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Abstract: The nonlinear Sclodinger equation (NLS) has been a fundamental model
for understanding vortex motion in superfluids. The vortex motion law has been formally
derived on various physical grounds and has been around for almost half a century. We
study the nonlinear Scbhdinger equation in the incompressible fluid limit on a bounded
domain with Dirichlet or Neumann boundary condition. The initial condition contains
any finite number of degreel vortices. We prove that the NLS linear momentum weakly
converges to a solution of the incompressible Euler equation away from the vortices. If
the initial NLS energy is almost minimizing, we show that the vortex motion obeys the
classical Kirchhoff law for fluid point vortices. Similar results hold for the entire plane
and periodic cases, and a related complex Ginzburg—Landau equation. We treat as well
the semi-classical (WKB) limit of NLS in the presence of vortices. In this limit, sound
waves propagate through steady vortices.

1. Introduction

We study the two dimensional nonlinear Sattiriger (NLS) equation:
e = Ague + € XL~ |uclPue, @ € Q, (1.1)

whereue = ue(t, x) is a complex valued function defined for each- 0; ¢ a small
positive parameter; = (x1, x2) € 2, a simply connected bounded domain with smooth
boundary iNR?; A = 0,4, + Ox,., denotes the two-dimensional Laplacian. The NLS
(1.1) has been proposed and studied as the fundamental equation for understanding
superfluids, see Ginzburg and Pitaevskii [14], Landau and Lifschitz [19], Donnelly [9],
Frisch, Pomeau and Rica [13], Josserand and Pomeau [18], and many others.

We shall consider (1.1) with the prescribed Dirichlet boundary condition:

u|8Q = g(m)7 |g| = 1) deg@7 aQ) = ina (12)



250 F.-H. Lin, J. X. Xin

wheren is a given positive integer, and the zero Neumann boundary condition:
uylog =0, (1.3)

v the normal direction. Our method is general enough that we can handle the entire plane
case {2 = R?) and the periodic case too.

We will see that as | 0, the Dirichlet boundary condition corresponds to applying
a tangential force at the boundary so that the tangential fluid velocity\ig, T the
tangential unit direction. The Neumann boundary condition corresponds to zero normal
fluid velocity (no fluid penetration) at the boundary. For ease of presentation, we shall
work with the Dirichlet case first, then comment on all necessary modifications in the
proof to reach a similar conclusion for the Neumann case. Subsequently, we also remark
on the entire plane and periodic cases.

The NLS (1.1) preserves the total energy:

IR
Eeu) = [ ectud = [ 5vu+ S5 a4

and admits vortices in solutions, which are points whegebecomes zero and the phase
of ue or ‘Z—E‘ has singularities. These points are the locations of regular fluids, which are

surrounded by superfluids. If there aralegree one point vortices in the solution, the
energyFe(ue) has the asymptotic expression:

Few(t) = Ee(ue)(©) =nrlog - +0(1). (1.5)

So we shall consider initial datac(0,r) = u2(x) with n degree one vortices, and
belonging toH?(2) for eache > 0 so that (1.5) holds. With initial and boundary data
(1.5) and (1.2), it is well-known [3] that the defocusing NLS (1.1) is globally well-posed
in C(R*, H?) N CY(R*, L?) for eache > 0. Our goal is to analyze the limiting behavior
of solutions ag | 0.

The systematic matched asymptotic derivation of the limiting vortex motion law was
carried out by Neu [28] fof2 = R2. The motion law is the classical Kirchhoff law for
fluid point vortices [1], and was known to Onsager [30] in 1949. The connection between
Schiodinger equations and the classical fluid mechanics was already noted in 1927 by
Madelung [26], which applies to NLS (1.1) as well. Along this line, there have been
over the years many formal derivations of Kirchhoff law based on Madelung'’s fluid
mechanical formulation, see Creswick and Morrison [7], Ercolani and Montgomery
[11], among others. Madelung’s idea was to identify? as the fluid density, and
VO = V argu, as the fluid velocityw. Then he defined the linear momentyns pVe.

In the new variablesy( v), the NLS (1.1) becomes:

pt — 2V -p=0, (1.6)
pe — 2V - (pv ® v) = =V P(p) — %V - (pHess(log)), a.7)

where P = z—éz(l — p?) is the pressure, and Hess denotes the Hessian. Madelung’s
formulation of course relies on the assumption that the amplitudei®hot zero and

the phas# is not singular, otherwise the transform is not well-defined and (1.6)—(1.7)
gets singular even though NLS itself is still regular. When we are studying solutions
with vortices, this singular case is however just what we have to deal with, and so an
alternative intepretation of the fluid formalism related to but different from Madelung’s
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transform must be used instead. In view of the energy functional (3.4)close to
one almost everywhere as| 0, and (1.6) implies formally tha¥ - v = 0, provided
v converges. Hence the limiting problem we are considering is an incompressible fluid
limit involving vortices. We also see that the Neumann boundary condition (1.3) says
that, = v-v = 0, if we writeu = p/2¢"? and assume that vortices are away from
the boundary (s ~ 1). Hence (1.3) reduces to the zero normal velocity boundary
condition for ideal classical fluids.

Let us mention that a modified Madelung’s transform has been utilized in the study
of the semi-classical limit (WKB limit) of NLS:

iuf = eA uf + e HuPub, (2.8)

with initial data:u(0, z) = ao(xz)e*%°)/€. Grenier [15] showed in particular that fag
and S in H*(R9), s > 2 +d/2, solutionsu® exist on a small time interval [@], T
independent of. Moreoveru€ = a(t, z, €)e’®:=:€/€ with a andS in L>°([0, T]; H*)
uniformly ine, and fp, V.S) converge to the solutiop(v) of the isentropic compressible
Euler equation:

pt +V - (pv) =0,
[v]?
vy + V(T + ,0) =0. (19)

In one space dimension, using integrable machinery, Jin, Levermore and McLaughlin
[17] obtained the above convergence results globally in time. These works on the com-
pressible fluid limit treated only the regime of smooth phase functions, and there are no
vortices involved.

Since the formation of vortices, their motion, and the resulting drag force are of
tremendous physical significance in superfluids, [13, 18], it has been a longstanding
fundamental problem to understand how to rigorously pass to the classical fluid limitin
the presence of vortices.

