uniquely a closed contour. Repeat this
construction until all bonds aB; belong to some contour.

2. If B1 # @, then choose first € §B1, and setty := ¢. Then choosey among
the adjacent bonds tg according to rulest’ specified in the picture below. Initial
points are marked by dots in the picture specifying the rdle3 he path is uniquely
continued using ruled andA’ and by requiring that it is maximal and its final point
t, € 8§ B1. We have thus defined an open path, sigcg ¢,; forgetting the orientation
this defines uniquely an open contour. Repeat this construction starting with a new
point of § B1 until all points ofé B1 belong to some open contours; if there are still
bonds ofB1 which do not belong to some contours, then do Construction 1 above.
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-~ 1L

rule A

i R s

rulesA’
the dots denote initial points of open paths

Letd = {01,...,6,} be a family of contours; we denote 1861, ... , 0,) the
set of all bonds of the contous, ... , 6,. We say thatd is compatible if either
EO1,...,0,) = @D or{b,...,6,} is the decomposition into contours of the set
EG,...,0,). If we want to stress the condition that each contour is a contour of
the graphy, then we say that is G-compatible. Notice that the notion of compatibility
introduced here is purely geometrical; it is different from the notion of compatibility
defined in Subsect. 2.1.

Lete be a bond and®(e) the set formed by and all bonds of*, which are adjacent
to e. The edge-boundaryof ¢ is the set of bonds of the contou(e) > e of the
decomposition oB(e) into contours. LeB; C £*; theedge-boundaryA(B1) of By is
A(B1) := Ueep, A(e). The next lemma is proven in [PV1]; its proof is not difficult.

Lemma 6.1. Letf be a family of compatible contours. Then a non-empty compatible
family ofn closed contoursy = {y1, ..., v, } is compatible withg, thatisy U @ is
compatible, if and only if no bond ¢f is abond ofA(9),Vi =1,... ,n.

- -

Two bondse, ¢’ and a contoué with their edge-boundaries(e), A(e’), A6)

We define the high-temperature representation of the model. The partition function
E(G) is given in (6.2). We expand the product in (6.2). Each term of the expansion
is labeled by a set of bonds, t'): we specify the bonds corresponding to the factors
tanhkK (¢). Thenwe sumover (¢),t € V; after summation only terms labeled by sets of
bonds with empty boundary give a non-zero contribution. Any term of the expansion of
(6.2), which gives a non-zero contribution, can be uniquely labeledd»¢ampatible
family y of closed contours. Letbe a bond¢ a contour an@d a compatible family of
contours; we set

w(e) :=tanhK (e) . w®) :=[Jwle) . w® :=[[w®). (6.4)

12 0eb
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If 6 =0, thenw(9) := 1. E(G) can be written ag V| is the cardinality ofV’)

2(G) =2"T]coshk(e) > w(y)=2"T]coshk(e)- Z(G). (6.5)
eeB y:dy=0 eeB
G—comp

with Z(G) thenormalized partition function,

2@ = ), wy. (6.6)
y:dy=0
G—comp

Notice thatZ(G1) = Z(G2) if the two graphsy; = (V;, B;),i = 1, 2, have the same set
of closed contours. More generally, given agscompatible familyd of contours, we
set

Z@) =y, w). (6.7)

y:8y=0

yud G—comp

We define aveight gg (0) for an arbitrary familyo,

ZGD) e ;
o(©) = w@ﬂ()_ if 8 is G-compatible 6.8)
0 otherwise

The usefulness of the weighdg;(8) comes from the following representation of the
correlation function{ [[,. 4 o (¢) )g. If the cardinality ofA is odd, then by symmetry
(IT,eao(®))g = 0. Suppose thatA| = 2m, m > 1. We expand the numerator of
([l,ea o(1))g as above. The presence of the variali€s), 1 € A, implies that the

only terms in the expansion of the numerator(§{,_, o (¢) )g, which give non-zero
contributions, are those labeled by compatible families of contours containing a sub-
family A = {A1,..., A, } of m open contours such thdk = A. Summing over all
closed contours for a given family @f open contourg., we get a contribution to the
numerator equal t@ (1) Z(G|A). We can therefore write the key-identitysandom-line
representationfor the even correlation function,

JTe®)g= 2 agw. (6.9)

€A A SA=A
From now on, if we specify the grapgh by its set of vertice§/ ¢ Z2*, then we write

(-)v andgy () instead of{ - ) (v andggy) (). Our first application of (6.9) is

Lemma 6.2. Let A, be the square box (2.2) antlj its dual box. Let) be boundary

conditions forA; and V() C Z?* the set of end-points of the phase-separation lines
of the configurations im\ ; with n boundary conditions. Then

doal, =[] o). (6.10)
A

teVr(m)
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Proof. Since A} is a square box, the set gfcompatible families of contours in
coincides with the set of compatible families of contad the graphi (A7 ) such that
80 = Vi (n). By duality (compare (2.10) and (6.9)),

ax, W) = qar ). (6.11)

|

Lemma 6.3. LetG = (V, B) be a graph and a G-compatible family of contours. Then
% is a decreasing function & (e) for anye € B. If G’ = (V/, B’) andV C V’,
B C B’, thengg(0) > qg/(0).

