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Abstract: In 1984 V. F. Lazutkin [Laz84, LST89] obtained an asymptotic formula for
the separatrix splitting angle for the standard map. The difficulty of this problem s related
to the exponential smallness of the splitting with respect to a perturbation parameter.
Lazutkin’s proof was based on two conjectures. Probably, the original form of those
conjectures was incorrect, but Lazutkin’s method was very efficient and inspired a large
number of studies on the exponentially small splitting of separatrices. The consequent
works [Laz91, Laz92, GLS94] and [Gel96] prepared the base to fill all the gaps of the
original proof. The present paper contains a complete and self-contained proof of a
refined version of the original formula (formula (1.7) of the present paper). In this form
the formula was obtained in [GLS94]. The proof is inspired by the ideas of Lazutkin’s
original paper [Laz84].

1. Standard Map

The standard map is a popular model for the motion near a nonlinear resonance [Chi79,
Sin94]. The standard map is an area-preserving diffeomorphism of the two dimensional
torus,T? = R?/(2rZ)?, defined by

SM : (x,y) — (x+y+esinz, y +esinx). (1.2)

In the following we always assumeto be a small positive parameter.df= 0, the
transformation (1.1) is integrable, and the phase space is foliated by invariant gircles
const. The circlg) = 0 is formed byS M fixed points. An arbitrarily small perturbation
breaks this line, and far > 0 only two fixed points survive, namely, (@) and (Q ).

The first one is hyperbolic and the other one is elliptic. Indeed, the matrix of the linear

part at the origin is
1+ 1
e 1)°
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and its eigenvalues aveand\~1, where
A=1+e/2+\/e+e2/4 1.2)

The stableJi7¢, and the unstablé} *, manifolds of this fixed point are analytic curves
passing through (@), the eigenvectors of the matrix being tangent vectors to these
curves at (00). The origin breaks each separatrix into two parts. We denotéd’py
(W3 the upper part of the stable (unstable) separatrix.

Fig. 1. Separatrices of the standard map

It is more convenient to use the paraméter log A as a small parameter instead of
e. Itis easy to see that~ h? since

h
= 4sinif —.
3 Sin >

It is convenient to represent the unstable separdi¥i¥, in a parametric form using a
solution @, y) = (z~ (t), y~ (¢)) of the finite-difference system

z(t +h) = 2(t) +y(t +h),

: (1.3)
y(t + h) = y(t) + e sinx(t).
We impose the following boundary conditions on the functior(t):
lim z=(@)=0, =« (0)=m. (1.4)
t——o0

The solution of Eq. (1.3) is not defined uniquely by the boundary conditions (1.4). We study the solution,
whose analytic continuation is entire and has a purely imaginary periot\2 assume that= 0 corresponds
to the first intersection dfl’* with the linex =  (if the intersection of the stable and unstable separatrices is
transversal, then there are infinitely many such intersections). Under these additional assumptions the solution
of the problem (1.3), (1.4) is unique. There are several ways to check the existence and uniqueness of such a
solution. In particular, this follows from the convergence of an iteration procedure described in Sect. 10.

More geometrical arguments may be found in [GLS94]: the separatrix is one dimensional and the re-
striction of the map on the local separatrix is conjugated with the multiplicgtien \¢, € € (C, 0), then
a solution of Eq. (1.3) is obtained after a substitution ‘oirstead of¢ into the conjugating function. These
arguments are quite general and the corresponding solution is defined up to a substitutionconst. The
constant may be obtained from the second condition of (1.4).

Originally, the solution of (1.3) is only defined in a complex half-plai¥e < — R and represents the
local separatrix. Since the sine function is entire, iterations of Eq. (1.3) allow to continue the solution up to
an entire function.
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To shorten the notation we omit the explicit dependence of the functiong —,
x*, andy* one. We define the parameterizationdf; by

(=*@), y* () = (271' —x7(—1t), y(—1) +€Sinm_(—t)) .

Direct substitution shows that these functions satisfy the system (1.3) as well as the
boundary conditions

tirpoo z*®) =0, z*(0)=n. (1.5)

Sincez~(0) = m we havez*(0) = = andy*(0) = y—(0), that ist = 0 corresponds
to a homoclinic point. The splitting angle is not a natural measure for the separatrices
splitting. Lazutkin proposed to study themoclinic invariantdefined by

_ &~(0) z7(0)
w= det(y(O) y+(0)> . (1.6)

The homoclinic invariant is equal to the value of the symplectic fduwm dy on a

pair of vectors, tangent to the separatrices at the homoclinic point. The coordinate-
independent definition of the homoclinic invariant for a symplectic map on a symplectic
two-dimensional manifold may be found in [GLS94]. The homoclinic invariant has two
remarkable properties: (i) it has the same value for all points of one homoclinic trajectory;
(ii) it is invariant with respect to symplectic coordinate changes.

Theorem 1.1 (Main Theorem). The homoclinic invariantv of the homoclinic point
zo0 = (z~(0), y~(0)) has the following asymptotic expansion:

4 o'}
w® hi;e—”z/ h <Z hz"’wn) . 1.7)

n=0

The signEés means that the series on the right-hand side is asymptotic, that is if one retains
a finite number of the first successive terms, the error is of the order of the first missing
term: the absolute value of the error can be estimated from abo®d k%" —2g*/ ),
whereN is the number of the first missing term.

The coefficients in (1.7) are real numbers. The first values are

wo = 1118827706 .., wy = 1859891 .., wp = —4.34411... /2!,
ws = —4.1829... /3!, w,=—4.88... /4l

The value ofug was computed in [LST89] as a solution ofamdependent problem. In
[Sur94] it was shown that this coefficient is not zero, since it may be obtained as a limit
of an increasing sequence with positive first term. The other values were obtained in
[GLS94]. Although the first coefficients are decreasing, the high-precision computations
performed by C. Sim give numerical evidence of the divergent character of the series.
There are several independent ways for computing the congiasee e.g. [Tre96].

Corollary 1.2. For all sufficiently smalk > 0 the stable and unstable separatrices of
the standard map intersect transversally at the homoclinic pgifthe first intersection
of the separatrices with the line= ), and the splitting angle is given by

o as %equh <Z h2n0n> ’

n=0
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Fig. 2. The strip|St| < m/2 is broken into several zones. Approximations for the unstable and/or stable
manifold(s) are constructed for the corresponding valugs ©fie dashed line bounds the projection on the
first coordinate of the domain of the time-energy coordinates’

where the coefficients, may be expressed in terms of the coefficieptanda,,,, defined
in (2.10). In particular,

Co C1
wo = Co, wl:Cl"'Z; w2 =c2t —+ —co.
To get these relations one should use the relation |e¥| - ||e®| sina, where
e~ = (z7(0),y~(0)), e* = (z*(0),*(0)) and|| - || stands for the Euclidean norm. Then
Proposition 3.1 provides the asymptotic for and consequently far—.

Corollary 1.3. The lobe area is given by

S as 27T—1e—7r2/h (i hZ'rlwn> )

n=0

Now we give an informal description of the proof. Itis based on the detailed study of
the analytical continuation of the stable and unstable manifolds. We make the partameter
in (1.3) complex and study the stable and unstable solutiog9 andz* (¢), respectively.

We construct approximations for these functions in complex domains, the unions of
which include the half-planégt < 0 andRt > 0, respectively for:~ andz*, as well as

the rectangle, bounded by the dashed line in Fig. 2. Later this rectangle will be referred
to asD(c), where the parameter describes the distance to/i2 in a properly chosen
scale (see (7.2)). The symmetries allow us to restrict our attention to thEstrig /2

(see Fig. 2), and even to its upper park (3t < /2, due to the real-analyticity of the
functions.

Inthe domains, marked as pendulum based approximation domains, we construct the
asymptotic series far~ andz*. This series starts with the homoclinic solutieg(t) =
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4 arctan é of the pendulum equation. A single series corresponds to both the stable and
unstable manifolds. The series is asymptotic to both manifolds in the intersection of the
corresponding domains witB(o). This implies that for these values othe difference
z*(t) — x~ (¢) is less than any power of the small paraméter

The pendulum based approximation fails for the valuesadbse to the pendulum
separatrix singularity = i7/2. In that region we construct another approximation. It
starts with a term which arises from the study of the semistandard map

SSM : (u,v) — (u+v+e*, v+e").

We use a sewing condition on the intermediate domain to ensure that the new series
approximate the same invariant curve as the initial ones. This may be considered as a
kind of complex time matching method. The accuracy ofSl5é// based approximation
affords us to show that the differene&(t) — = (t) does not vanish on the top edge of
D(0). In fact that difference is of the order 6f there.

How can we use this to get the exponentially fine estimates for real valugs of
There is a coordinate system) £), such that the standard map takes the form of a shift
(t, E) — (t + h, E) and the unstable manifold is given by the equatior= 0. We
show that the stable manifold is a graph df-periodic function®(t). The zeros of that
function correspond to homoclinic points and the derivative of that function at zero is
the homoclinic invariant. Th€'SM based approximation provides an estimate for that
function with O(h™V) error for someN. Originally, this approximation is not periodic,
but the difference between approximations for the stable and unstable separatrices may
be described by a periodic function. We use this function to approxi®éte Then
we apply the following simple lemma to the error term and get the exponentially fine
estimate.

Lemma 1.4 (Laz84). Let a functionR(t) be periodic with positive periotl, analytic
in the strip|St| < b, and continuous in the closure of the strip. Then

. 2
|R(t)| < 4‘C[nf\<>§) |R(2)| % exp(-2nb/h), tER,

providedexp(—2nb/h) < 1/2. Moreover, if the mean valuj%h R(t) dt = 0, then
|R(t)| < 2\(me<><l |R(2)| exp(-27b/h), tER.

The rest of the paper contains the complete proof of the asymptotic formula (1.7).

It is organized in the following way. In Sect. 2 we describe the formal series for the
unstable separatrix and in Sect. 3 we give the exact statement about how the series
approximates the unstable separatrix. In Sect. 4 we describe the basic facts about the
invariant curves of the semistandard map, which we use in Sect. 5 to constrd&itie

based approximation for the unstable separatrix. In Sect. 6 we estimate the difference
z*(t) — z~ (t) neart = iw/2. This difference is small (but not exponentially in that
domain) and may be approximated by a linear combination of solutions for a variational
equation near:~. In Sect. 7 we formulate the existence theorem for the coordinate
system {, ) and derive the asymptotic formula (1.7) from that theorem.

In Sect. 9 we develop the theory of finite-difference equations, which will be widely
used through the next sections. This theory may be of independentinterest. Other sections
are devoted to proving one by one all the theorems and propositions formulated in Sects. 2
to7.
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Remarkl. Lazutkin's proof [Laz84] of the asymptotic formula for the splitting angle
was based on two conjectures, called respectively Conjecture A and B. Conjecture A
stated that the semistandard map can be conjugated to thershift-t (7 + 1, &) by
an analytic coordinate change defined in a neighborhood of complex segments of the
SSM separatrices. Conjecture B contained a similar statement for the standard map.
This part of the conjectures is correct. In addition Lazutkin's conjectures contained
some requirements on the size of the domains and upper bounds for derivatives of the
coordinate changes, which were essential for the proof.

The proof of Conjecture A published in [Laz90] contained an error, and it was pointed
out by V. F. Lazutkin on p. 111 of [Laz92], that Conjecture A vipsbably incorrect
In the corrected version the domain of the coordinate§)was much smaller than in
Conjecture A. In [GLS94] Conjecture A was replaced by Conjecture I, which is proved
here in a slightly modified form (Proposition 6.2 of the present paper).

Theorem 7.1 of the present paper is quite similar to Conjecture B (and Conjecture Il
of [GLS94]), but it provides a smaller size for the domain of the coordinatds) @nd
larger upper bounds for derivatives of the coordinate change. This is compensated by
finer approximations of th& M separatrices. Of course, the estimates of Theorem 7.1
are not optimal, but the estimates of Conjecture B are probably too “optimistic”.

Remarkl. E. Fontich and C. Sim[FS90] used Birkhoff normal form near a hyperbolic
fixed point to construct the coordinateésk) and to obtain an exponentially small upper
bound for the splitting. This idea was later used by Delshams and Seara [DS92] in the
proof of a theorem, which states that Melnikov method provides a correct asymptotic
formula for the splitting of the pendulum separatrix under a small fast periodic pertur-
bation. In a recent paper [DGJS97] it was shown that a similar method may be used
to study the case of fast quasiperiodic perturbations. The last problem leads to a very
delicate analysis due to the presence of small denominators in the Melnikov function,
which represents the leading term of the asymptotic formula for the splitting. This prob-
lem may be considered as a step towards higher dimensional hamiltonian systems. On
the other hand, in the case of the standard map the Melnikov method may not be applied
directly. This case is closer to a large fast periodic perturbation considered in [Gel97Db].
All these papers, as well as [Gel97a] and the present one, develop (quite nontrivially, of
course) Lazutkin's original ideas [Laz84].

2. Formal Separatrix

In the present section we construct the expansiofiffirandi¥}’ in power series of the
parameteh and show that a single expansion corresponds to both separatrices.

The first equation of the system (1.3) enables us to express the second component in
terms of the first one. So the system is equivalent to a single finite-difference equation
of second order:

A%z =esing, (2.1)

where
A2z = x(t + h) — 2x(t) + z(t — h).

First, we solve the equation in the class of power series of the form

X ~ i h#a(t), (2:2)

n=0
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where the sigh- stresses that the series in the right-hand side of the equation is divergent,
and.X is considered as a generating function for this series. In the class of power series
X(t+h) =exp(+thE) X(t), and Eq. (2.1) reads

. h 0 o hY\ .
4 sint? <26t> X = 4sintf <2) sinX. (2.3)
Taking into account that 2 siﬁr% =3 (‘;—:;, for anya and equating the terms of the
order ofh?", we get from (2.3),

;@ ((%) In—k—;@ n—k(x07~-~7xn—k); ( - )

whereG,, are defined by the following recurrent rule. L&} = sinzq, Ho = cosxg and

1 1
Gn = - k Hn— ) Hn = k ,Gn— 4 2.5
- ; T Hn—k - ; Tk Gn—k (2.5)

forn > 1. Itis not difficult to check that
oo oo oo oo
sin (Z hZ”xn> = Z W"G,,  cos (Z hznxn> = Z h®"H,,
n=0 n=0 n=0 n=0

(differentiate the equalities with respectitband compare the result with (2.5)).
Equations (2.4) must be supplemented with the following boundary conditions:

im z,()=0, n=0,1,2,..., (2.6)
t——o0

2zo(0) =7, 2,(0)=0, n=1 2,..., (2.7)

which arise from the expansion of (1.4) in power series. Let us dwell on the determination
of the first functionz. We have to solve Eq. (2.4) with = 1, which reads

d? .
ﬁxo = Sinxyo, (2.8)
subjected to the boundary conditions (2.6) and (2.7). The unique solution is
xo(t) = 4arctan & (2.9)

Equation (2.8) is the “pendulum equation” and (2.9) is the homaoclinic solution to the
unstable equilibrium point.

