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Abstract: The purpose of this paper is to establish an explicit correspondence between
various geometric structures on a vector bundle with some well-known algebraic struc-
tures such as Gerstenhaber algebras and BV-algebras. Some applications are discussed.
In particular, we find an explicit connection between the Koszul-Brylinski operator
and the modular class of a Poisson manifold. As a consequence, we prove that Poisson
homology is isomorphic to Poisson cohomology for unimodular Poisson structures.

1. Introduction

BV-algebras arise from the BRST theory of topological field theory [30]. Recently, there
has been a great deal of interest in these algebras in connection with various subjects
such as operads and string theory [7, 8, 11, 18, 22, 25, 26, 31].

Let us first recall various relevant definitions, following the terminology of [14].

A Gerstenhaber algebreonsists of atriplefl = @;czA%, A, [+, ]) suchthat@, A)is
a graded commutative associative algebra, ahg @;czA?, [-, ]), with A® = 4™,
is a graded Lie algebra, and,[], for eacha € A® is a derivation with respect ta
with degreei.

An operatorD of degree—1 is said to generate the Gerstenhaber algebra bracket if
for everya € Al*l andb € A,

[a,b] = (=1)*/(D(a A b) — Da A b — (=1)%la A Db). (1)

A Gerstenhaber algebra is said todectif there is an operatobD of square zero
generating the bracket. In this cade,is called agenerating operatorAn exact Ger-
stenhaber algebra is also calleBatalin—Vilkovisky algebrgor BV-algebrain short).

* Research partially supported by NSF grants DMS95-04913 and DMS97-04391.



546 P. Xu

A differential Gerstenhaber algebia a Gerstenhaber algebra equipped with a dif-
ferentiald, which is a derivation of degree 1 with respectt@ndd? = 0. Itis called a
strong differential Gerstenhaber algebifain addition, d is a derivation of the graded
Lie bracket.

Kosmann-Schwarzbach noted [13] that these algebra structures had also appeared
in Koszul's work [17] in 1985 in his study of Poisson manifolds. In fact they are con-
nected with a certain differential structure on vector bundles, calle@dlgebroidsby
Pradines [23]. Let us recall for the benefit of the reader the definition of a Lie alge-
broid [23, 24].

Definition 1.1. A Lie algebroid is a vector bundlé over M together with a Lie algebra
structure on the spacE(A) of smooth sections of, and a bundle map : A — TP
(called the anchor), extended to a map between sections of these bundles, such that

() a(X,Y]) = [a(X), a(Y)]; and
(i) [X,fY]= fIX, Y]+ (a(X)[)Y

for any smooth section¥ andY of A and any smooth functiofion M.

Among many examples of Lie algebroids are the usual Lie algebras, the tangent
bundle of a manifold, and an integrable distribution over a manifold (see [20]). In recent
years, Lie algebroids have become increasingly interesting in Poisson geometry. One
main reason for this is given by the following example. [2be a Poisson manifold
with Poisson tensotr. ThenT™ P carries a natural Lie algebroid structure, called the
cotangent Lie algebroid of the Poisson manifBIft]. The anchor map” : T*P — TP
is defined by

w L TP — TP 7€) =n(E,n), VéneT;P 2
and the Lie bracket of 1-forms andg is given by

[a, 8] = Ly#)B — Laxgya — dm(a, B). 3

In [13], Kosmann—Schwarzbach constructed various examples of strong differential
Gerstenhaber algebras and BV-algebras in connection with Lie algebroids. Motivated
by her work, in this paper we will study the relation between these algebra structures
and some of the well-known geometric structures in Poisson geometry. More precisely,
we will investigate the following question. Let be a vector bundle of rank over the
baseM, and letA = ©o<i<,I'(A* A) be its corresponding exterior algebra. Itis graded
commutative. The question is:

What additional structure orl will make A into a Gerstenhaber algebra, a
strong differential Gerstenhaber algebra, or an exact Gerstenhaber algebra (or a
BV-algebra)?

