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Abstract: We prove an inequality for the gain term in the Boltzmann equation for
Maxwellian molecules that implies a uniform bound on Sobolev norms of the solution,
provided the initial data has a finite norm in the corresponding Sobolev space. We then
prove asharpbound on the rate of exponential convergence to equilibrium in a weak
norm. These results are then combined, using interpolation inequalities, to obtain the
optimal rate of exponential convergence in the strongL1 norm, as well as various Sobolev
norms. These results are the first showing that the spectral gap in the linearized collision
operator actually does govern the rate of approach to equilibrium for the full non-linear
Boltzmann equation, even for initial data that is far from equilibrium.

1. Introduction

This paper concerns the large time behavior of solutions of the Boltzmann equation for
Maxwellian molecules in the case of spatially homogeneous initial data:

∂

∂t
f (v, t) = Q(f, f )(v, t). (1.1)

Here,f (v, t) is the probability density for the velocity space distribution of the molecules
at timet, andQ, which represents the effects of binary collisions, has the form:

Q(f, g)(v)
∫

R3×S2

B
(
q, q · n/q

) [
f (v1)g(w1) − f (v)g(w)

]
dwdn. (1.2)

In expression (1.2),n is a unit vector, anddn denotesnormalizedsurface measure on
the unit sphereS2. Moreoverq = v − w is the relative velocity, and inq · n, the dot
denotes the usual inner product. The vectorn parameterizes the set of all kinematicly
possible (i.e., those conserving energy and momentum) post–collisional velocities (v1
andw1) by
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v1 =
1
2

(v + w + qn),

w1 =
1
2

(v + w − qn).
(1.3)

The relative likelihood of these kinematicly possible outcomes depends of course on
the nature of the interaction between the molecules, and this is taken into account in
the rate functionB. Maxwell found that when this interaction is through anr−5 force
law, B depends only on the scattering angleθ in cosθ = q · n/q, and not onq itself. By
a Boltzmann equation for Maxwellian molecules, we mean throughout this paper one
in which the rate functionB has this simple formB(cosθ). We shall further suppose
during most of our analysis thatB is integrable:∫ 1

−1
B(u)du := b < ∞. (1.4)

This conditionis notsatisfied for the actual rate function Maxwell considered, i.e.,
that one corresponding to anr−5 force law. In this case, the integral above diverges
due to a singularity atu = 1, i.e., for small angle collisions. The standard strategy is to
“cut off” these small angle collisions so thatB becomes integrable, and then to seek
estimates, that are independent of the cut-off.

When (1.4) does hold, one can splitQ(f, f ) into its “gain” and “loss” termsQ(f, f ) =
Q+(f, f )−Q−(f, f ). One easily sees (sincef is a probability density) thatQ−(f, f )(v) =
bf (v) so that the Boltzmann equation can be rewritten

∂

∂t
f (v, t) + bf (v, t) = Q+(f, f )(v, t). (1.5)

This equation has been extensively investigated, and much is known. In particular,
existence and uniqueness have been established, and moreover, it has been shown that,
given enough moments for the initial density, the convergence is exponential in the
strongL1 norm [Ar88, We93]. However, existing results provide little or no information
on what the rate of this exponential convergence might be. This is significant for the
following reasons.

The unit time scale relevant for Eq. (1.1) is the mean time between collisions. This
time scale is much, much shorter than the time scale governing macroscopic transport
phenomena, so that it is commonly believed that (1.1) governs the rate of approach to
local equilibrium even innon-homogeneoussettings. There is a natural conjecture as to
what this rate should be, which one obtains by linearizing the collision kernelQ(f, f ).

That is, letMf (v) be the Maxwellian density

Mf (v) = (6πT )−3/2 exp(−|v − u|2/6T ),

u =
∫

R3

vf (v)d3v,

3T =
∫

R3

|v − u|2f (v)d3v.

(1.6)

Then,Mf is the equilibrium solution of (1.1) towards whichf (·, t) tends, and is, of
course, independent oft: Mf (·,t) = Mf (·,0) for all t since the temperatureT and bulk
velocityu in (1.6) are conserved.

Without loss of generality, we may suppose that our initial data is such thatT = 1
andu = 0, and we shall simply writeM for Mf in this case.
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At this point losing generality (for the moment), suppose that the densityf has the
form

f (v, t) = M (v)(1 + εh(v, t)) (1.7)

for some functionh with ∫
R3

|h(v, 0)|2M (v)dv = 1 (1.8)

and some small numberε. Inserting this in (1.1), one obtains

∂

∂t
h(v, t) = Lh(v, t) + ε

1
M (v)

Q(Mh, Mh)(v). (1.9)

Here,L is the linearized collision operator:

Lh(v) =
1

M (v)

(
Q+

(
M, Mh

)
(v) + Q+

(
Mh, M

)
(v)) −

∫
R3

Mh(v)dv − h(v). (1.10)

Observe theL is self-adjoint on the Hilbert spaceH with norm

‖h‖2
H =

∫
R3

|h(v)|2M (v)d3v . (1.11)

The natural conjecture is thatthe spectral properties ofL govern the rate of approach
to equilibrium inL1 for solutions of (1.1).

Now, the spectrum ofL has been computed [WU70], and the following facts are
well known:L is negative semi–definite onH with a five dimensional null space due
to the conservation of total probability, bulk momentumu, and temperatureT . The
remaining eigenvalues are discrete and strictly negative, and, in particular, letλ1 denote
theabsolute valueof the first of these eigenvalues when they are arranged in order of
increasing magnitudes. Thusλ1 is the “spectral gap” of the linearized collision operator.

A concise statement of one of our main results is the following:

Theorem 1.1. Let f0(v) be initial data for (1.1) with Maxwellian collisions. Suppose
that the bulk velocityu = 0, and the temperatureT = 1. Letε > 0 be given. Then there
is a numbern depending only onε so that whenever∫

R3

|v|2nf0(v)d3v +
∫

R3

|ξ|2n|f̂0(ξ)|2d3ξ < ∞

then it holds that
‖f (·, t) − M‖L1 ≤ Cεe

−(1−ε)λ1t .

