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Abstract: For the elliptic Gaudin model (a degenerate case of the XYZ integrable spin
chain) a separation of variables is constructed in the classical case. The corresponding
separated coordinates are obtained as the poles of a suitably normalized Baker-Akhiezer
function. The classical results are generalized to the quantum case where the kernel of
the separating integral operator is constructed. The simplest one-degree-of-freedom case
is studied in detail.

1. Introduction

The quantum elliptic (or XYZ) Gaudin model was introduced in [1], see also [2], as a
limiting case of the integrable XYZ spin chain [3]. The commuting HamiltoniansHn of
the model are expressed as quadratic combinations ofsl2 spin operators. Determining
the spectrum ofHn turned out to be a difficult problem like the original XYZ spin chain.
Let us list the known facts related to this problem.

• A solution by means of the Algebraic Bethe Ansatz has been obtained only recently
[4]. See also [5].

• As shown in [6], in the SU(2)-invariant, or XXX, or rational, case the spectrum and
the eigenfunctions of the model can be found via an alternative method, Separation
of Variables, see also the survey [7].

• In [8] the separation of variables in the rational Gaudin model [6] was interpreted as
a geometric Langlands correspondence.

• In [9] a separation of variables was constructed for the elliptic Gaudin–Calogero
model which is closely related to the XYZ Gaudin model, though the separation of
variables for the former one is much simpler.

• The results of [8] and [9] are based on the interpretation of the corresponding Gaudin
models as conformal field theoretical models (Wess–Zumino–Witten models). The
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corresponding interpretation of the XYZ Gaudin model was obtained in [10], but the
conformal field theoretical model corresponding to the XYZ Gaudin model turned
out to be so complicated that writing down the geometric Langlands correspondence
for this system, following [8], is not easy.

The main task of the present paper is to present a construction of separated vari-
ables for the XYZ Gaudin model both in the classical and quantum cases. The paper
is organized as follows. After giving a detailed description of the XYZ Gaudin model
in Sect. 2, we proceed, in Sect. 3, with the classical case and, following the general
philosophy of [7], construct the separated coordinates as the poles of an appropriately
normalized Baker-Akhiezer function. The corresponding eigenvalues of the Lax matrix
are then shown to provide the canonically conjugated momenta. The whole construction
is a simplified version of the one used in [11].

The quantum case is considered in Sect. 4. The separating classical canonical trans-
formation is replaced by an integral operatorK. We write down a system of differential
equations for the kernel ofK and show that it is integrable. The resulting integral oper-
atorK intertwines the original and the separated variables and provides, respectively, a
Radon–Penrose transformation of the corresponding D-modules. The quantization con-
structed is a formal one, since we do not study the transformations of the functional
spaces of quantum states, leaving it for a further study. A detailed study of the spec-
tral problem is given in the simplest case only:N = 1 (Sect. 5). We show that the
corresponding separated equation is none other than the (generalized) Lamé equation.
Two appendices contain, respectively, a list of properties of elliptic functions, and the
formulas describing a realization of finite-dimensional representations ofsl2(C) on the
elliptic curve which are used throughout the paper.

2. Description of the Model

Let us recall the definition of the XYZ Gaudin model, following [4]. The elementary Lax
operatorL(u) of the model depending on a complex parameteru (spectral parameter)
is given by

L(u) = 1

2

3∑
a=1

wa(u)S
a ⊗ σa =

(A(u) B(u)
C(u) −A(u)

)
. (2.1)

Hereσa are the Pauli matrices,

w1(u) = θ ′
11

θ10

θ10(u)

θ11(u)
, w2(u) = θ ′

11

θ00

θ00(u)

θ11(u)
, w3(u) = θ ′

11

θ01

θ01(u)

θ11(u)
, (2.2)

whereθαβ(u) = θαβ(u; τ), θαβ = θαβ(0), θ ′
11 = d/du(θ11(u))|u=0, (see Appendix A)

andSa are generators of the Lie algebrasl2(C):

[Sa, Sb] = iSc.

Hereafter(a, b, c) denotes a cyclic permutation of(1,2,3). Note thatA, B, C are holo-
morphic except atu ∈ Z + τZ, where these operators have poles of first order.

Introducing the notationL
1

:= L⊗1l2 andL
2

:= 1l2⊗L, where 1l2 is the unit operator
in C

2, one can establish the commutation relation

[L
1

(u), L
2

(v)] = [r(u− v), L
1

(u)+ L
2

(v)], (2.3)
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wherer(u) is a classicalr matrix defined by

r(u) = −1

2

3∑
a=1

wa(u)σ
a ⊗ σa. (2.4)

Ther matrix behaves as− 1
u
(P − 1

2)+O(u−3)whenu → 0. HereP is the permutation
operator:P(x ⊗ y) = y ⊗ x. Explicitly, in the natural basis inC2 ⊗ C

2,

r(u) =


a(u) 0 0 d(u)

0 b(u) c(u) 0
0 c(u) b(u) 0
d(u) 0 0 a(u)


 , (2.5)

where

a(u) = −b(u) = −w3(u)

2
, c(u) = −w1(u)+ w2(u)

2
, d(u) = −w1(u)− w2(u)

2
.

Sincewa(u) are quasiperiodic inu because of (A.3):

w1(u) = w1(u+ 1) = −w1(u+ τ),

w2(u) = −w2(u+ 1) = −w2(u+ τ),

w3(u) = −w3(u+ 1) = w3(u+ τ),
(2.6)

theL operator (2.1) has the following quasiperiodicity:

L(u+ 1) = σ 1L(u)σ 1, L(u+ τ) = σ 3L(u)σ 3. (2.7)

Let `n (n = 1, . . . , N) be half integers. The total Hilbert space of the model is
V = ⊗N

n=1Vn, whereVn ' V (`n) andV (`) is a spiǹ representation space ofsl2:

ρ` : sl2(C) → EndC(V
(`)), V (`) ' C

2`+1. (2.8)

The generating function of the integrals of motion is

τ̂ (u) = 1

2
Tr T 2(u), (2.9)

where the matrixT (u) is constructed as the sum of elementary Lax operators (2.1),

T (u) =
N∑
n=1

Ln(u− zn) =
(
A(u) B(u)

C(u) −A(u)
)
. (2.10)

Herezn are mutually distinct complex parameters,

Ln(u) = 1

2

3∑
a=1

wa(u)S
a
n ⊗ σa (2.11)

San = 1lV1 ⊗ . . .⊗ 1lVn−1 ⊗ ρ`n(Sa)⊗ 1lVn+1 ⊗ . . .⊗ 1lVN . (2.12)
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By virtue of the commutation relations (2.3) the operatorT (u) satisfies the same com-
mutation relations

[T
1

(u), T
2

(v)] = [r(u− v), T
1

(u)+ T
2

(v)], (2.13)

which implies the commutativity of̂τ(u):

[τ̂ (u), τ̂ (v)] = 0. (2.14)

Operatorτ̂ (u) is explicitly written down as follows:

τ̂ (u) =
N∑
n=1

℘11(u− zn)`n(`n + 1)+
N∑
n=1

Hnζ11(u− zn)+H0. (2.15)

Here℘11, ζ11 are normalized Weierstraß functions defined by (A.5) and

Hn = 1

2

∑
m6=n

3∑
a=1

wa(zn − zm)S
a
nS

a
m,

H0 =
N∑

n,m=1

3∑
a=1

Za(zn − zm)S
a
nS

a
m (2.16)

are integrals of motion, where

Z1(t) = θ ′
11

4θ10

θ ′
10(t)

θ11(t)
, Z2(t) = θ ′

11

4θ00

θ ′
00(t)

θ11(t)
, Z3(t) = θ ′

11

4θ01

θ ′
01(t)

θ11(t)
. (2.17)

Note that the integrals of motionHn (n = 0, . . . , N) appear as coefficients of the
elliptic Knizhnik-Zamolodchikov equations in [10]. Our expression (2.16) forH0 differs
from that given in [4] because of different normalization of the℘ andζ functions.