The answer is surprisingly simple. Gerstenhaber algebras and strong differential
Gerstenhaber algebras correspond exactly to the structures of Lie algebroids and Lie
bialgebroids (see Sect. 2 for the definition), respectively, as already indicated in [13]. And
an exact Gerstenhaber algebra structure corresponds to a Lie algatiogjdther with
a flat A-connection on its canonical line bundié A. This fact was already implicitly
contained in Koszul's work [17] although he only treated the case of multivector fields.
However, the formulas (9) and (14) below establishing the explicit correspondence seem
to be new. Below is a table of the correspondence.
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Structures on algebrd Structures on the vector bundie
Gerstenhaber algebras  «»  Lie algebroids

Strong differential Ger- «++ Lie bialgebroids

stenhaber algebras

Exact Gerstenhaber alge-<+ Lie algebroids with a flatd-connection on
bras (BV-algebras) A" A

The contentabove occupies Sects. 2 and 3. Sect. 4is devoted to applications. In partic-
ular, we find an explicit connection between the Koszul-Brylinski operator on a Poisson
manifold with its modular class. As a consequence, we prove that Poisson homology is
isomorphic to Poisson cohomology for unimodular Poisson structures (see [3, 28] for
the definition).

As another application, we define Lie algebroid homology as the homology group
of the complex:D : TI'(A*4) — T'(A*~1A) for a generating operatad. Since a
generating operator depends on the choice of a4tabnnection on the line bundle
A™A, in general this homology depends on the choice of such a conn&ttitihen two
connections are homotopic (see Sect. 4 for the precise definition), their corresponding
homology groups are isomorphic. So a given Lie algebroid has homologies which are
in fact parameterized by the first Lie algebroid conomoldf{ A4, R). WhenA is a Lie
algebra andv is the trivial connection, this reduces to the usual Lie algebra homology
with trivial coefficients. On the other hand, Poisson homology can also be considered
as a special case of Lie algebroid homology, whéres taken as the cotangent Lie
algebroid of a Poisson manifold.

We note that in a recent paper [5], Evens, Lu and Weinstein have also established
a connection between Poisson homology and the modular class of Poisson manifolds.
Some results in the paper have recently been generalized by Huebschmann to the alge-
braic context of Lie-Rinehart algebras [9, 10].

2. Gerstenhaber Algebras and Differential Gerstenhaber Algebras

Inthis section, we will treat Gerstenhaber algebras and differential Gerstenhaber algebras
arising from a vector bundle.

Again, let A be a vector bundle of rank over M, and letA = Go<p<,[(AFA).
The following proposition establishes a one-one correspondence between Gerstenhaber
algebra structures ad and Lie algebroid structures on the underlying vector burdle

Proposition 2.1. A is a Gerstenhaber algebra iff is a Lie algebroid.

This is a well-known result (see [6, 16, 21]). For completeness, we sketch a proof
below.

Proof. Suppose that there is a graded Lie brackel {hat makesA into a Gerstenhaber
algebra. It is clear thatl{(A),[-,]) is a Lie algebra. Second, for any € I'(A) and
f,g € C*°(M), it follows from the derivation property that

[X, fg] = [X, flg + f[X, g].
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Hence, [X, -] defines a vector field oA/, which will be denoted by:(X). It is easy to
see that: is in fact induced by a bundle map frorhto 7'P. By applying the graded
Jacobi identity, we find that

a([X,Y]) = [a(X), a(Y)].
Finally, again from the derivation property, it follows that
[X, fY] = (a(X)N)Y + f[X,Y].

This shows that is indeed a Lie algebroid.
Conversely, given a Lie algebroid, it is easy to check thatl = ©o<j<,[(AFA)
forms a Gerstenhaber algebra (see [13, 21])[1

The following lemma gives another characterization of a Lie algebroid, which should
be of interest itself. Recall thatdifferential graded algebras a graded commutative
associative algebra equipped with a differenfialvhich is a derivation of degree 1 and
of square zero.

Lemma 2.2 ([16, 12]).Given a vector bundled over M, A is a Lie algebroid iff
@D (AF A*) is a differential graded algebra.

