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Abstract: In 1984 V. F. Lazutkin [Laz84, LST89] obtained an asymptotic formula for
the separatrix splitting angle for the standard map.The difficulty of this problem is related
to the exponential smallness of the splitting with respect to a perturbation parameter.
Lazutkin’s proof was based on two conjectures. Probably, the original form of those
conjectures was incorrect, but Lazutkin’s method was very efficient and inspired a large
number of studies on the exponentially small splitting of separatrices. The consequent
works [Laz91, Laz92, GLS94] and [Gel96] prepared the base to fill all the gaps of the
original proof. The present paper contains a complete and self-contained proof of a
refined version of the original formula (formula (1.7) of the present paper). In this form
the formula was obtained in [GLS94]. The proof is inspired by the ideas of Lazutkin’s
original paper [Laz84].

1. Standard Map

The standard map is a popular model for the motion near a nonlinear resonance [Chi79,
Sin94]. The standard map is an area-preserving diffeomorphism of the two dimensional
torus,T2 = R

2/(2πZ)2, defined by

SM : (x, y) 7→ (x + y + ε sinx, y + ε sinx). (1.1)

In the following we always assumeε to be a small positive parameter. Ifε = 0, the
transformation (1.1) is integrable, and the phase space is foliated by invariant circlesy =
const. The circley = 0 is formed bySM fixed points. An arbitrarily small perturbation
breaks this line, and forε > 0 only two fixed points survive, namely, (0, 0) and (0, π).
The first one is hyperbolic and the other one is elliptic. Indeed, the matrix of the linear
part at the origin is (

1 + ε 1
ε 1

)
,
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and its eigenvalues areλ andλ−1, where

λ = 1 +ε/2 +
√

ε + ε2/4. (1.2)

The stable,W s, and the unstable,Wu, manifolds of this fixed point are analytic curves
passing through (0, 0), the eigenvectors of the matrix being tangent vectors to these
curves at (0, 0). The origin breaks each separatrix into two parts. We denote byW s

1
(Wu

1 ) the upper part of the stable (unstable) separatrix.

x

2�0 �

z0

y

Fig. 1.Separatrices of the standard map

It is more convenient to use the parameterh = logλ as a small parameter instead of
ε. It is easy to see thatε ≈ h2 since

ε = 4 sinh2 h

2
.

It is convenient to represent the unstable separatrix,Wu
1 , in a parametric form using a

solution (x, y) = (x−(t), y−(t)) of the finite-difference system

x(t + h) = x(t) + y(t + h),

y(t + h) = y(t) + ε sinx(t).
(1.3)

We impose the following boundary conditions on the functionx−(t):

lim
t→−∞ x−(t) = 0, x−(0) = π. (1.4)

The solution of Eq. (1.3) is not defined uniquely by the boundary conditions (1.4). We study the solution,
whose analytic continuation is entire and has a purely imaginary period 2πi. We assume thatt = 0 corresponds
to the first intersection ofW u

1 with the linex = π (if the intersection of the stable and unstable separatrices is
transversal, then there are infinitely many such intersections). Under these additional assumptions the solution
of the problem (1.3), (1.4) is unique. There are several ways to check the existence and uniqueness of such a
solution. In particular, this follows from the convergence of an iteration procedure described in Sect. 10.

More geometrical arguments may be found in [GLS94]: the separatrix is one dimensional and the re-
striction of the map on the local separatrix is conjugated with the multiplicationξ 7→ λξ, ξ ∈ (C, 0), then
a solution of Eq. (1.3) is obtained after a substitution of et instead ofξ into the conjugating function. These
arguments are quite general and the corresponding solution is defined up to a substitutiont 7→ t + const. The
constant may be obtained from the second condition of (1.4).

Originally, the solution of (1.3) is only defined in a complex half-plane<t < −R and represents the
local separatrix. Since the sine function is entire, iterations of Eq. (1.3) allow to continue the solution up to
an entire function.
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To shorten the notation we omit the explicit dependence of the functionsx−, y−,
x+, andy+ onε. We define the parameterization ofW s

1 by

(x+(t), y+(t)) =
(
2π − x−(−t), y−(−t) + ε sinx−(−t)

)
.

Direct substitution shows that these functions satisfy the system (1.3) as well as the
boundary conditions

lim
t→+∞ x+(t) = 0, x+(0) = π. (1.5)

Sincex−(0) = π we havex+(0) = π andy+(0) = y−(0), that ist = 0 corresponds
to a homoclinic point. The splitting angle is not a natural measure for the separatrices
splitting. Lazutkin proposed to study thehomoclinic invariantdefined by

ω = det

(
ẋ−(0) ẋ+(0)
ẏ−(0) ẏ+(0)

)
. (1.6)

The homoclinic invariant is equal to the value of the symplectic formdx ∧ dy on a
pair of vectors, tangent to the separatrices at the homoclinic point. The coordinate-
independent definition of the homoclinic invariant for a symplectic map on a symplectic
two-dimensional manifold may be found in [GLS94]. The homoclinic invariant has two
remarkable properties: (i) it has the same value for all points of one homoclinic trajectory;
(ii) it is invariant with respect to symplectic coordinate changes.

Theorem 1.1 (Main Theorem). The homoclinic invariantω of the homoclinic point
z0 = (x−(0), y−(0)) has the following asymptotic expansion:

ω
as
=

4π

h2
e−π2/h

( ∞∑
n=0

h2nωn

)
. (1.7)

The sign
as
= means that the series on the right-hand side is asymptotic, that is if one retains

a finite number of the first successive terms, the error is of the order of the first missing
term: the absolute value of the error can be estimated from above byO

(
h2N−2e−π2/h

)
,

whereN is the number of the first missing term.
The coefficients in (1.7) are real numbers. The first values are

ω0 = 1118.827706. . . , ω1 = 18.59891. . . , ω2 = −4.34411. . . /2!,
ω3 = −4.1829. . . /3!, ω4 = −4.88. . . /4!.

The value ofω0 was computed in [LST89] as a solution of anε-independent problem. In
[Sur94] it was shown that this coefficient is not zero, since it may be obtained as a limit
of an increasing sequence with positive first term. The other values were obtained in
[GLS94].Although the first coefficients are decreasing, the high-precision computations
performed by C. Sim´o give numerical evidence of the divergent character of the series.

There are several independent ways for computing the constantω0, see e.g. [Tre96].

Corollary 1.2. For all sufficiently smallε > 0 the stable and unstable separatrices of
the standard map intersect transversally at the homoclinic pointz0 (the first intersection
of the separatrices with the linex = π), and the splitting angle is given by

α
as
=

π

h2
e−π2/h

( ∞∑
n=0

h2ncn

)
,
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Fig. 2. The strip|=t| < π/2 is broken into several zones. Approximations for the unstable and/or stable
manifold(s) are constructed for the corresponding values oft. The dashed line bounds the projection on the
first coordinate of the domain of the time-energy coordinates (t, E)

where the coefficientscn may be expressed in terms of the coefficientsωn andank defined
in (2.10). In particular,

ω0 = c0, ω1 = c1 +
c0

4
, ω2 = c2 +

c1

4
+

25
72

c0.

To get these relations one should use the relationω = ‖eu‖ · ‖es‖ sinα, where
e− = (ẋ−(0), ẏ−(0)), e+ = (ẋ+(0), ẏ+(0)) and‖ · ‖ stands for the Euclidean norm. Then
Proposition 3.1 provides the asymptotic for ˙x− and consequently fore−.

Corollary 1.3. The lobe area is given by

S
as
= 2π−1e−π2/h

( ∞∑
n=0

h2nωn

)
.

Now we give an informal description of the proof. It is based on the detailed study of
the analytical continuation of the stable and unstable manifolds.We make the parametert
in (1.3) complex and study the stable and unstable solutionsx−(t) andx+(t), respectively.
We construct approximations for these functions in complex domains, the unions of
which include the half-planes<t ≤ 0 and<t ≥ 0, respectively forx− andx+, as well as
the rectangle, bounded by the dashed line in Fig. 2. Later this rectangle will be referred
to asD(σ), where the parameterσ describes the distance to iπ/2 in a properly chosen
scale (see (7.2)). The symmetries allow us to restrict our attention to the strip|=t| ≤ π/2
(see Fig. 2), and even to its upper part, 0≤ =t ≤ π/2, due to the real-analyticity of the
functions.

In the domains, marked as pendulum based approximation domains, we construct the
asymptotic series forx− andx+. This series starts with the homoclinic solutionx0(t) =
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4 arctan et of the pendulum equation. A single series corresponds to both the stable and
unstable manifolds. The series is asymptotic to both manifolds in the intersection of the
corresponding domains withD(σ). This implies that for these values oft the difference
x+(t) − x−(t) is less than any power of the small parameterh.

The pendulum based approximation fails for the values oft close to the pendulum
separatrix singularityt = iπ/2. In that region we construct another approximation. It
starts with a term which arises from the study of the semistandard map

SSM : (u, v) 7→ (u + v + eu, v + eu).

We use a sewing condition on the intermediate domain to ensure that the new series
approximate the same invariant curve as the initial ones. This may be considered as a
kind of complex time matching method. The accuracy of theSSM based approximation
affords us to show that the differencex+(t) − x−(t) does not vanish on the top edge of
D(σ). In fact that difference is of the order ofhσ there.

How can we use this to get the exponentially fine estimates for real values oft?
There is a coordinate system (t, E), such that the standard map takes the form of a shift
(t, E) 7→ (t + h, E) and the unstable manifold is given by the equationE = 0. We
show that the stable manifold is a graph of ah-periodic function2(t). The zeros of that
function correspond to homoclinic points and the derivative of that function at zero is
the homoclinic invariant. TheSSM based approximation provides an estimate for that
function withO(hN ) error for someN . Originally, this approximation is not periodic,
but the difference between approximations for the stable and unstable separatrices may
be described by a periodic function. We use this function to approximate2(t). Then
we apply the following simple lemma to the error term and get the exponentially fine
estimate.

Lemma 1.4 ([Laz84]). Let a functionR(t) be periodic with positive periodh, analytic
in the strip|=t| < b, and continuous in the closure of the strip. Then

∣∣Ṙ(t)
∣∣ ≤ 4 max

|=z|≤b
|R(z)| 2π

h
exp(−2πb/h), t ∈ R,

providedexp(−2πb/h) ≤ 1/2. Moreover, if the mean value
∫ h

0 R(t) dt = 0, then

|R(t)| ≤ 2 max
|=z|≤b

|R(z)| exp(−2πb/h), t ∈ R.

The rest of the paper contains the complete proof of the asymptotic formula (1.7).
It is organized in the following way. In Sect. 2 we describe the formal series for the
unstable separatrix and in Sect. 3 we give the exact statement about how the series
approximates the unstable separatrix. In Sect. 4 we describe the basic facts about the
invariant curves of the semistandard map, which we use in Sect. 5 to construct theSSM
based approximation for the unstable separatrix. In Sect. 6 we estimate the difference
x+(t) − x−(t) neart = iπ/2. This difference is small (but not exponentially in that
domain) and may be approximated by a linear combination of solutions for a variational
equation nearx−. In Sect. 7 we formulate the existence theorem for the coordinate
system (t, E) and derive the asymptotic formula (1.7) from that theorem.

In Sect. 9 we develop the theory of finite-difference equations, which will be widely
used through the next sections.This theory may be of independent interest. Other sections
are devoted to proving one by one all the theorems and propositions formulated in Sects. 2
to 7.
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RemarkI. Lazutkin’s proof [Laz84] of the asymptotic formula for the splitting angle
was based on two conjectures, called respectively Conjecture A and B. Conjecture A
stated that the semistandard map can be conjugated to the shift (τ, E) 7→ (τ + 1, E) by
an analytic coordinate change defined in a neighborhood of complex segments of the
SSM separatrices. Conjecture B contained a similar statement for the standard map.
This part of the conjectures is correct. In addition Lazutkin’s conjectures contained
some requirements on the size of the domains and upper bounds for derivatives of the
coordinate changes, which were essential for the proof.

The proof of ConjectureA published in [Laz90] contained an error, and it was pointed
out by V. F. Lazutkin on p. 111 of [Laz92], that Conjecture A wasprobably incorrect.
In the corrected version the domain of the coordinates (τ, E) was much smaller than in
Conjecture A. In [GLS94] Conjecture A was replaced by Conjecture I, which is proved
here in a slightly modified form (Proposition 6.2 of the present paper).

Theorem 7.1 of the present paper is quite similar to Conjecture B (and Conjecture II
of [GLS94]), but it provides a smaller size for the domain of the coordinates (t, E) and
larger upper bounds for derivatives of the coordinate change. This is compensated by
finer approximations of theSM separatrices. Of course, the estimates of Theorem 7.1
are not optimal, but the estimates of Conjecture B are probably too “optimistic”.

RemarkII. E. Fontich and C. Sim´o [FS90] used Birkhoff normal form near a hyperbolic
fixed point to construct the coordinates (t, E) and to obtain an exponentially small upper
bound for the splitting. This idea was later used by Delshams and Seara [DS92] in the
proof of a theorem, which states that Melnikov method provides a correct asymptotic
formula for the splitting of the pendulum separatrix under a small fast periodic pertur-
bation. In a recent paper [DGJS97] it was shown that a similar method may be used
to study the case of fast quasiperiodic perturbations. The last problem leads to a very
delicate analysis due to the presence of small denominators in the Melnikov function,
which represents the leading term of the asymptotic formula for the splitting. This prob-
lem may be considered as a step towards higher dimensional hamiltonian systems. On
the other hand, in the case of the standard map the Melnikov method may not be applied
directly. This case is closer to a large fast periodic perturbation considered in [Gel97b].
All these papers, as well as [Gel97a] and the present one, develop (quite nontrivially, of
course) Lazutkin’s original ideas [Laz84].

2. Formal Separatrix

In the present section we construct the expansion forWu
1 andW s

1 in power series of the
parameterh and show that a single expansion corresponds to both separatrices.

The first equation of the system (1.3) enables us to express the second component in
terms of the first one. So the system is equivalent to a single finite-difference equation
of second order:

12
hx = ε sinx, (2.1)

where
12

hx = x(t + h) − 2x(t) + x(t − h).

First, we solve the equation in the class of power series of the form

X ∼
∞∑
n=0

h2nxn(t), (2.2)
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where the sign∼ stresses that the series in the right-hand side of the equation is divergent,
andX is considered as a generating function for this series. In the class of power series
X(t ± h) = exp

(±h ∂
∂t

)
X(t), and Eq. (2.1) reads

4 sinh2

(
h

2
∂

∂t

)
X = 4 sinh2

(
h

2

)
sinX. (2.3)

Taking into account that 2 sinh2 a
2 =

∑∞
k=1

a2k

(2k)! for anya and equating the terms of the

order ofh2n, we get from (2.3),
n∑

k=1

1
(2k)!

(
∂

∂t

)2k

xn−k =
n∑

k=1

1
(2k)!

Gn−k(x0, . . . , xn−k), (2.4)

whereGn are defined by the following recurrent rule. LetG0 = sinx0, H0 = cosx0 and

Gn =
1
n

n∑
k=1

kxkHn−k, Hn = − 1
n

n∑
k=1

kxkGn−k (2.5)

for n ≥ 1. It is not difficult to check that

sin

( ∞∑
n=0

h2nxn

)
=

∞∑
n=0

h2nGn, cos

( ∞∑
n=0

h2nxn

)
=

∞∑
n=0

h2nHn

(differentiate the equalities with respect toh2 and compare the result with (2.5)).
Equations (2.4) must be supplemented with the following boundary conditions:

lim
t→−∞ xn(t) = 0, n = 0, 1, 2, . . . , (2.6)

x0(0) = π, xn(0) = 0, n = 1, 2, . . . , (2.7)

which arise from the expansion of (1.4) in power series. Let us dwell on the determination
of the first functionx0. We have to solve Eq. (2.4) withn = 1, which reads

d2

dt2
x0 = sinx0, (2.8)

subjected to the boundary conditions (2.6) and (2.7). The unique solution is

x0(t) = 4 arctan et. (2.9)

Equation (2.8) is the “pendulum equation” and (2.9) is the homoclinic solution to the
unstable equilibrium point.

Proposition 2.1 ([GLS94]). Equation(2.4)has a unique solutionx0, x1, x2, . . . satis-
fying the boundary conditions(2.6) and (2.7). The leading term is given by(2.9). The
subsequent terms have the form

xn(t) =
n∑

k=1

ank
sinht

(cosht)2k
, (2.10)

whereank are real numbers. In particular,

x1(t) =
1
4

sinht

(cosht)2
, x2(t) = − 41

1728
sinht

(cosht)2
+

91
864

sinht

(cosht)4
. (2.11)
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The proof of that proposition, which is similar to [GLS94], is in Sect. 8.

The functionsxn have the following obvious properties:

1. xn(t) → 0 ast → ±∞ for n ≥ 1;
2. x0 − π andxn, n ≥ 1, are odd;
3. the functionsxn, n ≥ 0, are iπ-antiperiodic;
4. xn, n ≥ 0, are analytic on the entire complex plane except the singular points

t = iπ/2 + iπk, k ∈ Z; all singularities ofx0 are logarithmic branching points; all
singularities ofxn, n ≥ 1, are poles of the order 2n;

5. the functionsxn, n ≥ 1, are singlevalued;x0 is singlevalued on the complex plane
cut along straight segments, (iπ/2 + iπ2k, iπ/2 + iπ(2k + 1)),k ∈ Z.

Any partial sum of (2.2), after restoring they-component, represents a line, which
connects the fixed point (0, 0) with its copy (2π, 0). In this sense the formal series (2.2)
represents the formal separatrix. The series provides a formal solution for Eq. (2.1),
which satisfies the boundary conditions (1.4) and (1.5). In particular, this implies that
the classical perturbation theory, based on the expansion in powers of a small parameter,
cannot reveal the splitting of separatrices.

