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Abstract: We prove an inequality for the gain term in the Boltzmann equation for
Maxwellian molecules that implies a uniform bound on Sobolev norms of the solution,
provided the initial data has a finite norm in the corresponding Sobolev space. We then
prove asharpbound on the rate of exponential convergence to equilibrium in a weak
norm. These results are then combined, using interpolation inequalities, to obtain the
optimal rate of exponential convergence in the strbhgorm, as well as various Sobolev
norms. These results are the first showing that the spectral gap in the linearized collision
operator actually does govern the rate of approach to equilibrium for the full non-linear
Boltzmann equation, even for initial data that is far from equilibrium.

1. Introduction

This paper concerns the large time behavior of solutions of the Boltzmann equation for
Maxwellian molecules in the case of spatially homogeneous initial data:

210 = QU 1. (1)

Here,f (v, t) is the probability density for the velocity space distribution of the molecules
at timet, and@, which represents the effects of binary collisions, has the form:

QL) [ B (0.0-0/a) [fndatw) — S)ow)]cwen. (1.2

In expression (1.2)) is a unit vector, andn denotesnormalizedsurface measure on
the unit spheres?. Moreoverq = v — w is the relative velocity, and iq - n, the dot
denotes the usual inner product. The vectgrarameterizes the set of all kinematicly
possible (i.e., those conserving energy and momentum) post—collisional velogities (
andw;) by
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1
Vi = E(V tw+ qn)a
1 (2.3)
wy = E(v +Ww — gn).

The relative likelihood of these kinematicly possible outcomes depends of course on
the nature of the interaction between the molecules, and this is taken into account in
the rate functionB. Maxwell found that when this interaction is through-ar? force

law, B depends only on the scattering an@lie cosf = q - n/q, and not ory itself. By

a Boltzmann equation for Maxwellian moleculege mean throughout this paper one

in which the rate functiorB has this simple fornB(cosf). We shall further suppose
during most of our analysis tha&t is integrable:

1
/ B(u)du :=b < . (1.4)
-1

This conditionis notsatisfied for the actual rate function Maxwell considered, i.e.,
that one corresponding to arr® force law. In this case, the integral above diverges
due to a singularity at = 1, i.e., for small angle collisions. The standard strategy is to
“cut off” these small angle collisions so th&t becomes integrable, and then to seek
estimates, that are independent of the cut-off.

When (1.4) does hold, one can sglitf, f) into its “gain” and “loss” term&)(f, f) =
Q*(f, )=Q~(f, f). One easily sees (singds a probability density) tha®—(f, f)(v) =
bf(v) so that the Boltzmann equation can be rewritten

o F D+ D1 = Q' ) 15

This equation has been extensively investigated, and much is known. In particular,
existence and unigueness have been established, and moreover, it has been shown that,
given enough moments for the initial density, the convergence is exponential in the
strongZ* norm [Ar88, We93]. However, existing results provide little or no information
on what the rate of this exponential convergence might be. This is significant for the
following reasons.

The unit time scale relevant for Eq. (1.1) is the mean time between collisions. This
time scale is much, much shorter than the time scale governing macroscopic transport
phenomena, so that it is commonly believed that (1.1) governs the rate of approach to
local equilibrium even imon-homogeneoisettings. There is a natural conjecture as to
what this rate should be, which one obtains by linearizing the collision ké&y¢élf).

That is, letd ¢(v) be the Maxwellian density

M;y(v) = (6rT)~*/2exp(~|v — u|?/6T),
= d3v
! /}R VP, w6

3T=/. v — ul2f(v)d3o.
R3

Then, M/ is the equilibrium solution of (1.1) towards whicf(-,¢) tends, and is, of
course, independent of M.,y = Mjy(. o) for all ¢ since the temperaturE and bulk
velocity u in (1.6) are conserved.

Without loss of generality, we may suppose that our initial data is suctithai
andu = 0, and we shall simply writd/ for M in this case.
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At this point losing generality (for the moment), suppose that the deffidiys the
form

f(v,t) = M(v)(1 +eh(v, 1)) 1.7)
for some functiorh with
/ |h(v, 0)]2M (V)dv = 1 (18)
R3
and some small number Inserting this in (1.1), one obtains
0 1
ah(v, t) = Lh(v,t) + eM(v) Q(Mh, MR)(v). (2.9)

Here,L is the linearized collision operator:

Lh(v) = (Q* (M, Mh)(v) + Q* (Mh, M)(v)) — /R Mh(v)dv — h(v). (110)

M(v)

Observe the is self-adjoint on the Hilbert spad¢ with norm

IhiB = [ | IoZareods. (111)

The natural conjecture is thitte spectral properties af govern the rate of approach
to equilibrium inL? for solutions of (1.1)

Now, the spectrum of has been computed [WU70], and the following facts are
well known: £ is negative semi—definite oK with a five dimensional null space due
to the conservation of total probability, bulk momenturmand temperatur&. The
remaining eigenvalues are discrete and strictly negative, and, in particubgrdenote
the absolute valuef the first of these eigenvalues when they are arranged in order of
increasing magnitudes. Thgis the “spectral gap” of the linearized collision operator.

A concise statement of one of our main results is the following:

Theorem 1.1. Let fp(v) be initial data for (1.1) with Maxwellian collisions. Suppose
that the bulk velocity = 0, and the temperatur@ = 1. Lete > 0 be given. Then there
is a numbem depending only oa so that whenever

/ V2 o)y + / P o2 < oo
R3 R3

then it holds that
IFCot) — M][p2 < Coe@m9at

Here,\; isthe spectral gap of the linearized collision operaf@tdenotes the Fourier
transform offy, andC. is computable in terms of the integral specified above.

This result will be reformulated in more detail later in the paper, where in particular,
we shall specify the relation betweene andC.. Here in the introduction, we wish to
focus on a few key points.

First, transport coefficients for a rarefied gas, i.e., the bulk and thermal diffusivity,
may be calculated in terms of the eigenvalue£ ef assuming that this operator really
does control the trend towatdcal equilibrium This is not yet proved.

In fact, until now, it had not even been proved tifatjoverns the rate of approach
to equilibrium in the spatially homogeneous case for initial data far from equilibrium.
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Cercignani, Lampis and Sgarra [CLS88] have proven an inequality for the non-linear
termin (1.9) which shows this for initial data that is in a sufficiently small neighborhood
of equilibrium, but for reasons we will now explain, the treatment of initial data that is
far from equilibrium is delicate.