Proof. Let By := B\ A(#) andG(Bj) be the graph defined by this sef of bonds. Let
V (B1) be the set of vertices @f(B1). By Lemma 6.1 we have,

Z(G19) = Z(G(By)). (6.12)
Therefore
Z(G19) E(G(B1)
I — = I hK In2(JV| — |V(BD)]). 6.13
"o =" ae * neeE[@COS () +In2(|V|—|V(BD]). (6.13)
If e = (t,1') € By, then
0 Z(G19) / /
K@) In 70 (0o (t))gpy — (0o (t))g <0, (6.14)
by GKS-inequalities, sinc& (By) C V. If e = (t,1') € A(@), then
aKa(e) In ZZ((ggl%) = —(o()o(t'))g +tanhK (e) < 0, (6.15)
since by GKS-inequalities
(0o ())g = (o ()o(t')) .y =tanhK(e). O (6.16)

We make the following convention. H; and 6, are two compatible families of
contours, such that (1) N £(A2) = @, then the decomposition &f(61) U £(6y) into
contours does not coincide necessarily WithU 6,. In such a situation we interpret
qg(01U6y) as the weight of the family of contours of the decompositiofi@f) U £ (62)
if necessary. B B

Lemma 6.4. Let6; and 6, be two compatible families of contours of the graph=
(V, B), such thatg (1) N £(62) = #. LetG’ be the graph defined by the set of bonds

(B\A®2) U (802 NE@D). If AB) NE®) = 1, then

qg (01U 02) = qg/(01) g (62). (6.17)
If A(B2) NE(BL) # ¥, then

qg (61U 62) = qg/(61) 4G (62).- (6.18)
In both cases

(61U 62) = qg(61) g5 (62). (6.19)
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Proof. We have

Z(G|61 U 65) Z (G161 U 62) Z(G")
61 U02) = w(d 0)) —————— = — = [ . (6.20
qg(_lU_z) w(_l)w(_Z) 7©G) wivy 7(G) w(_Z) Z(G) ( )
A family of closed contoury of G contributes tdZ(G|61 U 6) if and only if
yn (A(@ U A@)) _ (Z” A@)) u (Z“ A(G_g)) = 0. (6.21)

This is equivalent to say that is a family of closed contours of the gragl and
y N A(%1) = . Therefore (see Lemma 6.1)

Z(G161U 62) = Z(G'100). (6.22)
If A(B2) N E(B1) = 0, theng' is the graph defined by the set of borigisA (62); hence
Z(G") = Z(G162). (6.23)

If A(B2) N EB) # @, then
Z(G") = Z(Gl62), (6.24)

since the graply’ contains some bonds af(62). The last affirmation follows from the
above results and Lemma 6.31

Let A1 andi, be two open contours such th#t; = {x, y} andérz = {u, v}. We
say thati1 and Ao aredisjoint if either they are compatible &(11) N E(X2) = @
and the decomposition & (11) U £(A2) into contours is a single contour. 1, and
A2 are disjoint, then we write; LI Ao the family { A1, A2} or the single contour of the
decomposition into contours 6f(11) U £(12). Notice that when.1 L1 1, = A is a single
contour, therdx, y} N {u, v} # @.

Lemma 6.5. Let A, and A be two open contours such thét; = {x, y} andéry =
{u, v}. Then

> G < Y g Y. qgla).  (6.25)
A a=A1lro e A2:
Sa1={x,y}, Sro={u,v} SA1={x,y} Sho={u,v}

Proof. The proofis easy if1 112 = { A1, A2 }. Indeed, from Lemma 6.4, siné&x1) N
A(r2) =9,

qg(A) = qg' (A1) gg(A2). (6.26)
Summing overiy, keepingi, fixed, we get from the basic formula (6.9) and GKS
inequalities

Y 46 < (6(x)o())g 46 (2) (6.27)
k:;i]z_l)uz

IA

(o(x)a(y))g qg(r2)
= Y 4g0)aqg0h).

A1t
Sr1={x,y}
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We can now sum ovex,. Wheniq LI A is a single contouk, then the proof is more
delicate, since the second case in Lemma 6.4 occurs. However, the proof is similar. For
details we refer to the proof of Lemma 5.4 in [PV1fz

Lemma6.6. LetG = (V, B) and B1 C B. LetG’ = (Vi1, B1) be the graph generated
by B;. Letx, y € V4. Then

Yo g Y qg) =(cx)o())g- (6.28)
Adr={x,y} A dr={x,y}
E(M\CB1

Proof. The result follows directly from Lemma 6.30

The next lemma gives a concentration result for the random-line representation (6.9).
LetG = (V, B) andV; C V. We define

dextV1:={t € V\V1:3t e V1, (t,t') € B}. (6.29)
Similarly, if B1 C B, then we set
dextB1 := dextV (B1). (6.30)

We say thatB; is connectedif for any pair of sitesx, y € V(B1), there is a path from
x to y with all its bonds inBj.

Lemma6.7. LetG = (V, B), B1 C B be a connected subset andy two sites of the
bonds ofB;. Suppose that all bonds incidenttandy belong toB1. Then

0<(o@o(Mg— Y. qgh) (6.31)
Ada={x,y}
E(M)CB1

< > Y 4

7€0extB1 A:dA1={x,y}
A3z

< Y (6o @)g(0(@Da())g-

z€dextB1

Proof. Equations (6.9) gives
(coMg= Y, aG®+ Y. qo0). (6.32)

AdA={x,y} Ada={x,y}
Ech EMWZB1

We estimate the second sum. For angontributing to this sum, let(1) be the first
point of dextB1 Of the path fromx to y defined by the contour. Any such a path can
be decomposed intb; such thatsA; = {x, z} andx, such thatsr, = {z, y} so that
A = A1 LI A2. The result then follows from Lemma 6.5 and (6.9).