Proof. Given a Lie algebroidi, it is known that®, I'(A¥ A*) admits a differentiad that
makes it into a differential graded algebra [16]. Hete,[((A* A*) — T'(A**1A4%) is
simply the differential defining the Lie algebroid cohomology ([20, 21, 29]):

k+1

do(Xa, .., Xpa) = (=1 a(Xi) @ (X1, .7, Xpea)
=1
Y DY X)X, 0 X),  (4)
i <J

forw e T(A*A*), X; €TA, 1<i<k+1.

Conversely, ifd, [(A* A*) is a differential graded algebra with differentiglthen
the equations:

a(X)f =<df,X >, and (5)
<[X,Y],0 >=a(X)(0 - Y) — a(Y)(O - X) — (dO)(X,Y) (6)

Vf e C®M),X,Y € T(A), andd € I'(A*), define a Lie algebroid structure oh
O

Remark. The lemmaabove is essentially Proposition 6.1 of [16]. Equation (6) is Formula
(6.6) in [16].

Recallthat die bialgebroid[13, 21] is a dual paird, A*) of vector bundles equipped
with Lie algebroid structures such that the differenfiglinduced from the Lie algebroid
structure ond* as defined by Eq. (4), is a derivation of the Lie brackel'¢A), i.e.,

d X, Y] =[d X, Y] +[X,d.Y], VX,Y € T'(4). )
The following result is due to Kosmann—Schwarzbach [13].

Proposition 2.3. A is a strong differential Gerstenhaber algebra (ifi, A*) is a Lie
bialgebroid.
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Proof. Assume thatA is a strong differential Gerstenhaber algebra. Thenis a Lie
algebroid according to Lemma 2.2. Moreover, the derivation property of the differen-
tial with respect to the Lie bracket di(A) implies that A*, A) is a Lie bialgebroid.
This is equivalent to that4, A*) is a Lie bialgebroid by duality [21]. Conversely, it is
straightforward to see, for a given Lie bialgebroi (4*), that A is a strong differential
Gerstenhaber algebra (see [13]). O

Example 2.4.Let P be a Poisson manifold with Poisson tensorLet A = T'P with

the standard Lie algebroid structure. It is well known that the space of multivector fields
A = @, T(A*TP) has a Gerstenhaber algebra structure, where the graded Lie bracket
is called the Schouten bracket.

In 1977, Lichnerowicz introduced a differentidl = [r,] : T(A*TP) —
(AT P), which he used to define the Poisson cohomology [19]. It is obvious that
A becomes a strong differential Gerstenhaber algebra, so it corresponds to a Lie bial-
gebroid structure oni(P, T™* P) according to Proposition 2.3. It is not surprising that
this Lie bialgebroid is just the standard Lie bialgebroid associated to a Poisson man-
ifold [21], where the Lie algebroid structure @rf P is defined as in the introduction
(see Egs. (2) and (3)). It is, however, quite amazing that the Lie algebroid structure on
T* P was not known until the middle of 1980’s (see [15] for the references) and the
Lie bialgebroid structure comes much later! For the Lie algebftié’, the associated
differential oneeI'(A*T P) is the Lichnerowicz differentiad = [, -]. This property was
proved, independently by Bhaskara and Viswanath [1], and Kosmann-Schwarzbach and
Magri [16].

3. Exact Gerstenhaber Algebras

Inthis section, we will move to exact Gerstenhaber algebras arising from a vector bundle.
Let A — M be a Lie algebroid with ancharand £ — M a vector bundle ovek/.
By an A-connection orF, we mean ariR-linear map:
IN'A) @ T(E) — T'(E),
X®s— Vyxs,

satisfying the axioms resembling those of the usual linear connectionsy f.es
C>®(M), X € T'(A),s € T(E),

fos = fVXs;

Vx(fs) = (@(X)f)s+ fVxs.
Similarly, the curvatureR of an A-connectionV is the element iT(A?A*) ® End(E)
defined by

R(X,Y)=VxVy —VyVx — Vix,y, VX, Y € '(A). (8)

Given a Lie algebroidi of rankn and anA-connectionV on the line bundle\" 4,
we define a differential operatdd : I'(A¥A) — T'(AF~1A) as follows. LetU be
any section inC(A* A) and write, locally,U = w _I A, wherew € T'(A"*A*) and
A € T(A™A). Set, for eacn € M,

DUl = ~(~1)¥(dw J A+~ (a; Aw) IV, A), 9)
i=1
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whereX,,--- , X,, is a basis ofd|,, anday, - - - , , its dual basis ind*|,,. Clearly,
this definition is independent of the choice of the basis.