3. First Approximation Theorem

The functionsxn defined in the previous section have singularities, whilex− is an entire
function of the variablet. This shows that the series (2.2) cannot approximatex−(t) in
a neighborhood of the mentioned singularities. It is important to know where (2.2) does
approximate our function. Sincex−(t) is real on the real axis and so are the coefficients
xn, it is sufficient to consider them for=t ≥ 0 only. Moreover, both the function and the
formal series are iπ-antiperiodic. Using these symmetries we may restrict our attention
to the following domain. Fixδ0 ∈ (0, π/2) and let

D =
{

t ∈ C : 0 ≤ =t ≤ π

2
, <t ≤ 20h, arg

(
t − i

π

2

)
≤ −δ0

}
. (3.1)

Proposition 3.1. For any positive integerN the following estimate holds in the domain
D :

∣∣∣∣∣x−(t) −
N−1∑
n=0

h2nxn(t)

∣∣∣∣∣ ≤ consth2N

(
1 +

1
|t − iπ/2|2N

)
, (3.2)

whereconstdepends only onN and δ0. Moreover, a similar estimate is valid for the
derivative with respect tot of the expression in the left-hand side, the exponent of
|t − iπ/2| being changed to2N + 1.

The proof of the proposition is in Sect. 10.

The stable separatrix, represented by the functionx+(t) = 2π − x−(−t) is approxi-
mated by the same series in the domain−D, which is a reflection ofD with respect to
the imaginary axis.
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4. Semistandard Map

The semistandard map,SSM ,

SSM : (u, v) 7→ (u + v + eu, v + eu) (4.1)

was introduced by Greene and Percival [GP81] and was studied by many authors. It
is convenient to define this map as a selfmap ofC

2. The semistandard map preserves
the standard symplectic structuredu ∧ dv. The second important property of SSM is
reversibility. This means that there exists a mapR : C

2 → C
2 which satisfies the

equations

R2 = Id, R ◦ SSM ◦ R = SSM−1.

A concrete example of such a map isR = R0, where

R0 : (u, v) 7→ (u, −v − expu). (4.2)

Theorem 4.1 ([Laz84, Laz92]).There exists a unique analytical injective map0− :
C → C

2 such that0−(τ + 1) = SSM (0−(τ )) and the following normalizing condition
holds. Let0−(τ ) = (u−(τ ), v−(τ )), then

u−(τ ) = − log
τ2

2
+ O

(
1
τ2

)

asτ → −∞ along the negative real semiaxis. The branch oflog in the last formula is
fixed to be real at negativeτ .

The following asymptotic expansion forτ → ∞ is valid uniformly in a sector
δ0 ≤ argτ ≤ 2π − δ0, δ0 ∈]0, π/2[ being an arbitrary fixed number,

u−(τ )
as
= − log

τ2

2
+

∞∑
k=1

akτ−2k, (4.3)

whereak are real numbers.The first three values ofak area1 = − 1
4,a2 = 91

864,a3 = − 319
2880.

The image of0− is an invariant curve, the “unstable” manifold for the “− infinity”.
In the next section we use it as an approximation to the standard map separatrix. The
curve0+ = R0(0−) plays the role of the stable manifold.

Theorem 4.2 ([Laz92]). Let (u+, v+)(τ ) = R0((u−, v−)(−τ )). The following estimates:

|u+(τ ) − u−(τ ) (mod 2πi)| ≤ const|τ |2 exp(−2π|=τ |),
|v+(τ ) − v−(τ )| ≤ const|τ | exp(−2π|=τ |),

are valid in the sector−π + δ0 ≤ argτ ≤ −δ0, the constants depend only on the choice
of δ0.

For the sake of completeness we include the proofs of the last two theorems in
Sects. 11 and 12. The proofs follow the lines of [Laz92].
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5. Second Approximation Theorem

Notice first that the imaginary part ofx0(t), the first term of (2.2), becomes large and
positive if t approaches iπ2 from the real axis. A simple use of Euler’s formula

sinx =
eix − e−ix

2i
=

i
2

e−ix + O
(
eix
)

shows that the sine function can be replaced by an exponential term, the error being
small. This suggests the following change of variables:

x = −i log h2

2 + iu,
y = iv.

(5.1)

The standard map reads in these variables (u, v) 7−→ (u1, v1),

u1 = u + v1,
v1 = v + expu + (ε/h2 − 1) expu − (εh2/4) exp(−u). (5.2)

Note thatε/h2 − 1 = O(h2). If we cancel the last two terms in (5.2), we get the
semistandard mapSSM . One may expect that some segments of trajectories ofSM
are close, after the change of variables (5.1), to those ofSSM .

In addition to the change of variables (5.1) we make the following change of the
parameter along the unstable manifold in order to place the origin at the singularity and
to change the step to one unit:

t = i
π

2
+ hτ. (5.3)

So, instead ofx−(t) we will consider the functionu−(τ ), the link being

x−
(
i
π

2
+ hτ

)
= −i log

h2

2
+ iu−(τ ). (5.4)

Equation (2.1) converts into

12u− = (ε/h2) exp(u−) − (εh2/4) exp(−u−), (5.5)

where12 is a second order finite-difference operator,12f (τ ) = f (τ + 1) − 2f (τ ) +
f (τ − 1). We relate withu− the formal series of the form

U−(τ, ε) ∼
∞∑
n=0

h2nu−
n (τ ), (5.6)

whereu−
n (τ ) depend only onτ . Substituting the series into Eq. (5.5) and collecting the

terms of the same order inh it is not difficult to write down the equations foru−
n (τ ):

12u−
0 = expu−

0 , (5.7)

12u−
n =

n+1∑
k=1

2
(2k)!

(
Yn+1−k(u1, . . . , un+1−k) exp(u−

0 )

−1
4
Yn−1−k(−u1, . . . ,−un−1−k) exp(−u−

0 )
)
, (5.8)
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wheren ≥ 1. The auxiliary polynomialsYk, similar to the Bell polynomials, are defined
by the following recurrent rule. LetY0 = 1 and

Yn(u1, . . . , un) =
1
n

n∑
k=1

kukYn−k(u1, . . . , un−k) (5.9)

for n ≥ 1. Differentiating with respect toh2 it is not too difficult to check that

exp

( ∞∑
n=1

h2nun

)
=

∞∑
n=0

h2nYn(u1, . . . , un).

The polynomialsYk with k < 0 are assumed to be identically zero. We have to solve
the system (5.7), (5.8) subjected to asewing conditionwhich can be expressed as a
formal coincidence of the right- and left-hand sides of (5.4) after substituting there the
expansions (2.2) and (5.6), and reexpansion of both in the double series inh2 andτ2.

Proposition 5.1. There exists a unique sequence of entire functions,u−
n (τ ), n =

0, 1, 2, . . . , which satisfy Eqs. (5.7), (5.8) and the sewing condition (5.4). In any sector
δ0 ≤ argτ ≤ 2π − δ0, δ0 > 0, the functionsu−

n (τ ) have the following asymptotic
expansions:

u−
0 (τ )

as
= − log

τ2

2
+

∞∑
k=1

p0k

τ2k
, (5.10)

u−
n (τ )

as
=

∞∑
k=−n

pnk

τ2k
. (5.11)

The branch oflog is fixed to be real at negativeτ . In (5.10) and (5.11) the coefficients
pnk are real numbers. The functionsu−

n are real-analytic. The asymptotic series may be
differentiated with respect toτ .

The proof of the proposition is in Sect. 13. Of course, we haveu−
0 (τ ) = u−(τ ) due

to the uniqueness (compare with Sect. 4).

How does the series in (5.6) approximatex−? The following proposition gives the
answer. LetD2 be the domain in thet-plane which is the intersection ofD (defined by
(3.1)) with the rectangle|<t| ≤ √

h, |=t − π/2| ≤ √
h. The corresponding domaiñD2

in theτ -plane is defined as

D̃2 = {τ ∈ C : −h−1/2 ≤ <τ ≤ 20, −h−1/2 ≤ =τ ≤ 0, π ≤ argτ ≤ 2π − δ0}.
(5.12)

Proposition 5.2. For any positive integerN there exists a positive constant,CN , such
that, if τ ∈ D̃2, then∣∣∣∣∣x−

(
i
π

2
+ hτ

)
+ i log

h2

2
− i

N−1∑
n=0

h2nu−
n (τ )

∣∣∣∣∣ ≤ CNh2N
(
1 + |τ |2N

)
. (5.13)

A similar estimate is valid for the derivative of the expression in the left-hand side.

The proof is in Sect. 14.
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6. Comparing the Stable and Unstable Manifolds

In this section we will compare the stable and the unstable manifolds neart = iπ/2. We
assume that the parameterization of the stable manifold is chosen to be

x+(t) = 2π − x−(−t). (6.1)

Applying the change of variables (5.1), we introduce the functionu+ by

x+
(
i
π

2
+ hτ

)
= −i log

h2

2
+ iu+(τ ). (6.2)

The equality (6.1) and the fact that all functions are analytical continuations of real
analytic functions give the following chain of equalities:

x+
(
i π

2 + hτ
)

= 2π − x− (−i π
2 − hτ

)
= 2π − x− (i π

2 − hτ
)

= 2π − −i log h2

2 + iu−(−τ )

= −i log h2

2 + i(−2πi + u−(−τ )).

Comparing with (6.2) we obtain

u+(τ ) = −2πi + u−(−τ ). (6.3)

Let us study the difference,

x+(t) − x−(t) = i(u+(τ ) − u−(τ )). (6.4)

We may expandu+ in formal power series ofh2,

U+(τ, ε) ∼
∞∑
n=0

h2nu+
n(τ ), (6.5)

similar to (5.6), whereu+
n obey the same equations (5.7), (5.8) withu−

n being replaced
by u+

n. From (6.3) we obtain

u+
0(τ ) = −2πi + u−

0 (−τ ), u+
n(τ ) = u−

n (−τ ), n ≥ 1. (6.6)

We study the formal series defined by

W (τ, ε) ∼
∞∑
n=0

h2nwn(τ ), (6.7)

where

wn(τ ) = u+
n(τ ) − u−

n (τ ). (6.8)

We are going to estimate the differences (6.8) in the domainDA, with A > 1,

DA = {τ ∈ C : =τ ≤ −A, −π + δ0 ≤ argτ ≤ −δ0}. (6.9)

It turns out that in that sector the functionsu+
n(τ ) andu−

n (τ ) have the same asymptotic
expansions (5.10), (5.11). In the case ofu±

0 (τ ) one should take into account the choice
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of the branch of the logarithm. So eachwn(τ ) tends to zero faster than any negative
power ofτ , whenτ tends to infinity inDA. In fact,wn(τ ) are exponentially decreasing
in that sector. Forn = 0 it is Theorem 4.2. Forn ≥ 1 we will get this as a consequence
of the propositions formulated later in the present section.

In order to formulate a more definite statement about the asymptotic behavior of
wn(τ ) we need some preliminaries. Consider the first derivative ofU−(τ, ε) with respect
to the variableτ :

8−
1 (τ, ε) =

dU−

dτ
(τ, ε) ∼

∞∑
n=0

h2nϕ−
1,n(τ ), (6.10)

where

ϕ−
1,n(τ ) =

du−
n

dτ
(τ ). (6.11)

It satisfies the equation

128 =
(

(ε/h2)eU−
+ (εh2/4)e−U−)

8. (6.12)

We shall consider Eq. (6.12) in the class of the formal series of the form
∑∞

n=0 h2nϕn,
whereϕn are entire functions of one variableτ .

We seek a second formal solution8−
2 of (6.12), which is linearly independent of

(6.10) and satisfies the normalizing condition:

W[8−
1 ; 8−

2 ] = 8−
1 1̄8−

2 − 8−
2 1̄8−

1 = 1, (6.13)

whereW is a finite-difference Wronskian, its role for the theory of finite-difference
equations is similar to the role of the classical Wronskian in the theory of ordinary
differential equations. We will discuss it in Sect. 9.5. We used the notation1̄F =
F (τ ) − F (τ − 1). The formal equality (6.13) is equivalent to a system

n∑
k=0

W[ϕ1,k; ϕ2,n−k] = δn, n = 0, 1, 2, . . . ; (6.14)

whereδn is Kronecker symbol,δ0 = 1 andδn = 0 for n 6= 0. In fact, this system may be
considered as a definition of the functionsϕ2,k.

Proposition 6.1. There exists a unique formal series,8−
2 , which satisfies Eq. (6.12),

the normalizing condition (6.13) and has the form

8−
2 (τ, ε) ∼

∞∑
n=0

h2nϕ−
2,n(τ ), (6.15)

whereϕ−
2,n(τ ) are entire functions, which are real on the real axis and admit the following

asymptotic expansion:

ϕ−
2,n(τ )

as
=

∞∑
k=−n−1

ϕnk

τ2k
, ϕnk ∈ R, (6.16)

asτ goes to infinity in the sectorDA.
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The proposition is proved in Sect. 15.

Proposition 6.2. There exist two sequences of complex numbers,

{θn}∞
n=0 and {µn}∞

n=0,

such that for any positive constantsA andδ,

wn(τ ) = e−i2πτ
n∑

k=0

(
µn−kϕ−

1,k(τ ) + θn−kϕ−
2,k(τ )

)
+ O

(
e−i4π(1−δ)τ

)
(6.17)

uniformly inDA, the constant in the error term depends onδ, A andn.

The proposition is proved in Sect. 16. The following corollary follows directly from
the proposition and the equalities (6.14).

Corollary 6.3.

n∑
k=0

W[ϕ−
1,k; wn−k](τ ) = e−i2πτθn + O

(
e−i4π(1−δ)τ

)
. (6.18)

Now we can get an upper bound for the differencex+(t)−x−(t) on the strip|<t| < 20h.
Define the following rectangles:

51 = { 0 ≤ =t ≤ π/2 −
√

h, |<t| < 20h },

52 = { π/2 −
√

h ≤ =t ≤ π/2 − (2N/2π)h logh−1, |<t| < 20h },

53 = { π/2 − (2N/2π)h logh−1 ≤ =t ≤ π/2 − Ah}, |<t| < 20h }.

For t ∈ 51 we have from Proposition 3.1

x+(t) − x−(t) = O(hN ).

The same estimate holds in52 due to the estimates of Propositions 5.2 and 6.2 and the
fact that in this region e−i2πτ = O(h2N ). In 53 the exponent is no longer so small and
we get

x+(t) − x−(t) = O
(|τ2| exp(−2π|=τ |)) .

Note that in53 the right-hand side of the last estimate ranges fromO(hN ) to O(1).

7. Analytic Integral and the Asymptotic Formula for the Homoclinic Invariant

To obtain the formula for the separatrix splitting we need an analytic integral along the
unstable separatrix. Let

G(R) =
{

(t, E) ∈ C
2 : |<t| ≤ 10h, |=t| ≤ π/2 − Rh, |E| ≤ h9

}
. (7.1)

Here we denote byt andE coordinates inC2.

Theorem 7.1 (on the analytic integral).There existR > 1 andh0 > 0 such that, if
0 < h < h0, then there exists a mapΦ : G(R) → C

2 such that
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(1) Φ is an analytical diffeomorphism onto its image;
(2) Φ is symplectic:Φ∗dx ∧ dy = dt ∧ dE;
(3) Φ conjugates the standard map with the shift(t, E) 7−→ (t + h, E);
(4) Φ−1(x−(t), y−(t)

)
= (t, 0);

(5) the second projection of the inverse mapE = pr2 ◦ Φ−1 has the derivatives of the
first order bounded byconsth−1 and the derivatives of the second order bounded
byconsth−10; the first derivatives of the first projection are bounded byconsth−2;

(6) the inverse mapΦ−1 is real at real values of its arguments.

The proof of the theorem is in Sect. 17.

The second componentE of the mapΦ−1 is a local analytic integral of the standard
map, i.e., it is constant along trajectories. Of course, its domain is not invariant and it
has no single-valued continuation: if a trajectory leaves the domainΦ(G(R)) and comes
back after several iterations, it may get a value ofE different from the original one.

Givenσ > 0, denote

D(σ) =

{
t ∈ C : |<t| ≤ h, |=t| ≤ π

2
− σ

2π
h log

1
h

}
. (7.2)

Define the map2 : D(σ) → C by

2(t) = E
(
x+(t), y+(t)

)
, (7.3)

whereE is the second component of the mapΦ−1.

Proposition 7.2. For anyσ > 9 the function2 is analytic inD(σ) and has the following
properties:

1. 2(t) is real-analytich-periodic function;
2. 2(0) = 0and the homoclinic invariant (1.6) is given byω = 2̇(0);

3.
∫ h

0 2(t) dt = O(h−3 exp(−2π2/h));
4. On the upper edge ofD(σ) with σ = N + 5,

2(t) = −e−i2πτ
N−1∑
n=0

θnh2n−1 + O(h2N−2),

whereτ = (t − iπ/2)/h;
5. For any realt,

2(t) = 2e−π2/h sin

(
2πt

h

)N−1∑
n=0

ωnh2n−1 + O(h2N−1e−π2/h),

2̇(t) = 4πe−π2/h cos

(
2πt

h

)N−1∑
n=0

ωnh2n−2 + O(h2N−2e−π2/h),

whereωn = =θn are real numbers.
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The main theorem (Theorem 1.1) immediately follows from 2 and 5.

Proof of the proposition.The estimates at the end of the last section show that inD(σ),

x+(t) − x−(t) = O
(
hσ(logh−1)2

)
. (7.4)

It follows directly that the function2(t) is analytic inD(σ) and from assertion (6) of
Theorem 7.1 it follows that it is real-analytic.

It follows from assertion (3) and Eq. (1.3) that2(t) is periodic with periodh. Indeed,
if a point (x, y) and its imageSM (x, y) belong to the domain ofE, we haveE(x, y) =
E
(
SM (x, y)

)
. On the other hand Eq. (1.3) reads:(

x+, y+
)
(t + h) = SM

(
(x+, y+)(t)

)
.

