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Abstract: We address the branching of magnetic domains in a uniaxial ferromagnet. Our
thesis is that branching is required by energy minimization. To show this, we consider the
nonlocal, nonconvex variational problem of micromagnetics. We identify the scaling law
of the minimum energy by proving a rigorous lower bound which matches the already-
known upper bound. We further show that any domain pattern achieving this scaling law
must have average width of orderL2/3, whereL is the length of the magnet in the easy
direction. Finally we argue that branching is required, by considering the constrained
variational problem in which branching is prohibited and the domain structure is invariant
in the easy direction. Its scaling law is different.

1. Introduction

This paper is motivated by the phenomenon of domain branching in strongly uniaxial
ferromagnets. We consider the micromagnetic energy of such a ferromagnet – a cer-
tain nonlocal, nonconvex variational problem. Our results concern the scaling of the
minimum energy, and the geometry of domain structures which achieve this scaling law.

Physically, we consider a uniaxial ferromagnet below its Curie temperature. The
spontaneous magnetization is represented by a unit vector fieldm. The material forms
magnetic domains, wherem varies smoothly, separated by domain walls wherem is
nearly discontinuous. Since the ferromagnet is uniaxial there is a single preferred di-
rection form, the “easy axis”; the plane perpendicular to the easy axis is known as the
basal plane. The magnetic domains in such a material run roughly parallel to the easy
axis, refining their length scale by branching near a boundary parallel to the basal plane.
Figure 1 gives a two-dimensional cartoon of this phenomenon; in truth the branching
is three-dimensional, more like the left half of Fig. 2. Our results indicate that such
branching is required for a domain pattern to approach the minimum energy.

This paper is restricted to uniaxial materials. However, domain branching occurs in
other settings as well – for example in iron, which is cubic, see e.g. [5] and [16]. There
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the conventional explanation involves magnetoelastic coupling. It would be interesting
to examine that explanation from the perspective of this article.

Mathematically, we consider a slightly simplified version of micromagnetics. The
main simplification is that we treat the domain walls as sharp interfaces. This is con-
venient because it permits us to focus on the morphology of domain structure, without
having to resolve simultaneously the internal structure of the walls. See [1, 3, 5], and
[14] for discussions of micromagnetics, and [2] and [4] for additional discussion of
the sharp-interface reduction. A further simplification is the use of periodic boundary
conditions, which lets us define negative Sobolev norms through Fourier series. Neither
simplification is essential to our analysis (see Remarks 1.1 and 4.5).

The spatial domain for our micromagnetic variational problem is

(x, y, z) ∈ � = (−L, L) × Q,

where thex-line is the easy axis. The cross sectionQ is the unit squareQ = (0, 1]×(0, 1],
and we impose periodicity iny andz. A magnetization field must have unit magnitude
on� and must vanish off�; thus the setA of admissible magnetizations is:

A :=

{
m(x, y, z) = (m1, m2, m3)

∣∣∣∣ |m| = 1 for |x| < L,

m = 0 for |x| > L, m is periodic in (y, z)

}
.

The micromagnetic energyE = Ea + Ef + Es is the sum of three contributions:

• The anisotropy energy, which favors magnetizations parallel to thex-axis by penal-
izing (m2, m3):

Ea(m) = α

∫
�

m2
2 + m2

3 dx dy dz.

• The field energy, a nonlocal term which favors divm = 0 in the sense of distributions
(i.e. divm = 0 in � andm1 = 0 atx = ±L):

Ef (m) = β

∫
R×Q

|∇u|2 dx dy dz, whereu is periodic and satisfies∫
R×Q

∇u · ∇ζ dx dy dz =
∫

�

m · ∇ζ dx dy dz for all periodicζ.

Notice that∇u is theL2-projection ofm on the space of periodic gradient fields
(Helmholtz projection).

• The interfacial energy, which prefers fewer domain walls:

Es(m) = ε

∫
�

|∇m| dx dy dz.

We are abusing notation slightly:m is permitted to have discontinuities across surfaces,
i.e. ∇m is a measure, and the interfacial energy is its total variation in�. In other
words, the energy of a domain wall is the surface integral of the jump inm. In practice
m jumps from about (1, 0, 0) to about (−1, 0, 0) across any domain wall, soEs is about
2ε times the total area of the domain walls.
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In summary, the variational problem we consider is

min
m∈A

α

∫
�

m2
2 + m2

3 dx dy dz + ε

∫
�

|∇m| dx dy dz + β

∫
R×Q

|∇u|2 dx dy dz,
(1.1)

where∇u is the Helmholtz projection ofm.

basal plane

Fig. 1.Schematic of a two-dimensional domain pattern achieving the optimal scaling law

Fig. 2. Left. Schematic of the domain patterns actually seen in uniaxial ferromagnets. They branch three-

dimensionally rather than as shown in Fig. 1.Right. A domain pattern withm independent ofx. Regardless

of its complexity, such a pattern has far from minimum energy, by (1.7)

Here is the intuition why low-energy magnetization fields display spatial patterns.
The penalization of (m2, m3) by Ea, taken in conjunction with the constraint|m| = 1,
favors magnetizations of (1, 0, 0) and (−1, 0, 0). On the other hand,Ef favorsm1 = 0
at the basal planesx = ±L. The penalization ofm1 at the basal planes is “soft”, i.e.
the field energy can be made small by havingm1 oscillate with mean value zero; on
the other hand the penalization of (m2, m3) is “hard”, more like the constraint|m| = 1.
Therefore the combined effect ofEa andEf is to forcem to oscillate rapidly in the (y, z)
plane between (1, 0, 0) and (−1, 0, 0). The minimum value ofEa +Ef alone is zero, but
minimizing sequences do not converge strongly and the minimum is not attained. The
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inclusion ofEs penalizes these oscillations and restores existence of minimizers. The
competition betweenEa + Ef andEs should select the length scale of the oscillation,
and the spatial patterns of minimizers. See e.g. [4, 10, 11, 12, 13] for discussions of
pattern formation in closely related settings.