Remark.We would like to make a remark on the notation. lletoe a vector bundle
over M. Assume thal/ € T(A*E) andf € T(A'E*) with & > 1. Then, by _1V we
denote the section of*~'E given by

O IV)w)=V(0Aw), Ywe (A*LE).

We will stick to this convention in the sequel no matter whetheas A itself or its dual
A*.

Proposition 3.1. The operatorD is well defined and
D?U=—-R_IU,

whereR € TI'(A2A4*) is the curvature of the connectiof (note thatEndE is a trivial
line bundle).

Proof. Assume thayf is any locally nonzero function oi/, andU = fw _| %A. Then,

f

= %(df Aw) JA+dw JA+D f(aXi)(%)(ai Aw) _IA

d(fw) ] %A + (ai A fw) V. (24)

+Z(ai Aw) IVx, A

= %(df Aw) A+ f(d(%

:deA+Z(ai/\w)JVXiA.

JAw) JA+dw JA+Y (0 Aw) IV x, A

This shows thaD is well-defined. For the second part, we have

D?U = —(-1)*'D(dw A+ (s Aw) 1V, A)
=1

=~ (i Adw) IV x, A+ d(a; Aw) 1V x, A

+Z(Ozj Na; ANw) IV x, Vi, A)
7,
= —() (doi Aw) IVx, A+ (o5 A Aw) 1V x,Vx,A)
7 7,
= —[> w_I(da; IVx,A)+ Y w (s Aoy 1V, Vx A
i Jy

The conclusion thus follows from the following lemma.



Gerstenhaber Algebras and BV-Algebras in Poisson Geometry 551

Lemma 3.2.

D da; IVx, A+ (aiAay) IVx,Vx, A=—R_IA.
A VK
Proof. Itis a straightforward verification, and is left to the readers.C]

Proposition 3.3. Let D : I'(A* A) — T'(A¥~1A) be the operator as defined in Equa-
tion (9). Then,D generates the Gerstenhaber algebra bracketig (A A), i.e, for
anyU € I'(A*A) andV € T'(AY A),

[U, V] =(-1)“(D({U AV) — DU AV — (=1)*U A DV). (10)
We need a couple of lemmas before proving this proposition.
Lemma 3.4. For anyU € I'(A*A), V € I'(AA) andf € T(A**V~1A*),
[U, V] 16 = (1)@ De=Dy _Jd(v _16) —V _JdU _J6) — (—1)“* XU A V) _db.

(11)
Proof. See Eq. (1.16) in [27]. O
Lemma 3.5. For anyU € I'(A“*A) andf € T(A“~1A4%),
0 _1DU = (-1)'D@® 1U)+do 1 U. (12)

Proof. Assume tha/ =w _IA. Thend U = (w A ) _I A, and therefore,
D@ JU)
—(=1) M (d(w A ) JA+D (@i Aw AB) IV x,A)

(=1 [(dw A G) JA+ (1) w Adf) JA+D (i Aw A ) 1V, A]

(-1)% @ DUy - (-1)%a JU. O
Proof of Proposition 3.3For anylU € I'(A“A), V € T(AYA) andd € T(A“—14%),
using Eq. (12), we have
O _IDWUAV)=(=D)"DO U AV))+do IU A V).
On the other hand, we have
0 J(UANDV)=(U_6) 1DV
= (=0 DU 16) IV)+dU _16) 1V,

and

0 _1(DUAV)

= (1)~ _I(V A DU)

= (1)@= (—20) = DV ) JU) +d(V _16) U]
= (1) DV _10) JU) + (D)™ q(v _6) ).



552 P. Xu

It thus follows that

0 _I[(-1)“DU AV) = (=1)“DU AV —U A DV]
= (=1)*" D@ (U AV)) — (=1)*HF DV 1) 1U)
—(=D)?= DU _16) V)
+(—1)"d (U A V) + (=)@ De=Dqv _10) JU — d(U _J6) V.