This may be surprising to those who are encountering the problem for the first
time. After all, we have said above that it is known thdt-, t) — M||;. tends to zero
exponentially atsomerate, so what can prevent it from eventually entering a small
neighborhood of\/ in which £ dominates the remaining evolution, with its spectrum
governing the asymptotic speed of convergence?

The answer lies with the meaning of “small neighborhood”. The opeatsiself-
adjoint on the Hilbert spack, and the requirement ofiis that if we writef = M (1+h),
then||h||x < € for some sufficiently small numbeg. Stated in terms of, this is a
requirement that

[f(v,t) — M(V)]?

3
5 T dv<e (1.12)

should be sufficiently small. This requires more control on the tail of the distribution
f(v, 1), uniformly in ¢, than is available. If it were known that for some valuwith
1/2<r<1,

sug/|fW¢»%w*de%w<c, (113)
t>0 JR3

then the eventual validity of (1.12) would follow from the decayi|¢f:, t) — M||:.
However, it remains an open problem to establish (1.13) for any reasonably general
class of initial data — even, say, for initial data with compact support. This is true despite
the fact thateach individual momerdf f will remain bounded, uniformly in time, in
terms of the initial value of that moment. In short, the lack of sufficient control on the
tails of the distributionf (v, ¢), uniformly in time, is a significant obstacle in the way

of establishing the relevance of the spectrunah H to the rate of convergence to
equilibrium for (1.1).

We overcome this obstacle here by establishing a propagation of smoothness result
for (1.1). This follows from an inequality on the gain tet@i which is of independent
interest, and indeed has already been applied in another problem in [CELMR96]. To
state the result concisely, we introduce the Sobolev space riprihs by

11 = [ e e

for all £ > 0. Our convention for the Fourier transform is that
fe )= /]R e Ved,

We recall that the entropy of, H(f), is defined by
1=~ [ 1 e,

The key inequality enabling us to bound th&tHorm of solutions of (1.1) uniformly in
time is the following:
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Theorem 1.2. Let f be any probability density oR with unit variance, and| f |4~
finite. Then, there are universal constants < co and K,,, > 0 so that for all suchy,

1Q* (NEm < (/2 fl[am + Crm (1.14)

whenever
H(Mf) _H(f) S Km-

We shall later reformulate this inequality in more detail, and in fact a better form, with
explicit determination of the constants. For now we observe that as sad@/ds) —
H(f) < K, holds at some timg, it holds at all succeeding times sin& f) is strictly
increasing for non-equilibrium solutions of (1.1). Then if we defiifg by

o) = 1/, 1)

2
Hm

it easily follows that

d 1
&qb(t) < _Ed)(t) +K forallt >t

with the consequence that
¢(t) < max{¢(to), 2K} for all t > to.

Hence, once one has a boundignwhich can be obtained from entropy production
bounds [CC94], it is a simple matter to boun(ty) in terms of(0). In this way, we
obtain uniform bounds on the"norm of solutions of (1.1).

We shall apply this by using an interpolation inequality to bolififl, £) — M ¢(-)|| .+
by the geometric mean of weak norm bound fi{n t) — M¢(-), which decays at the
required rate, and the™bound on this quantity which stays bounded above uniformly
in t. Since, fom large enough, we shall be able to takeéitrarily little of the H"™ norm
in our geometric mean, this leads to Theorem 1.1.

Clearly then, a crucial role is played by this weak norm convergence, which is ob-
tained by further pushing the development of a recent method for obtaining exponential
convergence for Maxwellian molecules in certain weak norms [GTW95]. To show that
the convergence in these weak norms is taking place at the rate suggested by the spectral
gap in the linearized collision operatdr we must work with a particular choice of these
norms, outside the range originally considered.

Namely, define the nor- || by

NG
lol = sup i

This norm is well defined and finite on the space of integrable functjosisch that

Jgs V[*Hlg(v)|dPu < oo, and [os P(V)|g(v)|d®v = O wheneverP(v) is a polynomial of

total degree three or less in the components. dthis space does not inclugé, t), or

any probability density for that matter, but it does incluyde t) — My () — S(-, t), where

S is a subtraction term taking care of the first, second and third moments. Because of
known results on the explicit exponential convergence of all of the momelfitodhose

of My, itwill be easy to show thgtS(t)|| .: converges to zero at faster than the required
rate, and thatS(t)||4~ remains bounded uniformly in time. Thus, as far as eithefthe
norm or the H* norm are concerned, boff{(-,t) — M¢(-) — S(-,t) and f(-,t) — M(:)

have the same decay and boundedness properties. Concerning the former, we have the
following theorem:

(1.15)
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Theorem 1.3. Let f; be a probability density with, [v|* fo(v)d®*v < K, and lete > 0
be given. Then there are constafsand C' and a functionS(-, t) such that

I£Cot) = Mp() = SC, )] < Bte™ M| £(-,0) — M(-) — S(, 0)]
for all ¢ > 0, and with|| f(-,0) — M;(-) — S(-,0)|| < oo, such that for alim,

e (ISC, D + 1S #)]

H) <(C, forallt>0.
Here A, is the spectral gap of the linearized collision operator.

Again, a more explicit version will be provided later. To combine the second and
third theorem to prove the first, it is only necessary to use an interpolation inequality of
the form

If = My = Sllza < Cellf = My = SIF(If = My = S|ffim (1.16)

which holds for any > 0 providedfy, and hencég (-, t) — M ¢(-) — S(-, t) has sufficiently
many moments and belongs td"Hor m sufficiently large. Theorem 1.2 (and part of
Theorem 1.3) says that thie |y~ terms stay bounded, and Theorem 1.3 says that the
other norm is decaying at the desired rate.

The methods will actually yield more: we can also prove convergence in Sobolev
norms for sufficiently smooth and rapidly decaying initial data, again at the exponential
rate given by the spectral gap in the linearized collision operator.

We now briefly discuss related results in the literature. The result most closely related
to Theorem 1.2 is the estimate of Lions [Li94]. In particular, in presence of smooth
kernelsB that vanish for small and large relative velocities, uniformly in the argument
g - n/q, the gain term has been shown to possess a regularizing effect

1Q(f, )l < Cllfll 2 llg]lre- (1.17)

The main application of the above result was to prove propagation of stténg
compactness for renormalized solutions of the Boltzmann equation, and to prove that
the weak solutions are strong, if any strong solution exists. For this purpose, the gain
term is modified to have regular kernels, being the passage to the limit based on the
averaging lemma.

