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Abstract: We consider a minimal scalar in the presence of a three-brane in ten di-
mensions. The linearized equation of motion, which is just the wave equation in the
three-brane metric, can be solved in terms of associated Mathieu functions. An exact
expression for the reflection and absorption probabilities can be obtained in terms of
the characteristic exponent of Mathieu’s equation. We describe an algorithm for obtain-
ing the low-energy behavior as a series expansion, and discuss the implications for the
world-volume theory of D3-branes.

1. Introduction

One of the intriguing aspects of Ramond–Ramond solitons in string theory is the exis-
tence of two alternative descriptions, one in terms of supergravity [1] and the other in
terms of Dirichlet branes (D-branes) [2]. The description in terms of D-branes is essen-
tially perturbative in nature: each boundary picks up a factor ofgN , which is the square
of the open string coupling times a Chan–Paton factor. As realized in [3], the low-energy
dynamics ofN coincident D-branes is dictated by maximally supersymmetric gauge
theory with gauge groupU(N), andgN is recognized as the ’t Hooft parameter.

That the gauge theory and supergravity descriptions should be related was implicit in
much early work on absorption and Hawking emission (see for example [4, 5]).A precise
formulation of the duality between the two descriptions was conjectured recently in [6] by
taking the so-called “decoupling limit”. The simplest example comes from considering
D3-branes in the type IIB theory. In the decoupling limit one obtains a duality between
N = 4 supersymmetric Yang-Mills theory in four dimensions and string theory on the
near horizonAdS5 × S5 background [6]. TheAdS5 and theS5 have the same radius of
curvatureR, whereR4 = 4πgNα′2.

It is difficult to find non-trivial checks of the duality because it relates two things
that are rather poorly understood away from certain limits. On theAdS side, it is widely
felt that the supergravity description should be capable of being elevated to a full closed
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string theory description, similar to non-linear sigma models; but it is not understood how
to include Ramond–Ramond backgrounds in a non-linear sigma model.1 We must for
the present content ourselves with the supergravity limit. The validity of this limit relies
on having a large numberN of coincident branes, with a small closed string coupling
g, but largegN . LargegN is exactly where the gauge theory is difficult to deal with:
after ’t Hooft scaling, the Feynman rules associate a factorgN with each vertex, so for
generic amplitudes one must consider large graphs.

How then can we study the relation between the two dual descriptions concretely?
Aside from the calculation of entropy [9], one of the simplest quantities that can be
computed on both sides of the correspondence is the absorption cross-section of scalar
fields incident on the branes. Suppression of stringy correction on the supergravity side
relies on havingω

√
α′ � 1 and

√
α′/R � 1; butωR can be arbitrary, suggesting the

existence of a double scaling limit [5, 10]. Indeed, the wave equation for the fields prop-
agating in the supergravity background of branes depend ongN only in the combination
ωR. Remarkably, the leading order behavior in smallωR of the semi-classical cross-
section is reproduced by a tree level gauge theory calculation (leading order ingN ) [5,
10]. The relevant gauge theory amplitude apparently suffers no radiative corrections.
An argument for why this is so was advanced in [11] for graviton absorption, and other
examples have emerged in [12, 13].

A natural question which arises at this point is whether this pattern persists to higher
order inωR [14]. In order to address this question, one must examine higher order
corrections in both D-brane and supergravity computations. On the supergravity side,
a first step in this direction was taken in [15] where terms subleading by order(ωR)4

were examined. The coefficient of the(ωR)4 correction turns out to have a piece which
depends logarithmically inωR:

σ = κ2N2ω3

32π

[
1 + c′1(ωR)4 logωR + c1(ωR)

4 + O((ωR)8)
]

(1)

and the numerical value ofc′1 was found to be−1/6.
The goal of this paper is to describe an algorithm for computing the absorption cross-

section as a power series expansion inωR to all orders. The absorption cross-section is
determined by comparing the flux of incident partial waves at the asymptotic region and
the near horizon region. We are therefore interested in finding the solution to the wave
equation of scalar fields in the background of the D3-brane metric. It turns out that the
wave equation in question is equivalent to Mathieu’s modified differential equation2

[
∂2

∂z2 + 2q cosh 2z− a

]
ψ(z) = 0 (2)

under appropriate change of variables and field redefinitions. The exact solution of
Mathieu’s modified differential equation is known in the form of power series expansion
with respect toq. From this, we can read off the absorption cross-section. For reviews
of Mathieu functions see [16–20]. In view of the relative obscurity of these functions,
most of the relevant details will be included in our exposition.