The conclusion thus follows from Eq. (11) and the identity:

0 U AV)=(U_16) IV +(—1)(V 1) JU. O (13)

Proposition 3.3 describes a construction fromAueonnection to an operatdp
generating the Gerstenhaber algebra bracket. This construction is in fact reversible.
Namely, the connectioR can also be recovered from the operaforMore precisely,
we have

Proposition 3.6. Suppose thab : I'(A* A) — T'(A*~1A) is the operator correspond-
ing to an A-connectionV on A" A. Then, for anyX € I'(A) and A € TI'(A™ A),

VxA=—-XADA. (14)
Proof. By definition, DA = —a; I Vx, A. Hence,

~XADA =) X A(a; JVx,A)

= Zai(X)VXiA
=VxA,

where the last equality uses the identify: = >, «;(X)X;, and the second equality
follows from the following simple fact in linear algebra:

Lemma 3.7. LetV be a vector space of dimensionX € V,a € V*andA € A"V.
Then,
X A(a_dA)=a(X)A.

O

Now we are ready to prove the main theorem of the section.

Theorem 3.8. Let A be a Lie algebroid with anchog, and A = &, '(A*A) its cor-
responding Gerstenhaber algebra. There is a one-to-one correspondence between
connections on the line bundié A and linear operatord) generating the Gerstenhaber
algebra bracket omd. Under this correspondence, flat connections correspond to oper-
ators of square zero.

Proof. It remains to prove that Eq. (14) indeed definesiaconnection om™ A if D is
an operator generating the Gerstenhaber algebra bracket.
First, it is clear that, with this definitiorV ;x A = fVxA for any f € C*°(M).
To prove that it satisfies the second axiom of a connection, we observe that for any
f € C®(M),andA € I'(A™A),
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D(fA) = (Df)A+ DA +[f, A]
= fDA+[f, Al

Hence,
Vx(fA)=—-X AND(fA)

=—XA(fDA+[f,A))
= fVxA—XA[f, Al

On the other hand, using the property of Gerstenhaber algebras,
[f, X AA]=[f, XIAA+ (DX AL, A]
= —(a(X))A = X A[f, Al
Thus, X A[f, A] = —(a(X)f)A. Hence Vx (fA) = fVx A+ (@(X))A. O

A flat A-connection always exists on the line bundiA. To see this, note that
A"A ® A"A is a trivial line bundle, which always admits a flat connection. So the
“square root" of this connection (see Proposition 4.3 in [5]) is a flat connection we need.
Therefore, for a given Lie algebroid, there always exists an operator of dedreed
of square zero generating the corresponding Gerstenhaber algebra. Such an operator is
called agenerating operator

Any A-connectioriV on A induces am-connection on the line bundhe® A. There-
fore, it corresponds to a linear operatOrgenerating the Gerstenhaber algeldraln
particular, if it is torsion free, i.e.,

VxY —Vy X =[X,Y], VX,Y €T(A),
D possesses a simpler expression. Note¥hatduces ami-connection on the exterior
powerAF A and the dual bundlel* as well. We will denote them by the same symbol
V.

Proposition 3.9. Suppose thatv is a torsion free A-connection onA. Let D :
I'(A*A) — T(A*1A) be its induced operator. Then, for abyc I'(A*A),

DU|pm ==Y a; IVx,U, (15)

7
whereXy, - - - , X,, is a basis ofd|,,, anday, - - - , o, the dual basis ofd*|,,,.

Proof. Assume that/ = w _I A for someA € I'(A™ A) andw € T(A"~*A*). Then,

d i IVx,wIA) =D a; J[Vx,w JA+w IV A]
= Z[(inw/\ai)JA+(w/\ozi)JVXiA]

= (_1)|w|(2(04i ANVx,w) A+ Z(O‘i Aw) IV x, ).
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The conclusion thus follows from the following

Lemma 3.10. For anyw € T'(Al€l4%),

dw = Zai ANVx,w.

7

Proof. Define an operataf : [(A* A*) —s T'(AF*1A*), forall 0 < k < n, by

dw = Zai AV x,w.