Taking into account the definition (7.3) we obtain the periodicity:2(t + h) = 2(t).
Sincet = 0 is a homoclinic point we have (x+, y+)(0) = (x−, y−)(0) and2(0) = 0.
Differentiating (7.3) we get

2̇(0) =
∂E

∂x
ẋ+(0) +

∂E

∂y
ẏ+(0),

where the derivatives ofE are taken at the point (x+(0), y+(0)). It follows from (2) and
(4) that

∂E

∂x

∣∣∣∣
(x−,y−)

= −ẏ−,
∂E

∂y

∣∣∣∣
(x−,y−)

= ẋ−

at the points of the unstable separatrix (x−(t), y−(t)).
Since (x+(0), y+(0)) = (x−(0), y−(0)) we have

2̇(0) = ẋ−(0) ẏ+(0) − ẏ−(0) ẋ+(0),

the last expression coincides with the definition of the homoclinic invariant (1.6). This
completes the proof of assertion 2.

Let us calculate the function2(t) = E(x+(t), y+(t)) by the Taylor formula taking
(x−(t), y−(t)) as a center for the expansion:

2(t) = E(x−, y−) +
∂E

∂x
· (x+ − x−) +

∂E

∂y
· (y+ − y−) + O2, (7.5)

where∂E
∂x and∂E

∂y are taken at (x−, y−), and we skipped the argumentt on the functions
x−, y−, x+, y+. It follows from (4) thatE(x−, y−) = 0 and it follows from (5) thatO2 =
O(h−10(x+ − x−)2). Taking into account the above expression for the first derivatives
of E we may rewrite Eq. (7.5) as

2(t) = W [
ẋ−; x+ − x−] (t) + O(h−10(x+ − x−)2), (7.6)

whereW is a Wronskian

W[f ; g](t) = det

(
f g

1̄hf 1̄hg

)
(t) = f (t − h)g(t) − g(t − h)f (t).

As in many other places we used the first equation of the system (1.3) written in the form
y(t) = x(t) − x(t − h) = 1̄hx to exclude they-component from consideration.

We evaluate the right-hand side of (7.6) on the segment
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=t =
π

2
− σ

2π
h logh−1, |<t| < 10h.

It is convenient to use the variableτ = (t− iπ/2)/h instead oft. In terms of this variable
the segment takes the form:

=τ = − σ

2π
logh−1, |<τ | < 10.

From (7.4) we get the upper bound for the quadratic term:

2(t) = W [
ẋ−; x+ − x−] (t) + O(h2σ−10(logh−1)4). (7.7)

Let us evaluate the Wronskian. From (5.13) we have

ẋ−(t) = i
N−1∑
m=0

h2m−1du−
m

dτ
+ O(h2N−1(logh−1)2N )

= i

N−1∑
m=0

h2m−1ϕ1,m(τ ) + O(h2N−1(logh−1)2N ), (7.8)

where we used the definition (6.11) forϕ1,m. Taking into account the last equality we
have

W [
ẋ−; x+ − x−] (t) = i

N−1∑
m=0

h2m−1W[ϕ1,m; x+ − x−]

+O(h2N−1+σ(logh−1)2N+2). (7.9)

From (5.13) and (6.2), (6.3) we get that

x+(t) − x−(t) = i

N−1∑
n=0

h2n(u+
n(τ ) − u−

n (τ )) + O
(
h2N (logh−1)2N

)

= i

N−1∑
n=0

h2nwn(τ ) + O
(
h2N (logh−1)2N

)
, (7.10)

where we used the definition (6.8) forwn to obtain the second equality.
Using (7.10) withN replaced byN − m we get

W[ϕ1,m; x+ − x−] = i
N−1−m∑

k=0

h2kW[ϕ1,m; wk] + O(h2(N−m)(logh−1)2(N−m)).

Substituting this into (7.9) we have

W [
ẋ−; x+ − x−] (t) = −

N−1∑
m=0

N−m−1∑
k=0

h2m−1+2kW[ϕ1,m; wk]

+O(h2N−1(logh−1)2N ) + O(h2N−1+σ(logh−1)2N+2).

Introducing the new indexn = m + k and changing the order of the terms we rewrite
the last equality as



172 V. G. Gelfreich

W [
ẋ−; x+ − x−] (t) = −

N−1∑
n=0

h2n−1
n∑

k=0

W[ϕ1,n−k; wk] + O(h2N−1(logh−1)2N ).

Taking into account the relation (6.18) we get

W [
ẋ−; x+ − x−] (t) = −e−2iπτ

N−1∑
n=0

h2n−1θn

+O(h2σ(1−δ)) + O(h2N−1(logh−1)2N ).

Substitution of the last formula into (7.7) gives

2(t) = −e−2iπτ
N−1∑
n=0

h2n−1θn

+O(h2σ(1−δ)) + O(h2N (logh−1)2N−1) + O(h2σ−10(logh−1)4).

Choosing 0< δ < 4/(N + 5), σ = N + 5 we see that all the error terms in the last
formula become essentially of the same order:

2(t) = −e−2iπτ
N−1∑
n=0

h2n−1θn + O(h2N−2),

where we used that (logh−1)2N = o(h−1). This finishes the proof of assertion 4.
Let us suppose thatθn are purely imaginary and define real numbersωn by

θn = iωn. (7.11)

We justify this supposition at the end of the proof. Coming back to the variablet we
obtain

2(t) = −ie−π2/he−2iπt/h
N−1∑
n=0

h2n−1ωn + O(h2N−2).

Since2(t) is real-analytic we have on the complex conjugate segment (=t = −π/2 +
(σ/2π)h logh−1):

2(t) = 2(t) = ie−π2/he2iπt/h
N−1∑
n=0

h2n−1ωn + O(h2N−2).

Combining the last two formulas we obtain that

2(t) = e−π2/h2 sin(2πt/h)
N−1∑
n=0

h2n−1ωn + O(h2N−2)

on the union of two segments. A maximum modulus theorem implies that an analytic
periodic function in a strip takes its maximum on the boundary of the strip. Applying
this to the error term in the formula above we see that the same estimate is valid inside
the strip|=t| < π/2 − (σ/2π)h logh−1.

Now we get the upper bound for20 = h−1
∫ h

0 2(t) dt. The standard arguments
based either on the symmetries of the standard map or on its area-preserving properties



Proof of Exponentially Small Transversality 173

show that the algebraic value of the area of the domain, bounded by the segments ofW s
1

andWu
1 ending at the main homoclinic pointz0 and at its imageSM (z0), equals zero.

We may calculate this area in the coordinates of Theorem 7.1:∫ h

0
2(t)d(t + 9(t)) = 0,

where we used that the unstable manifold is represented byE = 0 and the stable
one may be represented in the parametric form as the image ofΦ−1(x+(t), y+(t)). The
second component of this function is2(t) and we denote the first component byt+9(t).
Obviously,9(t) is an analytich-periodic function inD(σ). Moreover

2(t) = O(hσ−1) and 9(t) = O(hσ−2).

Let 2̃(t) = 2(t) − 20. We may apply Lemma 1.4 withb = π/2 − (σ/2π)h logh−1 to
get the following estimates:

2̃(t) = O(h−1e−π2/h) and 9̇(t) = O(h−2e−π2/h) for t ∈ R.

The integral may be rewritten as∫ h

0
(20 + 2̃(t))(1 + 9̇(t)) dt = h20 +

∫ h

0
2̃(t)9̇(t) dt,

where we used that the mean values of2̃ and9̇ equal zero. Since the integral in the
left-hand side is equal to zero we have

20 = − 1
h

∫ h

0
2̃(t)9̇(t) dt.

This results in the estimate
20 = O(h−3e−2π2/h),

that is the constant20 is exponentially small value of the second order (the constant in
the exponent is twice the constant from (1.7)).

The mean value of the function2 may be nonzero but the estimate above shows that
it is neglegible and we still may apply Lemma 1.4 to get

2(t) = e−π2/h2 sin(2πt/h)
N−1∑
n=0

h2n−1ωn + O(hN−5e−π2/h),

2̇(t) = e−π2/h(4π/h) cos(2πt/h)
N−1∑
n=0

h2n−1ωn + O(hN−6e−π2/h).

SinceN is an arbitrary integer we may use this formula withN replaced by 2N + 4 in
order to get assertion 5.

Now we can make a posteriori justification for consideringθn as purely imaginary
constants. If this was not true, the formulas would lead to the same estimate for2(t) but
with shifted phase in the sin function. This would be in contradiction with2(0) = 0 for
all h. �
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8. Proof of the Existence of the Formal Separatrix (Proposition 2.1)

As we have already mentioned, (2.9) gives the unique solution to the first equation (2.4)
which satisfies the boundary conditions. Let us write down the equations forxn with
n > 1. Note first that, as it follows from (2.9) and (2.5),

H0(x0)(t) = cosx0(t) = 1− 2

cosh2 t
,

G0(x0)(t) = sinx0(t) = −2 sinht

cosh2 t
.

(8.1)

Using the recurrent equations (2.5), one easily obtains forn ≥ 1,

Gn

(
x0(t), x1(t), . . . , xn(t)

)
=

(
1 − 2

cosh2 t

)
xn(t) + G̃n

(
x0(t), x1(t), . . . , xn−1(t)

)
, (8.2)

where

G̃n

(
x0, x1, . . . , xn−1

)
= n−1

n−1∑
k=1

kxkHn−k(x0, x1, . . . , xn−k). (8.3)

Taking into account (8.2), we rewrite Eq. (2.4) forn = m + 1 ≥ 2 in the form

d2

dt2
xm(t) −

(
1 − 2

cosh2 t

)
xm(t) = G̃m

(
x0(t), . . . , xm−1(t)

)

+
m+1∑
k=2

1
(2k)!

{
Gm+1−k(x0(t), . . . , xm+1−k(t)) − d2k

dt2k
xm+1−k(t)

}
. (8.4)

We prove the proposition by induction. Letxn, 0 < n ≤ m − 1, be the unique solution
of Eq. (2.4) with 1≤ p ≤ m, which satisfy the boundary conditions (2.6), (2.7) and
have the form (2.10).

Equation (8.4) forxm is a linear nonhomogeneous equation of the form

d2

dt2
x(t) −

(
1 − 2

cosh2 t

)
x(t) = G(t). (8.5)

The corresponding homogeneous equation

d2

dt2
x(t) −

(
1 − 2

cosh2 t

)
x(t) = 0

has two basic solutions

2
cosht

and sinht +
t

cosht
.

Neither of them satisfies both (2.6) and (2.7). This proves the uniqueness ofxm.
The proof of the following lemma is straightforward.
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Lemma 8.1. Let the right-hand side of(8.5)be of the form

G(t) =
m+1∑
k=2

ck

(cosht)2k
sinht. (8.6)

Then Eq.(8.5)has a solution

X(t) =
m∑

k=1

ak

(cosht)2k
sinht,

whereak, 1 ≤ k ≤ m, are the unique solution of the system

4k(k − 1)ak − (4k2 − 6k)ak−1 = ck, 2 ≤ k ≤ m + 1,

am+1 = 0.

In view of this lemma it is sufficient to check that the right-hand side of (8.4) is of
the form (8.6).

Lemma 8.2. Letxn, 1 ≤ n ≤ m− 1, be of the form(2.10). Then forn = 1, . . . , m− 1,

Gn(x0(t), x1(t), . . . , xn(t)) =
n+1∑
k=1

gnk

(cosht)2k
sinht,

Hn(x0(t), x1(t), . . . , xn(t)) =
n+1∑
k=1

ank

(cosht)2k
,

and

G̃m(x0(t), x1(t), . . . , xm−1(t)) =
m+1∑
k=2

g̃mk

(cosht)2k
sinht.

Proof. A straightforward calculation, which uses (8.1), (2.5), and (8.3), gives explicitly

G1 = a11

(
sinht

(cosht)2
− 2

sinht

(cosht)4

)
,

H1 = 2a11

(
1

(cosht)2
− 1

(cosht)4

)
,

G̃1 = 0.

The formulae (8.1) show that the assertion is true forn = 1. Then the assertion forn > 1
follows by induction which again uses (8.1), (2.5), and (8.3), if one takes into account
the identity

sinht

(cosht)2k

sinht

(cosht)2l
=

1
(cosht)2(k+l−1)

− 1
(cosht)2(k+l)

. �

It follows from Lemma 8.2 that the first term in the right-hand side of (8.4) is of the
required form. Consider the expression in the curly braces in the second one. Applying
(8.2) and the assertion of Lemma 8.2 concerningGn, we find that the unique suspicious
terms are
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xn(t) − d2k

dt2k
xn(t). (8.7)

The following formula is obvious:

d2

dt2

n∑
k=1

ak sinht

(cosht)2k
=

n+1∑
k=1

[
ak(4k2 − 4k + 1)− ak−1(2k − 1)(2k − 2)

] sinht

(cosht)2k
.

It follows from this formula that the double differentiation does not change the first
coefficient in the expression of the form (2.10) and increases then by 1. So the expression
(8.7) has the desired form (8.6). This finishes the proof of Proposition 2.1. One checks
the explicit formulae (2.11) by direct substitution into the equations.�

9. Solutions of Linear Finite-Difference Equations

9.1. Solutions of the equation1a = g. In this section we consider the way of solving
the finite-difference equation

1a = g, (9.1)

where1a(x) = a(x + 1) − a(x) is the first order difference operator,x denotes the
variable which ranges over a domainD ⊂ C. The functiona(x) defined by

a(x) = −
∞∑
k=0

g(x + k) or a(x) =
∞∑
k=1

g(x − k)

solves the equation provided the series on the right-hand side is well defined and con-
vergent. Unfortunately, this will not be the case for the most parts of the present paper.

Following [Laz91] we will describe a special class of domains which are most
convenient for solving Eq. (9.1). We fix a real numberδ0 ∈ ]0, π/2[. All constants in
the estimates which follow depend on the choice ofδ0. Let A be a positive number. We
assume thatA > max{1, 4 tanδ0}. We say a non-void subsetD ⊂ C is of the type
(A, +) if the following is true:
(1) D is closed;
(2) D does not intersect with the open disk{x ∈ C : |x| < A};
(3) if x ∈ D then the positive ray{z ∈ C : z = x + t, t > 0} ⊂ D;
(4) D does not intersect with the negativeδ0-sector|argx − π| < δ0.

The definition of a domain of type (A,−) is similar. One has to replace the last two
conditions by the following:
(3) if x ∈ D then the negative ray{z ∈ C : z = x + t, t < 0} ⊂ D;
(4) D does not intersect with the positiveδ0-sector|argx| < δ0.

Let D be a closed domain inC such that 0/∈ D. Given non-negativeµ, denote by
Xµ(D) the space of all complex valued continuous functions defined inD, analytic in
interior points ofD, and possessing the finite norm

‖a‖µ = sup
x∈D

|xµa(x)|. (9.2)

Evidently,Xµ(D) supplied with the norm (9.2) is a Banach space. IfD satisfies the
above condition (2), these norms are subordinated:
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‖a‖µ ≤ 1
Aν

‖a‖µ+ν . (9.3)

We will use the following definition of the norms of linear and bilinear maps. Given a
linear mapφ : X1 → X2 between two Banach spaces (Xi, ‖ · ‖), i = 1, 2, we define the
norm ofφ as

‖φ‖ = sup
a∈X1,a6=0

‖φ(a)‖
‖a‖ .

Analogously, ifθ : X1 ×X2 → X3 is a bilinear map, (Xi, ‖ · ‖), i = 1, 2, 3, being Banach
spaces, the norm ofθ is defined by the equality

‖θ‖ = sup
a1∈X1,a2∈X2,a1 6=0,a2 6=0

‖θ(a1, a2)‖
‖a1‖ ‖a2‖ .

Proposition 9.1 ([Laz91]). LetD be a domain of type(A, +), µ > 0. Then the formula

1−1
+ g(x) = −

∞∑
k=0

g(x + k) (9.4)

defines a linear map1−1
+ : Xµ+1(D) → Xµ(D) with the norm bounded from above by

a constant depending only onδ0 andµ.
Analogously, ifD is of type(A,−), the formula

1−1
− g(x) =

∞∑
k=1

g(x − k) (9.5)

defines a linear map1−1
− : Xµ+1(D) → Xµ(D) with the norm bounded from above by

a constant depending only onδ0 andµ.

Proof. Evidently the series in (9.4), (9.5) converge and give analytic functions in the
corresponding domains satisfying (9.1). It remains to estimate the norms of the right
sides of (9.4), (9.5). We have

‖1−1
± g(x)‖µ ≤ ‖g‖µ+1 sup

x∈D

∞∑
k=0,1

|x|µ
|x ± k|µ+1

. (9.6)

Consider for definiteness the case + in (9.6), that is the case of a domain of the type
(A, +). The opposite case can be considered in the analogous way. Let us associate with
thekth term of the sum

∞∑
k=0

|x|µ
|x + k|µ+1

(9.7)

the rectangle with height equal to the value of this term and with the base [<x +k,<x +
k + 1] if <x +k < 0 and with the base [<x +k − 1,<x +k] if <x +k ≥ 0. Note that the
area of the rectangle is equal to the value of the term. If we place the rectangles inR

2

with bases on the first axis, then all but one rectangle will be situated under the graph
of the function

h(t) =
|x|µ

|x + t|µ+1
.
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The excepting term corresponds to thex + k nearest to the imaginary axis. If<x ≥ 0,
the corresponding term can be bounded as follows:

|x|µ
|x + k|µ+1

≤ |x|µ
|x|µ+1

≤ 1
A

< 1.

If <x < 0, we have

|x|µ
|x + k|µ+1

≤ |x|µ
|=x|µ+1

≤ 1
A

1
(sinδ0)µ

<
1

(sinδ0)µ
,

since in this case|=x| ≥ A due to condition (2) in the definition of the type (A, +), and
|x|/|=x| ≤ 1/ sinδ0 due to condition (4).

