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Abstract: The purpose of this paper is to establish an explicit correspondence between
various geometric structures on a vector bundle with some well-known algebraic struc-
tures such as Gerstenhaber algebras and BV-algebras. Some applications are discussed.
In particular, we find an explicit connection between the Koszul–Brylinski operator
and the modular class of a Poisson manifold. As a consequence, we prove that Poisson
homology is isomorphic to Poisson cohomology for unimodular Poisson structures.

1. Introduction

BV-algebras arise from the BRST theory of topological field theory [30]. Recently, there
has been a great deal of interest in these algebras in connection with various subjects
such as operads and string theory [7, 8, 11, 18, 22, 25, 26, 31].

Let us first recall various relevant definitions, following the terminology of [14].
A Gerstenhaber algebraconsists of a triple (A = ⊕i∈ZAi,∧, [·, ·]) such that (A,∧) is

a graded commutative associative algebra, and (A = ⊕i∈ZA(i), [·, ·]), with A(i) = Ai+1,
is a graded Lie algebra, and [a, ·], for eacha ∈ A(i) is a derivation with respect to∧
with degreei.

An operatorD of degree−1 is said to generate the Gerstenhaber algebra bracket if
for everya ∈ A|a| andb ∈ A,

[a, b] = (−1)|a|(D(a ∧ b) − Da ∧ b − (−1)|a|a ∧ Db). (1)

A Gerstenhaber algebra is said to beexactif there is an operatorD of square zero
generating the bracket. In this case,D is called agenerating operator. An exact Ger-
stenhaber algebra is also called aBatalin–Vilkovisky algebra(or BV-algebrain short).
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A differential Gerstenhaber algebrais a Gerstenhaber algebra equipped with a dif-
ferentiald, which is a derivation of degree 1 with respect to∧ andd2 = 0. It is called a
strong differential Gerstenhaber algebraif, in addition,d is a derivation of the graded
Lie bracket.

Kosmann–Schwarzbach noted [13] that these algebra structures had also appeared
in Koszul’s work [17] in 1985 in his study of Poisson manifolds. In fact they are con-
nected with a certain differential structure on vector bundles, calledLie algebroidsby
Pradines [23]. Let us recall for the benefit of the reader the definition of a Lie alge-
broid [23, 24].

Definition 1.1. A Lie algebroid is a vector bundleA overM together with a Lie algebra
structure on the space0(A) of smooth sections ofA, and a bundle mapa : A → TP
(called the anchor), extended to a map between sections of these bundles, such that

(i) a([X, Y ]) = [a(X), a(Y )]; and
(ii) [X, fY ] = f [X, Y ] + (a(X)f )Y

for any smooth sectionsX andY of A and any smooth functionf onM .

Among many examples of Lie algebroids are the usual Lie algebras, the tangent
bundle of a manifold, and an integrable distribution over a manifold (see [20]). In recent
years, Lie algebroids have become increasingly interesting in Poisson geometry. One
main reason for this is given by the following example. LetP be a Poisson manifold
with Poisson tensorπ. ThenT ∗P carries a natural Lie algebroid structure, called the
cotangent Lie algebroid of the Poisson manifoldP [4].The anchor mapπ# : T ∗P → TP
is defined by

π# : T ∗
p P −→ TpP : π#(ξ)(η) = π(ξ, η), ∀ξ, η ∈ T ∗

p P (2)

and the Lie bracket of 1-formsα andβ is given by

[α, β] = Lπ#(α)β − Lπ#(β)α − dπ(α, β). (3)

In [13], Kosmann–Schwarzbach constructed various examples of strong differential
Gerstenhaber algebras and BV-algebras in connection with Lie algebroids. Motivated
by her work, in this paper we will study the relation between these algebra structures
and some of the well-known geometric structures in Poisson geometry. More precisely,
we will investigate the following question. LetA be a vector bundle of rankn over the
baseM , and letA = ⊕0≤k≤n0(∧kA) be its corresponding exterior algebra. It is graded
commutative. The question is:

What additional structure onA will make A into a Gerstenhaber algebra, a
strong differential Gerstenhaber algebra, or an exact Gerstenhaber algebra (or a
BV-algebra)?

The answer is surprisingly simple. Gerstenhaber algebras and strong differential
Gerstenhaber algebras correspond exactly to the structures of Lie algebroids and Lie
bialgebroids (see Sect. 2 for the definition), respectively, as already indicated in [13].And
an exact Gerstenhaber algebra structure corresponds to a Lie algebroidA together with
a flatA-connection on its canonical line bundle∧nA. This fact was already implicitly
contained in Koszul’s work [17] although he only treated the case of multivector fields.
However, the formulas (9) and (14) below establishing the explicit correspondence seem
to be new. Below is a table of the correspondence.