Our approach begins with writing the conservation laws of NLS in the form of fluid
dynamic representation. However, in contrast to all earlier applications of the Madelung
transform, we avoid making explicit use of the phase varidtdad do not work with
(1.6)—(1.7). The conservation laws of NLS are put into the form:

e Conservation of mass:
B uf[? = 2V - p(ue), (1.10)

where in vector notatiop(ue) = ue A Vue, the linear momentum.
e Conservation of linear momentum:

815[)(11{) = 2div (VUE ® VU€) - VP€7 (111)
where:

uel* — 1

- 2
Pe = |Vue| +U€'AU€—T7

(1.12)

is the pressure.
e Conservation of energy:

atee(uE) = div (UE’tVUG). (113)
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Then we study convergence of various terms in (1.10)—(1.11) using the above three
conservation laws (in particular the projection of (1.11) onto divergence free fields),
and perform various circulation calculations involving the linear momeniwamd its
first moments. We show that vortices do not move on the slower time seal@(\¢),

Xe — 0 ase — 0, and they move continuously on the scale O(1). With precise
characterization of weak limits of linear momentymwe are able to show that
converges locally in space tg the solution of the two-dimensional incompressible
Euler equation away from the continuously moving point vortices, and moreover,
v is curl-free. That is curl-free away from vortices agrees with the physical picture
that superfluids are potential flows [19]. Finally, the motion law of point vortices (the
Kirchhoff law) follows from the limiting linear momentum equation. Our main results
are:

Theorem 1.1 Weak convergence and fluid limitLet us consider NLS (1.1) with Dirich-
let boundary condition (1.2), and initial energy (1.5) witrdegreen; = +1 vortices.
Then ax | 0, the energy densitye (u¢) concentrates as Radon measuresut(<2) for
any fixed time > 0:

e(ue)dx 2
L N Zdaj(t%
=

mnlog 2

and vortices ofue converge toa;(t) moving continuously in time af ~ O(1) (or

t € [0,T], T any fixed constant) as| 0. Vortices ofue do not move on any slower
time scalet ~ O(A\¢) = o(1) (ort = X\er, 7 € [0,T], T any fixed positive constant, and
Xe — 0) ase | 0. Moreover on the time scale~ O(1), the linear momenturp(ue)
converges weakly id2([0, T]; L1, (R2,)) to a solutionv of the incompressible Euler
equation:

loc

vy =20-Vo—2VP, divv=0, z¢e€Q,={Q\(a(t), - ,a,())}

with boundary conditionv - 7 = g A g, T the unit tangential vector o8<2. The function
v is precisely characterized as:
v =V (0, + hy),

where
a;(t)
o=y an(=23)

andh,, is harmonic orf2 satisfying the boundary conditioh;, ; = —©, ; + g A g, On
02. Soh is unique up to an additive constant. The total presfirds a single-valued
function on$2, and is smooth of,. The quadratic tensor product weakly converges as:

Viue ® Ve = v ® v + i, M(R2,), (1.14)

where . is a symmetric tensorial Radon defect measure of finite mass<eyvand
div(u) = VP, on,, whereP, is a well-defined distribution function an,.

Theorem 1.2 {ortex motion lay. Consider the same assumptions as in Theorem 1.1,
and in addition assume that the initial NLS energy is almost minimizing, namely

Fe(ue)(©) = nrlog = + 717/ (a(0) +o(1),
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ase goes to zero. Lell; = H;(a), a = (a1, - - - , ayn), denote the smooth part 6%, + i,
near each vortex, and define the renormalized energy function as:

OH, . OH,
Va,W(a) = 2n; (—&C;(%‘)a a:ci(aj)> ;

j=1--- n. The vortex motion obeys the classical Kirchhoff law:

a(t) =n;JVa,W(a) = =2V H;(a),

_/0-1
1=(17).

W(a) = - mnj;log|a, — a;| + boundary contributions
17

We remark that the total initial NLS enerdy (u¢) in (1.5) can be decomposed into
a sum of three parts: the vortex self-energylog % the Kirchhoff energyr W (a(0)),
and the remainin@(1) excessive energy in general. The Kirchhoff energy facilitates the
vortex motion. The remaining energy creates the defect measUree total pressure
consists of the contribution from the original NLS pressure and the contribution from
the defect measure (the defect pressure). If the excessive energy is absent, or in other
words the initial energy satisfies:

j=1---,n,where

and

Be(ue)(0) = nrlog % + W (a(0)) +o(1), (1.15)

which also means thate is almost energy minimizing for the given vortex locations,

the linear momentump(ue) converges strongly ik([0, 77; L}, (R.)) and the defect
measurey = 0. In general, withO(1) excessive energy, to prove the same motion
law requires further information om; either that the divergence of the defect measure

1 is a gradient of a distribution on the entire domé&in(i.e. is globally curl-free as

a distribution) or that the support @fis away from the vicinities of vortex locations.
Physically the excessive energy is carried by sound waves (time dependent phase waves),
see the discussion of the WKB limit in Sect. 7. It is conceivable that vortices still move
according to Kirchhoff law when sound waves have propagated away from them, either
absorbed by the vortex cores or the physical boundary. Otherwise, sound waves may
modify the motion of vortices by creating oscillations, [13]. It is very interesting to
understand the vortex sound interaction (Nore et al. [29]) in terms of the structure of the
defect measurg based on our results here.

Due to the local nature of our method, we are able to prove the same theorems for the
zero Neumann case (1.3), with the modification that the boundary condition is instead
v-v =0, andh,, = -0, ,. Similar results are established for the entire plane and the
periodic cases, as long as the sum of vortex degrees is zero and the total energy obeys
(1.5). Our results on the Dirichlet and Neumann cases easily extend to the situation
where there arei2+ n vortices in a bounded domain;+ & being of degree +1, andof
degree—1. Due to the possibility of finite time vortex collisions in Kirchhoff law in the
case of signed vortices [27], the results are meant for any time before any two vortices
come together.

Itis remarkable that NLS vortices obey the Kirchhoff law in the incompressible fluid
limit, considering that thet1 vortices are only known to be dynamically marginally
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stable in the spectral sense, see Weinstein and Xin [32]. For this reason, it seems im-
possible to prove the validity of the motion law for the above mentioned initial and
boundary conditions by attempting to justify the matched asymptotic derivation of Neu
[28] which relied on linearization about vortices. The fluid dynamic approach developed
here has been extended by the authors [25] to establish the vortex motion laws of the
analogous nonlinear wave (NLW) equation, and the nonlinear heat (NLH) equation. In
NLW and NLH, Euler-like equations also appear and lead to the motion laws. Under
a similar energy almost minimizing assumption (1.15), the NLW vortex motion law is:

al = —n;V,, W, on the time scale ~ O(log? .

During the preparation of this paper, we learned of Colliander and Jerrard [5] on the
periodic case of NLS. They showed the motion law under the energy almost minimizing
assumption, however, did not study the defect measure and the general fluid limit.