Proposition 2.1 (GLS94]). Equation(2.4) has a unique solutiomg, x1, 2, . . . satis-
fying the boundary condition@.6) and (2.7). The leading term is given 2.9). The
subsequent terms have the form

n

ra) =Y 4 o (2.10)

a
"k (cosht)2x’
k=1

wherea,,;, are real numbers. In particular,

1 sinht 41  sinht 91 sinht
xa(t) = +

" 4 (cosht)?’ 2() = ~ 1728 (cosht)2 ~ 864 (cosht)*” (2.11)
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The proof of that proposition, which is similar to [GLS94], is in Sect. 8.
The functionse,, have the following obvious properties:

. xp(t) — 0ast —» oo forn > 1,

. o — mandz,,, n > 1, are odd;

. the functionse,,, n > 0, are ir-antiperiodic;

. xn, n > 0, are analytic on the entire complex plane except the singular points
t =in/2 +ink, k € Z; all singularities ofry are logarithmic branching points; all
singularities ofz,,, n > 1, are poles of the ordem2

5. the functions,,, n > 1, are singlevalued; is singlevalued on the complex plane

cut along straight segmentsg (i2 + in2k, ir/2 + ir(2k + 1)), k € Z.

A OWNPE

Any partial sum of (2.2), after restoring thecomponent, represents a line, which
connects the fixed point (0) with its copy (2r, 0). In this sense the formal series (2.2)
represents the formal separatrix. The series provides a formal solution for Eq. (2.1),
which satisfies the boundary conditions (1.4) and (1.5). In particular, this implies that
the classical perturbation theory, based on the expansion in powers of a small parameter,
cannot reveal the splitting of separatrices.

3. First Approximation Theorem

The functionse,, defined in the previous section have singularities, whilds an entire
function of the variablé. This shows that the series (2.2) cannot approximatg) in

a neighborhood of the mentioned singularities. It is important to know where (2.2) does
approximate our function. Sinee (t) is real on the real axis and so are the coefficients
Ty, itis sufficient to consider them f&t > 0 only. Moreover, both the function and the
formal series arer-antiperiodic. Using these symmetries we may restrict our attention
to the following domain. Fixg € (0, 7/2) and let

D={te((l‘:0§£‘st§g,%t§20h,arg(t—ig)g—éo}. (3.1)

Proposition 3.1. For any positive integelN the following estimate holds in the domain
D

N-1

$_(t) - Z hznmn(t)

n=0

1
< N1+ —=" 2
< consth < = |7r/2|2N> , 3.2)

whereconstdepends only oV and §p. Moreover, a similar estimate is valid for the
derivative with respect t@ of the expression in the left-hand side, the exponent of
|t —im/2| being changed t&N + 1.

The proof of the proposition is in Sect. 10.

The stable separatrix, represented by the functit{t) = 2 — =~ (—t) is approxi-
mated by the same series in the domaiR, which is a reflection oD with respect to
the imaginary axis.
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4. Semistandard Map

The semistandard magSM,
SSM : (u,v) — (u+tv+e v+e¥) (4.2)

was introduced by Greene and Percival [GP81] and was studied by many authors. It
is convenient to define this map as a selfmaCéf The semistandard map preserves
the standard symplectic structufe A dv. The second important property of SSM is
reversibility. This means that there exists a mBEp: C2 — C? which satisfies the
equations

R*=1d, RoSSMoR=SSM™*

A concrete example of such a mapfis= Ry, where
Ro : (u,v) — (u, —v — expu). (4.2)

Theorem 4.1 (Laz84, Laz92]). There exists a unique analytical injective mBp :
C — C? such thatl"_ (7 + 1) = SSM(I'_ (7)) and the following normalizing condition
holds. Letl"_(7) = (u—(7),v_(7)), then

2
u_(r) = — Iog% +0 (712)

asT — —oo along the negative real semiaxis. The branclogfin the last formula is
fixed to be real at negative.

The following asymptotic expansion fer — oo is valid uniformly in a sector
do < argr < 21 — do, do €]0, 7/2[ being an arbitrary fixed number,

2 o0
u_(r) - Iog% +> apr (4.3)
k=1

319

whereq,, are real numbers. The firstthree valueagfirea; = —%,az = %,% = — 580

The image of"_ is an invariant curve, the “unstable” manifold for the infinity”.
In the next section we use it as an approximation to the standard map separatrix. The
curvel's = Ro(I"_) plays the role of the stable manifold.
Theorem 4.2 (Laz92]). Let(u+, v+)(7) = Ro((u—,v_)(—7)). The following estimates:
|u+(7) — u_(7) (mod 2ri)| < const|7|? exp(—2r|37|),

lve(T) — v_(7)| < constT| exp(—27r|3T]),

are valid in the sector-7 + 09 < argr < —do, the constants depend only on the choice
of do.

For the sake of completeness we include the proofs of the last two theorems in
Sects. 11 and 12. The proofs follow the lines of [Laz92].
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5. Second Approximation Theorem

Notice first that the imaginary part af(¢), the first term of (2.2), becomes large and
positive ift approachesj from the real axis. A simple use of Euler’s formula
. er —ew j . i
S|nl’=T:§e ! +O(e| )
shows that the sine function can be replaced by an exponential term, the error being
small. This suggests the following change of variables:
z = —ilog 2 +iu, 5.1)
y = iv. '

The standard map reads in these variables)—— (ug,v1),

U =utvy, 5.2
vy = v +expu + (¢/h? — 1) expu — (eh?/4) exp(u). (5-2)
Note thate/h? — 1 = O(h?). If we cancel the last two terms in (5.2), we get the
semistandard mag S M. One may expect that some segments of trajectorigsN\éf
are close, after the change of variables (5.1), to thos&Sat .

In addition to the change of variables (5.1) we make the following change of the
parameter along the unstable manifold in order to place the origin at the singularity and
to change the step to one unit:

t= ig +hr. (5.3)

So, instead of~ (¢) we will consider the functiom ™ (7), the link being

h2

z (z% + hT) = —ilog = +iu (7). (5.4)
Equation (2.1) converts into
A?u~ = (¢/h?) expu™) — (eh?/4) expu~), (5.5)

where A? is a second order finite-difference operataff(r) = f(r + 1) — 2f(r) +
f(r —1). We relate with,~ the formal series of the form

oo

U™(r.€) ~ Y h?Muy (1), (5.6)

n=0
whereu,, (1) depend only onr. Substituting the series into Eq. (5.5) and collecting the
terms of the same order it is not difficult to write down the equations far; (7):
Azua = expug , (5.7)
n+l 2
AZU; = ; @ (yn+l—k:(ula e, Unti—k) EXPg )

1
_Zynflfk:(_ub cy —Up—1-k) eXp(—UE))a (5.8)
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wheren > 1. The auxiliary polynomiald’y, similar to the Bell polynomials, are defined
by the following recurrent rule. LYy = 1 and

1 n
yn(ula cee 7un) == Z kukyn—k(ub e 7un—k) (59)
n k=1

for n > 1. Differentiating with respect th? it is not too difficult to check that

exp (i hznun> = i hZ"yn(ul, Ce, Up)-
n=1

n=0

The polynomialg);, with & < 0 are assumed to be identically zero. We have to solve
the system (5.7), (5.8) subjected tsewing conditiorwhich can be expressed as a
formal coincidence of the right- and left-hand sides of (5.4) after substituting there the
expansions (2.2) and (5.6), and reexpansion of both in the double sehiearial 2.

Proposition 5.1. There exists a unique sequence of entire functiefyr), n =
0,1,2,..., which satisfy Egs. (5.7), (5.8) and the sewing condition (5.4). In any sector
do < argr < 2w — dp, do > 0, the functionsu,, (7) have the following asymptotic
expansions:

_ as 72 - Dok
U (7') = — |Og E + Z ﬁ’ (510)
k=1
ur(r) & %. (5.11)
k=—n

The branch ofog is fixed to be real at negative In (5.10) and (5.11) the coefficients
pnk are real numbers. The functions are real-analytic. The asymptotic series may be
differentiated with respect te.

The proof of the proposition is in Sect. 13. Of course, we hgyér) = u_(7) due
to the uniqueness (compare with Sect. 4).

How does the series in (5.6) approximate? The following proposition gives the
answer. LetD, be the domain in the-plane which is the intersection @f (defined by
(3.1)) with the rectangléit| < v/h, |St — /2| < v/h. The corresponding domaib,
in the r-plane is defined as

Do={reC:-hY2<Rr <20, - Y2 <37 <0, n <argr <27 — do}.
(5.12)

Proposition 5.2. For any positive integeV there exists a positive constafty, such
that, if 7 € D,, then

. LoR2 =
o (iG ) witog'y <1 S ) < O (L) 649

A similar estimate is valid for the derivative of the expression in the left-hand side.

The proof is in Sect. 14.
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6. Comparing the Stable and Unstable Manifolds

In this section we will compare the stable and the unstable manifolds reiar/2. We
assume that the parameterization of the stable manifold is chosen to be

¥ (t) = 2m — 7 (). (6.1)
Applying the change of variables (5.1), we introduce the functibby

+ (. T - hiz P
x (z§+h7) = —ilog 5 +u" (7). (6.2)

The equality (6.1) and the fact that all functions are analytical continuations of real
analytic functions give the following chain of equalities:

zt (i%+h7‘) =27 —a~ (—i%—hT) =2ﬂ—m

=21 — —ilog & +iu=(-7)
= —ilog & +i(—2ri + u~(~7)).
Comparing with (6.2) we obtain
ut (1) = =2+ u” (—7). (6.3)
Let us study the difference,
() — = () =i(u* () — u” (7). (6.4)

We may expand* in formal power series af?,

oo

U*(r,e) ~ > b uy(7), (6.5)

n=0

similar to (5.6), where:;, obey the same equations (5.7), (5.8) with being replaced
by ;.. From (6.3) we obtain

ug(t) = =2ri+uy (—7),  up(r) =wu, (-7), n>1 (6.6)

We study the formal series defined by

Wi(r,e) ~ i h2"w, (1), (6.7)
n=0
where
wn (1) = Uy, (1) — uy, (7). (6.8)

We are going to estimate the differences (6.8) in the domajnwith A > 1,
Doa={re€C:37<—-A, —m+dp <argr < —do}. (6.9)

It turns out that in that sector the function5(r) andw,, (7) have the same asymptotic
expansions (5.10), (5.11). In the case:gf(r) one should take into account the choice
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of the branch of the logarithm. So eagh (7) tends to zero faster than any negative
power ofr, whenr tends to infinity inD 4. In fact,w,,(7) are exponentially decreasing
in that sector. Fon = 0 it is Theorem 4.2. For > 1 we will get this as a consequence
of the propositions formulated later in the present section.

In order to formulate a more definite statement about the asymptotic behavior of
wy,(7) we need some preliminaries. Consider the first derivativéofr, ) with respect
to the variabler:

i dU~- o= on
Py (rie) = ——(r0) ~ Y Wr, (1), (6.10)
n=0
where
_ _du,;
‘Pl,n(T) ?(7’) (6.11)
It satisfies the equation
A2 = ((g/hZ)eU’ + (gh2/4)e—U’) ®. (6.12)

We shall consider Eq. (6.12) in the class of the formal series of the Jofjty, h?m e,
wheregp,, are entire functions of one variabte

We seek a second formal solutidr, of (6.12), which is linearly independent of
(6.10) and satisfies the normalizing condition:

WO ; ®;] = P AD, — O, ADT =1, (6.13)

whereWV is a finite-difference Wronskian, its role for the theory of finite-difference
equations is similar to the role of the classical Wronskian in the theory of ordinary
differential equations. We will discuss it in Sect. 9.5. We used the notatibh =

F(r) — F(r — 1). The formal equality (6.13) is equivalent to a system

> Wierkipan-sl =00, n=012...; (6.14)
k=0

whered,, is Kronecker symboljo = 1 andd,, = 0 forn Z 0. In fact, this system may be
considered as a definition of the functiopg,.

Proposition 6.1. There exists a unique formal serigb, , which satisfies Eq. (6.12),
the normalizing condition (6.13) and has the form

D5 (r,6) ~ Y WMy (), (6.15)
n=0

wherep, , () are entire functions, which are real on the real axis and admit the following
asymptotic expansion:
oo

— as Pnk
Pon(T) = 2k ek € R, (6.16)

k=—n—1

ast goes to infinity in the sectab 4.
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The proposition is proved in Sect. 15.
Proposition 6.2. There exist two sequences of complex numbers,
{0n}nzo  and  {ual}olo,

such that for any positive constarsandd,

w(r) = e 2y (ank(Pik(T) +0n 1Py k(T)) +0 (74 1=0m) - (6.17)
k=0

uniformly in D 4, the constant in the error term depends@m andn.

The proposition is proved in Sect. 16. The following corollary follows directly from
the proposition and the equalities (6.14).

Corollary 6.3.

S WIer s waoil(7) = €276, + O (e 4497 (6.18)
k=0

Now we can get an upper bound for the different&) — =~ (¢) on the strigRt| < 20h.
Define the following rectangles:

My ={0< St <n/2—Vh, |Rt| <20n},
My ={7/2—Vh < St <n/2—(2N/2r)hlogh™*, |Rt| < 20n},

M3 ={7/2— (2N/2r)hlogh™ < St < /2 — AR}, |Rt| < 20h }.
Fort € I1; we have from Proposition 3.1
=t () — 2~ (t) = O(h™).

The same estimate holds i, due to the estimates of Propositions 5.2 and 6.2 and the
fact that in this region €277 = O(h?N). In I3 the exponent is no longer so small and
we get

W) -2z (t)=0 (|72| exp(—2r|ST))) .

Note that inIT3 the right-hand side of the last estimate ranges féafh") to O(1).

7. Analytic Integral and the Asymptotic Formula for the Homoclinic Invariant

To obtain the formula for the separatrix splitting we need an analytic integral along the
unstable separatrix. Let

G(R)={(t E) e C?:|Rt| <10h, [St| < 7/2—Rh, |[E|<K}. (7.1)
Here we denote byyand £ coordinates irC?.

Theorem 7.1 (on the analytic integral). There existR > 1 andhg > 0 such that, if
0 < h < hg, then there exists a map : G(R) — C? such that
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(1) @ is an analytical diffeomorphism onto its image;

(2) @ is symplectic®*dx A dy = dt A dE;

(3) @ conjugates the standard map with the shiftt) — (¢t + h, E);

4) (== (1), y~ (1) = (1. 0)

(5) the second projection of the inverse mép= pr, o #~* has the derivatives of the
first order bounded bgonsth—! and the derivatives of the second order bounded
by consth—10; the first derivatives of the first projection are boundedcopsth~?;

(6) the inverse mag ! is real at real values of its arguments.

The proof of the theorem is in Sect. 17.

The second compone#tof the mapd ! is a local analytic integral of the standard
map, i.e., it is constant along trajectories. Of course, its domain is not invariant and it
has no single-valued continuation: if a trajectory leaves the do@piR)) and comes
back after several iterations, it may get a valudidifferent from the original one.

Giveno > 0, denote

s o 1
= : < h St < = — — —_— .
D(o) {t e C:|Rt| < h, |3t < 5~ 5 hlog . } (7.2)
Define the ma® : D(o) — C by

o) = E(z"(t),y"(t)), (7.3)
whereE is the second component of the m&p™.