Examining this argument more closely, it is easy to understand why magnetic do-
mains should branch. The incentive to oscillate in the (y, z) plane between (1, 0, 0) and
(−1, 0, 0) comes from the penalization ofm1 near the basal planesx = ±L. Moving
away from these planes, the regularizing effect ofEs is increasingly dominant, leading
to coarser domains in the interior of the sample – hence the domain branching.

Our rigorous results reveal a quantitative agreement between an experimentally ob-
served scaling law and the predictions of micromagnetics. The experiments show that
the typical domain sizèaway from the basal planes scales as

` ∼ L
2
3 (1.2)

when the thickness of the magnetL is sufficiently large [6, 7]. Our analysis considers
the micromagnetic model in the parameter regime when

ε

γL
� 1 (1.3)

and
ε

1
3 L

2
3

γ
1
3

� 1, (1.4)

whereγ = min{α, β} (we will discuss these conditions shortly). One of our results can
be interpreted as follows (see Remark 4.2): in the regime (1.3)–(1.4), the typical domain
size`∗ of any low-energy magnetizationm∗ behaves as

`∗ ∼ ε
1
3 L

2
3

γ
1
3

, (1.5)

in agreement with (1.2).
By a “low-energy magnetization” we mean anym∗ whose energy is within a spec-

ified factor of the absolute minimum energy. We do not require thatm∗ achieve the
absolute minimum, nor even a local minimum. This notion is useful because we know
the minimum energy within a constant factor. In fact, we shall prove that in the parameter
regime (1.3)–(1.4), the minimum energyE0 scales as

E0 ∼ γ
1
3 ε

2
3 L

1
3 (1.6)

(Theorem 2.1).
Our analysis also suggests that for any low-energym∗, the typical domain size must

decrease near the basal planes. What we actually show is this: when the admissible
magnetizationsm(x, y, z) are restricted to be independent ofx ∈ (−L, L), the revised
minimum energyE1 scales differently:

E1 ∼ γ
1
2 ε

1
2 L

1
2 (1.7)

(Theorem 2.2). Notice thatE1 is much larger thanE0, as a consequence of (1.3).
Now a word about the meaning of our parameter restrictions (1.3), (1.4). Condition

(1.3) assures that a branched domain pattern achieves lower energy than an unbranched
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one; put differently, it is the condition that (1.6) be smaller than (1.7). Whenε andγ are
fixed, (1.3) requires thatL be sufficiently large, and indeed branching is only observed
experimentally whenL is large enough. Turning to the other restriction: (1.4) assures
that our (artificial) periodic boundary conditions do not interfere with the branching; put
differently, it is the condition that length scale`∗ defined by (1.5) fits in the period cell
Q. Condition (1.3) is dimensionless but (1.4) is dimensional. IfQ were replaced by a
w × w unit cell, (1.3) would not change but (1.4) would become

ε
1
3 L

2
3

γ
1
3

� w,

cf. Remark 4.3.
We offer some remarks concerning the nature of our analysis. It seems hopeless

to solve the nonconvex variational problem of micromagnetics explicitly. It also seems
difficult to use the Euler–Lagrange equation, which should anyway have many solutions,
most of them unstable. Instead, we focus onestimating the minimum energy. Thus our
main results concern how the minimum energy scales with the parameters of the problem.
The importance of lower bounds with optimal scaling was first noticed in a related but
different setting by Kohn and M¨uller [10, 11, 12].

The upper bounds implicit in the scalings (1.6) and (1.7) are already known. They are
consequences of various constructions (domain patterns) – which, in the case of (1.6),
mimic the observed phenomenon of domain branching, see e.g. [4, 6, 8, 9, 15, 16], and
[17].

The lower bound implicit in (1.6) is one of our main results. It rules out the possibility
that some as-yet-undiscovered domain pattern could achieve a better scaling law. And it
suggests that energy minimizers should resemble the domain patterns used to prove the
upper bounds, since their energies are similar.The lower bound implicit in (1.7) is another
of our main results. It indicates that branching is required to achieve the optimal scaling.
More precisely: whenε � γL, a domain structure which is independent ofx is far
from being a minimizer, regardless of its complexity. The estimate (1.5) concerning the
average domain length scale is a third main result. It results from a sort of “equipartition”
of the energy into two separate parts,Ea + Ef andEs, each scaling the same way, for
any magnetization with nearly minimum energy (Proposition 4.1).