The paper by Wennberg, [We94], gives a simplified proof of this result, using a
different representation of the gain term due to Carleman [Ca57], and Radon transform
estimates. Furthermore, he was able to prove a similar inequality for sniddltiat
aren’t compactly supported, including the case of hard spheres, proyidedg posses
sufficient additionalL? regularity and have sufficiently many moments, with norms on
the right side reflecting these requirements.

As application of this, Wennberg proves for the spatially homogeneous Boltzmann
equation with hard sphere collisions that if the initial dataatisfiesfo(v)(1+|v|?)Y? ¢
L' N LP with p > 6, and if fy € H?, then the same holds for the solutions, uniformly
in time. The argument does not provide propagation of regularify’infor & > 1.

There are few other results on propagation of smoothness for the Boltzmann equa-
tion, all of them obtained in recent years. These results are concerned with certain
generalizations of the Fisher information, which, up to a constant is the squafé of
norm of thesquare rootof the densityf. McKean [McK66] showed that this quantity
wasmonotonically decreasinfpr solutions of the Kac equation. This monotonicity is
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possible because of the uncertainty principle which says that among all densities with
given variance, Maxwellians have the least Fisher information, i.e.:

IVVFllue = IV /Myl

This extremal property of Maxwellians does not hold for the Sobolev norms considered
here; that is, one easily sees that there are dengifi@swhich

[ e < 1M [l

and hence such a monotonicity property is impossible.

Moreover it is not clear how far such monotonicity results can be extended from the
Kac model to the Boltzmann equation. Carlen and Carvalho [CC92] showed that the
Fisher information is decreasing for the Boltzmann equation in the case of coRstant
Toscani [To92] showed this for Maxwellian molecules in two dimensions, and Bobylev
and Toscani [BT92] also in three dimensions with certain symmetries effectively reduc-
ing the dimension to two.

As far as the higher regularity of solutions is concerned, natural analogs of the Fisher
information involving higher derivatives were recently studied by Gabetta [Ga95] and
by Lions and Toscani [LT95]. They developed methods using these quantities to control
the convergence towards the Gaussian density in the central limit theorem of probability
theory as measured by these Sobolev norm like functionals.

The methods of Lions and Toscani have been extended to the Kac equation by
Gabetta and Pareschi [GP94] to prove propagation of regularity and convergence to
equilibrium in various norms of the solution. Subsequently Toscani [To96] with the
same tools obtained analogous results for the solution to the Boltzmann equation for
Maxwell pseudomolecules, both in plane geometry and in the axially symmetric case.
The key of his proof relies in the fact that, as already mentioned, in these cases Fisher
information has been shown to be a nonincreasing Lyapunov functional [BT92].

Concerning Theorem 1.1, the rate at which the solution to the Boltzmann equation
approaches equilibrium has been extensively studied starting from the fifties, when Iken-
berry and Truesdell [IT56] proved that all moments of the solution to the spatially homo-
geneous Maxwell gas, that exist initially, converge exponentially to the corresponding
ones of the equilibrium distribution.

For intermolecular forces harder than Maxwellian ones, and in the presence of a
cut-off, Arkeryd [Ar88] obtained stability results ih!. These results were extended
to pseudo—Maxwellian molecules by Wennberg [We93]. Here the method of proof is
based on the spectral theory of the linearized collision operator, and gives exponential
convergence to equilibrium, provided the initial data belong to an appropriately small
neighborhood of the equilibrium itself. However, in these proofs, one uses the spectrum
of the linearized operatamot in its natural space, as discussed above, but in certain
polynomially weightedZ® spaces. Here, it is not possible to explicitly compute the
spectrum, and one must resort to compactness arguments to prove the existence of a
spectral gagin the spaces consideredence, such an approach, while fully successful
in establishing exponential convergence, gives no information as to what the exponential
rate might be.

The exponential convergence towards equilibrium has been obtained by Gabetta,
Toscani and Wennberg [GBT95], for the Kac model and for Maxwellian molecules in
a metric equivalent to the weakeonvergence of measures, closely related to the norm
Il - || considered here. In fact, they used a ndjrifj, which in definition differs from the
norm|| - || in that they divided by¢|?**, o > 0 (but small) instead d&|*. The basic tool
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in [GBT95] is a Fourier transformed version of the Boltzmann equation for Maxwellian
molecules, due to Bobylev [B88]. While this method gives exponential convergence
in a very weak norm, it has the considerable advantage of doingitecan explicitly
computable rate

By takinga = 2, we need to introduce extra subtraction terms (the funciiam
Theorem 1.3 becomes more complicated), but having done this, the approach can be
extended to pick off the sharp behavior that we seek. We shall explain why this works
in the course of proving Theorem 1.3.

We shall begin the paper by first carrying out the program in the much simpler case of
the Kac model. This not only adds considerable clarity, but the results for the Kac model
are interesting in their own right. Indeed, McKean proved the stiongpnvergence to
equilibrium at an exponential rate

1FCot) = Mllps < Ce™™

with A = 0.016. He conjectured that the true rate should be giveh byl/4, which is

the spectral gap in the linearized collision operator for the Kac model. We shall prove
this conjecture here. Our result improves his bound on the rate of decay by more than
an order of magnitude.

The structure of the paper is as follows: In Sect. 2, we introduce the Kac model,
and prove the analog of Theorem 1.2 in this context. In Sect. 3 we prove the analog
of Theorem 1.3 in this context. At this point we need the interpolation inequalities. So
we prove them in Sect. 4, in a general form suitable for both the Kac Model and the
Boltzmann equation. Then, in Sect. 5, we prove the analog of Theorem 1.1 for the Kac
model, and prove a conjecture of McKean. Sect. 6 then presents some geometric lemmas
needed for our analysis of the Boltzmann equation. These are applied in Sect. 7 to prove
Theorem 1.2. Next in Sect. 8 we prove Theorem 1.3, and finally, in Sect. 9, Theorem
1.1.

