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Abstract: We investigate nodal sets of magnetic Sxtinger operators with zero mag-
netic field, acting on a non simply connected domaifn For the case of circulation

1/2 of the magnetic vector potential around each hole in the region, we obtain a char-
acterisation of the nodal set, and use this to obtain bounds on the multiplicity of the
groundstate. For the case of one hole and a fixed electric potential, we show that the first
eigenvalue takes its highest value for circulatigi2 1

1. Introduction and Statement of Results

Let 2 c R? be a region with smooth({>) boundary, which is homeomorphic to a disk
with & holes, and consider the magnetic Satinger operator

Hyy =@V +A>P+V (1.2)

acting onL?(2) with Neumann boundary conditions. The potentials assumed to be
smooth, and we consider a smooth magnetic vector poteftidlich corresponds to a
zero magnetic field. That is,

B:=curlA=0 1.2)

in Q. Assumption (1.2) implies that in any simply connected, open subset tifere
exists a gauge functiog such that

Vo = A. (1.3)

We shall see that the operaffdr, . is unitarily equivalent to the non-magnetic Sch-
rodinger operatof, y, if and only if one can extend this local gaugfé to a globally

* Funded by the European Union TMR grant FMRX-CT 96-0001
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defined function such that(which might not be a singlevalued function) satisfies (1.3).
We shall see that this can be done precisely when each of the circulations

o= L ]{ A dx, (14)
2r J,,

of A round thei™ hole ¢ = 1,. .., k) takes an integer value. Hese is a closed path
which parametrises the boundaty of the:™ hole and turns once in an anti-clockwise
direction.

Furthermore, if the circulation® = (&4, ..., ®;) of two distinct vector potentials
A and A’ are equal modul@* then the corresponding operatdis, , and H 4/, are
unitarily equivalent under a gauge transformation. ’

Theorem 1.1. LetQ C R? be a region with smooth boundary, which is homeomorphic
to a disk withk holes. For a given smooth potentill, the first eigenvalu@; of the
magnetic Schodinger operatorH , ,,, where A satisfies(1.2), depends only on the
circulations® = (®4,...,d;) of A. The function\1(®) has the following properties
(in which! € Z* is arbitrary):

AL(® +1) = A\y(D), (1.5)
M(l/2+®) = (/2 — D), (1.6)
A(P) > M\1(0,...,0) ford ¢ Z*. (1.7)
For the casé = 1, we have in addition to Eq. (1.7) that
A(P) < A1(1/2) (1.8)

for® ¢ 1/2 +7Z.

Equations (1.5), (1.6) and inequality (1.7) are straightforward, and are proved in
Sect. 2 (see also Remark 2.2). In this context we should also mention the recent very
interesting results [HN97] by Herbst and Nakamura concerning large magnetic fields.
We choose Neumann boundary conditions g , in this article because we were
motivated by questions arising in the Ginzburg model of super-conductivity. Our re-
sults are also valid for the case of Dirichlet boundary conditions (see Remark 1.5 (vi)).
Dirichlet boundary conditions are related to the Aharonov-Bohm effect for bound states.
See [LO77, Hel88a, Hel88b, Hel94]. Such models also arise in the description of the
Little-Parks experiment [LP62].

Inequality (1.8) appears, to the best of our knowledge, for the first time. Our proof of
this result (see Sect. 4), uses a connection between the maximality of the first eigenvalue
for flux 1/2 and the structure of the nodal set of groundstates. The nodal sets for the single
hole case with flux 12 were recently investigated by Berger and Rubinstein [BR97].
Part of our work is motivated by their preprint.

Using semiclassical arguments as in [Hel88a], we can show that in general the first
eigenvalue is not necessarily maximised for circulatiof2(1. . ,1/2).

Definition 1.2. The nodal setV(u) of an eigenfunction: of a magnetic Scludinger
operator on a manifold2 with smooth boundary is defineddhby

N(u) :={z € Q: u(z) = 0}. (1.9)

1 A piecewise smooth mapping: [0,1] — X is called a path ifX. The pointy(0) is called the initial
point andy(1) is called the final point. The imadeé = ([0, 1]) of the path is called a curve.
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Some useful information on nodal sets of real valued eigenfunctions of non-magnetic
Schigdinger equations in two dimensions is given in Proposition 4.1. In particular we
see that such nodal sets consist of the finite union of smoothly immersed circles and
lines. Itis “generically” the case that the nodal set of every complex eigenfunction of a
magnetic Schadinger operator consists of isolated points of intersection of the lines of
zeros of the real and imaginary parts of the function. See [EMQ94].

The local properties of the nodal sets of eigenfunctions of the opef&igr are
the same as the local properties of complex solutions of non-magnetiodbutper
equations. More precisely, since we may find at every point a local getigsatis-
fying (1.3), we may multiply any eigenfunction @f , ,, by a local gauge so that the
product solves a non-magnetic Sotiriger equation. The nodal set is invariant under
local gauge transformations.

We shall see in what follows that although the local properties of nodal sets of
eigenfunctions of our magnetic Sdlinger operator are the same as the properties
of a non-magnetic Schdinger operator, the global properties differ in the case where
® = (1/2,...,1/2). In particular, in the non-magnetic case we see that (since a real
eigenfunction must change sign at the nodal set) an even number of nodal lines (or
perhaps no nodal lines) of an eigenfunction emerges from each boundary component
of the region. In Theorem 1.4 we show that fbr= (1/2,...,1/2), an odd number of
nodal lines of the groundstate emerge from each component.

Definition 1.3. We say that a (nodal) sét’ slits 2 if it is the union of a collection of
piecewise smooth, immersed lines such that

(i) each line starts and finishes at the boundafy and leaves the boundary transver-
sally;

(i) internal intersections between lines are transversal;

(iii) the complemer® \ \ is connected;

(iv) an odd number of nodal lines leaves each interior boundary component.