The remaining terms are evaluated from above by

∫ ∞

0
h(t) dt =

∫ ∞

0

dτ

|ξ + τ |µ+1
,

whereξ = x/|x|. The last integral is bounded by a constant depending only onδ0 as it
follows again from condition (4). �

9.2. Lemma on Cauchy integral.For our purposes it is necessary to resolve Eq. (9.1)
in some domains which do not satisfy condition (3) in the definition of an admissible
domain. The main idea is to represent the domain in question in the form

D = D+ ∩ D−, (9.8)

whereD+ and D− are respectively of the type (A, +) and (A,−). If we could find
appropriate “projections” which represent a function defined inD as a sum of those
defined inD±, the problem would be reduced to that already solved.

In this section we formulate and prove the lemma, which provides the desired rep-
resentation. We assume that the setD ⊂ C can be represented in the form (9.8) and
the setsD± satisfy the conditions (1) and (3) from the definition of the types (A,±),
respectively. Moreover, letS = {x ∈ C : |<x| ≤ 2}, the following intersections have
to be equal and connected:

D+ ∩ S = D− ∩ S.

It follows directly thatD ∩ S = D± ∩ S. If D ∩ S is compact, then it is a rectangle
with sides parallel to the real and imaginary axes. We also assume that the height of the
rectangle is not less than 2. If the intersection is not compact, it is either the whole strip
S, or one-half ofS, obtained fromS by cutting it by a line=x = const.

Denote byL the space consisting of all complex valued Lipschitz functions defined
on∂D which take constant values for<x ≥ 1 and for<x ≤ −1 (given a function, left
and right constant values are not necessarily equal). The norm inL is defined as

‖χ‖ = max
x

|χ(x)| + sup
x6=y

|χ(x) − χ(y)|
|x − y| .
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Lemma 9.2 (on the Cauchy integral[Laz91]). Letχ ∈ L, g ∈ X0(D) and

Jg =
1

2π

∫
∂D

|g(ξ)| |dξ| < ∞. (9.9)

Then the integral

h(x) =
1

2πi

∫
∂D

χ(ξ)g(ξ)
ξ − x

dξ (9.10)

defines two functionshint andhext, in the interior ofD and in the exterior ofD respec-
tively. Both the functions,hint andhext, admit continuous prolongations onto the closures

of their domains, belong toX0(D) andX0

(
C \ D

)
respectively, and

|hint,ext(x)| ≤ ‖χ‖(Jg + sup|g|). (9.11)

If suppχ 6= ∂D, then hint and hext define together a single analytical function on
C \ suppχ.

Proof. Define an auxiliary function

ϕx0(x) =
1

2πi

∫
∂D

χ(ξ) − χ(x0)
ξ − x

g(ξ) dξ, x0 ∈ ∂D, x ∈ C \ ∂D,

ϕx0(x0) =
1

2πi

∫
∂D

χ(ξ) − χ(x0)
ξ − x0

g(ξ) dξ, x0 ∈ ∂D.

(9.12)

This function is analytic inx, x 6∈ ∂D. Let

hint(x) =

{
ϕx0(x0) + χ(x0)g(x0), x = x0 ∈ ∂D,
h(x), x ∈ Interior of D,

hext(x) =

{
ϕx0(x0), x = x0 ∈ ∂D,
h(x), x ∈ Exterior of D.

These two functions are analytical inside their domains of definition and we only have
to establish that they are continuous and to check the upper bound (9.11).

Denote

ĝ(x) =

{
g(x) if x ∈ D,
0 if x /∈ D,

then for allx ∈ C \ ∂D andx0 ∈ ∂D,

h(x) = ϕx0(x) + χ(x0)ĝ(x). (9.13)

Since the function ˆg is bounded and continuous insideD and outsideD, it is sufficient
to establish that the functionϕx0(x) is continuous at all pointsx = x0, x0 ∈ ∂D.
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Givenσ > 0, define the set

1σ = {x ∈ ∂D : |<x| < 1 +σ}.

If σ ≤ 1, then1σ is a union of two or less segments parallel to the real axis.
Considerx0 ∈ ∂D\10, the functionϕx0(x) is not only continuous but even analytical

in x in a small neighborhood of the pointx = x0, becauseχ(ξ) is a constant for|<ξ| > 1.
Considerx0 ∈ 11/2 ⊃ 10, and study the restriction of the functionϕx0(x) on the

segment
l(x0) = {x ∈ C : <x = <x0, |=(x − x0)| ≤ 1/2}

orthogonal to the rectilinear part of∂D. The following assertions finish the proof of the
continuity

the mapx0 7−→ ϕx0(x0) is continuous, (9.14)

lim
x→x0, x∈l(x0)

ϕx0(x) = ϕx0(x0). (9.15)

Proof of the assertion (9.14).Denoteiε the ε–neighborhood ofx0 in ∂D, ε being a

sufficiently small positive number. We have

ϕx0(x0) − ϕx1(x1) =
1

2πi

∫
iε

g(ξ)

(
χ(ξ) − χ(x0)

ξ − x0
− χ(ξ) − χ(x1)

ξ − x1

)
dξ

+
1

2πi

∫
∂D\iε

g(ξ)

(
χ(ξ) − χ(x0)

ξ − x0
− χ(ξ) − χ(x1)

ξ − x1

)
dξ.

Let us consider the first term in the right-hand side of the last formula. The expression
in the parenthesis can be bounded from above by 2‖χ‖. So the module of the first term
is evaluated from above by

2
π

sup
iε

|g| ‖χ‖ ε.

Given positiveε′, takeε small enough for the first term to become less thanε′/2.
Fix such anε < 1 and consider the second term. Let|x0 − x1| ≤ ε/2, then∣∣∣∣χ(ξ) − χ(x0)

ξ − x0
− χ(ξ) − χ(x1)

ξ − x1

∣∣∣∣ =

∣∣∣∣χ(x1) − χ(x0)
ξ − x0

+
χ(x1) − χ(ξ)

x1 − ξ

x1 − x0

ξ − x0

∣∣∣∣
does not exceed2ε‖χ‖ |x1 − x0|. So the second term can be bounded from above by

4
ε
‖χ‖ |x1 − x0|Jg.

Takingx1 close tox0 so that the expression becomes less thanε′/2, we obtain

|ϕx0(x0) − ϕx1(x1)| ≤ ε′,

which completes the proof of the assertion (9.14).�
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Proof of the assertion (9.15).We have

ϕx0(x) − ϕx0(x0) =
1

2πi

∫
∂D

g(ξ) (χ(ξ) − χ(x0))

(
1

ξ − x
− 1

ξ − x0

)
dξ. (9.16)

Since
1

ξ − x
− 1

ξ − x0
=

x − x0

(ξ − x)(ξ − x0)
and

∣∣∣∣χ(ξ) − χ(x0)
ξ − x0

∣∣∣∣ ≤ ‖χ‖,

the module of the right-hand side of (9.16) is bounded from above by

‖χ‖ |x − x0| 1
2π

∫
∂D

|g(ξ)|
|ξ − x| |dξ|. (9.17)

The integral in (9.17) can be broken into two integrals: one distributed onto11 and
another onto∂D \ 11. The latter is bounded by 2Jg for |ξ − x| ≥ 1/2 on the domain
of integration. The former can be evaluated from above by

sup|g|
2π

∫
11

|dξ|
|ξ − x| ≤ const sup|g| log |x − x0|−1.

Indeed,∫
11

|dξ|
|ξ − x| =

∫ 2

−2

dt√
(t − <x0)2 + |x − x0|2

<

∫ 4

−4

dτ√
τ2 + |x − x0|2

=
∫ 4/|x−x0|

−4/|x−x0|

ds√
s2 + 1

≤ const log
1

|x − x0| .

Substituting these estimates into (9.17) and taking into account the obvious equality
limt→0 t log t = 0 we get the assertion (9.15). �

To obtain the upper estimates we note that an analytic function has no maximum of
the module inside the domain of analyticity. Thus it is sufficient to estimate the function
ϕx0(x0) on∂D and to obtain an upper bound for|h(x)| at infinity. Obviously,

|ϕx0(x0)| ≤ 1
2π

∫
∂D

∣∣∣∣χ(ξ) − χ(x0)
ξ − x0

∣∣∣∣ |g(ξ)| |dξ| ≤ ‖χ‖ Jg. (9.18)

To obtain the estimates for large values of|x| choosex0 to be an arbitrary point on∂D
such that|<x0| > 1 and<x0<x > 0. Then we can use the estimate|ξ − x| ≥ 2 to
obtain the upper bound

|ϕx0(x)| ≤ 1
2π

∫
∂D

∣∣∣∣χ(ξ) − χ(x0)
ξ − x

∣∣∣∣ |g(ξ)| |dξ| ≤ ‖χ‖ Jg. (9.19)

The estimate (9.11) follows from the last two estimates and the representation (9.13).
�
In the following we will need an alternative estimate for the functionshint andhext.

Lemma 9.3. Let the assumptions of Lemma 9.2 be satisfied and letD be a subset of a
square with the sideR, R > 2, then

|hint,ext(x)| ≤ const logR ‖χ‖ sup
D

|g|. (9.20)
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Proof. Since the domainD is compact,hext(x) is regular at infinity. So it is sufficient
to estimatehint,ext on the boundary∂D. Instead of the estimate (9.18) we decompose
the integral in (9.12) into the sum of two integrals (on11/2 and on∂D \ 11/2). The
second one can grow logarithmically asR goes to infinity. �

9.3. An example of nonadmissible domain.The domainDA is defined as follows:

DA = {x ∈ C : =x ≤ −A, −π + δ0 ≤ argx ≤ −δ0}, (9.21)

where the parameterA satisfies the inequalityA > max{4 tanδ0, 1}. Any domainD =
DA can be represented in the form (9.8) withD± = D±

A , where

D+
A = {x ∈ C : =x ≤ −A, −π + δ0 ≤ argx},

D−
A = {x ∈ C : =x ≤ −A, argx ≤ −δ0}.

The following propositions enable us to reduce the problem of solving the equation
1a = g in DA to those in the domainsD±

A .

Proposition 9.4 ([Laz91]). Given a positive constantδ, there exist two linear maps
P± : X1+δ(DA) → X0(D±

A ), such that

(1) for eachg ∈ X1+δ(DA) and for eachx ∈ DA we have

g(x) = (P +g)(x) + (P−g)(x);

(2) ‖P±‖ ≤ constA−δ, the constant depends only onδ.

Proof. It follows immediately from the lemma on the Cauchy integral that the bilinear
operators

Jint : L × X1+δ(DA) −→ X0(DA), (9.22)

Jext : L × X1+δ(DA) −→ X0

(
C \ DA

)
, (9.23)

which assignhint andhext to the pair (χ, g), have bounded norms obeying the estimate

‖Jint,ext‖ ≤ const
Aδ

.

Indeed,
∫

∂DA

|g(ξ)| |dξ| ≤ const‖g‖1+δA
−δ and sup|g| ≤ ‖g‖1+δA

−1−δ.

Take aC∞-functionχ0 : R → [0, 1] such thatχ0(t) = 0 if t ≤ −1 andχ0(t) = 1 if
t ≥ 1. Define twoC∞ functionsχ± ∈ L as

χ+(x) = χ0(<x), χ−(x) = 1− χ+(x), (9.24)

and considerJint(χ±, g) and Jext(χ±, g). Since suppχ± ⊂ ∂D±
A ∩ ∂DA, both the

integrals define a single function whose domain contains the interior ofD±
A . Being

restricted onto the interior, this function, according to Lemma 9.2, has the continuous
prolongation ontoD±

A . The latter can be taken asP±g. All proclaimed properties follow
from Lemma 9.2 and the identityJint(1, g) = g. �
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Proposition 9.5 ([Laz91]). Given positive numbersδ, µ, andA, A > 4 tanδ0, there
exists a linear map1−1 : Xµ+2+δ(DA) → Xµ(DA) such that

– giveng ∈ Xµ+2+δ(DA), 1−1(g) is a solution of Eq. (9.1) at all the values of the
independent variablex for which it has meaning;

– ‖1−1‖ ≤ constA−δ, whereconstdepends only onδ0, µ andδ.

Proof. The way of solving the equation1a = g in DA consists of the following steps:
represent the functionx1+µg as a sum of two functions, the first one has analytical
continuation to the right and the other to the left; divide the result byx1+µ and solve the
equation for each of these functions separately; thena can be taken as a sum of these
two solutions. The weightx1+µ is chosen to provide convergence of the sums (9.4) and
(9.5). More precisely, let us fix a branch ofx1+µ in the lower half-plane. Define the map

I : X2+µ+δ(DA) −→ X1+δ(DA)

by the equation
(Ig)(x) = x1+µg(x).

Evidently,I is an isomorphism between Banach spaces. Define also by the same formula
two isomorphismsI± : X1+µ(D±

A ) −→ X0(D±
A ). Set

1−1 = 1−1
+ I−1

+ P+I + 1−1
− I−1

− P−I, (9.25)

where1−1
± andP± were defined in Propositions 9.1 and 9.4, respectively. The pro-

claimed properties of1−1 follow immediately from those of1−1
± andP±. �

9.4. The method of variation of parameters.In this section we develop a formal theory
of systems of two finite-difference equations

~u(t + h) = A(t)~u(t) + ~g(t), (9.26)

where A(t) is a given matrix function and the function~g(t) is assumed to be known.
The system can be reduced to a pair of first order linear difference equations described
in the previous section in the following way. Let~u1 and~u2 be two linearly independent
solutions of the homogeneous equation

~uk(t + h) = A(t)~uk(t), k = 1, 2. (9.27)

Then a solution of the nonhomogeneous equation can be represented in the form

~u(t) = c1(t)~u1(t) + c2(t)~u2(t) (9.28)

with

1hc1(t) =
det(~g(t); ~u2(t + h))

W (t + h)
, (9.29)

1hc2(t) =
det(~u1(t + h);~g(t))

W (t + h)
, (9.30)

where

W (t) = det(~u1(t); ~u2(t)) . (9.31)
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Indeed, substituting (9.28) into Eq. (9.26) we get

c1(t + h)~u1(t + h) + c2(t + h)~u2(t + h)

= A(t) (c1(t)~u1(t) + c2(t)~u2(t)) + ~g(t)

= c1(t)~u1(t + h) + c2(t)~u2(t + h) + ~g(t).

We gather the terms containingck on the left-hand side:

(~u1(t + h); ~u2(t + h))

(
1hc1(t)
1hc2(t)

)
= ~g(t).

This system has the determinant equal toW (t +h), and, provided the determinant is not
zero, it is equivalent to (9.29) and (9.30). Inversely, given a solution~u(t) of the system
(9.26), we can represent it in the form (9.28) taking

c1(t) =
det(~u(t); ~u2(t))

W (t)
, c2(t) =

det(~u1(t); ~u(t))
W (t)

.

In general, it is not easy to find two linearly independent solutions of a system. But
in many cases one can find one solution~u1(t), then the second solution can be easily
constructed.

First we note that

(~u1(t + h); ~u2(t + h)) = A(t) (~u1(t); ~u2(t)) ,

and we have

W (t + h) = det(A(t))W (t). (9.32)

Provided det(A(t)) 6= 0 this equation can be replaced using the substitution

W (t) = expw(t) (9.33)

by the standard first order finite-difference equation

1hw(t) = log det(A(t)). (9.34)

In particular, in the case of det(A(t)) ≡ 1 this equation implies that the Wronskian,
W (t), of two solutions of the homogeneous equation (9.27) ish-periodic. A particular
solution of Eq. (9.32) is given byW = 1.

Using W (t) we can construct the second solution of the homogeneous equation
(9.27). The first equation of the system (9.27) withk = 2 reads

u21(t + h) = A11(t)u21(t) + A12(t)u22(t). (9.35)

The second subscript inukl(t) refers to the component of a vector~uk(t), andAik(t)
denotes theik-component of the matrix A(t). Using (9.31) in the form

u22(t) =
W (t) + u12(t)u21(t)

u11(t)
(9.36)

we can exclude the second component of the vector~u2(t) and obtain a first order finite-
difference equation on the first component:
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u21(t + h) = A11(t)u21(t) + A12(t)
W (t) + u12(t)u21(t)

u11(t)
.

Taking into account thatu11(t) also satisfies Eq. (9.35) we can rewrite the last equation
as

u21(t + h) =
u11(t + h)

u11(t)
u21(t) +

A12(t)W (t)
u11(t)

. (9.37)

The corresponding homogeneous equation has a solution,u11(t), and we again use the
variation of parameters looking foru21 in the following form:

u21(t) = c0(t)u11(t). (9.38)

Then

c0(t + h)u11(t + h) = u11(t + h)c0(t) +
A12(t)W (t)

u11(t)

and we have

1hc0(t) =
A12(t)W (t)

u11(t)u11(t + h)
. (9.39)

Thus we reduce the problem of construction of the second solution for the homogeneous
system to the standard form of the single first order difference equation. The components
of the vector~u2 can be obtained by (9.38) and (9.36).

9.5. Solutions of second order difference equations.Our main object here is the second
order linear operatorL of the form

Lu(t) = 12
hu(t) − q(t)u(t). (9.40)

We will consider both the homogeneous

Lϕ = 0 (9.41)

and nonhomogeneous

Lu = f (9.42)

equations. The last equation is equivalent to a system of two equations

u(t + h) = u(t) + v(t + h), v(t + h) = v(t) + q(t)u(t) + f (t).

This system has the form (9.26) with

A(t) =

(
1 + q(t) 1

q(t) 1

)
, ~g(t) =

(
f (t)
f (t)

)
.

Obviously, det(A(t)) = 1.
The WronskianWf ;g of two functionsf andg is defined by the formula

Wf ;g(t) = det

(
f (t) g(t)

1̄hf (t) 1̄hg(t)

)
= f (t − h)g(t) − f (t)g(t − h). (9.43)

The results of the previous section can be summarized in the following form:
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– If ϕ1 andϕ2 are two solutions of the homogeneous equation (9.41), thenWϕ1;ϕ2 is
h-periodic.