The classical Gaudin model is obtained if we replace all the commutators with the
Poisson brackets, e.g.

{T
1

(u), T
2

(v)} = [r(u− v), T
1

(u)+ T
2

(v)], (2.18)

instead of (2.13). The spin variablesSa satisfy, respectively, the Poisson commutation
relations[Sa, Sb] = iSc and are subject to the constraint

∑3
a=1(S

a)2 = `2.

3. Classical Separation of Variables

According to the recipe in [7], the separated coordinatesxn should be constructed as
the poles of a suitably normalized Baker-Akhiezer function (eigenvector of Lax matrix
T (u)). The corresponding canonically conjugated variables should appear then as the
corresponding eigenvalues ofT (xn). Instead of choosing a normalization, we shall rather
speak of a choice of a gauge transformationM of T (u). The separated coordinatesxn
will be obtained then as the zeros of the off-diagonal elementB̃(u) of the twisted matrix
T̃ = M−1TM.

The classical XYZ Gaudin model is a degenerate case of the classical lattice Landau-
Lifshits equation for which a separation of variables has been constructed in [11], see
also a discussion in [7]. Here we use essentially the same gauge transformationM(u) as
in [11], and our calculations represent a revised and simplified version of those in [11].
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3.1. Gauge transformation.LetM(u; ũ) be the following 2× 2 matrix

M(u; ũ) :=

−θ01

(
u−ũ

2 ; τ2
)

−θ01

(
u+ũ

2 ; τ2
)

θ00

(
u−ũ

2 ; τ2
)

θ00

(
u+ũ

2 ; τ2
)

 , (3.1)

whereu and ũ are (possibly dynamical) parameters. (This matrix appears also in the
context of the algebraic Bethe Ansatz. See [12,4].) A twistedL-operatorL̃(u, v; ũ)
depending on a parameterũ is defined by

L̃(u, v; ũ) =
(Ã(u, v; ũ) B̃(u, v; ũ)

C̃(u, v; ũ) −Ã(u, v; ũ)
)

:= M−1(u; ũ)L(u− v)M(u; ũ). (3.2)

Likewise we define the twisted Lax matrix by

T̃ (u; ũ) =
(
Ã(u; ũ) B̃(u; ũ)
C̃(u; ũ) −Ã(u; ũ)

)
:= M−1(u; ũ)T (u)M(u; ũ). (3.3)

Note thatM(u; ũ) has the quasiperiodicity because of (A.3):

M(u+ 1; ũ) = −σ1M(u; ũ),
M(u+ τ ; ũ) = e−πi(u+τ/2)σ3M(u; ũ)exp(πiũσ3). (3.4)

These formulae together with (2.7) imply that the functionB̃(u, v; ũ) has the follow-
ing quasiperiodicity properties:

B̃(u+ 1; ũ) = B̃(u; ũ), B̃(u+ τ ; ũ) = e−2πiũB̃(u; ũ). (3.5)

Hence by a standard argument in the theory of elliptic functions (see [13]), we have

deg(div(B̃(u))) = 0, −ũ+
∑

(multy div(B̃(u))) y ∈ Z + τZ, (3.6)

where multy div(B̃(u)) is the multiplicity of a divisor[y] in the divisor div(B̃(u)). By the
definition (3.3), operator̃B(u; ũ) is holomorphic except at poles ofA(u), B(u), C(u),
i.e.,u = zn (n = 1, . . . , N), and at zeros of detM(u; ũ), i.e.,u = 0 moduloZ + τZ:

div(B̃(u)) ≥ −
(

N∑
n=1

[zn] + [0]
)

(mod Z + τZ). (3.7)

Thus (3.7) and (3.6) imply that there are (N + 1) pointsx0, . . . , xN such that

div(B̃(u)) ≡
N∑
j=0

[xj ] −
(

N∑
n=1

[zn] + [0]
)

(mod Z + τZ), (3.8)

and
N∑
j=0

xj ≡
N∑
n=1

zn − ũ (mod Z + τZ). (3.9)

Let us fix the parameter̃u by the condition that one ofxj , for examplex0, is a constant
ξ . Note thatũ becomes then a dynamical variable. Thus we have

B̃(xj ; ũ) = B̃(u = ξ ; ũ) = 0. (3.10)

Dynamical variablesx1, . . . , xN are (classically) separated coordinates of the system
as we will see below.
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3.2. Poisson commutation relations and classical separation of variables.The main
purpose of this subsection is to prove the following commutation relations.

Theorem 3.1. Generically the dynamical variablesxj and−Ã(xj ) have the canonical
Poisson brackets:

(i) {xi, xj } = 0 for all i, j = 1, . . . , N .
(ii) {−Ã(xi),−Ã(xj )} = 0 for all i, j = 1, . . . , N .
(iii) {−Ã(xi), xj } = δi,j for all i, j = 1, . . . , N .

To prove the theorem, we follow the argument of [11]. First let us introduce several
notations. Define the matriceŝA, B̂, Ĉ, D̂ as

Â :=
(

1 0
0 0

)
, B̂ :=

(
0 1
0 0

)
, Ĉ :=

(
0 0
1 0

)
, D̂ :=

(
0 0
0 1

)
. (3.11)

Gauge transformation of them are defined as follows:

Â(u; ũ) := M(u; ũ)ÂM(u; ũ)−1, B̂(u; ũ) := M(u; ũ)B̂M(u; ũ)−1,

Ĉ(u; ũ) := M(u; ũ)ĈM(u; ũ)−1, D̂(u; ũ) := M(u; ũ)D̂M(u; ũ)−1.
(3.12)

Bracket〈, 〉 is the standard inner product of the 2× 2 matrices:

〈X, Y 〉 = trXY. (3.13)

WhenX(u) is a variable depending on the spectral parameteru, we will denoteX(xi)
byXi for brevity. For example,

(∂u〈ĈT 〉)i = ∂

∂u

∣∣∣∣
u=xi

tr(Ĉ(u; ũ)T (u)).

The following statement is proved by the same argument as in the proof of the
Theorem in §2 of [11].

Lemma 3.2. For any dynamical variableX,

{X, ũ} = −〈Ĉ0{X, T }0〉
〈∂ũĈ0T0〉

, (3.14)

and

{X, xj } = 〈Ĉ0{X, T }0〉〈∂ũĈj Tj 〉 − 〈Ĉj {X, T }j 〉〈∂ũĈ0T0〉
(∂u〈Ĉ, T 〉)j 〈∂ũĈ0T0〉

. (3.15)

We also need the formula for the twistedr matrix.