There is a useful formula for the weight (6), which is a consequence of the fol-
lowing elementary remarks. L& denote the functiom € V — K(e) € R. Given a
compatible family of contours, we introduce a new function 0 < s < 1,

_ | K@ ifegA®),

T sK(e) ifee A®). (6.33)

N
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ThenZ(G19)(K) = Z(G)(Ky)|s=0. On the other hand we have

1a
InE(G)(K) — In E(G)(Ko) /0 75 In 2(G)(K;) ds (6.34)

1
Y. K@ [O (o (D)o (') )g(Ky) ds.

e=(t,t")eA(0)

Therefore, for a compatible family of contouts

1

6@ =w® [] coshK(e)exp(— > K(e)/ (G(I)U(t’))g(Ks)dS>-
ecA(9) e=(1,")eA(®) 0

(6.35)

Formula (6.35) allows to compatg; (9)(K) for different functionsk or different
graphsg’. For example we get immediately the lower bound

ag® =w® [] %(1+e‘2’“€>). (6.36)
ecA()

Lemma 6.8. LetG = (V, B), V1 C V and@’ be the graph generated by\V;. Letd
be a compatible family of contours Gfsuch that no site af belongs t@ey: V1. We set
for all r € dextVa,

Kty= Y K(t.t'). (6.37)
t'eVy:
(t,t')eB
Then
| Ingg (@) —Ingg (@) | < (6.38)

> K@ Y K@ ((ewe)g + (@) )g).

e=(t,1')€A(®) 1" €dextV1

Proof. Formula (6.35) gives

(0 1
n9e® _ 3 K(e)/o (too@))g(K) = (oo @))g (K,)) ds.

qg(Q) e=(t,t')eAH)
(6.39)
We put a magnetic field’ on eachr € V4 and leth’ — co. We have
(0o (1))g(Ky) < (o (Do (1)) (Ky), (6.40)

where(o (t)o (") )g, (Ky) is the expectation with respect to a Gibbs measurg’ avith
coupling constants given I, on the bonds o’ and magnetic fiel& (¢) for ¢ € dext V.
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Since—o (t)o (') + o (t) + o (¢') is an increasing function we get by FKG inequalities

(oMo () g (Ks) = (o ()o () )g (Ks)

T o , (6.41)
=(0())g(Ky) = (a())g(Ks) + (o)) g (Ks) — (o (t))g (Ky).
We define an interpolating magnetic field fo€ dexi V1,
K,(t):=aK(@#) , 0<a<l (6.42)

Let( - )Jgr/(Ks; a) be the expectation value with respect to this new measure and set

(0(); 0(1) G (Ky; a) := (o (t)o (1)) &, (Ks; @)

6.43
oK (oK. O

We have(o (1) )g/(Ky) = (0(t)>§/(Ks;0) and(U(I))*g?(Ks) = <G(t))§/(Ks;1);
therefore

1
(0))§(K) = (0))g(K) = Y K(r”)/0<o(r>; o (")) Ky a) da.
1" €0extV1

(6.44)
GHS inequalities imply thato (1); o (t”) )Jgr,(KS; a) is decreasing ia; thus
(0(); o(t")) G (Kssa) < (a(1); 0(t"))§5(Ks; 0) = (a()a(t") )gr(Ky),  (6.45)

since by symmetry o () )g,(l(s) = 0. The lemma follows from (6.39), (6.41), (6.44)
and (6.45). O

6.2. Ising model orZ2* aboveT,. We consider the model ofZ?*, £*) and choose
as coupling constant& (e) := B* Ve, with 8* < B.. We recall that the decay-rate
T(y —x) = t(y — x; B*) is strictly positive for suctB* and that for anyA c Z?* (see
Proposition 2.4)

(o(@x)o(y))a(B") <expl—t(y —x; B9} (6.46)

GivenanyA C Z2* and afamily of compatible contousn G(A), we define weights
ga(9) (see Lemma 6.3),

aA® = Jim g1, ©. (6.47)

whereA,, is an increasing sequence of finite subgetof A, such that eventually every
site of A is contained in somé,,. WhenA = Z* we write ¢(9) instead ofgy2.(6).
Lemmas 6.3 to 6.8 are still valid for the weights(0). On the other hand the random-line
representation does not extend automatically in the infinite case.
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Lemma 6.9. LetK (e) := B* Ve and8* < B.. Then the two-point correlation function
of the Ising model has a random-line representation,

(co@))= > q. (6.48)
A:SA=(t,1')
A formula similar to (6.9) is true for even correlation functions.

Proof. The hypothesig* < 8. is equivalent to

> (0@a(t)) < 0. (6.49)

teZ.2*

Let A1 C A betwo finite subsets and suppose that ¢ A1. Let B1 be the set of bonds
between sites oh 1; suppose furthermore th& is connected. Then formula (6.9) and
Lemma 6.7 give

0<(6o))a,— Y. qa() (6.50)

AdA={t,t'}
E(\)CB1

< Y (oa®)) (oo )).

s EdextB1

Givene > 0, we can findA1 so that the last sum in (6.50) is smaller thar_etting
A2 1 7% we get

0<(oco))— > qi) <e (6.51)
Ada={t,t'}
E(\)CB1
The result now follows by letting\; 1 Z2*. O

Lemma 6.10. LetK (e) := B* Ve and B* < .. Set

S, yip)i={teZ® :x —t]+ ly—tll < llx — yl + p}. (6.52)
with || - | the Euclidean norm. Then
JextS(x, y; p) .
> aw = '“T”'nx — Y% (0 (x)o (). (6.53)
AdA={x,y}

EMZES(x,y;p))
K is the constant of Proposition 2.4.