Proposition 7.2. Foranyo > 9the functior® is analytic inD(c) and has the following
properties:

1. ©(t) is real-analytich-periodic function; _

2. ©(0) = 0and the homoclinic invariant (1.6) is given by= ®(0);
3. [y () dt = O(h—3exp(~2x2/h));

4. On the upper edge @ (o) witho = N + 5,

N-1
@(t) = _e—i27r7' Z enhhx,—l + O(hZN_Z),

n=0

wherer = (t —in/2)/h;
5. For any realt,

N-1
@(t) - 2e—7r2/h sin <2h7rt> Z wnth—l + O(hZN—le_ﬂ—z/h)7

n=

N-1
. 2
O(t) = dre~™ /" cos(2t> > w2+ O(h2N 2= /My,

n=0

wherew,, = 346,, are real numbers.
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The main theorem (Theorem 1.1) immediately follows from 2 and 5.

Proof of the propositionThe estimates at the end of the last section show thHR{dr),
z*(t) — 2~ (1) = O (7 (logh™%)?) . (7.4)

It follows directly that the functior®(t) is analytic inD(c) and from assertion (6) of
Theorem 7.1 it follows that it is real-analytic.

It follows from assertion (3) and Eq. (1.3) tha(t) is periodic with periodh. Indeed,
if a point (z, y) and its imageS M (x, y) belong to the domain af’, we haveE(x,y) =
E(SM(z,y)). On the other hand Eq. (1.3) reads:

(z%,y" )t +h) = SM((z", y")(1)).

Taking into account the definition (7.3) we obtain the periodidlyt + h) = O(¢).
Sincet = 0 is a homoclinic point we have:{, y*)(0) = (z—, ¥y~ )(0) and®(0) = 0.
Differentiating (7.3) we get

60 = L)+ 22 0)
ox y
where the derivatives df are taken at the point{(0), y*(0)). It follows from (2) and

(4) that

0B __ . 0E
Ox - Oy

(z=,y7) (z=,y7)
at the points of the unstable separattix (t), y~ (¢)).
Since ¢*(0), y"(0)) = (z~(0), y~(0)) we have

©(0) =2~ (0)5*(0) — y~ (0)&(0),

the last expression coincides with the definition of the homoclinic invariant (1.6). This
completes the proof of assertion 2.

Let us calculate the functio®(t) = E(z*(t), y*(t)) by the Taylor formula taking
(z—(t),y~ (t)) as a center for the expansion:

OO = By )+ =) Ty )+ 00 (79

where%—f and%—f are taken atf—, y~), and we skipped the argumeran the functions

7,y ,z",y*. Itfollows from (4) thatE(z~,y~) = 0 and it follows from (5) tha©, =
O(h~1%z* — 27)?). Taking into account the above expression for the first derivatives
of £ we may rewrite Eq. (7.5) as

o) =W [d:_;x+ — m_] ) + O(h= 0z — 27)?), (7.6)

where)V is a Wronskian

Ahf Ahg

As in many other places we used the first equation of the system (1.3) written in the form
y(t) = z(t) — xz(t — h) = Apx to exclude the;-component from consideration.
We evaluate the right-hand side of (7.6) on the segment

WL 9)(t) = det( . ) @) = f{t = h)g(t) — g(t — h)f (D).
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2 2r
Itis convenient to use the variabte= (t —in/2)/h instead ot. In terms of this variable
the segment takes the form:

St =

hlogh™,  |Rt| < 10h.

Sr=—logh~t, |Rr| < 10,
27

From (7.4) we get the upper bound for the quadratic term:

@(t) = W [377, Jj+ _ .’137] (t) + O(h26710(|09h71)4). (77)
Let us evaluate the Wronskian. From (5.13) we have
N-1 du-
x_(t) =7 Z hZTI’L—li’m + O(hZN—l(logh_l)ZN)
=0 dr
N-1
=i Y W Ror () + O " Hlogh ), (7.8)
m=0

where we used the definition (6.11) fps ,,,. Taking into account the last equality we
have

N-1
Wl Tz —a7 (@) =i Z P2 IWog st — 27]
m=0
+O(h2N—1+o(|og h_1)2N+2). (79)

From (5.13) and (6.2), (6.3) we get that

N-1
2 () — (1) =i Yy B (un(r) — u, (7)) + O (KN (logh 1))
n=0
N-1
=iy h*w,(r)+ O (h*N(logh V), (7.10)
n=0
where we used the definition (6.8) far, to obtain the second equality.
Using (7.10) withV replaced byNV — m we get

N—-1-m
Wiermiz" =27 1= > h*Wlprmiwe] + OBXN ™ (log h~ 12N =),
k=0

Substituting this into (7.9) we have
N—1N—m—1
WlaTat —aT @ == > WTEWormiwl
m=0 k=0
+O(h2N—1(|Og h—l)ZN) + O(hZN—l+o(|Og h_l)2N+2).

Introducing the new index = m + k£ and changing the order of the terms we rewrite
the last equality as
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N-1 n
W a2 — a7 ] (1) = = D Y Wlpra-niwi] + OB (logh™ 1)),
n=0 k=0

Taking into account the relation (6.18) we get
) N-1
W [1.7, 2zt x—:l (t) - _672I7r‘r Z h2n710n
n=0

+O(h20(175)) + O(hZNfl(Iog hfl)ZN)'

Substitution of the last formula into (7.7) gives

' N-1
@(t) — _e—2|7'r7' Z th—lan
n=0
+O(h20(1—6)) + O(hZN(Iog h—l)ZN—l) + O(hZU—lO(log h_l)4).

Choosing 0< § < 4/(N +5),0 = N +5 we see that all the error terms in the last
formula become essentially of the same order:

N-1
@(t) - _e—2i7r7- Z th—len + O(hZN_Z),
n=0

where we used that (Idg1)%V = o(h~1). This finishes the proof of assertion 4.
Let us suppose tha@t, are purely imaginary and define real numhefshy

0, = iwy,. (7.11)

We justify this supposition at the end of the proof. Coming back to the vartalvie
obtain

N-1
@(t) - _ie—ﬂz/he—Ziﬂ't/h Z th—lwn + O(hZN_Z).
n=0
Since®(t) is real-analytic we have on the complex conjugate segni@nt(—m/2 +
(o/2m)hlogh™Y):
7 , _ N-1
O(t) = OF) = ie ™ /"e™/h N " B2 1w, + O(h?N 7).
n=0
Combining the last two formulas we obtain that
, N-1
o) =e ™ /"2sin(2rt/h) Y h*"tw, + O(hN?)
n=0
on the union of two segments. A maximum modulus theorem implies that an analytic
periodic function in a strip takes its maximum on the boundary of the strip. Applying
this to the error term in the formula above we see that the same estimate is valid inside
the strip|St| < 7/2 — (0/27)hlogh L.
Now we get the upper bound f@g = h*lfoh ®(t) dt. The standard arguments
based either on the symmetries of the standard map or on its area-preserving properties
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show that the algebraic value of the area of the domain, bounded by the segniéijts of
andW* ending at the main homoclinic poing and at its imageS M (zo), equals zero.
We may calculate this area in the coordinates of Theorem 7.1:

/ "o + () =0,
0

where we used that the unstable manifold is representefl by 0 and the stable
one may be represented in the parametric form as the imade dfc*(¢), y*(t)). The
second component of this functiondgt) and we denote the first componentisy(z).
Obviously,¥(t) is an analytich-periodic function inD(c). Moreover

O =0h’Y and W(t)=O(h?).

Let O(t) = O(t) — Oo. We may apply Lemma 1.4 with= 7/2 — (¢/2r)hlogh~! to
get the following estimates:

Ot)=0(h e /" and W) =0k 2" for teR.

The integral may be rewritten as
.h ~ . h ~ .
/ (G +O@)(L +W¥(t)dt = h®g + / Ot)w(t) dt,
0 0

where we used that the mean valuesioaind W equal zero. Since the integral in the
left-hand side is equal to zero we have

— 1 h ) 7
9 =—= /O W) W(t) dt.

This results in the estimate ,
B9 =O(h3e > /M),

that is the constartd, is exponentially small value of the second order (the constant in
the exponent is twice the constant from (1.7)).

The mean value of the functiag® may be nonzero but the estimate above shows that
it is neglegible and we still may apply Lemma 1.4 to get

N-1
o) = e_ﬂz/hZSin(Zl't/h) Z th—lwn + O(hN_Se_Trz/h)’
n=0
. , N-1 2
O(t) = e ™ /"(4r/h) cos(2rt/h) Y b tw, + O(hN0e /M),
n=0

SinceN is an arbitrary integer we may use this formula wihreplaced by 2/ + 4 in
order to get assertion 5.

Now we can make a posteriori justification for considerihgas purely imaginary
constants. If this was not true, the formulas would lead to the same estiméi& fdnut
with shifted phase in the sin function. This would be in contradiction wi(A) = O for
allh. O
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8. Proof of the Existence of the Formal Separatrix (Proposition 2.1)

As we have already mentioned, (2.9) gives the unigue solution to the first equation (2.4)
which satisfies the boundary conditions. Let us write down the equations, faith
n > 1. Note first that, as it follows from (2.9) and (2.5),

(o)) = cosuo(t) = 1~
cosH ¢
2 sinht (8.1)
Go(zo)(t) = sinzo(t) = —————.
cosif ¢

Using the recurrent equations (2.5), one easily obtains forl,

G, ($O(t)a xl(t)v s axn(t))

2 -
- (1 - ) 2a(t) + G (20(t), 220, .. 20 2(1)), ®.2)
cosif ¢
where
5 n—1
Gn (1’0, Z1,..., xnfl) = n_l Z /man—k(fUm L1y 7xn7k)~ (83)
k=1

Taking into account (8.2), we rewrite Eq. (2.4) fo=m + 1 > 2 in the form

d2

2 .
@:pm(t) — <1 — COSf?t) Tm(t) =G (xo(t), ... ,mm_l(t))

m+1 2k

! d
+ ; @ {Gm+1—k(xo(t), s @m0 = o J;mﬂ_k(t)} (8.4

We prove the proposition by induction. Lef, 0 < n < m — 1, be the unique solution
of Eq. (2.4) with 1< p < m, which satisfy the boundary conditions (2.6), (2.7) and
have the form (2.10).

Equation (8.4) fow,, is a linear nonhomogeneous equation of the form

&2 2
Ze(t) - (1 -~ Cosm) () = G(t). (8.5)

The corresponding homogeneous equation

2
%x(t) — (1 — Coszl?t) z(t)=0

has two basic solutions

2 t
— d inht + .
cosht an sin cosht

Neither of them satisfies both (2.6) and (2.7). This proves the uniquenesgs of
The proof of the following lemma is straightforward.
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Lemma 8.1. Let the right-hand side dB.5) be of the form

m+1

cn=Y (Cogw sinht. (8.6)
k=2

Then Eq(8.5) has a solution

_ - ag .
X(t)=> (CoshiZ sinht,
P

whereay, 1 < k < m, are the unique solution of the system

Ak(k — Lay, — (8k? — 6k)ap_1 = cr, 2<k<m+1,
Am+1 = 0.

In view of this lemma it is sufficient to check that the right-hand side of (8.4) is of
the form (8.6).

Lemma 8.2. Letz,,1 < n < m—1, be of the form{2.10) Thenforn = 1,...,m —1,

n+l
Galo(t), 21(0), - xn(t»—z( g”h’;)u sinht,
n+l
H,(zo(t), 21(t). ..., 2at)) = Z (COC;’;,’;)Zk ,
and
m+1
Crn(o(t), 21(0), - T 1(t))‘Z o gmh’;)% sinht.

Proof. A straightforward calculation, which uses (8.1), (2.5), and (8.3), gives explicitly

sinht 5 sinht
(cosht)? (cosht)*

G1= all(

1 1
Hy=2 -
1= s ((cosht)z (cosht)“) ’
él =0
The formulae (8.1) show that the assertion is truexffer1. Then the assertion far> 1
follows by induction which again uses (8.1), (2.5), and (8.3), if one takes into account
the identity

sinht sinht 1 1

(cosht)Z (cosht)2 ~ (cosht)2E+-1) ~ (coshr)2k+)” O

It follows from Lemma 8.2 that the first term in the right-hand side of (8.4) is of the
required form. Consider the expression in the curly braces in the second one. Applying
(8.2) and the assertion of Lemma 8.2 concerrtihg we find that the unique suspicious
terms are
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de
m'n,(t) tZk ln(t) (87)
The following formula is obvious:

n+l

i Z (oo = D [ak? — gk 1) 0y a2k~ (2%~ 2)
k=1

sinht
(cosht)?x”

It follows from this formula that the double differentiation does not change the first
coefficientin the expression of the form (2.10) and increasesliyel. So the expression
(8.7) has the desired form (8.6). This finishes the proof of Proposition 2.1. One checks
the explicit formulae (2.11) by direct substitution into the equations]

9. Solutions of Linear Finite-Difference Equations

9.1. Solutions of the equatiola = g. In this section we consider the way of solving
the finite-difference equation

Aa = g, (91)

where Aa(x) = a(x + 1) — a(z) is the first order difference operatar,denotes the
variable which ranges over a domdhc C. The functiona(z) defined by

a(@)= =3 gl +k) or a@)= gle— k)
k=0 k=1

solves the equation provided the series on the right-hand side is well defined and con-

vergent. Unfortunately, this will not be the case for the most parts of the present paper.
Following [Laz91] we will describe a special class of domains which are most

convenient for solving Eg. (9.1). We fix a real numbgre ]0, 7/2[. All constants in

the estimates which follow depend on the choicéplet A be a positive number. We

assume thatl > max{1,4tandp}. We say a non-void subsé@ C C is of the type

(A, +) if the following is true:

(1) D isclosed;

(2) D does not intersect with the open disk € C : |z| < A};

(3) if z € D then the positiverayz € C: z =z +t¢,t > 0} C D;

(4) D does not intersect with the negatisgsector|large — 7| < do.

The definition of a domain of type4( —) is similar. One has to replace the last two
conditions by the following:
(3) if z € Dthenthe negativerafz: € C: z =z +t,t <0} C D;
(4) D does not intersect with the positidg-sector|argz| < do.

Let D be a closed domain i@ such that 0¢ D. Given non-negative, denote by

X, (D) the space of all complex valued continuous functions defindd,ianalytic in
interior points ofD, and possessing the finite norm

lall = supla*a(z)]. (9.2)
zeD

Evidently, X,,(D) supplied with the norm (9.2) is a Banach spacd) i§atisfies the
above condition (2), these norms are subordinated:
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Ha”;ﬁu (9.3)

llall,. <

Al/

We will use the following definition of the norms of linear and bilinear maps. Given a
linear mapy : X1 — X» between two Banach space¥ (]| - ||), « = 1, 2, we define the

norm of ¢ as
o(a
o= sup 16T,
a€Xy,a70 ||a’||

Analogously, iff : X1 x X, — X3 is abilinear map,&;, || - 1), ¢ = 1, 2,3, being Banach
spaces, the norm dfis defined by the equality

16(as, az)|
101 = sup BT T T
a1€X1,a2€ X2,0170,a270 Hal” ||a2H

Proposition 9.1 ([Laz91]). Let D be a domain of typ€A, +), 1 > 0. Then the formula

Atg(a) = =) ga+k) (9.4)

k=0

defines a linear map\;* : Xu+1(D) — X, (D) with the norm bounded from above by
a constant depending only @g and .
Analogously, ifD is of type(A, —), the formula

AMg(x) =) glz — k) (9.5)

k=1

defines a linear mapp~* : X,41(D) — X, (D) with the norm bounded from above by
a constant depending only @g and .