The rest of the paper is organized as follows. In Sect. 2, we state and prove energy
concentration, and show its direct consequences on convergence of linear momentum
away from vortices and basic energy type bounds. In Sect. 3, we study mobility and
continuity of vortex locations based on linear momentum equation and subsequently
refine the form of weak limit of solutions based on conservation of mass. We also prove
a key energy estimate which is used later to control the defect measure. In Sect. 4, we
show using all results in previous sections that the NLS linear momentum converges to
a solution of the two dimensional incompressible Euler equation away from vortices.
The Kirchhoff law then follows from the limiting linear momentum equation under the
energy minimizing assumption. In Sect. 5, we comment on all necessary modifications
to establish the similar results for the zero Neumann case, as well as the entire plane
and periodic cases. In Sect. 6, we apply our method to show the vortex motion law
for a related complex Ginzburg—Landau (CGL) equation. Besides the interest of CGL
vortices in its own right, this result provides another proof of NLS vortex motion law
by passing the CGL to NLS limit. In Sect. 7, we study the semi-classical (WKB) limit
of NLS. Due to the slow time scal@(e), vortices do not move, and the regular part
of the phase function of the solution satisfies the linear wave equation, indicating the
propagation of sound waves through vortices.

2. Energy Concentration and Basic Weak Limits

In this section, we present weak convergence results on two basic physical quantities:
the energye(ue) and the linear momentum(ue). Consequently, we deduce the weak
convergence of the curl gf{(ue). The one half curl op(ue) is equal to the Jacobian of

the mapue, hence it will be denoted hy,.(u¢), and itis also known as vorticity. All the
results follow from energy concentration and energy comparisons, and are independent
of dynamics.

Lemma 2.1. Suppose, is a sequence dif1-maps frong2 into C (the complex plane)

satisfying the Dirichlet boundary condition, |9 = g. Suppose also that for a positive
€ independent constaidl the energy satisfies:

1 (L — Jue, P 1
Ee, (ue,) = /Qeek(uek) = /Q E\Vuek\z + Ti" < 7T’I”L|Og; + (.

Then taking a subsequencecjnif necessary, we have as ¢ | 0 that
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ec(ue)dr 25%" 2.1)

Wnlog%
as Radon measures. Moreover,
min{|a; — a;|, dist(a;,0), l,j=1,---,n, I Zj} > do(g, 2, Co) > 0.

Proof. This lemma is same as Proposition 1 of Lin [23], where the earlier structure
theorem of Lin [20] (Theorem 2.4) is extended to show that there are small positive
numberseg andoyg such that fore;, € (0, €o), there aren distinct ballsB;’s with radii

eg‘j, a; € [ao,1/2], which contain vortices of degreesl. In other words, vortex
locations are known up to an error@(eg‘j). O

Lemma 2.2. Under the assumptions of Lemma 2.1, we have up to a subsequence if
necessary:

— H I i@ =y, (2.2)
; |z — a; 7

n; = +1, weakly inH} (Q\{a1, - ,a,}) = () for someh, € HY(S). More-

loc

over,

/ [Vha|? < C4, (2.3)

Q
1— 2\2

[ e (2.9
Q €

/ |V]uel[? < Ci, (2.5)
Q

for a positive constant’;, uniformly ine.

Proof. These results follow from energy comparisons. For the weak convergence (2.2)
and inequality (2.3), see the general convergence theorem of [20] and also Proposition
2 of [23]. The inequality (2.4) is shown in Lecture 1 of [21]. For (2.5), we use the fact
thatV|ue| = 0, a.c. on the sef{z € Q : |ue| = 0}, and writeue = |ue|e’f’€ whenever

lue| # 0. Substituting this expression into the total energy, which is uniformly bounded
away from the sefx € Q : |ue| = 0}, gives (2.5). Intuitively, the singular part of energy
that contributes tavr Iog comes from the singular part of the phase:6{the sum of
vortex phases). The above three inequalities are valid since they either involve only the
amplitude|u€| or the regular part of the phagg. O

Remark 2.1.Under the same assumptions as in Lemma 2.1, the renormalized energy is
defined as+ a universal constant):

W =W(as, - ,a,)=lim i/ |Vug|? — nlog1/r| ++n, (2.6)
r0 | 21 Jo\ (7, By(ay)

see Bethuel, Brezis andet€in [2]. Hereu, is a harmonic map of the form (2.2). The

W function has the properties thatl — +oo if somea; reaches the boundafg2 or

a; = a; for somej 7 [; otherwise, it is locally analytic im. Due toyn, W(a) is also

local energy minimizing.
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Lemma 2.3. Under the same assumptions as Lemma 2.1, the linear momefitidin
is uniformly bounded i} (£2,), and up to a subsequence if necessary:

loc

plue) = v=V0O, +Vh,, 2.7)
in L} (R,), where
®, =) arg i . (2.8)
— |z — aj]
7=1
Moreover,

2J 4 (ue) dx = curl (p(ue)) de — 0, (2.9)
in the sense of bounded measureg<2,,).

Proof. We see from Lemmas 2.1 and 2.2 thétc) is uniformly bounded in’.! away
from vortices{ay, - - - ,a, }. SinceVue is weakly compact iff}($2,), andue compact
in L?($2,), we have:

plue) =ue A Vue = v=V0O, +Vhg,

in L} (R,). Noticing thatv is a gradient of arf/* function, we have by taking the curl

of p(ue) and the weak continuity of Jacobians with respeditaveak convergence that
2J,c(ue) dx = curlp(ue)dz — 0, (2.10)

in M(2,). Note that/,.(u¢) € L} (R2,). The proof is complete. O

loc

Lemma 2.4. The linear momentum(ue) € LY(2) uniformly ine. Lety € C§(R),
o =z forx € Brplay), ¢ =0, for z ¢ Bg(a;), whereR € (0, o). Then we have
with a; = (&5, ;)

/ Vo - plue) — 2n€;. (2.11)
Br(ay)

A similar convergence holds wittp in place ofzy, n; in place of¢;.

Proof. Theintegralin (2.11) is the projection of the linear momentum onto a divergence
free field. We have from Lemma 2.2 that:| € H(), uniformly in e. Hence|ue| €
L1(2), uniformly in ¢, for anyq < oo by the Gagliardo—Nirenberg inequality. We
shall establish that/u¢ e L¥' (), uniformly in ¢, for p’ € [1,2). Given this fact,
plue) = ue A Vue € L™(R2), uniformly in e for anyr € [1,2). This and Lemma 2.3
imply that:

vl(p - plue) — VJ_(P (VB4 + hy)
BR BR

= V-t Vo,
Br

:/ vﬂp.veﬁ/ 210,0;,
Bel(a]‘) DBE’
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whereBe is a small ball of radius” abouta,;, andd- is the tangential derivative. The
first integral clearly goes to zero &— 0, and the second integral goes te{2 by a
direct calculation. The convergence (2.11) follows.