We shall say that a collection of paths sk?sf the union of the images of the paths slits
Q.

See Fig. 1 for some examples of regions which are slit. Note that part (iii) of the
above definition is the reason why a nodal set which Slitentains no immersed circles,
and also implies that each line of a slitting set links together a unique Bairz; } of
distinct (i.e.: # j) boundary components. Note also that for the single hole case, a
set which slitsQ consists of one line which joins the outer boundangoto the inner
boundary.

In Corollary 4.3 we show that if a collection of paths slits a region then no sub- or
supercollection of these paths can also slit the region. In Proposition 5.1 we show that
the numben of paths of such a collection must satigfy2 < n < k.

Theorem 1.4. Let 2 be a region with smooth boundary, which is homeomorphic to a
disk withk holes. LetV be a smooth potential and let be a smooth magnetic vector
potential satisfying Eqg(1.2), such that the value of the circulations around each hole
liein 1/2 +7Z (thatis® = (1/2, .. .,1/2), moduloZF).

(i) If the first eigenvalue ofi , y, is simple then the nodal set of the corresponding

eigenfunction slit€2. Otherwise there exists an orthonormal bais, . . ., u,, }
of the groundstate eigenspace such that the nodal set of any non-zero combination
Yo agu, witha,a; € R for eachl < 4,5 < m, slitsQ.
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Fig. 1. Examples of some sets which Py

@6

(if) The multiplicitym of the first eigenvalue dff , , satisfies

k=12;
kodd,k > 3; (1.120)
k evenk > 4.

)

7

2
m<<k
k-1

)

(iii) For k = 1,2 with groundstate multiplicity two, the nodal sets of two linearly inde-
pendent groundstates do notintersect. It follows that the nodal set of a combination
ajug + axuy is empty whenevena, € R.

Here we make some remarks connected to the above theorem.

Remarks 1.5(i) The above bound on the multiplicity of the first eigenvalue is sharp
in the case of one hole (see Example 5.3), but it is not expected to be sharp for
many holes. It would be interesting to know an asymptotic result about the growth
of the maximum multiplicity with the number of holes.

(i) We prove the bound by taking advantage of topological obstructions to nodal sets
caused by the holes. These obstructions prevent the existence of high dimensional
groundstate eigenspaces. Our type of method was first discovered in [Che76] and
has since been taken up and used by others, e.g. [Nad88, HOHON98, HOMN]. See
also [Col93] for explicit constructions of examples with high multiplicity.

(iii) Ourresultbears similaritiesto bounds on multiplicities of higher eigenvalues of non-
magnetic Schodinger operators on surfaces with boundary. Some related literature
on this topic is given in [Col93, Nad88, HOHON98, HOMN].

(iv) It has been shown in [BCC98] that no upper bound on the multiplicity exists when
one adds a general magnetic field, even on the sphere.
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(v) Forthe cases > 3 we expect that there could be intersection of nodal sets of two
independent groundstates, and correspondingly that the nodal set of a combination
ajug + apup Will not in general be empty whetya, ¢ R.

(vi) If we assume thati, ,, has Dirichlet boundary conditions then Theorems 1.1
and 1.4 hold with suitable changes to the proofs. More precisely, in Proposition 4.1
the Taylor expansion (4.2) for a zero of ordet a pointr € 92 becomes

f(x) = ar' sinlw + O,

and from Lemma 4.5 through to the proof of Theorem 1.4 (ii), all arguments which
involve a function which has a zero of ordet k (for example) should be replaced
by the same argument involving a function with a zero of oidek + 1.

2. Some Basic Results

The quadratic form corresponding to the operafoy,, is
Qv = [ (G + A+ Viaf) 2.1)
Q

with domainQ\e¥ = W12(Q) = H(Q). This choice of quadratic form domain corre-
sponds to Neumann boundary conditions by y,. For the case of Dirichlet boundary

conditions (see Remark 1.5 (vi)) the relevant quadratic form domaRis= W;"%(<2).
Remark 2.1.Neumann boundary conditions for a magnetic 8dimger operator mean
that functions in the domain of the operator satisfy

i =—A-nu (2.2)

on 02, wheren is normal too<2.
One can always assume that the vector potential satisfies the additional properties

V- -A=0inQ, A-n=00n09. (2.3)

The reason is as follows: There is a solutipfunique up to a constant) to the oblique
derivative problem

Ap=-V-AinQ, Vo -n=—A-nondg. (2.4)

See [GT83, Theorem 6.31 and the following remark]. Setting A + V¢, the oper-
ator H - v is unitarily equivalent ta , |, under the gauge transformatiett, and A’
satisfies the properties (2.3).

Proof of Eq.(1.5). Let A and A’ be magnetic vector potentials with circulations that
differ by an element oZ.*. For any closed path,
1

—j{(A’—Ayder,

2r J,
and hence there exists a smooth, multivalued functisach that*? is univalued and
V¢ =A" — A Foru € HY(Q) we have

GV + ANe'Pu = iV + A)u,

and therefore the operatof, ; and H 4/, are unitarily equivalent. [
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Remark 2.2.For any magnetic vector potentidl satisfying (1.2) there exists a gauge
function¢ such that

A1) - ZZW (370) = o,

where (;,y;) is a fixed point in theé™ hole,r? = (v — z;)? + (y — y;)? and ®; is the
circulation of A round thei!" hole. Defining

14/(:1j y) Zzﬂ—r < y+y2>7

we see, for a fixed’, that _ _
Hy v = e H, Ve“ﬁ

and thusH , ., is unitarily equivalent tof , ,,. This means that the magnetic vector
potential is determined up to a gauge transformatlon by its circulatigrasd verifies
that the spectrum ol , ,, is determined byb.