Here,λ1 is the spectral gap of the linearized collision operator,f̂0 denotes the Fourier
transform off0, andCε is computable in terms of the integral specified above.

This result will be reformulated in more detail later in the paper, where in particular,
we shall specify the relation betweenn, ε andCε. Here in the introduction, we wish to
focus on a few key points.

First, transport coefficients for a rarefied gas, i.e., the bulk and thermal diffusivity,
may be calculated in terms of the eigenvalues ofL – assuming that this operator really
does control the trend towardlocal equilibrium. This is not yet proved.

In fact, until now, it had not even been proved thatL governs the rate of approach
to equilibrium in the spatially homogeneous case for initial data far from equilibrium.
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Cercignani, Lampis and Sgarra [CLS88] have proven an inequality for the non-linear
term in (1.9) which shows this for initial data that is in a sufficiently small neighborhood
of equilibrium, but for reasons we will now explain, the treatment of initial data that is
far from equilibrium is delicate.

This may be surprising to those who are encountering the problem for the first
time. After all, we have said above that it is known that‖f (·, t) − M‖L1 tends to zero
exponentially atsomerate, so what can prevent it from eventually entering a small
neighborhood ofM in which L dominates the remaining evolution, with its spectrum
governing the asymptotic speed of convergence?

The answer lies with the meaning of “small neighborhood”. The operatorL is self-
adjoint on the Hilbert spaceH, and the requirement onf is that if we writef = M (1+h),
then‖h‖H < ε0 for some sufficiently small numberε0. Stated in terms off , this is a
requirement that ∫

R3

|f (v, t) − M (v)|2
M (v)

d3v < ε0 (1.12)

should be sufficiently small. This requires more control on the tail of the distribution
f (v, t), uniformly in t, than is available. If it were known that for some valuer with
1/2 < r < 1,

sup
t>0

∫
R3

|f (v, t)|2M−r(v)d3v < C, (1.13)

then the eventual validity of (1.12) would follow from the decay of‖f (·, t) − M‖L1.
However, it remains an open problem to establish (1.13) for any reasonably general
class of initial data – even, say, for initial data with compact support. This is true despite
the fact thateach individual momentof f will remain bounded, uniformly in time, in
terms of the initial value of that moment. In short, the lack of sufficient control on the
tails of the distributionf (v, t), uniformly in time, is a significant obstacle in the way
of establishing the relevance of the spectrum ofL in H to the rate of convergence to
equilibrium for (1.1).

We overcome this obstacle here by establishing a propagation of smoothness result
for (1.1). This follows from an inequality on the gain termQ+ which is of independent
interest, and indeed has already been applied in another problem in [CELMR96]. To
state the result concisely, we introduce the Sobolev space norms‖ · ‖Hk by

‖f‖2
Hk =

∫
R3

|f̂ (ξ)|2|ξ|2kd3ξ

for all k ≥ 0. Our convention for the Fourier transform is that

f̂ (ξ, t) =
∫

R3

f (v, t)e−iv·ξd3v.

We recall that the entropy off , H(f ), is defined by

H(f ) = −
∫

R3

f (v) ln f (v)d3v.

The key inequality enabling us to bound the Hm norm of solutions of (1.1) uniformly in
time is the following:
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Theorem 1.2. Let f be any probability density onR with unit variance, and‖f‖Hm

finite. Then, there are universal constantsCm < ∞ andKm > 0 so that for all suchf ,

‖Q+(f )‖2
Hm ≤ (1/2)‖f‖2

Hm + Cm (1.14)

whenever
H(Mf ) − H(f ) ≤ Km.

We shall later reformulate this inequality in more detail, and in fact a better form, with
explicit determination of the constants. For now we observe that as soon asH(Mf ) −
H(f ) ≤ Km holds at some timet0, it holds at all succeeding times sinceH(f ) is strictly
increasing for non-equilibrium solutions of (1.1). Then if we defineφ(t) by

φ(t) = ‖f (·, t)‖2
Hm

it easily follows that

d
dt

φ(t) ≤ −1
2
φ(t) + K for all t ≥ t0

with the consequence that

φ(t) ≤ max{φ(t0), 2K} for all t ≥ t0.

Hence, once one has a bound ont0, which can be obtained from entropy production
bounds [CC94], it is a simple matter to boundφ(t0) in terms ofφ(0). In this way, we
obtain uniform bounds on the Hm norm of solutions of (1.1).

We shall apply this by using an interpolation inequality to bound‖f (·, t)−Mf (·)‖L1

by the geometric mean of weak norm bound onf (·, t) − Mf (·), which decays at the
required rate, and the Hm bound on this quantity which stays bounded above uniformly
in t. Since, forn large enough, we shall be able to takearbitrarily little of the Hm norm
in our geometric mean, this leads to Theorem 1.1.

Clearly then, a crucial role is played by this weak norm convergence, which is ob-
tained by further pushing the development of a recent method for obtaining exponential
convergence for Maxwellian molecules in certain weak norms [GTW95]. To show that
the convergence in these weak norms is taking place at the rate suggested by the spectral
gap in the linearized collision operatorL, we must work with a particular choice of these
norms, outside the range originally considered.