Proof. Evidently the series in (9.4), (9.5) converge and give analytic functions in the
corresponding domains satisfying (9.1). It remains to estimate the norms of the right
sides of (9.4), (9.5). We have

x|#
IAZ 0l < ol s0p > 96)
TEE k=0,1

Consider for definiteness the case + in (9.6), that is the case of a domain of the type
(A, +). The opposite case can be considered in the analogous way. Let us associate with
the ™ term of the sum

"
Z P ©.7)

the rectangle with height equal to the value of this term and with the Base k, Rz +
k+1]if Rz +k < 0 and with the baséifx + £ — 1, Rz + k] if Rz +k > 0. Note that the
area of the rectangle is equal to the value of the term. If we place the rectaniés in
with bases on the first axis, then all but one rectangle will be situated under the graph
of the function

ki

h(t) =
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The excepting term corresponds to the k& nearest to the imaginary axis.%fz > O,
the corresponding term can be bounded as follows:

I A
o+ Kt S gt S g S

If Rz < 0, we have

|| H || 1 1 1
ptl — || ptl S At “w < i w’
|z + K| | A (sindo) (sindo)

since in this casg3x| > A due to condition (2) in the definition of the typd (+), and
|z|/|Sz| < 1/sindp due to condition (4).
The remaining terms are evaluated from above by

o o dr
h(t dt:/ _
/o © o |E+T|ptt

where¢ = x/|z|. The last integral is bounded by a constant depending onby @s it
follows again from condition (4). O

9.2. Lemma on Cauchy integrakor our purposes it is necessary to resolve Eq. (9.1)
in some domains which do not satisfy condition (3) in the definition of an admissible
domain. The main idea is to represent the domain in question in the form

D=D'ND", (9.8)

where D™ and D~ are respectively of the typed(+) and (4, —). If we could find
appropriate “projections” which represent a function define®imas a sum of those
defined inD*, the problem would be reduced to that already solved.

In this section we formulate and prove the lemma, which provides the desired rep-
resentation. We assume that the Betc C can be represented in the form (9.8) and
the setsD* satisfy the conditions (1) and (3) from the definition of the typés),
respectively. Moreover, lef = {z € C : |Rz| < 2}, the following intersections have
to be equal and connected:

D'NnS=D"nNnS§S.

It follows directly thatD NS = D* N S. If D N S is compact, then it is a rectangle
with sides parallel to the real and imaginary axes. We also assume that the height of the
rectangle is not less than 2. If the intersection is not compact, it is either the whole strip
S, or one-half ofS, obtained fromS by cutting it by a linez = const.

Denote byl the space consisting of all complex valued Lipschitz functions defined
on 9D which take constant values féx > 1 and foriRz < —1 (given a function, left
and right constant values are not necessarily equal). The nothisidefined as

Il = max|x(@)] + sup X=X
’ z7y |z —yl
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Lemma 9.2 (on the Cauchy integra[Laz91]). Lety € L, g € Xy(D) and

_ 1
Jo= oo /SD lg(©)| [d€] < oo. (9.9)
Then the integral
_1 x(§)g(§)
h(z) = 5= /aD g_ixdf (9.10)

defines two functionki,; and ey, in the interior of D and in the exterior ofD respec-
tively. Both the functiong,,; andhey:, admit continuous prolongations onto the closures

of their domains, belong t&,(D) and Ap ((C \ D) respectively, and

|hint,ext(33)| < HXH(JQ + SUp|9|)- (9.11)

If suppy # 9D, then hjn; and hey define together a single analytical function on
C \ suppy.

Proof. Define an auxiliary function

1 _
%A@=ZHLDXQ&jVMMO@, t0€dD, zeC\aD,

NG 612
Pao(T0) = om0 /aD WQ(E) dg, xo € OD.

This function is analytic inc, z ¢ 0D. Let

hin() = Pao(T0) + X(w0)g(20), T =m0 € OD,
" h(x), x € Interior of D,

h (m) - @xo('rO)a x=x0 € 0D,
ext h(z), x € Exterior of D.

These two functions are analytical inside their domains of definition and we only have
to establish that they are continuous and to check the upper bound (9.11).
Denote

i ={ g E 5D
then for alle € C\ 0D andzg € 9D,
W) = @ay () + x(20)7(2)- (9.13)

Since the functiory s bounded and continuous insideand outsideD, it is sufficient
to establish that the functiap,,,(x) is continuous at all points = g, o € 0D.
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Giveno > 0, define the set
A ={x € dD: |Rz| <1+c}.

If o < 1,thenA? is a union of two or less segments parallel to the real axis.
Consider:y € 9D\ A, the functionp,,(z) is not only continuous but even analytical
in 2 in a small neighborhood of the point= xo, becausg(€) is a constant fofrRé| > 1.

Considerzo € AY? 5 A% and study the restriction of the functign,, () on the
segment
l(xo) = {z € C: Rx = Rao, [S(z — zo)| < 1/2}

orthogonal to the rectilinear part 6fD. The following assertions finish the proof of the
continuity

the mapzy — ., (z0) is continuous (9.14)
im — pa0(2) = @aq(wo)- (9.15)
r—x0, xEI(x0)
Proof of the assertion (9.14Penotei. the e—neighborhood of:g in 0D, € being a
sufficiently small positive number. We have

xX(€) — x(zo)  x(§) — x(m)) i

§— o §—m

e = e = 55 [ ot6)

1 — x(x — x(z
s 1 o6 (x(é“) xX(zo)  x(€) — x( 1)) dc.
2mi Japni, §— o §—m
Let us consider the first term in the right-hand side of the last formula. The expression

in the parenthesis can be bounded from above|by|2So the module of the first term
is evaluated from above by

2
—sup|g| [Ix]| .
— S

le

Given positivee’, takee small enough for the first term to become less tH&@.
Fix such are < 1 and consider the second term. |.ef — z1| < ¢/2, then

x(€) — x(zo)  x(&) — x(21)

§—xo §—m

_ ‘X(Il) — x(zo) | x(z1) = x(§) 21— o
£ — o r1-§ -

does not exceed|| x| |z1 — zo|- So the second term can be bounded from above by
4
=l 2 = ol J.

Takingz close toxg so that the expression becomes less #42, we obtain

|4on(370) - @wl(l‘l” < €l7

which completes the proof of the assertion (9.14)0]
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Proof of the assertion (9.15)Ve have

Pao(T) — Pao(T0) = 1| / (&) (x(€) — x(x0)) <§133 — 5_11.) d¢. (9.16)
Since L o .
e Tty ™ % < Il

the module of the right-hand side of (9.16) is bounded from above by
1 / 19(€)]
r— dg|. 9.17
Il o =zl | < 4rldel (9.17)

The integral in (9.17) can be broken into two integrals: one distributed aftand
another ont@D \ A'. The latter is bounded by.R for |¢ — z| > 1/2 on the domain
of integration. The former can be evaluated from above by

sup|g| |d€|
2r At € — 7

< const supg| log |z — xo| 2.

Indeed,

/ |de]| / dt 4 T
= < e
ar € — 2 V= Rao)2 + [z — 202 Joa /724 ]z — x0?

/4/|x zo| d
< const Iogi
4/|lx—zo| VS +1 ‘ _x0|

Substituting these estimates into (9.17) and taking into account the obvious equality
lim;_,otlogt = 0 we get the assertion (9.15). I

To obtain the upper estimates we note that an analytic function has no maximum of
the module inside the domain of analyticity. Thus it is sufficient to estimate the function
(o) ONID and to obtain an upper bound fdr(z)| at infinity. Obviously,

enoo) < 5 [ XX ey i < g, 08)

5 _
To obtain the estimates for large valuegofchooser, to be an arbitrary point o8.D
such thaiRzo| > 1 andRzoftz > 0. Then we can use the estimafe— x| > 2 to
obtain the upper bound

1 —
/a ) "W 9@l 1del < Xl - (9.19)

|50:L’o(x)‘ < Z 5_

The estimate (9.11) follows from the last two estimates and the representation (9.13).
O

In the following we will need an alternative estimate for the functibpsandheyt.

Lemma 9.3. Let the assumptions of Lemma 9.2 be satisfied an® le¢ a subset of a
square with the sid&, R > 2, then

[hint.cz+()] < const logit |[x|| suplg|. (9.20)
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Proof. Since the domairD is compacth...(x) is regular at infinity. So it is sufficient
to estimate;,.+ ..+ On the boundaryD. Instead of the estimate (9.18) we decompose

the integral in (9.12) into the sum of two integrals (af/? and ondD \ AY/?). The
second one can grow logarithmically Bgoes to infinity. O

9.3. An example of nonadmissible domaiie domainD 4 is defined as follows:
Da={zeC:3x<—-A, —w+dp <argx < —dp}, (9.21)

where the parametet satisfies the inequalitd > max{4tando, 1}. Any domainD =
D4 can be represented in the form (9.8) with = D%, where

Dy ={zeC:Qz<—-A, -7+ < argz},
D, ={xeC:3z < —-A, argz < —do}.

The following propositions enable us to reduce the problem of solving the equation
Aa = gin D4 to those in the domainB?.

Proposition 9.4 (Laz91]). Given a positive constant, there exist two linear maps
PE: Xi45(Da) — Xo(DT), such that

(1) for eachg € X1.+5(D 4) and for eache € D 4 we have
g(x) = (P g)(x) + (P~ g)(x);
(2) ||P*|| < constA~?, the constant depends only 6n

Proof. It follows immediately from the lemma on the Cauchy integral that the bilinear
operators

Jint + £ % X145(D 4) — Xo(D 4), (9.22)

Joxt: £ X Xias(Da) — Xo (<c \ DA> 7 (9.23)

which assigrin andhey: to the pair §, g), have bounded norms obeying the estimate

const
|| Jint,ext” S T .

indeed, |~ [g(€)]]d] < const]g1254~* and surg] < s A~

oD
Take aOex’-function Xo : R — [0, 1] such thatyo(t) = 0 if t < —1 andyo(t) = 1 if
t > 1. Define twoC* functionsy+ € L as

x+(@) = xoRz),  x-(z) =1— x+(2), (9.24)

and considet/in(x+, 9) and Jex(x+, g). Since supp+ C 8Dj N 0D 4, both the
integrals define a single function whose domain contains the interiaﬂ'jaf Being
restricted onto the interior, this function, according to Lemma 9.2, has the continuous
prolongation ontd)j;. The latter can be taken &" g. All proclaimed properties follow

from Lemma 9.2 and the identit}(1,9) =¢g. O
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Proposition 9.5 (Laz91]). Given positive numbers, 1, and A, A > 4tandy, there
exists a linear maph ~* : X,,.1245(Da) — X,,(D.4) such that

— giveng € X,4045(Da), A~1(g) is a solution of Eq. (9.1) at all the values of the
independent variable for which it has meaning;
— ||A7Y|| < constA—?, whereconstdepends only of, 1 and .

Proof. The way of solving the equationa = g in D 4 consists of the following steps:
represent the functiom'*#g as a sum of two functions, the first one has analytical
continuation to the right and the other to the left; divide the result'hy and solve the
equation for each of these functions separately; thean be taken as a sum of these
two solutions. The weight'** is chosen to provide convergence of the sums (9.4) and
(9.5). More precisely, let us fix a branchof* in the lower half-plane. Define the map

T Xorprs(Da) — X1+5(Da)

by the equation
(Zg)(x) =zt g(x).

Evidently,Z is an isomorphism between Banach spaces. Define also by the same formula
two isomorphism& s : X4, (DE) — Xo(DF). Set

A = ATZI P T+ AT TP T, (9.25)

WhereA;1 and P, were defined in Propositions 9.1 and 9.4, respectively. The pro-
claimed properties oA ~* follow immediately from those ohf andPr. 0O

9.4. The method of variation of parameteta.this section we develop a formal theory
of systems of two finite-difference equations

a(t + h) = A(t)u(t) + g(t), (9.26)

where A¢) is a given matrix function and the functigjft) is assumed to be known.

The system can be reduced to a pair of first order linear difference equations described
in the previous section in the following way. L&t andi, be two linearly independent
solutions of the homogeneous equation

dn(t+h) = A@)d(t), k=12 (9.27)

Then a solution of the nonhomogeneous equation can be represented in the form

(1) = e (B)iia(t) + ea(t)iia(t) (9.28)
with
Anea(t) = det(gv(;)(ﬁg; ). (9.29)
Anealt) = det(%i: 2) g8 (9.30)
where

W (t) = det(ua(t); uz(t)) - (9.31)
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Indeed, substituting (9.28) into Eqg. (9.26) we get

ca(t +h)ua(t + h) + co(t + h)ua(t + h)
= A(t) (ca(t)uia(t) + ca(t)iia(t)) + g(t)
= ca(t)ua(t + h) + co(t)uz(t + h) + (1)

We gather the terms containirg on the left-hand side:
N . AhCl(t) — =
G+ 13 e+ 10) ( 10563 ) = gt

This system has the determinant equdlif¢t + 1), and, provided the determinant is not
zero, it is equivalent to (9.29) and (9.30). Inversely, given a solut{ohof the system
(9.26), we can represent it in the form (9.28) taking

det(u(?); u2(t)) det(u.(2); u(?))

wo 0 O

Cl(t) =

In general, it is not easy to find two linearly independent solutions of a system. But
in many cases one can find one solutigft), then the second solution can be easily
constructed.

First we note that

(U@n(t + h); da(t + h)) = A(t) (da(t); w2(?))
and we have
W (t + h) = det(AQ))W (t). (9.32)
Provided det(A{)) # O this equation can be replaced using the substitution
W(t) = expw(t) (9.33)
by the standard first order finite-difference equation
Apw(t) = log det(Af)). (9.34)

In particular, in the case of det(8] = 1 this equation implies that the Wronskian,
W (t), of two solutions of the homogeneous equation (9.27)eriodic. A particular
solution of Eqg. (9.32) is given biy/ = 1.

Using W (t) we can construct the second solution of the homogeneous equation
(9.27). The first equation of the system (9.27) withk 2 reads

up1(t + h) = Ap1(t)uza(t) + Ara(t)uza(t). (9.35)

The second subscript imy, (t) refers to the component of a vect@g(t), and A;(¢)
denotes theék-component of the matrix AJ. Using (9.31) in the form
W (t) + ug2(t)uai(t)

ug1(t)

we can exclude the second component of the vagi@) and obtain a first order finite-
difference equation on the first component:

uga(t) = (9.36)
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W () + uro(t)uza(t)
u11(t)

Taking into account that;;(t) also satisfies Eq. (9.35) we can rewrite the last equation
as

up1(t + h) = A1a(t)uz1(t) + A1o(t)

ug(t + h) L AW (1)
u11(t) una(t)

The corresponding homogeneous equation has a solutigit), and we again use the
variation of parameters looking fa#; in the following form:

up1(t +h) =

u1(t) (9.37)

u21(t) = co(t)uaa(t). (9.38)
Then ANV (L
ot + Bzt + 1) = st + heot) + PO
and we have
_ Ap@®W(t)
Ancolf) = ug1(t)ura(t +h) (9:39)

Thus we reduce the problem of construction of the second solution for the homogeneous
system to the standard form of the single first order difference equation. The components
of the vectorii, can be obtained by (9.38) and (9.36).