Proof of Eq.(1.6). LetA be a magnetic vector potential with circulatidn and letu
be a groundstate df , ,,. Itis easy to show that is a groundstate o _ , | with the
same eigenvalue, and hence

A(=P) = Ay(P). (2.5)
We obtain Eq. (1.6) by combining (2.5) and (1.5) as follows:
M(l/2+@) = \(=1/2—-D)=\(/2- D). O
Proof of Inequality(1.7). Suppose for a contradiction that¢ Z* and that\;(®) <
A1(0), where® is the circulation vector of some magnetic vector potentialLet ug
denote the unique normalised positive groundstate of the opéigtprand letu be a

normalised groundstate of the operatby .. Using the diamagnetic inequality [Sim79]
we have

Qo,v(Jual) < Qav(ua) = A1(P) < A1(0) = Qo,v (uo), (2.6)

and thusu 4| = uo. It follows thatu 4 = e*®ug for some smooth, real valued, multivalued
function¢, and hence

/ |A — V|?|uo|*d®x = / iV + A — V)ug|?d?z — / |Vuo|>d?z
Q Q Q

= / |(iV+A)uA\2d2:cf/ |Vuo|*d®x
JQ Q

=Qa,v(ua) — Qo,v (uo)
= O7

and therefored = V¢ in Q. Thus foreachi = 1,. .. k we have

1 1
P, =— ¢ A-dx=— ¢ dp€Z,
’ 277]({1_ X 277]({1_ 0 €
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whereo; is a closed path which parametrises the boundrgf thei™" hole and turns
once in an anticlockwise direction. This contradicts our assumptioritgaZ”. O

The proof of inequality (1.7) is an alternative to the proofs given in [LO77]
and [Hel88a]. It has the advantage of being simpler and being independent of whether
the boundary conditions are Neumann or Dirichlet. See also [HN97].

We leave the proof of inequality (1.8) until Sect. 4 because it depends on Theo-
rem 1.4 (i).

3. A Twofold Riemannian Covering Manifold

Inthis section we consider the case where the circulations of the magnetic vector potential
A satisfy

D, €1/2+7Z (3.1)

for each 1< i < k. The proofs of our results use a twofold Riemannian covering
manifold 2 of the domain$2 (see Remark 3.4 however). For the case of more than
one hole, there exists more than one twofold Riemannian covering maniféld\de

shall take a particular choice of covering manifold on which the circulation of the lifted
magnetic (1-form) potentiall along any closed curve is an integer. Before the precise
definition, we introduce some basic notation. For further details see for example [Kos80]
or [GHL9O0].

Notation 3.1.Let 2 be a covering manifold o2, and letIT be the associated covering
map. We denote the lifts of various quantities as follows:

_ ForasetV defineN = {z € Q : M(z) € N'}. For a functionf : @ — C, define
f:Q—>Chbyf=foll For a pathy : [0,1] — © and a pointr € <2 such that
I(x) = o(0) lets : [0,1] — 2 denote the unique lifted path such thdgD) = = and
Moo =o0.

We endow the covering manifold with the metric obtained by lifting the flat Euclidean
metric of$2 to 2. This is the unique metric which makEsa local isometry, and therefore
a Riemannian covering map. L&t = divgrad denote the Laplace-Beltrami operator
on L?(2) induced by the lifted metric o, and letA be the 1-form o2 obtained by
lifting the 1-form associated with the smooth vector poterialefined orc.

Let Q. be the universal covering manifold ¢f and letIl., be the associated
covering map. The universal covering of any manifold is simply connected.

Note that due to (3.1) if two point8.., Yoo € Qoo satisfy Moo (Too) = Moo (Yoo)
then for any pathr joining =, to ¥, the integral

1 A - dx (3.2)

2r Moo

lies either in ¥2 +Z or in Z. The value of (3.2) is independent of the patihecause

curl A = 0 and because the universal covering manifold is simply connected. We there-
fore construct the twofold covering manifold (as a quotient of the universal covering
manifold) as follows:
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Definition 3.2. (i) We define the twofold covering manifdiby identifying points
Toor Yoo IN R4 according to the equivalence relatian, ~ y if and only if

Moo (7oc) = Moo (yoo) (3.3)

and for each patly in Qo joining x4, t0 ¥y, we have

1

271— Moo

A-dx € Z. (3.4)
The covering mapl : Q — Qis defined by1(z) = Mo (2), Wherez = [r] is
the equivalence class (undei) containingz ..

- H-

el

Fig. 2. Realization of a twofold covering manifold

(i)  On our twofold covering manifold we define the symmetry fap$2 — 2 by
setting Gz to be the other point ir2 which lies abovel(z) € Q. Note that
n-Y(1(z)) = {z, Gzx}. . .

(i) We say that a functioffi : 2 — Cis symmetric iff (Gz) = f(z) forall z € ©, and
antisymmetric iff (Gz) = — f(x) for all x € Q.

Note that the identity map and form a group = {I, G}, with the composition
G? = I, which acts freely o2. The quotient of2 by ¥is the original manifold2. The
lift f of afunctionf on is symmetric.

Using Eq. (3.4) we have

ifﬁ-df(:i A-dx e Z, (3.5)
2n J,

2r IMoo

for any closed pathr in 2. Hence there exists a smooth, multivalued functiamn
such that expd is univalued and

gradd = A. (3.6)
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Lemma 3.3. The operatot? : L(2) — L2(2) defined by
Lu=—e% 3.7)

is a isometry onto the antisymmetric functionsZif($2), and maps eigenfunctions of
H , , onto antisymmetric eigenfunctions of the Sxtinger operator

Hyy=—A+V (3.8)
acting onL2(2) with Neumann boundary conditions.