1 See however [7, 8] for interesting recent work on including Ramond–Ramond fields in a world-sheet
formulation.

2 The usual form of Mathieu’s equation is obtained from 2 via the replacementz → iz.
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First, let us see how Mathieu’s modified equation arises from the wave equation of
scalar fields. The supergravity background for the D3-brane has the simple form [1]

ds2 = H−1/2(−dt2 + dx2‖ )+H 1/2dx2⊥

as well as some RR 4-form background, where

H = 1 + R4

r4 , R4 = 4πgNα′2 = Nκ

2π5/2
.

For scalar fields decoupled from the RR 4-form (the example we will always have in
mind is the dilaton), the equation of motion is simply

1√
g
∂µ

√
ggµν∂νφ = 0.

The radial wave equation for thelth partial wave of energyω which follows from this
equation is

[
∂2

∂r2 + 5

r

∂

∂r
− l(l + 4)

r2 + ω2
(

1 + R4

r4

)]
φ(l)(r) = 0. (3)

In order to relate (3) to Mathieu’s equation alluded to earlier, one performs the following
change of variables:

r = Re−z, φ(r) = e2zψ(z).

In terms of these new variables, Eq. 3) reads

[
∂2

∂z2 + 2(ωR)2 cosh 2z− (l + 2)2
]
ψ(z) = 0, (4)

which is precisely of the form (2) forq = (ωR)2 anda = (l + 2)2. Note that we have
reduced the problem of particle absorption by three-branes to the computation of the
tunnelingS-matrix for a one-dimensional Schrödinger equation.3

The rest of the paper is organized as follows. In Sect. 2 we present the method
for obtaining the absorption probability from Mathieu’s equation. This method will be
of primary interest to the mathematically oriented reader, but those concerned with the
string theory implications may wish to skip directly to the final answer, (34). Section 3 is
concerned with the world-volume interpretation of this probability. Section 4 concludes
with a brief discussion. The appendix includes some formulas judged too cumbersome
to include in the main text.

3 As an aside we note that the equations of motion for supergravity fields other than minimal scalars
generically do not lead to the Mathieu equation. For example, the fixed scalar considered in [15] experiences a
“transmutation of angular momentum”, in the sense that the low-energy radial function at infinity and near the
horizon are Bessel functions of different orders. To put it differently, the potential function in the Schrödinger
operator is asymmetric.
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2. Cross-Sections from Mathieu Functions

Mathieu functions arise in the study of a variety of physical problems: for example, the
solution of the flat-space Laplace equation in elliptical coordinates; Bloch waves for
the potential cos 2x; the Faraday instability; classical motion of a driven pendulum; the
sine-Gordon model [21]; and, in the present context, as tunneling wavefunctions in the
potential− cosh 2z. Our analysis is an extension of [22], and our conventions will be a
hybrid of those of [16] and [22].

The so-called Floquet solutions of (2) can be expressed in the form

J (ν, z) =
∞∑

n=−∞
φ

(
n+ 1

2ν
)
e(2n+ν)z. (5)

These solutions are analogous to Bloch waves because of the property

J (ν, z+ iπ) = eiπνJ (ν, z). (6)

The quantityν is termed the Floquet exponent and is determined in terms ofa andq.
Clearly,J (ν,−z) is also a solution of (2) . SinceJ (ν,−z) acquires a phasee−iπν under
z → z+ iπ , J (ν,−z) is also a Floquet solution with exponent−ν. It follows that there
is a proportionality relation

J (−ν, z) ∝ J (ν,−z), (7)

which will become useful in the later discussions.
It is straightforward to see that (5) solves (2) if

φ(z+ 1)+ φ(z− 1) = z2 − r2

λ2 φ(z), (8)

where we have definedr = 1
2

√
a andλ = 1

2
√
q. A meromorphic functionφ was found

in [22] which satisfies the recursion relation (8) and in addition has the propertyφ → 0
as<z → ∞. Explicitly,

φ(z) = λ2z

0(z+ r + 1)0(z− r + 1)
v(z),

v(z) =
∞∑
n=0

(−1)nλ4nA(n)z ,

A(0)z = 1,

A
(q)
z =

∞∑
p1=0

∞∑
p2=2

. . .

∞∑
pq=2

az+p1az+p1+p2 · · · az+p1+...+pq ,

az = 1

(z+ r + 1)(z+ r + 2)(z− r + 1)(z− r + 2)
.