Proof. By Lemma 6.7,

Yoo g Y (e@e®) (aa () (6.54)
Ai8r={x,y} 1€dextS(x,y:p)
EMZES (x,y;0))
B (e(0)a(®) (0o ()
= Z 00 (o(x)o(y)).

tE€0extS (x,y;0)
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We apply the sharp triangle inequality to the numerator of the last expression,

(c(x)a () (oo (y)) < e T@NTTO DIy grTla=y) (6.55)
< e—r(x—y)—/(p.

Finally we apply Proposition 2.4 to the denominator,

Y,
e T < % (0o (). (6.56)

O

Lemma 6.10 characterizes those random-lines, which give the main contribution to
the two-point correlation function. |6 > CIn ||x — y||, with C large enough, then the
coefficient in front of( o (x)o (y) ) in (6.53) tends to zero whefx — y|| diverges. The
result is sharp.

6.3. Ising model ofi.* aboveT,. Let 8* < 8. andh* > 0. We consider the model on
subsetsA} C L* and choose as coupling constants

h*B* VYe=(t,t"),withty=1,=1/2,

K(e) := .
© B* otherwise

(6.57)

We set
Y1 i={teA] p=1/2} , T¥:={tel*:p=1/2}. (6.58)

The weightgy «(9) is defined by (6.47). Lemma 6.11 establishes the random-line
representation for the two-point function, its proof is similar to that of Lemma 6.9.

Lemma6.11. Let 8* < B., h* > 0 and the coupling constants be given by (6.57).
Then the two-point correlation function of the Ising modellghhas a random-line
representation,

<U(I)U (t/) )]L* = Z q1.* ()\,) (659)
ASA={t,1"}
A formula similar to (6.59) is true for even correlation functions.

Lemma 6.12. Letp* < B.,h* > 0, A} C LL* andd be a family of compatible contours.
Letg: (€) be the weight for the model defined A with coupling constants (6.57).

Letg(#) be the weight for the model 6&* with coupling constantx (e) = *.

1. If k* < 1, theng,x () = q(6).
2. Letd(0) :=min{|rz —3/2| : 1 € A(®)} = 1. If i* = 1, then

(0
n 2D o w2 exp—0@®)). (6.60)
q(®)
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Proof. The first case follows directly from Lemma 6.3. The second case follows from
Lemma 6.8. By Lemma 6.85+\5: (0) = q(&). Since

qa; (©)

——Fq (@), 6.61
qas\x3 (Q)q(_) (6.1)

qa; ©) =

we must comparg,: (6) a”d‘IAZ\EZ (6). We apply Lemma 6.8 witly the graph gen-
erated byA} andg’ the graph generated by; \ X7 . Notice that

(oo (t))g = (o ®a()); (6.62)
therefore, ift € A(6),
Y. (oe))g < Y (o®o)) (6.63)
t'eN :t5=3/2 1':15=3/2
< > ) 9w
th1=8/2 A
Sa=(t,t"}
<

Do D ab,

t- té=3/2 s:52=3/2 A:z(X)=s
Sh={t,t'}

with z()) the first sitez of the path defined by with initial point ¢, such that, = 3/2.
To estimate the last sums we use Lemma 6.5. We have

3 (o))< Y. > expl—t(t—s5) —t(s — 1)), (6.64)

t':th=3/2 1':1y=3/2 5:52=3/2

We sum over’ and get a finite contribution independentspthen the sum over gives
a contribution exp—0 (d(8))}. Since|A(9)| < O(L?) we get (6.60). O

The next lemma characterizes those random-lines, which give the main contribution
to the boundary two-point correlation function. We consider the ¢dse< 8. and
h* > h,(B)*, when the random-lines stick t6*. In the other cases there is a result
similar to that of Lemma 6.10.

Lemma 6.13. Let 8* < B, h* > hy(B)* and the coupling constants given by (6.57).
Letx,y € Z*,x1 < yrandp; € N,i = 1, 2; we set

B(x,y;p1,p2) :={tel*:x1—p1<t1 <y1+p1, 1/2<12<1/2+ pp}. (6.65)
Then

o(x)o(y) )+ «
Z qr+(A) < <K—//y>]]“ (2,02 exp{—2p17bd} (6.66)
rda={x,y}
ENZEDB)

+ O(p2lx1 — y1l) eXD{—sz})'

K" is the constant of Proposition 2.45q = thq(B, #) with 8 and 4 the dual values of
B* andh*; k the constant in the sharp triangle inequality aGd= 7((1, 0)) — Tpg > O.
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Proof. We decompos@exi3 into two parts:
Vi={tedetB:t1=x1—p1—1orty=y1+p1+1}, Vo:= 0exeB\V1. (6.67)

We consideh as a unit-speed parametrized curve, [0, |1|] — A(s), with initial point
A(0) = x; we suppose that* is the first time such that € dexi3; We sett = A(s™). We
have

Yooam=s > > ™+ Y. > qu(). (6.68)

ASA={x,y} t€dextB3: A:dA={x,y} tedextlB: A:dr={x,y}
EMNgEB) teVy ASt teVs ASt

We treat these two sums separately. By Lemma 6.7, symmetry and GKS inequalities,

YooY =2 Y (oo (oo (y))Le (6.69)
tedextBB: A:dA={x,y} t€0extBB
teVy At t1=x1—p1—1
=2 ) {o®o®)Ls (6o ()L
t€dextB
f1=x1—p1—-1
<2 Y (o@o())Lr
teBextB
n=x1—p1—1
202 .
= 2F expl—2p1ba} (0 ()0 (1) ).
wherex is the image ok under a reflection of axig: : u1 = x1 — p1 — 1}.