– If ϕ1 and ϕ2 are two solutions of the homogeneous equation (9.41), such that
Wϕ1;ϕ2 ≡ 1, then the general solution to the homogeneous equation (9.41) has
the form

ϕ(t) = α1(t)ϕ1(t) + α2(t)ϕ2(t), (9.44)

whereα1(t) andα2(t) areh-periodic functions,

α1(t) = Wϕ;ϕ2(t), α2(t) = Wϕ1;ϕ(t).

– If ϕ1 andϕ2 are two solutions of the homogeneous equation (9.41) andWϕ1;ϕ2 ≡ 1,
then the general solution to the nonhomogeneous equation (9.42) has the form

u(t) = a1(t)ϕ1(t) + a2(t)ϕ2(t), (9.45)

wherea1 anda2 obey the equations

1ha1 = −ϕ2f, 1ha2 = ϕ1f. (9.46)

– Conversely, ifa1 anda2 satisfy (9.46), then the functionu defined by Eq. (9.45) is
a solution of Eq. (9.42).

– Let ϕ1 be a solution of the homogeneous equation (9.41) andϕ2 satisfy the equality
Wϕ1;ϕ2 ≡ 1, thenϕ2 is also a solution of Eq. (9.41). Application of the method
of variation of the parameter shows that we can representϕ2 in the formϕ2(t) =
C(t)ϕ1(t), whereC(t) satisfies the equation:

1hC =
1

ϕ1(t)ϕ1(t + h)
.

9.6. Example:q(x) = 2
x2 . We use the developed techniques to construct an inverse

operator to

L0u = 12u − 2
x2

u.

This operator was studied in [Laz84, Laz91]. The homogeneous equationL0ϕ = 0 has
two solutions:

ϕ01(x) = 6 + 12x + 12x2
∞∑
k=1

(x − k)−2,

ϕ02(x) = −x2

6
.

Indeed, substitution to the equation shows that the functionx2 is a solution of the
homogeneous equationL0ϕ02 = 0; it can be checked by a direct substitution that

Wϕ01;ϕ02 = 1.

Consequently,ϕ01 is a solution of the homogeneous equation. It is not difficult to establish
thatϕ01 admits uniform asymptotic expansion inD(A),

D(A) =

{
x ∈ C :

∣∣∣∣arg

(
x +

A

sinδ0

)∣∣∣∣ ≥ δ0

}
,
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of the form

ϕ01 = 12
∞∑

m=1

(−1)m
Bm

x2m−1
,

whereBm are Bernoulli numbersB1 = 1
6, B2 = 1

30, B3 = 1
42, B4 = 1

30, B5 = 5
66, . . . .

The functionϕ01 has a meromorphic analytic continuation onC and

ϕ01(x) = −ϕ01(−x) +
12π2x2

sin2 πx
.

Proposition 9.6. Givenγ > 3 andA > 1, the expression

L−1
0 f = −ϕ011

−1
− (ϕ02f ) + ϕ021

−1
− (ϕ01f ), (9.47)

where1− was defined by (9.5), defines a continuous operatorL−1
0 : Xγ(D(A)) →

Xγ−2(D(A)) with a norm bounded by a constant depending only onδ0 andγ. If f ∈
Xγ(D(A)), thenw = L−1

0 f is a solution to the equationL0w = f .

Proof. Since

|ϕ01(x)| ≤ const|x|−1 and |ϕ02(x)| ≤ const|x|2, (9.48)

we haveϕ01f ∈ Xγ+1(D(A)) andϕ02f ∈ Xγ−2(D(A)). Proposition 9.1 implies the
right side of (9.47) to be inXγ−2(D(A)), the corresponding norms depending only on
δ0 andγ. �

10. Proof of the First Approximation Theorem (Proposition 3.1)

This proof is a modification of a similar proof from the work [Laz84]. Let

X̂N (t, h2) =
N−1∑
n=0

h2nxn(t) (10.1)

be the sum of the firstN terms of the series (2.2). We write the solution of Eq. (2.1) in
the formx−(t) = X̂N (t, h2) +Z(t, h2) and we prove the existence and upper bounds for
the functionZ, first, in a domain, which contains no points neart = iπ/2, and then in a
domain near that point.

10.1. Far from the singularity.As a first step we study the solution of Eq. (2.1) in a
domain, which contains no points close to the singularity, namely, in

D0 = {t ∈ C : <t ≤ −1/2} ∪ {t ∈ C : |<t| ≤ 1, |=t| ≤ 1.5}.

Lemma 10.1. In the domainD0,

|x−(t) − X̂N (t, h2)| ≤ const e<th2N . (10.2)
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Proof of Lemma 10.1.The functionsxn(t) were defined in such a way that

fN (t, h2) = 12
hX̂N − ε sinX̂N (10.3)

has all derivatives with respect to the second argument up to the orderN equal to zero
ath = 0 for all values oft. In D0 we have

|∂N+1
2 fN (t, h2)| ≤ const e2<t

for all h ∈ (0, h0). Then the Taylor formula implies

|fN (t, h2)| ≤ max
0≤h̃≤h

|∂N+1
2 fN (t, h̃2)| h2(N+1)

(N + 1)!
≤ const e2<th2N+2.

We look for a solution of Eq. (2.1) in the form:

x−(t) = X̂N (t, h2) + Z(t, h2).

Substituting into Eq. (2.1) and using (10.3) we write the equation onZ:

12
hZ = ε sin(X̂N + Z) − ε sin(X̂N ) − fN . (10.4)

It is convenient to rewrite this equation in the form

12
hZ − εZ = ε

(
sin(X̂N + Z) − sin(X̂N ) − Z

)− fN . (10.5)

Define the linear operatorL, which acts on a functionf of the complex variablet by
the formula

Lf = 12
hf − εf. (10.6)

We consider this operator on the spaceX of all continuous functions inD0, analytical
in internal points and having finite norm

‖f‖ = sup
t∈D0

|e−2<tf (t)| < ∞.

The homogeneous equationLφ = 0 has two linearly independent solutions e−t and
et, respectively. No one of them belongs toX . Thus it is possible to define the inverse
operator by the formula

L−1f (t) =
1

sinh(h)

∞∑
k=1

f (t − kh) sinh(kh). (10.7)

Equation (10.5) may be rewritten in the form

LZ = ε
(
sin(X̂N + Z) − sinX̂N − Z

)− fN .

In the spaceX this equation is equivalent to the equation

Z = εL−1(sin(X̂n + Z) − Z − sin(X̂N )) − L−1(fN ). (10.8)

To show that the last equation has a solution inX we use the convergent iteration scheme:

Z0 ≡ 0, Zn = F(Zn−1), n ≥ 1, (10.9)
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whereF is the nonlinear operator from the right-hand side of (10.8):

F(Z) = εL−1
(
sin(X̂n + Z) − Z − sin(X̂N )

)− L−1(fN ).

Let us estimate the first iterateZ1 = L−1(fN ):

|Z1(t)| ≤ 1
sinh(h)

∞∑
k=1

|fN (t − kh, h2)| sinh(kh)

≤ consth2N+2

sinh(h)

∞∑
k=1

e2(<t−kh) sinh(kh) =
consth2N+2

4 sinh(h/2) sinh(3h/2)
.

Since sinh(x) ≥ x for any positivex, we get

|Z1| ≤ (C0/2)h2Ne2<t, (10.10)

whereC0 denotes a constant. We continue by induction. Suppose that

|Zn − Zn−1| ≤ C0C
n−1
1 h2Ne2n<t

(2n)!
, (10.11)

and prove that this estimate is also true forn replaced byn + 1. Indeed,

Zn+1 − Zn = F(Zn) − F(Zn−1)

= εL−1
(
(sin(X̂N + Zn) − Zn) − (sin(X̂N + Zn−1) − Zn−1)

)
. (10.12)

Note that

(sin(X̂N + Zn) − Zn) − (sin(X̂N + Zn−1) − Zn−1)

= (Zn − Zn−1)
∫ 1

0

(
cos(X̂N + ξZn + (1− ξ)Zn−1) − 1

)
dξ.

Using the inductive assumption it is not difficult to see that the sequence ofZn is bounded
by const e2<t and, consequently, the expression under the integral is bounded by

const|X̂N + ξZn + (1− ξ)Zn−1|2,
and the last expression does not exceedKe2<t, whereK is a constant. Using this estimate
we get from (10.12),

|Zn+1 − Zn| ≤ εK

sinh(h)

∞∑
k=1

e2<(t−kh)|Zn(t − kh) − Zn−1(t − kh)| sinhkh.

Now we use again the induction assumption:

|Zn+1 − Zn| ≤ εK

sinh(h)
C0C

n−1
1 h2Ne2<t+2n<t

(2n)!

∞∑
k=1

e−2(n+1)kh sinhkh

=
εKC0C

n−1
1 h2Ne2(n+1)<t

sinh(h)(2n)!
· sinh(h)

4 sinh
(

(2n+1)h
2

)
sinh

(
(2n+3)h

2

) .
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Using again that sinh(x) > x we get

|Zn+1 − Zn| <
εKC0C

n−1
1 h2Ne2(n+1)<t

h2(2n)!(2n + 1)(2n + 3)
< C0

(ε/h2)KCn−1
1 h2Ne2(n+1)<t

(2n + 2)!
.

For h ≤ h0 we may assume that (ε/h2) ≤ 2 and lettingC1 = 2K we conclude by
induction that the upper bound (10.11) is valid for all positive integersn. Consequently,
the sequenceZn converges to a solution of Eq. (10.8) and the limit,Z̃, is bounded in
the following way:

|Z̃(t, h2)| ≤
∞∑
n=1

|Zn(t, h2) − Zn−1(t, h2)|

≤
∞∑
n=1

C0C
n−1
1 h2Ne2n<t

(2n)!
≤ consth2Ne2<t.

The functionx̃−(t) = X̂N (t, h2) + Z̃(t, h2) satisfies Eq. (2.1) and the first boundary
condition (1.4), but the second boundary condition may be satisfied only approximately:
x̃−(0) = X̂N (0, h2) + Z̃(0, h2) = π + O(h2N ). Let us choose the constantt0(h) from
the conditionX̂N (th, h2) + Z̃(t0(h), h2) = 0. By the implicit function theoremt0(h) =
O(h2N ). Let

Z(t, h2) = Z̃(t + t0(h), h2) + X̂N (t + t0(h)) − X0(t).

Obviously,X̂N (t + t0(h), h2) − X̂N (t, h2) = O(e2<th2N ) in D0. This finishes the proof
of Lemma 10.1. �

10.2. Near singularity.Now we are going to study Eq. (10.4) in the domainD1 = D\D0,
which contains points close to the singularity of the functionsxn(t). It is convenient to
use the parameter on the separatrices defined by the formula

τ =
t − i π

2

h
(10.13)

instead oft. Let D̃1 denote the set ofτ such thatt = iπ
2 + hτ ∈ D1. Now we rewrite

Eq. (10.4) in the form

12Z − 2
τ2

Z = F0 + (F11 + F12)Z + F2(Z), (10.14)

where

F0 = −fN , (10.15)

F11 = ε cosx0 − 2/τ2, (10.16)

F12 = ε(cosX̂N − cosx0), (10.17)

F2(Z) = ε(sin(X̂N + Z) − sinX̂N − cosX̂N Z). (10.18)
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These functions can be bounded from above in allD̃1, except the unit disk centered at
τ = 0, in the following way:

|F0| ≤ constτ−2N−2, (10.19)

|F11| ≤ consth2, (10.20)

|F12| ≤ constτ−4, (10.21)

|F2(Z)| = ε|Z|2
∣∣∣∣
∫ 1

0
sin(X̂N + ξZ) dξ

∣∣∣∣ ≤ constτ−2|Z|2, (10.22)

the last estimate being valid provided|Z| ≤ 1.
From Eq. (10.14) we obtain thatZ satisfies the equation

Z = L−1
0 (F0 + (F11 + F12)Z + F2(Z)) + Zin, (10.23)

where the operatorL−1
0 is acting by the formula (9.47) on complex valued functions,

defined inD̃1 and continued by zero to the left from this set. The termZin is a solution
of the homogeneous equation,L0(Zin) = 0. We let

Zin(τ ) = a1(τ )ϕ01(τ ) + a2(τ )ϕ02(τ ), (10.24)

where

a1(τ ) = WZ;ϕ02(τ − [<τ + h−1]), (10.25)

a2(τ ) = Wϕ01;Z(τ − [<τ + h−1]), (10.26)

where [s] denotes the integer part ofs. The functionsak, k = 0, 1, are periodical
complex valued functions. Probably, they are not continuous. Using the estimates (9.48)
and Lemma 10.1 we obtain|a1(τ )| ≤ consth2N+2 and|a2(τ )| ≤ consth2N−1, then

|Zin(τ )| ≤ const
(|τ |2h2N+2 + |τ |−1h2N−1

)
. (10.27)

We consider Eq. (10.23) on the sequence of closed intervalsln = [ir − h−1, ir − h−1 +
n] ∩ D̃1. The explicit expression for the operatorL−1

0 shows that it expresses the value
of a functionL−1

0 (g) at a pointτ through the values of the functiong at the pointsτ −k,
k ≥ 1. Thus Eq. (10.23) provides an expression for the values ofZ on ln through the
values ofZ on ln−1.

Let l be a closed interval inC parallel to the real axis. Denote byXm(l) the space
of all complex valued functions defined onl and continued by zero to the left of the
interval. The norm of a functiona ∈ Xm(l) is defined by

‖a‖m = sup
l

|τma(τ )|.

Lemma 10.2. Givenm > 1, n > 0, the formula (9.47) defines a continuous linear
operatorL−1

0 : Xm+2(ln) → Xm(ln+1), ‖L−1
0 ‖ ≤ const. Giveng ∈ X0(ln), the operator

L1, defined byL1Z = Z − εL−1
0 (g · Z), has a bounded inverse,L−1

1 , in Xm(ln).
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The proof of the lemma is similar to the proof of Proposition 9.6. One has to take
into account thatL1 is a Volterra type operator.

Now we can rewrite Eq. (10.23) in the form

Z = L−1
1 L−1

0 (F0 + F12Z + F2(Z)) + L−1
1 Zin ; (10.28)

we substituteg = ε−1F11 into the definition ofL1. The norms of the functions on the
right-hand side can be estimated in the following way:∥∥L−1

1 L−1
0 (F0)

∥∥
2N

≤ const,∥∥L−1
! L−1

0 (F12Z)
∥∥

2N
≤ const sup

ln

|τ |−2‖Z‖2N ,

∥∥L−1
1 L−1

0 (F2(Z))
∥∥

2N
≤ const sup

ln

|τ |−2N‖Z‖2
2N ,

∥∥L−1
1 L−1

0 (Zin)
∥∥

2N
≤ const,

where the norms in the left-hand side are inX2N (ln+1) and the norms ofZ in the right-
hand side are inX2N (ln). Denoting the latter by‖Z‖2N,n we obtain from Eq. (10.28)
the following set of estimates:

‖Z‖2N,n+1 ≤ const + const sup
ln

|τ |−2‖Z‖2N,n + const sup
ln

|τ |−2N‖Z‖2
2N,n.

(10.29)

Lemma 10.3. Let yn, n ∈ N be a sequence of nonnegative numbers, such thatyn+1 ≤
a + byn + cy2

n for some positive numbersa, b and c, 2b + 4ac < 1. If y1 ≤ 2a, then
yn ≤ 2a for all n ≥ 1.

The lemma is almost trivial. Indeed, letyn ∈ (0, 2a), then

yn+1 ≤ a + byn + cy2
n ≤ a + b2a + c(2a)2 = a + a(2b + 4ac) ≤ 2a.

Applying Lemma 10.3 to the sequence‖Z‖2N,n we obtain the upper bound
‖Z‖2N,n ≤ const for allln, such that supln |τ |−2 ≤ R−2 for a sufficiently large constant
R. Theseln cover allD̃1 except theR-neighborhood ofτ = 0. To extend the estimate
on this subset we note that we need no more than [R] + 1 steps inn.

Thus

sup
τ∈D̃1

∣∣τ2NZ(τ, ε)
∣∣ ≤ const. (10.30)

This estimate together with Lemma 10.1 imply Proposition 3.1.�

11. Proof of the Existence of theSSM Separatrix (Theorem 4.1)

The map0− : C → C
2 can be written as0−(τ ) = (u−(τ ), v−(τ )), τ ∈ C, where the

second component can be expressed in terms of the first one:

v−(τ ) = u−(τ ) − u−(τ − 1).

So it is sufficient to findu−(τ ) by solving the equation

12u−(τ ) = exp(u−(τ )). (11.1)



Proof of Exponentially Small Transversality 193

Given a numberA > 1, denote byD(A) the domain inC defined by the inequality∣∣∣∣arg

(
τ +

A

sinδ0

)∣∣∣∣ ≥ δ0. (11.2)

We shall consider analytical functions defined inD(A). Evidently the domainD(A) is of
a type (A,−) in the sense of Sect. 9. Fix a branch of the log so that logτ2

2 becomes real on
the negative axis of the variableτ and introduce a new unknown functionw : D(A) → C

by setting

u−(τ ) = − log
τ2

2
+ w(τ ), τ ∈ D(A). (11.3)

Substituting (11.3) into Eq. (11.1) yields the equation

12w(τ ) − 2 log

(
1 − 1

τ2

)
=

2
τ2

exp(w(τ )).

The latter can be rewritten as follows:

L0w = w0 + F(w), (11.4)

where

L0w(τ ) = 12w(τ ) − 2
τ2

w(τ ), (11.5)

w0(τ ) = 2 log

(
1 − 1

τ2

)
+

2
τ2

, (11.6)

F(w)(τ ) = F (τ, w(τ )), (11.7)

F (τ, w) =
2
τ2

(ew − w − 1) . (11.8)

We shall try to resolve Eq. (11.4) with respect to the unknown functionw in the
spaceXµ(D(A)) with an appropriateµ. The operatorL0 was studied in Sect. 9.6.