The arguments in this paper make no use of any Euler-Lagrange equation or first
variation. This has the advantage of robustness: our results apply toanymagnetization
m whose energyE(m) scales like the minimal energyE0 in the parametersε, γ, L
– regardless of how it might be reached, and regardless of whether it minimizes the
energy locally or globally. However the use of energy-based arguments also has some
disadvantages. For example, such methods cannot give pointwise conclusions, since
changingm on a set of small measure (and small perimeter) has little effect onE(m).
Thus, we are unable to estimate the length scale of domains in the basal planesx = ±L.

A two-dimensional reduction of our problem was studied by Choksi and Kohn in [4].
That work considered only magnetizationsm(x, y, z) which were independent ofz. It
proved the lower bound (1.6) and a “matching” upper bound, drawing for the latter from
ideas of Hubert [6] and Privorotskii [17]. The three-dimensional lower bound proved
here is more difficult than its two-dimensional reduction, because the class of admissible
patterns is much larger. In fact, observed domain patterns in uniaxial materials such as
cobalt and magnetoplumbite are fully three-dimensional, resembling the left half of
Fig. 2 (see for example [3, 5], or [7]). One might imagine that such three-dimensional
structures achieve a better scaling law. Our analysis shows they do not. This does not
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contradict the experimental observations. The three-dimensional structures may be local
minima, or they may achieve a better value of the constant in front ofγ1/3ε2/3L1/3.

Our approach to the lower bound is quite different from the one in [4], and in our
opinion more natural. The argument of [4] made extensive use of stream functions. Here
we use instead a special interpolation inequality, Lemma 2.3, involving the BV norm,
theL∞ norm, and a certain negative norm. The BV norm controlsEs, while the negative
norm is related toEf . It seems entirely natural that the competition betweenEa + Ef

andEs should be captured by a scale-invariant interpolation inequality.
There is an analogy between the structure of magnetic domains in a uniaxial ferro-

magnet and the structure of normal and superconducting flux domains in the intermediate
state of a type-I superconductor. We shall explain elsewhere how our results apply in
that setting.

Remark 1.1.This paper uses a sharp-interface reduction of micromagnetics. Without
this simplification our energy (1.1) would be replaced by the standard micromagnetic
energy

α

∫
�

m2
2 + m2

3 dx dy dz + δβ

∫
�

|∇m|2 dx dy dz + β

∫
R3

|∇u|2 dx dy dz, (1.8)

see e.g. [4]. Bounds of the type presented here can also be proved for (1.8); the role
of the surface tensionε is played by

√
αβδ. The argument requires some additional

work and will be presented elsewhere. The fact that (1.1) and (1.8) have similar scaling
laws provides additional support for the sharp–interface reduction which links the two
problems.

2. Bounds on the Minimum Energy

Let E0 denote the minimum energy among all admissible magnetizationsm(x, y, z)
andE1 the minimum energy among all admissible magnetizationsm(x, y, z) which are
independent ofx for |x| < L. Let γ := min{α, β}. Our main results are the following
two theorems.

Theorem 2.1. There exist universal constants0 < c0 < C0 < ∞ such that if

ε

γL
< 1 and

ε
1
3 L

2
3

γ
1
3

< 1, (2.1)

then
c0γ

1
3 ε

2
3 L

1
3 ≤ E0 ≤ C0γ

1
3 ε

2
3 L

1
3 .

Theorem 2.2. There exist universal constants0 < c′
0 < C ′

0 < ∞ such if

ε

γL
< 1 and

ε
1
2 L

1
2

γ
1
2

< 1, (2.2)

then
c′

0γ
1
2 ε

1
2 L

1
2 ≤ E1 ≤ C ′

0γ
1
2 ε

1
2 L

1
2 .
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Theorem 2.1 identifies the scaling law of the minimum energy. Theorem 2.2 shows that if
the domain structure is restricted to be independent ofx then the scaling law is different.
We view this as an indication that refinement is required for energy minimization. Notice
that the hypothesis of Theorem 2.2 is slightly less restrictive than that of Theorem 2.1,
since forε/γL < 1, (2.1) implies (2.2).

The proofs of Theorems 2.1 and 2.2 rely on the following interpolation inequalities
for periodic functions onR2 with unit cell Q = (0, 1] × (0, 1]. Roughly speaking, the
first inequality interpolates betweenBV , L∞ andH−1, the second betweenBV , L∞
andH−1/2.

Lemma 2.3. Let f ∈ BV (Q) ∩ L∞(Q). Then there exists a constantc1 such that for
all positive integersN ,

a)
∫

Q

|f |2 dx dy ≤ c1

{
1
N

sup
Q

|f |
∫

Q

|∇f | dx dy +
∑
n∈Z2

min

{
1,

N2

|n|2
}

|fn|2
}

,
(2.3)

and

b)
∫

Q

|f |2 dx dy ≤ c1

{
1
N

sup
Q

|f |
∫

Q

|∇f | dx dy +
∑
n∈Z2

min

{
1,

N

|n|
}

|fn|2
}

,
(2.4)

where forn ∈ Z2, fn denotes thenth Fourier coefficient off .

The role of these inequalities is roughly as follows. Our goal is to show that the total
energy is not too small. If the total surface energy is small, then the surface energy of
a generic cross-section should also be small. The interpolation inequalities will let us
conclude that a negative norm of the cross-sectional domain structure must be large. To
conclude the argument we must bound these negative cross-sectional norms in terms of
the energy. The argument uses a second lemma:

Lemma 2.4. Let λ ∈ R andg ∈ L2(R, R) such thatg(x) = 0 for a.e.x with |x| > L.
Then there exists a constantc2 > 0 such that∫ ∞

−∞

ξ2

ξ2 + λ2
|ĝ(ξ)|2dξ ≥ c2

1 + (λL)2

∫ L

−L

|g(x)|2 dx.