Lettr € Vo, witht = A(s™). Let s1 be the last time before€* such thati(s;) € X*
ands» the first time aftes™® such thati(sp) € X*. We setu := A(s1) andv := A(s2);
we havexi — p1 < u1 < y1 + p1. By definition no bond ok between times; ands*
belong tof (£*). Therefore Lemma 6.6 and GKS inequalities give

Yoo qu®) < (oo ). (6.70)
N8N ={u,t}
EMWHNET* =0

The hypothesig™ > &} implies thatC := 7((1, 0)) — Thg > 0. Using Lemma 6.5,
(6.70) and the sharp triangle inequality we get

> que0) £ (0@ (oo ®)) (oo ®) ) (o@o ()L (6.71)

LAt u,v
or={x,y}

< Y expl—toa(lus — x| + [y1 — va)}
-(;,'Xp[—f(t —u)—1t(v—1)}
< Y expi—tbd(lur — x| + [y1 — vi])} exp{—F (u — v)}

-exp{—k (llu — 7]l + llr — vl — llu —vID}.
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We havet (u — v) = Clu1 — v1| + Tpglur — v1l|. Therefore

<‘7ny L

= (6.72)

exp( = allus — x| + 1 = vil) = 2@ —v) ) =

~exp( — Tpd(lug — x1| + [y1 — va| + w1 — va] — |x1 — y1|) — Cluy — U1|)-

We sum ovem, v andt, which are sums ovei, v; andr. We set fors € R and
la, b] C R,

d(s,[a,b]) :=min{|t —s|: t € [a, D] }. (6.73)
First notice that

lug — xa| + [y1 — va| + |ug — va| — [x1 — ya| = 2d(va, [x1, y1])  if v1 & [x1, y1l,
(6.74)

and

lug — x1| + |yr — vl + lug — vil — |x1 — y1| > 2d(uq, [x1, y1]) if ua & [x1, y1l.

(6.75)
Leta :=«k/(C + «); if [u1 — v1] < app, then
exp{—k (lu — tll + [It — vll — [lu — vID} < exp{—« (2 — a)p2}. (6.76)
If 11 & [u1, v1] Or 11 & [v1, u1], then
lu —tll + 11t = vl = llu — vl = p2 + min{lug — t1], [v1 — 11]}. (6.77)

Let vy ¢ [x1, y1]. We consider two cases. First suppose that- v1| > ap2. We sum
overt; using (6.77), getting at most a contribution|u1 — v1]); then we sum ovei1,
such thatu1 — v1| > ap2, using the factor exp-Clu1 — v1|}; finally we sum over,
using (6.74). Thus we get a contribution

O(exp{—K(Z _ Ol)pz}). (6.78)

Suppose thati1 — v1| < apz. We sum overy, using now (6.77) and (6.76), getting at
most a contribution

O (p2lug — v1)) exp{—« (2 — o) p2}; (6.79)

then we sum oveti1 using the factor exp-C|uy — v1]}; finally we sum ovemws using
(6.74), getting a contribution (6.78). The case ¢ [x1, y1] is similar. It remains to
consider the case whexg < u1 < v1 < y1. We proceed in the same manner, but this
time the last sum gives a factpr; — y1| since in this case

lug — xa| + [y1 — va| + [ua — v1| — |x1 — y1| = 0. (6.80)
Therefore we get a contribution

0(,02|x1 — yll) exp{—kp2}. (6.81)
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7. On the Correlation Length Above T,

Let 8* < B. and O< h* < oo. The model is defined in the bax; with free boundary

conditions and coupling constants (6.57). We study the influence of the boundary effect

on the correlation length due to the coupling constantg) = h*g*, e € £(X]).

We consider two definitions, which we call short correlation length and long correlation

length, following a similar terminology introduced in [SML] about the long range-order.
Theshort correlation length is the standard correlation length. Let’ € Z2*; we

define
1 . / *

In (7.1) we compute the expectation value with respect to the infinite volume Gibbs
state orZ?*, which is unique. Then we take the linkit—> co. We haveig(, '; %) =

&sh(s, s'; B*) if s — s’ is a multiple ofr — ¢'. In the case of the long correlation length we
perform the thermodynamical limit and the linkit> oo simultaneously. Let, t' € A%;
thelong correlation length is defined by

1 . 1 / * *
PPN T = — "g%‘) prr In{o (kt)o (kt') ) px, (B, h*). (7.2)

&ig(t,t'; B*, h*) depends on the position of the sitesnd:’ in the boxA .
The next lemma contains one of the main estimate of the paper, which we shall use
later on, when discussing phase-separation lines.

Lemma7.1. Let8* < 8. and0 < h* < oo.

(1) There exist constantsy, c2, ¢/, ¢’ with the following property. Let, " € A7j;
suppose that there exigt p’ € A} such that
L llp—tl <eiinLand|p 1]l <c2lnL,
2. S(p,pic’InLy c AjN{tel*: 1> c"InL} (see (6.53)).
Then there exist and Lg such thatvL > Lg andV ¢, ¢’ as above,

1 _ . g%
(00 ())a; (B*h) = e TP = PEF, (7.3)
(2) Leth* > hy,(B)*. There exists, c4 with the following property. Let: = (m1, 1/2)
€ A} andn = (n1, 1/2) € A} ; suppose that (see (6.65))
B(m,n;c3InL,calnL) C AJ. (7.4)
Then there exist and Lg such thatvL > Lo andV m, n as above,
(o (m)a(n) ) a3 (87, h*) = Ce™ (BT, A ny —mal, (7.5)
Proof. By GKS inequalities
(oo (1) )ar = (oo (p))ax (o(p)o(p) A% (o(pho (1) INE (7.6)
From (6.36) we have

(oo (p))ar = exp{—0(In L)} (7.7)
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and
(a(pho(t))az = exp(—O(n L)}. (7.8)

LetS; := S(p, p’;c’InL); by Lemmas 6.12, 6.10, Proposition 2.4 and takihgnd
¢” large enough, there exisig such thatvL > Lo,

v

> aa (7.9)
MEMNCE(SL)
Sr=(p,p'}

1
52 4w

MEMCESL)
Sa={p,p’}

1 1
S o2 a-5 ). a®

rér={p,p'} MEMZESL)
Sr={p.p’}

(o (D)o (P))as

v

1 /
o(p)o(p))

Z<
> L/]_/Ze_r(p - P/)_
Aip—rl

v

This proves(1), since|lp — p'll < O(L).