The following proposition contains necessary estimates for the operatorF defined
by the formulae (11.7) and (11.8).

Proposition 11.1. Letw, w1, w2 belong toXµ(D(A)), µ > 0, and let

|w(τ )| ≤ 1, |w1(τ )| ≤ 1, |w2(τ )| ≤ 1 ∀τ ∈ D(A).

Then, given realγ such thatγ < 2 + 2µ, the following estimates hold:

‖F(w)‖γ ≤ const
A2+2µ−γ

‖w‖µ, (11.9)

‖F(w1) − F(w2)‖γ ≤ const
A2+2µ−γ

max{‖w1‖µ, ‖w2‖µ} ‖w1 − w2‖µ, (11.10)

where the constants depend only on the choice ofδ0, µ andγ.
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Proof. It follows immediately from the definition of the norms and from inequalities

|F (τ, w)| ≤ const
|τ |2 |w|2, (11.11)

|F (τ, w1) − F (τ, w2)| ≤ const
|τ |2 max{|w1|, |w2|} |w1 − w2|, (11.12)

which are obviously valid provided|w|, |w1| and|w2| ≤ 1. �

Let µ = 2, γ = 4, and consider our main equation (11.4) in the spaceX2(D(A)), A
being sufficiently large.

Proposition 11.2. In the spaceX2(D(A)) Eq. (11.4) is equivalent to

w = G(w), (11.13)

where

G(w) = L−1
0 w0 + L−1

0 F(w). (11.14)

Proof. Let w ∈ X2(D(A)) satisfy (11.13). Then, due to Proposition 9.6, it is a solution
of (11.4). Conversely, letw ∈ X2(D(A)) be a solution of (11.4). Note thatw0 andF(w)
belong toX4(D(A)). So the function

w1 = L−1
0 w0 + L−1

0 F(w) (11.15)

belongs toX2(D(A)) and satisfies the equation

L0w1 = w0 + F(w).

Hencew1 − w is a solution of the homogeneous equation and has the form

w1 − w = α1ϕ01 + α2ϕ02,

whereα1 andα2 are periodic functions:

α1 = Ww1−w;ϕ02, α2 = −Ww1−w;ϕ01.

Sincew1 − w ∈ X2(D(A)) andϕ01, ϕ02 obey the estimates (9.48), it follows thatα1,
α2 ∈ X1(D(A)). In this case periodicity implies thatα1 = α2 = 0. We havew1 = w, and
(11.15) converts to (11.13). �

So we may consider (11.13) instead of (11.1). We will consider the former in a closed
ball B(R) of radiusR satisfying the inequality

R > R0 = 2 sup
A≥1

∥∥L−1
0 w0

∥∥
2
, (11.16)

with the center at the origin. The supremum is finite since the norm on the right-hand
side is a nonincreasing function ofA.

Proposition 11.3. If A is sufficiently large (larger than a constant depending only onδ0
andR), then the mapG defined by (11.14) mapsB(R) into itself and it is a contraction
map.
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Proof. The estimate (11.9) and Proposition 9.6 yield that

‖G(w)‖2 ≤ ∥∥L−1
0 w0

∥∥
2

+
const
A2

‖w‖2
2 ≤ R,

providedA is sufficiently large. Also, due to (11.10),

‖G(w1) − G(w2)‖2 ≤ ∥∥L−1
0 (F(w1) − F(w2))

∥∥
2

≤ const‖F(w1) − F(w2)‖4

≤ const
A2

max{‖w1‖2, ‖w2‖2}‖w1 − w2‖2

≤ constR
A2

‖w1 − w2‖2 ≤ 1
2

‖w1 − w2‖2.

These two estimates involve the proposition.�

Corollary 11.4. Let R satisfy (11.16). There exists a unique solutionu−(τ ) =
− log(τ2/2) +w(τ ) to Eq. (11.1) withw belonging toB(R).

Let us return to the functionu− connected withw by the equality (11.3). Note that
u− can be prolonged onto the entire complex plane as an entire function by means of
Eq. (11.1).

Equation 11.13 may be solved by the iteration method starting from the zero function.
Using the explicit formulas it is easy to see that the iterations preserve the property to
be real-analytic. Consequently, the functionw, and thenu−, are real-analytic.

It remains to obtain the asymptotic expansion foru−(τ ).

Proposition 11.5. There exists a sequence{ak}∞
k=1 such that the functionu− has the

asymptotic expansion (4.3) uniform in each sectorδ0 ≤ argτ ≤ 2π − δ0, δ0 ∈]0, π/2[.

Proof. Fix a positive integerN and introduce a functionη(τ ) as

u−(τ ) = − log
τ2

2
+

N∑
k=1

akτ−2k + η(τ ). (11.17)

It is clear from Corollary 11.4 that

|η(τ )| ≤ 1 if τ ∈ D(A), (11.18)

providedA is sufficiently large.
Substituting (11.17) into Eq. (11.1) yields the following equation for the functionη:

L0η = η0 + FN (η), (11.19)

where

η0 = 2 log

(
1 − 1

τ2

)
+ 2

N+1∑
k=1

1
k

1
τ2k

= O

(
1

τ2N+4

)
, (11.20)

FN (η)(τ ) = FN (τ, η(τ )), (11.21)

FN (τ, η) =
2
τ2

exp

(
η +

N∑
k=1

ak

τ2k

)
−

N+1∑
k=1

2
kτ2k

−
N∑

k=1

ak12 1
τ2k

− 2
τ2

η.
(11.22)
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Let us choose the numbersak so that

exp

(
N∑

k=1

ak

τ2k

)
−

N+1∑
k=1

1
k

1
τ2k−2

− τ2

2

N∑
k=1

ak12 1
τ2k

= O

(
1

τ2N+4

)
. (11.23)

It is not difficult to check that this determines the coefficientsak uniquely, and they do
not depend on the choice ofN . Then we have, taking into account (11.18),

FN (τ, η) = O

(
1
τ2

η2

)
+ O

(
1
τ4

η

)
+ O

(
1

τ2N+4

)
(11.24)

and

∂

∂η
FN (τ, η) = O

(
1
τ2

η

)
+ O

(
1
τ4

)
(11.25)

asτ tends to infinity.
We consider Eq. (11.19) in the spaceX2N+2(D(A)). It follows from (11.20), (11.24),

(11.25), and Proposition 9.6 withγ = 2N + 4 that∥∥L−1
0 η0

∥∥
2N+2

is bounded, (11.26)

∥∥L−1
0 FN (η)

∥∥
2N+2

≤ const

(
1

A2+2N
‖η‖2

2N+2 +
1
A2

‖η‖2N+2 + 1

)
, (11.27)

∥∥L−1
0 (FN (η1) − FN (η2))

∥∥
2N+2

≤ const

(
1

A2+2N
max{‖η1‖2N+2, ‖η2‖2N+2} ‖η1 − η2‖2N+2

)

+const

(
1
A4

‖η1 − η2‖2N+2

)
. (11.28)

Applying the contraction principle in an appropriately chosen closed ball we obtain the
existence of a fixed pointη ∈ X2N+2(D(A)), A being sufficiently large, which proves
(in view of uniqueness ofu−) the asymptotic expansion up to the orderτ−2N . �

12. Proof of the Exponential Closeness of the Separatrices for theSSM
(Theorem 4.2)

In this section we will prove an exponential estimate for the distance between separatrices
of the semistandard map. All functions are considered in the domainDA, A being
sufficiently large. Recall that the domainDA was defined by the formula (9.21).

First of all, let us notice that, sinceu+(τ ) = u−(−τ ) − 2πi andu−(τ ) have the same
asymptotics in the domainDA, their difference

w(τ ) = u+(τ ) − u−(τ ) (12.1)

admits the estimate
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|w(τ )| ≤ const
1

|τ |N , ∀τ ∈ DA, (12.2)

where the positive integerN can be chosen arbitrary and the constant depends only on
δ0 andN .

The functionw obeys the following equation which is a consequence of (11.1) for
u+ andu−:

12w − eu−w = eu− (ew − 1 − w) . (12.3)

Denote

F (τ, w) = eu−(τ ) (ew − 1 − w) , (τ, w) ∈ C
2, (12.4)

F(w)(τ ) = F (τ, w(τ )), (12.5)

and

Lw = 12w − eu−w. (12.6)

Then Eq. (12.3) can be rewritten as follows:

Lw = F(w). (12.7)

First we will deal with the problem of reversing the operatorL in the spacesXµ(DA).

12.1. Construction ofL−1. By means of simple differentiation of the equation, one finds
that the homogeneous equation

Lϕ = 0 (12.8)

has a solution

ϕ1(τ ) =
du−
dτ

(τ ). (12.9)

It follows from Theorem 4.1 that

ϕ1(τ ) = −2
τ

+
1
2

1
τ3

+ O

(
1
τ5

)
, (12.10)

if τ tends to infinity outside a sector| argτ | < δ0.

Lemma 12.1. There is a solution of Eq. (12.8), such that

Wϕ1;ϕ2 = 1, (12.11)

ϕ2(τ )
as
=

∞∑
k=−1

ϕ0k

τ2k
(12.12)

uniformly in any sector|argτ | > δ.
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Proof. The solutionϕ2(τ ) can be determined by solving Eq. (12.11), which can be
solved explicitly with respect toϕ2. The functionϕ2 may be represented in the form

ϕ2(τ ) = C(τ )ϕ1(τ ), (12.13)

where

1C =
1

ϕ1(τ )ϕ1(τ + 1)
. (12.14)

The asymptotic expansion (12.10) results in

1
ϕ1(τ )ϕ1(τ + 1)

=
1
4
τ2 +

1
4
τ +

1
8

+ O

(
1
τ2

)
.

Let us introduce a new unknown functiona(τ ) by setting

C(τ ) =
1
12

τ3 +
1
24

τ + a(τ ).

Then Eq. (12.14) reads:

1a(τ ) =
1

ϕ1(τ )ϕ1(τ + 1)
− 1

4
τ2 − 1

4
τ − 1

8
= O

(
1
τ2

)
.

The latter can be solved by means of the operator1−1
− (see (9.5)) and

a(τ ) =
∞∑
k=1

(
1

ϕ1(τ − k)ϕ1(τ − k + 1)
− 1

4
(τ − k)2 − 1

4
(τ − k) − 1

8

)
(12.15)

does not exceedO
(
1/τ
)
. It follows from (12.10), (12.13), (12.14), and (12.15) that

ϕ2(τ ) = −1
6
τ2 − 1

24
+ O

(
1
τ2

)
. (12.16)

The solution of such a form is unique and it follows from the symmetries that its expan-
sion contains only odd powers. We will discuss the corresponding arguments for a more
general situation in Sect. 15. �

Now we can buildL−1 in the same manner asL−1
0 in (9.47):

L−1f = −ϕ1 1−1(ϕ2f ) + ϕ2 1−1(ϕ1f ). (12.17)

Here1−1 is the operator defined in Proposition 9.5.

Proposition 12.2. Givenγ > 4, δ > 0 such thatγ − δ > 4, andA > 1, the expression
(12.17) defines a bounded operatorL−1 : Xγ(DA) −→ Xγ−3−δ(DA) with the norm
satisfying the estimate

‖L−1‖ ≤ const
Aδ

, (12.18)

where the constant depends only onδ0, γ, andδ. If f ∈ Xγ(DA), thenw = L−1f is a
solution to the equationLw = f .
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Proof. Let f ∈ Xγ(DA). Then, as it follows from (12.10) and (12.16),

ϕ2f ∈ Xγ−2(DA), ϕ1f ∈ Xγ+1(DA).

Proposition 9.5 yields the first assertion and the estimate (12.18). The last assertion is a
consequence of (12.11). �

Applying the operatorL−1, we can rewrite (12.7) as

w = ϕ + L−1F(w), (12.19)

whereϕ is a solution of the homogeneous equationLϕ = 0. We are going to resolve
(12.19) in an appropriate spaceXµ(DA).

12.2. The application of the contraction principle.First, let us estimate the norms ofw
andF(w). The inequality (12.2) gives us

|w(τ )| < 1 ∀τ ∈ DA (12.20)

if A is sufficiently large, and

‖w‖µ ≤ const
Aβ

(12.21)

for arbitrary chosen positiveµ andβ, const depending onµ andβ. Similarly, like in
Sect. 11, if max{|w|, |w1|, |w2|} < 1, then

|F (τ, w)| ≤ const
|τ |2 |w|2, (12.22)

|F (τ, w1) − F (τ, w2)| ≤ const
|τ |2 max{|w1|, |w2|} |w1 − w2|, (12.23)

which yield

‖F(w)‖γ ≤ const
A2+2µ−γ

‖w‖2
µ, (12.24)

‖F(w1) − F(w2)‖γ ≤ const
A2+2µ−γ

max{‖w1‖µ, ‖w2‖µ} ‖w1 − w2‖µ, (12.25)

provided
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γ < 2 + 2µ, (12.26)

const depending only on the choice ofδ0, µ andγ.
It follows from the estimates (12.21), (12.24) thatϕ from Eq. (12.19) admits an

estimate:

‖ϕ‖µ ≤ ‖w‖µ +
const
Aδ

1
A2+2µ−γ

‖w‖2
µ ≤ const

Aβ
+

const
Aµ−1+2β

≤ const
Aν

, (12.27)

where positiveν = min{β, µ − 1 + 2β} can be made arbitrary large, the constants
depending on that choice.

Let us fixδ > 0, and consider Eq. (12.19) in the unit closed ballB with the center
at the origin in the spaceXµ(DA), µ > 1 + δ. Takeγ = 3 +µ + δ (note that (12.26) is
fulfilled). Then (12.24) gives us

∥∥L−1F(w)
∥∥

µ
≤ const

Aµ−1−δ
<

1
2
, w ∈ B,

providedA is sufficiently large. Also (12.27) ensures that‖ϕ‖µ < 1/2 for largeA.
Hence the nonlinear operatorG defined as

G(w) = ϕ + L−1F(w) (12.28)

mapsB into itself. Proposition 12.2 and the inequality (12.25) prove the contractibility
of G. SoG has a unique fixed point inB which necessarily coincides withw defined by
(12.1), since the latter belongs toB too. We have also that

w = lim
n→∞ wn in Xµ(DA), (12.29)

where

w0 = ϕ (12.30)

and

wn+1 = G(wn

)
, n ≥ 0. (12.31)

The last thing is crucial because it enables us to prove an exponential estimate forw by
establishing such estimates for the members of the iterated sequence. First we establish
it for w0.

12.3. The estimate of a solution of homogeneous equation.In the situation met in
the preceding section it appeared that the summandϕ (a solution of the homogeneous
equation) did vanish. This was so because such a solution belonging toXµ(D(A)) with
µ > 1 is necessarily zero. The situation considered here is analogous but, since the
geometry ofDA differs from that ofD(A), it does not vanish. Instead an exponential
estimate for such a solution is possible.

Proposition 12.3. Let µ ≥ 2 and letϕ ∈ Xµ(DA) be a solution of the homogeneous
equation (12.8). Then

|ϕ(τ )| ≤ const‖ϕ‖µ
|τ |2
Aµ+1

e2π(A−|=τ |), (12.32)

where the constant depends only onδ0 andµ.
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Proof. A general solution of the homogeneous equation can be represented in the form

ϕ = α1ϕ1 + α2ϕ2, (12.33)

where the functions
α1 = Wϕ;ϕ2, α2 = −Wϕ;ϕ1

are periodic. The estimates (12.10) and (12.16) involve

|α1(τ )| ≤ const‖ϕ‖µ |τ |2−µ, |α2(τ )| ≤ const‖ϕ‖µ|τ |−1−µ.

Sinceα1,2 are periodic, they define functionsβ1,2(z) for |z| ≤ e−2πA by the equalities

β1,2
(
e−i2πτ

)
= α1,2(τ ),

which tend to zero asz → 0. Soβ1,2 have analytic continuations toz = 0, andβ1,2(0) = 0.
Hence, denotingr = e−2πA, we have∣∣∣∣β1(z)

z

∣∣∣∣ ≤ max
|z|=r

∣∣∣∣β1(z)
z

∣∣∣∣ = e2πA max
=τ=−A

|α1(τ )| ≤ const‖ϕ‖µA2−µe2πA,

∣∣∣∣β2(z)
z

∣∣∣∣ ≤ max
|z|=r

∣∣∣∣β2(z)
z

∣∣∣∣ = e2πA max
=τ=−A

|α2(τ )| ≤ const‖ϕ‖µA−1−µe2πA.

Hence

|α1(τ )| ≤ const‖ϕ‖µA2−µe2π(A−|=τ |),
|α2(τ )| ≤ const‖ϕ‖µA−1−µe2π(A−|=τ |).

(12.34)

Applying (12.34), (12.10), and (12.16) to Eq. (12.33), we obtain the desired estimate
(12.32). �

12.4. Proof of the exponential estimate.Fix µ > 3, and letA be so large that‖ϕ‖µ < 1
2.

By using (12.28) and (12.29), we will prove by induction that ifA is sufficiently large,
the functionswn satisfy the estimates:

|wn(τ )| ≤ Cn|τ |2 1
Aµ+1

e2π(A−|=τ |), (12.35)

and the sequence of the constantsCn is bounded. In view of (12.29) we shall obtain the
desired estimate for the limiting functionw.