2. Propagation of Smoothness for the Kac Equation

The Kac equation is a caricature of the Boltzmann equation introduced by Kac, and

reduced to its essentials by McKean. It models a gas of one dimensional particles with
collisions that conserve energy but not momentum (or else, in one dimension, the number
of conserved quantities would equal the number of degrees of freedom). Thus, all of the
kinematicly possible collisions)(w) — (v/,w’) are given by

v =wvcosh +wsind and  w' =-wvsind +wcosd (2.1)

for 0 < 6 < 27. We could introduce a weighB(cost) favoring some collisions over
others, as in [De94], but we shall follow McKean and simply tdke¢o be constant.
Then the gain term in the Kac model collision kernel is

+ — B ar / /
=5 [ [ 1)), 22)

the loss term is

B i B 27 _
o (=5 [ [ s = 51w,
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and hence the equation itself is
9f(v,1)
ot

where, after a rescaling of time, we have takes 1.
Further shifting the frame of reference and rescaling, we may freely suppose that

+f(v,1) = Q°(f) (2.3)

M) = @e*vz/z.
Then, as in McKean’s paper [Mk66], one linearizes abaut M by writing
f=M@A+h)
and finds that ohw.1) ,
e Lh(v,t) + O(h?) (2.4)

where,, the linearized collision operator is given by

1

Lh(v) = ()

27
/ / M@ )M (w")[h(v") + h(w") — h(v) — h(w)]dwdd. (2.5)
o Jr

As McKean observed, the Hermite polynomials are a complete set of eigenfunctions
for £ (which is an average over Mehler kernels). All of the odd Hermite polynomials
[Mk73] have eigenvalue -1. The null space®€onsists of the span of the first two even
such polynomialsho(v) = 1 andhy(v) = 1 — v2. Let hoi(v) be the normalised Hermite
polynomial of degree’2 Since the leading coefficient is a multiple:f, we need only
apply £ to v?* to determine the corresponding eigenvalue. Doing so, one has repeated
McKean'’s calculation that

27
Lhoi(v) = % /O sinf*(9)do — 1

forallk > 1. The largest of these eigenvalugs,is given by\; = —1/4 and corresponds
to ha(v).

Our goalinthe next few sections is to show that forany 0, there is a constant, so
that for all sufficiently smooth and rapidly decaying initial d#év), the corresponding
solution f (v, t) of the Kac equation satisfies

||f(a t) - ]\/[()”Ll S Cee_(l_ep\lt~ (27)

As indicated in the introduction, the first step will be to show that the smoothness
of the initial data is propagated so that we have bounds on the smoothness uniform in
time. To do this, we prove the analog of Theorem 1.2 for the Kac equation gain term.

Theorem 2.1 Smoothness bound on the gain term for Kac equatiohet f be any
probability density ofR with unit variance, and| f||u= finite. Then, whenever

m+l

If = Mgl < (1/2) 7,

1Q* (FMEm < ConFon (IILf — Mylla) | FEm + Ko, (2.8)

where
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4
Cm - (1 B %2/(m+1))m+1/27 (29)
2m+1
K, = 8 g(2m+1)(m+1) +
2m+1 |e
1 ] 1 ] (2.10)
oo R o W S
27T Hm ﬁ Hm
and
xl/(m+l)
F(z) = +22, >0 (2.11)

Proof. We shall break the integral defining2*(f)||3. into several pieces. We first
consider those anglésfor which either co# or sind is small. Fixe > 0, and define

Ac={0]10 —kr/2| <ek=1234 and 0<0<2r}
and letA¢ be its complement in [@r]. Then, by Jensen’s inequality,
1Q (NI <

1 7 2| 7 P 2| ¢12m
2 |, | 1Fcosnfifiesna)fiacas + 012

1 1 Ny i 21 ¢12m
"o /A:/R|f(50089)| | £ (€ sind)[*|¢]*™ dgdo.

The integral overd. has four parts. Consider the one wjith < €, on which co® >
V1 — €2. Then withny = (cosh)¢,

1 -
ﬂ/_ /R|f(§0059)|2\f(§S|n9)|2\§|2md§d9 <

1 m+1/2 1 € R
(1_62) g/_ /R|f(§)|2|£|2md§d9:

B TP
1—-¢2 e TH™

where we have used the fact that

sup| f(¢ sinf)| < 1.
13

There are four contributions of this type, and hence

1
1—¢2

1 ~ ~ ) m+1/2
E/A /Rf(gcosa)2|f(§s|n9)|2|€|zmdgd9§4< > §||f||ﬁ|m. (2.13)

Letus set = | f — Myl|1. Then

1F©)] < |F(©) = My(©)| + Ms(e) < c+e €72 (2.14)

On A¢ we split the integration into the two parts whége> R, and|¢| < R, for some
R > 0 to be fixed later. On the latter region, using inequality (2.14) we obtain
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/ / | (€ cost) 2| e sind) 2/ Pmdedd <

¢ JIEI<R

/ / (2c2 +20€ °°§9) (2c2 +2¢=¢ S‘”Z") €[> d¢do = (2.15)
¢ JIEILR

4/ / (C4+026—§25in20 +CZ€—§2 cos 0 +e—§2) ‘§|Zmd£d9.
cJIEISR

From now on, let us fix? < 1/2. Then, on the set¢, or sirf § > 1/2, or cog § > 1/2.
Hence, by (2.15)

! 7 N,
277/:/|5|ga|f(£cosa)| | (€ sin®)|*|¢|""dgdo <

Ners < (216)

H™
1 _ -
e~ % /2
2m

1 2
+4||—e™" }
il IR

To handle the integration over the remaining region, we use the fact that

2
exp{—g?_ez} <ec

if |¢| > —1logc?. Thus, if we choosé? = R(c,¢) — Llogc?, by (2.14) we conclude
that, if¢ > R, or \f(g sind)| < 2¢, or |f(§ cost)| < 2¢. So we obtain

4t e) [ jepragsat| e
[€I<R

8
2m+1

o
e VE

02R2m+1 + 4{”

g f 27 i 2|¢12m
277/2/|£|>R|f(£c030) | F(€ sind)|?|¢|?mdedg <

402 (2.17)
2
mﬂfﬂfm-
Let us fixc = *1), Then
2 2m+1
supc®R(c, ¢/ m*) = {(Zm +1)(mn + 1)] ; (2.18)
e<1 €
and, grouping inequalities (2.13), (2.16) and (2.17) we obtain
4 oL/ (m+1)
2 2 2
190 < sy | oo+ 11
8 1 2m+1 1 ) 1 )
“@m+1)(m+1 +44 ||—==e"/2|  +4|=e® ,
R e R o PRE r Y
(2.19)

This proves the theorem, and gives at the same time the explicit form of the function
F,,() and of the constants,,, and K,. O
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Several useful variants of inequality (2.8) are easily established. In particular, this
result becomes more useful if we replace filenorm, which is not monotonic, with
the relative entropy, which is. This is easily done using the Kullback—Cszilar inequality
which says that
I f = Myl < 2(H (M) — H(F))

and thus we can take

=

(H(My) — H(f))

NI =

in inequality (2.14). We have

Theorem 2.2. Smoothness bound on the gain term for Kac equation, entropic version.
Let f be any density o3 with || ||y finite. Then, whenever

H(My) — H(f) < (1/2)""%,

o o ) (2.20)
HQ (f)| Hm™ < Cme (H(-]V-[j) - H(f)) ||f| H™ + KTIL)
whereC,,, and K,,, are defined by (2.9) and (2.10) respectively, and
1/ 2 \V2mD) 4
, === " > 0. )
Gm(x) - (\@) + 21, x>0 (2.21)

The next version is given in terms of the Fisher information, and is different in that it
does not require any “smallness” condition to apply.