Lemmas 2.3 and 2.4 will be proved in Sect. 3. We now apply them to demonstrate the
theorems.

Proof of Theorem 2.1.We can dispense with the upper bound quickly: it is a consequence
of the two-dimensional constructions presented in [4], following [6] and [17]. The paper
[4] discusses two different domain structures: one works in the limit of high anisotropy,
the other works in the limit of low anisotropy. Each magnetization can be viewed as
a three-dimensional test functionm(x, y, z) which happens to be independent ofz.
Propositions 2.1 and 3.1 of [4] persist to the three-dimensional setting and give the
desired upper boundE0 ≤ C0γ

1/3ε2/3L1/3.
We turn now to the lower bound. It suffices to consider the case whenα andβ are

both replaced withγ := min{α, β}; in effect we shall show that

Ẽ(m) = γ

∫
�

m2
2 + m2

3 dx dy dz + ε

∫
�

|∇m| dx dy dz

+
γ

2

∫
R×Q

|∇u|2 dx dy dz ≥ c0γ
1
3 ε

2
3 L

1
3

(2.5)
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wheneverε, γ, andL satisfy (2.1). (It is more convenient for the following to haveγ/2
instead ofγ as the coefficient of the nonlocal term; of course this is immaterial to our
claim).

We usem̂ to denote both the discrete Fourier series in (y, z) ∈ Q,

m̂(x, n) =
∫

Q

e−2πi(yn1+zn2)m(x, y, z) dy dz,

and the discrete Fourier series in (y, z) ∈ Q combined with the Fourier transform in
x ∈ R,

m̂(ξ, n) =
∫ ∞

−∞
e−2πiξxm(x, n) dx,

wheren ∈ Z2 andξ ∈ R. We make use of the latter to re-express the sum of anisotropy
plus demagnetization energy:

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

= γ
∑

n

∫ ∞

−∞
|m̂2(ξ, n)|2 + |m̂3(ξ, n)|2dξ +

γ

2

∑
n

∫ ∞

−∞

|(ξ, n1, n2) · m̂(ξ, n)|2
ξ2 + |n|2 dξ.

Using

|(ξ, n1, n2) · m̂(ξ, n)|2 ≥ 1
2

|ξm̂1(ξ, n)|2 − |n · (m̂2(ξ, n), m̂3(ξ, n))|2

≥ 1
2
ξ2|m̂1(ξ, n)|2 − |n|2 (|m̂2(ξ, n)|2 + |m̂3(ξ, n)|2) ,

we obtain the following estimate:

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

≥ γ

2

∑
n

∫ ∞

−∞
|m̂2(ξ, n)|2 + |m̂3(ξ, n)|2dξ +

γ

4

∑
n

∫ ∞

−∞

ξ2

ξ2 + |n|2 |m̂1(ξ, n)|2dξ.

From Lemma 2.4 withλ = |n| andg(x) = m̂1(x, n), we infer that

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

≥ γ

2

∫
�

m2
2 + m2

3 dx dy dz + γ
∑

n

c

1 + (|n|L)2

∫ L

−L

|m̂1(x, n)|2 dx.

Here and in the following,c denotes a positive, universal constant which may change
from line to line. Combining the last term on the right hand side with the total variation
in y, z of m1(x), and using Lemma 2.3 a), we obtain
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∫ L

−L

{
ε

∫
Q

|∇m1(x)| dy dz + γ
∑

n

c

1 + (|n|L)2
|m̂1(x, n)|2

}
dx

≥
∫ L

−L

γ
1
3 ε

2
3

L
2
3

{
ε

1
3 L

2
3

γ
1
3

∫
Q

|∇m1(x)| dy dz

+ c
γ

2
3 L

2
3

ε
2
3

∑
n

min

{
1,

1
(|n|L)2

}
|m̂1(x, n)|2

}
dx (2.6)

≥
∫ L

−L

γ
1
3 ε

2
3

L
2
3

{
ε

1
3 L

2
3

γ
1
3

∫
Q

|∇m1(x)| dy dz

+ c
∑

n

min

{
1,

γ
2
3

ε
2
3 L

4
3

1
|n|2

}
|m̂1(x, n)|2

}
dx (2.7)

≥
∫ L

−L

{
cγ

1
3 ε

2
3

L
2
3

∫
Q

m2
1 dy dz

}
dx. (2.8)

From (2.6) to (2.7) , we usedL > ε/γ, the first part of our hypothesis (2.1). We passed
from (2.7) to line (2.8) by applying Lemma 2.3, with the choiceN ∼ γ

1
3 ε− 1

3 L− 2
3 , which

is possible because of the second part of our hypothesis (2.1). Collecting our results, we
see that

Ẽ(m) ≥ cγ
1
3 ε

2
3

L
2
3

∫
�

m2
1 dx dy dz +

γ

2

∫
�

m2
2 + m2

3 dx dy dz,

using the fact that
∫

Q
|∇m1| dy dz ≤ ∫

Q
|∇m| dy dz. We may suppose thatc < 1

2, so
that our hypothesesε/γL < 1 implies

γ

2
>

cγ
1
3 ε

2
3

L
2
3

,

so that

Ẽ(m) ≥ cγ
1
3 ε

2
3

L
2
3

∫
�

m2
1 + m2

2 + m2
3 dx dy dz = cγ

1
3 ε

2
3 L

1
3 . �

Proof of Theorem 2.2.The upper bound follows directly from the classical structures of
Kittel and Landau-Lifshitz, see [4] for details. For the lower bound, we proceed as for
Theorem 2.1. We assume throughout thatm = m(y, z) is independent ofx for |x| < L
(and vanishes for|x| > L).