(9)

The value ofν = 2µ is determined by relation (7), which implies

φ(µ)

φ(µ− 1)
× φ(−µ+ 1)

φ(−µ) = 1. (10)
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The recursion relation (8) can be written in the form

V (z) = φ(z+ 1)

φ(z)
+ φ(z− 1)

φ(z)
= Gz+1 + 1

Gz
,

where we have definedV (z) = (z2 − r2)/λ2 andGz = φ(z)/φ(z − 1). Then, we can
express the first factor of (10) as a continued fraction:

φ(µ)

φ(µ− 1)
= Gµ = 1

V (µ)−Gµ+1
= 1

V (µ)−
1

V (µ+ 1)− · · · .

Similarly, the recursion relation (8) can be written in yet another form

V (z) = φ(−z+ 1)

φ(−z) + φ(−z− 1)

φ(−z) = Hz−1 + 1

Hz
,

where this time we have definedHz = φ(−z)/φ(−z− 1). Now we can also express the
second factor of (10) as a continued fraction:

φ(−µ+ 1)

φ(−µ) = Hµ−1 = 1

V (µ− 1)−Hµ−2
= 1

V (µ− 1)−
1

V (µ− 2)− · · · .

It is now straightforward to solve forµ order by order inλ. We simply substitute the
ansatz

ν = ν0 + ν1λ
4 + ν2λ

8 + · · ·
into (10) expressed in terms of the continued fractions. If we are only interested in the
value ofν to some finite order inλ, we can truncate the continued fraction by finite
iteration. In Eq. 46) of the appendix we give the first few terms of the series for the
partial wavesl = 0, l = 1, andl = 2.

There is a remarkable resummation of the Bloch wave expansion (5) in terms of
Bessel functions:4

J (ν, z) =
∞∑

n=−∞

φ
(
n+ 1

2ν
)

φ(ν/2)
Jn(

√
qe−z)Jn+ν(

√
qez). (11)

The expansion (11) is uniformly convergent everywhere and is convenient for extracting
the asymptotic behavior for large|z| [22, 19]. Forν /∈ Z, the Floquet solutionsJ (±ν, z)
are independent. It is useful, however, to consider other linear combinations,N(ν, z),
H(1)(ν, z), andH(2)(ν, z), in analogy with Bessel functions:

N(ν, z) = cosπν J (ν, z)− J (−ν, z)
sinπν

,

H(1)(ν, z) = J (ν, z)+ iN(ν, z) = J (−ν, z)− e−iπνJ (ν, z)
i sinπν

,

H(2)(ν, z) = J (ν, z)− iN(ν, z) = J (−ν, z)− eiπνJ (ν, z)

−i sinπν
.

(12)

4 We use a notational convention whereJν(z) with subscriptν denote Bessel functions whereasJ (ν, z)
with argumentν denote solutions to Mathieu’s equation (2).
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Some useful relations among the various solutions are

J (ν, z) = H(1)(ν, z)+H(2)(ν, z)

2
,

J (−ν, z) = eiπνH (1)(ν, z)+ e−iπνH (2)(ν, z)

2
.

(13)

Using (10) and the standard relationJ−n = (−1)nJn, it is straightforward to show that
solutions (12) also admit expansions in terms of Bessel functions, generalizing (11):

Z(j)(ν, z) =
∞∑

n=−∞

φ
(
n+ 1

2ν
)

φ(ν/2)
Jn(

√
qe−z)Z(j)n+ν(

√
qez). (14)

Here,Z(j) runs overJ ,N ,H(1), andH(2).These solutions are termed associated Mathieu
functions of the first, second, third, and fourth kinds.5 We will primarily be interested in
the third kind, since that is the one which describes tunneling from asymptotic infinity
into the three-brane.

The asymptotic behavior for<z → ∞ is manifest from the expansion (14):

Z(j)(ν, z) → Z(j)ν (
√
qez) as<z → ∞. (15)

The behavior for<z → −∞ is more difficult to decipher. The first step is to use (10) to
show that the constant of proportionality in (7) is preciselyφ(−ν/2)/φ(ν/2):

J (−ν, z) = φ(−ν/2)
φ(ν/2)

J (ν,−z). (16)

It is useful at this point to introduce the two quantities

η = eiπν χ = φ(−ν/2)
φ(ν/2)

. (17)

Now the behavior ofH(1)(z) as<z → −∞ can be investigated by using (12), (13) and
(16):

H(1)(ν, z) = 1

2i sinπν

[(
χ − 1

χ

)
H(1)(ν,−z)+

(
χ − e−2iπν

χ

)
H(2)(ν,−z)

]
.