Gerstenhaber Algebras and BV-Algebras in Poisson Geometry 547

Structures on algebraA Structures on the vector bundleA

Gerstenhaber algebras ↔ Lie algebroids

Strong differential Ger-
stenhaber algebras

↔ Lie bialgebroids

Exact Gerstenhaber alge-
bras (BV-algebras)

↔ Lie algebroids with a flatA-connection on
∧nA

The content above occupies Sects. 2 and 3. Sect. 4 is devoted to applications. In partic-
ular, we find an explicit connection between the Koszul–Brylinski operator on a Poisson
manifold with its modular class. As a consequence, we prove that Poisson homology is
isomorphic to Poisson cohomology for unimodular Poisson structures (see [3, 28] for
the definition).

As another application, we define Lie algebroid homology as the homology group
of the complex:D : 0(∧∗A) −→ 0(∧∗−1A) for a generating operatorD. Since a
generating operator depends on the choice of a flatA-connection on the line bundle
∧nA, in general this homology depends on the choice of such a connection∇. When two
connections are homotopic (see Sect. 4 for the precise definition), their corresponding
homology groups are isomorphic. So a given Lie algebroid has homologies which are
in fact parameterized by the first Lie algebroid cohomologyH1(A, R). WhenA is a Lie
algebra and∇ is the trivial connection, this reduces to the usual Lie algebra homology
with trivial coefficients. On the other hand, Poisson homology can also be considered
as a special case of Lie algebroid homology, whereA is taken as the cotangent Lie
algebroid of a Poisson manifold.

We note that in a recent paper [5], Evens, Lu and Weinstein have also established
a connection between Poisson homology and the modular class of Poisson manifolds.
Some results in the paper have recently been generalized by Huebschmann to the alge-
braic context of Lie-Rinehart algebras [9, 10].

2. Gerstenhaber Algebras and Differential Gerstenhaber Algebras

In this section, we will treat Gerstenhaber algebras and differential Gerstenhaber algebras
arising from a vector bundle.

Again, letA be a vector bundle of rankn overM , and letA = ⊕0≤k≤n0(∧kA).
The following proposition establishes a one-one correspondence between Gerstenhaber
algebra structures onA and Lie algebroid structures on the underlying vector bundleA.

Proposition 2.1. A is a Gerstenhaber algebra iffA is a Lie algebroid.

This is a well-known result (see [6, 16, 21]). For completeness, we sketch a proof
below.

Proof. Suppose that there is a graded Lie bracket [·, ·] that makesA into a Gerstenhaber
algebra. It is clear that (0(A), [·, ·]) is a Lie algebra. Second, for anyX ∈ 0(A) and
f, g ∈ C∞(M ), it follows from the derivation property that

[X, fg] = [X, f ]g + f [X, g].
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Hence, [X, ·] defines a vector field onM , which will be denoted bya(X). It is easy to
see thata is in fact induced by a bundle map fromA to TP . By applying the graded
Jacobi identity, we find that

a([X, Y ]) = [a(X), a(Y )].

Finally, again from the derivation property, it follows that

[X, fY ] = (a(X)f )Y + f [X, Y ].

This shows thatA is indeed a Lie algebroid.
Conversely, given a Lie algebroidA, it is easy to check thatA = ⊕0≤k≤n0(∧kA)

forms a Gerstenhaber algebra (see [13, 21]).�
The following lemma gives another characterization of a Lie algebroid, which should

be of interest itself. Recall that adifferential graded algebrais a graded commutative
associative algebra equipped with a differentiald, which is a derivation of degree 1 and
of square zero.

Lemma 2.2 ([16, 12]).Given a vector bundleA over M , A is a Lie algebroid iff
⊕k0(∧kA∗) is a differential graded algebra.

Proof. Given a Lie algebroidA, it is known that⊕k0(∧kA∗) admits a differentiald that
makes it into a differential graded algebra [16]. Here,d : 0(∧kA∗) −→ 0(∧k+1A∗) is
simply the differential defining the Lie algebroid cohomology ([20, 21, 29]):

dω(X1, . . . , Xk+1) =
k+1∑

i=1

(−1)i+1a(Xi)(ω(X1, ˆ. . ., Xk+1))

+
∑

i <j

(−1)i+jω([Xi, Xj ], X1, ˆ. . . ˆ. . . , Xk+1), (4)

for ω ∈ 0(∧kA∗), Xi ∈ 0A, 1 ≤ i ≤ k + 1.
Conversely, if⊕k0(∧kA∗) is a differential graded algebra with differentiald, then

the equations:

a(X)f =< df, X >, and (5)

< [X, Y ], θ >= a(X)(θ · Y ) − a(Y )(θ · X) − (dθ)(X, Y ) (6)

∀f ∈ C∞(M ), X, Y ∈ 0(A), andθ ∈ 0(A∗), define a Lie algebroid structure onA.
�

Remark.The lemma above is essentially Proposition 6.1 of [16]. Equation (6) is Formula
(6.6) in [16].