Proof. We shall first show that the functiort? is antisymmetric (unde€). For any
pointz € Q, leto : [0,1] — Q be a path which joing to Gx. Using the terminology
of Definition 3.2 we havdl(x) = I1(Gz) butx 4 Gz, and hence

1

o b A-dk=1+1/2

Moo

for somel € Z. Keeping in mind thaf is multivalued, we get

G(Gx)—a(a:)=/Ud0=/(;/~1~d>~(=j{]ooA«dx=(Zl+1)7r.

Hence explf(Gz)] = — explif(x)] as claimed.

The action ofZ upon a function, € L?(2) consists of two steps. The first step is
to lift u to the symmetric functiom.”This is a bijection onto the space of symmetric
functions of L?($2). The second step is to multiply By the antisymmetric function
e?. This step is a bijection from the space of symmetric functions onto the space of
antisymmetric functions i?($2). To see thatZ is an isometry onto its range, we take
two functionsu, v € L?(Q) and note that

1 ' -
(Lu, L) 2@ = > /fz ef.e”TdT = /Quﬁdx = (u, v) 2(0)-

For every eigenfunctionof H , -, thelift éiis an eigenfunction of the lifted magnetic
Schiodinger operator

.y = (idiv+A)(igrad 1) + V (3.9)

on Q wheref/ and A are the lifts of and A respectively. We now multiply by the
gaugee®. Using Eq. (3.6), the function®# is an eigenfunction of the non-magnetic
Schiodinger operatofl,,. [

The spectrum of , ,, consists of the eigenvalues corresponding to the antisymmet-
ric eigenfunctions oﬁo v Itturns out to be useful (see Lemma 4.4) to single out the
case where a functiom has the following property:

Property P. The function: is a groundstate of the operatéf , ,,, and the correspond-

ing eigenfunctionZu of Ho,v has a constant phase. In other words, there exists a
constanty € C\ {0} such that?(au) is a real valued function.
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Due to the symmetry of2, the groundstate of the operatélfo,v iS symmetric.
In contrast, ifu has Property P thet¥’(«w) is an antisymmetric eigenfunction (and
therefore an excited state) &f, ;.. Consequently bott¥’(cu) andu have a nonempty
nodal set.

Remark 3.4.It is not necessary to use the covering manifold to describe Property P. An
alternative is to formulate the property in terms of an antilinear opergatd/e define
the operator below.

Since®; € 1/2 +Z for eachi = 1,. .., k, we see that

1 2A-dx € Z
2n J,
for all closed pathg in . It follows that there exists a smooth, multivalued functipn
such thak'¥ is univalued and7+ = 2A. The multivalued functiom given in Eq. (3.6)
is related ta) by the formula
Ppoll=20+c

for some constant We defineK by the formula
K=e T, (3.10)

whereT is the operatof'v. = . ThenK? = Id and K commutes withH , ,,. It turns
out that a functions € L?(2) has Property P if and only if it is an eigenfunction of both
H,, andK.

One could in fact completely dispense with the covering manifold, but at the expense
of a clear geometrical picture in the following sections.

4. Characterisation of the Nodal Set

We first collect some well known facts about eigenfunctions of non-magnetio&ohr”
ger operators acting on two dimensional Riemannian manifolds:

Proposition 4.1 (Non-magnetic Schodinger operators). Let f be areal valued eigen-
function of a non-magnetic Sakdinger operator with smooth potential and Neumann
boundary conditions, on a two dimensional locally flat Riemannian manffolgith
smooth boundary. Thef € C>°(2). Furthermore,f has the following properties:

() If f has a zero of order at a pointzg € Q then the Taylor expansion gfis
f@) = pi(z — w0) + O(lz — mo|"™), (4.1)

wherep, is a real valued, non-zero, harmonic, homogeneous polynomial of degree
l.
Moreover ifzg € 0€2, the Neumann boundary conditions imply that

f(x) = ar! coslw + O(r'*™h) (4.2)

for some non-zera € R, where(r, w) are polar coordinates of aroundxo. The
anglew is chosen so that the tangent to the boundarygs given by the equation
sinw = 0.
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(i) The nodal setV(f) is the union of finitely many, smoothly immersed circle€ijn
and smoothly immersed lines which connect point8sef Each of these immer-
sions is called a nodal line. Note that self-intersections are allowed. The connected
components of2 \ NV(f) are called nodal domains.

(iii) If f has a zero of ordef at a pointzy € 2 then exactly segments of nodal lines
pass throughey. The tangents to the nodal lines:&f dissect the full circle int@!
equal angles.
If f has a zero of ordet at a pointz € 92 then exactly segments of nodal lines
meet the boundary aty. The tangents to the nodal lines a§ are given by the
equationcosiw = 0, wherew is chosen as i4.2).

Proof. The proof thatf € C°°(Q) can be found in [Wlo82, Theorem 20.4].

The proof of part (i) is trivial becausg and f are smooth functions so the Taylor
expansion (with remainder) exists. The properties of the first term of the expansion
follow by substituting the Taylor expansion into the groundstate eigenvalue equation.

See [Ber55, Che76] for proofs of the other parts[]

Proposition 4.1 can be generalised to include eigenfunctions of magnetmd8ehr”
ger operators with a smooth magnetic vector potetialhe eigenfunctions still lie in
C*°(R2) and the expansions (4.1) and (4.2) hold, except that the polyngpaald the
constant: are allowed to be complex. However statements (ii) and (iii) about the nodal
set do not carry over.

Theorem 4.2. Let N/ C  be the union of finitely many smoothly immersed circles
and smoothly immersed lines which connect poin&fThe following statements are
equivalent:

(i) €\ N is connected (therefor®” contains no smoothly immersed circles), and an
odd number of lines emanate from each hole.