The main point is the determination of a bound on the decm“?(eﬂ in terms of the
Fisher information/( f). For the Kac equation, as well for Maxwell pseudomolecules
and for certain rate functiorigcosf), Fisher information is known to be non-increasing
in time when evaluated along the solution [Mk66, BT92].

The result that follows is independent of the dimension, even regarding the constants,
SO we prove it orR™.

The Fisher informatiord (f) is defined by

(=4[ VIO [ VegfoPfm . (@22)

We have
Lemma 2.3. For any probability density onRR™ with I(f) finite,
VI(f)
.

Proof. As in the standard proof of the Riemann—Lebesgue Lemma, write

1f)l < (2.23)

=35 [ 00— o+ /1) a,

so that

FO1< 3 [ 1£0)= o+ G/lePoi.

Next, write
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|[(f(0) = flo+@/[€7)E))| =
(VI@) +1/fw + @/ [EPD) (V) =/ flv + (7/1€[E)) | <

1
(VF@) + /70 + /1€P0) (/€D /0 9/ Fo + 1 /€0 dt.

Inserting this into the integral ovet and applying the Schwarz inequality, and then the
Minkowski inequlity twice, one easily gets the stated result. [

Theorem 2.4. (Smoothness bound on the gain term for Kac equation, Fisher informa-
tion version.) Letf be any density ofR with || f||4= finite. Then there is a constant
K,,(I(f)) so that

1Qu i < S Bon + o I (224)

Proof. We proceed as in the proof of Theorem 2.1, except that wd (fs¢to control

the size 0ﬂf(§)| for large&. In consequence of Lemma 2.3, inequality (2.17) can now
be substituted by

- f 2| 7 1 2| ¢12m
”/:/M'ﬂ“"w’ | F(€sin6) P¢Pmdgdo <

SN .
(1 — e2)m+1/2 R2¢2
Grouping inequalities (2.13), (2.16) and (2.25) we obtain
2
19D < i | = + g 11Bon
I IR E I (220)
2m+1 Var Hm VT H™

Now, chooseR = 2\/I(f)/e, and there = e(I(f)) to satisfy
1 fAe, 11
(1 _ 62)m+1/2 T 4 - 2
and the result follows. [

3. Optimal Exponential Convergence in the|| - || Norm for the Kac Equation

We present here, in the spirit of the proof of [GTW95], a new estimate for the rapid
convergence towards equilibrium when sufficiently many moments exist initially. The
new feature is that thieest possibleate is obtained when the fourth moment exists.

Theorem 3.1. Let f, be a probability density witlf]R |v|4| fo(v)dv < K. Then there are
constantsB andC and a functionS(-, t) such that

1£Cot) — Ms() — SC, )| < Bte ™| £(-,0) — My (-) — S(-, 0)]
for all ¢ > 0 and with|| f(-,0) — M;(-) — S(:, 0)]| < oo, such that for allm,
e (IS, D) + IS¢, B)llwn) < €, forallt > 0.
Here,\; = 1/4is the spectral gap in the linearized collision operator for the Kac model.
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Proof. First, we need some preliminary bounds on the evolution of the moments to
control the subtraction terrfi. These are simple analogs for the Kac model of certain
bounds proved for the Boltzmann equation by Ikenberry and Truesdell [IT55]. Note
in particular that the moments satisfy equations that are independent of the particular
solution f. We will use this fact instead of direct calculation in the case of Maxwellian
molecules.

For any natural numbek, let us denoten,(t) = |; vF f(v,t) dv, and let us put
my, = my(0). An easy computation shows that,

AWQMﬁM@

/ i(v cosd + w sind)¥ f(v) f (w) dvdwds.
R2x[0,27] 2T

Hence,

/v%”Q%ﬁﬁ@nw:Q
R

which implies
_ —t
Mmag+1(t) = Mok ",

and, if & = 4, owing to the conservation of the energy,(t) = my), we obtain that
my(t) satisfies

d 1
pr [m4(t) — Sm%] = -2 [m4(t) — 3m§]
so that

mgy(t) = 3m§ +e W/ [m4 — 3m§} .

Let M denote the Maxwellian distribution with the same mass and temperatyte of
and let us put

$(E0) = J(&: 1) — M(9).

Now, we can't divide byi¢|* and expect a finite supremum norm because of the
possibly non-vanishing first and third momentsfofThus we introduce a subtraction
term to cancel these out. This is built by taking the third order Taylor polynomig@) of
and multiplying by a cut-off function as follows:

Since fy has four finite moments, taking a Taylor expansiorpafp to the fourth
order, and using the above bounds, one gets

— | 8 e 21 —(1/4) 4
(€, 1) = | —imai€ +zm3§ e "+ a1 [m4 - 3m2} € +0(£7).
Define X (¢) = £ if |£] < 1, andX (&) = 0 otherwise, and let

X@TKMX@A
]

[m4 - 3m§] e~ /4t

56,0 = [ -imax(© +ima {

P1(6.1) = B(€, 1) — S(E, 1)

Consider that

95 Ge n3X(©)*
%S(§7t) + S(ga t)f

3K (14— amg] -1
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Hence ¢, satisfies

9 N P PP
a% +$1Q" (1, f) + QT (M, 1) + Q7 (S, f) + Q" (M, S) —
3X(9)*

3O, gmg

Now,

~

PR 1 2m
Q*(S, f)E,t) = o /o { [ile(g cosb) +ims

X (& cosp)*
4!

X(¢ 2?59)3} ot

[ma — 3m2)] e<1/4>f} f(&sing) do.
On the other hand, for all € N,

27
£F sin* 9X (€ cosh) df = 0,
0

2m
&F sin® 0.X (¢ cosh)®do = 0.

