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Abstract: For the elliptic Gaudin model (a degenerate case of the XYZ integrable spin
chain) a separation of variables is constructed in the classical case. The corresponding
separated coordinates are obtained as the poles of a suitably normalized Baker-Akhiezer
function. The classical results are generalized to the quantum case where the kernel of
the separating integral operator is constructed. The simplest one-degree-of-freedom case
is studied in detail.

1. Introduction

The quantum elliptic (or XYZ) Gaudin model was introduced in [1], see also [2], as a
limiting case of the integrable XYZ spin chain [3]. The commuting Hamiltonidp®f

the model are expressed as quadratic combination® apin operators. Determining
the spectrum of,, turned out to be a difficult problem like the original XYZ spin chain.
Let us list the known facts related to this problem.

e A solution by means of the Algebraic Bethe Ansatz has been obtained only recently
[4]. See also [5].

e As shown in [6], in the SU(2)-invariant, or XXX, or rational, case the spectrum and
the eigenfunctions of the model can be found via an alternative method, Separation
of Variables, see also the survey [7].

e In[8] the separation of variables in the rational Gaudin model [6] was interpreted as
a geometric Langlands correspondence.

e In [9] a separation of variables was constructed for the elliptic Gaudin—Calogero
model which is closely related to the XYZ Gaudin model, though the separation of
variables for the former one is much simpler.

e The results of [8] and [9] are based on the interpretation of the corresponding Gaudin
models as conformal field theoretical models (Wess—Zumino—Witten models). The
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corresponding interpretation of the XYZ Gaudin model was obtained in [10], but the
conformal field theoretical model corresponding to the XYZ Gaudin model turned
out to be so complicated that writing down the geometric Langlands correspondence
for this system, following [8], is not easy.

The main task of the present paper is to present a construction of separated vari-
ables for the XYZ Gaudin model both in the classical and quantum cases. The paper
is organized as follows. After giving a detailed description of the XYZ Gaudin model
in Sect. 2, we proceed, in Sect. 3, with the classical case and, following the general
philosophy of [7], construct the separated coordinates as the poles of an appropriately
normalized Baker-Akhiezer function. The corresponding eigenvalues of the Lax matrix
are then shown to provide the canonically conjugated momenta. The whole construction
is a simplified version of the one used in [11].

The quantum case is considered in Sect. 4. The separating classical canonical trans-
formation is replaced by an integral operagor\We write down a system of differential
equations for the kernel gf and show that it is integrable. The resulting integral oper-
ator K intertwines the original and the separated variables and provides, respectively, a
Radon-Penrose transformation of the corresponding D-modules. The quantization con-
structed is a formal one, since we do not study the transformations of the functional
spaces of quantum states, leaving it for a further study. A detailed study of the spec-
tral problem is given in the simplest case only: = 1 (Sect. 5). We show that the
corresponding separated equation is none other than the (generalized) Lamé equation.
Two appendices contain, respectively, a list of properties of elliptic functions, and the
formulas describing a realization of finite-dimensional representatiosis @) on the
elliptic curve which are used throughout the paper.

2. Description of the Model

Let us recall the definition of the XYZ Gaudin model, following [4]. The elementary Lax
operatorL (u) of the model depending on a complex parametépectral parameter)
is given by

3
_1 0 o a_ (AW Bu)
L) = Z;wa(u)S ®of = <C(u) _A(M)>. (2.1)
Hereo ¢ are the Pauli matrices,
617 O10(u) 611 Boo(ut) 611 Bo1(u)
=1 , =1 : S , 2.2
W) 010 011(u) w2) Boo 011(u) ws(i) Bo1 012(u) (22)

wherebyg (1) = Oap(u; ), Oup = 0ap(0), 611 = d/du(011(u))].—0, (S€€ Appendix A)
andS“ are generators of the Lie algebria(C):
(8¢, 8P =is.

Hereafter(a, b, ¢) denotes a cyclic permutation ¢f, 2, 3). Note that4, 5, C are holo-
morphic except at € Z + tZ, where these operators have poles of first order.
1 2

Introducing the notatioh, := L ® 1, andL := 1, ® L, where 3 is the unit operator
in C2, one can establish the commutation relation
1 2 1 2
[L@), L(w)]=1[r(u—v), L)+ LWl (2.3)
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wherer (1) is a classicat matrix defined by
13
r(u) = -5 Z;wa (u)o ® o°. (2.4)

Ther matrix behaves asb—}(P - %) + O(u~3) whenu — 0. HereP is the permutation
operatorP(x ® y) = y ® x. Explicitly, in the natural basis ift* ® C?,

a(u) O 0 du)
0 bw) cm) O

rW=1 "0 cw bw O (2.5)
du)y O 0 a(u
where
a() = —b(u) = _w32(u)’ ) = ~ wa(u) sz wz(u), d(u) = _ wy(u) ; wa(u)
Sincew, (1) are quasiperiodic im because of (A.3):
wiw) = wiu+1) = —wilu+71),
wa(u) = —wau+1) = —wa(u+1), (2.6)
w3u) = —w3u+1) = wsu+71),
the L operator (2.1) has the following quasiperiodicity:
Lw+1) =o Lol L +7)=03Lu)od. 2.7)

Let¢, (n = 1,..., N) be half integers. The total Hilbert space of the model is
V =Q"_; Vi, whereV, ~ V&) andv©® is a spin¢ representation space db:

ot i sl(C) > Ende(V©Y),  v©O ~ L (2.8)

The generating function of the integrals of motion is
R 1 2
T(u) = > TrT4(u), (2.9)

where the matrix (1) is constructed as the sum of elementary Lax operators (2.1),

N
() = ;Ln(u — ) = (28‘3 _Bf(‘i)) . (2.10)