From the proof of Theorem 2.1, we have for the sum of anisotropy and demagneti-
zation energy

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

≥ γ

2

∑
n

∫ ∞

−∞
|m̂2(ξ, n)|2 + |m̂3(ξ, n)|2dξ +

γ

4

∑
n

∫ ∞

−∞

ξ2

ξ2 + |n|2 |m̂1(ξ, n)|2dξ.

But this time,
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m̂1(ξ, n) =
sin(2πξL)

πξ
m̂1(n),

wherem̂1(n) denotes the Fourier series of the restriction ofm1 to |x| < L, viewed as a
function of the two variables (y, z). Hence

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

≥ γ

2

∑
n

∫ ∞

−∞
|m̂2(ξ, n)|2 + |m̂3(ξ, n)|2dξ +

γ

4π2

∑
n

∫ ∞

−∞

sin(2πξL)2

ξ2 + |n|2 dξ|m̂1(n)|2.

The role of Lemma 2.4 is now played by the following estimate:

1
π2

∫ ∞

−∞

sin2(2πξL)
ξ2 + |n|2 dξ =

L

π2

∫ ∞

−∞

sin2(2πξ)
ξ2 + |Ln|2 dξ ≥ cL min

{
1,

1
L|n|

}
.

We obtain

γ

∫
�

m2
2 + m2

3 dx dy dz +
γ

2

∫
R×Q

|∇u|2 dx dy dz

≥ γL

∫
Q

m2
2 + m2

3 dy dz + cγL
∑

n

min

{
1,

1
L|n|

}
|m̂1(n)|2.

As before, we combine the last term on the right-hand side with them1-part of the
surface energy and use Lemma 2.3, but now part (b):

L

{
ε

∫
Q

|∇m1(x)| dy dz + cγ
∑

n

min

{
1,

1
L|n|

}
|m̂1(n)|2

}

≥ γ
1
2 ε

1
2 L

1
2

{
ε

1
2 L

1
2

γ
1
2

∫
Q

|∇m1| dy dz +
cγ

1
2 L

1
2

ε
1
2

∑
n

min

{
1,

1
L|n|

}
|m̂1(n)|2

}
(2.9)

≥ γ
1
2 ε

1
2 L

1
2

{
ε

1
2 L

1
2

γ
1
2

∫
Q

|∇m1| dy dz + c
∑

n

min

{
1,

γ
1
2

ε
1
2 L

1
2

1
|n|

}
|m̂1(n)|2

}
(2.10)

≥ cγ
1
2 ε

1
2 L

1
2

∫
Q

m2
1 dy dz. (2.11)

From (2.9) to (2.10), we used the first part of our hypothesis (2.2),L > ε/γ. We passed
from (2.10) to (2.11) by applying Lemma 2.3, with the choiceN ∼ γ

1
2 ε− 1

2 L− 1
2 , which

is possible because of the second part of our hypothesis (2.2). Collecting terms, we see
that

Ẽ(m) ≥ cγ
1
2 ε

1
2 L

1
2

∫
Q

m2
1 dy dz + γL

∫
Q

m2
2 + m2

3 dy dz.

From this point on the argument is identical to that of Theorem 2.1.�
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3. Proofs of the Lemmas

This section gives elementary and self-contained proofs of the crucial inequalities stated
as Lemmas 2.3 and 2.4.

Lemma 2.3 interpolates, loosely speaking, between the BV norm
∫ |∇u|, theL∞

norm, and the negative Sobolev norms‖u‖H−1 or ‖u‖H−1/2. It is natural to think there
should be an alternative, more functional analytic argument using interpolation theory.
We do not give such an argument, but we describe in Remark 3.1 how interpolation
theory leads to closely related results.

Proof of Lemma 2.3.Fix an integerN > 0. We shall construct a linear operatorTN :
L2(Q) → L2(Q) satisfying∫

Q

|f − TNf |2 dx dy ≤ C1
1
N

sup
Q

|f |
∫

Q

|∇f | dx dy, (3.1)∫
Q

|TNf |2 ≤ C2

∑
n∈Z2

min

{
1,

N2

|n|2
}

|fn|2, (3.2)

and ∫
Q

|TNf |2 ≤ C2

∑
n∈Z2

min

{
1,

N

|n|
}

|fn|2 (3.3)

for constantsC1, C2 independent ofN . To this end, fixη ∈ C∞
0 (Q) such that

∫
Q

η = 1.
The constantsCi will depend only on the choice ofη. We define a partition ofQ into
N2 subsquaresQm wherem ∈ {0, . . . , N − 1}2, namely

Qm :=
1
N

(m + Q).

Next we defineηm with support inQm by

1
N2

ηm

(
1
N

(m + x)

)
= η(x).

Finally we define the operatorTN by

TNf :=
∫

Qm

fηmdx on each squareQm.