Namely, define the norm||| · ||| by

|||g||| = sup
ξ∈R3

|ĝ(ξ)|
|ξ|4 . (1.15)

This norm is well defined and finite on the space of integrable functionsg such that∫
R3 |v|4|g(v)|d3v < ∞, and

∫
R3 P (v)|g(v)|d3v = 0 wheneverP (v) is a polynomial of

total degree three or less in the components ofv. This space does not includef (·, t), or
any probability density for that matter, but it does includef (·, t)−Mf (·)−S(·, t), where
S is a subtraction term taking care of the first, second and third moments. Because of
known results on the explicit exponential convergence of all of the moments off to those
of Mf , it will be easy to show that‖S(t)‖L1 converges to zero at faster than the required
rate, and that‖S(t)‖Hm remains bounded uniformly in time. Thus, as far as either theL1

norm or the Hm norm are concerned, bothf (·, t) − Mf (·) − S(·, t) andf (·, t) − Mf (·)
have the same decay and boundedness properties. Concerning the former, we have the
following theorem:
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Theorem 1.3. Letf0 be a probability density with
∫

R3 |v|4f0(v)d3v < K, and letε > 0
be given. Then there are constantsB andC and a functionS(·, t) such that

|||f (·, t) − Mf (·) − S(·, t)||| ≤ Bte−t(1−ε)λ1|||f (·, 0) − Mf (·) − S(·, 0)|||
for all t ≥ 0, and with|||f (·, 0) − Mf (·) − S(·, 0)||| < ∞, such that for allm,

etλ1
(‖S(·, t)‖L1 + ‖S(·, t)‖Hm

) ≤ C, for all t ≥ 0.

Hereλ1 is the spectral gap of the linearized collision operator.

Again, a more explicit version will be provided later. To combine the second and
third theorem to prove the first, it is only necessary to use an interpolation inequality of
the form

‖f − Mf − S‖L1 ≤ Cε|||f − Mf − S|||1−ε‖f − Mf − S‖ε
Hm (1.16)

which holds for anyε > 0 providedf0, and hencef (·, t)−Mf (·)−S(·, t) has sufficiently
many moments and belongs to Hm for m sufficiently large. Theorem 1.2 (and part of
Theorem 1.3) says that the‖ · ‖Hm terms stay bounded, and Theorem 1.3 says that the
other norm is decaying at the desired rate.

The methods will actually yield more: we can also prove convergence in Sobolev
norms for sufficiently smooth and rapidly decaying initial data, again at the exponential
rate given by the spectral gap in the linearized collision operator.

We now briefly discuss related results in the literature. The result most closely related
to Theorem 1.2 is the estimate of Lions [Li94]. In particular, in presence of smooth
kernelsB that vanish for small and large relative velocities, uniformly in the argument
q · n/q, the gain term has been shown to possess a regularizing effect

‖Q+(f, g)‖H1 ≤ C‖f‖L1‖g‖L2. (1.17)

The main application of the above result was to prove propagation of strongL1-
compactness for renormalized solutions of the Boltzmann equation, and to prove that
the weak solutions are strong, if any strong solution exists. For this purpose, the gain
term is modified to have regular kernels, being the passage to the limit based on the
averaging lemma.

The paper by Wennberg, [We94], gives a simplified proof of this result, using a
different representation of the gain term due to Carleman [Ca57], and Radon transform
estimates. Furthermore, he was able to prove a similar inequality for smoothB that
aren’t compactly supported, including the case of hard spheres, providedf andg posses
sufficient additionalLp regularity and have sufficiently many moments, with norms on
the right side reflecting these requirements.

As application of this, Wennberg proves for the spatially homogeneous Boltzmann
equation with hard sphere collisions that if the initial dataf0 satisfiesf0(v)(1+|v|2)1/2 ∈
L1 ∩ Lp with p > 6, and iff0 ∈ H1, then the same holds for the solutions, uniformly
in time. The argument does not provide propagation of regularity inHk, for k > 1.

There are few other results on propagation of smoothness for the Boltzmann equa-
tion, all of them obtained in recent years. These results are concerned with certain
generalizations of the Fisher information, which, up to a constant is the square ofH1

norm of thesquare rootof the densityf . McKean [McK66] showed that this quantity
wasmonotonically decreasingfor solutions of the Kac equation. This monotonicity is
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possible because of the uncertainty principle which says that among all densities with
given variance, Maxwellians have the least Fisher information, i.e.:

‖∇
√

f‖H1 ≥ ‖∇√
Mf‖H1.

This extremal property of Maxwellians does not hold for the Sobolev norms considered
here; that is, one easily sees that there are densitiesf for which

‖f‖H1 ≤ ‖Mf‖H1

and hence such a monotonicity property is impossible.
Moreover it is not clear how far such monotonicity results can be extended from the

Kac model to the Boltzmann equation. Carlen and Carvalho [CC92] showed that the
Fisher information is decreasing for the Boltzmann equation in the case of constantB,
Toscani [To92] showed this for Maxwellian molecules in two dimensions, and Bobylev
and Toscani [BT92] also in three dimensions with certain symmetries effectively reduc-
ing the dimension to two.

As far as the higher regularity of solutions is concerned, natural analogs of the Fisher
information involving higher derivatives were recently studied by Gabetta [Ga95] and
by Lions and Toscani [LT95]. They developed methods using these quantities to control
the convergence towards the Gaussian density in the central limit theorem of probability
theory as measured by these Sobolev norm like functionals.

The methods of Lions and Toscani have been extended to the Kac equation by
Gabetta and Pareschi [GP94] to prove propagation of regularity and convergence to
equilibrium in various norms of the solution. Subsequently Toscani [To96] with the
same tools obtained analogous results for the solution to the Boltzmann equation for
Maxwell pseudomolecules, both in plane geometry and in the axially symmetric case.
The key of his proof relies in the fact that, as already mentioned, in these cases Fisher
information has been shown to be a nonincreasing Lyapunov functional [BT92].

Concerning Theorem 1.1, the rate at which the solution to the Boltzmann equation
approaches equilibrium has been extensively studied starting from the fifties, when Iken-
berry and Truesdell [IT56] proved that all moments of the solution to the spatially homo-
geneous Maxwell gas, that exist initially, converge exponentially to the corresponding
ones of the equilibrium distribution.