K2

Itis simple to check that is a graded derivation with respect to the wedge product, i.e.,
S(w A 0) = 0w A+ (—1)lw A b6,

For anyf € C*>(M),

5f=§:%v&f=§:MQnﬂm=dﬁ

Foranyf € T'(A*) andX, Y € I'(A),

(60)(X,Y)
= (i A Vx,0)(X,Y)

= Z[ai(X )(Vx, () — i (Y)(Vx, 0)(X)]

=) (X)(Vx,(0-Y)=0-Vx,Y) = > a;i(Y)(Vx,(0-X)—0-Vx,X)

K2 ?

D ai)(@X)O-Y) = 0-Vx,Y) =Y aiY)a(X)(# - X) —0-Vx,X)

a(X)O-Y)—0-VxY —a¥)(0-X)+0-VyX
a(X)@-Y) - a(¥)(@-X) -0 (VxY — VyX)
a(X)(O-Y) —a(¥)0- X)—60-[X,Y]

= dO(X,Y).

Therefore coincides with the exterior derivativg since®,I'(A* A*) is generated by
I'(A*) over the module@>(M). O

Remark. (1) Theorem 3.8 was proved by Koszul [17] for the case of the tangent bundle
Lie algebroidT' P. In fact, his result was the main motivation of the present work.
However, Koszul used an indirect argument instead of using Egs. (9) and (14). We will
see more applications of these equations in the next section.

(2) A flat A-connection on a vector bundlg is also called a representation of the
Lie algebroid by Mackenzie [20, 5].
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We end this section by introducing the notion of generalized divergencé&. beta
flat A-connection om™ A, andD its corresponding generating operator. For any section
X € T'(A), we usedivy X to denote the functio® X. When A = T P with the usual
Lie algebroid structure an¥ is the flat connection induced by a volumeX is the
divergence in the ordinary sense. 83X can indeed be considered as a generalized
divergence.

The following proposition gives a simple geometric characterization for the diver-
gence of a sectioX € I'(A4).

Proposition 3.11. Forany X € I'(4) and A € T'(A™A),
LxA—-VxA-= (diva)A.

In other words, the functiodivy X is the multiplier corresponding to the endomorphism
Lx — Vx of the line bundlen™ A.

Proof. Assume thatX = w _I A for somew € I'(A"~1A*). Then,
DX = —(=1)!(dw JA + i(ai Aw) _1Vx,A).
i=1
Now
i((ai Aw) IV x,A)A = i((ai Aw) JA)Vx, A

i=1 =1
R

=) (-1 IX)Vx, A
=Y (-1)¥IX(a:)Vx, A

= (—-1)*IVxA.
Letd € I'(A™ A*) be the dual element of. It follows from Eq. (11) that
[X,A] J6=—A _1d(X _16).

Itis simple to see thak _160 = (w _IA) _16 = (—1)*I*~I«Dy,, Sincen = |w| — 1, then
X 16 = (—1)“lw, and [X,A] 16 = —(—1)“ldw _J A. Hence, DX)A = [X,A] —
VxA =LxA — VxA. This concludes the proof of the proposition. [

4. Lie Algebroid Homology

Let A be a Lie algebroid, an¥l a flat A-connection on the line bundle® A. Let D be its

corresponding generating operator e (—1)"~*D : [(A*A) — T'(A\F~1A) (the

reason for choosing this sign in the definitioroafill become clear later (see Eq. (17))).

Theno? = 0, and we obtain a chain complex. Lt (A, V) denote its homology:
H.(A,V) =kerd/Imo.

SinceD is a derivation with respect to,[], immediately we have
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Proposition 4.1. The Schouten bracket passes to the homolégiA, V).

Since this homology depends on the choice of the conneEtianis natural to ask
how H, (A, V) changes according to the connectian

Proposition 4.2. Suppose that both andD are operators generating the Gerstenhaber
bracketond. ThenD— D = i, for somex € I'(A*). AndD?— D? = —ig,. In particular,
if D2 = D? =0, thena € I'(4*) is closed.

Proof. Let V andV be theA-connections om™A corresponding td) andD respec-
tively. Then there exista € I'(A*) such that

@Xs =Vxst<a,X >s, Vsel(A"A).