To prove (3.1), it suffices to prove the inequality∫
Qm

∣∣∣∣f −
∫

Q

fηm dx dy

∣∣∣∣2 dx dy ≤ C1
1
N

sup
Qm

|f |
∫

Qm

|∇f | dx dy,

for all m and then sum over the squaresQm. The above inequality is simply a rescaled
version of ∫

Q

∣∣∣∣f −
∫

Q

fη dx dy

∣∣∣∣2 dx dy ≤ C1 sup
Q

|f |
∫

Q

|∇f | dx dy.

This estimate follows from the Poincar´e-type inequality∫
Q

∣∣∣∣f −
∫

Q

fη dx dy

∣∣∣∣ dx dy ≤ C

∫
Q

|∇f | dx dy. (3.4)
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Proving (3.4) is equivalent to proving

∫
Q

|f | dx dy ≤ C

∫
Q

|∇f | dx dy for all f ∈ L2(Q) s.t.
∫

Q

fη = 0,

which easily follows from the compactness of the embedding ofBV into L1.

We now prove (3.2) and (3.3). These inequalities follow respectively from

∑
n∈Z2

max

{
1,

|n|2
N2

}
|(T ∗

Nf )n|2 ≤ C

∫
Q

|f |2, (3.5)

and ∑
n∈Z2

max

{
1,

|n|
N

}
|(T ∗

Nf )n|2 ≤ C

∫
Q

|f |2, (3.6)

whereT ∗
N denotes the adjoint ofTN , which is easily seen to be

T ∗
Nf =

∑
m

(∫
Qm

fdx
)

ηm.

To see that (3.5) implies (3.2), we argue as follows (where the bar denotes complex
conjugation):

(∑
n∈Z2

min

{
1,

N2

|n|2
}

|fn|2
)1/2

= sup
{φn}∈l2

∑
n∈Z2 min

{
1, N

|n|
}

fnφn(∑
n∈Z2 |φn|2

)1/2

≥ sup
ζ∈L2(Q)

∑
n∈Z2 fn(T ∗

Nζ)n(∑
n∈Z2 max

{
1, |n|2

N2

}
|(T ∗

Nζ)n|2
)1/2

(3.5)
≥ C sup

ζ∈L2(Q)

∫
Q

(TNf )ζ(∫
Q

|ζ|2
)1/2

= C

(∫
Q

|TNf |2
)1/2

.

The argument that (3.6) implies (3.3) is similar.
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It remains to prove (3.5) and (3.6). Concerning the former, we have∑
n∈Z2

max

{
1,

|n|2
N2

}
|(T ∗

Nf )n|2 ≤
∑
n∈Z2

|n|2
N2

|(T ∗
Nf )n|2 +

∑
n∈Z2

|(T ∗
Nf )n|2 (3.7)

=
1

4π2N2

∫
Q

|∇(T ∗
Nf )|2dx +

∫
Q

|T ∗
Nf |2dx

=
∑

m

(∫
Qm

f

)2 ∫
Qm

(
1

4π2N2
|∇ηm|2 + η2

m

)
dx

=
∑

m

(∫
Qm

f

)2

N2
∫

Q

(
1

4π2
|∇η|2 + η2

)
dx

≤ C

∫
Q

(
1

4π2
|∇η|2 + η2

)
dx ·

∫
Q

|f |2dx.

Turning to (3.6), we have∑
n∈Z2

max

{
1,

|n|
N

}
|(T ∗

Nf )n|2 ≤
∑

|n|>N

|n|2
N2

|(T ∗
Nf )n|2 +

∑
|n|≤N

|(T ∗
Nf )n|2

≤
∑
n∈Z2

|n|2
N2

|(T ∗
Nf )n|2 +

∑
n∈Z2

|(T ∗
Nf )n|2,

so it suffices to follow (3.7). �

Remark 3.1.We are grateful to Luc Tartar for showing us how inequalities similar to
(2.3) and (2.4) arise as special cases of general interpolation theorems. We discuss only
the simplest case, involving functions on allRn, drawing from Sects. 2.3–2.5 of [18].
The Besov spacesBs

p,q can be defined by interpolation of Sobolev spaces:

Bs
p,q =

(
W s0

p , W s1
p

)
θ,q

,

wheres0 6= s1, 0 < θ < 1, ands = θs0 + (1− θ)s1. To interpret the right hand side, we
note that whens is a nonnegative integer,W s

p is the space of functions on allRn whose
derivatives of order up tos are inLp. TheL2-based spacesHs arise as special cases:

Hs = Bs
2,2.

In particular,

H1/2 = B
1/2
2,2 =

(
W 0

2 , W 1
2

)
1/2,2

=
(
L2, H1

)
1/2,2

,

whereas
B

1/2
2,∞ =

(
W 0

2 , W 1
2

)
1/2,∞ =

(
L2, H1

)
1/2,∞

is a little smaller thanH1/2. (See (3.11) for the dependence ofB
1/2
2,q on q.)

The Besov spaces satisfy the general interpolation relation(
Bs0

p,q0
, Bs1

p,q1

)
θ,q

= Bs
p,q
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with s = θs0 + (1− θ)s1, for any−∞ < s0 6= s1 < ∞, 1 < p < ∞, 1 ≤ q0, q1, q ≤ ∞,
and 0< θ < 1. This implies

‖f‖Bs
p,q

≤ C‖f‖θ
B

s0
p,q0

‖f‖1−θ
B

s1
p,q1

.