We estimate o (m)o (n) )A’i by Lemma 6.3, 6.13 and Proposition 2.4. 1%t :=
B(@m, n; c3In L, caln L); by takingcz andc4 large enough, there exisisy such that
VL > Lo,

(omom)ias = Y. qaz () (7.10)

rEMCEBL)
Sa:={m,n}

> am

rEMCEBY)
Sh:={m,n}

1

=5 > qwo—% Do gk

r:8r={m,n} MEMNZEBL)
Sr={m,n}

v

v

1
2{omo ()L

" A
K= —Fodlng — ma|

v

This proveq?2). O

Lets, " € Aj. Suppose that* > h,(B)*. We apply Lemma 7.1 to show that we
may have (depending on the choicer aind:’)

Eig(t. 1's B*, h¥) > Esn(t, 1'; B¥). (7.11)
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We assume thah, < #; and choosen = (m1,1/2) andn = (n1,1/2), m1 < na,
m,n € A} . By GKS inequalities

(o (kD)o (kt') ) nz, = (o (kD)o (km))az, (o (km)o (kn) )z, (0 (ko (kt') ) az,
(7.12)

If k is large enough, then we can use Lemma 7.1 to estimate (7.12). Thereesisth
that

(o (o () )z, = ﬁe—k(m —m) +t(n — 1) g—kfodlny — ma| (7.13)

Therefore

1 - Tt —m)+1(n—1t) + Todlny — m1|
&gt t'; B*, h*) — It — ||

We can optimize this upper bound by taking the minimum awveandx. On the other
hand

(7.14)

1 Tt —t)
Esn(t, 1 %) lt =)

The results of Sect. 4 show that there exist, whenz* > h,,(8)*, such that for suitable
m andn,

(7.15)

Tt —m)+1(n —1t) + Tpalny —ma| < t(t — 1), (7.16)
and so

Eig(r,1'; B, h*) > Esn(t, 1/ BY). (7.17)

8. From Microscopic to Macroscopic Theory

We show that the phase-separation lingconcentrated in a neighborhood of the solution

of the variational problem of Sect. 4, scaled bywith probability tending to 1 when

L — oo. The thickness of the neighborhood is at mostL In L)1/2). Consequently,

if we do a coarse-grained description of the configurations, using cells of linear size
L% 1/2 < a < 1, then we see the emergence of an interface, which coincides with the
solution of the variational problem. This justifies the macroscopic theory, starting from
the microscopic theory. Itis possible to consider even a more general situation. Suppose
that we prescribe a cun@c Q from A to B. We can estimate the probability that the
phase-separation line is in a neighborhood of this curve scaldd bye thickness of

the neighborhood being at most((L In L)¥/?). Using the method developed fully in
[PV1], this probability is roughly equal to

exp( — LOWO) — W)), 8.1)

whereW is the minimum of the variational problem. We shall not give the details of
that estimate here.
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8.1. Main result. The weight of a separation lidein A%, going fromu’ to v’ is given
by ¢+ (1). These weights define a measure on the set of the phase-separation lines, such
that the total mass is

Yo aa0) = (oo (8.2)
EMCEN}):
Sa={ul vt}

Consequently we can introduce the following probability measure:

()
PP[A] = (U(;)A;w. 8.3)
Let D andW be the curves irQ introduced in Sect. 4. We set
IFi={xeZ}: |x—wF|<MLlogL)"?} , i=12, (8.4)
with wr = (LP;, 1/2) and[P1, P,] = W N W. We set
oL =MInL. (8.5)

We define two sets of phase-separation lines. Th&saontains allk, £(A) C £(A}),
such that

ar. 8x = {ul, vL);
as. E() isinside€(Swt, vl pp)).

The seffyy contains alk, £(A) C £(A]), considered as parameterized curves A(s),
such that

b1. 81 = {ur, v}, A(0) := ut;
by. 3s1 such that.(s1) € I and for alls < s1, A(s) N X} = ¢;
b3. A1:={A(s) : s < s1}isinsideS(ul, A(s1); pr);
bs. 35z such that(s2) € IF and for allsy < s, A(s) N T} = ¢;
bs. A3:={A(s) : s2 < s}isinsideS(A(s2), vE: pr):
bg. A2 :={A(s): s1 < s < so}isinside
xeAL:x@) <pr, A1) —pr < x(1) <A(s2)(D + oL}

Theorem8.1.Let8 > B.,h > 0,0 <a < 1,0 < b < 1 There existM > 0 and
Lo = Lo(h, B, M) such that, for allL > Lo, the following statements are true.