This implies that
1 27 52
— / 1m1 X (€ cosh) {1 —imafe "t — mg} dd=0
27T 0 2

and, since for a certaifi

2

‘f(i,t) —1+imi€e " +mp=

3
e
| <

3

7€)
and by Hblder inequality

3/4
]

PrED| < [ 1P rwt)do < [ma— 3

we obtain

<
2 -

27
/ imy X (€ cose)f(g sing, t) df
0

4
3/4
Ima| [ma — 3m3) / ‘%

Using the same method, and recalling that

FEo| < [ olfwydo <=1

we obtain
1

et
2m 3

< Ima

27
/O imswmsino,t) 46
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The exact same bound can be derived@é(]/w\, §). Thus
Q*(5, D& 0 +1Q* (M, 5)| <
207 [imal ma — 3m8”*+ mf | 55 + 2% [, — g LI
We can simplify this using the fact that;| < m*/™ for all evenn > k. The bound

becomes
PPN PR 4
Q"5 PIENI 10" (L. §)| < (dmae + [ma — 3mBe~/4)
Hence

0
@Qﬁ +¢1

< Q%61 D+ Q (M, 6| + [ee™" + de= /] ¢t

with constants: andd which are given explicitly just above.
Definega(&,t) = ¢1(€,t)/|£|*. Then,¢, satisfies

< |§14|Q\+(¢15 J?) + @*‘(]/\/7’ ¢1)| + [Ceft T d67(1/4)t} .

0
‘at¢2+¢2

Now it remains to estimate
1
I3

and to show how it is controlled by the spectral gap.
Consider first the ternfQ* (M, ¢1)|/|£|*. Clearly

Q7 (M, ¢)|/|€|* <

1 2r
5 || 1Fi(osn)on(sind)) (s <

1Q* (61, ) + Q" (M, )|,

_— 1 27 ) .
I3 leal 5 [ (sinoy'an.

Now, \|J\7||Loo = 1, and since the same is true farwe get the same bound for the other
term. The value of the integral ig/'8, and so we have

0 1
= = < lce™? —(L/4)
Silloall + Zll2l < e +demC/]

which is 9
a(8(1/4)t lp2ll) < [c@—(3/4)t + d}

so that upon integration we have
M go(t)]] < (4/3)c + dt.

This proves the bound, and makes it a simple matter to reckon the constan(s.
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This proves the theorem, but it will be helpful for what follows to make the connection
with £ more explicit. To see the role al explicitly, note that the bound we get for

Q* (b1, f)+Q* (M, 61), is, as we have pointed out, the same as the bound we would get
for Q*(¢1, M) + Q* (M, ¢1). But if we defineh by ¢1 = Mh, then

@+(¢1a M\) + @+(M\7 ¢1) - ¢1 = ﬁﬁ\h

sincejiR Mh(v)dv = 0. This is the reason that the constant we get is the spectral gap —
which is naturally best possible. For the same reason we will see that the spectral gap
controls the approach to equilibrium also for Maxwellian molecules. There, however,
it will be more convenient to rely on a further development of the above explanation,
instead of on direct calculation. Hence Sect. 8 will shed light on why this approach did
yield the optimal bound.

4. Interpolation Inequalities

This section contains the several interpolation inequalities that we shall use to extract
strong convergence estimates from weak convergence estimates. The first result shows
that|| - || and arbitrarily little|| - |4~ control|| - |4+ for m sufficiently larger thark.

Theorem 4.1. Letk > Oanda, 5,7 > 0,0 < r < 1, be given. Then

£l < Ol AILIZE (£ + 1 £1E)
with
_kr@ra)d-n o A-nwrs)
r 2r
C(r,8) = (IB"|(L+n/B))" ",

and wherd B"| denotes the volume of the unit balllk®.

M

Proof. For anyp > 0, and any- with0 < r < 1,
1= | IO e =

Fey2-2r
/R TP e @E-20(1 + gy (1 + gy o <

n ‘€|(2+()¢)(2—2r)
(11 o /R FQPr [P0 4 gy (1 +[g]) T <
[ ( / | F(©)[[¢| @R+ rede=2r/r (1 + |§|”)dn£) X
Rn

1-r
( [ ax |§|P)—T/<1—”d"5) .
R’!L

For the last integral to converge, we require that »(1 — r)n, so letg > 0, and put
p=r(l—r)(n+ ). Then the integral is

/ (1+‘g|r(lfr)(n+ﬁ))71/r(lfr)dn§ <
Rn

|B"| +n|B"| / POy = |B"|(L+n/8). O
0
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The next inequality shows that control of the sufficiently many moments and control
on theL? norm together control th&* norm.

Theorem 4.2. Let f be an integrable function oR™. Then for allt > 0,

where

4k /(n+4k) n/(n+4k)

C(n,k) = s + 4k |Bn|2k/(n+4k)
4k n

and again,|B™| denotes the volume of the unit balll¥.

Proof. We may assume thdgtis non-negative. Also, by translation invariance, we may
assume that the infimum above is achieved at0.
Let R > 0 be chosen. Then

Iwﬂwwv:AéRﬂwwvy/ J(o)dms <

[v|ZR

n n 12 3 — i
(w\R)/nmu+R25/\m%ﬂwdu
R’Il

Optimizing in R now yields the result. [

5. Optimal Exponential Convergence in the StrongL? Norm and Sobolev Norms
for the Kac Equation

One now easily sees that the assertion in (1.16) is a consequence of Theorems 4.1 and
4.2, with a readily computed constarit. Since Theorem 2.3 gives us a uniform bound

on | f(-,t)|ln= provided it is finite initially, and provided the Fisher informatiffy) is

initially finite, combining this with Theorem 3.1, we have:

Theorem 5.1. Let fy be any probability density on the real line with unit variance, finite
fourth momentn, and finite Fisher informatiord (fo). Then for anye > O there is a
fixed constantn, depending only om, so that if

/fMMmm+/ﬁ©ﬂWWESK
R R

there is a universal, computable const@antdepending only om, ma, I(fo) and K so
that the solution of the Kac equatigfif-, t) with initial data fo(-) satisfies

1FC8) = My ()| 2 < Ce @,

where)\; is the spectral gap in the linearized collision operator L for the Kac equation;
i.e, A\ =1/4

Moreover, increasingn we obtain the same result if tdet norm is replaced by any
H* norm.
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This result proves a conjecture of McKean [Mk66] concerning the optimal rate of
convergence for the Kac equation, though the result requires moments and Sobolev space
regularity of all orders to reach the optimal rate of convergence. In contrast, McKean'’s
proof used only a bound on the third moment and on th@®tm of the square root of
the densityf, but yielded a bound on the rate that was smaller by more than an order of
magnitude, and that did not improve in the presence of greater regularity.

This concludes our treatment of the Kac model. We now turn to the Maxwellian
case.