Lemma 3.3. Define

r̃(u, v; ũ) := M
1

(u; ũ)−1M
2

(v; ũ)−1r(u− v)M
1

(u; ũ)M
2

(v; ũ), (3.16)
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which we call thetwisted r matrix and letr̃ij (u, v; ũ) be its(i, j) element. Then it has
the following form:

r̃11(u, v; ũ) = −r̃22(u, v; ũ) = −r̃33(u, v; ũ) = r̃44(u, v; ũ) =
= −1

2

(
θ ′

11(u− v)

θ11(u− v)
− θ ′

11(u)

θ11(u)
+ θ ′

11(v)

θ11(v)

)
, (3.17)

r̃12(u, v; ũ) = −r̃13(v, u; ũ) = −r̃21(u, v; −ũ) = r̃31(v, u; −ũ) =
= r̃24(v, u; ũ) = −r̃34(u, v; ũ) = −r̃42(v, u; −ũ) = r̃43(u, v; −ũ) =

= −θ ′
11θ11(v + ũ)

2θ11(ũ)θ11(v)
, (3.18)

r̃14(u, v : ũ) = r̃41(u, v; ũ) = 0, (3.19)

r̃23(u, v; ũ) = r̃32(u, v; −ũ) = −θ ′
11θ11(u− v + ũ)

θ11(u− v)θ11(ũ)
. (3.20)

Proof. The proof is given by a direct computation. For example, we have formulae like

M(u, ũ)−1σ1M(u, ũ) = 1

θ11(u)θ11(ũ)

(
θ10(u)θ10(ũ) θ10θ10(u+ ũ)

−θ10θ10(u− ũ) −θ10(u)θ10(ũ)

)
,

M(u, ũ)−1(iσ2)M(u, ũ) = 1

θ11(u)θ11(ũ)

(
θ00(u)θ00(ũ) θ00θ00(u+ ũ)

−θ00θ00(u− ũ) −θ00(u)θ00(ũ)

)
,

M(u, ũ)−1σ3M(u, ũ) = 1

θ11(u)θ11(ũ)

(−θ01(u)θ01(ũ) −θ01θ01(u+ ũ)

θ01θ01(u− ũ) θ01(u)θ01(ũ)

)
,

which follow from the addition theorems (cf. [14, pp. 20, 22] ) and the Landen trans-
formation (cf. [13, §21.52]) of theta functions. Substituting them in the definition ofr̃

(3.16) and using the addition theorems again, we can prove the lemma.ut
Proof of Theorem 3.1.Using the formulae (3.14) and (3.15), we have

{xj , xk} = 1

(∂u〈ĈT 〉)j (∂u〈ĈT 〉)k
×

×
[ 〈∂ũĈj Tj 〉〈∂ũĈkTk〉

〈∂ũĈ0T0〉2
〈Ĉ

1

0Ĉ
2

0{T
1

, T
2

}00〉 − 〈∂ũĈkTk〉
〈∂ũĈ0T0〉

〈Ĉ
1

j Ĉ
2

0{T
1

, T
2

}j0〉

−〈∂ũĈj Tj 〉
〈∂ũĈ0T0〉

〈Ĉ
1

0Ĉ
2

k{T
1

, T
2

}0k〉 + 〈Ĉ
1

j Ĉ
2

k{T
1

, T
2

}jk〉
]
. (3.21)

Therefore computation of{xj , xk} reduces to computation of〈Ĉ
1

j Ĉ
2

k{T
1

, T
2

}jk〉.
As in Appendix B of [11], we have

〈8̂
1

j 9̂
2

k{T
1

, T
2

}jk〉 = tr1 tr2([8̂
1

9̂
2

, r̃(xj , xk)](T̃
1

(xj ; ũ)+ T̃
2

(xk; ũ))), (3.22)

for any8,9 = A,B,C,D. Substituting8 = 9 = C and using (3.19), we have

〈Ĉ
1

j Ĉ
2

k{T
1

, T
2

}jk〉 = 0. Thus (3.21) implies that{xj , xk} = 0.
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A direct consequence of this is{xj , ũ} = 0, which follows from (3.9). Using these
results and Lemma 3.2, we have forj 6= k,

{Ã(xj ), xk} = 〈∂ũĈkTk〉〈Â
1

j Ĉ
2

0{T
1

, T
2

}j0〉 − 〈∂ũĈ0T0〉〈Â
1

j Ĉ
2

k{T
1

, T
2

}jk〉
(∂u〈Ĉ, T 〉)k〈∂ũĈ0T0〉

. (3.23)

Hence we need to know〈Â
1

j Ĉ
2

k{T
1

, T
2

}jk〉 and〈∂ũĈkTk〉. The former can be computed
by (3.22) and (3.19) and we have

〈Â
1

j Ĉ
2

k{T
1

, T
2

}jk〉 = −2r̃12(xj , xk; ũ)Ãk. (3.24)

The factor〈∂ũĈkTk〉 is computed as follows:

〈∂ũĈkTk〉 = 〈[M(xk; ũ)−1∂ũM(xk; ũ), Ĉ]T̃ (xk; ũ)〉 =
= −θ

′
11θ11(xk + ũ)

θ11(xk)θ11(ũ)
Ãk. (3.25)

Substituting (3.24), (3.25) and (3.18) into (3.23), we have{Ã(xj ), xk} = 0 for j 6= k.
The proof of{Ã(xj ), Ã(xk)} = 0 is done in a similar way. In addition to the formulae

we have shown above, we need

〈Â
1

j Â
2

k{T
1

, T
2

}jk〉 = r̃13(xj , xk; ũ)C̃j + r̃12(xj , xk; ũ)C̃k, (3.26)

〈∂ũÂkTk〉 = −θ ′
11θ11(xk + ũ)

2θ11(xk)θ11(ũ)
C̃k. (3.27)

Proof of the remaining equation{Ã(xj ), xj } = −1 requires special care, since ther
matrix r(u) diverges atu = 0. Instead of (3.24), we use

〈Â
1

j Ĉ
2

j {T
1

, T
2

}jj 〉 = − 2r̃12(xj , xj ; ũ)Ãj − lim
u→xj

r̃32(u, xj ; ũ)B̃(u; ũ)
= − 2r̃12(xj , xj ; ũ)Ãj + (∂uB̃)j . (3.28)

Noting (∂u〈Ĉ, T 〉)j = (∂uB̃)j and substituting (3.28) and (3.25) into (3.23), we have
{Ã(xj ), xj } = −1. ut

SinceB̃ is zero atu = xj , the dynamical variableXj := −Ã(xj ) is an eigenvalue of
T (xj ):

T̃ (xj )

(
0
1

)
= Xj

(
0
1

)
, (3.29)

T (xj )


 −θ01

(
xj+ũ

2 ; τ2
)

θ00

(
xj+ũ

2 ; τ2
)

 = Xj


 −θ01

(
xj+ũ

2 ; τ2
)

θ00

(
xj+ũ

2 ; τ2
)

 . (3.30)

Thus if we define thecharacteristic polynomialby

W(z, u) := det(z− T (u)), (3.31)
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each pair of dynamical variables(xj ,Xj ) satisfies an equation

W(Xj , xj ) = 0, (3.32)

for j = 1, . . . , N . Therefore, following the definition in [7], canonical variables(x1, . . . ,

xN ;X1, . . . , XN) areseparated variablesof the classical elliptic Gaudin model.