Herez, are mutually distinct complex parameters,

1 3
L, (u) > > waw)Sh @ o (2.11)
a=1

¢ = 1y®...01y, ,@p" )1y, ®...01y,. (212
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By virtue of the commutation relations (2.3) the operdfon) satisfies the same com-
mutation relations

1 2 1 2
[T @), T@)]=I[r@—v),Tw)+TQ)], (2.13)

which implies the commutativity of (u):
[T(w),T(v)] =0. (2.14)

Operatort (u) is explicitly written down as follows:
N N
2w) =Y o110 — 2)lu(ln + D+ Y Hyl11(u — z4) + Ho. (2.15)
n=1 n=1

Hereg11, ¢11 are normalized Weierstral3 functions defined by (A.5) and

3
1
H, = Ezzwa(zn_zm)szsza

m#n a=1

N 3
Ho = > > Zalzn—m)SiSh (2.16)

nm=1la=1

are integrals of motion, where

I / i / / I
49;1 00 5= A1 %® S O G
10 011(7) 4600 611(1) 4601 611(7)
Note that the integrals of motioH, (n = O, ..., N) appear as coefficients of the
elliptic Knizhnik-Zamolodchikov equations in [10]. Our expression (2.16 Hediffers
from that given in [4] because of different normalization of ghand¢ functions.
The classical Gaudin model is obtained if we replace all the commutators with the
Poisson brackets, e.g.

1 2 1 2
{T), T} =1[r(u—-v),Tw+T )], (2.18)

instead of (2.13). The spin variabl§$ satisfy, respectively, the Poisson commutation
relations[$¢, $?] = iS¢ and are subject to the constrajnf _, (5%)2 = ¢2,

Z1(t) =

(2.17)

3. Classical Separation of Variables

According to the recipe in [7], the separated coordinateshould be constructed as

the poles of a suitably normalized Baker-Akhiezer function (eigenvector of Lax matrix

T (u)). The corresponding canonically conjugated variables should appear then as the
corresponding eigenvalues®fx, ). Instead of choosing a normalization, we shall rather
speak of a choice of a gauge transformatlérof T'(u). The separated coordinates

will be obtained then as the zeros of the off-diagonal elerBeni of the twisted matrix
T=M1TM.

The classical XYZ Gaudin model is a degenerate case of the classical lattice Landau-
Lifshits equation for which a separation of variables has been constructed in [11], see
also a discussion in [7]. Here we use essentially the same gauge transforiatipas
in [11], and our calculations represent a revised and simplified version of those in [11].
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3.1. Gauge transformationlLet M (u; i) be the following 2x 2 matrix

5 001 (5% 5) —6or (D% 5
M (u; i) = (uﬁ. T ) <u+it. T ) ’ 3.1)

900( 5 5) 6’00( > ,7)
whereu andi are (possibly dynamical) parameters. (This matrix appears also in the

context of the algebraic Bethe Ansatz. See [12,4].) A twistedperatorL (u, v; i)
depending on a parameteis defined by

L, vy = (?((Z 1')); Z)) _ﬁ?ﬂ”ﬁi)) = MY @)L — )M @s ). (3.2)
Likewise we define the twisted Lax matrix by
Fus i) = (255 Z; _BA(L(‘;;”;Q = MY DT @M@: i), (3.3)
Note thatM (u; i) has the quasiperiodicity because of (A.3):
Mu+Ln) = —o1M(u;n),
Mu+t;0) = e U DoaM(u; i) exp(riiios). (3.4)

These formulae together with (2.7) imply that the functi, v; i) has the follow-
ing quasiperiodicity properties:

Bu+1i) =B i), Bu+rtii)=e 2"Bu;i). (3.5)
Hence by a standard argument in the theory of elliptic functions (see [13]), we have
degdiv(B(u))) =0,  —ii+ Y (mult,div(Bw)))y € Z+1Z, (3.6)

where mult, div(B («)) is the multiplicity of a divisoify] in the divisor di\ B(u)). By the
definition (3.3), operatoé(u; ) is holomorphic except at poles df(u), B(u), C(u),

ie,u=z,(n=1...,N),and at zeros of d&¥ (u; i1), i.e.,u = 0 moduloZ + tZ:
N
div(B(u)) > — (Z[zn] + [0]) (Mod Z + t7). (3.7)
n=1
Thus (3.7) and (3.6) imply that there ar€ ¢ 1) pointsx, . .., xy such that
N N
div(B(u) = ) [x;] - (Z[zn] + [0]) (mod Z + t2), (3.8)
j=0 n=1
and
N N
dxj=) zy—ii (ModZ+ 7). (3.9)
j=0 n=1

Let us fix the parametérby the condition that one of;, for examplex, is a constant
&. Note thatz becomes then a dynamical variable. Thus we have

B(x;;ii) = B(u = &;i1) = 0. (3.10)

Dynamical variabless, . .. , xy are (classically) separated coordinates of the system
as we will see below.
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3.2. Poisson commutation relations and classical separation of variafilke. main
purpose of this subsection is to prove the following commutation relations.

Theorem 3.1. Generically the dynamical variables and—A(x;) have the canonical
Poisson brackets:

() {xi,x;}=0foralli,j=1,...,N.
(i) {—A(x;), —A(x;)} =0foralli,j=1,...,N.
(i) {(—A(x;),x;) =6, foralli,j=1,...,N.

To prove the theorem, we follow the argument of [11]. First let us introduce several
notations. Define the matrices B, C, D as

~ (10 ~ (01 ~.__ (0 0 ~ (00
(39 (00 (09 5= ew
Gauge transformation of them are defined as follows:

A i) = Mu; i)AM u:; i)™Y,  BQu:i) = M@u;i)BM@u; i)™ L,

F N N PO A S, (B12
Cu;u) =M, n)CM(u;u)" -, D(u;u) =M@, u)DM(u;u)"".
Bracket(, ) is the standard inner product of thex2 matrices:
(X,Y) =trXy. (3.13)

WhenX (1) is a variable depending on the spectral parametere will denoteX (x;)
by X; for brevity. For example,

(0,(CT)); = ai tr(C(u; )T ().
u U=x;

The following statement is proved by the same argument as in the proof of the
Theorem in 82 of [11].