For intermolecular forces harder than Maxwellian ones, and in the presence of a
cut-off, Arkeryd [Ar88] obtained stability results inL1. These results were extended
to pseudo–Maxwellian molecules by Wennberg [We93]. Here the method of proof is
based on the spectral theory of the linearized collision operator, and gives exponential
convergence to equilibrium, provided the initial data belong to an appropriately small
neighborhood of the equilibrium itself. However, in these proofs, one uses the spectrum
of the linearized operatornot in its natural space, as discussed above, but in certain
polynomially weightedL1 spaces. Here, it is not possible to explicitly compute the
spectrum, and one must resort to compactness arguments to prove the existence of a
spectral gapin the spaces considered. Hence, such an approach, while fully successful
in establishing exponential convergence, gives no information as to what the exponential
rate might be.

The exponential convergence towards equilibrium has been obtained by Gabetta,
Toscani and Wennberg [GBT95], for the Kac model and for Maxwellian molecules in
a metric equivalent to the weak-? convergence of measures, closely related to the norm
||| · ||| considered here. In fact, they used a norm||| · |||α which in definition differs from the
norm||| · ||| in that they divided by|ξ|2+α, α > 0 (but small) instead of|ξ|4. The basic tool



528 E. A. Carlen, E. Gabetta, G. Toscani

in [GBT95] is a Fourier transformed version of the Boltzmann equation for Maxwellian
molecules, due to Bobylev [B88]. While this method gives exponential convergence
in a very weak norm, it has the considerable advantage of doing sowith an explicitly
computable rate.

By takingα = 2, we need to introduce extra subtraction terms (the functionS in
Theorem 1.3 becomes more complicated), but having done this, the approach can be
extended to pick off the sharp behavior that we seek. We shall explain why this works
in the course of proving Theorem 1.3.

We shall begin the paper by first carrying out the program in the much simpler case of
the Kac model. This not only adds considerable clarity, but the results for the Kac model
are interesting in their own right. Indeed, McKean proved the strongL1 convergence to
equilibrium at an exponential rate

‖f (·, t) − M‖L1 ≤ Ce−λt

with λ ≈ 0.016. He conjectured that the true rate should be given byλ = 1/4, which is
the spectral gap in the linearized collision operator for the Kac model. We shall prove
this conjecture here. Our result improves his bound on the rate of decay by more than
an order of magnitude.

The structure of the paper is as follows: In Sect. 2, we introduce the Kac model,
and prove the analog of Theorem 1.2 in this context. In Sect. 3 we prove the analog
of Theorem 1.3 in this context. At this point we need the interpolation inequalities. So
we prove them in Sect. 4, in a general form suitable for both the Kac Model and the
Boltzmann equation. Then, in Sect. 5, we prove the analog of Theorem 1.1 for the Kac
model, and prove a conjecture of McKean. Sect. 6 then presents some geometric lemmas
needed for our analysis of the Boltzmann equation. These are applied in Sect. 7 to prove
Theorem 1.2. Next in Sect. 8 we prove Theorem 1.3, and finally, in Sect. 9, Theorem
1.1.

2. Propagation of Smoothness for the Kac Equation

The Kac equation is a caricature of the Boltzmann equation introduced by Kac, and
reduced to its essentials by McKean. It models a gas of one dimensional particles with
collisions that conserve energy but not momentum (or else, in one dimension, the number
of conserved quantities would equal the number of degrees of freedom). Thus, all of the
kinematicly possible collisions (v, w) → (v′, w′) are given by

v′ = v cosθ + w sinθ and w′ = −v sinθ + w cosθ (2.1)

for 0 ≤ θ < 2π. We could introduce a weightB(cosθ) favoring some collisions over
others, as in [De94], but we shall follow McKean and simply takeB to be constant.
Then the gain term in the Kac model collision kernel is

Q+(f ) =
B

2π

∫ 2π

0

∫
R

f (v′)f (w′)dwdθ, (2.2)

the loss term is

Q−(f ) =
B

2π

∫ 2π

0

∫
R

f (v)f (w)dwdθ = Bf (v),
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and hence the equation itself is

∂f (v, t)
∂t

+ f (v, t) = Q+(f ) (2.3)

where, after a rescaling of time, we have takenB = 1.
Further shifting the frame of reference and rescaling, we may freely suppose that

Mf (v) =
1√
2π

e−v2/2.

Then, as in McKean’s paper [Mk66], one linearizes aboutM = Mf by writing

f = M (1 +h)

and finds that
∂h(v, t)

∂t
= Lh(v, t) + O(h2) (2.4)

whereL, the linearized collision operator is given by

Lh(v) =
1

πM (v)

∫ 2π

0

∫
R

M (v′)M (w′)
[
h(v′) + h(w′) − h(v) − h(w)

]
dwdθ. (2.5)

As McKean observed, the Hermite polynomials are a complete set of eigenfunctions
for L (which is an average over Mehler kernels). All of the odd Hermite polynomials
[Mk73] have eigenvalue -1. The null space ofL consists of the span of the first two even
such polynomials,h0(v) = 1 andh1(v) = 1− v2. Let h2k(v) be the normalised Hermite
polynomial of degree 2k. Since the leading coefficient is a multiple ofv2k, we need only
applyL to v2k to determine the corresponding eigenvalue. Doing so, one has repeated
McKean’s calculation that

Lh2k(v) =
1
π

∫ 2π

0
sin2k(θ)dθ − 1

for allk ≥ 1. The largest of these eigenvalues,λ1, is given byλ1 = −1/4 and corresponds
to h4(v).

Our goal in the next few sections is to show that for anyε > 0, there is a constantCε so
that for all sufficiently smooth and rapidly decaying initial dataf0(v), the corresponding
solutionf (v, t) of the Kac equation satisfies

‖f (·, t) − M (·)‖L1 ≤ Cεe
−(1−ε)λ1t. (2.7)

As indicated in the introduction, the first step will be to show that the smoothness
of the initial data is propagated so that we have bounds on the smoothness uniform in
time. To do this, we prove the analog of Theorem 1.2 for the Kac equation gain term.