9.5. Solutions of second order difference equatiddar main object here is the second
order linear operataf. of the form

Lu(t) = A2u(t) — q(t)u(t). (9.40)

We will consider both the homogeneous

Lp=0 (9.41)
and nonhomogeneous

Lu=f (9.42)
equations. The last equation is equivalent to a system of two equations

u(t +h) =u(t) +o(t+h),  v(t+h) =) +q()ult) + f(2).

This system has the form (9.26) with

_(1+q@®)1 oy = (S
A(t) = t) = .
(t) ( q(t) 1) ) g(t) (f(t)
Obviously, det(Af)) = 1.
The WronskiarVy., of two functionsf andg is defined by the formula

@) g()
Anf(t) Ang(t)

The results of the previous section can be summarized in the following form:

me:m( ):ﬂwwmm—ﬂma—m (0.43)
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— If 1 andy; are two solutions of the homogeneous equation (9.41),¥Wgn,, is
h-periodic.

— If ¢1 and p, are two solutions of the homogeneous equation (9.41), such that
Wei0, = 1, then the general solution to the homogeneous equation (9.41) has
the form

o(t) = aa(t)pa(t) + az(t)p2(?), (9.44)
wherea(t) andas(t) areh-periodic functions,
ag(t) = Wgo;cpz(t)v az(t) = Wapl;cp(t)-

— If 1 andyp, are two solutions of the homogeneous equation (9.41)8pd,, = 1,
then the general solution to the nonhomogeneous equation (9.42) has the form

u(t) = ax(t)pa(t) + az(t)pa(t), (9.45)
wherea; anda; obey the equations
Apar = —pof,  Apaz = @1f. (9.46)

— Conversely, ifa; anda, satisfy (9.46), then the functiomdefined by Eqg. (9.45) is
a solution of Eq. (9.42).

— Let ¢, be a solution of the homogeneous equation (9.41)arhtisfy the equality
Were, = 1, theny; is also a solution of Eq. (9.41). Application of the method
of variation of the parameter shows that we can repreggiin the formp,(t) =
C(t)pa(t), whereC'(t) satisfies the equation:

1

AC=——»——.
" apat + b
9.6. Exampley(x) = % We use the developed techniques to construct an inverse

operator to

2
Lou = Ay — —U.
x

This operator was studied in [Laz84, Laz91]. The homogeneous equafior 0 has
two solutions:

pou(e) = 6+ 120 +12e2 )y (v~ k)72,
k=1
2
xT
po2(z) = 5

Indeed, substitution to the equation shows that the functfois a solution of the
homogeneous equatidiypoz = 0; it can be checked by a direct substitution that

Wipmitpoz =1

Consequentlypo; is a solution of the homogeneous equation. Itis not difficult to establish
thatpo; admits uniform asymptotic expansion inA),

ar +A >4
9\ sindg /| = 0

D(A)Z{;CE(C:
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of the form

0o . Bm
@01_122(_1) mZm,—l’

m=1

whereB,, are Bernoulli number$; = 3, By = &, B3 = &5, B4 = 35, Bs = &, ... .

The functionyg; has a meromorphic analytic continuation@mand

127242

sif 7z’

vo1(z) = —por(—x) +
Proposition 9.6. Giveny > 3and A > 1, the expression

Lot f = —po1AZ poaf) + o2 A" (porf), (9.47)

where A_ was defined by (9.5), defines a continuous oper@@? D Xy (D) —
X,_2(D(A)) with a norm bounded by a constant depending onlygand~. If f €
X, (D(A)), thenw = Ly f is a solution to the equatiohgw = f.

Proof. Since
lpor(x)| < constlz| ™t and |pea(x)| < constjz|?, (9.48)
we haveporf € X,+1(D(A4)) andpoof € X,_>(D(A)). Proposition 9.1 implies the

right side of (9.47) to be ik, _,(D(A)), the corresponding norms depending only on
dpandy. O

10. Proof of the First Approximation Theorem (Proposition 3.1)

This proof is a modification of a similar proof from the work [Laz84]. Let
. N-1
Xn(th?) = W2 a,(t) (10.1)
n=0
be the sum of the firslV terms of the series (2.2). We write the solution of Eq. (2.1) in
the formz—(t) = X n(t, h?) + Z(t, h?) and we prove the existence and upper bounds for

the functionZ, first, in a domain, which contains no points néarir/2, and then in a
domain near that point.

10.1. Far from the singularity. As a first step we study the solution of Eq. (2.1) in a
domain, which contains no points close to the singularity, namely, in

Do={teC: Rt <-1/2}u{t e C:|Rt| <1,|3t| < 1.5}
Lemma 10.1. In the domairDy,

|z~ (t) — Xn(t, h?)| < const&h?N. (10.2)
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Proof of Lemma 10.1IThe functionse,,(t) were defined in such a way that
In(t,h?) = A2 Xy —esinXy (10.3)

has all derivatives with respect to the second argument up to the Srégual to zero
ath = 0 for all values of. In Dy we have

|ON*L fur(t, h?)| < const 8%

for all h € (0, ho). Then the Taylor formula implies

H2(N+1)

D < const 8%t p2N*2,

[fn(t, h3)] < max |90 fa(t, h?)|
0<h<h

We look for a solution of Eq. (2.1) in the form:
(1) = Xn(t, h?) + Z(t, hP).
Substituting into Eq. (2.1) and using (10.3) we write the equatio@on
A2Z =esin(Xy + Z) — esin(Xy) — fn. (10.4)
It is convenient to rewrite this equation in the form
A2Z —cZ =¢(sinXy +Z) — sin(Xn) — Z) — fn. (10.5)

Define the linear operatar, which acts on a functiorf of the complex variable by
the formula

Lf=A2f—cf. (10.6)

We consider this operator on the spatef all continuous functions iy, analytical
in internal points and having finite norm

I£]l = sup|e”?* f(1)] < oo.
tEDy

The homogeneous equatidny = 0 has two linearly independent solutions?eand
€', respectively. No one of them belongsab Thus it is possible to define the inverse
operator by the formula

_ 1 & .
L7Yf@) = S0 ; f(t — kh) sinh(ch). (10.7)

Equation (10.5) may be rewritten in the form
LZ=¢(sin(Xy +Z) —sinXy — Z) — f.
In the spaceY’ this equation is equivalent to the equation
Z =eL~Ysin(X, + Z) — Z — sin(Xn)) — L~(f). (10.8)
To show that the last equation has a solutiof’iwe use the convergent iteration scheme:

Z0=0, Z,=F(Zn_1), n>1, (10.9)
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whereF is the nonlinear operator from the right-hand side of (10.8):
F(Z)=eL ™t (sin(X, + Z2) — Z — sin(Xn)) — L™Y(fn).

Let us estimate the first iteraf® = L=(fn):

|Z4(t)| < Smh(h) Z| fn(t — kh, h?)| sinh(ch)
consthzj\”2 N R k) o _ consth2N+2
?h(h),;ez I SINNED) = 4 ok ,2) sinh(@i 2)

Since sinh¢) > x for any positiver, we get
|Z1| < (Co/2)h?N ™R, (10.10)
whereCy denotes a constant. We continue by induction. Suppose that

CocffthNeZn%t
2n)! ’
and prove that this estimate is also truesdaeplaced by: + 1. Indeed,
Zn+1 - Zn = ]:(Zn) - f(anl)
=Lt ((Sin(X N + Z4) — Zn) — (SINXN + Zno1) — Zu-1)) . (10.12)

|Zy = Za| < (10.11)

Note that
(SINX N + Zn) — Zy) — (SiNX N + Zy—1) — Zn—1)

1
= (Zn— 7 1) /0 (oS +EZ, + (1 €)Z,_1) — 1) d

Using the inductive assumption itis not difficult to see that the sequerigistbounded
by const &%t and, consequently, the expression under the integral is bounded by

consti Xy +&Z, + (1 — &) Z,_1/?,
and the last expression does not excBed"!, wherek is a constant. Using this estimate
we get from (10.12),

| Zpr — Zn| < Z Rk 7 (t — kh) — Z,_1(t — kh)| sinhkh.

smh(h)

Now we use again the induction assumption:

| Zpa1 — Zn| < eK  CoCp—tp2Nehianit 22
n nl — Slnh(h) (Zn)| 2
_ eKCoCr 2N et sinh(2)
Slnh(h)(Zn)' 4 Sinh((znzl)h) sinh ((2n;3)h)

g 20+ Dkh ginh L,




190 V. G. Gelfreich

Using again that sink) > = we get

eKCoCy ™ th2N g2+t PG /h2)K Cp=tp2N gXnrint
R2(2n)!2n+ 1)(2n+3) ~ ° (2n + 2)!

|Zn+1 - Zn| <

For h < ho we may assume that (h?) < 2 and lettingC; = 2K we conclude by
induction that the upper bound (10.11) is valid for all positive integeSonsequently,
the sequence,, converges to a solution of Eq. (10.8) and the linit,is bounded in
the following way:

2@t 1) < | Zn(t, h?) — Zn-alt, h)|
n=1
n—173 2N 2niRt
<Zcoc1 h2N e

oDl < consth?N Rt
n).

The functiona™ (t) = Xn(t, h?) + Z(t, h?) satisfies Eq. (2.1) and the first boundary
condition (1.4), but the second boundary condition may be satisfied only approximately:
#7(0) = Xn(0, h?) + Z(0,h?) = m + O(h?N). Let us choose the constafa(h) from
the conditionX y (5, k%) + Z(to(h), h?) = 0. By the implicit function theorenty(h) =
O(h?N). Let

Z(t, h?) = Z(t + to(h), h?) + X (¢ + to(h)) — Xo(t).

Obviously, X y (t + to(h), h2) — X (t, h?) = O(€R'h2N) in Dy. This finishes the proof
of Lemma 10.1. O

10.2. Near singularityNow we are going to study Eq. (10.4) in the dom&n= D\ Dy,
which contains points close to the singularity of the functiopg). It is convenient to
use the parameter on the separatrices defined by the formula

2 (10.13)

instead oft. Let D; denote the set of such that = i% + ht € D1. Now we rewrite
Eg. (10.4) in the form

2
A7 — ﬁZ = Fo+ (P + Fio)Z + Fo(2), (10.14)
where
Fo=—fn, (10.15)
Fi1 = £c0Szg — 2/72, (10.16)
Fip = £(cosX y — coszo), (10.17)

Fy(Z) = e(sin(Xy + Z) — sinXy — cosXy 2). (10.18)
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These functions can be bounded from above irﬁillexcept the unit disk centered at
7 = 0, in the following way:

|Fo| < constr 2N =2, (10.19)
|F11| < consth?, (10.20)
| Fis| < constr—4, (10.21)
1
|Fo(2)| = ¢|Z)? / sin(Xy +£2) d¢| < constr 2| Z|?, (10.22)
0

the last estimate being valid provided| < 1.
From Eq. (10.14) we obtain that satisfies the equation

Z = Ly N(Fo+ (Fu + F1)Z + Fx(2)) + Zyy, (10.23)

where thepperatoLO‘1 is acting by the formula (9.47) on complex valued functions,
defined inD; and continued by zero to the left from this set. The téfynis a solution
of the homogeneous equatiaty(Z;,,) = 0. We let

Zin(1) = a1(7)p01(7) + a2(1)poa(7), (10.24)

where
a1(7) = Wzipe(T — [R07 + h_l])7 (10.25)
a2(7) = Wz (T — [RT + 271, (10.26)

where [s] denotes the integer part of The functionsa,, & = 0,1, are periodical
complex valued functions. Probably, they are not continuous. Using the estimates (9.48)
and Lemma 10.1 we obtajn;(7)| < consth?V*2 and|ay(7)| < consth?V 1, then

| Zin(7)| < const(|7[2h?N*2 + |7 T1R2N L) (10.27)

We consider Eq. (10.23) on the sequence of closed intefyalgir — h 1, ir — h=1 +
n] N Dy. The explicit expression for the operatby ! shows that it expresses the value
ofa functionLgl(g) at a pointr through the values of the functigrat the points — k&,
k > 1. Thus Eq. (10.23) provides an expression for the values of [,, through the
values ofZ onl,,_1.

Let! be a closed interval it parallel to the real axis. Denote b, (/) the space
of all complex valued functions defined érand continued by zero to the left of the
interval. The norm of a function € X,,(!) is defined by

lallm = sup|T™a(r)].
l

Lemma 10.2. Givenm > 1, n > 0, the formula (9.47) defines a continuous linear
operatorLg ™t : Xpaa(ln) — Xm(lne), || Lo *|| < const Giveng € Xo(l,,), the operator
Ly, defined byl.1 Z = Z — Ly *(g - Z), has a bounded inversé,; *, in X,,(1,,).
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The proof of the lemma is similar to the proof of Proposition 9.6. One has to take
into account thal.; is a \olterra type operator.
Now we can rewrite Eq. (10.23) in the form

Z = L7 Ly Y(Fo + FioZ + Fo(2)) + L1 Ziy, (10.28)

we substitutey = e "1 F; into the definition ofL,. The norms of the functions on the
right-hand side can be estimated in the following way:

!’LflLal(FO)‘}zN = const

127 Lo (F22) |

2
v < const lsum| 1 Z]|2n,

n

L1 Lo {(F2(2)] 5 < const ZSUQTI*ZNHZHEN,

n

| L1 Lo M (Zin)||,, < const

where the norms in the left-hand side aréds (/,,+1) and the norms of in the right-
hand side are itt,x (1,,). Denoting the latter byl Z ||, We obtain from Eq. (10.28)
the following set of estimates:

1Z|2n,n+1 < cONst + const supr| 2| Z||on,n + const supr| =2 | Z| |5y ...
l

" I (10.29)

Lemma 10.3. Lety,,, n € N be a sequence of nonnegative numbers, suchyhat<
a + by, + cy? for some positive numbers b andc, 2b + 4ac < 1. If y; < 2a, then
Yn < 2aforalln > 1.

The lemma is almost trivial. Indeed, lgt € (0, 2a), then
Yn+1 < a + by, + cy,zl < a+b2a+c(20)? = a + a(2b + 4ac) < 2a.