(18)

Recalling the asymptotics

H(1)
ν (ξ) →

√
2

πξ
ei(ξ−

π
2 ν− π

4 )

H (2)
ν (ξ) →

√
2

πξ
e−i(ξ−

π
2 ν− π

4 )




as<ξ → ∞, (19)

5 We emphasize, however, that of these onlyJ (ν, z) is a Floquet solution.
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we obtain

√
η

(
η − 1

η

)
H(1)(ν, z) →




(
η− 1

η

) √
2

π
√
qez
ei(

√
qez−π4 ) for <z → ∞(

χ− 1
χ

) √
2

π
√
qe−z e

i(
√
qe−z−π4 )

+
(
ηχ− 1

ηχ

) √
2

π
√
qe−z e

−i(√qe−z−π4 ) for <z →−∞.

(20)

From (20) we read off the amplitudesA = χ − 1
χ

, B = χη − 1
χη

, andC = η − 1
η

for
the reflected, incident, and transmitted waves, respectively.

A consistency check on (20) is the unitarity relation,|B|2 = |A|2 + |C|2. One way
to prove this relation is to sendz → z+ iπ/2 so that the− cosh potential is inverted to
+ cosh. Clearly there are wavefunctions in this potential which are everywhere real and
exponentially decaying on one side (but not the other unlessa is an eigen-energy).6 In
fact,H(1)(z+ iπ/2) is just such a solution, up to a constant overall phase. HenceA/C

is pure imaginary. Now, 2 cosπν = η + 1
η

is always real for realq (a consequence of
Hill’s equation). Henceη is always either real or of unit modulus. The statement that
A/C is imaginary means that the same is true ofχ , and moreoverχ is real whenη is of
unit modulus and vice versa. The verification of unitarity,∣∣∣∣ηχ − 1

ηχ

∣∣∣∣
2

=
∣∣∣∣η − 1

η

∣∣∣∣
2

+
∣∣∣∣χ − 1

χ

∣∣∣∣
2

, (21)

is now straightforward. It proves easiest in practice to compute the absorption probability
from

P =
∣∣∣η − 1

η

∣∣∣2∣∣∣η − 1
η

∣∣∣2 +
∣∣∣χ − 1

χ

∣∣∣2 , (22)

but of course there are several equivalent alternative forms.
Following the methods of [22], it is straightforward though tedious to obtain a series

expansion ofχ in q. The first observation is that any formal sum

Aq =
∞∑

p1=−∞

∞∑
p2=2

. . .

∞∑
pq=2

tp1tp1+p2 · · · tp1+...+pq , (23)

where thetn are regarded as independent variables, can be written in terms of products of
single sums of products of thetn. A recursion relation is derived in [22] to demonstrate
this fact:

qAq =
∞∑

n=−∞

(
tn
∂Aq

∂tn

)

=
∞∑

n=−∞

[
tn − tn(tn−1 + tn + tn+1)

∂

∂tn
+ tn−1tntn+1

∂2

∂tn−1∂tn+1

]
Aq−1.

(24)

6 Incidentally, (20) provides an implicit equation for the eigen-energies of the+ cosh potential: namely
χ = ±1 for even/odd wavefunctions.
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Let us introduce the notation

S[α0, α1, . . . , αk] =
∞∑

n=−∞

k∏
j=0

t
αj
n+j , (25)

where theαj are natural numbers withα0 andαk nonzero.7 Then the mapH : Aq−1 →
qAq defined in (24) can be viewed formally as a linear operator on the infinite-di-
mensional vector space whose basis is 1 together with all possible products of the
S[α0, α1, . . . , αk].8 We have

Aq = 1

q!H
q(1), (26)

whereHq(1) is the operatorH actingq times on unity. Amusingly, the problem of
computing the generalization of the functionv in (9) to arbitrarytn at finiteλ is formally
identical to Euclidean evolution by the HamiltonianH :

v ≡
∞∑
q=0

(−λ4)qAq = e−λ4H (1). (27)

In Eq. (47) of the appendix we write out the first fourAq in terms of theS[α0, α1, . . . , αk].
Now let us specialize toAq = A

(q)
z by setting

tn =
{
az+n for n ≥ 0

0 otherwise.
(28)

The sumsS[α0, α1, . . . , αq ] then have the general form
∑∞
n=0

1
f (z+n) , wheref (z) is

a polynomial of degree 4
∑q
i=0 αi . Such sums can be performed explicitly in terms of

the functionψ(z) = 0′(z)/0(z) and its derivatives. The first step is to make a partial
fraction decomposition:

1

f (z)
=

∑
f (y)=0

∞∑
`=1

c
(`)
y

(z− y)`
. (29)

The first sum is over the roots off (z). For a rooty of multiplicity k, only the firstk of
the constantsc(`)y can be nonzero. Each term in the partial fraction decomposition makes
a contribution to the sum overn which can be read off from

ψ(z) = −C −
∞∑
n=0

[
1

z+ n
− 1

n+ 1

]
,

ψ(k)(z) = (−1)k+1k!
∞∑
n=0

1

(z+ n)k+1 .