1. Suppose that the solution of the variational problenpiris the curveD. Then

P Tpl =1 — L~ 9™, (8.6)

2. Suppose that the solution of the variational problengiiis the curveV. Then

P Tyl = 1 — L=00D, (8.7)
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3. Suppose that the solution of the variational problen@iis either the curvéd or the
curveW. Then

PPITp U Tl = 1— L9, (8.8)

Comment.The results of Theorem 8.1 are optimal in the following sense: At a finer
scale we do not expect the phase-separation line to converge to some non-random set,
but rather to some random process. Itis known that fluctuations of a phase-separation line
of lengthO (L), which is not in contact with the wall, a@(L'/?) (see [Hi2] and [DH]).

On the other hand, if the phase-separation line is attracted by the wall on a @¢igth

then we expect that its excursions away from the wall have a size typically bounded by
O(logL).

Proof. 1. Suppose that the minimum of the variational problem is givePOWD) =
W. Let W* be the minimum of the functional over all simple curves@nwith end-
pointsA and B, and which touch the walVy. By hypothesis there exists> 0 with
WH =W + 6.

We setSy := Suk, vE; pp); for L large enoughsy N XF = ¢, sincea > 0 and
b > 0. We apply Lemma 7.1. We have

ab _ 1 i
PEUA & Tol) = s o — B A;D qn; (V) (8.9)

< LS exp(W L} Z qi ).
reTp

We estimate the numeratorbe[{A ¢ Tp}l. There are two cases, eithen X} # ¥ or
AN X7 = 0. The first case is easy to estimate. Considas a unit-speed parametrized

curve fromu® to v© and suppose that (1), resp.z2(1), is the first, resp. last, point of
AN X7 #@. Then by Lemmas 6.5 and 6.6,

. Ly - oL
Z qar () < Z e T(@ —u) g Thd(z2 —20)g=T(V" —22)  (g.10)
AMNZT #D 71,22€ %]

We can bound above this sum ly(L?) exp{—LW*}. In the second case we have
AN X7 =#. Using Lemmas 6.7, 6.6, GKS inequalities and Lemma 6.10,

Yooaam=s Y Y ge® (8.11)

rTD 7€0extS1 z€%, ANTF =
WP
m):LJl SA:(uL,vL)

Z (oh)o(z) ) AE\z3 (o(z)0 (") VA

7€0extS1

Y (oMo @) (o(@o@h))

2€0extS1
ow¥? My 5 who )
oL My ey W L.

IA

IA

IA

IA

This proves the first statement.
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2. Suppose that the minimum of the variational problem is givemhyA\WW) = W.
Then there exist$ > 0 such that?\(D) = W +6. We estimatepgb[{k ¢ Twllinseveral
steps. Notice that conditiaby is always satisfied.

1. The probability that condition; is satisfied, but nats, can be estimated as in (8.11)
using Lemma 6.6; it is smaller thady(L+1) /LAY,

2. The probability that conditioh is satisfied, but ndis, is estimated in the same way;
it is smaller thano (L¢+1) /LAM

3. The probability that conditionsd, andb4 are satisfied, but ndts, can be estimated
by Lemma 6.13; it is smaller thah= ™)

4. We estimate the probability that conditidn is not satisfied. The case with con-
dition bs is similar. If » does not intersecE}, then this probability is smaller than
O(LC) exp{—3L}, sinceWD) = W + 8. Suppose that there exist and s», with
As)) € ZF, A NEF =@ foralls < spandi(s) N XF = ¢ for all s < 5. Let
pF = A(si),i = 1, 2. Under these conditiona; is not satisfied if and only ip & 11
LetC(pL, pk) be the polygonal curve fromt to pk, then frompf to pL and finally
from p% to v%. Then the probability of this event is bounded above by

ST exp-We(pt, ph < (8.12)
riesi: pyesy
pfélf

O (L% maxiexp(—WC(pL, pin} | pt € Si\IE, p e =5).

Suppose that denotes the polygonal line giving the maximum; scaled by We get a
polygonal line inQ, denoted by’*, from A to some pointP;, then fromP;* to P; and
finally from P; to B. Let6* be the angle between the straight line franto P with

the wall. We have

WC) = LWC™) > L(g(™, a) + g0y, b)). (8.13)

By hypothesis
o* — OY > —1 o0 MIOgL 1/2 8.14

Therefore (use a Taylor expansiongfrounddy and the monotonicity 0f(9, x) on
[0, By ], respectivel\jfy, 7 /2]) there exists a positive constansuch that

aMlogL

- (8.15)

WC*) > g(6y,a) + gy, b) +
aMlogL
=W+ —
+ L
We conclude that the probability, that conditibnis not satisfied, is bounded above by
O(L+2)/L*M | If M is large enough, the second statement of the theorem is true.
3. The proof of the third statement of the theorem is similar.
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9. Appendix: N Phase-Separation Lines

In this appendix we indicate how we can treat problems withhase-separation lines.

We consider the simplest case, in order toillustrate the basic ideas. We reduce the question

of finding typical configurations to a similar questions for a single phase separation line.
We assume in this section that all coupling constants are ekual,= 8, 8 > B..
We fix 2N pointsA;,i = 1, ..., 2N, onthe boundary of). Then we scale the bag

by L € Nand get & pointsAF,i = 1,...,2N. We assume that?,i = 1,..., 2N,

are at the middle of bonds of the latti#Z&. Consequently, these points give naturally

a partition ofd Ay, into 2N subsets (see Fig. 4), which we denote[laﬁ", AiL+1], i =