Applying Lemma 10.3 to the sequendi||2n,, We obtain the upper bound
| Z||2n,n < constforall,, suchthatsup |7|~* < R~2for a sufficiently large constant

R. Thesel,, cover allD; except theR-neighborhood of- = 0. To extend the estimate
on this subset we note that we need no more tEgn-[1 steps inn.
Thus

sup | 7N Z(r,€)| < const (10.30)
Teﬁl

This estimate together with Lemma 10.1 imply Proposition 3.10]

11. Proof of the Existence of theS.SM Separatrix (Theorem 4.1)

The mapl'_ : C — C? can be written a§'_(7) = (u_(7),v_(7)), T € C, where the
second component can be expressed in terms of the first one:

v_ (1) =u_(1) —u_(r —1).
So it is sufficient to find:_ (7) by solving the equation

A%u_(7) = explu—_(7)). (11.1)
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Given a number > 1, denote byD(A) the domain inC defined by the inequality

ar + A
977 Sind,

We shall consider analytical functions definedifA). Evidently the domaitD(A) is of
atype @, —) inthe sense of Sect. 9. Fix abranch of the log so thagictgecomes real on
the negative axis of the variabteand introduce a new unknown function: D(A) — C
by setting

> do. (11.2)

u_(1)=— |Og7-?2 +w(r), 7€ D(A). (11.3)

Substituting (11.3) into Eq. (11.1) yields the equation
A%w(r) — 2log (1 — 12> = 32 exp(7)).
T T

The latter can be rewritten as follows:

Low = wo + F(w), (11.4)
where
Low(r) = Aw(r) — %w(T), (11.5)
wo(r) = 2log <1 — :;) + 7—22, (11.6)
Fw)(r) = F(r, w(r)), (11.7)
2
F(r,w) = = (e —w-1). (11.8)

We shall try to resolve Eq. (11.4) with respect to the unknown function the
spacet, (D(A)) with an appropriate:.. The operatol.q was studied in Sect. 9.6.

The following proposition contains necessary estimates for the opefatiefined
by the formulae (11.7) and (11.8).

Proposition 11.1. Letw, w1, w2 belong tox),(D(A)), x> 0, and let
()] <1, fwy(M) <1, ua(r)| <1 ¥r € D(A).
Then, given real such thaty < 2 + 2u, the following estimates hold:

const

[F )l < YT l[wll,e, (11.9)
const
1F(ws) = Flwa)lly < —peg=y Max{llwaflu, wellu} lws = well,, (11.10)

where the constants depend only on the choic®,qf and~.
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Proof. It follows immediately from the definition of the norms and from inequalities

cons
|F(r,w)| < Mzﬁ % (11.11)
const
|F (1, w1) — F(7,w7)| < T max{ |wy|, |wa|} w1 — wa|, (11.12)

which are obviously valid providedv|, |w1| andjw,| <1. O

Let i, = 2, = 4, and consider our main equation (11.4) in the spegé (A)), A
being sufficiently large.

Proposition 11.2. In the spaceY,(D(A)) Eq. (11.4) is equivalent to
w =G(w), (11.13)
where
G(w) = Ly "wo + Ly " F(w). (11.14)

Proof. Letw € X,(D(A)) satisfy (11.13). Then, due to Proposition 9.6, it is a solution
of (11.4). Conversely, lab € X,(D(A)) be a solution of (11.4). Note thaf and.F (w)
belong toX4(D(A)). So the function

wy = Ly 'wo + Ly *F(w) (11.15)
belongs taY,(D(A)) and satisfies the equation
Low;y = wo + F(w).
Hencew; — w is a solution of the homogeneous equation and has the form
w1 — W = a1po1 + a2¢02,
wherea; anda, are periodic functions:
01 = Wi —wigor 02 = — W —wipor-

Sincew; — w € Xo(D(A)) andpos, o2 Obey the estimates (9.48), it follows that,
ap € X1(D(A)). In this case periodicity implies that = «, = 0. We haveu; = w, and
(11.15) converts to (11.13). O

Sowe may consider (11.13) instead of (11.1). We will consider the former in a closed
ball B(R) of radiusR satisfying the inequality

R > Ro = 2 sup|| Ly "wol, (11.16)
A>1
with the center at the origin. The supremum is finite since the norm on the right-hand
side is a nonincreasing function df

Proposition 11.3. If A is sufficiently large (larger than a constant depending onlygon
and R), then the mayy defined by (11.14) map3(R) into itself and it is a contraction
map.
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Proof. The estimate (11.9) and Proposition 9.6 yield that
%t
A2

providedA is sufficiently large. Also, due to (11.10),
1G(w1) — Gw2)ll2 < || Lo (Fwa) — Fwo))||, < const| F(ws) — F(w,)l|a

IG(w)llz2 < || Lg Mwol|, + =5 Ilw]3 < R,

const

< —z Max{|wallz, llwal2} wr = w2l
constR 1

<~z v —welle < 5 flwr — w2

These two estimates involve the proposition.[]

Corollary 11.4. Let R satisfy (11.16). There exists a unique solutien(r) =
—log(r2/2) +w(r) to Eq. (11.1) withw belonging toB(R).

Let us return to the function_ connected withv by the equality (11.3). Note that
u_ can be prolonged onto the entire complex plane as an entire function by means of
Eq. (11.1).

Equation 11.13 may be solved by the iteration method starting from the zero function.
Using the explicit formulas it is easy to see that the iterations preserve the property to
be real-analytic. Consequently, the functiopand then:_, are real-analytic.

It remains to obtain the asymptotic expansiondar(7).

Proposition 11.5. There exists a sequenge; };2, such that the functiom_ has the
asymptotic expansion (4.3) uniform in each seétox argr < 2w — &g, dp €10, 7/2].

Proof. Fix a positive integefV and introduce a function(r) as

2 N
u_(r) = —log % +> a4 (7). (11.17)
k=1

Itis clear from Corollary 11.4 that
In(r)| <1 if 7€ D(A), (11.18)

providedA is sufficiently large.
Substituting (11.17) into Eq. (11.1) yields the following equation for the funegion

Lon =no+ Fn(n), (11.19)
where
N+1
1 11 1
770:2|09(17_2>+2;k7.2k:0(7.2]\[+4>’ (11.20)
Fnm)(7) = Fn(7, (7)), (11.21)

N+1 N

N
2 ag 2 2 1 2
F = —ex + 5 | — 1.2k A B ’
N (7,m) ) p (77 ; T%) ; 12k ;:1 W ok — 2l (11.22)
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Let us choose the numbets so that
N N+1 N
ag 1 1 72 1 1

It is not difficult to check that this determines the coefficiantsiniquely, and they do
not depend on the choice of. Then we have, taking into account (11.18),

1 1 1
Fy(r,n)=0 <Tzn2) +0 (74”) +0 (Tm> (11.24)
and
0 1 1
%FN(T, n) =0 <T2n) +0 (7_4> (11.25)

ast tends to infinity.
We consider Eq. (11.19) in the spatgy.+2(D(A4)). It follows from (11.20), (11.24),
(11.25), and Proposition 9.6 with= 2N + 4 that

|| Zg o]l .+, is bounded (11.26)
B 1 1
120 P |z < const(wnnnﬁw + ez + 1) . (1L27)

||L61(.7:N(’I71) — -7:N(772))||2N+2

1
< const (AZJ,ZN max{|[n1ll2n+2, [[m2]l2nv+2} 71 — 772||2N+2)

1
+const <A4||771 - 772||2N+2> : (11.28)

Applying the contraction principle in an appropriately chosen closed ball we obtain the
existence of a fixed point € Xon+2(D(A)), A being sufficiently large, which proves
(in view of uniqueness ai_) the asymptotic expansion up to the orde?™. O

12. Proof of the Exponential Closeness of the Separatrices for th&S M
(Theorem 4.2)

In this section we will prove an exponential estimate for the distance between separatrices
of the semistandard map. All functions are considered in the dombainA being
sufficiently large. Recall that the domain, was defined by the formula (9.21).

First of all, let us notice that, sinae.(7) = u_(—7) — 2xi andu_ (7) have the same
asymptotics in the domaibP 4, their difference

w(r) = us(7) — u_(7) (12.2)

admits the estimate
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1
lw(T)| < constm, V1 € Dy, (12.2)

where the positive integ€¥ can be chosen arbitrary and the constant depends only on
0o andN.

The functionw obeys the following equation which is a consequence of (11.1) for
us andu_:

Aw—e-w=¢e" (¥ —1—w). (12.3)
Denote
F(r,w)=e“-D (¥ —1-w), (r,w)ecC? (12.4)
F(w)(r) = F(r, w(r)), (12.5)
and
Lw = A%w — e~ w. (12.6)

Then Eq. (12.3) can be rewritten as follows:
Lw = F(w). (12.7)
First we will deal with the problem of reversing the operdidn the space&’, (D 4).

12.1. Construction of. 1. By means of simple differentiation of the equation, one finds
that the homogeneous equation

Lp=0 (12.8)
has a solution
du_
p1(r) = T(T) (12.9)
T
It follows from Theorem 4.1 that
2 11 1
=4+ - — + 12.1
SOl(T) - 2 7_3 O (7_5> ) ( O)

if 7 tends to infinity outside a sectpargr| < do.
Lemma 12.1. There is a solution of Eq. (12.8), such that
Worior = 1, (12.11)

oa(r) & % (12.12)

k=—1

uniformly in any sectofargr| > 4.
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Proof. The solutiony,(7) can be determined by solving Eq. (12.11), which can be
solved explicitly with respect tp,. The functionp, may be represented in the form

p2(1) = C()pa(7), (12.13)

where
AC = _ (12.14)
e1(T)er(T + 1) '
The asymptotic expansion (12.10) results in
1 1, 1 1 1
- =T+ T+ + — .
FEEER Rt B E)
Let us introduce a new unknown functiafir) by setting
15, 1
= —7°+ —7+ .
C(71) 157 T oa” a(T)
Then Eq. (12.14) reads:

_ 1 1, 1 1 i
Aa(T)_gol(T)gol(T+1)_4T —47'—8—O< 2).

-
The latter can be solved by means of the operatot (see (9.5)) and

_ 1 1, 1 -1
alr) = ; (901(7 —k)p1(r — k+1) 4(T k) 4(T k) 8) (12.15)
does not excee@ (1/7). It follows from (12.10), (12.13), (12.14), and (12.15) that
_ 1, 1 1
valr) = =g 54+ 0 <72> : (12.16)

The solution of such a form is unique and it follows from the symmetries that its expan-
sion contains only odd powers. We will discuss the corresponding arguments for a more
general situation in Sect. 15. O

Now we can buildZ~! in the same manner aﬁgl in (9.47):
L7 = —p1 A" Hpaf) + p2 A H(paf)- (12.17)
HereA~1is the operator defined in Proposition 9.5.

Proposition 12.2. Giveny > 4, § > Osuch thaty — § > 4, and A > 1, the expression
(12.17) defines a bounded operatbr? : X, (Da) — X,_3_5(D4) with the norm
satisfying the estimate

const
Ad

where the constant depends onlyd@n~y, andé. If f € X, (D4), thenw = L~1fis a
solution to the equatiohw = f.

1L <

(12.18)
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Proof. Let f € &, (D4). Then, as it follows from (12.10) and (12.16),

wof € Xy_2(Da), p1f € Xyr1(Da).

Proposition 9.5 yields the first assertion and the estimate (12.18). The last assertion is a
consequence of (12.11). O

Applying the operatoZ.—*, we can rewrite (12.7) as
w =+ L7 F(w), (12.19)

wherey is a solution of the homogeneous equatiop = 0. We are going to resolve
(12.19) in an appropriate spagg, (D 4).

12.2. The application of the contraction principlEirst, let us estimate the normsof
andF(w). The inequality (12.2) gives us

lw(T)] <1 Vre€Dy (12.20)
if A is sufficiently large, and
const
lwlly < —5- (12.21)

for arbitrary chosen positive and 3, const depending op and 3. Similarly, like in
Sect. 11, if maX|w|, |wi|, |wz|} < 1, then

const

|F(r,w)| < P lwl?, (12.22)
const
|F(7,w1) — F(7,w2)| < T max{|wa, |wz|} [w1 — wal, (12.23)
which yield

const

[Fw)l, < Y T [w]2, (12.24)
const

[F(w1) = Flwa)lly < max{ [[wal|., [lwall} [[wr = wallu,  (12.25)

A2+2p—y

provided
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v <242, (12.26)

const depending only on the choicedgf 1» and~.
It follows from the estimates (12.21), (12.24) thatfrom Eq. (12.19) admits an
estimate:

const const const

const 1
12.27
Av ( )

2
lelle < Mlwlly + =55~ —amze=y 1wl < 5+ 2=m25 <

where positiver = min{3, x — 1 + 23} can be made arbitrary large, the constants
depending on that choice.

Let us fixd > 0, and consider Eq. (12.19) in the unit closed alvith the center
at the origin in the spac&),(D4), 1 > 1 +. Takey = 3+ + 6 (note that (12.26) is
fulfilled). Then (12.24) gives us

const 1

L7 F @), < s < 50

w € B,

provided A is sufficiently large. Also (12.27) ensures that||, < 1/2 for large A.
Hence the nonlinear operatgrdefined as

G(w) =+ L F(w) (12.28)

mapsB into itself. Proposition 12.2 and the inequality (12.25) prove the contractibility
of G. SogG has a unique fixed point i which necessarily coincides with defined by
(12.1), since the latter belongs itoo. We have also that

w = 7LIian wy, in X, (Da), (12.29)
where
wo = ¢ (12.30)
and
Wyt = g(wn), n > 0. (12.31)

The last thing is crucial because it enables us to prove an exponential estimateyfor
establishing such estimates for the members of the iterated sequence. First we establish
it for wo.

12.3. The estimate of a solution of homogeneous equatiorthe situation met in

the preceding section it appeared that the summagalsolution of the homogeneous
equation) did vanish. This was so because such a solution belongi)d £2( A)) with

© > 1is necessarily zero. The situation considered here is analogous but, since the
geometry ofD 4 differs from that of D(A), it does not vanish. Instead an exponential
estimate for such a solution is possible.

Proposition 12.3. Let ¢ > 2 and lety € X, (D) be a solution of the homogeneous
equation (12.8). Then

2
T — |7
(7)) SconstIIsolluflwl+l e?ntA-isTh, (12.32)

where the constant depends onlyfrand .
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Proof. A general solution of the homogeneous equation can be represented in the form

® = a1+ ozp, (12.33)

where the functions
a1 = Weip, a2 = —Weip,

are periodic. The estimates (12.10) and (12.16) involve
|aa(r)] < constpll,, [7[27,  |aa(7)] < constljp|],.|7| .
Sincea; , are periodic, they define functioms »(2) for |2| < e=274 by the equalities
Br2 (€777 = ago(7),

which tendto zero as — 0. Soj; » have analytic continuations to= 0, and3; »(0) = 0.
Hence, denoting = e 24, we have

f2) < max B | gra max |aa(7)| < const||p||,, A> €™,
z z|=r z Sr=—
Pa(2) < max PBeR)| _ gona max_ |az(7)| < const||p||, A7 e,
z z|=r z QSr=—
Hence

loa(7)] < Const||gp||#,42—u927r(A—\%TD7

S 12.34
|laa(7)| < const]|epl|, A~ HemA=IST, ( )

Applying (12.34), (12.10), and (12.16) to Eqg. (12.33), we obtain the desired estimate
(12.32). O

12.4. Proof of the exponential estimafix . > 3, and letA be so large thaty||,, < 3.
By using (12.28) and (12.29), we will prove by induction thatlifs sufficiently large,
the functionsw,, satisfy the estimates:

1 N
lw, (7)| < cnmzw er(A-ISTh), (12.35)

and the sequence of the constafitsis bounded. In view of (12.29) we shall obtain the
desired estimate for the limiting functian.