Lemma 3.2. For any dynamical variable,

(ColX, T}o)

{Xs ”7} = - ~
(3zCoTo)

(3.14)

and

(ColX, TYo)(8:C;Tj) — (Ci{X, T};)(3;CoTo)

{X,Xj} = = =
(04(C, T)) {07 CoTo)

(3.15)

We also need the formula for the twistednatrix.
Lemma 3.3. Define

1 2 1 2
Flu,v; 1) i= M (u; @) IM (v; ) " Yr(u — )M (u; )M (v; D), (3.16)
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which we call thewisted » matrix and let7;; (u, v; i) be its(i, j) element. Then it has
the following form:

r11(u, v; ) = —r(u, v; i) = —733(u, v; i) = raa(u, v; it) =
_ 1 <911(u —v) 01, (u) Gil(v)> . @17)
2 \O11(u —v) O11(u)  O11(v)
ro(u, v; i) = —r13(v, u; i) = —ra1(u, v; —it) = r31(v, u; —it) =
= 724(v, u; 1) = —734(u, v; i) = —7a2(v, u; —i) = F43(u, v; —i) =
—0/.6 i
M, (3.18)
2011(1)011(v)
F1a(u, v : it) = r41(u, v; i) = 0, (3.19)
—0011(u — v + il
Fas(u, v; i) = Fap(u, v; —ii) = —=L 1 = v+ 1) (3.20)

O11(u — v)611(i1)

Proof. The proof is given by a direct computation. For example, we have formulae like

] S 1 O10(u)b10()  610010(u + it)
M. ) oM. 1) = o @) (—eloelo(u — i) —elo(uwlo(ﬁ))

S 1. L 1 Boo(u)Boo(it)  Booboo(u + i)
Mu,u)y“Go)Mu.w) = & @ (—900900(14 — ii) —eoo(weoo(a))

L1 . 1 —001(u)0p1(t) —6p1001 (1 + it)
Mu.u)“osMu, ) = o @ (001901<u — i) Bo(w)borli) )

which follow from the addition theorems (cf. [14, pp. 20, 22] ) and the Landen trans-
formation (cf. [13, §21.52]) of theta functions. Substituting them in the definitioh of
(3.16) and using the addition theorems again, we can prove the lemima.

Proof of Theorem 3.1Using the formulae (3.14) and (3.15), we have

1
{xj, x}) = = = X
(3, (CT))j (3, (CT))k
3:C;T)(0;CiTy) * 2 1 2 3:CeT) L 2 12
o[ CLIOCTED (06 o7 7 yog) — T (& o, 70)
(0; CoTo) (0 CoTo)
0:¢ 1 2 12 12
<A—J><C CilT . Thoe) + (C;C {T,T}jk)]. (3.21)
(35 CoTo)

12 1 2
Therefore computation df;, x;} reduces to computation o€ ;C {7, T } jx).
As in Appendix B of [11], we have

1 2 1 2 1 2
(O ;W {T, T} k) —trltrz([CD\If FOcj, )T (x5 it) + T (xp; D)), (3.22)
for any<b \If = A, B, C, D. Substituting® = = C and using (3.19), we have

(C Ck{T T},k) = 0. Thus (3.21) implies thdt;, x; } =
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A direct consequence of this {s;, it} = 0, which follows from (3.9). Using these
results and Lemma 3.2, we have fpk- k,

. 12 12 . 12 12
(0;CrTi){A jCofT, T }jo) — (05 CoTo) (A ;Cr{T, T} i)
(0,(C, T))r{0;CoTo)

12 1 2

Hence we need to knowA ;C (T, T'} jx) and(9;CyTx). The former can be computed
by (3.22) and (3.19) and we have

{A(x)), 0} = (3.23)

12 1 2
(AjCUT, TYji) = —2r12(xj, xg; h) Ag. (3.24)

The factor(a,;éka) is computed as follows:

(0 CxTe) = (M (ogs @) 05 M (v @), C1T (s D)) =
et 0 2 (395
011(xk)011 (i)
Substituting (3.24), (3.25) and (3.18) into (3.23), we ha&exj), x;} = 0forj # k.

The proof off A(x;), A(x)} = 0is done in a similar way. In addition to the formulae
we have shown above, we need

12 1 2

(AJAUT, TYix) = Fia(xj, x D)Cj + Fra(x;j, x5 i) Cr, (3.26)
A —01,011(xx + 1) ~
(07 ArTi) At 3.27
T 2@ @20
Proof of the remaining equatiqmi(xj), x;} = —1requires special care, since the
matrix r (1) diverges at: = 0. Instead of (3.24), we use
12 12 . -
(A;CT,T}j;) = —2r2(xj,xj;wA; — ull_)ﬂ:lc r32(u, xj; u) B(u; u)
J
= — 2fa(xj, xj; A + (3,B);. (3.28)

Noting (3, (C, T); = (aug)j and substituting (3.28) and (3.25) into (3.23), we have
{A(x]-), )Cj} =-1. 0O

SinceB is zero au = x;, the dynamical variablé ; :== —A(x;) is an eigenvalue of

T(x;):
f‘(x,-)(?) = Xj<2>, (3.29)

—6o1 X’;ﬁ;% —6o1 x’;ﬁ;%
T(xj)( g (xﬁﬁ. ) = X; (W. ) : (3.30)

Thus if we define theharacteristic polynomiaby

W(z, u) := detiz — T(u)), (3.31)
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each pair of dynamical variablgs;, X ;) satisfies an equation

WX, xj) =0, (3.32)
forj =1,..., N.Therefore, following the definition in [7], canonical variabies, . . .,
xy; X1, ..., Xy) areseparated variablesf the classical elliptic Gaudin model.