(30)

7 Note that only questions of convergence stand in the way of extending the following discussion to arbitrary
real sequences

{
αj

}∞
j=−∞ modulo the equivalence relation

{
αj

}∞
j=−∞ ∼ {

αj+k
}∞
j=−∞ for integerk.

8 This space is reminiscent of the loop spaces encountered, for instance, in thec = 0 matrix model [23,
24]. In this analogy,H plays the role of the Fokker–Planck Hamiltonian.
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whereC = logγ ≈ 0.5772 is Euler’s constant. This leads to the sum

∞∑
n=0

1

f (z+ n)
=

∑
f (y)=0

∞∑
`=1

c(`)y
(−1)`

(`− 1)!ψ
(`−1)(z− y). (31)

The coefficientsc(1)y satisfy the relation

∑
f (y)=0

c(1)y = 1

2πi

∮
γ

dz

f (z)
= 0, (32)

whereγ is a contour that encloses all the roots off (z), ensuring that the divergences
from the various 1/(z− y) terms in the partial fraction decomposition cancel. In effect
this allows us to use the second line of (30) even atk = 0. Explicit expressions for the
first fewS[{αi}]’s are included in Eq. (48) of the appendix.

To complete the task of computing the absorption cross-section, we need to determine
the value ofχ = φ(−ν/2)/φ(ν/2). All that remains to be done now is to substitute the
expansion forν given in (46) into (9) and collect terms of given order inλ. Becauseν is
an integer plus powers ofλ, theψ functions can all be Taylor expanded around integers
or half-integers. To simplify the final expressions, it is useful to recall the relation ofψ

to the Riemann zeta functionζ(s) and its generalizationsζ(s, z):

ψ(1) = −C, ψ(k)(z) = (−1)k+1k!ζ(k + 1, z),

ζ(s, z+ 1) = ζ(s, z)− 1

zs
,

ζ(s,1) = ζ(s), ζ
(
s, 1

2

) = (2s − 1)ζ(s).

(33)

The final expressions for the absorption probability of thelth partial wave have the form

Pl = 4π2

(l + 1)!4(l + 2)2
(ωR/2)8+4l

∞∑
n=0

n∑
k=0

bn,k(ωR)
4n (

logωR̄
)k
, (34)

whereR̄ = eCR/2. The overall normalization has been chosen so thatb0,0 = 1. We
have computed the values of the first fewbn,k ’s for l = 0, l = 1, andl = 2 which we
summarize in Table 1. We find thatbn,k is rational forn− k < 2, whereas forn− k ≥ 2
it is a linear combination ofζ(2), ζ(3), . . . , ζ(n− k) with rational coefficients.

The absorption cross-section for thelth partial wave can now be computed from a
version of the Optical Theorem:

σl = 8π2/3

ω5
(l + 1)(l + 2)2(l + 3)Pl. (35)

The generalization of this formula to arbitrary dimensions was derived in [25].
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Table 1.Leading coefficientsbn,k for the expansion with respect toωR for the absorption cross-section (34)
of l = 0, l = 1, andl = 2 partial waves

l = 0 l = 1 l = 2

b1,1 − 1
6 − 1

24 − 1
60

b1,0
7
72

53
1152

19
800

b2,2
17
576

1
1152

1
7200

b2,1 − 161
4608 − 757

276480 − 821
1728000

b2,0
5561

663552− 11ζ(2)
576

261343
132710400− ζ(2)

4608
44071

103680000− ζ(2)
28800

b3,3 − 11
2592 − 1

82944 − 1
1296000

b3,2
623

82944
7

69120
479

103680000

b3,1 − 39037
9953280+ 49ζ(2)

6912 − 554911
3185049600+ ζ(2)

110592 − 1731599
174182400000+ ζ(2)

1728000

b3,0
1093099

2388787200− 1379ζ(2)
331776 + 65129557

764411904000− 1148018521
167215104000000−

+ 5ζ(3)
41472 − 101ζ(2)

2211840− ζ(3)
663552 − 479ζ(2)

414720000− ζ(3)
10368000

3. The World-Volume Dynamics

Let us now consider the world-volume interpretation for the case where the minimal
scalar is the dilaton. In the ’t Hooft limitg → 0,N → ∞ with gN fixed, quantum fluc-
tuations of bulk fields decouple and the dynamics is strictly on the brane world-volume.
The only sense in which bulk fields enter is as a source of world-volume fluctuations in
the form of a local operator. Thes-wave of the dilaton corresponds in the world-volume
theory to the operatorO which slides the gauge coupling. The absorption probability
Pl=0 then translates directly into the discontinuity of the cut in the two-point function
O through the formula [11]