4. Quantum System: General Case

We return now to the quantum elliptic Gaudin model and construct the quantum separa-
tion of variables. The special caseN = 1 is considered in the next section, Sect. 5.

4.1. Kernel function.Suppose that the representation spaceVn = V `n (2.8) is realized
as a space of functions on a certain space with coordinateyn and that the operatorsSa are
differential operators on, e.g., polynomials or elliptic functions. The separating operator
K is expressed as an integral operator

K f (x1, . . . , xN) =
∫
dy1 · · · dyN 8(x1, . . . , xN |y1, . . . , yN)f (y1, . . . , yN),

(4.1)

which maps a function of(y1, . . . , yN) in V1 ⊗ · · · ⊗ VN to a function ofN -variables
xi on the elliptic curveC/Z + τZ.

Let us define the operatorXi as follows:

Xi := ∂

∂xi
−3(xi), 3(x) =

N∑
n=1

`n
θ ′

11(x − zn)

θ11(x − zn)
. (4.2)

Lemma 4.1. The following system of partial differential equations satisfies the Frobe-
nius integrability condition:

B̃∗(xi; ũ)8 = 0, i = 1, . . . , N, (4.3)

(Xi + Ã∗(xi; ũ))8 = 0, i = 1, . . . , N, (4.4)

whereP ∗ is the (formal) adjoint of a differential operatorP with respect to(y1, . . . ,

yN) and we set

ũ =
N∑
n=1

zn −
N∑
j=0

xj (4.5)

for a certain constantx0 = ξ .

Proof. This is a consequence of the commutation relation (2.13). By multiplying

M
1

(u; ũ)M
2

(v; ũ) from the right and its inverse from the left, we have

[T̃
1

(u; ũ), T̃
2

(v; ũ)] = [r̃(u, v; ũ), T̃
1

(u; ũ)+ T̃
2

(v; ũ)]. (4.6)

Note thatũ is nota dynamical variable in contrast to that in Sect. 3.
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In order to show the consistency of Eqs. (4.3) fori and forj , we prove that[B̃∗(xi; ũ),
B̃∗(xj ; ũ)] is expressed as a linear combination ofB̃∗(xi; ũ) andB̃∗(xj ; ũ).

Since the formal adjoint is an algebra anti-isomorphism,(PQ)∗ = Q∗P ∗, we have

[B̃∗(xi; ũ), B̃∗(xj ; ũ)] = [B̃(xj ; ũ), B̃(xi; ũ)]∗. (4.7)

The (1,4)-element of (4.6) gives

[B̃(u; ũ), B̃(v; ũ)] = 2(r̃12(u, v; ũ)B̃(u)− r̃12(v, u; ũ)B̃(v)) (4.8)

by virtue of (3.19) and (3.18). Replacingu andv in (4.8) byxi andxj respectively which
are not dynamical, we obtain

[B̃∗(xi; ũ), B̃∗(xj ; ũ)] = θ ′
11θ11(xj + ũ)

θ11(xj )θ11(ũ)
B̃∗(xi)− θ ′

11θ11(xi + ũ)

θ11(xi)θ11(ũ)
B̃∗(xj ), (4.9)

which means that Eq. (4.3) fori and forj are compatible.
Next we show the compatibility condition

[Xi + Ã∗(xi; ũ), Xj + Ã∗(xj ; ũ)] = 0, (4.10)

which implies the consistency of Eqs. (4.4) fori and forj (i 6= j ). It is obvious from
(4.2) that

[Xi,Xj ] = 0. (4.11)

Because of (4.5), we have

[Xi, Ã∗(xj ; ũ)] = −
(
∂

∂ũ
Ã(xj ; ũ)

)∗
.

By the same argument as that for (3.27) the right-hand side is rewritten as

[Xi, Ã∗(xj ; ũ)] = − θ
′
11θ11(ũ+ xj )

2θ11(ũ)θ11(xj )
C̃∗(xj ; ũ)− θ ′

11θ11(ũ− xj )

2θ11(ũ)θ11(xj )
B̃∗(xj ; ũ). (4.12)

Exchangingi andj , we have

[Xj , Ã∗(xi; ũ)] = − θ
′
11θ11(ũ+ xi)

2θ11(ũ)θ11(xi)
C̃∗(xi; ũ)− θ ′

11θ11(ũ− xi)

2θ11(ũ)θ11(xi)
B̃∗(xi; ũ). (4.13)

The (1,1)-element of (4.6) means

[Ã∗(xi; ũ), Ã∗(xj ; ũ)] = −r̃13(xi, xj ; ũ)C̃∗(xi; ũ)− r̃12(xi, xj ; ũ)C̃∗(xj ; ũ)
+r̃31(xi, xj ; ũ)B̃∗(xi; ũ)+ r̃21(xi, xj ; ũ)B̃∗(xj ; ũ). (4.14)

Summing up (4.11), (4.12), (4.13) and (4.14), we have proved (4.10) because of (3.18).
The consistency of (4.4) fori and (4.3) forj is shown as follows. First assumei 6= j .

Then the same computation as above gives

[Xi + Ã∗(xi; ũ), B̃∗(xj ; ũ) = −
(
∂

∂ũ
B̃(xj ; ũ)

)∗
+ [Ã∗(xi; ũ), B̃∗(xj ; ũ)]

=
(
θ ′

11(xi − xj )

θ11(xi − xj )
− θ ′

11(xi)

θ11(xi)

)
B̃∗(xj ; ũ)− θ ′

11θ(xi − xj − ũ)

θ11(xi − xj )θ11(ũ)
B̃∗(xi; ũ). (4.15)
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Thus we have proved the compatibility of (4.4) fori and (4.3) forj . Here we used

∂

∂ũ
B̃(xj ; ũ) = −θ

′
11θ11(xj + ũ)

θ11(xj )θ11(ũ)
Ã(xj ; ũ)+ θ ′

11(xj )

θ11(xj )
B̃(xj ; ũ), (4.16)

and the (1,2)-element of (4.6).
The casei = j is almost the same, but there is another term coming from

[Xi, B̃∗(xi; ũ)]:
[Xi + Ã∗(xi; ũ), B̃∗(xi; ũ)] =

= ∂

∂u

∣∣∣∣
u=xi
B̃∗(u; ũ)−

(
∂

∂ũ
B̃(xi; ũ)

)∗
+ [Ã∗(xi; ũ), B̃∗(xi; ũ)]. (4.17)

By the same computation as (3.28), it follows from the (1,2)-element of (4.6) that

[Ã∗(xi; ũ), B̃∗(xi; ũ)] =
= θ ′

11(ũ)

θ11(ũ)
B̃∗(xi; ũ)− θ ′

11θ11(xi + ũ)

θ11(xi)θ11(ũ)
Ã∗(xi; ũ)− ∂

∂u

∣∣∣∣
u=xi
B̃∗(u; ũ). (4.18)

Substituting (4.18) and (4.16) forj = i into (4.17), we obtain

[Xi + Ã∗(xi; ũ), B̃∗(xi; ũ)] =
(
θ ′

11(ũ)

θ11(ũ)
− θ ′

11(xi)

θ11(xi)

)
B̃∗(xi; ũ), (4.19)

which proves the consistency of (4.4) fori and (4.3) fori. ut

4.2. Separating operator.The separating integral operatorK is defined by (4.1) with
the kernel function8(x|y) satisfying Eqs. (4.3) and (4.4).