Theorem 2.1 (Smoothness bound on the gain term for Kac equation). Let f be any
probability density onR with unit variance, and‖f‖Hm finite. Then, whenever

‖f − Mf‖1 ≤ (1/2)
m+1

2 ,

‖Q+(f )‖2
Hm ≤ CmFm

(‖f − Mf‖1
) ‖f‖2

Hm + Km, (2.8)

where
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Cm =
4

(1 − 1
2

2/(m+1)
)m+1/2

, (2.9)

Km =
8

2m + 1

[
2
e

(2m + 1)(m + 1)

]2m+1

+

4

{∥∥∥∥ 1√
2π

e−x2/2

∥∥∥∥
Hm

+ 4

∥∥∥∥ 1√
π

e−x2

∥∥∥∥
Hm

}
,

(2.10)

and

Fm(x) =
x1/(m+1)

π
+ x2, x ≥ 0. (2.11)

Proof. We shall break the integral defining‖Q+(f )‖2
Hm into several pieces. We first

consider those anglesθ for which either cosθ or sinθ is small. Fixε > 0, and define

Aε = {θ | |θ − kπ/2| ≤ ε, k = 1, 2, 3, 4 and 0 ≤ θ ≤ 2π}
and letAc

ε be its complement in [0, 2π]. Then, by Jensen’s inequality,

‖Q+(f )‖2
Hm ≤

1
2π

∫
Aε

∫
R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ +

+
1

2π

∫
Ac

ε

∫
R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ.

(2.12)

The integral overAε has four parts. Consider the one with|θ| ≤ ε, on which cosθ ≥√
1 − ε2. Then withη = (cosθ)ξ,

1
2π

∫ ε

−ε

∫
R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤
(

1
1 − ε2

)m+1/2 1
2π

∫ ε

−ε

∫
R

|f̂ (ξ)|2|ξ|2mdξdθ =

(
1

1 − ε2

)m+1/2
ε

π
‖f‖2

Hm ,

where we have used the fact that

sup
ξ

|f̂ (ξ sinθ)| ≤ 1.

There are four contributions of this type, and hence

1
2π

∫
Aε

∫
R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤ 4

(
1

1 − ε2

)m+1/2
ε

π
‖f‖2

Hm . (2.13)

Let us setc = ‖f − Mf‖1. Then

|f̂ (ξ)| ≤ |f̂ (ξ) − M̂f (ξ)| + M̂f (ξ) ≤ c + e−ξ2/2. (2.14)

OnAc
ε we split the integration into the two parts where|ξ| > R, and|ξ| ≤ R, for some

R > 0 to be fixed later. On the latter region, using inequality (2.14) we obtain
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∫
Ac

ε

∫
|ξ|≤R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤∫
Ac

ε

∫
|ξ|≤R

(
2c2 + 2e−ξ2 cos2 θ

) (
2c2 + 2e−ξ2 sin2 θ

)
|ξ|2mdξdθ =

4
∫

Ac
ε

∫
|ξ|≤R

(
c4 + c2e−ξ2 sin2 θ + c2e−ξ2 cos2 θ + e−ξ2

)
|ξ|2mdξdθ.

(2.15)

From now on, let us fixε2 ≤ 1/2. Then, on the setAc
ε, or sin2 θ ≥ 1/2, or cos2 θ ≥ 1/2.

Hence, by (2.15)

1
2π

∫
Ac

ε

∫
|ξ|≤R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤

4
(
c4 + c2

) ∫
|ξ|≤R

|ξ|2mdξ + 4c2

∥∥∥∥ 1√
2π

e−x2/2

∥∥∥∥
Hm

+ 4

∥∥∥∥ 1√
π

e−x2

∥∥∥∥
Hm

≤

8
2m + 1

c2R2m+1 + 4

{∥∥∥∥ 1√
2π

e−x2/2

∥∥∥∥
Hm

+ 4

∥∥∥∥ 1√
π

e−x2

∥∥∥∥
Hm

}
.

(2.16)

To handle the integration over the remaining region, we use the fact that

exp

{
−ξ2

2
ε2

}
≤ c

if |ξ| ≥ − 1
ε logc2. Thus, if we chooseR = R(c, ε) − 1

ε logc2, by (2.14) we conclude

that, if ξ ≥ R, or |f̂ (ξ sinθ)| ≤ 2c, or |f̂ (ξ cosθ)| ≤ 2c. So we obtain

1
2π

∫
Ac

ε

∫
|ξ|>R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤

4c2

(1 − ε2)m+1/2
‖f‖2

Hm .

(2.17)

Let us fixc = ε(m+1). Then

sup
c≤1

c2R(c, c1/(m+1)) =

[
2
e

(2m + 1)(m + 1)

]2m+1

, (2.18)

and, grouping inequalities (2.13), (2.16) and (2.17) we obtain

‖Q+(f )‖2
Hm ≤ 4

(1 − c2/(m+1))m+1/2

[
c1/(m+1)

π
+ c2

]
‖f‖2

Hm +

8
2m + 1

[
1
e

(2m + 1)(m + 1)

]2m+1

+ 4

{∥∥∥∥ 1√
2π

e−x2/2

∥∥∥∥
Hm

+ 4

∥∥∥∥ 1√
π

e−x2

∥∥∥∥
Hm

}
.

(2.19)
This proves the theorem, and gives at the same time the explicit form of the function
Fm(·) and of the constantsCm andKm. �
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Several useful variants of inequality (2.8) are easily established. In particular, this
result becomes more useful if we replace theL1 norm, which is not monotonic, with
the relative entropy, which is. This is easily done using the Kullback–Cszilar inequality
which says that

‖f − Mf‖2
L1 ≤ 2

(
H(Mf ) − H(f )

)
and thus we can take

c2 =
1
2

(
H(Mf ) − H(f )

)
in inequality (2.14). We have

Theorem 2.2. Smoothness bound on the gain term for Kac equation, entropic version.
Letf be any density onR3 with ‖f‖Hm finite. Then, whenever

H(Mf ) − H(f ) ≤ (1/2)m+2,

‖Q+(f )‖2
Hm ≤ CmGm

(
H(Mf ) − H(f )

) ‖f‖2
Hm + Km,

(2.20)

whereCm andKm are defined by (2.9) and (2.10) respectively, and

Gm(x) =
1
π

(
x√
2

)1/2(m+1)

+
1
2
x, x ≥ 0. (2.21)

The next version is given in terms of the Fisher information, and is different in that it
does not require any “smallness” condition to apply.