4. Quantum System: General Case

We return now to the quantum elliptic Gaudin model and construct the quantum separa-
tion of variables. The special case= 1 is considered in the next section, Sect. 5.

4.1. Kernel function.Suppose that the representation spégce= V¢ (2.8) is realized

as a space of functions on a certain space with coordinated that the operatos$ are
differential operators on, e.g., polynomials or elliptic functions. The separating operator
K is expressed as an integral operator

Kf(xlv"'5'xN)=/dyl”'dqu>(xl’~-- ,xN|Yl7-~’yN)f()’lvu-,YN),

(4.1)
which maps a function ofyy, ..., yny) in V1 ® --- ® Vy to a function of N-variables
x; on the elliptic curveC/Z + tZ.

Let us define the operatof; as follows:
d 0. (x —
X; = — — A(x)), ARx) = Ze S S (4.2)

0x; 011(x — zn)

Lemma 4.1. The following system of partial differential equations satisfies the Frobe-
nius integrability condition:

B*(i;ipd = 0, i=1...,N, 4.3)
(Xi+ A*(;iN® = 0, i=1,... N, (4.4)

where P* is the (formal) adjoint of a differential operata?P with respect ta(ys, ... ,
yn) and we set

N N
= =Y Xj (4.5)
n=1 j=0

for a certain constanty = &.

Proof. This is a consequence of the commutation relation (2.13). By multiplying
1 2

M (u; w)M (v; i) from the right and its inverse from the left, we have

1 2 1 2
(T (u;a), T (v; )] = [F(u, vy ), T (u; i) + T (v; @)]. (4.6)

Note thati is nota dynamical variable in contrast to that in Sect. 3.
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_In order to show the consistency of Egs. (4.3)ijand forj, we prove thatB* (x;; il),
B*(x;; u)] is expressed as a linear combinationBdf(x;; i) and B*(x;; it).
Since the formal adjoint is an algebra anti-isomorphiéfQ)* = Q* P*, we have

[B*(x;; 1), B*(x;; i0)] = [B(x;; t), B(x;; iD)]*. (4.7)
The (1,4)-element of (4.6) gives
[B(u; i), B(v; #)] = 2(F12(u, v; it) B(u) — F12(v, u; i) B(v)) (4.8)

by virtue of (3.19) and (3.18). Replacingandv in (4.8) byx; andx; respectively which
are not dynamical, we obtain
0.0 i+i) ~ 07.011(x; + i) ~
MB*()Q) _ MB*(XJ'), (4.9)
011(x;)011(u) 011(x;)011()
which means that Eq. (4.3) forand forj are compatible.

Next we show the compatibility condition

[B*(x;; it), B*(x;; i1)] =

[X; + A*(x;; @), Xj + A*(xj; #0)] =0, (4.10)

which implies the consistency of Eqgs. (4.4) foand forj (i # j). It is obvious from
(4.2) that

[X;, X;]=0. (4.11)

Because of (4.5), we have
— _ 9 - A\
[Xi, A%(xj;u)] = — ﬁA(ij u)| .
By the same argument as that for (3.27) the right-hand side is rewritten as

01,0110 + xj) =, 011011(11 — xj) ~

X, A*(x; )] = — - C*(x;: i) — - B*(x::i). (4.12
Xi A ) = = inonen © 0 T Zpn@em,) i - (412)
Exchanging andj, we have
~ 0!,011(ii + xi) = 0, 001Gt —xi) ~.
(X, A%z )] = — U XD gy OO 7 X0 g 413

 2611(@)611(x;)  2611()611(x;)

The (1,1)-element of (4.6) means
[A*(xi; i), A*(xjs )] = —F13(x, x5 @) C* (x5 i) — Fro(xi, x5 6)C* (x5 i)
+ia1(xi, Xj; @) B* (x;; i) + Fo1(x;, x5 #) B* (x; ii). (4.14)

Summing up (4.11), (4.12), (4.13) and (4.14), we have proved (4.10) because of (3.18).

The consistency of (4.4) férand (4.3) forj is shown as follows. First assumet ;.
Then the same computation as above gives

- ~ J -~ * - -
[X; + A" (x;; i), B*(xj;61) = — <£B(x]'; ﬁ)) + [A™(x;5 ), B*(xj: )]

_ (911(961‘ —xj)  033(x)
O11(xi —x;)  O11(x;)

9119()(,' —Xj = 12)

- B*(x;; i1). (4.15
BraGr — oGy © - (419

)B*(x,-;ﬁ)
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Thus we have proved the compatibility of (4.4) faand (4.3) forj. Here we used

J = - 011012(x; + @) ~ _o01(xp) ~ -
—B(xj i) = —22= L Ak a) + B(x;; i), (4.16)
ou O11(x)012 (@)~ Ora(xj)
and the (1,2)-element of (4.6).
The casei = j is almost the same, but there is another term coming from
[Xi, B*(xi; w)]:

[X; + A*(xi; @), B*(x;; 1)) =

0 é*(u:ﬁ)—(%é(xi;m) +[A* (i @), B*(xis )], (4.17)

U=Xx;

u

By the same computation as (3.28), it follows from the (1,2)-element of (4.6) that
[A*(x;; @), B* (xis )] =

07,(@) ~
= W ey !
O12(u) 011(x;)012(u)
Substituting (4.18) and (4.16) fgr=i into (4.17), we obtain
012(@)  61,(xi)
Ora(u)  O11(xi)
which proves the consistency of (4.4) foand (4.3) fori. 0O

011611(x; + @t) A ity — ai
u

B*(u; ). (4.18)

U=x,

[X; + A*(x;: 1), B*(x;; i1)] = ( ) B*(x;; i), (4.19)

4.2. Separating operatorThe separating integral operatgris defined by (4.1) with
the kernel functionb (x|y) satisfying Egs. (4.3) and (4.4).