Proposition 4.2. (i) For any functionf of (y1, . . . , yN) in V1 ⊗ · · · ⊗ VN , we have

K(B̃(xi; ũ)f ) = 0, (4.20)

K(−Ã(xi; ũ)f ) = Xif. (4.21)

(ii) The elliptic Gaudin Hamiltonian̂τ(u) with the spectral parameter fixed tou = xi
is transformed as follows.

K(τ̂ (xi)f )(x) = X2
j K(f )(x), (4.22)

whereXi is defined by (4.2).

Proof. (i) is a direct consequence of (4.3) and (4.4) respectively.
(ii) By Definition (2.9),

K(τ̂ (xi)f )(x) =
1

2

∫
8(x|y) ((2Ã(xi; ũ)2 + B̃(xi; ũ)C̃(xi; ũ)+ C̃(xi; ũ)B̃(xi; ũ))f (y)

)
dy

=
∫
(Ã∗(xi; ũ))28(x|y) f (y) dy +

∫
C̃∗(xi; ũ)B̃∗(xi; ũ)8(x|y) f (y) dy

+1

2

∫
[B̃∗(xi; ũ), C̃∗(xi; ũ)]8(x|y) f (y) dy. (4.23)
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The first term in the right-hand side of (4.23) is rewritten by the following formula:

(Ã∗(xi; ũ))28(x|y) = −Ã∗(xi)Xi8(x|y)
= X2

i 8(x|y)+ [Xi, Ã∗(xi)]8(x|y), (4.24)

where we used (4.4). The last term of (4.24) is

[Xi, Ã∗(xi; ũ)] = ∂

∂u

∣∣∣∣
u=xi

Ã∗(u; ũ)− ∂

∂ũ

∣∣∣∣
u=xi

Ã∗(u; ũ) (4.25)

becausẽu = ∑
zn −∑

xi . Hence, similarly to the derivation of (4.12), we can prove
that

[Xi, Ã∗(xi; ũ)] = ∂

∂u

∣∣∣∣
u=xi

Ã∗(u; ũ)− θ ′
11θ11(ũ+ xi)

2θ11(ũ)θ11(xi)
C̃∗(xi; ũ)

− θ ′
11θ11(ũ− xi)

2θ11(ũ)θ11(xi)
B̃∗(xi; ũ). (4.26)

The(2,3)-element of the commutation relation (4.6) gives

[B̃(u; ũ), C̃(u; ũ)] = 2Ã′(u; ũ)− θ ′
11θ11(u− ũ)

θ11(ũ)θ11(u)
B̃(u; ũ)

− θ ′
11θ11(u+ ũ)

θ11(ũ)θ11(u)
C̃(u; ũ) (4.27)

in the limit v → u. Substituting (4.24), (4.26) and (4.27) into (4.23) and using (4.3), we
obtain (4.22). ut

Equation (4.20) is a quantum version of (3.10) and Eq. (4.21) together with the canoni-
cal commutation relation[Xi, xj ] = δij means that operators(x1, . . . , xN ;X1, . . . , XN)

are the quantization of the classical separated variables in Sect. 3.2.
The second statement of Proposition 4.2 provides a formal separation of variables

for the quantum elliptic Gaudin model. Using the language of [8] and [9], the kernel
8(x|y) provides a Radon–Penrose transformation of the correspondingD-modules (cf.
[15]).

In principle, the quantum separation of variables should result in a one dimensional
spectral problem for the separated equation (4.22) which is equivalent to the spectral
problem for the original Hamiltonians (2.16). To achieve this goal one needs to specify
an integration contour in (4.1) to study in detail the action of the integral operatorK
on the functional spaceV . Here we examine only the simplest caseN = 1, leaving the
general case for further study.

5. Quantum System: CaseN = 1

In this section we examine the special case ofN = 1. In this case, everything can
be computed explicitly and we shall see that the separated equation is nothing but the
classical Lamé equation and its generalization.

We adopt the realization of the representationρ` of sl2 on the space of elliptic
functions reviewed in Appendix B. We could use the standard realization on the space of
sections of a line bundle overP

1, but the result is essentially the same up to coordinate
transformation and gauge transformation. We omit the suffixn of zn andSan for brevity.



Elliptic Gaudin Model 29

5.1. Separated variables.The quantum twistedB operatorB̃(u; ũ) = B̃(u; ũ) is defined
as in the classical case (3.3) or (3.2). Substituting (2.1) we obtain

B̃(u; ũ) = θ ′
11

2θ11(u)θ11(ũ)θ11(u− z)

(
θ10(u− z)θ10(u+ ũ)S1

− θ00(u− z)θ00(u+ ũ)iS2 − θ01(u− z)θ01(u+ ũ)S3
)
. (5.1)

The realization of the representation (B.2) gives the following expression:

B̃(u; ũ) = B̃(1)(u; ũ) d
dy

+ B̃(0)(u; ũ), (5.2)

where

B̃(1)(u; ũ) = θ11(u)
−1θ11(ũ)

−1θ11(u− z)−1θ11(2y)
−1

× θ10

(
y + u− z

2
+ ũ

2

)
θ10

(
y − u+ z

2
− ũ

2

)

× θ10

(
−y − z

2
− ũ

2

)
θ10

(
−y + z

2
+ ũ

2

)
, (5.3)

B̃(0)(u; ũ) = 2`θ ′
11

2θ11(u)θ11(ũ)θ11(u− z)θ11(y)2

(
θ11(u+ ũ)θ11(u− z)θ11(y)

2

+ 2θ10

(
y + u− z

2
+ ũ

2

)
θ10

(
−y + u− z

2
+ ũ

2

)
θ10

(
− z

2
− ũ

2

)2)
. (5.4)

A special point in the caseN = 1 is that we can make use of the freedom ofũ so that
B̃(u; ũ) is a multiplication operator with the divisor of the form,

div(B̃(u; ũ)) = [x] + [z] − [z] − [0] = [x] − [0] (mod Z + τZ), (5.5)

as in the classical case, (3.8), (3.9). In fact, if we putũ = −z± 2y + 1, B̃(1)(u; ũ) = 0
by virtue of (5.3), and then (5.4) implies

B̃(u; ũ)|ũ=−z±2y+1 = 2`θ ′
11θ11(u− z± 2y)

−2θ11(u)θ11(−z± 2y)
. (5.6)

(We substitute the variable “from the left”, namely we define

B̃(u; ũ)|ũ=−z±2y+1 = B̃(1)(u; −z± 2y + 1)
d

dy
+ B̃(0)(u; −z± 2y + 1).

Hereafter we always follow this normal ordering convention.) Therefore we can take
x = z∓ 2y in (5.5). This is the one of the “separated variables” in this case.