(ii) In the twofold covering manifold, the open SEI\ N decomposes into two open
path connected subselts, D, such thatD, = GD; anddD1NQ = dD,NQ = N.

Proof. (i) = (ii) Let D; be a connected component®f A/. Suppose for a contradiction
that this is the only component. Due to the symmetry of the manit@id; = D, and
thus for any point: € D; there exists a path lying in D, (i.e. not intersectingV),
which joinsz andGz. Using the terminology of Definition 3.2 we haVHx) = I1(Gx)
butz +# Gz, and hence

1

2r IMoo

A-dxel/2+Z.

The closed pattil o o must therefore circulate an odd number of holes. Since an odd
number of lines of\" emanate from each hole, the pdito o must intersect with one
of them. This contradicts the fact thatdoes not intersect/.
SinceQ2 \ NV is connected there can only be two connected comporent®, of
Q \/\/ As above, we see thatD; # D1, and thereforéD, = G D;.
Suppose now for a contradiction thaD; N Q 7 N. Then there exists a point
x € 0D;NQsuchthat € 9D,N Q. The setD; borders with itself at;, and sinceD; is
path connected there exists a closed paguch thatr(0) = o(1) = z, which intersects
N transversally at: and which does not intersetf anywhere else. Sineeis closed,

A-dx € Z,

Moo
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and thereford1 o o circulates an even number of holes. Since an odd number of lines
emanate from each holE, o o intersects\ an even number of times. This contradicts
the fact thatr intersects\ only once.

(i) = (i) Since D, = GD; we see thaflD; = I1D,, and hence&2 \ N = I1(D; U
D) = 1Dy U 1D, = I1D;. Sincell is continuous{ \ V' is connected. Letr C
be a closed path which circulates tifehole. Due to the construction 6f, ¢ may be
lifted to a paths"in & which begins atapoint € Dy and ends afix € D,. SinceD;
andD, coborder, the path Erosses\V an odd number of times and therefererosses
N an odd number of times. By choosingc 2 sufficiently close tar; we see that
an odd number of segments of lines leave #hdoundary component. Singe \ N
is connected, each of these line endings belongs to a distinct line, and hence an odd
number of lines leaves each boundary component]

Corollary 4.3. Suppose that a collection of paths slits a region. Then no subcollection
of these paths can slit the region. Also, no supercollection of these paths (i.e. a collection
of paths which contain the original collection) can slit the region.

Proof. Suppose that the uniok’ of a collection of lines{I's, ..., T, } slits Q. Using
Theorem 4.2, we see thatin the twofold covering manifold the oper\setdecomposes
into two cobordering, open, path connected subBgtd,. Let S be the union of a strict
subcollection of the lines. The non-empty $ét\ S connects together the two regions
D7 and D, and thus \ S=DyUD,U (W'\ S) is connected. Using Theorem 4.2 in
the reverse direction, we see tisatloes not slit2.

It follows easily that no supercollection ¢f can slit because thek” would be a
strict subset of5 which slitsQ2, and this is not possible by the above paragraph.]

Lemma 4.4. If a groundstate. of H , ,, has Property P then the nodal setwoblits Q.

Proof. By multiplying the functionu by a non-zero complex constant we may assume
that the eigenfunctior’v of H0 v isreal valued. Sinc&’u is an antisymmetric function
on the covering manifolé, the nodal domain®, . . ., D; of Zu have the property that
for eachi = 1,...,[, we haveGD; = D; for somej # i. Suppose for a contradiction
that! > 2. Then there exist two cobordering domaibg, D, such thatGD; # D-.
DefineD = Interior(D; U D,), so thatD is the union ofD;, D, and the border between
them. Leth’v denote the quadratic form corresponding to the 8dimger operator

AP, =-A+V

on D with Dirichlet boundary conditions o8 = D N & and Neumann boundary
conditiondD N 012, and letg denote the corresponding positive groundstate. Since the
boundary ofD is piecewise smooth, the restrictidfu|p lies in the quadratic form
domain ong’V Define the antisymmetric functidnon €2 by

9(v), yeD,
h(y) = ¢ —9(Gy), y € GD,
0, otherwise

Let Q- denote the quadratic form of the operafdy ,,, which we define in Eq. (3.8).
Since Zu is an antisymmetric eigenfunction which corresponds to a groundstate of
H, v, it has the least energy of all antisymmetric functions, and therefore
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Ch?o_]v(wgu) < Ch?o_]v(h) _ ng(g) < Ch?o’%v(agub) _ C~207v(-=gu)

”guHZLZ(Q) o ”h”iz@z) ||g||%2(D) o ”fu'DH%Z(D) HZUH%Z(Q)

(4.3)

We have in fact equality in (4.3), and therefore, by uniqueness of the groundstate, we
have thatZu|p = Ag for someX # 0. This contradicts the fact that’u|p is zero on

0Dy N D. Hencel = 2. This means that the nodal s¥tof u satisfies statement (i)

in Theorem 4.2. Using the equivalence proved in Theorem 4.2 we see that parts (iii)
and (iv) of the definition of slitting are satisfied. Parts (i) and (ii) follow from the fact
thatu can be approximated locally by harmonic polynomials. See Proposition 4[1.

Proof of Theorem 1.4 (i)Let U denote the groundstate eigenspaceiof .. For all
u € U we have RePu],Im[.Zu] € £U are eigenfunctions Oﬁo,w if they are not
identically zero. It follows that we may find an orthonormal bdsfis . . ., f,,} of real
valued functions forZU. Since.Z is an isometry, the function&us, . . ., u,, } defined
by u; = £ ~1f; are an orthonormal basis bf.