Now we show thatvu® € LP' (), uniformly in e, for p’ € [1,2), by an energy
argument. It is sufficient to consider a finite neighborhood of a single, say plus one,
vortex. Without loss of generality, we can assume that the essential zefdinside
B(0, ), for somex € (1/4,1/2), and thaf3(0, 1) is insides2 and contains the essential
zero. We have then from Lin [20]:

1
E‘e(’u,g7 B(O7 1)) S m |Og -+ Cl,
€

eo‘/ ee(ue) < Co(a, Cy),
OB(0,6%)
deg(ue/|uel, 0B(0,€)) = L. (2.12)
It follows from (2.12) that there existsta € (1/4,1/2), and a constamp(C4) such that
if € < eo(Ch):
/ GE(UG) 2 m |Og i - COE. (213)
B(0,1)\ B(0,6¢) Oe

In fact, there existée € (1/4,1/2) such thatie — €' ©* in H} (B(0,1)\0); ue —
62(®+h) in Hl(aB(O, 96))1 66 faB(OﬁE) €€(U€) < C(Ol) So«[B(O,l)\B(Oﬁe) 66(”6) < C.
Now as in Lin [20], replace:¢ by the minimizenie of the energny(O Y\BO.6¢) ee(ue)

subject to the Dirichlet boundary conditiafg = ue, on9B(0, f¢), and zero Neumann
ondB(0,1). Such a minimizer satisfiéd:| > 1/2 on B(0, 1)\ B(0, f¢) and that:

1
/ ee(tie) > wlog— — Coe, (2.14)
B(0,1)\ B(0,0¢) e

proving (2.13).
Combining (2.13) and (2.12), we have:

0
/ ee(ue) < 7 log —< + Cy + Ce. (2.15)
B(0,0¢) €
Now we iterate (2.15) to a sequence of bah, ), 7" = g ... g0~ ¢® = g,

and6%'s € (1/4,1/2),n = 1,2,--- , N, whereN is such thar"™) > 2¢. At eachn,
the lower energy bound on the annuli becomes:

1 €
/ 66(U€) 2 ™ |Og W — COW, (216)
BO,rFIN\BOrEY) O¢ Te
and the upper bound is:
(n) n _
/ eeue) < mlog E— + Cy + eCo(1 + > 1), (2.17)
BO,r) € =t

The sum of the second term in (2.17) is bounded by a geometric sum from above since
0@” € (1/4,1/2), and its upper bound is const.¢. Hence the energy upper bound
finally is:
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/ ee(ue) < mlog L +Cy +Cae < wlog - +C1+2C,,  (2.18)
B(0,r) € €

for smalle, andr € (2, 1).
With a similar argument via the energy minimizer, we also have:

!
/ ee(ue) > mlog = — Cy, (2.19)
B(0,r") €

for anyr’ € (2¢,1). Combining (2.18) and (2.19), we infer that fop> 2¢“:

/ celue) < Cs. (2.20)
B(0,2r)\ B(0,r)

Now we bound for any’ € [1,2) (2V*1e* € (1/2,2/3)) using the Hlder inequality:

N
/ Vuel? < / Vuel” +3 / Vel
B(0,1/2) B(0,2€>) j=1 7 B(0,27"1€*)\ B(0,27€*))

p'/2 ,
< (2/ ee(ue)) Cpr 2—p"a
B(0,2€2)

N
+ > e, Cs)(|B(0, 27*2e)\ B(0, 27 ¢)[)~7)/2

j=1

N
< o(1) +e(p', Co)(Bm)CPV/2 Y (e < Co(p', Cs). (2.21)
=1

The proof is complete. [

3. Mobility and Continuity of Vortex Motion

In the previous section, we obtained in Lemma 2.2 the weak limit of solutions based
on the energy consideration. Due to conservation of energy, Lemma 2.2 applies to each
time slice of evolution, and so Lemma 2.2 holds with= a;(t), andh, = he(t, x). In

this section, we shall utilize the conservation of linear momentum to show the mobility
and continuity of vortex motion. With the additional help of conservation of mass, we
also refine the weak limit of solutiome in that we find out how the functioh depends

on vortex Iocation&;s, and that it is harmonic in space. Subsequently, we also prove a
key energy estimate for the later analysis of the defect measure.

Proposition 3.1. The vortices ini do not move in any slower time scale- o(1), as
e — 0. Onthe time scale~ O(1), the vortex locationac ;(t) are uniformly continuous
intase — 0.

Proof. By Lemma 2.1:

n 0
r—a; .
ue(0,2) = [ et
j=1 ‘Jj - aj|
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H 1
in Hj_ .

(Q240) With || ho|| r1¢e) < Co. Let R > 0 be a small numbeRR < 1 Ro, where
Ro = min{|a; — a;l, dist(a;,0R), I,j=1,--- ,n, I Zj}.

Due to energy conservation, the numbgrremains positive for all time. Let be such
thatVt € [0, t¢), ue(t, ) has vortices insidle':lBRM(a?), andt¢ is the maximum
time with this property. In other words, for somigac ;(te) € 8BR/4(a?). By the H*
continuity ofue intime foreachk > 0, suche > 0 exists. We prove thatlimirf, ¢ t¢ >
0.

Suppose otherwise, at least for a subsequeneestill denoted the same; — 0.
Write ve(t, x) = ue(z, tet), then the NLS fowe becomes

. t
e ¢ = te Ave + :Z(l — |ve[?)ve,
and the linear momentum equation:
atp(’l)e) = 2t6 div (V’UG (39 V'Ue) — V(tepe) (31)

The vortices ofve lie in U?:lBRM(a?) for all ¢ € [0,1), and att = 1, one of the
vortices, saye ;(1), reacheSJ{;lé'BR/4(a?). The vortex locations are well-defined up
to a small error 0(¢*°). With no loss of generality, let us assume tha(0) = 0. Let

¢ € C§°(Bp,2), andyp = x1 for z € Bp, 4. Multiplying both sides of (3.1) b+
and integrating oveBp, ,» x [0, 1], we obtain with integration by parts:

. 1
/ V4o - plue)ly = —2te / dt / (Vue @ Vue) : VVL . (3.2)
O0BRy/2 0 OBry/2

The right side integral is in fact oveBy, >\ Br, 4, hence is uniformly bounded by a
constantC independent of. Passing | 0, by Lemma 2.4, the left hand side converges
to 2r(&;(1)—&;(0)). Sincete — 0,&;(1) =¢;(0). Similarly,n;(1) = n;(0), contradicting
the assumption that; travels a distanc&/4 att = 1.

Hencet¢ is bounded away from zero uniformly in Since R can be any small
number, we have proved that vortices;(t), l = 1, - - - , n are uniformly continuous in
t, or the limiting locations:; (t) are continuous ih. As a byproduct, we have also shown
that vortices inue do not move on any slow time scale- o(1) ase — 0. O

Replacingte by t = O(1) in the above proof, we in fact have shown that:

Corollary 3.1. On the time scalé ~ O(1), the limiting vortex locations,(t), are
Lipschitz continuous, whele= 1, - - - , n.