6. Geometric Lemmas for the Maxwellian Gain Term

Fix a unit vectom in R3, and consider the two mags,. : R® — R3 defined by

Qi)=& = Ej:2|§|n

Each of these maps “opens up?® into a half space witm as the bounding normal.
More precisely, notice that

. (6.1)

26,-n=¢-n+le (6.2)

which is always positive unlegds a negative multiple af, in which casé€. = 0. Thus,
if we delete the ray antiparallel tofrom the domain of2., its range is

Hin)={n|n-n>0}. (6.3)
Moreover, this restricted map is one-to-one on this range, and one easily works out,
using
&7 = [€](€ - n), (6.4)
that the inverse map is
2
Qi) =27— 6.5
(n)=2n w0 (6.5)
Moreover, let) and®. be defined by
cosf) = N ond cos(ai)gi n (6.6)
4 €]
Then one easily deduces from the above that
0.=6/2 and |€+]|€| cos@/2). (6.7)

It is now an easy matter to compute the Jacobian of the coordinate transformation given
by €.:

o€\ _ 4 _ 4
J(@@) " co(04)  co(h/2) ©8)
An exactly analogous analysis ©f leads to:

23 4 : 4
J(3§—> co2(0_)  sink(6/2)’ (6.9)

The first Jacobian is singular only nefar= 7, and the second only nedr= 0. In
particular, away from the origin, at least one of the two is bounded by 8.
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7. Propagation of Smoothness for Maxwellian Molecules

Once again, we use the Fourier transform. Since the Maxwellian collision kernel is less
directly related to convolution than the Kac collision kernel, the computation is more
involved. But it has been carried out by Bobylev [Bo88] who found that

Q (1. 1©) = /S Fenfe)Bm-¢/ighan. (7.1)

The notation is that introduced in the previous section. The next result contains Theorem
1.2, and provides some explicit information that we did not bring into the introduction.
Itis possible to present it in a form analogous to that of Theorem 2.1 for the Kac model,
but this would require more work, and the present version suffices.

Moreover, to keep the formulas readable, we explicitly treat the Basel. It will
be clear from the proof that all we really use is the fact thaB(¢ - n/[¢[)dn < oc.
Thus Theorem 1.2 will be established in the stated generality.

Theorem 7.1 Smoothness bound on the gain term for Maxwellian moletulést f
be any probability density with finite second moment®aisuch that| f||4 is finite.
Then there is a constant(m, T) so that

1Q+(NIEm < @/ f[[Fm +Clm, T) (7.2)

whenever
I1f = My|[F. < 2709, (7.3)

Proof. Fix anye > 0. Then forj = 1,2, define the setd!? by

A = (&) | (1 + (~2Y cost)? < (20%). (7.4)
Then
[ [ FearIfe el dcan =
S2 JR3

Z /52 /]R3 1A§£)(£’ n)|f(£+)|2|f(£—)‘2|§|2md§dn +

Jj=12

L [ a= 3 taote )Pl fePlermdean

j=1,2

Consider first the integral ovet(;). On the set¢, and¢ are close to one another, but we
have little control ovef_. Thus we use the Riemann-Lebesgue theorem to estimate:

IflE)P <1
Next we observe that
1 — cosf = 1 — cos() = 2sirf(O.)

and that
sSi?(©4) > (1 — cosO,).

Hence,
AP(g,n) c AP, n). (7.5)
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Furthermore, 004(26), cosf > 1 — 2¢. Hence co4f/2) > 1 — ¢, and the Jacobian
J(0&/0¢1) is bounded above/41 — ¢). Finally, |¢] < |£-]/v/1 — €. Hence,

/52 /]R3 1A<;>(§7n)|f(&)|2|f(€7)|2|f|27”d§dn <

4 Y 2 2m
1 _ \(m+1) € L <
(1= D /5 /Hm) L0 (1, )| Fn) ][ dyin <

4 ~
[ /32 /Rg Ly, )| £()[?(|n/*™dndn = (7.6)
ﬁ /R3 (/82 1,4(;)(6, n)dn) \f(n)|2”n|zmdn _
4

2
a—gme 4l

where H(n) is defined in (6.3). Clearly, we get the same bound for the integral over
A(f). Now fix someR > 0 to be chosen later, and split the remaining integration into

the two parts wherg¢| > R and|¢{| < R. On the latter region, we again use the
Riemann—Lebesgue estimate to obtain

/ / 1= L0EMIFEIPIFE)PEPmdgdn <
S2J|EI<R i

j§=1,2
/ / |2 dédn < (7.7)
82 JI¢I<R
1%2771+l7.r
2m+1°

To handle the integration over the remaining region, we first simplify notation by
writing ¢ = || f — M| . Then by one more use of the Riemann—Lebesgue lemma,

F(E2)] < e+ |My(ex)| = c+eTIe=l/2, (7.8)

Again withn fixed, consider thosgin the final region of integration with-n > 0.
Recallthats,| = || cos®. and|(_| = |£] sin®.. Thisis the region where c@3 < 7 /4,
but sirf ©® > . Hence in this region

1F(E)] < cte T2 < 20p

when we choos® = \/—2Inc¢/Te. We now fix this choice oR. Making the same sort
of estimates fo€ - n < 0, we get

/ / 1= 10 M) FE)PFE)PIEmdgdn <
S2J|¢EI>R i

j=12
4 N
22n 2 [ [ () inPmann < (7.9
2m+202
ﬁ”f”ﬁm-

Putting together all of the pieces yields
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2m+2.2 8¢

T ) Wl 1K T,

1Q+()[am < (

where

K(c, T, €)= (—2In¢/Te)@m+0/2,

1
2m+1
Finally, choose = ¢?/2 to obtain the required multiple diff||3... O

Several useful variants of the inequality are easily established. First, the Kullback—
Cszilar inequality says that

1
If = M7 < 5 (HOME) = H(f)
and thus we immediately have

Theorem 7.2. (Smoothness bound on the gain term for Maxwellian molecules, entropic
version). Letf be any probability density oR® with finite second moments such that
I f|lum= is finite. Then there is a consta@i{(m, T') so that

1Q+(AlIEm < (1/2) fI[Em +C(m, T) (7.10)

whenever
(H(My) — H(f)) <279, (7.11)

The utility of this simple variant lies in the monotonicity of the entropy: once we
arrive at a time for which the condition (7.11) is satisfied, it remains satisfied forever.

The next version is given in terms of the Fisher information, and is different in that
it does not require any “smallness” condition to apply.