Now letu = >~ a;u;, wherew,;@; € R for each 1< i, j < m. Take somey; # 0.
Then

m
Z(aju) = Z ;0 fi
=1
isareal valued function, and adnas Property P. The result now follows from Lemma4.4.
O

Lemma 4.5. If a groundstateu of H , ,, has a zero of ordet at a pointz € 952 then
I < k. Moreover, ifk is even ande lies on an interior boundary componerk{, say)
thenl <k — 1.

Proof. Assume first that has Property P, and suppose for a contradictiontiak + 1.
Let X, denote the boundary component on whidles, where € {0,1,. .., k}.Atleast
k + 1 distinct nodal lines emerge frol;. Since there are onliy boundary components
distinct fromX; there must exist two nodal lines which both starEatand finish atz;
for somej # i. In both cases, such a nodal set would sQlinto more than one nodal
domain, thus contradicting the assumption tht.) slits Q. Hencel < k.

If u does not have Property P then we can obtain a contradiction using the same
methods above on the functici —*[Re[.Z«]]. This function is a groundstate e, .y,
has a zero of order at ledsat xz, and does have Property P.

Suppose that is even, that € =; (withs € {1,...,k}) and thaf = k. Since\ (u)
slits Q there must be an odd number of nodal lines leadRgTherefore at least + 1
nodal lines leave;, and we obtain a contradiction as before.[

Lemma 4.6. Suppose that the groundstate eigenspdagf  , ,, is m dimensional.

(i) For each pointr € 922 there exists a function,, € U which has Property P and
which has a zero of order at least — 1 at z.

(i) If m = k+ 1then for each point lying on the outer boundar¥, of Q there exists
a uniqueu, € U (up to multiplication by a complex constant) which has a zero of
order k atz. The functionu, has Property P. The nodal set®f consists ok lines
which emanate from: (which is the only point of intersection of lines), and which
end at each of thé distinct interior boundary components @f Each nodal line
depends smoothly on
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(iii) If k is even andn = k then for each point lying on an interior component of the
boundary ofQ2 there exists a unique, € U (up to multiplication by a complex
constant) which has a zero of order— 1 at x. The functionu,, has Property P.

Fig. 3. Fig. 4.

For pictorial representations of cases (ii) and (iii), see Figs. 3 and 4 respectively.

Proof. (i) We shall first prove by induction the following statement:Uf, is anm
dimensional vector space of groundstatesiof . then for each point € 9K there
exists a functiory € U,, which has a zero of order at least— 1 atx.

The first step of the induction, faf = 1, is trivial. Assume now that the above
statement is true for some general Suppose thdt,,,.1 is anm + 1 dimensional vector
space of groundstates &, .. LetU,, be anym dimensional subspace b%,,+1. Then
there exists a functiot, € U,,, which has a zero of order at least— 1 atz. We can
assume that the order of the zero is exastly- 1, otherwise we have found a function
with a zero of order at least, and the argument for the induction step would finish.
Now take

U ={f€Upnu:fLfi}.

By the same argument, there exists a funcfigre U}, which has a zero of orden — 1
atz. Using the Taylor expansions

filr,w) = agr™teosn — w+O(r™)  i=1,2,

(written in polar coordinates basedatwith a; € C\ {0}), we see that the function
f = axf1 — a1f> is not identically zero, and has a zero of order at leasit x. This
finishes the induction step.

If f has Property P then we choase f. Otherwise, iff does not have Property P
then RelZ f] is not identically zero, and has a zero of order at least 1 at points
y € Q such thatlI(y) = 2. Using Lemma 3.3 we see that:= 2~ 1(Re[Zf]) has
Property P, and has a zero of order at least 1 atz.

(i) For this part we consider the case= k + 1 and take any point € X,. Part (c)
shows that there exists a functiap € U with Property P and which has a zero of order
at leastk atx. Lemma 4.5 shows that the zero is of ordeand thereforé nodal lines
emanate from. To prove unigueness, suppose thais a linearly independent function
which also has a zero of ordgrat x. As above, using the Taylor expansionaugfand
v, atz, we may find a linear combination af, andv,, which is not identically zero and
which has a zero of order at ledst 1 atx. This contradicts Lemma 4.5.
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Due to Lemma 4.4Q2 \ N is connected, and therefore each pair of nodal lines only
intersect atr. The nodal lines must also end at distinct interior boundary components.

Since zeros of order larger than 1 only occur at points of intersection of nodal lines,
there can only occur zeros of order 1 away fromit such zeros, the gradient af is
non-zero. We may multiply.,, by the local gauge’?, where¢ is given in Eq. (1.3) to
make it a real valued function. The functian. = e*®u, has locally the same nodal set
asu,. Note thatw, depends smoothly an. In order to see this, one should note that a
linear combination of eigenfunctions with a zero of order 1 atx can be found by
solving a system of linear equations which, by uniqueness (see above), has full rank.
Since the gradient af,, is non-zero at the nodal set away frafythe nodal lines depend
smoothly onz.

(i) The proof of this part is similar. O

Proof of Theoreni..4 (ii). Letm denote the multiplicity of the first eigenvalue &f, ...
Lemma 4.6 (i) shows that for any point € JQ there exists a groundstate &f, |,
which has a zero of ordér> m — 1 atz. Lemma 4.5 shows that< k. This gives the
universal boundn < k + 1, and in particular shows that fér= 1 we haven < 2.

We consider now the case whier> 2 and suppose for a contradiction that= £ +1.
Lemma 4.6 (ii) shows that for each poirltying on o there exists a unique eigenfunction
u,; Which has a zero of ordet at x. Since each:, has Property P, the nodal set of
eachu, slits Q. The nodal set of each individual. hask nodal lines{T";. 1, ..., Tz x },
emanating fronx, and each line ends at a distinct interior boundary component. We may
parametrise each lir, ; by a pathy, ; chosen so that, ;(0) = z and~, ;(1) € %; for
eachi. Each pathy, ; varies smoothly with.

o Tt
Fig. 5. Fig. 6.