Now let us characterize the functién = h,(¢, z) in:
Proposition 3.2. The functiom,, (¢, z) in the weak limit (2.2) of Lemma 2.1 satisfies:
Ah, =0, z €,
ha,‘r = _®a,‘r +g A gT7 HARS 897 (33)

where®, is given in (2.8). Sa, is unique up to an additive constant, and depends on
time via vortex locationa; (t).
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Proof. By Lemma 2.3 and dominated convergence, for any funatign) € C§°(2.)
ande(t) € C5°((0, 7)), we have:

T T
im, [ o0 [ peon@= [0 [ v@rhane. @

In addition, using the mass conservation law (1.10), we also have:

" o oo = L[ :
o0 [ 69w =5 [Cew [ i
1 T
— 2/9@ wl(x)/o v, (t) =0, (3.5)

where the convergence is due to (2.4) of Lemma 2.2. It follows that the weak limit
of p(ue) is divergence free. It follows thdt, is a harmonic function o2, and is

also H1(2) by Lemma 2.2. Thus, can have at worst removable singularities and is
a harmonic function on the whole domdinh The functionk, then has a well-defined
boundary value, which we identify next.

Let ¢ = 9(t, x) be a compactly supported function in a small regi@lhnear the
boundaryo<; for eacht, supdy} N 92 contains a finite curvey is also compactly
supported inside the time interval,[D], T > 0. Note that near the boundary, there are
no vortices, henc@®, is a single valued function. Let us calculate:

upu) - rds = vptus)-al= [ e @)= | Vo npw)

o’

- lim / 0 A plud) = I / curl (p(ud)) - / eurtp(uc)]
= lim f; ptue)dl'= /8 vl A g, (3.6)

€10

implying that: p(u,) = 0-(0, + hs) = g A g-, On the boundary2 for all ¢ > 0.
Hence the harmonic functidh, is uniquely determined up to an additive constant, due
to integrating the tangential derivative once along the boundary to recover the related
Dirichlet boundary data. Prescribing the boundary magpth certain degree for NLS
implies a boundary force along the tangential direction for the limiting fluid motion. We
complete the proof. O

Proposition 3.3. Lett > Oandue = ue(t, ) be as in Lemma 2.1, with vortex locations
(az,az,- - ,ay). If for somewy > O:

lim sup (Ee(ue) — mnlog 1) < 7 W(a) + wy,
€

€—0

then for anyr > 0, there is a constan® independent of andr such that for any > 0:

Pe(ue) _

lim sup el
Ue

€—0

< Cuwo, (3.7)

LAQ\U™, By (a)))

"T Sélpll Vuel ||2L?(Q\U(ilB,,.(aj)) < Cuwo. (3.8)
— 7=
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Proof. We first lete;, — 0 such that

H 2 — i 2

“T_il;'pﬂ Vuel ||L2(Q\U;1Br(aj)) = llg:igpll Vlue, | HLZ(Q\U;ﬂBT(a]»))'
By Lemma 2.2, we can assume without loss of generality that

H}, () (6
ue’c loc’ e’L((){,ff‘h)7

for someh € HY(). Heree'®« =[]}, % Hence
J

Pe (ue,) Lioe(a)
|u€k |

V(O, + h).

For anyp > 0, then
Ee, (uey Q\UleBp(aj))
1
2/ 1V uee] P+
Q\U_;;1Bp(aj)
1
2/ V]ue, | P+
Q\UJL,Bp(ay)

1
vl / V(O + B2 dz + o6, (1), (3.9)
2 Je\un, Byay)

S|
212
+2761%(1*|U6k| )1

2

Dey, (U‘Gk)
|u€k|

pEk (Uek)
‘u€k|

Y

—V(®, +h)

hereoe, (1) — 0 ask — oo. Next, we letue, (h, p) be such thatie, (h, p) = ¢/©*") on
Q\UL1B,(a;); and on eaclB,(a;), ue, (h, p) is a minimizer ofE¢, on eachB,(a;)
with boundary value’©«*"). We choosep € (5,r) so thatue,[sp, — €©*) in

HY0B,(ay)) for j = 1,--- ,n, by taking the subsequence @f as needed. Then it is
easy to see by a simple comparison thatjferl, - --  n:

Ee, (ue,,, Bp(a;)) = E(ue, (h, p), By(az)) + o(p, ex),

hereo(p, ;) — 0 ask — oo. Therefore

T W(a) + 06, (1) < Fe. (e, (hy p)) — 71 Iogé

1 1
< Be(ve) —nrlog - vop) —5 [ [Vl P
Q\UL, B, (a;

2,
2 Q\U'n—lBo(aj)

j=

2

Pe(ue,) V(O, +h)| dz. (3.10)

‘u€k|

SinceE¢(ue,) — mnlog é < 7 W (a) + wop, we thus conclude that

lim / |V|ue, | |? < 2w, (3.11)
Q\U},Br(a;)

€,—0
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which implies (3.8) and that

2

lim sup prelten) _ o+ m)| < 2, (3.12)
€x.—0 Jo\UZ, B,(ay) |ue, |
We observe now i€, — 0 is so that
2
lim / Pey(uey) dr,
€,—0 SZ\U}":lBr(aj) |u€k‘
is the left-hand side of (3.7), then by (3.12):
(we)  [*
lim sup beltle —v‘ da:§4wo+2/ IVh — Vha 2.
€0 JQ\UL, B, (a;) |uel Q\U™, Br(a;) (3.13)

Herev = V(O, + hy).
Now we show that

|Vh — Vhe|? < wo.
Q\U7, By (ay)

To do this, we observe that forga> 0 with

2
/ VAP < 2 / whede < &,
aB, P J By \B, 2 P

we have p
Ee(ue(h. p). Uj1 By(a;) = mnlog = +yn + ofp, ).

This follows from an easy energy estimate, see [22]. Hépee) — 0 ase — 0*. This

implies in turn that

1

Belueh ) U Bl =5 [ V@A)
QUL Bp(a;

1
< 7W(a) — yn +wp + o(p, €) + nmwlog —.
p

On the other hand, we have:

1

whereo(p) — 0%, asp — 0. We also note for anf ¢ H*(Q):

/ |V(®a+h)|2d:c:/ VO, |2+ |Vh|?
Q\UL, B,(aj) Q\U}L, Bp(aj)

BLS) " — 90
+2/ 4. h-2 / (h — h)—2,
oq OV ]z:; 0By(a;) on

(3.14)

7/ V(O + ha)|? = mlog} +nW(a) —yn+o(p),  (3.15)
2 Q\U, By (ay) p

(3.16)
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where the lastterm is bounded by co@gzl p 55 |Vh|, which goesto zero as— O.

By sendinge — 0, thenp — 0, we therefore obtain by combining (3.14), (3.15), and
(3.16) that

/|Vh\2§ / |Vha|? +wo. (3.17)
Q JQ

Inequality (3.17), along with the fact that, is harmonic, anth|sq = he|oq, Yields
Jo IV(h = ha)[? < wo. The proof is complete. O

We end this section with an interesting conjugation property of the regular part of
the vortex phase in terms of the renormalized energy fundtiotNear each vortex;,
write the weak limit ag? 9¢—)*H; whereH, is harmonic. Then:

Lemma 3.1.
o 0H; ‘ 0H; _
Va,W(a) = 2n; (_3x2 (@), R (aj)> . (3.18)

For a proof, see [2] (Theorem 8.3).