In the classical model, Theorem 3.1,−Ã(x; ũ) is a dynamical variable canonically
conjugate tox. This is also the case in the quantum model. The definition ofÃ, (3.3), is
rewritten in the form

Ã(u; ũ) = θ ′
11

2θ11(u)θ11(ũ)θ11(u− z)

(
θ−1

10 θ10(u− z)θ10(u)θ10(ũ)S
1

− θ−1
00 θ00(u− z)θ00(u)θ00(ũ)iS

2 − θ−1
01 θ01(u− z)θ01(u)θ01(ũ)S

3
)

(5.7)
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by (2.1). Substituting̃u = −z± 2y + 1 andu = x = z∓ 2y (from the left), we obtain

Ã(u; ũ)|u=z∓2y,ũ=−z±2y+1 =
= ±1

2

(
d

dy
+ 2`

(
θ ′

11θ10(2y)

θ10θ11(2y)
+ θ ′

11θ00(2y)

θ00θ11(2y)
+ θ ′

11θ01(2y)

θ01θ11(2y)

))

= ±1

2

(
d

dy
− `

℘′′(y)
℘′(y)

)
. (5.8)

The last equality can be proved by comparing the poles of both sides. Thereforex =
z ∓ 2y andX := −Ã(u; ũ)|u=z∓2y,ũ=−z±2y+1 are the canonical conjugate variables
satisfying,

[X, x] = 1. (5.9)

We did not make use of the formulation in the previous sections explicitly. In fact, thanks
to the special choice of̃u,8 in (4.1) is aδ-function type kernel, which reduces the integral
operatorK to a coordinate transformation operator fromy to x.

5.2. Solving the spectral problem.For the caseN = 1, the generating function of the
quantum integrals of motion̂τ(u) (u is the spectral parameter)

τ̂ (u) = 1

2

3∑
a=1

wa(u)
2(ρ(`)(Sa))2 (5.10)

is explicitly written down. Here we shift the spectral parameter in the original definition
(2.9) asu 7→ uz and setz = 0 for the sake of simplicity. Using (B.2) or (B.6) and various
identities of elliptic functions in [13], we can expand the right hand side of (5.10):

τ̂

(
y,

d

dy
,
d2

dy2 ; u
)

= 1

4

(
d2

dy2 − 2`
℘′′(y)
℘′(y)

d

dy
+ 4`(2`− 1)℘ (y)+ 4`(`+ 1)℘ (u)

)
(5.11)

or

τ̂

(
η,

d

dη
,
d2

dη2 ; λ
)

= (η − e1)(η − e2)(η − e3)

×
(
d2

dη2 + 1 − 2`

2

(
1

η − e1
+ 1

η − e2
+ 1

η − e3

)
d

dη
+

+ `(2`− 1)η + `(`+ 1)λ

(η − e1)(η − e2)(η − e3)

)
, (5.12)

whereλ = ℘(u).
As is expected from Proposition 4.2 and the result for the rational Gaudin model in

[6], operatorτ̂ (u) is factorized as follows when the spectral parameteru is fixed to a
separated variablex1 = 2y. (We may also takex1 = −2y.):

τ̂

(
y,

d

dy
,
d2

dy2 ; u
)∣∣∣∣
u=2y

= (−Ã(u; ũ)|u=2y,ũ=2y+1
)2 = X2, (5.13)
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which immediately follows from (5.7). (The operatorX is defined before (5.9).) This is
consistent with the general result (4.22).

Equations (5.11) or (5.12) show that the spectral problem of the elliptic Gaudin model
with N = 1 is an ordinary differential equation of second order on the elliptic curve
C/Z + τZ:

τ̂

(
y,

d

dy
,
d2

dy2 ; u
)
ψ(y) = t (u)ψ(y), (5.14)

or on the projective lineP1(C):

τ̂

(
η,

d

dη
,
d2

dη2 ; λ
)
ψ(η) = t (λ)ψ(η). (5.15)

Heret (u), t (λ) are eigenvalues of̂τ , ψ ∈ V (`) is an eigenvalue corresponding to this
eigenvalue. Since operatorsτ̂ (u) andUα commute with each other by virtue of (B.12,
B.13) and (5.10), we can decompose each eigenspace ofτ̂ (u) into those ofUα.

Equation (5.14) has regular singularities:u = 0 (mod0) with exponents−4`,
−2` + 1, andu = ωα (α = 1,2,3, ω1 = 1, ω2 = τ , ω3 = 1 + τ ) with exponents 0,
2`+ 1. Equation (5.15) has regular singularities:η = eα with exponents 0,(2`+ 1)/2,
andη = ∞ with 1

2 − `, −2`.
If ` is an integer, these equations are ordinary Lamé equations, while for` ∈ 1

2+Z they
are generalized Lamé equations studied by Brioschi, Halphen and Crawford. Following
the classical theory of Lamé functions (see [13, Chap. XXIII]), we can solve the spectral
problem (5.14), (5.15) inV (`) as follows.

5.2.1. Casè ∈ Z. We want a solutionψ(η) of (5.15) such thatψ(η) ∈ V (`). Let us
assume thatψ(η) is expanded around the singular pointeα as

ψ(η) =
∞∑
r=0

aαr (η − eα)
2`−r , (5.16)

a0 being 1. The conditionψ(η) ∈ V (`) means thataαr = 0 for r > 2`. Substituting
(5.16) into (5.15), we obtain the following recursion relation:

r(`+ 1
2 − r)aαr =

((
`(2`− 1)− 3(r − 1)(2`− r + 1)

)
eα + E

)
aαr−1

+ (2`− r + 2)

(
`− r + 3

2

)
(eα − eβ)(eα − eγ )a

α
r−2 (5.17)

for r > 0 whereE = `(` + 1)λ − t (λ). (Undefined coefficientsaαr for r < 0 are 0.)
Hence, as a function ofE, aαr = aαr (E) is a polynomial of degreer of the form

aαr (E) = ArE
r +O(Er−1), Ar =


r! r∏

j=1

(
`− r − 1

2
+ j

)
−1

. (5.18)

Let us denote the roots ofaα2`+1(E) = 0 by Eαi (i = 1, . . . ,2` + 1). The recursion
relation (5.17) impliesaαr (E

α
i ) = 0 for r ≥ 2` + 1. Hence we obtain a polynomial
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solutionψ(η) = ψ(η;Eαi ) of (5.15) of the form (5.16) for eachi = 1, . . . ,2` + 1,
provided that

t (λ) = `(`+ 1)λ− Eαi . (5.19)

Conversely, ifψ(η) ∈ V (`) is a solution of the spectral problem (5.15), then there
exists certaini for eachα = 1,2,3 such thatψ(η) = ψ(η;Eαi ). This is proved by
expanding the polynomialψ(η) as in (5.16) and tracing back the above argument.

Proposition 5.1. Assume thatω2 = τ is pure imaginary and that parameterszn are all
real numbers. Then allEαi are real and the spectral problem (5.15) is non-degenerate.
NamelyEαi 6= Eαj for distinct i, j and the solutionsψ(η;Eαi ) span the spaceV (`). In

particularEαi (i = 1, . . . ,2`+ 1) for α = 1,2,3 coincide up to order, anda1
2`+1(E) =

a2
2`+1(E) = a3

2`+1(E). Hence we can omit the indexα for Eαi andaα2`+1(E).
Vectorψ(η;Ei) is an eigenvector ofUα with eigenvalue(−1)` if aα` (Ei) 6= 0 and

(−1)`+1 if aα` (Ei) = 0.

Proof. Under the assumptionτ ∈ iR, operatorτ̂ (u) (u ∈ R) is an hermitian operator
because of (B.11), and hence it is obvious thatEαi are real and thatψ(η;Eαi ) spanV (`).