It follows from a direct verification thab = D — i,. According to Proposition 3.1, we
have D2U — D?U = —(R — R) _IU, whereR and R are the curvatures ¢f andV,
respectively. Finally, it is routine to check thAt— R =da. O

Definition 4.3. A-connectionsv; and V, are said to be homotopic if they differ by
an exact form in*(A*). Similarly two generating operator®; and D, are said to
be homotopic if they differ by an exact form, i.By — D, = i, for some exact form
a € T(AY).

The following result is thus immediate.

Proposition 4.4. LetV; andV;, be two flatA-connections on the canonical line bundle
A™A, and D; and D, their corresponding generating operators. W; and V, are
homotopic (or equivalently), and D, are homotopic), then,

H.(A, V1) = H.(A,V2). (16)

Now let us assume that" A is a trivial bundle, so there exists a nowhere vanishing
volumeA € I'(A™A). This volume induces a flat-connectionvy on A™ A simply by
(Vo)x A =0 forall X € T'(4). Let Dy be its corresponding generating operator. Note
that A being horizontal is equivalent to the condition:

DQA =0.

Suppose thad’ is another nonvanishing volume, akd its corresponding flat connec-
tion on A" A. Assume that\’ = f A for some positivef € C>°(M). Then, itis easy to
see that

Vs =(Vo)xs— <dInf, X > s.

In other words, their corresponding generating operators are homotopic .
Let us now fix such a voluma € I'(A™A). Define ax-operator froml'(A* A*) to
r(A"*A) by
*w = w _|A.

Clearly x is an isomorphism. The following proposition follows immediately from the
definition of x.

Proposition 4.5. The operatody = (—1)"~* Dy equals to— * .do* 1. That is,

o= — xodox 1. (17)
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Hered is the Lie algebroid cohomology differential (see Eq. (4)). Thus, as a consequence,
we have

Theorem 4.6. Let V be an A-connection orA™ A which admits a global nowhere
vanishing horizontal section € I'(A"™A). Then

H.(A, Vo) = H""(A,R).

Remark.From the discussion above we see that there is a family of Lie algebroid
homologies parameterized by the first Lie algebroid cohomology. In the case that the
line bundleA™A is trivial, one of these homologies is isomorphic to the Lie algebroid
cohomology with trivial coefficients, and the rest of them can be considered as Lie
algebroid cohomology with twisted coefficients. In general, these are special cases of
Lie algebroid cohomology with general coefficients in a line bundle (see [20, 5]).

We will discuss two special cases below.

Let g be ann-dimensional Lie algebra. Thexi*g is one-dimensional, so it admits a
trivial g-connection, which in turn induces a generating oper&r A*g — A*~1g.

On the other hand, there exists another standard opdpator*g — A*~1g, namely
the dual of the Lie algebra cohomology differential. In genetaind Dy are different.

In fact, itis easy to check th&@ — Dy = i,,, wherea is the modular character of the Lie
algebra. In particular, whegnis a unimodular Lie algebra, the Lie algebra homology is
isomorphic to Lie algebra cohomology, a well-known result.

Another interesting case, which does not seem trivial, is whesthe cotangent Lie
algebroidl™ P of a Poisson manifold (see Egs. (2) and (3)). In this cafép\* T P) =
Q*(P). There is a well known operatdp : QF(P) — Q*~1(P) due to Koszul [17]
and Brylinski [2], given byD = [i,, d]. The corresponding homology is called Poisson
homology, and is denoted b¥. (P, ). It was shown in [17] thaD indeed generates
the Gerstenhaber bracket 61 (P) induced from the cotangent Lie algebroid Bf
Therefore, it corresponds to a flat Lie algebroid connectiom®i™ P. According to
Eq. (14), this connection has the form:

VeQ=—-0ADQ=0Adr_Q), (18)

foranyf € Q1(P) andQ e Q"(P). We note that a similar formula was also discovered
independently, by Evens—Lu—Weinstein [5].

The Koszul-Brylinski operatab is intimately related to the so called modular class
of the Poisson manifold, a classical analogue of the modular form of a von Neumann al-
gebra, which was introduced recently by Weinstein [28], and independently by Brylinski
and Zuckerman [3]. Let us briefly recall its definition below. For simplicity, we assume
that P is orientable with a volume forrt2. The modular vector fieldg is the vector
field defined by

f— (Lx,;R)/Q, VYfeC(P).