Proposition 4.2. (i) For any functionf of (y1,...,yn)in V1 ® --- ® Vy, we have

KB(xi;i)f) = 0, (4.20)
K(—A(xi; i) f) X f. (4.21)

(i) The elliptic Gaudin Hamiltoniart () with the spectral parameter fixed o= x;
is transformed as follows.

K@) ) = XK (), (4.22)
whereX; is defined by (4.2).

Proof. (i) is a direct consequence of (4.3) and (4.4) respectively.
(ii) By Definition (2.9),

K(T(xi) f)(x) =

1 - - - - -
> / ®(x]y) (RAxi; )2 + B(xis i)C (xi5 i) + C (xi; ) B(xi3 ) f () dy
= /(A*(xi;ﬁ))2<1><x|y>f(y>dy+/é*(xi;ﬁ)é*(xi;ﬂm(xw)f(y)dy

1/ - -
+§/[B*(xl'; i), C*(x;3 )] (x]y) () dy. (4.23)
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The first term in the right-hand side of (4.23) is rewritten by the following formula:

(A*(xi; 0))?®(x]y) = —A"(x)X;D(x]y)
= X2®0(x|y) + [Xi, A*(x)]1D(x]y), (4.24)
where we used (4.4). The last term of (4.24) is
[&ﬁmw=i Awm—i A*(u; it) (4.25)
ou U=x; ou U=x;

becausél = )z, — Y x;. Hence, similarly to the derivation of (4.12), we can prove
that

0

K2 Gilell(ﬂ + x;) ~
ou

v O g e O
011011G8 — x;) ~,

- ==~ B*(x;; ). 4.26
26r1@onCn) (4.26)

The (2, 3)-element of the commutation relation (4.6) gives

[X;, A*(xi; )] =

! - N ~
L) )
011(u)011(u)
0;.,0 i) ~
B R U DT (4.27)
011(u)011(u)
in the limitv — u. Substituting (4.24), (4.26) and (4.27) into (4.23) and using (4.3), we
obtain (4.22). O

[B(us; it), Cu; )] = 2A"(u; i)

Equation (4.20) isa quantum version of (3.10) and Eq. (4.21) together with the canoni-
cal commutation relatiof;, x;] = §;; meansthatoperatofsy, ..., xy; X1, ..., Xn)
are the quantization of the classical separated variables in Sect. 3.2.

The second statement of Proposition 4.2 provides a formal separation of variables
for the quantum elliptic Gaudin model. Using the language of [8] and [9], the kernel
®(x|y) provides a Radon—Penrose transformation of the correspodimgdules (cf.

[15]).

In principle, the quantum separation of variables should result in a one dimensional
spectral problem for the separated equation (4.22) which is equivalent to the spectral
problem for the original Hamiltonians (2.16). To achieve this goal one needs to specify
an integration contour in (4.1) to study in detail the action of the integral opegator
on the functional space. Here we examine only the simplest caée= 1, leaving the
general case for further study.

5. Quantum System: CaseV =1

In this section we examine the special caseNot= 1. In this case, everything can
be computed explicitly and we shall see that the separated equation is nothing but the
classical Lamé equation and its generalization.

We adopt the realization of the representatignof si> on the space of elliptic
functions reviewed in Appendix B. We could use the standard realization on the space of
sections of a line bundle ov@?, but the result is essentially the same up to coordinate
transformation and gauge transformation. We omit the suftikz, andS¢ for brevity.
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5.1. Separated variablesThe quantum twiste# operatomB (u; it) = B(u; it) is defined
as in the classical case (3.3) or (3.2). Substituting (2.1) we obtain

011
2011(u)011(@)011(u — 2)
— Ooo(u — 2)000(u + i1)i S — o1(u — 2)001(u + a)s3). (5.1)

Bu; i) =

(91o(u — 2)610(u + ) St

The realization of the representation (B.2) gives the following expression:

- - d -
Bu; i) = BOu; a)d— + BOw: i), (5.2)
y
where
BOPw; i) = 6ra(w) ™ 001G) " 011(u — 2)71012(2y) 72
x 6 + ‘ + i 0 + i
0y u 2 2 10| Y u > 2
z U z 0
X 610 (-y— 57 E) t10 <_y+§+§>’ (5.3)
. 200!
BOWw;a) = 1 <9 (u + i)011(u — 2)011(y)?
) 2011(u)011(i1)011(u — 2)611(y)? t 912 11y

~ - 2
< u Z u Z u
+291o(y+u—§+§>010<—y+u—5—1—5)6’10(—5—5) ).(5-4)

A special point in the cast = 1 is that we can make use of the freedoni b that
B(u; u) is a multiplication operator with the divisor of the form,

div(B(u; #)) = [x] + [z] — [z] — [0] = [x] — [0] (MOdZ + t7Z), (5.5)

as in the classical case, (3.8), (3.9). In fact, if weput —z +£2y + 1, BO(u; 1) = 0
by virtue of (5.3), and then (5.4) implies

2001,611(u — z £ 2y)
—2011(u)011(—z £ 2y)
(We substitute the variable “from the left”, namely we define

(5.6)

B(u; ) |g=—z42y4+1 =

N - d -
B(u; iD)|im—zioys1 = BPu; —z £ 2y + 1)5 +BOw; —z+£2y +1).

Hereafter we always follow this normal ordering convention.) Therefore we can take
x =z F 2y in (5.5). This is the one of the~“separated variables” in this case.