4. Convergence to Incompressible Euler Equation and Vortex Motion Law

In this section, we use continuity of vortices, the weak convergence and the precise
form of the weak limit discussed in the previous sections to pass the linear momentum
equation (1.11) to the incompressible limit on the punctured dofgjrand show that
the limiting equation is the two dimensional Euler equation. We show properties of
defect measures and total pressirio finish proving Theorem 1.1. We then establish
the Kirchhoff law for vortex motion based on the limiting projected linear momentum
equation. Finally, we show strong convergence of the linear momentum under the initial
energy almost minimizing assumption.

Let us write the linear momentum equation in component form:

pm(uﬁ)t = 2(u€,mm : ue,xj):rj - PZIZm7 m= 17 2. (41)
Direct calculation shows that ffic| > 0 then

- pm(Ue) Z'UE
€T = T
o lue|  [uel

u
+ \udxmlu—;. (4.2)

Note that Vue| = 0, a.e, on the sef |ue| = 0}. Hence, we only need to consider the set
{|u€] > 0}. It follows from (4.2) that

_ pm(u€) : pj(UE)

Ue,x,, " Ue,z; = + |u€|l‘m |u€‘1’j

|uel?
= (pm(ue) - Um) (pj(UE) - Uj) +|uel,, [uela,
|uel |uel
+vmpj(ue) + jpm(ue) T (4.3)
|uel |uel

Note tha’[|||u6\_1p(u€)HL§ @) < C, for a positive constant independent gfand
t € [0, T]. Hence|ue| ~1p(ue) is weakly compact in.2(2, x [0,77]). Since|ue| — 1
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in L?(Q, x [0,T7]), the weakL(2, x [0,77]) limit of p(ue) equal tov = V(O, + h,)
coincides with the weak?(2, x [0, T7) limit of |u¢|~1p(ue). It follows that

pj(ue) R P (ue) N

m mUj, Uj UjUm 4.4
|ue| 7 uel ’ o
in L*(2, x [0, T7).
The product terms
(pm(ue) — Um> (pj(ue) — 'Uj> +|uels,, |uels; = Hm.j, (4.5)
|Ue‘ |u€‘

as measures to a symmetric tensorial meagyre € M(2,). We prove:

Proposition 4.1. The defect measufe= (u.,;) is a finite mass Radon measure on the
domaing. Its divergenceliv(i.,, ;) is curl free in the sense of a distribution, and can be
written into VP, on Q,, whereP, is a distribution function well-defined on the entire
domaing2,. The weak limit is a solution of the incompressible Euler equation:

v =2v-Vu—2VP, divv=0, Ve Q,,
where the total pressur2P is a single-valued function, and smooths .

Proof. That the defect measuge > 0 is a finite mass Radon measure on the entire
domaing2 follows from Proposition 3.3. Let us take € (C5°(R, x [0, T)))?, divyy = 0,
form the inner product ofy with both sides of the linear momentum equation (1.11),
and integrate by parts to get

[0+ [ [ vipuo - 20uc o Vu) : v =0

Passing to the limit, we get

/w(o, z)® + //wtv —2w®@uv+p): Vi =0. (4.6)

In particular, we chooseg to be of the form:
¥ = al)(~Payr Pay) = AV, (4.7)
wherep € C§°(2,), «(0) = 0. Then due te being curl free orf2,, (4.6) reduces to
//a(t)u i VV1p =0, (4.8)

which means that the weak divergence of the meaglisea weak gradient away from
vortices, hence can be written locally into a gradient of another distribution, by an
approximation argument. We deneat& 1« = VP, P, is a local distribution for now. It
follows that (4.6) reduces to

/w(o, )0+ / / P — 2w @) : Vip = 0. (4.9)

Sincewv is harmonic inz and Lipschitz continuous in time, it is easy to bootstrap on (4.9)
to show that is smooth in ¢, ¢) € @, x (0,7). We can now write (4.9) into the strong
form of the Euler equation:
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v, =20-Vu—2VP, ze€Q, dvu=0,v0,z)=x) (4.10)

for some function 2 locally defined ort2, x (0, 7). Taking the divergence of (4.10)
givesA P = div(v - Vv). Thatw is harmonic in2, then implies tha® is smooth inQ,,.
Using (4.10), we see that the integral around each vortex:

P _1 - -
7/ 8—=77{ vt-dlf% v-Vou-dl.
BBR(aj) 89 2 SBR(aj) (')BR(aj)

By the form of weak limitv, the circulation ofv; is zero. The circulation of the - Vv
term is also zero by a direct calculation with= V(©, + h,). First we note that
curl(w-Vuv) =v - Veurlv =0,z € Q,. Hence it is enough to calculate the circulation
on a very small circle aroung; and show that it goes to zero as the radius of the circle
goestozero. Let; = (¢;,7;), andz = (¢, 7). LetuswriteH = ©,+h, = arg‘i:Zj‘ +H;

and so

i —(n—nj)
He = (Hy)e * €= &P+ —n)*
H,y = (1), + — %) (4.12)

(€= &)+ —m)*
and below we denot®¥ H; = (I, I1). Noticing thatl, + I1,, = AH; = 0, we have

2w
% v-Vo-dl = / R[v - Vui(—sinf) + v - Vv, cosd]do
8Br(aj) 0

27
= / R[(I — R™*sind)(I¢ + 2R~?sinf cost)(— sind)
0
+(IT + R~*cosf)(I,, — R~2cos D)(— sinb)]
27
+ / R[(I — R™*sind)(II — R~ cos P) cosy
0

+(IT + Rt cosf)(I1, — R™?sin 29) cosh]dd
2w
= | [esin?0+11,cos 6]do + O(R)
0
= n(Ie(a;) + I1,(a;)) + O(R) = O(R) — O. 4.12)

Thusthe total pressurd”ds a well-defined single-valued function over the whole domain
Q. It consists of the defect pressure fregnand the contribution from the original NLS
pressure.