We obtain

‖f‖L2 ≤ C‖f‖1/3
H−1‖f‖2/3

B
1/2
2,∞

and
‖f‖L2 ≤ C‖f‖1/2

H−1/2‖f‖1/2

B
1/2
2,∞

as special cases.
The link with (2.3)–(2.4) lies in the relation

‖f‖
B

1/2
2,∞

≤ C

{
‖f‖L2 + ‖f‖1/2

L∞

(∫
|∇f |dx

)1/2
}

. (3.8)

Combined with the interpolation inequalities it gives

‖f‖L2 ≤ C‖f‖1/3
H−1

{
‖f‖2/3

L2 + ‖f‖1/3
L∞

(∫
|∇f |dx

)1/3
}

(3.9)

and

‖f‖L2 ≤ C‖f‖1/2
H−1/2

{
‖f‖1/2

L2 + ‖f‖1/4
L∞

(∫
|∇f |dx

)1/4
}

. (3.10)

The analogy should now be clear: (2.3) and (2.4) interpolate additively between theL∞,
BV, andH−1 orH−1/2 norms (for periodic functions), while (3.9) and (3.10) interpolate
multiplicatively between the same norms (for functions onRn).

It remains to justify (3.8). We start from the fact that theB
1/2
2,q norm is equivalent to

‖f‖L2 +

(∫
|h|<1

|h|−q/2‖1hf‖q
L2dh

)1/q

, (3.11)

with the notation1hf (x) = f (x + h) − f (x). Thus the norm onB1/2
2,∞ is equivalent to

‖f‖L2 + sup
0<|h|<1

|h|−1/2‖1hf‖L2. (3.12)

One easily verifies that

‖1hf‖L1 =
∫

|f (x + h) − f (x)|dx ≤ C|h|
∫

|∇f |dx

for anyh, using the fundamental theorem of calculus. We also have

‖1hf‖L∞ = sup
x

|f (x + h) − f (x)| ≤ 2‖f‖L∞ .

Interpolating between these two results gives

‖1hf‖L2 ≤ C|h|1/2‖f‖1/2
L∞

(∫
|∇f |dx

)1/2

,

which when combined with (3.12) gives (3.8).
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We turn now to the second basic lemma.

Proof of Lemma 2.4.By rescaling, it suffices to prove that forg with support in [−1, 1],
we have ∫ ∞

−∞

ξ2

ξ2 + λ2
|ĝ(ξ)|2dξ ≥ c2

1 +λ2

∫ 1

−1
|g(x)|2 dx. (3.13)

To this end, we note that by Holder’s inequality

|ĝ(ξ)|2 ≤ 2
∫ 1

−1
|g(x)|2 dx. (3.14)

Working on the left hand side of (3.13), we have∫ ∞

−∞

ξ2

ξ2 + λ2
|ĝ(ξ)|2dξ ≥

∫
|ξ|>1/8

ξ2

ξ2 + λ2
|ĝ(ξ)|2dξ

≥ 1
1 + (8λ)2

(∫ ∞

−∞
|ĝ(ξ)|2dξ −

∫
|ξ|<1/8

|ĝ(ξ)|2dξ

)
, (3.15)

using the fact that when|ξ| > 1/8, ξ2

ξ2+λ2 ≥ 1
1+(8λ)2 . Now by (3.14), we have

∫
|ξ|<1/8

|ĝ(ξ)|2dξ ≤ 1
2

∫ 1

−1
|g(x)|2 dx,

and hence (3.13) follows from (3.15) and Plancherel’s theorem.�

4. Refinements and Remarks

Theorem 2.1 says that the energy of any admissible magnetizationm is at leastc0γ
1
3 ε

2
3 L

1
3 .

This bound arises through a competition between the field energy (which prefersm·n = 0
atx = ±L), the anisotropy energy (which prefersm = (±1, 0, 0)), and the surface energy
(which prefers fewer domain walls). It is natural to guess that the burden of energy
minimization must be shared by these three terms. However, there is a possibility of
trade-off between field energy and anisotropy, since the optimal scaling can be reached
with field energy identically zero or with anisotropy energy identically zero [4]. So the
true competition is between field+anisotropy energy and surface energy. The following
results confirm this intuition, by showing that our lower bound holds separately for each
term.

Proposition 4.1. For anyG > 0, consider admissible magnetization fieldsm satisfying

E(m) ≤ Gγ
1
3 ε

2
3 L

1
3 . (4.1)

Let c0 denote the constant in the lower bound of Theorem 2.1. There exists a universal
constantµ > 0 such that the following statements are true:
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a) If

ε

γL
< 1 and

ε
1
3 L

2
3

γ
1
3

< 1, (4.2)

then

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
≥ µc0

(c0

G

)2
γ

1
3 ε

2
3 L

1
3 .

b) If

ε

γL
< µ

(c0

G

) 3
2

and
ε

1
3 L

2
3

γ
1
3

< µ
(c0

G

) 1
2
, (4.3)

then

ε

∫
�

|∇m| dx dy dz ≥ µc0

(c0

G

) 1
2
γ

1
3 ε

2
3 L

1
3 .