Recall that aLie bialgebroid[13, 21] is a dual pair (A, A∗) of vector bundles equipped
with Lie algebroid structures such that the differentiald∗, induced from the Lie algebroid
structure onA∗ as defined by Eq. (4), is a derivation of the Lie bracket on0(A), i.e.,

d∗[X, Y ] = [d∗X, Y ] + [X, d∗Y ], ∀X, Y ∈ 0(A). (7)

The following result is due to Kosmann–Schwarzbach [13].

Proposition 2.3. A is a strong differential Gerstenhaber algebra iff(A, A∗) is a Lie
bialgebroid.
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Proof. Assume thatA is a strong differential Gerstenhaber algebra. Then,A∗ is a Lie
algebroid according to Lemma 2.2. Moreover, the derivation property of the differen-
tial with respect to the Lie bracket on0(A) implies that (A∗, A) is a Lie bialgebroid.
This is equivalent to that (A, A∗) is a Lie bialgebroid by duality [21]. Conversely, it is
straightforward to see, for a given Lie bialgebroid (A, A∗), thatA is a strong differential
Gerstenhaber algebra (see [13]). �

Example 2.4.Let P be a Poisson manifold with Poisson tensorπ. Let A = TP with
the standard Lie algebroid structure. It is well known that the space of multivector fields
A = ⊕k0(∧kTP ) has a Gerstenhaber algebra structure, where the graded Lie bracket
is called the Schouten bracket.

In 1977, Lichnerowicz introduced a differentiald = [π, ·] : 0(∧kTP ) −→
0(∧k+1TP ), which he used to define the Poisson cohomology [19]. It is obvious that
A becomes a strong differential Gerstenhaber algebra, so it corresponds to a Lie bial-
gebroid structure on (TP, T ∗P ) according to Proposition 2.3. It is not surprising that
this Lie bialgebroid is just the standard Lie bialgebroid associated to a Poisson man-
ifold [21], where the Lie algebroid structure onT ∗P is defined as in the introduction
(see Eqs. (2) and (3)). It is, however, quite amazing that the Lie algebroid structure on
T ∗P was not known until the middle of 1980’s (see [15] for the references) and the
Lie bialgebroid structure comes much later! For the Lie algebroidT ∗P , the associated
differential on⊕0(∧∗TP ) is the Lichnerowicz differentiald = [π, ·]. This property was
proved, independently by Bhaskara and Viswanath [1], and Kosmann–Schwarzbach and
Magri [16].

3. Exact Gerstenhaber Algebras

In this section, we will move to exact Gerstenhaber algebras arising from a vector bundle.
Let A −→ M be a Lie algebroid with anchora andE −→ M a vector bundle overM .
By anA-connection onE, we mean anR-linear map:

0(A) ⊗ 0(E) −→ 0(E),

X ⊗ s −→ ∇Xs,

satisfying the axioms resembling those of the usual linear connections, i.e.,∀f ∈
C∞(M ), X ∈ 0(A), s ∈ 0(E),

∇fXs = f∇Xs;

∇X (fs) = (a(X)f )s + f∇Xs.

Similarly, the curvatureR of anA-connection∇ is the element in0(∧2A∗) ⊗ End(E)
defined by

R(X, Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ] , ∀X, Y ∈ 0(A). (8)

Given a Lie algebroidA of rankn and anA-connection∇ on the line bundle∧nA,
we define a differential operatorD : 0(∧kA) −→ 0(∧k−1A) as follows. LetU be
any section in0(∧kA) and write, locally,U = ω 3, whereω ∈ 0(∧n−kA∗) and
3 ∈ 0(∧nA). Set, for eachm ∈ M ,

DU |m = −(−1)|ω|(dω 3 +
n∑

i=1

(αi ∧ ω) ∇Xi
3), (9)
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whereX1, · · · , Xn is a basis ofA|m andα1, · · · , αn its dual basis inA∗|m. Clearly,
this definition is independent of the choice of the basis.

Remark.We would like to make a remark on the notation. LetE be a vector bundle
overM . Assume thatV ∈ 0(∧kE) andθ ∈ 0(∧lE∗) with k ≥ l. Then, byθ V we
denote the section of∧k−lE given by

(θ V )(ω) = V (θ ∧ ω), ∀ω ∈ 0(∧k−lE∗).

We will stick to this convention in the sequel no matter whetherE is A itself or its dual
A∗.

Proposition 3.1. The operatorD is well defined and

D2U = −R U,

whereR ∈ 0(∧2A∗) is the curvature of the connection∇ (note thatEndE is a trivial
line bundle).