Finally, we show that the defect pressurg is a well-defined distribution og2.
For) = 4(r), supported in the annulug(a;(s))\ Br/2(a;(s)) = Br\Br/2, it follows
from the linear momentum equation fonears that

d /B o M) =2 / Ve & Vue : V(wr),

dt Br\BR/2

where the NLS pressure has zero circulation and is removed. Pasgifigand using
the fact that - Vv has zero circulation as proved above, we have
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02/ (;L+U®’U):V(1/)T):7/ (divp+v - Vo) - (1)
Br\Br/2 Br\Br/2

R
OP

= [ aret) | S
R/2 oB, 00

implying thatfaB ae“ = 0 for anyr > 0, henceP, is a well-defined distribution on
Q.. The proof of the proposition and also that of Theorem 1.1 is completel

Proof of Theorem 1.4.et us consider the time interval, | + £], with & small, and the
ball Br = Bgr(a;(t)) inside the annuluQRo/z as in the proof of Proposition 3.1. The
numberR is much smaller thaikg and is large enough to contain(s), s € [¢,t + k].
For example R = Ck, for a suitable constart’ depending on the Lipschitz constant
of a;. Proceeding as in Proposition 3.1, wittF z; in Br(a;(t)) and supported inside
BRO/ZI we find:

[ v estuat
Bry /2

t+k
= —2/ ds/ (Vue ® Vue) : VV* @
t BRD/Z\BR

t+k
— 2/ ds/ —(n+v®0v): VVLe. (4.13)
Bry/2\Br

Herep € M(Q) andv ® v ¢ L*(R2). As in Proposition 3.1, the left hand side of (4.13)
converges to 2(§;(t + k) — &;(2)).
For the right-hand side, we calculate the second term in (4.13):

/ ds / —(v®v): VViep
s Bryy2(a;(s)\Br(a;(s))
= / ds / v-Vo-Vip
Js Bryy2(a;(s)\Br(a;(s))
stk
7/ ds/ (wav): (vent)
s OBRr(a;(s))
stk
=/ ds/ (v-Vu-vt)(n-x)
s 0BRr(a;(s))

stk
+ / ds / —(v®v): ent), (4.14)
s OBRr(a;(s))

wheren = (1,0) andv is the normal direction a¥ Br(a;(s)).
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Let us calculate the inner part of the first integral of the right-hand side of (4.14) as
follows:

27
(& ()R + R? cost)[v - Vui(— sind) + v - Vv, cosd]dd

27

= (& ()R + R?cosH)[(I — R™*sind)(I¢ + 2R~?sind cosh)(— sind)
0

+(IT + R~*cosf)(I,, — R~2cos D)(— sind)] df
27
+ (& ()R + R?cosH)[(I — R™*sind)(II; — R~%cos D) cost)
0

+(IT + R™*cosf)(IT, — R~?sin 29) cost]do

2m 2w
= —I/ 2(sind cosd)?dl — I/ cog f cos Bdh + O(R)
0 0
2
=T / cosf = —nl. (4.15)
0

Similarly, the inner part of the second integral of the right hand side of (4.14) also
contributes—= 1. Therefore dividing byt and lettingk — 0, we have from (4.13)—
(4.15) thatt; = —2H ¢ + f;1(n). With a similar equation for;, we conclude that

ay = =2VH; + f;(u), (4.16)

wheref;(u) is a possible correction due to the defect meagutdsing the conjugation
of H; with the renormalized energy, we rewrite (4.16) into

aj =n;JVa,W(a) + f; (1), (4.17)

_(0-1
1=(2%)

W(a) = - mnj;log|a; — a;| + boundary contributions
=

The Kirchhoff law follows if f; (1) = 0, which we show below under the energy almost
minimizing assumption.

Since the Kirchhoff law may encounter finite time collapse for signed vortices, the
validity established here applies also to any time prior to the collapse in the signed vortex
situation. O

where

and

Proposition 4.2. Under the almost minimizing initial energy assumption, we have

p(ue)
|uel

—v—0, V]ue| = 0,

in L?(R,), and the defect measure= 0. The Kirchhoff law holds.
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Proof. For simplicity, let us consider vortices of the same sign plus onealet="
JVg,W(a), a(0) = a(0); and define

m(t) =Y la;(#) - a;(1).
=1
Take a small time interval € [0, 5] so that|m(t)| < 4, with § a small number to be

selected. Lipschitz continuity ofi iImplies that it is differentiable a.e. in We have

(1) < 3 Ja(8) — a0

571

< () = TV W@+ Y IV, W) — IV, W)

j=1 j=1
< z": |as(t) — TV, W(a)| + Cm(t). (4.18)
j=1

As before, consider the time interval { + k], with k& small, and the balBr = Br(a;(t))
inside B, /». Proceeding as before, we find

LHS = V+ o p(ue) [t
Bry/2

t+k
=2 / ds / (Vue ® Vue) : VVE
t Bry/2\Br
t+k T
:—2/ ds/ v®p(u6)+{v®p(u6)} —v®uv | VVip
t Bry/2\Br |uel el

b p(ue)
seaftaf ()

® (p|(:[/€|) - U) +V‘U6| ®V‘U6|] . VVLQO
€

= RHS1+ RHS5. (4.19)

Now the almost minimizing energy assumption gives:

E(ue)

nmlog % + W(a(0)) +0o(1)

nrlog % + W (a(t)) + o(1)
< nrlog % + W (a()) + Cm(t) + o(L). (4.20)

SelectingdC < wo € (0, 1), we infer from Proposition 3.3 that for alle (O, ¢ ):

el Ul 2B gy 2\ Bry < Cam(t),
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and

lim Séjp||v|ue|”L2(BRO/z\BR) < Cym(t). (4.21)
€—

Passing — 0in (4.19), then dividing and sendirig| 0, we get ¢ = (&, 7)):
LHS — 27&i(t), RHSy — 2rJWe (a(t)).

In view of (4.21), we have from (4.19) thig{;(t) — JW¢, (a)| < Com(t). With a similar
estimate om; (t), we getla’;(t) — JV,, W(a)| < Com(t). Itfollows thatm'(t) < Cm(t),
with m(0) = 0, hencen(t) = 0 for allt € [0, ¢5]. Induction in time shows(t) = a for
all't > 0. Hence the Kirchhoff law holds with strong convergencedndV|ue|. The
proof is complete. O

5. Zero Neumann and Other Boundary Conditions

In this section, we comment on all necessary modifications in the proofs of previous
sections to establish similar results for the zero Neumann case, the entire space case,
and the periodic case.

For the Neumann boundary case, thein the weak limit is harmonic and satisfies
the boundary conditiom, , = —©, ... The resulting renormalized energly goes to
—oo if one of the vortices goes neadf2. To establish a uniform bound ¥, we proceed
by first showing the vortex continuous motion in time, then using the dynamical law to
deduce that the renormalized energy is conserved. Thus the vortices never come close
to each other or to the boundad§2 since initially W is finite. The energy arguments
can be modified as in Lin [22] and [23]. What remains is the treatment of the boundary
value ofh,,.