It is easily shown that the above map satisfies the Leibniz rule, so it indeed defines a
vector field onP. It can also be shown that, preserves the Poisson structure, and in
otherwords itis a Poisson vector field. When we change the vofeyties corresponding
modular vector fields differ by a hamiltonian vector field. Therefore it defines an element
in the first Poisson cohomology: (P), which is called the modular class of the Poisson
manifold. A Poisson manifold is callathimodularif its modular class vanishes. In fact,

the modular class can be defined for any Poisson manifold by just replacing the volume
form by a positive density. We refer the interested reader to [28] for more detail.
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Now let P be an orientable Poisson manifold with volume faanand letDg be its
corresponding generating operator as in the observation preceding Proposition 4.5. The
following result follows immediately from a direct verification.

Proposition 4.7. Let D be the Koszul-Brylinski operator of a Poisson manifBld’ hen
D — Dg = i,,, Wherevg is the modular vector field corresponding to the voluine

As an immediate consequence, we have

Theorem 4.8. If P is an orientable unimodular Poisson manifold, then
H.(P,7)= H *(P).

In particular, this result holds for any symplectic manifold, which was first proved
by Brylinski [2].

Remark.The above situation can be generalized to the case of triangular Lie bialge-
broids. LetA be a Lie algebroid with anchat. A triangularr-matrix is a sectionr in
I'(A2A) satisfying the conditions, 7] = 0. One may think that this is a sort of gener-
alized “Poisson structure" on the generalized manifbldn this caseA* is equipped

with a Lie algebroid structure with the ancherr® and the Lie bracket as defined by

an equation identical to the one defining the Lie bracket on one-forms of a Poisson
manifold.

Similarly, D = [i,,d] : T(A\FA*) — T(AF~1A*) is an operator of square zero
and generates the Gerstenhaber bracket ¢n @, I'(AFA*). A form of top degree
Q € I'(A" A*) satisfies the conditioP2 = 0 iff 7 _I1Q € T'(A"?A*) is closed. If there
exists such a nowhere vanishing form, the homoléfyA, V) is then isomorphic to
the cohomologyd ™ *(4, R).

5. Discussions

We end this paper by a list of open questions.

Question 1.In the above remark, is the condition that | Q@ € T'(A"~2A4*) is closed
equivalent to the Lie algebroid* being unimodular?

Question 2. For a general Lie algebroid, does there exist a canonical generating
operator corresponding to the modular class of the Lie algebroid in analogue to the case
of cotangent Lie algebroid of a Poisson manifold (see Proposition 4.7)?

Question 3.For a Poisson manifol@, there is a family of the homologies parameter-
ized by the first Poisson cohomolody:(P). What is the meaning of the rest of the
homologies besides the Poisson homology?

Question 4. Suppose that4, A*) is a Lie bialgebroid and/ a flat A-connection on
A" A. Then C(A*A), A, dy,[,], D) is a strong differential BV-algebra. It is clear that
d«D + Dd, is a derivation with respect to bothand [ ]. When isd,. D + Dd, inner and

in particular, when igl, D + Dd, = 0?

For the Lie bialgebroid{* P, T P) of a Poisson manifold, we may take the con-
nectionV as in Eqg. (18). Thenl, is the usual de-Rham differential ard is the
Koszul-Brylinski operator. Thusl,D + Dd, is automatically zero, which gives rise
to the Brylinski double complex [2]. On the other hand, if we switch the order and
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consider the Lie bialgebroid/{P, T* P) for a Poisson manifold with a volume, then

A = @,T(AF A) is the space of multivector fields. In this cade,= [r, -] is the Lich-
nerowicz Poisson cohomology differential, abd= —(—1)""* x .dox~1. Herex is

the isomorphism between the space of multivector fields and that of differential forms
induced by the volume element. ThénD + Dd,, = L x, whereX is the modular vector
field of the Poisson manifold (see p. 265 of [17]). So it vanisheR i unimodular.
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