Proof. Assume thatf is any locally nonzero function onM , andU = fω 1
f 3. Then,

d(fω)
1
f

3 +
∑

i

(αi ∧ fω) ∇Xi
(
1
f

3)

=
1
f

(df ∧ ω) 3 + dω 3 +
∑

i

f (aXi)(
1
f

)(αi ∧ ω) 3

+
∑

i

(αi ∧ ω) ∇Xi3

=
1
f

(df ∧ ω) 3 + f (d(
1
f

) ∧ ω) 3 + dω 3 +
∑

i

(αi ∧ ω) ∇Xi
3

= dω 3 +
∑

i

(αi ∧ ω) ∇Xi
3.

This shows thatD is well-defined. For the second part, we have

D2U = −(−1)|ω|D(dω 3 +
n∑

i=1

(αi ∧ ω) ∇Xi3)

= −(
∑

i

(αi ∧ dω) ∇Xi3 +
∑

i

d(αi ∧ ω) ∇Xi3

+
∑

j,i

(αj ∧ αi ∧ ω) ∇Xj
∇Xi

3)

= −(
∑

i

(dαi ∧ ω) ∇Xi
3 +

∑

j,i

(αj ∧ αi ∧ ω) ∇Xj
∇Xi

3)

= −[
∑

i

ω (dαi ∇Xi
3) +

∑

j,i

ω (αi ∧ αj ∇Xi
∇Xj

3)].

The conclusion thus follows from the following lemma.
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Lemma 3.2.
∑

i

dαi ∇Xi3 +
∑

j,i

(αi ∧ αj) ∇Xi∇Xj 3 = −R 3.

Proof. It is a straightforward verification, and is left to the readers.�

Proposition 3.3. Let D : 0(∧kA) −→ 0(∧k−1A) be the operator as defined in Equa-
tion (9). Then,D generates the Gerstenhaber algebra bracket on⊕k0(∧kA), i.e, for
anyU ∈ 0(∧uA) andV ∈ 0(∧vA),

[U, V ] = (−1)u(D(U ∧ V ) − DU ∧ V − (−1)uU ∧ DV ). (10)

We need a couple of lemmas before proving this proposition.

Lemma 3.4. For anyU ∈ 0(∧uA), V ∈ 0(∧vA) andθ ∈ 0(∧u+v−1A∗),

[U, V ] θ = (−1)(u−1)(v−1)U d(V θ) − V d(U θ) − (−1)u+1(U ∧ V ) dθ.
(11)

Proof. See Eq. (1.16) in [27]. �

Lemma 3.5. For anyU ∈ 0(∧uA) andθ ∈ 0(∧u−1A∗),

θ DU = (−1)|θ|D(θ U ) + dθ U. (12)

Proof. Assume thatU = ω 3. Thenθ U = (ω ∧ θ) 3, and therefore,

D(θ U )

= −(−1)|ω|+|θ|(d(ω ∧ θ) 3 +
∑

i

(αi ∧ ω ∧ θ) ∇Xi
3)

= −(−1)|ω|+|θ|[(dω ∧ θ) 3 + (−1)|ω|(ω ∧ dθ) 3 +
∑

i

(αi ∧ ω ∧ θ) ∇Xi3]

= (−1)|θ|(θ DU ) − (−1)|θ|dθ U. �
Proof of Proposition 3.3.For anyU ∈ 0(∧uA), V ∈ 0(∧vA) andθ ∈ 0(∧u+v−1A∗),
using Eq. (12), we have

θ D(U ∧ V ) = (−1)|θ|D(θ (U ∧ V )) + dθ (U ∧ V ).

On the other hand, we have

θ (U ∧ DV ) = (U θ) DV

= (−1)|θ|−uD((U θ) V ) + d(U θ) V,

and

θ (DU ∧ V )

= (−1)(u−1)vθ (V ∧ DU )

= (−1)(u−1)v[(−1)|θ|−vD((V θ) U ) + d(V θ) U ]

= (−1)uv+|θ|D((V θ) U ) + (−1)(u−1)vd(V θ) U ).
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It thus follows that

θ [(−1)uD(U ∧ V ) − (−1)uDU ∧ V − U ∧ DV ]

= (−1)|θ|+uD(θ (U ∧ V )) − (−1)uv+|θ|+uD((V θ) U )

−(−1)|θ|−uD((U θ) V )

+(−1)udθ (U ∧ V ) + (−1)(u−1)(v−1)d(V θ) U − d(U θ) V.