First, Proposition 12.3 gives us (12.35) forn = 0. Let (12.35) be true for a givenn.
Substituting (12.35) into the right side of (12.22) yields

|F(wn)(τ )| ≤ const|Cn|2|τ |2 1
A2µ+2

e4π(A−|=τ |). (12.36)

Multiplying (12.36) by|τ |γ and taking the maximum we obtain

‖F(wn)‖γ ≤ const|Cn|2 1
A2µ+2

max|τ |γ+2e4π(A−|=τ |). (12.37)

Here we used the inequality|τ | ≤ const|=τ |. If A > (γ + 2)/(4π) then the maximum
on the right-hand side of (12.37) is reached at=τ = −A. So
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‖F(wn)‖γ ≤ const|Cn|2 1
A2µ−γ

= const|Cn|2 1
Aµ−3−δ

(12.38)

(recall thatγ = 3 +µ + δ). Using Proposition 12.2 we have

∥∥L−1F(wn)
∥∥

µ
≤ const|Cn|2 1

Aµ−3
. (12.39)

Consider another inverse operator
(
L−1

)
1

defined by the formula(
L−1

)
1
f (τ ) = e−2πiτ

(
L−1f1

)
(τ ),

where
f1(τ ) = e2πiτf (τ ).

The additional factors e±2πiτ do not change the way of obtaining (12.39) because of the
presence of a more strongly decreasing exponent e−4π|=τ |. So we have

∥∥(L−1
)

1
F(wn)

∥∥
µ

≤ const|Cn|2 1
Aµ−3

. (12.40)

SinceL commutes with the multiplication by e±2πiτ , the expression
(
L−1

)
1
f repre-

sents another solution to the nonhomogeneous equationLu = f . Hence the difference
between

(
L−1

)
1
F(wn) andL−1F(wn) satisfies the homogeneous equation and admits

the estimate ∥∥(L−1
)

1
F(wn) − L−1F(wn)

∥∥
µ

≤ const|Cn|2 1
Aµ−3

, (12.41)

which is a consequence of (12.39) and (12.40). We may apply Proposition 12.3 to the
difference taking into account (12.41). The result is

∣∣(L−1
)

1
F(wn)(τ ) − L−1F(wn)(τ )

∣∣ ≤ const
|Cn|2|τ |2
A2µ−2

e2π(A−|=τ |). (12.42)

The expression
(
L−1

)
1
F(wn)(τ ) admits a direct estimate. First, it follows from (12.36)

that ∣∣e2πiτF(wn)(τ )
∣∣ ≤ const|Cn|2|τ |2 1

A2µ+2
e4πA−2π|=τ |.

Denoting
f1(τ ) = e2πiτF(wn)(τ ),

we obtain consequently, as in (12.38) and (12.39),

‖f1‖γ ≤ const|Cn|2 1
A2µ−γ

e2πA,

∥∥L−1f1

∥∥
µ

≤ const|Cn|2 1
Aµ−3

e2πA,

providedA is sufficiently large. Multiplying by e−2πiτ gives finally

∣∣(L−1
)

1
F(wn)(τ )

∣∣ ≤ const|Cn|2 1
Aµ−3

1
|τ |µ e2π(A−|=τ |)

≤ const|Cn|2 1
A2µ−1

|τ |2 e2π(A−|=τ |). (12.43)
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Comparing (12.42) and (12.43) yields

∣∣L−1F(wn)(τ )
∣∣ ≤ const|Cn|2 |τ |2

A2µ−1
e2π(A−|=τ |).

Returning to our initial recurrent relation (12.31), whereG is defined by (12.28), let us
notice that if we take

Cn+1 = C0 +
const
Aµ−3

C2
n, (12.44)

then the estimate (12.35) becomes valid for the next value of the indexn.
The assertion of Theorem 4.2 follows from (12.44) and Lemma 10.3.

13. Existence of theSSM Based Expansion (Proposition 5.1)

In a neighborhood oft = iπ/2 the coefficients (2.10) of the formal series (2.2) may be
expanded in convergent Laurent series. Passing to the new timeτ = (t − iπ/2)/h we
get the following chain of the equalities:

X = i log
h2

2
+

1
i

∞∑
n=0

h2n
∞∑

k=−n

p̃n,k(t − iπ/2)2k = i log
h2

2
+

1
i

∞∑
n=0

h2nUn,

where we introduced the notation

Un ∼
∞∑

k=−n

pn+k,−kτ−2k.

From (2.3) we get the following equations:

4 sinh2

(
1
2

∂

∂τ

)
U0 = exp(U0),

4 sinh2

(
1
2

∂

∂τ

)
Un =

n+1∑
k=1

2
(2k)!

(
Yn+1−k(U1, . . . , Un+1−k) exp(U0)

−1
4
Yn−1−k(−U1, . . . ,−Un+1−k) exp(−U0)

)
.

Consequently the formal seriesUn are formal solutions for the finite-difference equations
(5.7) and (5.8). These equations may be solved recurrently if we consider the equation
numbern as a equation foru−

n . Considered in this way the equations (5.8) are linear;
they can be rewritten in the form

12u−
n − eu−

0 u−
n = eu−

0 Pn(u−
1 , . . . , u−

n−1) + e−u−
0 Qn(u−

1 , . . . , u−
n−2),

wherePn andQn are some polynomials. As in Proposition 12.2 the operator in the left-
hand side has a bounded inverse acting fromXm(D(A)) → Xm−4(D(A)) for m > 4.
Define the functionvn,j = u−

n − ∑j
k=−n pnkτ−2k. This function satisfies a similar

equation, but with the right-hand side inX2j+4. Then there is a unique solution of the
equation inX2j . That implies that the constructed formal series are asymptotic to analytic
solutions inD(A).

Equations (5.8) afford to obtain analytic continuations of the functionsu−
n from the

sector to the entire complex plane. �
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14. Proof of the Second Approximation Theorem (Proposition 5.2)

Denote by

ÛN (τ, h2) =
N−1∑
n=0

h2nu−
n (τ ) (14.1)

a partial sum of (5.6) and consider

Z(τ, h2) = u−(τ ) − ÛN (τ, h2). (14.2)

Substitution to Eq. (5.5) provides an equation forZ. It is convenient to rewrite this
equation in the form

12Z − eu−
0 Z = F0 + F1Z + F2(Z), (14.3)

where

F0 = (ε/h2)eÛN − (εh2/4)e−ÛN − 12ÛN ,

F1Z = ((ε/h2)eÛN + (εh2/4)e−ÛN − eu−
0 ) Z,

F2(Z) = (ε/h2)eÛN (eZ − 1 − Z) − (εh2/4)e−ÛN (e−Z − 1 +Z).

Let τ ∈ D̃2 andz ∈ C, |z| ≤ 1, then

|F0| ≤ consth2N |τ |2N−2, (14.4)

|F1| ≤ consth2, (14.5)

|F2(z)| ≤ const|τ |−2|z|2. (14.6)

These estimates follow directly from Eq. (5.7), (5.8) and the asymptotical formulae
(5.10), (5.11).

Denoting the linear operator in the left-hand side of (14.3) byL we can write this
equation as

L(Z) = F0 + F1Z + F2(Z).

We can apply the operatorL−1, defined by formula (12.17) with1−1 replaced by1−1
−

(see (9.5)), to both sides of the equation to obtain thatZ satisfies the following equation:

Z = Zin + L−1(F0 + F1Z + F2(Z)), (14.7)

where the operatorL−1 is acting on complex valued functions, defined inD̃2 and con-
tinued by zero to the left from this set. The termZin is a solution of the homogeneous
equationL(Zin) = 0, and we have to choose it in such a way that the right-hand side
of (14.7) would be equal to the difference (14.2) in the intersection ofD̃2 with the strip
h−1/2 ≤ <τ ≤ h−1/2 + 1. In this way we obtain the coincidence of the solution of
Eq. (14.7) withZ. We let

Zin(τ ) = a1(τ )ϕ1(τ ) + a2(τ )ϕ2(τ ), (14.8)

where
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a1(τ ) = WZ;ϕ2(τ − [<τ + h−1/2]), (14.9)

a2(τ ) = WZ;ϕ1(τ − [<τ + h−1/2]), (14.10)

where [s] denotes the integer part ofs. The functionsak,k = 0, 1, are periodical complex
valued functions. Probably, they are not continuous. InD̃2 they afford the following
estimates:

|a1| ≤ consthN−1/2, |a2| ≤ consthN+1. (14.11)

Indeed, letτ ∈ D̃2, then

|Z| ≤ consthN , |1Z| ≤ consthN+1

due to Proposition 3.1 and the sewing condition. Then the estimates (14.11) follow from
(14.9), (14.10) and the estimates (12.10), (12.16).

We consider Eq. (14.7) on a sequence of closed intervalsln = [ir − h−1, ir − h−1 +
n] ∩ D̃2. The explicit expression for the operatorL−1 shows that it expresses the value
of a functionL−1g at a pointτ through the values of the functiong at the pointsτ − k,
k ≥ 1. Thus Eq. (14.7) provides an expression for the values ofZ on ln through the
values ofZ on ln−1.

As in the proof of Proposition 3.1, letl be a closed interval inC parallel to the
real axis. Denote byXm(l) the space of all complex valued functions defined onl and
continued by zero to the left from the interval. The norm of a functiona ∈ Xm(l) is
defined by

‖a‖m = sup
l

|τma(τ )|.

Lemma 14.1. Givenm > 2, n ≥ 0, the formula

L−1f = −ϕ11
−1
− (ϕ2f ) + ϕ21

−1
− (ϕ1f )

defines a continuous linear operatorL−1 : Xm(ln) → Xm−2(ln+1) with the norm
bounded by a constant. The value of the constant can be chosen to depend only onm.

Applying this lemma to Eq. (14.7) and taking into account the estimates (14.4)–(14.6)
we obtain

‖Z‖4,n+1 ≤ consthN−3 + consth ‖Z‖4,n + const sup
ln

|τ |−2 ‖Z‖2
4,n,

where‖Z‖4,n denotes the normZ in X4(ln). Applying Lemma 10.3 to the sequence of
‖Z‖4,n we obtain the estimate

‖Z‖4 ≤ consthN−3.

This estimate is valid in all̃D2 except a 1-neighborhood ofτ = 0. We can not use the
above estimate to cover this subset, sinceτ−2 is not bounded there, but we can simply
iterate twice the original equation forZ.

SinceN is arbitrary we can increase it to obtain

|u− − ÛN | ≤ |u− − Û2N+3| + |Û2N+3 − ÛN | ≤ consth2N + consth2N |τ |2N .

The last estimate is equivalent to the one from the assertion of the theorem.�
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15. Existence of the Second Solution for the Variational Equation
(Proposition 6.1)

Since8−
1 is a nontrivial solution of the homogeneous equation we can find8−

2 from
the normalizing condition (6.13), Eq. (6.12) being satisfied automatically. In the class
of formal series (6.13) is equivalent to the system

W(ϕ−
1,0; ϕ−

2,0) = 1, (15.1)

W(ϕ−
1,0; ϕ−

2,n) = −
n∑

k=1

W(ϕ−
1,k; ϕ−

2,n−k), n ≥ 1. (15.2)

The solution of Eq. (15.1) was obtained in Lemma 12.1. But the following reasoning
works also in the case of Eq. (15.1). We use thenth equation to defineϕ−

2,n. We use the
induction inn. The induction step consists of three parts:

(1) There is a formal series of the form (6.16) satisfying (15.2);
(2) There is an analytical function satisfying (15.2) which has the series as asymptotic

expansion;
(3) The solution is unique.

Step (3) is simple. Indeed, Eqs. (15.2) are first order linear equations. The general
solution of the corresponding homogeneous equation is a product ofϕ−

1,0 and a periodic
function. Since the asymptotic ofϕ−

1,0 contains odd powers ofτ (its expansion (12.10)
starts with−2τ−1 and contains only negative odd powers), then if there is a solution of
the form (6.16), it is unique.

Then we look for the solution of Eq. (15.2) in the form

ϕ−
2,n(τ ) = An(τ )ϕ−

1,0(τ ). (15.3)

Substitution to Eq. (15.2) provides

1An(τ ) = − 1

ϕ−
1,0(τ )ϕ−

1,0(τ + 1)

n∑
k=1

W(ϕ−
1,k; ϕ−

2,n−k) ≡ fn(τ ). (15.4)

Since the series for the functionsϕ−
1,k(τ ) contain only odd powers ofτ , and the series

for ϕ−
2,k(τ ) contain only even powers, it is easy to check thatfn(−1− τ ) = fn(τ ) in the

class of formal series. Then it follows from the following lemma, that Eq. (15.4) has a
formal solution represented by a series which contains only odd powers ofτ .

Lemma 15.1. Let f (τ ) =
∑∞

k=−2m bkτ−k be a formal series in powers ofτ , such
that f (τ − 1) = f (−τ ). Then there is a unique representation off (τ ) in the form
f (τ ) =

∑∞
k=−m ck1τ−2k+1.

Proof. The set ofpj(τ ) = 1τ−j = (τ + 1)−j − τ−j , j ≥ −2m − 1, j 6= 0, forms a
basis in the space of formal series of the form

∑∞
k=−2m bkτ−k with b1 = 0. The series

f (τ − 1) − f (−τ ) contains the term

b1

τ − 1
− b1

−τ
=

b1(2τ − 1)
τ (τ − 1)

= b1

(
2
τ

+
1
τ2

+ . . .

)
.
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The expansion starts with 2b1/τ . The other terms off do not contribute to this order.
Sincef (τ − 1) − f (−τ ) = 0 we haveb1 = 0.

So f (τ ) can be represented as a linear combination ofpj(τ ). This combination
contains only oddj becausepj(τ − 1) = −(−1)jpj(−τ ). �

It follows from the expansions (6.16) and (6.11), (5.10), (5.12) thatfm(τ ) satisfies
the assumptions of Lemma 15.1 withm = n + 1. Then the lemma implies that there is a
formal solution of Eq. (15.4):

An(τ ) ∼
∞∑

k=−n+1

ak

τ2k−1
.

To complete Step (2) we look for an analytic solutionAn(τ ) in the form

An(τ ) =
m∑

k=−n−1

ak

τ2k−1
+ rn,m(τ ), m > 0. (15.5)

Substitution to Eq. (15.4) gives

1rn,m(τ ) = fn(τ ) − 1

m∑
k=−n−1

ak

τ2k−1
. (15.6)

According to the construction the formal series on the right-hand side of the last equation
starts with a term of the order ofτ−2m−1. Due to the induction assumption formal series
provide asymptotic expansions. Thus the right-hand side is an analytic function inD(A)
(see (11.2)) and it is equal toO(τ−2m−1). We apply the operator1−1

− defined by (9.5) to
obtain the solution of Eq. (15.6) inX2m(D(A)). Then we can restoreϕ−

2,n(τ ) by (15.3).
Since the solution is unique the functionAn obtained by this procedure does not depend
on the choice ofm. Thus the constructed formal series are asymptotic.

The functionϕ−
2,n(τ ) can be continued analytically onto the whole complex plane

using Eq. (6.12).
To prove that the constructed functions are real on the real axis we can repeat the

reasoning withτ on the real semiaxisτ < −A, with some constantA > 0. The obtained
functions are real and coincide with the restriction of the previously constructed functions
on the real axis due to the uniqueness.�

16. Construction of the Asymptotic Expression for the Distance BetweenSM
Separatrices (Proposition 6.2)

Since bothU+ andU− satisfy Eq. (5.5),W = U+ − U− satisfy

12W =
(

(ε/h2)eU−
+ (εh2/4)e−U−)

W + F, (16.1)

where

F = (ε/h2)eU− (
eW − 1 − W

)− (εh2/4)e−U− (
e−W − 1 +W

)
. (16.2)

The functionW can be represented in the form

W = A18
−
1 + A28

−
2 , (16.3)
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where

1A1 = −8−
2 F, 1A2 = 8−

1 F. (16.4)

We consider this equation in the class of the formal series

Ak(τ, ε) ∼
∞∑
n=0

h2nak,n(τ ), k = 1, 2. (16.5)

The coefficient of the series forW (τ, ε) is expressed in the following way:

wn(τ ) =
n∑

k=0

(a1,k(τ )ϕ1,n−k(τ ) + a2,k(τ )ϕ2,n−k(τ )). (16.6)

To obtain the equations onak,n we representF as a formal series

F (τ, ε) ∼
∞∑
n=0

h2nFn(τ ). (16.7)

It is not difficult to obtain an expression forFn:

Fn = eu−
0

∑
k+l+m=n+1

2
(2k)!

Yl(u
−
1 , . . . , u−

l )(ew0Ym(w1, . . . , wm) − δm − wm)

−e−u−
0

∑
k+l+m=n−1

2
(2k)!

Yl(−u−
1 , . . . ,−u−

l )

×(e−w0Ym(−w1, . . . ,−wm) − δm + wm) ;

herek ≥ 1,l, m ≥ 0,δn is the Kronecker symbol,Yn are polynomials (5.9). In particular,
we have

F0 = eu−
0 (ew0 − 1 − w0),

F1 = eu−
0 u1(ew0 − 1 − w0) + eu−

0 w1(ew0 − 1) + (2/4!)eu−
0 (ew0 − 1 − w0).

From (16.4) we obtain that

1a1,n = −
n∑

k=0

ϕ2,kFn−k, 1a2,n =
n∑

k=0

kϕ1,kFn−k. (16.8)

First, we study the equation forn = 0, namely,

1a1,0 = −ϕ2,0F0, 1a2,0 = −ϕ1,0F0. (16.9)

The estimate|w0(τ )| ≤ const|τ |2 exp(−2π|=τ |) from Theorem 4.2 implies that the
functions on the right-hand sides of Eqs. (16.9) do not exceed

const exp(−4π(1 − δ)|=τ |) (16.10)

for anyδ > 0. Of course, the constant in the estimate depends onδ.
Let Yδ(D) be the space of continuous complex valued functions defined inD,

analytical in interior points ofD and provided with the norm

‖g‖ = sup
τ∈D

| exp(4π(1 − δ)iτ )g(τ )|.
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Lemma 16.1. Let δ > 0, anda(τ ) be a solution of the equation1a = g, g ∈ Yδ(DA),
which goes to zero as=τ → −∞. Then there is a complex numberθ, such that

a(τ ) = θe−2πiτ + O(exp(4π(1 − δ − µ)iτ )),

whereµ > 0 is an arbitrary small number. The constant in theO estimate depends on
µ. If δ < 1/2 then for eacha the representation above is unique.