In the classical model, Theorem 32 A(x; ) is a dynamical variable canonically
conjugate toc. This is also the case in the quantum model. The definition, @8.3), is
rewritten in the form

%
2011(u)011(u)011(u — 2)
— G0t600(u — )00 o0i)i S — 05;001(u — 01W01(@)S)  (5.7)

A(u; i) =

(91_01910(u — 2)010(u)f10(i) S*
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by (2.1). Substitutingg = —z + 2y + 1 andu = x = z F 2y (from the left), we obtain

A(u; W) ly=z 2y, i=—zt2y+1 =

_ .t (i o0 (911910(2)’) N 611600(2) N 911901(2}’)))
2 \dy 010011(2y)  Ooob11(2y)  6o1011(2y)
1 d "
_ 4t <__e_@/(y)>. (5.8)
2\dy '(y)
The last equality can be proved by comparing the poles of both sides. Therefore
zF 2y and X = —A(u; i) |y=;32y i=—z+2y+1 are the canonical conjugate variables
satisfying,
[X, x]=1 (5.9)

We did not make use of the formulation in the previous sections explicitly. In fact, thanks
to the special choice af, ® in (4.1) is aj-function type kernel, which reduces the integral
operatorK to a coordinate transformation operator frorto x.

5.2. Solving the spectral problenfror the casev = 1, the generating function of the
quantum integrals of motiofi(u) (u is the spectral parameter)

3
tu) = % Y waw)?(p' (52 (5.10)
a=1

is explicitly written down. Here we shift the spectral parameter in the original definition
(2.9) ast —~ u; and set = 0 for the sake of simplicity. Using (B.2) or (B.6) and various
identities of elliptic functions in [13], we can expand the right hand side of (5.10):

d d? 1/ a? 9"(y) d
Py = iu) =5 (5 -2 - + 4 -1 a0 +1
T<y dy’ dy? ”) 4<dyz o' () dy+ ( o (v) + 46(L + )so(u))
(5.11)
or

(, 4 4
T n, %s d_nzs)\‘ = (]”—el)(n_ez)(n_e3)

X<d2+1—2z< 1 N 1 N 1 )d+
dn? 2 \n—e1 n—ex n—e3)dn
020 — D+ (€ + D)a )
n—e)(n—exd(n—e3))’

(5.12)

wherer = g (u).

As is expected from Proposition 4.2 and the result for the rational Gaudin model in
[6], operatorz (1) is factorized as follows when the spectral parametes fixed to a
separated variable, = 2y. (We may also take; = —2y.):

. d d? <o 2_ 2
T\, E’ d_yz;u = (_A(u§u)|u:2y,f1=2y+l) = X7, (5.13)

u=2y
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which immediately follows from (5.7). (The operat&ris defined before (5.9).) This is
consistent with the general result (4.22).

Equations (5.11) or (5.12) show that the spectral problem of the elliptic Gaudin model
with N = 1 is an ordinary differential equation of second order on the elliptic curve
C/Z+ <Z:

. d d?

T (y, dy d—yz; u) V() =t@y(y), (5.14)
or on the projective lin@*(C):

[ d d?

T (ﬂ, dn’ dn’ k) V() =ty @). (5.15)

Herez (u), t(1) are eigenvalues of, v € V©® is an eigenvalue corresponding to this
eigenvalue. Since operatotéu) andU, commute with each other by virtue of (B.12,
B.13) and (5.10), we can decompose each eigenspa@ pinto those ofU,,.

Equation (5.14) has regular singularities:= 0 (mod ") with exponents—4¢,
20+ 1, andu = wy (@ =1,2,3,w1 = 1, w2 = 17, w3 = 1+ 1) with exponents 0,
2¢ + 1. Equation (5.15) has regular singularities= ¢, with exponents 0¢2¢ + 1)/2,
andn = oo with § — ¢, —2¢.

If isaninteger, these equations are ordinary Lamé equations, WhﬂleféHthhey
are generalized Lamé equations studied by Brioschi, Halphen and Crawford. Following
the classical theory of Lamé functions (see [13, Chap. XXIII]), we can solve the spectral
problem (5.14), (5.15) itv © as follows.

5.2.1. Cas€ e Z. We want a solutiony (n) of (5.15) such thaty(n) € V©. Let us
assume thar () is expanded around the singular paiptas

v =Y a¥(n—e)* ", (5.16)
r=0

ap being 1. The conditions (n) € V® means thau® = 0 for r > 2¢. Substituting
(5.16) into (5.15), we obtain the following recursion relation:

re+3—nat = ((€@—1) =30 - DEL—r+D)es +E)ary
+@L—r+2) <€ —r+ g) (ew —ep)(eq —ey)a’_, (5.17)

for r > 0 whereE = £(¢£ + DA — t(A). (Undefined coefficients® for r < 0 are 0.)
Hence, as a function df, a* = a(E) is a polynomial of degree of the form

-1
4 1
a®(E)y=AE" +O0(E™™Y, A = (r! I (6 —re5t 1)) . (5.18)

j=1

Let us denote the roots @b, ,(E) = 0 by Ej* (i = 1,...,2¢ + 1). The recursion
relation (5.17) implies:? (Ef") = O for r > 2¢ + 1. Hence we obtain a polynomial
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solutiony(n) = ¥ (n; Ef) of (5.15) of the form (5.16) for each=1,...,2¢ + 1,
provided that

1) = £+ Dr — E. (5.19)

Conversely, ify(n) € V© is a solution of the spectral problem (5.15), then there
exists certain for eacha = 1, 2, 3 such thaty(n) = ¥ (n; EY). This is proved by
expanding the polynomiak (n) as in (5.16) and tracing back the above argument.

Proposition 5.1. Assume thab, = 7 is pure imaginary and that parametegs are all
real numbers. Then alt? are real and the spectral problem (5.15) is non-degenerate.

NamelyE{" # E¢ for distincti, j and the solutions/ (n; E{') span the spac® ©. In

particular EY (i = 1,...,2¢+1)fora =1, 2, 3 coincide up to order, and%ul(E) =

a3,,1(E) = a3, ,(E). Hence we can omit the indexfor £ andag, , (E).
Vectory (n; E;) is an eigenvector of/, with eigenvalug—1)*¢ if ay(E;) # 0and

(-1 Lif a2 (E)) = 0.