We shall see that if we move round the boundangy, the nodal sets of the cor-
responding functions wind round the holes. After one complete turn, we cannot obtain
the original nodal set, thus contradicting uniqueness of the original eigenfunction. We
obtain the contradiction formally as follows:

Let og be a closed path which parametrises the outer boundary compBgeit
2, and which turns once in a clockwise direction. ko€ [0,1], let z; = oo(s) and
let ys = 7z,,1(1). Sinceoy is closed,zo = 1. Also, sincey,, 1 depends smoothly on
x ¢, Which in turn depends smoothly anthe pointy, moves smoothly round the inner
boundary componer;. For a fixedt € [0, 1] define
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00,t(s) = oo(st) = e,
Gl,t(S) = Yst-
The paths ; ando ; are parametrisations of segment&gfandx; respectively. Note

thatoo 1 = og andoy 1 = of for somep € Z, wheres] means running times around
the closed pathr;. For allt € [0, 1] we have

-1 -1
00,6 © Yz, 1901t O Va1 ™ 0, (4.4)

whereo denotes gluing of paths anddenotes homotopy. This means that the left hand
side of (4.4) is a closed path that does not enclose any holes. See Fig. 5. Setting
we get
0(;1 © ’V;O:}l © 0-117 © Vo, 1 ™ 0,
and therefore
P ~~L 6P ~
1™ V,1 © 01 © Vo, 1 ™ 00-

This gives us a contradiction because the pdtfs not homotopic tero. Hencem < k.

Finally we consider the case whekres even and: > 4. LetQ denote the closure
Q of our region with the points of the outer boundary identified. [t ; C R?
denote an open disk with — 1 smaller, disjoint, closed disks removed. There exists a
homeomorphism

X 5/ — ﬁk’—l (45)

such thatX restricted ta2 is smooth, and such that the boundary compodanhaps

Fig. 7.

to the outer boundary ab,_;. See Fig. 7. One can imaginé as a composition of
mapping® onto the surface of a sphere, deforming it so fhabecomes very large and
3o very small, and then finally pulling off the sphere. lret= X (X¢) € Dj_1, S0 that
X(Q) = D1\ {p}- - _

Let A be a set which slit§2. We claim thatX (\V) slits D, _;. For sincek is even,
the number of nodal lines hitting the outer boundary compoBiris even (possibly
zero). This corresponds to an even number of patl§(iN) starting or finishing ap.
These paths can be paired together to link distinct boundary componentsXSifde
a smooth bijection away from, the resulting paths are still piecewise smooth. Itis easy
to verify that all the other slitting conditions are satisfied.
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Suppose for a contradiction that = k. Fors € [0,1], letz, = o1(s) be a point
on the interior boundary componegi of Q2. Lemma 4.6 (iii) shows that there exists a
uniqueu,,, € U (up to multiplication by a complex constant) which has a zero of order
k — 1 atz,. The nodal sel (u,,) consists ofc — 1 nodal lines emanating from,. As
shown above, the sét, := X (N (u,,)) slits D;._; and consists of — 1 lines emanating
from the pointy, = X (z,) on the outer boundary dbj,_;.

We have thus constructed a family of slitting sétswhich depends continuously
on the parameter € [0, 1], and such thafy = S;. By moving the pointys round the
outer boundary oD,,_; and using the homotopy argument above, we obtain a similar
contradiction. Hencew < £k —1. O

Proof of Theoreml.4 (iii). Suppose that = 1 and that the multiplicity of the first
eigenvalue is two. Suppose for a contradiction that there exist two linearly independent
groundstates; andwv, such that the sef = A/(v1) N N (v2) is non-empty, and let be
any point inS. Since{v1, v, } is a basis of the groundstate eigenspéoef H , ,,, the
nodal set of every function € U contains the point.

From Lemma 4.6 (ii) we see that for each poinbn the outer boundarg, of
Q there exists a unique eigenfunctian € U such thatr € N (u,). If we startz
at the pointzg = 0o(0) and then move: continuously round the outer boundaXy
once in a clockwise direction then the segment of the nodal line joinitag: deforms
continuously and winds around the inner boundagy(see Fig. 8). The resulting nodal
line is different from the original, thus contradicting uniqueness of the eigenfunction
ug,. This argument can be formalised using a homotopy argument similar to that found
in the proof of part (ii).

Fig. 8.

Suppose that = ajug + apug, Whereajaz ¢ R. Since each functio?u; is real
valued (see the construction of thein the proof of Theorem 1.4 (i)), we have

N(ZL(azuw) = N1tz Lug + |az]?.Luz) = N(Lug) NN (Luy).
Since the nodal sets @f, andu, do not intersect, we have

N(u) = TN (L)) C TN (Lu1)) N IIN (Luz)) = N (u1) NN (ug) = 0.

For the casé = 2, the proof uses the may : Q- D1 (see Eq. (4.5)) to essentially
reduce the region with two holes to the single hole casél
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Proof of Inequality(1.8) from Theoreml.1 Suppose that = 1, and let4; and A, be
magnetic vector potentials, wherg has circulation 12. Let® denote the circulation
of A,. Suppose for a contradiction thét¢ 1/2 +7 and that\i(H ,, /) > M(H 4, v)-
Using Theorem 1.4 (i), there exists a groundstatef H , which has a nodal set’

which slitsQ. As we are in the single hole case, the nodal set consists of a single line
which joins the outer boundary to the inner boundary.