Proof. First, we construct a suitable solution for the nonhomogeneous equation. Then
the solutiona differs from the obtained one by a periodic function. The first Fourier
coefficient of the difference will play the role ofθ.

There exists a linear map1−1 : Yδ(DA) → Yδ+µ(DA) such that

– for anyg ∈ Yδ(DA), 1−1(g) is a solution of the equation1a = g at all the values
of the independent variableτ for which it has meaning;

– ‖1−1‖ ≤ const, where const depends only onδ0, δ andµ.

The proof of these facts follows the lines of the proof of Proposition 9.5; the operatorsI,
I+ andI− have to be replaced by the operator of multiplicationg(τ ) 7→ τ2 exp((4π(1−
δ−µ/2)iτ )g(τ ).Then the operator1−1 is defined by the same formula (9.25). Obviously,
P±Ig ∈ X0(D±

A ) and inDA the following identity holds:g = I−1
− P−Ig + I−1

+ P+Ig.
The estimates of the norms of the functions obtained after application of the operators
1−1

± follow directly from the definitions (9.4), (9.5) of these operators.
Now consider the functionb = a − 1−1g. It is a solution of the homogeneous

equation1b = 0 andb → 0 as=τ → −∞. Thenb can be represented as a Fourier
seriesb =

∑∞
k=1 bke−2πikτ . Let θ = b1. The Fourier expansion without the first term is

bounded byO(exp(4πiτ )) in DA. �

Applying Lemma 16.1 to Eqs. (16.9) we obtain the desired representation forw0
taking into account (16.6) withn = 0.

Then we follow by induction inn. Suppose that we checked the estimates (6.17)
up ton − 1. The right-hand side of Eq. (16.8) containsFk, k = 0, 1, 2, . . . , n. All the
functionsFk are polynomial inw1, w2, . . . , wk, ew0 − 1, ew0 − 1 − w0, e−w0 − 1 and
e−w0 − 1 + w0, with coefficients being some analytic functions ofτ , which grow no
faster thanτN for someN = N (k). These polynomials contain no zero and first order
terms with respect tow0, . . . , wk. Thus they can be bounded from above by (16.10),
except the functionFn because of its dependence onwn. This dependence goes through
one term of the sums (16.8) only, namely,

eu−
0 wn(ew0 − 1).

We know a priori thatwn = O(τ−m) for all m > 0, thus the expression above is bounded
by

const exp(−(2π − δ′)|=τ |) (16.11)

with arbitraryδ′ > 0. Applying to Eqs. (16.9) Lemma 16.1 withδ = δ′ + 1/2, we obtain
thata1,n anda2,n are exponentially small. Then from (16.6) it follows thatwn does not
exceed (16.11). Now it is possible to improve the estimate forFn up to the form (16.10)
and again apply Lemma 16.1, but now with arbitrary small positiveδ.

Denote the constants provided by Lemma 16.1 toa2,n and a1,n by θn and µn,
respectively, and restorewn by (16.6). Proposition 6.2 is proved. �
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17. Proof of the Theorem on the Analytic Integral (Theorem 7.1)

In the coordinate form the mapΦ(t, E) =
(
x(t, E), y(t, E)

)
. Assertion (3) reads:

x(t + h, E) = x(t, E) + y(t + h, E), y(t + h, E) = y(t, E) + ε sinx(t, E).

This system is equivalent to a single equation

12
hx(t, E) = ε sinx(t, E).

The normalizing condition (4) is equivalent tox(t, 0) = x−(t).Assertion (2) is equivalent
to

J = det

(
∂x
∂t

∂x
∂E

∂y
∂t

∂y
∂E

)
≡ 1

or, equivalently,

W
[
∂x

∂t
;

∂x

∂E

]
≡ 1,

whereW is the finite-difference Wronskian. We construct the desired solution using
a convergent iteration procedure. First, we have to study the variational equation in a
neighborhood of the unstable separatrix.

17.1. Variational equation.Let D be a closed subset of the strip|=t| < π/2. Given
nonnegativeµ, denote byXµ(D) the Banach space of all complex valued continuous
functions defined inD, analytic in interior points ofD and possessing the finite norm

‖a‖µ = sup
t∈D

| coshµ(t)a(t)|. (17.1)

The following lemma provides an instrument for solving first order linear equations in
Xµ(D(R)),

D(R) = {t ∈ C : |=t| ≤ π/2 − Rh, |<t| ≤ 10h}. (17.2)

Lemma 17.1. Let µ > 0, R > 1. There is a linear operator1−1
h : Xµ(D(R)) →

Xµ(D(R)), such that for anyg ∈ Xµ(D(R)) the functiona = 1−1
h g is a solution of the

equation1ha = g and

‖1−1
h ‖ ≤ consth−1 logh−1. (17.3)

The constant in the estimate depends only onµ. Moreover, ifg is an analytic continuation
of a real-analytic function defined on the intersection ofD(R) with the real axis, the
same is true abouta = 1−1

h g.

Proof. We use the method described in Sect. 9 (Propositions 9.5 and 9.6). Let

D±(R) = {t ∈ C : |=t| ≤ π/2 − Rh, ±<t ≥ −10h}.

It is clear thatD(R) = D+(R) ∩ D−(R). The operators

(1−1
h,+g)(t) =

∞∑
k=0

g(t + kh),
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(1−1
h,−g)(t) =

∞∑
k=1

g(t − kh)

solve the equation1ha = g in Xµ(D±(R)), respectively. We note that

‖1h,±g‖µ = sup
D(R)

∣∣∣∣∣∣coshµ(t)
∞∑

k=0,1

g(t ± kh)

∣∣∣∣∣∣
≤ sup

D(R)
|coshµ(t)|

∞∑
k=0,1

‖g‖µ

|coshµ(t ± kh)|
≤ consth−1‖g‖µ. (17.4)

To reduce the problem inXµ(D(R)) to the already solved ones we define two operators

P± : X0(D(R)) → X0(D±(R))

using the Cauchy type integral (9.10) withχ replaced byχ± (see (9.24)), andx by t/h:

(P±g)(t) =
1

2πi

∫
∂D

χ±(ξh)g(ξ)
ξ − t

dξ.

The estimate (9.20) implies that

‖P±‖ ≤ const logh−1.

Obviously,g(t) = (P+g)(t) + (P−g)(t) for t ∈ D(R). We also define three isomorphisms
I, I+, andI− acting by the same formula

g(t) 7→ coshµ(t)g(t)

from Xµ(D) to X0(D) with D = D(R), D+(R), andD−(R), respectively. Finally, we
set

1−1
h = 1−1

+ I−1
+ P+I + 1−1

− I−1
− P−I. � (17.5)

Lemma 17.2. Givenµ > 0, R > R0, whereR0 is a sufficiently large constant, there
are two solutionsφ1 andφ2 ∈ X1(D(R)) of the homogeneous equation

Lφ ≡ 12
hφ − ε cos(x−(t))φ = 0, (17.6)

such that

W[φ1; φ2] ≡ φ11̄hφ2 − φ21̄hφ1 = 1, (17.7)

and

‖φ1‖1 ≤ const, ‖φ2‖1 ≤ consth−1−µ. (17.8)

The constants in the estimates do not depend onR, but the constant in the second estimate
depends onµ. Moreover,φ1(t, ε) andφ2(t, ε) are real on real values oft.
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Proof. We define the first solution by simple differentiation

φ1(t, ε) =
dx−(t)

dt
.

Its properties follow from Proposition 3.1 (withN = 1) and the explicit formula (2.9)
for the principal term in the approximation ofx−(t). We look forφ2 in the form

φ2(t, ε) = a(t, ε) φ1(t, ε).

Substituting to the normalizing condition we get the following equation:

1ha(t, ε) =
1

φ1(t, ε)φ1(t + h, ε)
.

The norm inXµ′ (D(R)) of the right-hand side is bounded by a constant for anyµ′ ≥ 0
since the functionφ1(t, ε) is separated from zero by a constant inD(R) providedR > R0.
Now we can obtain the functiona(t, ε) applying the operator1−1

h from Lemma 17.1
(and usingµ′ instead ofµ), then

‖φ2‖1 ≤ ‖φ1‖1 ‖a‖0 ≤ consth−µ′‖φ1‖1 ‖a‖µ′

≤ consth−1−µ′
logh−1 ≤ consth−1−2µ′

.

We obtain the desired estimate ifµ′ = µ/2. �

Lemma 17.3. Given µ, ν > 0, and R > R0, there is a linear operatorL−1 :
Xν(D(R)) → Xν(D(R)), such that for eachg ∈ Xν(D(R)) the functiona = L−1g
is a solution of the equationLa = g in D(R), and

‖L−1‖ ≤ consth−4−µ, (17.9)

where the constant depends only onµ, R0 andν.

Proof. Define the operatorL−1 by the formulas

L−1g = −φ11
−1
h (φ2g) + φ21

−1
h (φ1g).

In Sect. 9.5 it was shown that such a formula provides a solution for the equationLa = g.
To estimate the norm we note that∥∥φ11

−1
h (φ2g)

∥∥
ν+2

≤ ‖φ1‖1

∥∥1−1
h (φ2g)

∥∥
ν+1

≤ ‖φ1‖1

∥∥1−1
h

∥∥ ‖φ2‖1 ‖g‖ν ≤ consth−2−µ‖g‖ν .

The similar estimate is valid for the second term. To obtain the final estimate we note
that

‖L−1g‖ν ≤ consth−2‖L−1g‖ν+2

since 1/| cosh(t)| ≤ consth−1 in D(R). �
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17.2. Iterative method.We are looking for the first component of the mapΦ, namely
x(t, E, ε), in the form

x(t, E, ε) = x−(t) + Z(t, E, ε). (17.10)

Since the mapΦ conjugates the standard map with the shift we have the equation

12
hx(t, E, ε) = ε sin(x(t, E, ε)). (17.11)

This equation may be rewritten in the form

LZ = εF(Z), (17.12)

where

(LZ)(t, E, ε) = 12
hZ(t, E, ε) − ε cos(x−(t))Z(t, E, ε), (17.13)

(F(Z))(t, E, ε) = F (x−(t), Z(t, E, ε)), (17.14)

F (x, Z) = sin(x + Z) − sin(x) − cos(x)Z. (17.15)

Applying Lemma 17.3 we obtain that every solution of the equation

Z(t, E, ε) = Eφ2(t, ε) + εL−1(F(Z))(t, E, ε) (17.16)

satisfies also Eq. (17.12). We will prove that the nonlinear operator on the right-hand
side of the last equation has a unique fixed point in a small ball inX1(D(R)) provided
E is sufficiently small.

Lemma 17.4. Givenµ > 0, if h is sufficiently small,Z, Z1, Z2 ∈ X1, ‖Z‖1, ‖Z1‖1,
‖Z2‖1 ≤ hµ, then ∥∥L−1(F(Z))

∥∥
1

≤ consth−7−µ‖Z‖2
1, (17.17)

∥∥L−1(F(Z1) − F (Z2))
∥∥

1
≤ consth−7−µ max{‖Z1‖1, ‖Z2‖1} ‖Z1 − Z2‖1.

(17.18)

Proof. Letz, z1, z2 be complex numbers lying inside the unit disk andt ∈ D(R),R > 1,
then the following estimates hold:

|F (x−(t), z)| ≤ consth−2|z|2, (17.19)

|F (x−(t), z1) − F (x−(t), z2)| ≤ consth−2 max{|z1|, |z2|} |z1 − z2|, (17.20)

since inD(R) we have the estimate

| cosx−(t)| ≤ const/| cosh2(t)| ≤ consth−2.

Using Lemma 17.3 we have∥∥L−1(F(Z))
∥∥

1
≤ consth−4−µ‖F(Z)‖1

≤ consth−6−µ‖Z2‖1 ≤ consth−7−µ‖Z‖2
1.

A similar calculation leads to the second estimate.�
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Proposition 17.5. Givenµ > 0, R > R0, let E ∈ C, |E| ≤ 3h8+3µ. Then there is
a unique solutionZ(t, E, ε) of Eq. (17.16), such thatZ ∈ X1(D(R)), ‖Z‖1 ≤ h8+2µ.
Moreover,Z(t, E, ε) depends analytically onE, it is real provided its arguments are
real, andZ(t, 0, ε) = 0.

Proof. It follows directly from Lemma 17.4 that the nonlinear operator on the right-hand
side of (17.16) leaves invariant the ball inX1(D(R)) centered at zero and with the radius
equal toh8+2µ. The restriction of the operator on the ball is a contraction. That proves the
existence and uniqueness ofZ. The solution can be obtained as a limit of the sequence

Z0 ≡ 0, Zn+1 = φ2E + εL−1(F(Zn)), n ≥ 0.

This sequence converges uniformly with respect toE and allZn are real on real values
of the arguments. Thus the same is true about the limit. IfE = 0 the equation has a
trivial solution, thusZ(t, 0, ε) ≡ 0 due to the uniqueness. �

We need the estimates of the derivatives of the functionsx(t, E, ε) andZ(t, E, ε).

Lemma 17.6. Givenµ > 0, R > R0 + 1, then fort ∈ D(R), E ∈ C, |E| ≤ 2h8+2µ, the
following estimates are valid:∣∣∣∣∂x

∂t

∣∣∣∣ ≤ consth−1,

∣∣∣∣ ∂x

∂E

∣∣∣∣ =

∣∣∣∣∂Z

∂E

∣∣∣∣ ≤ consth−1−µ,∣∣∣∣∂2x

∂t2

∣∣∣∣ ≤ consth−2,

∣∣∣∣ ∂2x

∂t∂E

∣∣∣∣ ≤ consth−2−µ,∣∣∣∣ ∂2x

∂E2

∣∣∣∣ ≤ consth−9−4µ,

∣∣∣∣∂Z

∂t

∣∣∣∣ ≤ consth6+2µ,∣∣∣∣∂εL−1(F(Z))
∂E

∣∣∣∣ ≤ consth2.

Proof. We apply Cauchy type estimates to obtain the desired estimates for the derivatives
from the upper bounds for the functions. Since the domain of validity of the estimates
for functions is slightly wider than the domain in the assumptions of the current lemma,
the differentiation∂

∂t acts on the estimates as a multiplication by consth−1, and ∂
∂E acts

as a multiplication by consth−8−3µ.
We also use the inequality| · | ≤ consth−1 ‖ · ‖1 to bound the module of a function

by its norm inX1(D(R)). It follows from the estimate (17.8) and Proposition 17.5 that

|φ1| ≤ consth−1, |φ2| ≤ consth−2−µ, |Z| ≤ consth7+2µ.

Sincex(t, E, ε) = x−(t) + Z(t, E, ε) andφ1 = ∂x−
∂t , we obtain the desired estimates for

the derivatives ofx andZ using a Cauchy type estimates.
To obtain the last estimate we note that (17.17) implies

|L−1(F(Z))| ≤ consth−8−µ‖Z‖2
1 ≤ consth8+3µ

and we again use a Cauchy type estimate. Finally,

x = x− + Eφ2 + εL−1(F(Z)),

and ∂2x−
∂E2 = ∂2

∂E2

(
εL−1(F(Z))

)
follows directly. The estimate for the second derivative

follows immediately. �
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17.3. Construction of the symplectic mapΦ. Define the map by the formula

Φ̃(t, E) =
(
x(t, E, ε), 1̄hx(t, E, ε)

)
.

This map satisfies all the properties of the mapΦ from the theorem on the analytic integral
except (2), since it may be not symplectic. Indeed, the determinant of the Jacobian of
this map

J =
∂x

∂t

∂1̄hx

∂E
− ∂x

∂E

∂1̄hx

∂t
= W

[
∂x

∂t
;

∂x

∂E

]

is h-periodic in t sinceφ = ∂x
∂t andφ = ∂x

∂E are two solutions of the homogeneous
equation, which may be obtained by simple differentiation of (17.11) with respect tot
or E. To estimate the value ofJ we note that

∂x

∂t
= φ1 +

∂Z

∂t
and

∂x

∂E
= φ2 +

∂εL−1(F(Z))
∂E

.

An application of the estimates of Lemma 17.6 and the equalityW[φ1; φ2] = 1 give us

J = 1 +O(h).

An application of the implicit function theorem provides the existence of the inverse map
and the estimates on the derivatives. To estimate the derivatives of the inverse map we
use the following simple and rather general fact. Letf be a diffeomorphism of a subset
of C

n onto its image andg be its inverse, thenDg = (Df )−1, whereDg = {∂igk} and
Df = {∂ifk}, and for the second derivatives we have∂2

klgi = −∂2
qrfp ∂pgi ∂kgq ∂lgr,

where the summation on the repeated indices is assumed.
To obtain a symplectic map we use the substitutionS : (t, E) 7→ (t, Ẽ), where

Ẽ(t, E, ε) =
∫ E

0
J(t, s, ε) ds.

A similar change was used in [Laz92] in the study of the semistandard map. Obviously,
the Jacobian of the mapS equalsJ . Moreover,S commutes with the translation (t, E) 7→
(t + h, E). Due to the chain rule the map

Φ = Φ̃ ◦ S−1

is symplectic. The other properties of this map are preserved due to the following esti-
mates of the derivatives of the mapS.

Lemma 17.7. GivenR > R0 + 3, µ > 0, then fort ∈ D(R), E ∈ C, |E| ≤ h8+3µ, the
following estimates hold:

∂Ẽ

∂E
= J = 1 +O(h),

∂Ẽ

∂t
= O(h8+3µ), (17.21)

∂2Ẽ

∂t2
= O(h7+3µ),

∂2Ẽ

∂t∂E
= O(1),

∂2Ẽ

∂E2
= O(h−7−3µ). (17.22)

Proof. It follows directly from the definition ofẼ and the equalityJ = 1 + O(hµ) by
Cauchy type estimates. �
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