Proof. Under the assumption € iR, operatort (1) (u € R) is an hermitian operator

because of (B.11), and hence it is obvious tHatare real and that (n; E¥) spanV ©).

In order to show non-degeneracy of the spectral problem (5.15) we have only to prove
thatEl.2 are distinct with each other. Define

#w =] b ity
(=" af(E), €+1<r<20+1
Then the leading coefficient af is
G*(E)y=AE"+O(E™™Y, A=Al (5.20)
The recursion relation (5.17) is rewritten as
crZ(E) = qra? 1(E) — ky_2d?_o(E), (5.21)
where
cr = r|€+%—r|,
¢ = (L20—1) =30 -2 —r+1)ey + E, (5.22)
kr = |[€—r+ g‘ (20 —1r 4+ 2)(e1 — e2)(e2 — e3).

Sincee; > e2 > ez under the assumption of the proposition, we have 0 andk, > 0.
This fact together withd, > 0 (see (5.20)) implies that all the roots&ﬁ(E) are real
and distinct by Sturm’s theorem (see, e.g., Chap. 1X, 884-5, [16]). This proves the first
statement of the proposition.

The operatord/, andt commute and each eigenspacezois one-dimensional.
Hencewy (n; E;) is an eigenvector ot/,. Recall thatU, has eigenvalueg—1)¢ with
multiplicity ¢ + 1 and(—1)**! with multiplicity ¢. (See §B.2.) % (E;) # 0, then

Ua¥r(n; Ei) = (=D % (n; E)

because of (B.15). Hence there are at nfostl of E;'s such thaty (E;) # 0. In other
words, at least of E;’s satisfyay (E;) = 0. Sinceay (E) is a polynomial of degreé,
this proves the second statement of the propositian.
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5.2.2. Cas¢ € % + Z. As in the case¢ € Z, we consider an expansion (5.16) of a
solutionyr (n) of the spectral problem (5.15), but this time we consider the series which
terminate at = ¢ — 3:
£-1/2
Y =) ar(n—e) . (5.23)
r=0
They are parametrized by zeros of the polynomial%(E), {EfY_q

previous casey (n) = ¥ (n; EY).
Another set of solutions are obtained from this set by applying the opdvrator

e+ as in the

yeney

-3
Ua¥r(n: Ef) =Y a“ 1 (ES) (1 — ea)" (5.24)
r=0
sinceU, andt(z) commute.
The following proposition is proved in the same manner as Proposition 5.1.

Proposition 5.2. Assume thab, = 7 is pure imaginary and that parameters are all
real numbers.
Then allEY are real andE}* # Ej‘ for distincti, j.

The solutions) (n; E¥) andU, ¥ (; E¥) span the spac®©). In particular E¥ (i =
1,...,¢+3)fora = 1,2, 3coincide uptoorder, and® , (E) = a? ,(E) = a® , (E).
Hence we can omit the indexfor E}* anda§‘+1 (E).

2
Vectorsy (n; E;) + Uy (n; E;) are eigenvectors df/, with eigenvaluesri.

This proposition means that each eigenvaliyelegenerates with multiplicity two. It
was Crawford [17] who first found the relation of these two solutions (one is obtained
from the other by operating2) by the explicit expansions of type (5.23), (5.24). See
also p.578 of [13].

A. Notations

We use the notation for the theta functions with characteristics as follows (see [14]): for
a,b=0,1,

O (12 T) = Zen’i(n+a/2)2r+2m'(n+u/2)(u+b/2)' (A1)
nez
Unless otherwise specifie@,, (u) = 6, (u; T). We also use abbreviations

Oab = O0ap(0), 6, = 0 Oap (1t). (A2)
Uly=0
Quasi-periodicity properties of theta functions:
Oa () = (=1 Oap(u + 1) = & TH276, (u + 7). (A.3)

Parity of thetas:
Boo(—u) = Opo(u), Oo1(—u) = Op1(u), Oro(—u) = O10(u), O11(—u) = —011(u).
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A.1. Weierstrass function8Below we fixw1 = 1 andws = T,

2
ow=u [] (1—w” )exp|:wu +%<w” )} (A.4)

m,n#0
wherew,,, = mw1 + nwy,
o'(u) )
Cwy =25 o ==t
o(u)
o(u+w) = _U(M)em(Zu—irw,)’
(o) = ¢ +2m,

pu+ow) = p),
wheren; = ¢ (w;/2) , which satisfy
niw2 — naw1 = wi.
Sigma function is expressed by theta functions as follows:

o (1) = wpeM/on O11(u/w1)

0
o(—u)=—-o), {(—u)=-¢W), p(2)=pe0),
u~0: ow=u+0w®, W=ut+0wd, pw=u"?+0wu?.
Other sigma functions are defined as follows:

o (u+ —2—w1+w2)

- 1,2 0go(u/w1)
ooo(u) = e (mtn2u _ w2 foolu/w1)
o (—2—) 00(0)
w1
ooty = e B) _ ptatuion
- @) 6100
o (%) 1000)
w2
_ﬂzua (M + —2—> 1,2 0o1(u/w1)
010 = = e T
o (%)
which satisfy

Og1g, (U + @p) = (_1)g]em(2u+wl)ag1g2 (),
Ogrgo(—U) = Og1, (1), Og1g,(0) = 1.

Defininge1 = p (w1/2), e2 = p (w1 + ®2)/2), e3 = © (w2/2), we have
ofo(w) _ ogp(w) _ o&w)
o2w) T 02w TP 02w

e1+erx+e3=0,

2 2 2
T T T
e1—ex= (w_1> 001(0)%, e1—e3= (w_l) 000(0)*, €2 — ez = <w—1> 610(0)*.