First, Proposition 12.3 gives us (12.35) for 0. Let (12.35) be true for a given
Substituting (12.35) into the right side of (12.22) yields

1

A (A—|ST
g€, (12.36)

[F(wa)(7)| < constCy|?|7|?
Multiplying (12.36) by|r|” and taking the maximum we obtain

max 7|72 (A=ISTh, (12.37)

1
”‘F(wn)H’y < Const|C’n|2W

Here we used the inequality| < const{S7]. If A > (v + 2)/(4x) then the maximum
on the right-hand side of (12.37) is reache®@at= — A. So
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1 1
| F(wy)|, < cons’[\On|27Azu_7 = const|C’n|27AN_3_5 (12.38)
(recall thaty = 3 + 1 + §). Using Proposition 12.2 we have
1
-1 2
L7 F(wn)|[, < constiC,| T (12.39)

Consider another inverse operafdr—*), defined by the formula

(LY, f() =e (L7 f1)(7),

where .
fulr) = €77 (7).

The additional factors®&™'™ do not change the way of obtaining (12.39) because of the
presence of a more strongly decreasing exponefit@7!. So we have

1
(L), F@wn)|, < cons{Cr[*— . (12.40)

Since L commutes with the multiplication by*&™, the expressiof L), f repre-
sents another solution to the nonhomogeneous equation f. Hence the difference
between(L 1), F(w,) and L~ F(wy,) satisfies the homogeneous equation and admits
the estimate

(L), F (wn) — L‘lf(wn)Hu < const|C,|? (12.41)

1
An—=3’
which is a consequence of (12.39) and (12.40). We may apply Proposition 12.3 to the
difference taking into account (12.41). The result is

2|12
(L7, )0~ L F )@ < const T TR @197 (12.49)

The expressiofi ), F(w,)(r) admits a direct estimate. First, it follows from (12.36)
that

T 1 T A—=2m|ST
|77 F(w,)(7)] < const|Cn|2|T\2AZM2 oo A—2r|Sr|

Denoting

fi(7) = €7 F(w,)(7),
we obtain consequently, as in (12.38) and (12.39),
1
A2n—
1
Anr—3
providedA is sufficiently large. Multiplying by e2™7 gives finally

A
e,

”fl”’Y < ConSt‘Cn,|2

e27TA’

|\L*1f1||u < const|C,,|?

1 1 -
‘ (L_:I-)l]:(wn)(T)‘ < COnSt|Cn|2F W ezﬂ'(A—\\STD

1 &
| 7|2 @m(A=IST, (12.43)

< const|C), |? yEr=
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Comparing (12.42) and (12.43) yields

2
- T T(A—|ST
| L7 F (wn)(7)| Sconst\CnF%ez (A—|37))

Returning to our initial recurrent relation (12.31), whérés defined by (12.28), let us
notice that if we take
const
Crs = Cot —g C2, (12.44)

then the estimate (12.35) becomes valid for the next value of the index
The assertion of Theorem 4.2 follows from (12.44) and Lemma 10.3.

13. Existence of theS'S M Based Expansion (Proposition 5.1)

In a neighborhood of = i7/2 the coefficients (2.10) of the formal series (2.2) may be
expanded in convergent Laurent series. Passing to the new-tim& — in/2)/h we
get the following chain of the equalities:

. h2 1°°2,°°~ . ok h2 1°°2,
X_||ogE+TZhLan’k(t—m/Z) —|Iog§+TZh U,
n=0 k=—n n=0
where we introduced the notation

[
—2k
Un ~ E Pn+k,—kT .

k=—n

From (2.3) we get the following equations:

4 sint? (;8) Us = exp(Ub),

or
(18 L2
4sini? (287> U, = ; o (Vi rUs.-...Unsai) expl0)
1
_Zyn—l—k(_Ula sy _U7L+1—k) exp(_UO)) .

Consequently the formal seri& are formal solutions for the finite-difference equations
(5.7) and (5.8). These equations may be solved recurrently if we consider the equation
numbern as a equation fot,, . Considered in this way the equations (5.8) are linear;
they can be rewritten in the form

2 _ U _ _ _uT _ _
Ay, —€e%ou, =€ Py(uy,...,u,_1)+e€ %o Quluy,...,u,_5),

whereP,, and(@),, are some polynomials. As in Proposition 12.2 the operator in the left-
hand side has a bounded inverse acting frtop(D(A)) — X, _4(D(A)) for m > 4.
Define the functiorw,, ; = u,, — >7_ . p.x7 2. This function satisfies a similar
equation, but with the right-hand side &y;.4. Then there is a unique solution of the
equation inty;. Thatimplies that the constructed formal series are asymptotic to analytic
solutions inD(A).

Equations (5.8) afford to obtain analytic continuations of the functighérom the
sector to the entire complex plane. [
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14. Proof of the Second Approximation Theorem (Proposition 5.2)

Denote by
. N-1
Un(r,h2) = h?Muy () (14.1)
n=0
a partial sum of (5.6) and consider
Z(,h?) = u~ (1) — Un(r, h?). (14.2)

Substitution to Eq. (5.5) provides an equation forlt is convenient to rewrite this
equation in the form

A2Z — et Z = Fo+ P17 + Fy(Z), (14.3)
where
Fo = (¢/h2)eV~ — (ch?/a)e U — A2y,
FuZ = (/W)™ + (ch2/4)e U —eh0) 7,
Fo(Z) = (/12PN (€7 — 1 — Z) — (eh?/a)e N (e % — 1+ 2).

Letr € Dyandz € C, |z| < 1, then

| Fo| < consth?N |72V =2, (14.4)
|F1| < consth?, (14.5)
|F2(2)| < const|r|~2|z|2. (14.6)

These estimates follow directly from Eq. (5.7), (5.8) and the asymptotical formulae
(5.10), (5.11).
Denoting the linear operator in the left-hand side of (14.3Ybwye can write this
equation as
L(Z) =+ W Z+ Fz(Z)

We can apply the operatdr 2, defined by formula (12.17) with ~* replaced byA ~*
(see (9.5)), to both sides of the equation to obtain thsatisfies the following equation:

Z = Zim+ LY Fo + F1Z + F»(2)), (14.7)

where the operatat—! is acting on complex valued functions, definedipand con-
tinued by zero to the left from this set. The tefy), is a solution of the homogeneous
equationZ(Z;,) = 0, and we have to choose it in such a way that the right-hand side
of (14.7) would be equal to the difference (14.2) in the intersectia.ofvith the strip
h=1/2 < Rt < =2 + 1. In this way we obtain the coincidence of the solution of
Eq. (14.7) withZ. We let

Zin(T) = a1(m)p1(7) + ax(7)pa(7), (14.8)

where
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a1(7) = W, (1 — [R7T + hY?)), (14.9)
ax(1) = Wy (1 — [R7 + h=Y?)), (14.10)

where ] denotes the integer part ofThe functionsi, k£ = 0, 1, are periodical complex
valued functions. Probably, they are not continuousDinthey afford the following
estimates:

lag| < consthN Y2 |ay| < consth V1, (14.11)

Indeed, letr € D,, then
|Z| < consth?,  |AZ| < consthV*?

due to Proposition 3.1 and the sewing condition. Then the estimates (14.11) follow from
(14.9), (14.10) and the estimates (12.10), (12.16).

We consider Eq. (14.7) on a sequence of closed intetyatqir — h =1, ir — h =1 +
n] N D,. The explicit expression for the operatbr ! shows that it expresses the value
of a functionL ¢ at a pointr through the values of the functignat the points- — k,

k > 1. Thus Eq. (14.7) provides an expression for the values oh [,, through the
values ofZ onl,,_1.

As in the proof of Proposition 3.1, |étbe a closed interval if© parallel to the
real axis. Denote by, (/) the space of all complex valued functions defined and
continued by zero to the left from the interval. The norm of a functioa X, () is
defined by

lallm = stlp\rma(r)L

Lemma 14.1. Givenm > 2, n > 0, the formula
L7 = =1 AT p2f) + p2A " (pa f)

defines a continuous linear operatdr* : X,,(l,) — Xm—_2(l,+1) With the norm
bounded by a constant. The value of the constant can be chosen to depend-anly on

Applying thislemmato Eq. (14.7) and taking into account the estimates (14.4)—(14.6)
we obtain

1Z|an+1 < consth™N 3+ consth || Z||s,,, + const supr| 2| Z|3.,.,

n

where|| Z||,, denotes the norr# in X4(l,,). Applying Lemma 10.3 to the sequence of
| Z]|a,» We obtain the estimate

|1 Z||la < consth™ =3,

This estimate is valid in alD, except a 1-neighborhood @f= 0. We can not use the
above estimate to cover this subset, sincé is not bounded there, but we can simply
iterate twice the original equation fdf.

SinceN is arbitrary we can increase it to obtain

lu™ — Un| < |u_ — Uansa| + |Uanss — Un| < consth®N + consth?Y |72V,

The last estimate is equivalent to the one from the assertion of the theoren.
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15. Existence of the Second Solution for the Variational Equation
(Proposition 6.1)

Since®; is a nontrivial solution of the homogeneous equation we candindrom
the normalizing condition (6.13), Eq. (6.12) being satisfied automatically. In the class
of formal series (6.13) is equivalent to the system

W(b10i920) = 1, (15.1)
W10 0am) = — 3 WL Popr),  n>1 (15.2)
k=1

The solution of Eq. (15.1) was obtained in Lemma 12.1. But the following reasoning
works also in the case of Eq. (15.1). We userfieequation to defing, ,,. We use the
induction inn. The induction step consists of three parts:

(1) There is a formal series of the form (6.16) satisfying (15.2);

(2) There is an analytical function satisfying (15.2) which has the series as asymptotic
expansion;

(3) The solution is unique.

Step (3) is simple. Indeed, Eqgs. (15.2) are first order linear equations. The general
solution of the corresponding homogeneous equation is a prodygiafnd a periodic
function. Since the asymptotic ¢f; , contains odd powers of (its expansion (12.10)

starts with—27—! and contains only negative odd powers), then if there is a solution of
the form (6.16), it is unique.
Then we look for the solution of Eqg. (15.2) in the form

©2n(T) = An(7)p1 (7). (15.3)
Substitution to Eq. (15.2) provides
1 n

Ap(r) = —— — WP ks P ) = fulT). 15.4
A (7') 901,0(7)901,0(7""1); (Wl,k P2.n k) f ( ) ( )

Since the series for the functiomgk(T) contain only odd powers af, and the series

for ¢, ,.(7) contain only even powers, it is easy to check thgt-1 — 7) = f,(7) in the
class of formal series. Then it follows from the following lemma, that Eq. (15.4) has a
formal solution represented by a series which contains only odd powetrs of

Lemma 15.1. Let f(r) = > ;2 ,. b7 * be a formal series in powers of, such
that f(r — 1) = f(—7). Then there is a unique representation fif-) in the form

f(r) =X, cAT2H,
Proof. The set ofp;(1) = A7/ = (r+1)7 — 779, > -2m — 1,5 # 0, forms a

basis in the space of formal series of the foEf:_ b7 with b, = 0. The series
f(r — 1) — f(—7) contains the term

bl bl _ b1(27' — 1) - bl (2 1 )

2m

S+ S+
T—1 -7 7(r —1) T

T2
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The expansion starts withh2/7. The other terms of do not contribute to this order.
Sincef(r — 1) — f(—7) = 0 we haveh; = 0.

So f(r) can be represented as a linear combinatiom,¢f). This combination
contains only odg because;(7 — 1) = —(—1yYp;(—7). O

It follows from the expansions (6.16) and (6.11), (5.10), (5.12) fhat) satisfies
the assumptions of Lemma 15.1 with=n + 1. Then the lemma implies that there is a
formal solution of Eq. (15.4):

o0 ak
A~ Y
k=—n+1
To complete Step (2) we look for an analytic solutidp(7) in the form
_ ak
An(7r) = k—,z,l 21 +rpm(T),  m>0. (15.5)

Substitution to Eq. (15.4) gives

Arnm() = fuld) =AY % (15.6)
k=—n—1

According to the construction the formal series on the right-hand side of the last equation
starts with a term of the order of ™1, Due to the induction assumption formal series
provide asymptotic expansions. Thus the right-hand side is an analytic funciitfiin

(see (11.2)) and it is equal @(7 ~2™~1). We apply the operatak _* defined by (9.5) to
obtain the solution of Eq. (15.6) ift%,,,(D(A)). Then we can restorg, (1) by (15.3).

Since the solution is unique the functidr, obtained by this procedure does not depend
on the choice ofn. Thus the constructed formal series are asymptotic.

The functiony, (1) can be continued analytically onto the whole complex plane
using Eq. (6.12).

To prove that the constructed functions are real on the real axis we can repeat the
reasoning with- on the real semiaxis < — A, with some constart > 0. The obtained
functions are real and coincide with the restriction of the previously constructed functions
on the real axis due to the uniqueness.[]

16. Construction of the Asymptotic Expression for the Distance BetweeS M
Separatrices (Proposition 6.2)

Since bothU* andU ~ satisfy Eq. (5.5))W =U* — U~ satisfy
AW = ((g/hz)eU’ + (sh2/4)e—U’) W+F, (16.1)
where
F=(e/h?)e” (¥ —1-W) —(h?/4)e’V (e —1+W). (16.2)
The functioni¥ can be represented in the form

W= A1y + Ay d; (16.3)
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where
AAl = _®2_F7 AAZ = @IF. (164)

We consider this equation in the class of the formal series
A(r,e) ~ Y WP aga(r), k=12 (16.5)
n=0

The coefficient of the series fé¥ (7, ) is expressed in the following way:

n

wn(7) = > (a1 k() prn—k(7) + a2,k (T)p2n £ (7))- (16.6)
k=0

To obtain the equations ar, , we represent’ as a formal series

o0

F(r,e) ~ Y W' Fo(7). (16.7)

n=0
It is not difficult to obtain an expression féf,,:
U 2 — — W
F, =€ Z @M(ul,.‘.,ul YE Y (wr, . . ., W) — O — Win)

k+l+m=n+1
o 2 _ _

—€ Z myl(_U1 sy Uy )

k+l+m=n—1

x(e_woym(_wb crey _wm) - 6m + wm) 1

herek > 1,1, m > 0,4, isthe Kronecker symba);,, are polynomials (5.9). In particular,
we have

Fy= e“5 (e“’° —-1- wo),
Fy = €% ug(e™° — 1 — wp) + €0 wi (e — 1) + (2/41)e" (e° — 1 — wp).
From (16.4) we obtain that
Aarn ==Y @okFor,  Aazn =Y kp1pFo . (16.8)
k=0 k=0
First, we study the equation far= 0, namely,
Aaio = —p20F0,  Aazo = —¢10Fo. (16.9)

The estimatgwo(7)| < constr|2exp(—27|37|) from Theorem 4.2 implies that the
functions on the right-hand sides of Eqgs. (16.9) do not exceed

const expt4n(1 — 6)|S37]) (16.10)

for anyé > 0. Of course, the constant in the estimate depends on
Let 95(D) be the space of continuous complex valued functions defined,in
analytical in interior points o and provided with the norm

llgll = sup| exp(4r(1— 6)iT)g(7)|.
TeD



Proof of Exponentially Small Transversality 209

Lemma 16.1. Leté > 0, anda(7) be a solution of the equatiofa = g, g € Ys(D4),
which goes to zero &t — —oco. Then there is a complex numbgrsuch that

a(r) = 0627 + O(exp(4r(1 — 6 — p)iT)),

wherey, > 0is an arbitrary small number. The constant in teestimate depends on
u. If 6 < 1/2 then for eachu the representation above is unique.