Remark 4.2.Observe that

`−1 :=
1
L

∫
�

|∇m| dx dy dz (4.4)

can be interpreted as the inverse of the average size of the magnetic domains. The upper
bound in Theorem 2.1 and the lower bound in Proposition 4.1 b) show the existence of
universal constants 0< c3 < C3 < ∞ such that thè∗ corresponding to the minimizer
m∗ of E satisfies

c3
ε

1
3 L

2
3

γ
1
3

≤ `∗ ≤ C3
ε

1
3 L

2
3

γ
1
3

, (4.5)

provided that

ε

γL
< c3 and

ε
1
3 L

2
3

γ
1
3

< c3.

Moreover, this conclusion is not restricted to the minimizer: for any magnetizationm
achieving the optimal scaling law, the associated` satisfies an estimate of the form (4.5).

Remark 4.3.The attentive reader may be disturbed by the apparent disregard for dimen-
sions in (4.3). Indeed, in the first inequality of (4.3)µ appears to be dimensionless while
in the second it appears to have dimensions of length. This arises because two of the
physical dimensions of� were set equal to 1 from the start, and hence certain units of
length have become invisible. If they andz sides of� had lengthw, then the second
assumption of (4.2) would become

ε
1
3 L

2
3

γ
1
3

< w,

and the second inequality in (4.3) would become

ε
1
3 L

2
3

γ
1
3

< wµ
(c0

G

) 1
2
.
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The conclusion of Theorem 2.1 becomesE0 ∼ w2γ
1
3 ε

2
3 L

1
3 , and that of Theorem 2.2

becomesE1 ∼ w2γ
1
2 ε

1
2 L

1
2 ; these expressions now truly have the dimensions of energy.

The definition of` must change, of course, tò−1 = 1
w2L

∫
�

|∇m| dx dy dz. Thus the
estimate for̀ , (4.5), remains unaltered.

Proof of Proposition 4.1.We start with a). By assumption (4.1) we have

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
+ ε

∫
�

|∇m| dx dy dz

≤ Gγ
1
3 ε

2
3 L

1
3 .

(4.6)

On the other hand, we have for anyR > 1 according to Theorem 2.1 (more precisely,
according to Eq. (2.5))

Rγ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
+ ε

∫
�

|∇m| dx dy dz

≥ c0(Rγ)
1
3 ε

2
3 L

1
3 ,

(4.7)

since (4.2) ensures that
ε

(Rγ)L
< 1 and

ε
1
3 L

2
3

(Rγ)
1
3

< 1.

We subtract (4.6) from (4.7) and divide byR − 1 to get

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
≥ c0R

1
3 − G

R − 1
γ

1
3 ε

2
3 L

1
3 .

A non-optimal but convenient choice ofR is

R =

(
2
G

c0

)3

,

which leads to

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
≥ 2−3c0

(c0

G

)2
γ

1
3 ε

2
3 L

1
3 .

Now we tackle b). By assumption (4.1) we have

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
+ ε

∫
�

|∇m| dx dy dz

≤ Gγ
1
3 ε

2
3 L

1
3 .

(4.8)

On the other hand, we have for anyR > 1 according to Theorem 2.1 (more precisely
(2.5))

γ

(∫
�

m2
2 + m2

3 dx dy dz +
∫

R×Q

|∇u|2 dx dy dz

)
+ Rε

∫
�

|∇m| dx dy dz

≥ c0γ
1
3 (Rε)

2
3 L

1
3 ,

(4.9)

provided that
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Rε

γL
< 1 and

(Rε)
1
3 L

2
3

γ
1
3

< 1.

As before, we subtract (4.8) from (4.9) and divide byR − 1 to get

ε

∫
�

|∇m| dx dy dz ≥ c0R
2
3 − G

R − 1
γ

1
3 ε

2
3 L

1
3 .

A non-optimal but convenient choice ofR is

R =

(
2
G

c0

) 3
2

.

Then we obtain

ε

∫
�

|∇m| dx dy dz ≥ 2− 3
2 c0

(c0

G

) 1
2
γ

1
3 ε

2
3 L

1
3

under the condition that

ε

γL
< 2− 3

2

(c0

G

) 3
2

and
ε

1
3 L

2
3

γ
1
3

< 2− 1
2

(c0

G

) 1
2
. �

Remark 4.4.Proposition 4.1 refines Theorem 2.1. Analogous refinements of Theo-
rem 2.2 are also valid, using essentially the same arguments.

Remark 4.5.As mentioned in the Introduction, our method is not restricted to the case
whenm is periodic iny andz. The same method can be used in the more physical
setting whenm vanishes outside�. Of course the field energy is then

∫
R3 |∇u|2 rather

than
∫

R×Q
|∇u|2. The obvious analogues of Theorems 2.1, 2.2 and Proposition 4.1

remain valid; the proofs are obtained, in essence, by replacing the discrete Fourier series
in y, z with the continuous Fourier transform. For example, in proving the analogue of
Theorem 2.1 one uses the following analogue of our first interpolation inequality (2.3):
if f ∈ BV (R2) ∩ L∞(R2) with f = 0 outsideQ, then

∫
Q

|f |2 dx dy ≤ c1

{
1
N

sup
Q

|f |
∫

Q

|∇f | dx dy +
∫

R2

min

{
1,

N2

|ξ|2
}

|f̂ (ξ)|2dξ

}

for a suitable constantc1. The proof is very similar to that of (2.3).
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