The conclusion thus follows from Eq. (11) and the identity:

θ (U ∧ V ) = (U θ) V + (−1)uv(V θ) U. � (13)

Proposition 3.3 describes a construction from anA-connection to an operatorD
generating the Gerstenhaber algebra bracket. This construction is in fact reversible.
Namely, the connection∇ can also be recovered from the operatorD. More precisely,
we have

Proposition 3.6. Suppose thatD : 0(∧kA) −→ 0(∧k−1A) is the operator correspond-
ing to anA-connection∇ on∧nA. Then, for anyX ∈ 0(A) and3 ∈ 0(∧nA),

∇X3 = −X ∧ D3. (14)

Proof. By definition,D3 = −αi ∇Xi
3. Hence,

−X ∧ D3 =
∑

i

X ∧ (αi ∇Xi
3)

=
∑

i

αi(X)∇Xi
3

= ∇X3,

where the last equality uses the identity:X =
∑

i αi(X)Xi, and the second equality
follows from the following simple fact in linear algebra:

Lemma 3.7. LetV be a vector space of dimensionn, X ∈ V , α ∈ V ∗ and3 ∈ ∧nV .
Then,

X ∧ (α 3) = α(X)3.

�

Now we are ready to prove the main theorem of the section.

Theorem 3.8. Let A be a Lie algebroid with anchora, andA = ⊕k0(∧kA) its cor-
responding Gerstenhaber algebra. There is a one-to-one correspondence betweenA-
connections on the line bundle∧nA and linear operatorsD generating the Gerstenhaber
algebra bracket onA. Under this correspondence, flat connections correspond to oper-
ators of square zero.

Proof. It remains to prove that Eq. (14) indeed defines anA-connection on∧nA if D is
an operator generating the Gerstenhaber algebra bracket.

First, it is clear that, with this definition,∇fX3 = f∇X3 for anyf ∈ C∞(M ).
To prove that it satisfies the second axiom of a connection, we observe that for any
f ∈ C∞(M ), and3 ∈ 0(∧nA),
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D(f3) = (Df )3 + fD3 + [f,3]

= fD3 + [f,3].

Hence,

∇X (f3) = −X ∧ D(f3)

= −X ∧ (fD3 + [f,3])

= f∇X3 − X ∧ [f,3].

On the other hand, using the property of Gerstenhaber algebras,

[f, X ∧ 3] = [f, X] ∧ 3 + (−1)X ∧ [f,3]

= −(a(X)f )3 − X ∧ [f,3].

Thus,X ∧ [f,3] = −(a(X)f )3. Hence,∇X (f3) = f∇X3 + (a(X)f )3. �

A flat A-connection always exists on the line bundle∧nA. To see this, note that
∧nA ⊗ ∧nA is a trivial line bundle, which always admits a flat connection. So the
“square root" of this connection (see Proposition 4.3 in [5]) is a flat connection we need.
Therefore, for a given Lie algebroid, there always exists an operator of degree−1 and
of square zero generating the corresponding Gerstenhaber algebra. Such an operator is
called agenerating operator.

Any A-connection∇ onA induces anA-connection on the line bundle∧nA. There-
fore, it corresponds to a linear operatorD generating the Gerstenhaber algebraA. In
particular, if it is torsion free, i.e.,

∇XY − ∇Y X = [X, Y ], ∀X, Y ∈ 0(A),

D possesses a simpler expression. Note that∇ induces anA-connection on the exterior
power∧kA and the dual bundleA∗ as well. We will denote them by the same symbol
∇.

Proposition 3.9. Suppose that∇ is a torsion freeA-connection onA. Let D :
0(∧∗A) −→ 0(∧∗−1A) be its induced operator. Then, for anyU ∈ 0(∧uA),

DU |m = −
∑

i

αi ∇Xi
U, (15)

whereX1, · · · , Xn is a basis ofA|m andα1, · · · , αn the dual basis ofA∗|m.

Proof. Assume thatU = ω 3 for some3 ∈ 0(∧nA) andω ∈ 0(∧n−uA∗). Then,

∑

i

αi ∇Xi(ω 3) =
∑

i

αi [∇Xiω 3 + ω ∇Xi3]

=
∑

i

[(∇Xi
ω ∧ αi) 3 + (ω ∧ αi) ∇Xi

3]

= (−1)|ω|(
∑

i

(αi ∧ ∇Xi
ω) 3 +

∑

i

(αi ∧ ω) ∇Xi
3).
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The conclusion thus follows from the following

Lemma 3.10. For anyω ∈ 0(∧|ω|A∗),

dω =
∑

i

αi ∧ ∇Xi
ω.

Proof. Define an operatorδ : 0(∧kA∗) −→ 0(∧k+1A∗), for all 0 ≤ k ≤ n, by

δω =
∑

i

αi ∧ ∇Xi
ω.

It is simple to check thatδ is a graded derivation with respect to the wedge product, i.e.,

δ(ω ∧ θ) = δω ∧ θ + (−1)|ω|ω ∧ δθ.