1,....2N,with A%, ., = A. Lety be the boundary conditions fdr;,

+1 ifx e [AF, AL ]andi is odd
= Lo 9.1
n(x) {—1 if x € [A], Af, ;] andi is even (©.1)
This boundary condition defin@é phase-separation lines(w) i = 1,..., N, in any
configurationw compatible withn. The setV () := {a,.L :i=1...,2N} of end-

points of these phase-separation lines is uniquely determined by the p@irﬂh’venw
compatible withy, the N phase-separation lings(w) give a partition ofV, () into two-
point subsetsa ; (w) = {afl, a/g}. The set of all possible partitions &f () compatible
with N phase-separation lines is denoted®yV; (n)) and an element aP(V; (1)) by

QL = (afl, afz; ;ak,l, a/f,z).
|
|
=
. ]
Q o———l
| [
&l L
.
] |
| ‘ | | )

Fig. 4. The boxA, the pointsAl.L (white dot$ and the pointaiL (black dot3. A family of phase-separation
lines is also drawn
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Lemma9.1. Let » be a b.c. withN phase-separation lines fon;. Let bt =
(b1, bTy; ... s by, by,) € P(VL(m). Then

[To@ho k)i,
<{A:8A = (L bk, j=1,...,N}>n - is1

J1’ 72 - L L
AL max l_[(a(ajl)a(ajz) Va,

aleP(VLOD) g

(9.2)

Proof. LetqA (1) be the weight of the compatible familyof N phase-separation lines.
We estimate the denominator of the left-hand side of (9.2). Let

at = (all, afz; - ;aNl, aNz) € P(VL(m)).

By Lemma 6.2 and GKS inequalities
g, =[] ez, 93)
X

1eVr(n)

> ]‘[ a(a )o(a A

j=1

We estimate the numerator of the left-hand side of (9.2). By Lemma 6.5,

Yoo ax, < [[te@howh)) (94)
o (ZL by izt

J1 2

O

WhenJ (e) = 8 itis easy to analyze the right-hand side of (9.2). Let

at = (i, aty; ... ;ay,. ay,) € P(VL();
we set
1 N
V\(QL) = 7 X;T(a]g — ale), (9.5)
/:
and
W, := min{Wa") : a" € P(VL())}. (9.6)

Then by Proposition 2.4 and Lemma 7.1,

<[A:5x AN N})"A < Lo exp{—L(WbL) — W)}. (9.7)

J1’

In the generic case the minimum in (9.6) is attained at a sibfle P(V, (n)); there
existse > 0 such that

Wa") =W +e . a" #b" (9.8)
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We can use Lemma 6.5 to bound above the denominator of the left-hand side of (9.2),

Yai,w= > [ltetg oty )i, (9.9)
A

PEPVL() j=1

Natice that this is slightly better than what we would have obtained using the Gaussian
inequality. ForL large enough only a single term dominates in (9.9), namely the term
given by the partitiorp such that

bt =t ,at ;... a4l ). (9.10)

- apll’ ap12’ : ’ le’ PNy
Therefore in the generic case, for fix&dand largeL,

[[te@ho®iny, <D a), @ <@+ o€ ) [[(ebio®h))i,. (9.11)
Jj=1 A j=1

Let A be a family of compatible phase-separation lines, suchahat= {bjL.l, bJL.Z},
j=1,...,N.Formula(6.11) and Lemma 6.4 imply that

qaxn, @ =qa; @ = [Jaar . (9.12)
jz1

Notice that the factoro(bfl)a(bf.z) Y4, in(9.11) is equal to

(c@io®i))h, = D . (9.13)

A
sn={bL bL )
1772

We summarize the results obtained so far.

1. Inthe generic situation described above the typical phase-separation tioegat-
ible with the b.c. are those such that.; = (b}, b%}, j =1,..., N, whereb" =
(bfl, bfz; ;bﬁl, bﬁz) is the element ofP(Vz (7)), which minimizesWa?’) :=
1 Z;-V:l r(a}2 — afl).

2. The probability of the occurrence afcompatible with the b.cy, assuming that
Shj = {bjL.l,bfz}, j=1,...,N,is bounded below by

(A j
I qaa; () > 1 AGT (9.14)
20 an® i L a®)
I At
s ) s=lb, )

We suppose that we are in the generic case. Then the®¥ aegments with total
length minimal, which do not intersect. Therefore the distance between two segments is
at leastsL, § > 0. We also suppose that for each pair of po'{rb%, bjLé} we can apply
Case 1 of Lemma 7.1. It is large enough, then the ellips8s := S(b%., b%; ¢’ In L),
j=1,...,N,are disjoint two by two. Let '

{h:8h;={b%.bh) A CSj j=1,...,N} (9.15)

J1’ %2
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We can easily estimate the probability of the event (9.15) using (9.14). Indeed, we can
reduce the estimate to an estimate for an event concerning a single interface,

{r:on={bh.b5}. 2 CS;). (9.16)

J1’
We have, using Lemma 6.7, GKS inequalities and Lemma 6.10,

Yooanm=s > Y ga®

S(A)&ZX(SJ-): ZeantSj i }Liz: .
m:(b]L.l,b]L.z] sa=(bf b}
L L
< Y (0bho@)a; (0@ (bh))a;
2€0extS;
L L
< > (0h)e@) (6@ b))
ZeaextSj

IA

OLY> %) (o (b )o (bh) ),
On the other hand, by Lemma 7.1 and Proposition 2.4,

> aar ) = (ah)oBbh))as (9.17)
E(A)CE(Az):

sa={bl bL}

_ (bl _pL
2 > L_Ce t(h./'l biz)

= LYoo ().

Choosingc’ so large that B2 — k¢’ + C + 1/2 = o < 0, the probability of the event
(9.16) is larger than + O(L™*). Therefore, the probability of the event (9.15) is also
larger than 1= O(L™%).

AcknowledgementsWe thank A. Patrick for communicating to us the exact expressions of the mass gaps.
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