The main point is the determination of a bound on the decay of|f̂ (ξ)| in terms of the
Fisher informationI(f ). For the Kac equation, as well for Maxwell pseudomolecules
and for certain rate functionsb(cosθ), Fisher information is known to be non-increasing
in time when evaluated along the solution [Mk66, BT92].

The result that follows is independent of the dimension, even regarding the constants,
so we prove it onRn.

The Fisher informationI(f ) is defined by

I(f ) = 4
∫

Rn

|∇
√

f (v)|2 dv

∫
Rn

|∇ logf (v)|2f (v) dv. (2.22)

We have

Lemma 2.3. For any probability densityf onRn with I(f ) finite,

|f̂ (ξ)| ≤
√

I(f )
|ξ| . (2.23)

Proof. As in the standard proof of the Riemann–Lebesgue Lemma, write

f̂ (ξ) =
1
2

∫
Rn

(
f (v) − f (v + (π/|ξ|2)ξ)

)
eiξ·vdv,

so that

|f̂ (ξ)| ≤ 1
2

∫
Rn

|f (v) − f (v + (π/|ξ|2)ξ)|dv.

Next, write
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|(f (v) − f (v + (π/|ξ|2)ξ)
)| =(√

f (v) +
√

f (v + (π/|ξ|2)ξ)
)|(√f (v) −

√
f (v + (π/|ξ|2)ξ)

)| ≤
(√

f (v) +
√

f (v + (π/|ξ|2)ξ)
)
(π/|ξ|)

∫ 1

0
|∇

√
f (v + t(π/|ξ|2)ξ)| dt.

Inserting this into the integral overv, and applying the Schwarz inequality, and then the
Minkowski inequlity twice, one easily gets the stated result. �
Theorem 2.4. (Smoothness bound on the gain term for Kac equation, Fisher informa-
tion version.) Letf be any density onR with ‖f‖Hm finite. Then there is a constant
Km(I(f )) so that

‖Q+(f )‖2
Hm ≤ 1

2
‖f‖2

Hm + Km(I(f )). (2.24)

Proof. We proceed as in the proof of Theorem 2.1, except that we useI(f0) to control
the size of|f̂ (ξ)| for largeξ. In consequence of Lemma 2.3, inequality (2.17) can now
be substituted by

1
2π

∫
Ac

ε

∫
|ξ|>R

|f̂ (ξ cosθ)|2|f̂ (ξ sinθ)|2|ξ|2mdξdθ ≤

1
(1 − ε2)m+1/2

I(f )
R2ε2

‖f‖2
Hm .

(2.25)

Grouping inequalities (2.13), (2.16) and (2.25) we obtain

‖Q+(f )‖2
Hm ≤ 1

(1 − ε2)m+1/2

[
4ε

π
+

I2(f )
R2ε2

]
‖f‖2

Hm +

8
2m + 1

R2m+1 + 4

{∥∥∥∥ 1√
2π

e−x2/2

∥∥∥∥
Hm

+ 4

∥∥∥∥ 1√
π

e−x2

∥∥∥∥
Hm

}
.

(2.26)

Now, chooseR = 2
√

I(f )/ε, and thenε = ε(I(f )) to satisfy

1
(1 − ε2)m+1/2

[
4ε

π
+

1
4

]
=

1
2

and the result follows. �

3. Optimal Exponential Convergence in the||| · ||| Norm for the Kac Equation

We present here, in the spirit of the proof of [GTW95], a new estimate for the rapid
convergence towards equilibrium when sufficiently many moments exist initially. The
new feature is that thebest possiblerate is obtained when the fourth moment exists.

Theorem 3.1. Letf0 be a probability density with
∫

R
|v|4|f0(v)dv < K. Then there are

constantsB andC and a functionS(·, t) such that

|||f (·, t) − Mf (·) − S(·, t)||| ≤ Bte−tλ1|||f (·, 0) − Mf (·) − S(·, 0)|||
for all t ≥ 0 and with|||f (·, 0) − Mf (·) − S(·, 0)||| < ∞, such that for allm,

etλ1
(‖S(·, t)‖L1 + ‖S(·, t)‖Hm

) ≤ C, for all t ≥ 0.

Here,λ1 = 1/4 is the spectral gap in the linearized collision operator for the Kac model.
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Proof. First, we need some preliminary bounds on the evolution of the moments to
control the subtraction termS. These are simple analogs for the Kac model of certain
bounds proved for the Boltzmann equation by Ikenberry and Truesdell [IT55]. Note
in particular that the moments satisfy equations that are independent of the particular
solutionf . We will use this fact instead of direct calculation in the case of Maxwellian
molecules.

For any natural numberk, let us denotemk(t) =
∫

R vkf (v, t) dv, and let us put
mk = mk(0). An easy computation shows that,∫

R
vkQ+(f, f )(v) dv∫

R2×[0,2π]

1
2π

(v cosθ + w sinθ)kf (v)f (w) dvdwdθ.

Hence, ∫
R

v2k+1Q+(f, f )(v) dv = 0,

which implies
m2k+1(t) = m2k+1e

−t,

and, if k = 4, owing to the conservation of the energy (m2(t) = m2), we obtain that
m4(t) satisfies

d

dt

[
m4(t) − 3m2

2

]
= −1

4

[
m4(t) − 3m2

2

]
so that

m4(t) = 3m2
2 + e−(1/4)t

[
m4 − 3m2

2

]
.