For anyf ∈ C∞(M ),

δf =
∑

i

αi∇Xi
f =

∑

i

[a(Xi)f ]αi = df.

For anyθ ∈ 0(A∗) andX, Y ∈ 0(A),

(δθ)(X, Y )

=
∑

i

(αi ∧ ∇Xi
θ)(X, Y )

=
∑

i

[αi(X)(∇Xi
θ)(Y ) − αi(Y )(∇Xi

θ)(X)]

=
∑

i

αi(X)(∇Xi
(θ · Y ) − θ · ∇Xi

Y ) −
∑

i

αi(Y )(∇Xi
(θ · X) − θ · ∇Xi

X)

=
∑

i

αi(X)(a(Xi)(θ · Y ) − θ · ∇Xi
Y ) −

∑

i

αi(Y )(a(Xi)(θ · X) − θ · ∇Xi
X)

= a(X)(θ · Y ) − θ · ∇XY − a(Y )(θ · X) + θ · ∇Y X

= a(X)(θ · Y ) − a(Y )(θ · X) − θ · (∇XY − ∇Y X)

= a(X)(θ · Y ) − a(Y )(θ · X) − θ · [X, Y ]

= dθ(X, Y ).

Therefore,δ coincides with the exterior derivatived, since⊕k0(∧kA∗) is generated by
0(A∗) over the moduleC∞(M ). �

Remark.(1) Theorem 3.8 was proved by Koszul [17] for the case of the tangent bundle
Lie algebroidTP . In fact, his result was the main motivation of the present work.
However, Koszul used an indirect argument instead of using Eqs. (9) and (14). We will
see more applications of these equations in the next section.

(2) A flat A-connection on a vector bundleE is also called a representation of the
Lie algebroid by Mackenzie [20, 5].



Gerstenhaber Algebras and BV-Algebras in Poisson Geometry 555

We end this section by introducing the notion of generalized divergence. Let∇ be a
flatA-connection on∧nA, andD its corresponding generating operator. For any section
X ∈ 0(A), we usediv∇X to denote the functionDX. WhenA = TP with the usual
Lie algebroid structure and∇ is the flat connection induced by a volume,DX is the
divergence in the ordinary sense. SoDX can indeed be considered as a generalized
divergence.

The following proposition gives a simple geometric characterization for the diver-
gence of a sectionX ∈ 0(A).

Proposition 3.11. For anyX ∈ 0(A) and3 ∈ 0(∧nA),

LX3 − ∇X3 = (div∇X)3.

In other words, the functiondiv∇X is the multiplier corresponding to the endomorphism
LX − ∇X of the line bundle∧nA.

Proof. Assume thatX = ω 3 for someω ∈ 0(∧n−1A∗). Then,

DX = −(−1)|ω|(dω 3 +
n∑

i=1

(αi ∧ ω) ∇Xi3).

Now
n∑

i=1

((αi ∧ ω) ∇Xi3)3 =
n∑

i=1

((αi ∧ ω) 3)∇Xi3

=
∑

i

(−1)|ω|((ω ∧ αi) 3)∇Xi
3

=
∑

i

(−1)|ω|(αi X)∇Xi
3

=
∑

i

(−1)|ω|X(αi)∇Xi
3

= (−1)|ω|∇X3.

Let θ ∈ 0(∧nA∗) be the dual element of3. It follows from Eq. (11) that

[X, 3] θ = −3 d(X θ).

It is simple to see thatX θ = (ω 3) θ = (−1)|ω|(n−|ω|)ω. Sincen = |ω| − 1, then
X θ = (−1)|ω|ω, and [X, 3] θ = −(−1)|ω|dω 3. Hence, (DX)3 = [X, 3] −
∇X3 = LX3 − ∇X3. This concludes the proof of the proposition. �

4. Lie Algebroid Homology

LetA be a Lie algebroid, and∇ a flatA-connection on the line bundle∧nA. LetD be its
corresponding generating operator and∂ = (−1)n−kD : 0(∧kA) −→ 0(∧k−1A) (the
reason for choosing this sign in the definition of∂ will become clear later (see Eq. (17))).
Then∂2 = 0, and we obtain a chain complex. LetH∗(A,∇) denote its homology:

H∗(A,∇) = ker∂/Im∂.

SinceD is a derivation with respect to [·, ·], immediately we have
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Proposition 4.1. The Schouten bracket passes to the homologyH∗(A,∇).

Since this homology depends on the choice of the connection∇, it is natural to ask
howH∗(A,∇) changes according to the connection∇.

Proposition 4.2. Suppose that both̃D andD are operators generating the Gerstenhaber
bracket onA. ThenD−D̃ = iα for someα ∈ 0(A∗). AndD̃2−D2 = −idα. In particular,
if D̃2 = D2 = 0, thenα ∈ 0(A∗) is closed.