Let us derive the Neumann boundary conditiomgnFirst, near the boundagf2,

. . . . . 7€
there are no vortices by induction in time. So we can wifte= p€e?* ", where bothp®
and H¢ are real functions. Direct calculation shows:

pu®) = (p°PVH,
p(uf) - v = (p5)2HE, €. (5.1)
Similarly
uS = (of +iH e,
and so zero Neumann boundary condition (1.3) says
pE =0, HE =0, 0%, (5.2)
implying in view of (5.1):
p(u®)-v=0, 9Q,Ve>D0. (5.3)

Lett) = o(t, x) be a compactly supported function in a small region near the boundary;
for eacht, supp{v'} N 92 contains a finite curvey is also compactly supported inside
the time interval [0T], T > O.
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Due to divp(u,) = 0 onQ2,, we have using (5.3) and mass conservation:
| wptud-v= [ s vo=im [ - ve
o9 Qa €0 /g,
=— éiLnO /sza div p(u€)y = —% éiLnO /sza [u|2y, (5.4)

which upon integration over [Q"] and integration by parts gives

T 1 T _
L[ optud-v=gim [ /Qa|u”wt—o. (5.5)

It follows from arbitrariness of) and smoothness @f(u,) thatp(u,) - v = 0 0N 9L,
which is just the desired boundary conditibp, = —©, ,. Physically,h, plays the
role of correcting®, on the boundary so that there is no flow into the wall.

Let us turn to the entire spaf case and the periodic case. For these two cases, we
assume that the sum of degr@§=l n; = 0 (zero sum condition). Under this condition

and thatu¢(0, ) convergesto a constaif® atz = oo sufficiently fast, the total energy

E¢ on R? remains the same asymptotic expressimdog% + O(1). Otherwise, the
energy is infinite, and one has to look at the energy distribution over finite domains
to locate vortices. The analogous problemRhwith infinite initial energy has been
solved recently for the Ginzburg—Landau equation in Lin and Xin [24]. When the sum of
vortex degrees is zero, the harmonic functtgrhaving a finiteL2 gradient oveiR? is a
constant. The renormalized energy simplifie$itg: = — nyn; log la; — ajl, free

of boundary contributions. The zero sum condition is neec?ed in the periodic case in order
to maintain the boundary condition for solutions containing vortices. The renormalized
energy is similari,, = — Zw nn;G(a; — a;), with G the periodic Green’s function

for the Laplacian on the two dimensional torus(f = 27(dp — 1)).

6. Vortex Motion Law of a CGL

In this section, we apply our method to establish the vortex motion law of a related
complex Ginzburg—Landau (CGL) equation:

)
log & ¢

whereé > 0 is a fixed positive number. We shall only consider the Dirichlet boundary
condition (1.2), with extensions to other boundary conditions the same as remarked in
the last section.

The energy conservation is

d o
i etz = o [ e, 62)

which implies via Lemma 2.1:

5u€t
T dx < Co, (6.3)
o logl z

—quet tiuer = Aue t e 21— |Ue|2)ue; (6.1)
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and energy concentration:

ee(ue)(t, ) dz

Le(t, x) =
/6( ) W'Og%

— ult, ) = Z Oa(t)- (6.4)
j=1

It follows from (6.3) thata ;(¢) are Lipschitz continuous iffor anyé > 0, see [20, 22]
for details.
The conservation of mass is now

. )
O|uel® = 2divp(ue) — T Ue N\ Ue t, (6.5)
log ¢ ’
and the conservation of linear momentum is
. 0
Oip(ue) = 2div(Vue ® Vue) — VPe — log 2 uet - Ve, (6.6)
€
with the pressure
_ 2 lue[* — 1 4
PE - |VU/6‘ + Ue - AU/E — 262 — Iog%UE + Ue t- (67)

We observe that

L1“6 Auey — 0, LY[0,T]; LX),
log ¢

by (6.3), and similarly

kjglue’t . VUe — 07 Ll([O, T], Ll(Qa)).

€

Using the same arguments as before for NLS, we deducethdt — v satisfying the
Euler equation oif2,; moreover, the vortices;(t) obey the same Kirchhoff law as in
Theorem 1.2. Since the results are independeidt ofe have as a byproduct another
proof of continuity and the dynamical law for NLS vortices sendingO.

7. Semiclassical Limit of NLS

In this section, we consider the semiclassical (WKB) limit of NLS:
€ives = € Ave + (1 — |ve|?)ve, (7.1)

with the Dirichlet boundary condition (1.2) and initial data satisfying (1.5). The case
when there are no vortices in solutions (uniformly bounded energy|a3), has been
studied in Colin and Soyeur [4]. Here we are concerned with the case when there are
vortices. We show:
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Theorem 7.1. Suppose that the initial data

0e(0,2) = [ e,
L | — ay
J=1
weakly inH(Q,), h(z) € HY(R), and that% — 0in L3(Q), for any compact
subset?’ of Q,. Then there is no vortex motion at a later time and

n r — aj .
’Ue(t, Qj) N H J 7th(tﬂﬁ)’ (72)
=1

(&
o — ay]

where the phase function(t, z) € H*(2) and is the weak solution of the finite energy
of the following initial-boundary value problem of the linear wave equation:

hy —2Ah =0, z€ Q,
h(t,x) = h(z), =€ 0%,
h(O,x) = h(x), h0,x)=0. (7.3)

Proof. By Proposition 3.1# = ¢), we know that vortices do not move on this slow
WKB time scale. By Lemma 2.1 and Lemma 2.2;

ve(t, z) = H meih(wﬂ)7 (7.4)
=1

1o —a
whereh(t, ) € H'(R) for each time. The conservation of mass is now
(1‘6|Ue|2> + 2divp(ve)) = O, (7.5)
t
and the conservation of energy implies
g.z/ [Vve|? + /Q % < (o, (7.6)

whereQ' is a compact subset 6f,, Cy a positive constant independenteoft follows
thatve is bounded in.>* ([0, T; HY(R')); ve,. bounded inL>*([0, TT; H (")) in view
of (7.6) and (7.1); anéll_lgielz) bounded inL>°([0, T, L?). Sowe is strongly compact in
C([0, T], L3(')) and weakly compact i, >°([0, T, H(2)). Up to a subsequence if
necessaryse — v strongly in L>°([0, T; L3(2)) and weakly inL>°([0, T7; HX(Q')).

In the meantime, (7.5) gives:

1—|vel _

1- |v€(07 I)|2 N
€ €

-2 /0 div p(v)(t') dt’,

_ d v A /
2 /O v p(ve)(t') i’ + -

in the sense of the distribution 6ti. This then allows us to pasg, 0in (7.1) and obtain

t
v = —ZU/ div p(v)(t') dt’,
0
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in the distribution sense of’. Also |v| = 1, im0+ v(t,z) = h(z) in L*(Q’), and
lim¢yo- v (t, 2) = 0, in H=X(Q'). Writing v = ¢*# shows

t
H, — 2/ AH)dt' =0, zeQ’
0
and further lettingd = ©, + h(t, =), with ®, harmonic orn®’, yields
t
hy — 2/ Ah(t)dt' =0, xze€ (7.8)
0

or by arbitrariness of2’:
hy —2Ah =0, D' (R, x[0,T]). (7.9)

Itfollows thath is a distribution solution of the linear wave equatiorton The boundary

datah(t, ) = h(z),z € 9L, follows fromve — vin H®, s € (1/2,1), near the boundary
and the standard trace imbedding. Finallft, z) € H(2) implies thath is the unique

weak solution of (7.3) with finite total energy. The proof is completel]
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