Let M denote the Maxwellian distribution with the same mass and temperature off ,
and let us put

φ(ξ, t) = f̂ (ξ, t) − M̂ (ξ).

Now, we can’t divide by|ξ|4 and expect a finite supremum norm because of the
possibly non-vanishing first and third moments off . Thus we introduce a subtraction
term to cancel these out. This is built by taking the third order Taylor polynomial ofφ,
and multiplying by a cut-off function as follows:

Sincef0 has four finite moments, taking a Taylor expansion ofφ up to the fourth
order, and using the above bounds, one gets

φ(ξ, t) =

[
−im1ξ + im3

ξ3

3!

]
e−t +

ξ4

4!

[
m4 − 3m2

2

]
e−(1/4)t + o(ξ4).

DefineX(ξ) = ξ if |ξ| ≤ 1, andX(ξ) = 0 otherwise, and let

Ŝ(ξ, t) =

[
−im1X(ξ) + im3

X(ξ)3

3!

]
e−t +

X(ξ)4

4!

[
m4 − 3m2

2

]
e−(1/4)t .

φ1(ξ, t) = φ(ξ, t) − Ŝ(ξ, t).

Consider that
∂

∂t
Ŝ(ξ, t) + Ŝ(ξ, t)

3
4

X(ξ)4

4!

[
m4 − 3m2

2

]
e−(1/4)t.
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Hence,φ1 satisfies

∂

∂t
φ1 + φ1Q̂

+(φ1, f̂ ) + Q̂+(M̂, φ1) + Q̂+(Ŝ, f̂ ) + Q̂+(M̂, Ŝ) −
3
4

X(ξ)4

4!

[
m4 − 3m2

2

]
e−(1/4)t.

Now,

Q̂+(Ŝ, f̂ )(ξ, t) =
1

2π

∫ 2π

0

{[
−im1X(ξ cosθ) + im3

X(ξ cosθ)3

3!

]
e−t+

X(ξ cosθ)4

4!

[
m4 − 3m2

2

]
e−(1/4)t

}
f̂ (ξ sinθ) dθ.

On the other hand, for allk ∈ N,∫ 2π

0
ξk sink θX(ξ cosθ) dθ = 0,

∫ 2π

0
ξk sink θX(ξ cosθ)3 dθ = 0.

This implies that

1
2π

∫ 2π

0
im1X(ξ cosθ)

[
1 − im1ξe

−t − m2
ξ2

2

]
dθ = 0

and, since for a certain̄ξ∣∣∣∣f̂ (ξ, t) − 1 + im1ξe
−t + m2

ξ2

2

∣∣∣∣ ≤ |ξ|3
3

∣∣∣f̂ ′′′(ξ̄, t)
∣∣∣

and by Ḧolder inequality∣∣∣f̂ ′′′(ξ̄, t)
∣∣∣ ≤

∫
R

|v|3f (v, t) dv ≤ [
m4 − 3m2

2

]3/4

we obtain
1

2π

∣∣∣∣∣
∫ 2π

0
im1X(ξ cosθ)f̂ (ξ sinθ, t) dθ

∣∣∣∣∣ ≤

|m1|
[
m4 − 3m2

2

]3/4 |ξ|4
3!

.

Using the same method, and recalling that∣∣∣f̂ ′(ξ̄, t)
∣∣∣ ≤

∫
R

|v|f (v, t) dv ≤ m
1/2
2 = 1,

we obtain
1

2π

∣∣∣∣∣
∫ 2π

0
im3

X(ξ cosθ)
3!

f̂ (ξ sinθ, t) dθ

∣∣∣∣∣ ≤ |m3| |ξ|
4

3!
.
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The exact same bound can be derived forQ̂+(M̂, Ŝ). Thus

|Q̂+(Ŝ, f̂ )(ξ, t)| + |Q̂+(M̂, Ŝ)| ≤

2e−t
[
|m1|

[
m4 − 3m2

2

]3/4
+ |m3|

] |ξ|4
3!

+ 2e−(1/4)t
[
m4 − 3m2

2

] |ξ|4
4!

.

We can simplify this using the fact that|mk| ≤ m
k/n
n for all evenn > k. The bound

becomes

|Q̂+(Ŝ, f̂ )(ξ, t)| + |Q̂+(M̂, Ŝ)| ≤ (
4m4e

−t + [m4 − 3m2
2]e−t/4

) |ξ|4
3!

.

Hence ∣∣∣∣ ∂

∂t
φ1 + φ1

∣∣∣∣ ≤ |Q̂+(φ1, f̂ ) + Q̂+(M̂, φ1)| +
[
ce−t + de−(1/4)t

]
|ξ|4

with constantsc andd which are given explicitly just above.
Defineφ2(ξ, t) = φ1(ξ, t)/|ξ|4. Then,φ2 satisfies∣∣∣∣ ∂

∂t
φ2 + φ2

∣∣∣∣ ≤ 1
|ξ|4 |Q̂+(φ1, f̂ ) + Q̂+(M̂, φ1)| +

[
ce−t + de−(1/4)t

]
.

Now it remains to estimate

1
|ξ|4 |Q̂+(φ1, f̂ ) + Q̂+(M̂, φ1)| ,

and to show how it is controlled by the spectral gap.
Consider first the term|Q̂+(M̂, φ1)|/|ξ|4. Clearly

|Q̂+(M̂, φ1)|/|ξ|4 ≤
1

2π

∫ 2π

0
|M̂ ((cosθ)ξ)φ2((sinθ)ξ)|(sinθ)4dθ ≤

‖M̂‖L∞ |||φ2||| 1
2π

∫ 2π

0
(sinθ)4dθ.

Now,‖M̂‖L∞ = 1, and since the same is true forf̂ , we get the same bound for the other
term. The value of the integral is 3/8, and so we have

∂

∂t
|||φ2||| +

1
4
|||φ2||| ≤

[
ce−t + de−(1/4)t

]
which is

∂

∂t

(
e(1/4)t|||φ2|||

) ≤
[
ce−(3/4)t + d

]
so that upon integration we have

e(1/4)t|||φ2(t)||| ≤ (4/3)c + dt.