Proof. Let ∇̃ and∇ be theA-connections on∧nA corresponding tõD andD respec-
tively. Then there existsα ∈ 0(A∗) such that

∇̃Xs = ∇Xs+ < α, X > s, ∀s ∈ 0(∧nA).

It follows from a direct verification that̃D = D − iα. According to Proposition 3.1, we
haveD̃2U − D2U = −(R̃ − R) U , whereR̃ andR are the curvatures of̃∇ and∇,
respectively. Finally, it is routine to check thatR̃ − R = dα. �

Definition 4.3. A-connections∇1 and ∇2 are said to be homotopic if they differ by
an exact form in0(A∗). Similarly two generating operatorsD1 and D2 are said to
be homotopic if they differ by an exact form, i.e.,D1 − D2 = iα for some exact form
α ∈ 0(A∗).

The following result is thus immediate.

Proposition 4.4. Let∇1 and∇2 be two flatA-connections on the canonical line bundle
∧nA, and D1 and D2 their corresponding generating operators. If∇1 and ∇2 are
homotopic (or equivalentlyD1 andD2 are homotopic), then,

H∗(A,∇1) ∼= H∗(A,∇2). (16)

Now let us assume that∧nA is a trivial bundle, so there exists a nowhere vanishing
volume3 ∈ 0(∧nA). This volume induces a flatA-connection∇0 on ∧nA simply by
(∇0)X3 = 0 for all X ∈ 0(A). Let D0 be its corresponding generating operator. Note
that3 being horizontal is equivalent to the condition:

D03 = 0.

Suppose that3′ is another nonvanishing volume, and∇′ its corresponding flat connec-
tion on∧nA. Assume that3′ = f3 for some positivef ∈ C∞(M ). Then, it is easy to
see that

∇′
Xs = (∇0)Xs− < d ln f, X > s.

In other words, their corresponding generating operators are homotopic .
Let us now fix such a volume3 ∈ 0(∧nA). Define a∗-operator from0(∧kA∗) to

0(∧n−kA) by
∗ω = ω 3.

Clearly∗ is an isomorphism. The following proposition follows immediately from the
definition of∗.

Proposition 4.5. The operator∂0 = (−1)n−kD0 equals to− ∗ ◦d◦∗−1. That is,

∂0 = − ∗ ◦d◦ ∗−1 . (17)
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Hered is the Lie algebroid cohomology differential (see Eq. (4)). Thus, as a consequence,
we have

Theorem 4.6. Let ∇0 be anA-connection on∧nA which admits a global nowhere
vanishing horizontal section3 ∈ 0(∧nA). Then

H∗(A,∇0) ∼= Hn−∗(A, R).

Remark.From the discussion above we see that there is a family of Lie algebroid
homologies parameterized by the first Lie algebroid cohomology. In the case that the
line bundle∧nA is trivial, one of these homologies is isomorphic to the Lie algebroid
cohomology with trivial coefficients, and the rest of them can be considered as Lie
algebroid cohomology with twisted coefficients. In general, these are special cases of
Lie algebroid cohomology with general coefficients in a line bundle (see [20, 5]).

We will discuss two special cases below.
Let g be ann-dimensional Lie algebra. Then∧ng is one-dimensional, so it admits a

trivial g-connection, which in turn induces a generating operatorD0 : ∧∗g −→ ∧∗−1g.
On the other hand, there exists another standard operatorD : ∧∗g −→ ∧∗−1g, namely
the dual of the Lie algebra cohomology differential. In general,D andD0 are different.
In fact, it is easy to check thatD −D0 = iα, whereα is the modular character of the Lie
algebra. In particular, wheng is a unimodular Lie algebra, the Lie algebra homology is
isomorphic to Lie algebra cohomology, a well-known result.

Another interesting case, which does not seem trivial, is whenA is the cotangent Lie
algebroidT ∗P of a Poisson manifoldP (see Eqs. (2) and (3)). In this case,0(∧kT ∗P ) =
�k(P ). There is a well known operatorD : �k(P ) −→ �k−1(P ) due to Koszul [17]
and Brylinski [2], given byD = [iπ, d]. The corresponding homology is called Poisson
homology, and is denoted byH∗(P, π). It was shown in [17] thatD indeed generates
the Gerstenhaber bracket on�∗(P ) induced from the cotangent Lie algebroid ofP .
Therefore, it corresponds to a flat Lie algebroid connection on∧nT ∗P . According to
Eq. (14), this connection has the form:

∇θ� = −θ ∧ D� = θ ∧ d(π �), (18)

for anyθ ∈ �1(P ) and� ∈ �n(P ). We note that a similar formula was also discovered
independently, by Evens–Lu–Weinstein [5].