Theorem 7.3. (Smoothness bound on the gain term for Maxwellian molecules, Fisher
information version). Lef be any probability density dR® with finite second moments
and such thaf| f||u= is finite. Then there is a constafi{m, T', I(f)) so that

1
1Q+ (Nl < SN F [ + COm, T, 1())- (7.12)
Proof. We proceed as in the proof of the main theorem, except that wH fisehrough
Lemma 2.3, to control the size 6f(£)| for large&. O

8. Optimal Exponential Convergence in the| - || Norm for Maxwellian Molecules

Here we prove Theorem 1.3, which is for Maxwellian molecules the analog of Theorem
3.1. In the course of the proof we obtain an interesting, somewhat indirect, explicit
evaluation of);.

Proof of Theorem 3.10nce again, we put(&, t) = f(g, t) — J\?(g), and we letP(¢, t)
denote the third degree Taylor polynomialbdt, t), and letR(£) denote the third degree

Taylor polynomial ofM\(g). This is a bit more complicated than in the one dimensional
Kac case, in that now there can be second degree differences beifeehand the

third degree Taylor polynomial farl &).



Smoothness and Convergence to Equilibrium for Maxwellian Gas 543

However, we still proceed in the same way. First H&t), a cut-off function, be any
smooth approximation togk <1, agreeing with it outside a thin neighborhood of the
unit sphere. Then define

S(&, 1) = K(€)(P(E, ) — R(€)). (8.1)

Clearly, since the fourth moment gfis finite, so is|| (-, t) — S(:, t)|.

Moreover,[IT56], the coefficients dP are simply multiples of certain corresponding
moments off. And, as proved in this reference, these moments tend to their equilibrium
values exponentially fastith a rate that is independent of the initial datas in the
Kac model case, provided only that the moment exists initially. T$iast) has the
form K (&) times a polynomial of degree three whose coefficients are decaying to zero
exponentially fast.

Now any monomial ir¢ multiplied by K (¢) is the Fourier transform of a function
that has a finite norm in both! and H” for anyn. Hence we have that

(ISC, )| e + [|1SC, B)|Jm ) < Ce™ (8.2)

for someC depending orf andn, and someiniversal\.

In our treatment of the Kac model, we computed the correspondidgre we avoid
this, and simply make the observation that we require: whatever the valyétid the
case that > \;.

Because of the universality of this follows from the results of Cercignani, Lampis
and Sgarra [CLS88] concerning the behavior of small perturbations of equilibrium.
Specifically, consider the coefficieat »(t) of K (£)¢1£2 in S(-, t). Pickd small enough
thatéviv, + [v[* > 0, and then pick small enough that

fo(v) = C(L +e(bvrvz + [0]) M (v) (83)

in whichC'is the normalizing constant, is close enough to equilibrium for the theorem of
[CGS88]to apply. Then the corresponding solution of the Boltzmann equation approches
equilibrium likee=**1. But clearly it appraches equilibrium no faster than(t) tends

to zero. Hence; () must tend to zero at least as fastea$*:. The argument for the
other coefficients is the same. Thus, (8.3) holds vith A;.

Not only doesS(-,t) decay at this rate, but since its coefficients in the Fourier
transform respresentation satisfy the ordinary differential equations derived in [IT56],
we have that the time derivative 6, t) does as well.

At this point we have stepped around most of the direct computation in the proof
of Theorem 3.1 — which was only possible there because we made the simplifying
assumption of constant rate function — and can easily conclude the proof.

Let¢1 = ¢ — S as before. Then

dp1 _ [0S
= + ¢ = <8t + S) +
O*(f, 8) + O*(8, M) + O*(F, ¢1) + O* (¢4, M).

Then, all the terms involving' are estimated as in the proof of Theorem 3.1, and
we obtain that

091 + 61— (Q(F 60) + 0'(0n, WD) < Clel*e™
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for some constanf'. Again as before, defing,(¢,t) = ¢1(£,t)/|€[*. Then the above
estimate becomes

062
ot
It remains to estimate

+02— (Q°(F.00)+ Q" (61, WD) /I¢]*] < Ce™™.

|O*(F, ¢1) + O (61, M) /|€]*. (8.4)

Consider first
Q% (1, M)|/|€]* <
/S 2 |M(€2)]|¢2(64)| cod(6/2)B(cosp))dn,

where we have used the formulas (6.6) and (6.7). This in turn is dominated by
|37l 2l [ codo/2)(cos)in =
ol [ cod(0/2)B(cose)cn.

Naturally we obtain the same estimate fé}*(f, #1)|/|€|*. Putting it all together,
we then have

Ol ¢l
ot

+(1- 2/ cog(0/2)B(cos@))dn) || ¢a|| < Ce .
S2
Solving this differential inequality gives us exponential decay at Xatéth
A =min{\y, (1 - 2/ cog(0/2)B(cos@))dn)}.
SZ

We now claim that the terms in the minimum are actually equal.
To see this, let(v) = |v|* — bjv|> — ¢, whereb andc are chosen to make

/ h(v)|v]2M (v)d®v = / h(v)M (v)d®v = 0.
R3 R3

Of course,h is just the spherically symmetric fourth order Hermite polynomial. Now
pick a small enough that 1 #A(v) is positive, and considef(v) = M (v)(1 + ah(v)),
then¢1(€) = aM(£)|€]4, so thatpy(€) = aM(€). In this case, we lose nothing in the
estimate above:

10" (n D)/ l* = a2r(e) | cods/2)B(cos)n.
Again, as we have observed in Sect. 3,
Q" (¢1, M)+ Q*(M, ¢1) — ¢n = ML, (85)
and hence

Mﬁ\h:—(l—z/

cog'(0/2)B(cosp))dn))h.
2
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Thus, as is well knowni(v) is an eigenvector of, and the corresponding eigenvalue
is given by the above formula. This means that

M<(@1-2 / cog'(f/2)B(cosp))dn)
J S2

and while at first sight one might suppose that another Hermite polynomial of order
higher than four produces the gap, the estimate that was applied to (8.4) can be equally
well applied to (8.5) for these higher eigenfunctions to see that this is not the case. Thus
we have computed;, and proved that

]
ot

This together with our bounds dhyield the theorem. [

+ Al gall < Ce™t

9. Optimal Exponential Convergence in the StrongL' Norm and Sobolev Norms
for Maxwellian Molecules

This section is very short; we only need collect results to provide a proof of Theorem
1.1, and to explain how to compute the constants involved in it.

Proof of Theorem 1.1Since we have established Theorem 1.3 in Sect. 8, and have estab-
lished Theorem 1.2 in Sect. 7, Theorem 1.1 follows from the interpolation inequalities,
Theorems 4.1 and 4.2 , just as in the case of the Kac model]
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