In order to show non-degeneracy of the spectral problem (5.15) we have only to prove
thatE2

i are distinct with each other. Define

ã2
r (E) :=

{
a2
r (E), r < `+ 1,

(−1)r−la2
r (E), `+ 1 ≤ r ≤ 2`+ 1.

Then the leading coefficient ofã2
r is

ã2
r (E) = ÃrE

r +O(Er−1), Ãr = |Ar |. (5.20)

The recursion relation (5.17) is rewritten as

cr ã
2
r (E) = qr ã

2
r−1(E)− kr−2ã

2
r−2(E), (5.21)

where

cr = r|`+ 1
2 − r|,

qr = (
`(2`− 1)− 3(r − 1)(2`− r + 1)

)
eα + E, (5.22)

kr =
∣∣∣∣`− r + 3

2

∣∣∣∣ (2`− r + 2)(e1 − e2)(e2 − e3).

Sincee1 > e2 > e3 under the assumption of the proposition, we havecr > 0 andkr > 0.
This fact together withÃr > 0 (see (5.20)) implies that all the roots ofã2

r (E) are real
and distinct by Sturm’s theorem (see, e.g., Chap. IX, §§4–5, [16]). This proves the first
statement of the proposition.

The operatorsUα and τ̂ commute and each eigenspace ofτ̂ is one-dimensional.
Henceψ(η;Ei) is an eigenvector ofUα. Recall thatUα has eigenvalues(−1)` with
multiplicity `+ 1 and(−1)`+1 with multiplicity `. (See §B.2.) Ifaα` (Ei) 6= 0, then

Uαψ(η;Ei) = (−1)`ψ(η;Ei)
because of (B.15). Hence there are at most`+ 1 ofEi ’s such thataα` (Ei) 6= 0. In other
words, at least̀ of Ei ’s satisfyaα` (Ei) = 0. Sinceaα` (E) is a polynomial of degreè,
this proves the second statement of the proposition.ut
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5.2.2. Casè ∈ 1
2 + Z. As in the casè ∈ Z, we consider an expansion (5.16) of a

solutionψ(η) of the spectral problem (5.15), but this time we consider the series which
terminate atr = `− 1

2:

ψ(η) =
`−1/2∑
r=0

aαr (η − eα)
2`−r . (5.23)

They are parametrized by zeros of the polynomialaα
`+ 1

2
(E), {Eαi }i=1,...,`+ 1

2
as in the

previous case:ψ(η) = ψ(η;Eαi ).
Another set of solutions are obtained from this set by applying the operatorUα:

Uαψ(η;Eαi ) =
`− 1

2∑
r=0

aα
′
r (E

α
i )(η − eα)

r , (5.24)

sinceUα andτ̂ (u) commute.
The following proposition is proved in the same manner as Proposition 5.1.

Proposition 5.2. Assume thatω2 = τ is pure imaginary and that parameterszn are all
real numbers.

Then allEαi are real andEαi 6= Eαj for distincti, j .

The solutionsψ(η;Eαi ) andUαψ(η;Eαi ) span the spaceV (`). In particularEαi (i =
1, . . . , `+ 1

2) forα = 1,2,3coincide up to order, anda1
`+ 1

2
(E) = a2

`+ 1
2
(E) = a3

`+ 1
2
(E).

Hence we can omit the indexα for Eαi andaα
`+ 1

2
(E).

Vectorsψ(η;Ei)± Uαψ(η;Ei) are eigenvectors ofUα with eigenvalues∓i.
This proposition means that each eigenvalueEi degenerates with multiplicity two. It

was Crawford [17] who first found the relation of these two solutions (one is obtained
from the other by operatingU2) by the explicit expansions of type (5.23), (5.24). See
also p.578 of [13].

A. Notations

We use the notation for the theta functions with characteristics as follows (see [14]): for
a, b = 0,1,

θab(u; τ) =
∑
n∈Z

eπi(n+a/2)2τ+2πi(n+a/2)(u+b/2). (A.1)

Unless otherwise specified,θab(u) = θab(u; τ). We also use abbreviations

θab = θab(0), θ ′
ab = d

du

∣∣∣∣
u=0

θab(u). (A.2)

Quasi-periodicity properties of theta functions:

θab(u) = (−1)aθab(u+ 1) = eπiτ+2πiuθab(u+ τ). (A.3)

Parity of thetas:

θ00(−u) = θ00(u), θ01(−u) = θ01(u), θ10(−u) = θ10(u), θ11(−u) = −θ11(u).
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A.1. Weierstrass functions.Below we fixω1 = 1 andω2 = τ ,

σ(u) = u
∏
m,n6=0

(
1 − u

ωmn

)
exp

[
u

ωmn
+ 1

2

(
u

ωmn

)2
]
, (A.4)

whereωmn = mω1 + nω2,

ζ(u) = σ ′(u)
σ (u)

, ℘ (u) = −ζ ′(u),

σ (u+ ωl) = −σ(u)eηl(2u+ωl),
ζ(u+ ωl) = ζ(u)+ 2ηl,

℘ (u+ ωl) = ℘(u),

whereηl = ζ (ωl/2) , which satisfy

η1ω2 − η2ω1 = πi.

Sigma function is expressed by theta functions as follows:

σ(u) = ω1e
η1u

2/ω1
θ11(u/ω1)

θ ′
11

,

σ (−u) = −σ(u), ζ(−u) = −ζ(u), ℘ (−z) = ℘(u),

u ∼ 0 : σ(u) = u+O(u5), ζ(u) = u−1 +O(u3), ℘ (u) = u−2 +O(u2).

Other sigma functions are defined as follows:

σ00(u) = e−(η1+η2)u
σ
(
u+ ω1 + ω2

2

)
σ
(
ω1 + ω2

2

) = e
η1
ω1
u2 θ00(u/ω1)

θ00(0)
,

σ10(u) = e−η1u
σ
(
u+ ω1

2

)
σ
(
ω1
2

) = e
η1
ω1
u2 θ10(u/ω1)

θ10(0)
,

σ01(u) = e−η2u
σ
(
u+ ω2

2

)
σ
(
ω2
2

) = e
η1
ω1
u2 θ01(u/ω1)

θ01(0)
,

which satisfy
σg1g2(u+ ωl) = (−1)gl eηl(2u+ωl)σg1g2(u),

σg1g2(−u) = σg1g2(u), σg1g2(0) = 1.
Defininge1 = ℘(ω1/2), e2 = ℘((ω1 + ω2)/2), e3 = ℘(ω2/2), we have

σ 2
10(u)

σ 2(u)
+ e1 = σ 2

00(u)

σ 2(u)
+ e2 = σ 2

01(u)

σ 2(u)
+ e3 = ℘(u),

e1 + e2 + e3 = 0,

e1 − e2 =
(
π

ω1

)2

θ01(0)
4, e1 − e3 =

(
π

ω1

)2

θ00(0)
4, e2 − e3 =

(
π

ω1

)2

θ10(0)
4.