Pl=0 = π3ω4R8

8iN2 Disc5(p2),

5(p2) =
∫
d4x eip·x5(x2),

(36)

where

5(x2) = 〈O(x)O(0)〉. (37)

The dynamics of the world-volume theory at leading order in energy is captured by
its superconformal limit in the infrared. To higher order in energy, however, one must
account for the effect of irrelevant perturbations which takes the theory away from the
fixed point. The correlator〈. . . 〉 is therefore taken with respect to some quantum effective
action which we will describe later in this section.

In (36) it should be noted that the discontinuity is taken across the cut positioned
along the positive real axis of the complexs = −p2 plane, evaluated ats = ω2.
Working backward, one can read off5(x2) from Pl=0, with the result

5(x2) = 3N2

π4x8

∞∑
n=0

n∑
k=0

cn,k

(
R2

x2

)2n (
log

R2

x2

)k
. (38)
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To obtainPl=0 from (38) we must specify a regularization scheme for the Fourier inte-
grals. The minimal scheme, following [26, 27], is to analytically continue the formula∫

d4x
eip·x

x2h = π2
(

4

p2

)2−h
0(2 − h)

0(h)
(39)

beyond its radius of convergence|h − 1| < 1 to a meromorphic function on the entire
complexh plane, and then read off the behavior near the poles at positive integerh by
matching terms in the Taylor expansions ina of∫

d4x
eip·x(µx)2a

x2n = π2
(

4

p2

)2−n (
4µ2

p2

)a
0(2 − n+ a)

0(n− a)
,

Disc
∫
d4x

eip·x(µx)2a

x2n = −
(

4

ω2

)2−n (
4µ2

ω2

)a
2π3i

0(n− a)0(n− a − 1)
.

(40)

For the expansions ina one uses

(µx)2a =
∞∑
n=0

an

n! (logµ2x2)n,

log0(1 + a) = 1
2 log

πa

sinπa
− Ca −

∞∑
n=1

a2n+1

2n+ 1
ζ(2n+ 1).

(41)

Upon setting the energy scaleµ = 1/R one obtains thecn,k as numbers involvingζ(s)
in the same way as thebn,k: explicitly,

c0,0 = 1, c1,1 = −320, c2,2 = 571200,

c1,0, = −1024, c2,1 = 4408560, (42)

c2,0 = 14

3
(1422697− 12000π2).

One can formally define a dimension1 for the operatorO in 37 through a version of
the Callan-Symanzik equation:[

x
∂

∂x
+ 21

]
5(x2) = 0. (43)

ForR4/x4 � 1, this results in a series of the same form as (38):

1 =
∞∑
n=0

n∑
k=0

1n,k

(
R2

x2

)2n (
log

R2

x2

)k

= 4 − 64
R4

x4

(
37+ 10 log

R2

x2

)
+ . . . .

(44)

The challenge at this point is to reproduce (38) and its generalizations to higher partial
waves through a quantum field theory analysis. As we mentioned earlier in this section,
this requires a knowledge of the world-volume dynamics beyond the superconformal
limit in the infrared. In principle, this theory is well defined as a low-energy effective
action of the full string theory. At present, however, no concrete formulation of this
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effective theory is known. Therefore, instead of trying to reproduce (38), we can attempt
to learn about this effective theory from the data provided by (38).

The leading term has precisely the form one expects in a conformal theory. The
leading correction,R

4

x4 log R2

x2 , has the form one would obtain by perturbing the con-
formal field theory by a dimension eight operator. It was speculated in [15] that this
correction and perhaps the full semi-classical cross-section would eventually find its
world-volume explanation in the non-abelian Dirac–Born–Infeld (DBI) action, with the
symmetrized trace prescription proposed in [28] to pick out the leading correction at
dimension eight (Tr[F 4]), rather than dimension six (Tr[F 3]) as one would expect from
other prescriptions.

However, the DBI action arises from summing disc diagrams, so it defines a classical
field theory, and in no way captures the effect of a resummation of infinite insertions of
boundaries in the largegN limit. Furthermore, the non-renormalizability of the action
makes it impossible to proceed to the quantum theory from a knowledge of the tree-level
amplitudes alone, as was the standard strategy in deriving low-energy renormalizable
quantum field theories from string theory. We require some further input from the string
theory.