The Koszul–Brylinski operatorD is intimately related to the so called modular class
of the Poisson manifold, a classical analogue of the modular form of a von Neumann al-
gebra, which was introduced recently by Weinstein [28], and independently by Brylinski
and Zuckerman [3]. Let us briefly recall its definition below. For simplicity, we assume
thatP is orientable with a volume form�. The modular vector fieldν� is the vector
field defined by

f −→ (LXf
�)/�, ∀f ∈ C∞(P ).

It is easily shown that the above map satisfies the Leibniz rule, so it indeed defines a
vector field onP . It can also be shown thatν� preserves the Poisson structure, and in
other words it is a Poisson vector field.When we change the volume�, the corresponding
modular vector fields differ by a hamiltonian vector field. Therefore it defines an element
in the first Poisson cohomologyH1

π(P ), which is called the modular class of the Poisson
manifold. A Poisson manifold is calledunimodularif its modular class vanishes. In fact,
the modular class can be defined for any Poisson manifold by just replacing the volume
form by a positive density. We refer the interested reader to [28] for more detail.
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Now letP be an orientable Poisson manifold with volume form�, and letD0 be its
corresponding generating operator as in the observation preceding Proposition 4.5. The
following result follows immediately from a direct verification.

Proposition 4.7. LetD be the Koszul–Brylinski operator of a Poisson manifoldP . Then
D − D0 = iν�

, whereν� is the modular vector field corresponding to the volume�.

As an immediate consequence, we have

Theorem 4.8. If P is an orientable unimodular Poisson manifold, then

H∗(P, π) ∼= Hn−∗
π (P ).

In particular, this result holds for any symplectic manifold, which was first proved
by Brylinski [2].

Remark.The above situation can be generalized to the case of triangular Lie bialge-
broids. LetA be a Lie algebroid with anchora. A triangularr-matrix is a sectionπ in
0(∧2A) satisfying the condition [π, π] = 0. One may think that this is a sort of gener-
alized “Poisson structure" on the generalized manifoldA. In this case,A∗ is equipped
with a Lie algebroid structure with the anchora◦π# and the Lie bracket as defined by
an equation identical to the one defining the Lie bracket on one-forms of a Poisson
manifold.

Similarly, D = [iπ, d] : 0(∧kA∗) −→ 0(∧k−1A∗) is an operator of square zero
and generates the Gerstenhaber bracket [·, ·] on ⊕k0(∧kA∗). A form of top degree
� ∈ 0(∧nA∗) satisfies the conditionD� = 0 iff π � ∈ 0(∧n−2A∗) is closed. If there
exists such a nowhere vanishing form, the homologyH∗(A,∇) is then isomorphic to
the cohomologyHn−∗(A, R).

5. Discussions

We end this paper by a list of open questions.

Question 1. In the above remark, is the condition thatπ � ∈ 0(∧n−2A∗) is closed
equivalent to the Lie algebroidA∗ being unimodular?

Question 2. For a general Lie algebroidA, does there exist a canonical generating
operator corresponding to the modular class of the Lie algebroid in analogue to the case
of cotangent Lie algebroid of a Poisson manifold (see Proposition 4.7)?

Question 3.For a Poisson manifoldP , there is a family of the homologies parameter-
ized by the first Poisson cohomologyH1

π(P ). What is the meaning of the rest of the
homologies besides the Poisson homology?

Question 4. Suppose that (A, A∗) is a Lie bialgebroid and∇ a flat A-connection on
∧nA. Then (0(∧∗A),∧, d∗, [, ], D) is a strong differential BV-algebra. It is clear that
d∗D +Dd∗ is a derivation with respect to both∧ and [, ]. When isd∗D +Dd∗ inner and
in particular, when isd∗D + Dd∗ = 0?

For the Lie bialgebroid (T ∗P, TP ) of a Poisson manifold, we may take the con-
nection∇ as in Eq. (18). Thend∗ is the usual de-Rham differential andD is the
Koszul–Brylinski operator. Thus,d∗D + Dd∗ is automatically zero, which gives rise
to the Brylinski double complex [2]. On the other hand, if we switch the order and
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consider the Lie bialgebroid (TP, T ∗P ) for a Poisson manifoldP with a volume, then
A = ⊕k0(∧kA) is the space of multivector fields. In this case,d∗ = [π, ·] is the Lich-
nerowicz Poisson cohomology differential, andD = −(−1)n−k ∗ ◦d◦∗−1. Here∗ is
the isomorphism between the space of multivector fields and that of differential forms
induced by the volume element. Thend∗D +Dd∗ = LX , whereX is the modular vector
field of the Poisson manifold (see p. 265 of [17]). So it vanishes iffP is unimodular.
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