We also use normalized Weierstraß functions:

ζ11(u) = d

du
θ11(u), ℘11(u) = − d

du
ζ11(u). (A.5)
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B. Realization of Spin` Representations on an Elliptic Curve

We recall here the following realization of the spin` representation of the Lie algebra
sl2(C). Lete,f ,hbe the Chevalley generators and defineS1 = e+f ,S2 = −ie+if and
S3 = h. They satisfy the relation[Sa, Sb] = 2iSc for any cyclic permutation(a, b, c)
of (1,2,3) and represented by the Pauli matricesσa .

B.1. Spiǹ representations.The representation spaceV (`) is realized by

V (`) =
2⊕̀
k=0

C℘(y)k

= { even elliptic functionf (y) | div(f ) ≥ −4`(Z + τZ)}. (B.1)

The generatorsSa act on this space as differential operators of first order:

ρ(`)(S1) = θ10θ10(2y)

θ ′
11θ11(2y)

d

dy
+ 2`

θ10(y)
2

θ11(y)2
,

1

i
ρ(`)(S2) = θ00θ00(2y)

θ ′
11θ11(2y)

d

dy
+ 2`

θ00(y)
2

θ11(y)2
,

ρ(`)(S3) = θ01θ01(2y)

θ ′
11θ11(2y)

d

dy
+ 2`

θ01(y)
2

θ11(y)2
, (B.2)

or in terms of usual Weierstraß functions,

ρ(`)(S1) = a1

(
σ10(2y)

σ (2y)

d

dy
+ 2`(℘ (y)− e1)

)
,

ρ(`)(S2) = a2

(
σ00(2y)

σ (2y)

d

dy
+ 2`(℘ (y)− e2)

)
,

ρ(`)(S3) = a3

(
σ01(2y)

σ (2y)

d

dy
+ 2`(℘ (y)− e3)

)
, (B.3)

whereea = ℘(ωā/2) (ā = 1,3,2, ω1 = 1, ω2 = τ , ω3 = 1 + τ ) for a = 1,2,3
respectively and

a1 = 1√
e1 − e2

√
e1 − e3

, a2 = i√
e1 − e2

√
e2 − e3

, a3 = 1√
e2 − e3

√
e1 − e3

.

(B.4)

This realization is equivalent to the realization on the space of polynomials of degree
≤ 2` (or, sections of a line bundle onP1(C)),

e = x2 d

dx
− 2`x, f = − d

dx
, h = 2x

d

dx
− 2`x,

via a coordinate transformation,x = −θ01(y; τ/2)/θ00(y; τ/2), and a gauge transfor-
mation:

{polynomials inx} 3 ϕ(x) 7→
(
θ00(y; τ/2)
θ11(y; τ)2

)n
ϕ(x(y)) ∈ V (`).
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Note that this is also obtained by a gauge transformation from a quasi-classical limit of
the representation of the Sklyanin algebra on theta functions [18].

The following expression is obtained from the coordinate transformationη = ℘(y):

V (`) =
2⊕̀
k=0

Cηk, (B.5)

andSα acts onV (`) as

ρ(`)(Sα) = aα

(
((eα − eβ)(eα − eγ )− (η − eα)

2)
d

dη
+ 2`(η − eα)

)
. (B.6)

Let us assume thatτ is a pure imaginary number. Then, as is well known (see, e.g.,
[13]), ea are real numbers ande1 > e2 > e3. This implies thata1 anda3 are real, while
a2 is purely imaginary.

We introduce the following hermitian form in this representation space: for elliptic
functionsf (y), g(y) belonging toV (`) defined by (B.1), we define

〈f, g〉 :=
∫
C

f (ȳ2) g(y1) µ(y1, y2), (B.7)

where the 2-cycleC is defined by

C := {(y1, y2) ∈ (C/0)2, y2 = ȳ1},
and the 2-formµ(y1, y2) is defined by

µ(y1, y2) := (e1 − e2)
2(`+1)(e2 − e3)

2(`+1)

× σ(2y2)σ (y2)
4`σ (2y1)σ (y1)

4`

σ00(y2 − y1)2(`+1)σ00(y2 + y1)2(`+1)

dy2 ∧ dy1

4i
(B.8)

=
(

1 + (℘ (y2)− e2)(℘ (y1)− e2)

(e1 − e2)(e2 − e3)

)−2(`+1)
℘′(y2)℘

′(y1)dy2 ∧ dy1

4i
.

This is nothing but a twisted version of the inner product introduced in [18]. If we take
the description ofV (`) of the form (B.5), this hermitian form is expressed as follows:

〈f, g〉 :=
∫

C

f (η̄) g(η) µ(η, η̄), (B.9)

where the 2-formµ(η, η̄) is defined by

µ(η, η̄) :=
(

1 + (η̄ − e2)(η − e2)

(e1 − e2)(e2 − e3)

)−2(`+1)
dη̄ ∧ dη

2i
.

An orthogonal basis with respect to this inner product is given by{(η − e2)
j }j=0,...,2`:

〈(η − e2)
j , (η − e2)

k〉 = 2π
(2j)!!(4`− 2j)!!

(4`+ 2)!! (e1 − e2)
j+1(e2 − e3)

j+1δjk. (B.10)

The generatorsSa of the Lie algebrasl2 act on the spaceV (`) as self-adjoint operators:

〈ρ(`)(Sa)f, g〉 = 〈f, ρ(`)(Sa)g〉. (B.11)

This was first proved in [18], but we can check it directly by using formula (B.10).
Hence, ifu and zn are real numbers, the operatorτ̂ (u) defined by (2.9) and the

integrals of motionHn defined by (2.16) are hermitian operators on the Hilbert spaceV

with respect to〈·, ·〉.
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B.2. Involutions.There are involutive automorphisms of the Lie algebrasl2 defined by

Xa(S
b) = (−1)1−δabSb. (B.12)

These automorphisms are induced on the spin` representations as

Xa(S
b) = U−1

a SbUa, (B.13)

where operatorsUa : V (`) → V (`) are defined by

(U1f )(y) = eπi`
(

℘(y)− e1√
e1 − e2

√
e1 − e3

)2`

f
(
y + ω1

2

)
,

(U2f )(y) = e2πi`
(

℘(y)− e2√
e1 − e2

√
e2 − e3

)2`

f

(
y + ω1 + ω2

2

)
, (B.14)

(U3f )(y) = e−πi`
(

℘(y)− e3√
e1 − e3

√
e2 − e3

)2`

f
(
y + ω2

2

)
,

for a elliptic functionf (y) ∈ V (`) (cf. [18]). They satisfy commutation relations

U2
α = (−1)2`, UαUβ = (−1)2`UβUα = Uγ

for any cyclic permutation(α, β, γ ) of (1,2,3). The action of these operators on the
bases{(η − eα)

j }j=0,...,2` is:

U1(η − e1)
j = eπi`(e1 − e2)

j−`(e1 − e3)
j−`(η − e1)

2`−j ,
U2(η − e2)

j = eπi(2`−j)(e1 − e2)
j−`(e2 − e3)

j−`(η − e2)
2`−j , (B.15)

U3(η − e3)
j = e−πi`(e1 − e3)

j−`(e2 − e3)
j−`(η − e3)

2`−j .

Hence eigenvalues ofUa are(−1)` with multiplicity `+1 and(−1)`+1 with multiplicity
` if ` is an integer, and±i both with multiplicity`+ 1

2 if ` is a half of an odd integer.
Whenω1 = 1 andω2 is a pure imaginary number, these operators are unitary with

respect to the hermitian form (B.7).
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