It was conjectured in [29, 30] that all operators in the gauge theory except those
in short multiplets acquire large anomalous dimensions in the strong ’t Hooft coupling
limit, and perhaps even decouple from the operator algebra.9 The supergravity fields
corresponding to the operators in short multiplets have been tabulated in [31]. Inspection
of this table reveals that the only scalarSO(6) singlet operators are the renormalizable
lagrangianO4 (coupling to thes-wave of the dilaton) and a dimension eight operatorO8
which couples to uniform dilations of theS5 part of the near-horizon geometry. There is
also a dimension four pseudo-scalar which couples to the axion, which we shall ignore
in the following.

On the grounds of group theory and large anomalous scaling dimensions, we are then
led to the tentative conclusion that the effective lagrangian for the low-energy dynamics
at largegN is

L = O4 + R4O8. (45)

The relation to DBI is merely that the low-energy effective lagrangian of the same
system at smallgN is the DBI action. On this view, the phrase “DBI action” must be
interpreted in [15] (and in the many other papers in the literature, e.g. [32], where it was
invoked in the context of an effective world-volume theory of D-brane black holes) as
a metonym for its strong-coupling relative. Equation (45) is a fantastic simplification
over the still incompletely known non-abelian DBI action. But in a way it is no less
problematical as a specification of a quantum theory. The natural interpretation of (45)
is as the Wilsonian effective action with cutoff on the orderR.10 The difficulties with this
approach include pinning down the normalization ofO8 at a given cutoff, defining an
appropriate regularization scheme which allows one to recover maximal supersymmetry,
and the apparent vanishing of〈O4O4O8〉 in theAdS/CFT prescription to leading order
in largegN .

Nevertheless, let us try to argue that (45) at least has the potential to reproduce all
the correction terms in (38). Following [15], we can consider as a toy model freeU(1)

9 We thank T. Banks for a discussion on this point.
10 If the cutoff3 is made arbitrary, then one must introduce a couplingλ(3) in front of O8 which runs

precisely in order to keep the physical observables, e.g. correlation functions, invariant with respect to the
change in the choice of the cut-off.
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Fig. 1.A diagram withn quartic vertices contributing at orderO(R4n)

gauge theory with anF 4 interaction. From graphs such as the one in Fig. 1, one indeed
obtains a(R4/x4)n(logR2/x2)n correction to the two-point function. It is fascinating
that the final forms (34) and (38) of the absorption probability and two-point function
are so simple and suggestive of Feynman integrals, regulated at the scaleµ = 1/R.
For smallωR, it seems that the perturbative expansion around the conformal limit may
be better defined than we have any right to expect based on previous experience with
non-renormalizable divergences in quantum field theories. Quite remarkably, one type
of interaction alone is sufficient to reproduce the form of (38). This might indeed be a
consequence of superconformal invariance and the decoupling of non-chiral operators in
the largegN limit severely restricting the dynamics away from the infrared fixed point.
We regretfully leave a more detailed study for future work.

4. Discussion

The biggest obstacle to finding evidence for the conjectured throat-brane equivalence
[6, 29, 30] betweenN = 4 super Yang-Mills theory and supergravity onAdS5 × S5 is
that supergravity’s validity is restricted to the region of strong ’t Hooft coupling, where
gauge theory calculations are difficult. Let us adopt units where the radius ofS5 is 1.
Briefly, since 1/α′ ∼ gYM

√
N in these units, theα′ corrections to the supergravity action

are important except in the limit of largegYM
√
N . For example, the supergravity fields

onAdS5 (with Kaluza Klein masses on the order 1/R) are much lighter than massive
string states (with masses on the order 1/

√
α′) only in this limit. The corresponding non-

chiral fields in the gauge theory “freeze out” on account of an anomalous dimension on
the order(gYM

√
N)1/2 [29]. LargeN can be regarded as a separate requirement: since

powers ofκ ∼ 1/N suppress quantum loop corrections to supergravity, the identification
of the classical supergravity action with the generator of connected Green’s functions
can only capture the leading largeN asymptotics.

To proceed to finite or smallgYM
√
N seems difficult without some profound new

insight into the description of string theory in Ramond–Ramond backgrounds.Any hope
of systematic perturbative field theory evidence in favor of the throat-brane conjecture
would seem to depend on finding some other small coupling parameter. The only can-
didate seems to beωR, whereω is the energy of a given process (i.e. absorption). As
a first step in investigating a possible perturbation expansion inωR, we have given an
algorithm, which can be readily implemented on a computer, for extracting the absorp-
tion cross-section of a minimal scalar in an arbitrary partial wave. The notion [15, 33]
that the DBI action of D3-branes can in any meaningful way “holograph” supergravity
or string theory on the full extremal three-brane geometry must be viewed with skep-
ticism. It is perhaps more reasonable to hope that a quantum field theoretic derivation
of at least the leading log terms in theωR series expansion might be achieved (in part
because these terms have a simpler cutoff dependence than terms with fewer powers
of logarithms). In geometrical terms, the hope would be to see ther/R corrections to
the near-horizon geometry (wherer is the usual radial variable entering into the har-
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monic functionH = 1 + R4/r4) reflected order by order in the non-renormalizable
contributions to the Green’s functions for some quantum effective world volume theory.