We also use normalized Weierstrafd functions:

+e3=p W),

d d
c11(u) = 0 O11(w),  p11(u) = ——111(u). (A.5)
u du
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B. Realization of Spin€ Representations on an Elliptic Curve

We recall here the following realization of the sgimepresentation of the Lie algebra
slo(C). Lete, f, h bethe Chevalley generators and defife= e+ f, $2 = —ie+if and
$% = h. They satisfy the relatiops®, $”] = 2i S for any cyclic permutatioria, b, c)

of (1, 2, 3) and represented by the Pauli matrie¢s

B.1. Spir representationsThe representation spate® is realized by

2¢
v =P Cpm*
k=0

= {even elliptic functionf (y) | div(f) > —4(Z + t7Z)}. (B.1)
The generators“ act on this space as differential operators of first order:

610010(2y) d 010(y)?

) Sl Z 7
P 01,611(2y) dy 011(y)?
}p(() (53) Booboo(2y) d_ foo()*
i 611011(2y) dy 611(y)?’
2 2
20 (53 991901( y) d 901(y)2’ (B.2)
011011(2y) dy 611(y)
or in terms of usual Weierstraf3 functions,
o10(2y) d
pOEY = ar (29 L o) —en)).
o(2y) dy
©) SZ 000(2)’)1 20 _
p(8%) (G(Zy) dy+ Q) —e2 ),
001(2y) d
pO(s% = a3 2222 4 2u(p(y) —e3) ), (B.3)
o(2y) dy

wheree, = p(wz/2) (@ = 1,3,2,w1 = 1,wp = 1,03 =1+ 1)fora =123
respectively and

1 i 1
ap = , az= , az= .
Je1l— eas/e1r — e3 Je1— eas/ex2 — e3 Je2 —e3/e1 — e3

(B.4)

This realization is equivalent to the realization on the space of polynomials of degree
< 2¢ (or, sections of a line bundle @ (C)),

d
4 ot o
dx dx

via a coordinate transformation,= —6p1(y; t/2)/600(y; T/2), and a gauge transfor-
mation:

d

2
= __g’ = —
e=x 20x f

Ooo(y; T/2)

v ) px(y) e VO,

{polynomials inx} > ¢(x) — <
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Note that this is also obtained by a gauge transformation from a quasi-classical limit of
the representation of the Sklyanin algebra on theta functions [18].
The following expression is obtained from the coordinate transformatienp (y):

2¢
v = Pt (B.5)
k=0

ands® acts onV® as
d
pO(S%) = aq (((ea —ep)eq —ey) — (n — ea)z)% +2¢(n — ea)> . (BS)

Let us assume thatis a pure imaginary number. Then, as is well known (see, e.g.,
[13]), e, are real numbers and > ez > e3. This implies thati; andas are real, while
az is purely imaginary.

We introduce the following hermitian form in this representation space: for elliptic
functions f (y), g(y) belonging toV © defined by (B.1), we define

(f.g):= /C F(52) g(y1) n(y1, y2), (B.7)
where the 2-cycl€ is defined by

C = {(y1.y2) € (C/T)?, y2 = y1},
and the 2-formu(y1, y2) is defined by
w1, y2) = (e1 — e2)? D (ep — e3)2HD
o (2y2)0 (y2)*0 (2y1)0 (y1 dyz A dy1
o00(y2 — y1)2HDogo(y + y1)2EHD 4
(1 (9 (v2) — e2) (P (y1) — €2) ) T o' ()9 )dy2 A dys
= (1+ : :
(e1 — e2)(e2 — e3) 4

This is nothing but a twisted version of the inner product introduced in [18]. If we take
the description oV (©) of the form (B.5), this hermitian form is expressed as follows:

(f.8) = [CWg(n) w(n. ). (B.9)
where the 2-formu(n, ) is defined by

)4@

(B.8)

_ (i1 — e2)(n — e2) )2““) dij A dy
) =11+ —.
pln, ) ( (e1 — e2)(e2 — e3) 2i
An orthogonal basis with respect to this inner product is givef(hy- e2)/} o, 2¢:
; @)HnEe — 2 : :
(0 —e2), (n — ex)k) = 27Tw(€l —e2)/(ep — 6’3)]+15jk~ (B.10)
The generators® of the Lie algebral, act on the spac¥ ) as self-adjoint operators:
(PO, 8) = (£, pV(5De). (B.11)

This was first proved in [18], but we can check it directly by using formula (B.10).

Hence, ifu andz, are real numbers, the operatdfu) defined by (2.9) and the
integrals of motionH, defined by (2.16) are hermitian operators on the Hilbert sppace
with respect tq, ).
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B.2. Involutions. There are involutive automorphisms of the Lie algetipadefined by
Xa(8P) = (—1)tdar 5P, (B.12)

These automorphisms are induced on the gppresentations as
X.(sH = v tstu,, (B.13)

where operatorg/, : V® — v© are defined by
Wi = (2L a ng( +2)
= e e
LW Je1r — ea\/er — e3 Y 2

_ omie o) —e2 2 ( w1+wz)
Wani) = (2D ) (54 222 e

7 P () —e3 2 w2
W)y = e (mm) F+3).

for a elliptic function f (y) € V©® (cf. [18]). They satisfy commutation relations

U2 =(=D%,  UyUg =(-D*UsU, = U,

for any cyclic permutatiorie, 8, y) of (1, 2, 3). The action of these operators on the
baseq(n — eq)’}j=0....,2¢ is:

Urn —en)! = ™ (er— e2) ~(er — ea) "ty — e,
Up(n —e2)! = ™D (ey —ep) (e — e3)) ' — )7/, (B.15)
Ustn—ea) = e (er—ed) ! (e2 — ea)/ ' — e)? .

Hence eigenvalues f, are(—1)¢ with multiplicity £+ 1 and(—1)¢*1 with multiplicity

¢ if ¢ is an integer, aneki both with multiplicity ¢ + % if £ is a half of an odd integer.
Whenw; = 1 andw; is a pure imaginary number, these operators are unitary with

respect to the hermitian form (B.7).
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