Proof. First, we construct a suitable solution for the nonhomogeneous equation. Then
the solutiona differs from the obtained one by a periodic function. The first Fourier
coefficient of the difference will play the role 6f

There exists a linear map ™ : 95(D4) — Vs+,(Da) such that

— foranyg € 9s5(D4), A(g) is a solution of the equationa = ¢ at all the values
of the independent variabtefor which it has meaning;
— ||A7Y|| < const, where const depends onlydnd and .

The proof of these facts follows the lines of the proof of Proposition 9.5; the opefators

Z. andZ_ have to be replaced by the operator of multiplicati¢r) — 72 exp((4r(1—
6—u/2)it)g(r). Thenthe operatak —* is defined by the same formula (9.25). Obviously,
P.Tg € Xo(DF) and inD 4 the following identity holdsy = Z-'P_Zg + Z; *P.Zg.

The estimates of the norms of the functions obtained after application of the operators
AZ* follow directly from the definitions (9.4), (9.5) of these operators.

Now consider the functiod = a — A~1g. It is a solution of the homogeneous
equationAb = 0 andb — 0 asd7 — —oo. Thenb can be represented as a Fourier
seriesh = 312, bye~?"*7. Let = by. The Fourier expansion without the first term is
bounded byO(exp(4riT))in Dy. O

Applying Lemma 16.1 to Egs. (16.9) we obtain the desired representatian,for
taking into account (16.6) with = 0.

Then we follow by induction im. Suppose that we checked the estimates (6.17)
up ton — 1. The right-hand side of Eq. (16.8) contaifig, £ = 0,1, 2, ..., n. All the
functionsFj, are polynomial inwy, wo, ... , wg, €° — 1, €0 — 1 — wp, € *° — 1 and
e "o — 1 +wyg, with coefficients being some analytic functionsigfwhich grow no
faster thanr™V for someN = N (k). These polynomials contain no zero and first order
terms with respect tavy, . .., w,. Thus they can be bounded from above by (16.10),
except the functiort,, because of its dependencewp. This dependence goes through
one term of the sums (16.8) only, namely,

e w, (e — 1).

We know a priori thatv,, = O(7—"™) for allm > 0, thus the expression above is bounded
by

const exp{-(2r — §')|37]) (16.11)

with arbitraryé’ > 0. Applying to Egs. (16.9) Lemma 16.1 with= ¢’ + 1/2, we obtain
thatay , anda, ,, are exponentially small. Then from (16.6) it follows thaj does not
exceed (16.11). Now it is possible to improve the estimatéfoup to the form (16.10)
and again apply Lemma 16.1, but now with arbitrary small positive

Denote the constants provided by Lemma 16.k¢ andai, by 6, and p,,
respectively, and restoke, by (16.6). Proposition 6.2 is proved. [
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17. Proof of the Theorem on the Analytic Integral (Theorem 7.1)

In the coordinate form the map(t, £) = (x(t, E), y(t, E)). Assertion (3) reads:
x(t+h, E)=x@t,E)+y(t+hE), ylt+h E)=yt E)+esinz(t, E).
This system is equivalent to a single equation
A?x(t, E) = e sinz(t, E).

The normalizing condition (4) is equivalentit¢, 0) = 2~ (¢). Assertion (2) is equivalent

to
dz Oz
_ ot OF _
J—det(ay 8y> =1

dt OF
or, equivalently,

dx 0
VR [y =

ot oF
where)V is the finite-difference Wronskian. We construct the desired solution using
a convergent iteration procedure. First, we have to study the variational equation in a

neighborhood of the unstable separatrix.

)

17.1. Variational equation.Let D be a closed subset of the sttipt| < 7/2. Given
nonnegativeu, denote byX, (D) the Banach space of all complex valued continuous
functions defined irD, analytic in interior points o and possessing the finite norm

lla|l,. = sup|cosh(t)a(t)]. (17.1)
teD
The following lemma provides an instrument for solving first order linear equations in
}:M(D(R))l
D(R)={t € C:|St| < 7/2— Rh, |Rt| < 10h}. (17.2)

Lemmal1l7.1l.Lety > 0, R > 1. There is a linear operatorA,j1 P XL(DR) —

X, (D(R)), such that for any € X, (D(R)) the functiona = A;ng is a solution of the
equationAa = g and

A < consthtlogh~t. (17.3)

The constantin the estimate depends only.dvioreover, ifg is an analytic continuation
of a real-analytic function defined on the intersection/¥(fR) with the real axis, the
same is true about = A} *g.

Proof. We use the method described in Sect. 9 (Propositions 9.5 and 9.6). Let
DE(R) = {t € C:|3t| < n/2— Rh, +Rt > —10h}.
Itis clear thatD(R) = D*(R) N D~ (R). The operators

(AL 590 =D gt +kh),

k=0
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Arlg)®) =3 glt — kh)

k=1

solve the equation\,a = g in X,(D*(R)), respectively. We note that

[An gl = sup [cost (1) > gt £ kh)

k=0,1
< sup|cosHh'(t)] i M
D(R) frry] |cosH!(t & kh)|

< consth Y g/,.. (17.4)
To reduce the problem i, (D(R)) to the already solved ones we define two operators
Py : Xo(D(R)) — Xo(D(R))
using the Cauchy type integral (9.10) withreplaced by (see (9.24)), and by ¢ /h:

(Pag)t)= 5 [ X5 e

The estimate (9.20) implies that
| P+|| < const logh 1.

Obviously,g(t) = (Prg)(t) + (P-g)(t) for t € D(R). We also define three isomorphisms
Z,Z.,andZ_ acting by the same formula

g(t) — cosh (t)g(t)

from X ,(D) to Xo(D) with D = D(R), D*(R), andD~(R), respectively. Finally, we
set

AP AP T AT P T O (17.5)

Lemma 17.2. Giveny > 0, R > Ry, whereRy is a sufficiently large constant, there
are two solutions; and ¢, € X1(D(R)) of the homogeneous equation

L¢ = Ah¢ —ecost™ ()¢ =0, (17.6)
such that
WI61; d2] = d1And2 — ¢aAner = 1, (7.7)
and
|¢1]ls < const  ||¢z||1 < consth L. (17.8)

The constants in the estimates do not depenfl,diut the constant in the second estimate
depends om. Moreoverpi(t, €) and (¢, €) are real on real values of.
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Proof. We define the first solution by simple differentiation

dz—(t)

¢l(ta €) = dt

Its properties follow from Proposition 3.1 (witN = 1) and the explicit formula (2.9)
for the principal term in the approximation of (¢). We look for¢, in the form

¢2(tv 5) = a(t, 5) ¢l(ta 5)'
Substituting to the normalizing condition we get the following equation:
1
¢1(t7 E)(bl(t + h7 5) '

The norm inX,,(D(R)) of the right-hand side is bounded by a constant for @ny 0
since the functiows (¢, ) is separated from zero by a constanbifz) providedR > Ry.
Now we can obtain the function(t, €) applying the operaton,;1 from Lemma 17.1
(and using:’ instead ofu), then

Aha(t, 6) =

[$2lls < [I¢alla [Jallo < consth™ [[ga]|1 [|a]|

< consth~ 1+ logh~! < consth 12",

We obtain the desired estimatedf=p/2. O
Lemma17.3.Giveny, v > 0, and R > Ry, there is a linear operator,~? :
X,(D(R)) — X%,(D(R)), such that for eacly € X,(D(R)) the functiona = L™1g
is a solution of the equatioha = g in D(R), and

|L7Y| < consth™4*#, (17.9)
where the constant depends onlyanRy andwv.
Proof. Define the operataf—! by the formulas

L7t = —g1A, Mp2g) + h2A;, Hb19).

In Sect. 9.5 itwas shown that such a formula provides a solution for the equatiar.
To estimate the norm we note that

6187, X b29)]] ., < lIdall2 || A, HD29)]] .4
< léallr [|AY] N2l llgll < consth=2#||g]|,.

The similar estimate is valid for the second term. To obtain the final estimate we note
that

IL™*g]l,, < consth™2||L™g][,+2

since ¥|cosh()| < consth~tin D(R). O
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17.2. Iterative methodWe are looking for the first component of the m&pnamely
x(t, E, ), in the form
z(t, E,e)=x~ )+ Z(t, E, ¢). (17.10)
Since the ma@ conjugates the standard map with the shift we have the equation
A2x(t, E,€) = esin((t, E, €)). (17.11)

This equation may be rewritten in the form

LZ =cF(2), (17.12)
where
(LZ)t, E,e) = A2Z(t, E,€) — e costc™ (1)) Z(t, E, €), (17.13)
(FONE, Ee) = F(a™(t), Z(t, E, €)), (17.14)
F(x,Z) =sin@ + Z) — sin(x) — cosf)Z. (17.15)

Applying Lemma 17.3 we obtain that every solution of the equation
Z(t,E,e) = Ed(t,c) + e L HF(2))(t, E, ¢) (17.16)

satisfies also Eq. (17.12). We will prove that the nonlinear operator on the right-hand
side of the last equation has a unique fixed point in a small bath (D (R)) provided
E is sufficiently small.

Lemma 17.4. Giveny > 0, if h is sufficiently smallZ, Z1, Z> € X1, ||Z||1, || Z1|l1,
||Zz||1 < h'u, then

| L~ HF(2))||, < consth™ "~ Z|3, (17.17)

|L~YF(Z1) — F(Z2))||, < consth™ " # max{|| Z1||1, || Za|l1} || Z1 — Zol|a.
(17.18)

Proof. Letz, z1, 22 be complex numbers lying inside the unit disk arel D(R), R > 1,
then the following estimates hold:

|F(z™(t), z)| < consth™2|z|?, (17.19)

|F(z™(t), 1) — F(z~(t), 22)| < consth™?max{|z1], |z|} |21 — 22|, (17.20)
since inD(R) we have the estimate
| cosz ™ (t)| < consy/| cosH(t)| < consth 2.
Using Lemma 17.3 we have

IL7HF(2))]], < consth™* || F(Z)|x
< consth~%7#|| Z2||; < consth™""H|| Z|3.

A similar calculation leads to the second estimatel]
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Proposition 17.5. Giveny > 0, R > Ro, let E € C, |E| < 3h%%. Then there is
a unique solutionZ(t, E, €) of Eq. (17.16), such that € X1(D(R)), || Z||1 < h8*?".
Moreover,Z(t, E, ) depends analytically ol it is real provided its arguments are
real, andZ(¢,0,¢) = 0.

Proof. It follows directly from Lemma 17.4 that the nonlinear operator on the right-hand
side of (17.16) leaves invariant the ballia(D(R)) centered at zero and with the radius
equal toh®*% . The restriction of the operator on the ball is a contraction. That proves the
existence and uniquenessaf The solution can be obtained as a limit of the sequence

Z0=0, Zp1=¢E+eL YF(Z,), n>0.

This sequence converges uniformly with respedt'tand allZ,, are real on real values
of the arguments. Thus the same is true about the limik € 0 the equation has a
trivial solution, thusZ (¢, 0, ) = 0 due to the uniqueness. [

We need the estimates of the derivatives of the functighsF, ) andZ (¢, E, ).

Lemma 17.6. Giveny > 0, R > Ro+1,thenfort € D(R), E € C, |E| < 2n8*%, the

following estimates are valid:

’é;ﬂ < consth™1, % = ’gg‘ < consth ™ 7#,

‘?;;C < consth 2, ‘82;9;7’ < consth 27,

% < consth—9-4, ‘Z’ < consth®*¥,
aEL_;g:(Z))‘ < consth?.

Proof. We apply Cauchy type estimates to obtain the desired estimates for the derivatives
from the upper bounds for the functions. Since the domain of validity of the estimates
for functions is slightly wider than the domain in the assumptions of the current lemma,
the differentiation% acts on the estimates as a multiplication by canst and% acts
as a multiplication by congt—8-3,

We also use the inequality | < consth = || - ||1 to bound the module of a function
by its norm inX1(D(R)). It follows from the estimate (17.8) and Proposition 17.5 that

|p1| < consth™,  |pa| < consth=>7*,  |Z| < consth*,

Sincex(t, E,e) =z~ (t)+ Z(t, E,¢) and¢y = ag—;, we obtain the desired estimates for
the derivatives ok andZ using a Cauchy type estimates.
To obtain the last estimate we note that (17.17) implies

|L~Y(F(2))| < consth=8#||Z||? < consth®*
and we again use a Cauchy type estimate. Finally,
z=a" +Eg+eL N (F(2)),

and% = 8‘9—;2 (eL~X(F(2))) follows directly. The estimate for the second derivative

follows immediately. O
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17.3. Construction of the symplectic mé&p Define the map by the formula
&(t, E) = (x(t, B,¢), Apa(t, E,€)) .

This map satisfies all the properties of the ndgipom the theorem on the analytic integral
except (2), since it may be not symplectic. Indeed, the determinant of the Jacobian of
this map

_0xdMpz Oz dAnw _ . [dx Ox
o0t OE  OE ot  |ot'OE

is h-periodic int since¢ = % and¢ = g—g are two solutions of the homogeneous

equation, which may be obtained by simple differentiation of (17.11) with respect to
or E. To estimate the value of we note that

~1
@ = ¢1 + 8£ and g% = ¢2 + 7861; (f(Z)) .

ot ot OF
An application of the estimates of Lemma 17.6 and the equilify,; ¢2] = 1 give us

J=1+0(h).

An application of the implicit function theorem provides the existence of the inverse map
and the estimates on the derivatives. To estimate the derivatives of the inverse map we
use the following simple and rather general fact. f&ie a diffeomorphism of a subset
of C" onto its image ang be its inverse, theg = (D f)~1, whereDg = {9;g:} and
Df ={difx}, and for the second derivatives we hafgg; = —92, f, 0pgi Okgq Orgr,
where the summation on the repeated indices is assumed. .

To obtain a symplectic map we use the substituson(t, F) — (¢, E), where

E
E(t,E,e):/ J(t, s,¢€)ds.
0

A similar change was used in [Laz92] in the study of the semistandard map. Obviously,
the Jacobian of the mapequals/. Moreover,S commutes with the translation ) —
(t + h, E). Due to the chain rule the map

S=PoS !

is symplectic. The other properties of this map are preserved due to the following esti-
mates of the derivatives of the map

Lemma 17.7. GivenR > Ro + 3, 1 > 0, then fort € D(R), E € C, |E| < h¥%, the
following estimates hold:

OF OF

a5 =7 =140, 5= O(h®*3), (17.21)
92E . 92E 92E L
oz = O(h"3), SOE o(1), SEE T O(h="73m). (17.22)

Proof. It follows directly from the definition of and the equality/ = 1 +O(h*) by
Cauchy type estimates. [
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