While the motivation for this work was primarily our hope to achieve a better under-
standing of the double scaling limit described in [5, 10], our main technical results can
be stated in the more prosaic setting of Schrödinger operators in one dimension. For a
particle moving in a potentialV (z) = −2q cosh 2z, we have found a simple expression
(22) for the transmission coefficient in terms of the Floquet exponentν and a quantity
χ related to the transformation properties of Floquet solutions under parity. The com-
putation of the Floquet is well understood in terms of partial fractions. We implement
the methods of [22] to give a method for computingχ as well. The Hamiltonian form
of (27), and the surprising symmetry in the transmission probability betweenη = eiπν

andχ , tantalizes us with the hope that one might be able to give a treatment of Mathieu
functions which putsη andχ on an equal footing.
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Appendix A. Explicit Formulas

In this appendix we present explicit forms for some results which were considered
too lengthy to write out in the main text. Most of the computations were done with
Mathematica.

First, the Floquet exponent forr = 1, r = 3/2, andr = 2 (corresponding tol = 0,
l = 1, andl = 2) can be expanded as a power series inλ as follows:

r = 1 : ν = 2 − i

3

√
5λ4 + 7 i

108
√

5
λ8 + 11851i

31104
√

5
λ12 + · · · ,

r = 3

2
: ν = 3 − 1

6
λ4 + 133

4320
λ8 + 311

1555200
λ12 + · · · , (46)

r = 2 : ν = 4 − 1

15
λ4 − 137

27000
λ8 + 305843

680400000
λ12 + · · · .

By iterating (26) one can obtain expressions for the formal seriesAq defined in (23)
in terms of the “loop variables”S[α0, α1, . . . , αk]. These grow in size very rapidly:

A1 = S[1],
A2 = S[1]2

2
− S[2]

2
− S[1,1],

A3 = S[1]3
6

− S[1]S[2]
2

+ S[3]
3

− S[1]S[1,1] + S[1,2] + S[2,1] + S[1,1,1],

A4 = S[1]4
24

− S[1]2S[2]
4

+ S[2]2
8

+ (47)

+S[1]S[3]
3

− S[4]
4

− S[1]2S[1,1]
2

+ S[2]S[1,1]
2

+ S[1,1]2
2

+
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+S[1]S[1,2] − S[1,3] + S[1]S[2,1] − 3S[2,2]
2

− S[3,1] + S[1]S[1,1,1]
−S[1,1,2] − 2S[1,2,1] − S[2,1,1] − S[1,1,1,1],

and so on.
After making the identification (28), the formal sumsS[{αi}] may be evaluated ex-

plicitly in the manner indicated in the paragraph following (28).

S[1] = −3 − 2z

(−1 + 2r) (1 + 2r) (−1 + r − z) (1 + r + z)

+ψ(1 − r + z)− ψ(1 + r + z)

−r + 4r3 ,

S[2] = 35+ 84z+ 70z2 + 20z3 + 8r4 (1 + 2z)− 2r2
(
35+ 50z+ 28z2 + 8z3

)
(−1 + 4r2

)3
(1 − r + z)2(1 + r + z)2

+
(−1 + 20r2

)
(ψ(1 − r + z)− ψ(1 + r + z))

2r3
(−1 + 4r2

)3 (48)

+
(
1 + 4r2

) (
ψ(1)(1 − r + z)+ ψ(1)(1 + r + z)

)
2r2

(
1 − 4r2

)2 ,

S[1,1] =
−4r6(3+2z)+r4

(
35−26z−36z2−8z3

)−r2
(
109+143z+65z2+10z3

)+2(2+z)2
4 (−1+r) (1+r) (r−4r3

)2
(−2+r−z) (−1+r−z) (1+r+z) (2+r+z)

+
(−1+10r2

)
(ψ(1−r+z)−ψ(1+r+z))

4r3
(
1−4r2

)2 (−1+r2
) + ψ(1)(2−r+z)+ψ(1)(2+r+z)

4r2−16r4 .

These formulas also become very lengthy, and they have many different forms because
of the various identities for theψ function.
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