We shall need an operatéfr 4, v, which has extra Dirichlet boundary conditions
imposed along the lin€. This is defined formally as the self-adjoint operator corre-
sponding to the restriction of the closed quadratic fapm, i (defined in (2.1)) to the
domain

or = {ue Q" =W Q) : ulr = 0}.

Using our supposition, and the fact that the nodal set;ofonsists of the lind”, we
have

M(H g, v) = M(Hay,v) = M(Hr g, v)- (4.6)
SinceQ\T'is simply connectedy . 4, v is unitarily equivalenttdd. 4, -, and therefore
MHray ) = Ml ) = W0 Qo (@) = Ml y). (A7)
wesr

We have equality in (4.6) and (4.7), and therefore the groundsgateQNe! of H . AV
is also a groundstate d¢f ,, v The nodal sets of; andu, both containT.

Since curld; = curl Az = 0inthe connected s&t\ I, there exist smooth functions
¢1,¢2 1 @\ T = R such thatV¢; = A;. The functionsp; and¢, supply us with gauge
transformations’®* ande??2, from which we see botki 11, ande’#2u, are groundstates
of Hy. 4 1. By uniqueness of the groundstate of a non magneticdsahger operator,

we have
up = )\ei(¢2—¢1)ul

for some constanmk € C \ {0}. Let ¢3 = ¢» — ¢1. Since bothu; andu, are smooth
functions onQ we may extends to aC* multivalued function orf2. The values that
¢3 takes at a point differ by multiples ofi2 Hence for a path which circulatex2 once

i/Az.d)(:i/Al-dX+i/(A2—A1)'dX
2r J,
7+47/d%——+l

This contradicts our assumption thbtg 1/2 +Z. O

Remark 4.7.Using semiclassical arguments as in [Hel88a], we can show that¥o2,
the firsteigenvalue is not necessarily maximised for circulatig®,(1 . , 1/2). However,
we may use methods similar to those in the above proof to show that

M(1/2,...,1/2) = inf X\(Hggy), (4.8)
se.

where.” is the collection of all set§ which slit2, and wherd g , y, is defined (as in
the above proof) to have extra Dirichlet boundary conditions alrg. .
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5. Additional Results and Examples

Proposition 5.1. If a collection of pathg~s, . . ., v, } slits a region$2 with & holes then
k/2<n<k.

Proof. The lower bound om is elementary because there are an odd number of lines
(i.e. at least one) leaving each of théoles. There must therefore be at Ida&2 lines.

We finally prove the upper bound en Let o be a closed path which parametrises
the outer boundary, of @, and leto, . . ., oi be closed paths which parametrise the

other boundary components, . . ., Xj. Define
k
So={Je:(0) (5.1)
=0
k n
S1= <U {o:((0, 1))}) u (U (o)}, (5.2)
=0 =1
Sy ={Q\ N} (5.3)

Let (No, N1, No) = (k+ 1,k +1 +n, 1) be the triple of integers associated to this
decomposition, in whichV; is the number of elements in the collectiéh The de-
compositionD is not a standard CW decomposition @f and therefore the number
N := Ng — Ni + N, will not yield the Euler numbeg/(2) = —k + 1. It is however
possible to modify the decomposition to make it into a proper CW decomposition in
two steps:

(i) We first add vertices where intersections of element§jobccur at points which
are not inSy. This step will decompose some elementsSegfinto smaller parts
but leaves the elemefit \ A of S, unaltered. LetS; denote the new collection of
vertices.

(i) If ©\ N is not simply connected then the second step is to add some extra lines,
which begin and end at already existing vertice§jrin order to break up (without
disconnecting) the region into a single simply connected 2-cell.

Note that after each stefs; still consists of just one connected open setpgo= 1,
whilst the numbeVy — N of vertices minus lines does not increase. It follows that

No—N1+N2 > Né—Nj/_'l'Né :X(Q)
Substituting inNg = k+1, Ny = k+1+n, N, =1, andy(2) = —k + 1, we obtain
n<k 0O

Example 5.2.The example of the circl8? is interesting to analyse. Consider the oper-
ator
P, = —(8¢, — ia)z

on L?(SY). The spectrum can be easily seen to be
o(P,) ={(n — a)?:n e},

and therefore
M(Pa) = min(n — a)?.
ne
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Whena is an integer, the first eigenvalue is 0 and is simple and the corresponding
eigenfunction is expag. The first eigenvalue is actually simple whenewegis not a
half-integer.

On the other hand, i is a half-integer, the first eigenvalue ig4l with mul-
tiplicity two. If, for examplea = 1/2, the corresponding eigenspace is spanned by
the functions 1 and expg) (or alternatively by the functions exig(/2) cos¢/2) and
exp@¢/2) sin(p/2)), and one can parametrise all the resulting eigenfunctions, in terms
of a parametety, by expo/2) sin((p — ¢o)/2).

Itis easy to see how the degeneracy of the first eigenvalue disappears when consid-
ering

Pa,e,v = _(8(15 - Z'05)2 + €U(¢)7

perturbatively ag # 0 is small, provided:(¢) satisfies the condition

2T
/O W)’ £0.

Example 5.3.In [Hel88b, Subsect. 7.3], an example is given in which the multiplicity
of the first eigenvalue is two. The domahand potential” are symmetric under the
maps : z — —z, and the magnetic potential is given explicitly by

¢ [—y
A= .
2mr? < x >

If we take the case when the flux is an half-integer and we compose the opErétee
Remark 3.4) with the operatdt defined by

(Su)(2) = u(S>2),

the operator

commutes withPy4 1 and satisfies

Kramer’s theorem shows that the multiplicity is at least two. One can indeed show that
u andMwu are linearly independent.

An alternative proof is simply to say that is also an eigenvector with nodal set
S+, wherey is the nodal set ofi. SinceS~ is not equal tay, the functionSw is linearly
independent of..
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