This proves the bound, and makes it a simple matter to reckon the constants.�
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This proves the theorem, but it will be helpful for what follows to make the connection
with L more explicit. To see the role ofL explicitly, note that the bound we get for
Q̂+(φ1, f̂ ) + Q̂+(M̂, φ1), is, as we have pointed out, the same as the bound we would get
for Q̂+(φ1, M̂ ) + Q̂+(M̂, φ1). But if we defineh by φ1 = Mh, then

Q̂+(φ1, M̂ ) + Q̂+(M̂, φ1) − φ1 = M̂Lh

since
∫

R
Mh(v)dv = 0. This is the reason that the constant we get is the spectral gap –

which is naturally best possible. For the same reason we will see that the spectral gap
controls the approach to equilibrium also for Maxwellian molecules. There, however,
it will be more convenient to rely on a further development of the above explanation,
instead of on direct calculation. Hence Sect. 8 will shed light on why this approach did
yield the optimal bound.

4. Interpolation Inequalities

This section contains the several interpolation inequalities that we shall use to extract
strong convergence estimates from weak convergence estimates. The first result shows
that||| · |||α and arbitrarily little‖ · ‖Hm control‖ · ‖Hk for m sufficiently larger thank.

Theorem 4.1. Letk ≥ 0 andα, β, r > 0, 0 < r < 1, be given. Then

‖f‖Hk ≤ C(r, β)|||f |||2(1−r)
α

(‖f‖2r
HM + ‖f‖2r

HN

)
with

M =
k + (2 +α)(1 − r)

r
, N = M +

(1 − r)(n + β)
2r

,

C(r, β) =
(|Bn|(1 +n/β)

)1−r
,

and where|Bn| denotes the volume of the unit ball inRn.

Proof. For anyp > 0, and anyr with 0 < r < 1,

‖f‖2
Hk =

∫
Rn

|f̂ (ξ)|2|ξ|2kdnξ =

∫
Rn

|f̂ (ξ)|2−2r

|ξ|(2+α)(2−2r)
|f̂ (ξ)|2r|ξ|2k+(2+α)(2−2r)(1 + |ξ|p)r(1 + |ξ|p)−rdnξ ≤

|||f |||2−2r
α

∫
Rn

|f̂ (ξ)|2r|ξ|2k+(2+α)(2−2r)(1 + |ξ|p)r(1 + |ξ|p)−rdnξ ≤

|||f |||2−2r
α

(∫
Rn

|f̂ (ξ)|2|ξ|(2k+(2+α)(2−2r))/r(1 + |ξ|p)dnξ

)r

×
(∫

Rn

(1 + |ξ|p)−r/(1−r)dnξ

)1−r

.

For the last integral to converge, we require thatp > r(1 − r)n, so letβ > 0, and put
p = r(1 − r)(n + β). Then the integral is∫

Rn

(1 + |ξ|r(1−r)(n+β))−1/r(1−r)dnξ ≤

|Bn| + n|Bn|
∫ ∞

0
r−(1+β)dr = |Bn|(1 +n/β) . �
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The next inequality shows that control of the sufficiently many moments and control
on theL2 norm together control theL1 norm.

Theorem 4.2. Letf be an integrable function onRn. Then for allk > 0,

∫
Rn

|f (v)|dnv ≤ C(n, k)

(∫
Rn

|f (v)|2dnv

) 2k
(n+4k)

(∫
Rn

|v|2kf (v)dnv

) n
(n+4k)

,

where

C(n, k) =

[(
n

4k

)4k/(n+4k)

+

(
4k

n

)n/(n+4k)]
|Bn|2k/(n+4k)

and again,|Bn| denotes the volume of the unit ball inRn.

Proof. We may assume thatf is non-negative. Also, by translation invariance, we may
assume that the infimum above is achieved atv = 0.

Let R > 0 be chosen. Then∫
Rn

f (v)dnv =
∫

|v|≤R

f (v)dnv +
∫

|v|≥R

f (v)dnv ≤
(|Bn|Rn

)1/2‖f‖L2 + R−2k

∫
Rn

|v|2kf (v)dnv.

Optimizing inR now yields the result. �

5. Optimal Exponential Convergence in the StrongL2 Norm and Sobolev Norms
for the Kac Equation

One now easily sees that the assertion in (1.16) is a consequence of Theorems 4.1 and
4.2, with a readily computed constantCε. Since Theorem 2.3 gives us a uniform bound
on‖f (·, t)‖Hm provided it is finite initially, and provided the Fisher informationI(f ) is
initially finite, combining this with Theorem 3.1, we have:

Theorem 5.1. Letf0 be any probability density on the real line with unit variance, finite
fourth momentm4 and finite Fisher informationI(f0). Then for anyε > 0 there is a
fixed constantm, depending only onε, so that if∫

R

f (v)|v|2mdv +
∫

R

|f̂ (ξ)|2|ξ|2mdξ ≤ K

there is a universal, computable constantC depending only onε, m4, I(f0) andK so
that the solution of the Kac equationf (·, t) with initial dataf0(·) satisfies

‖f (·, t) − Mf (·)‖L1 ≤ Ce−(1−ε)λ1t,

whereλ1 is the spectral gap in the linearized collision operator L for the Kac equation;
i.e.,λ1 = 1/4.

Moreover, increasingm we obtain the same result if theL1 norm is replaced by any
Hk norm.
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This result proves a conjecture of McKean [Mk66] concerning the optimal rate of
convergence for the Kac equation, though the result requires moments and Sobolev space
regularity of all orders to reach the optimal rate of convergence. In contrast, McKean’s
proof used only a bound on the third moment and on the H1 norm of the square root of
the densityf , but yielded a bound on the rate that was smaller by more than an order of
magnitude, and that did not improve in the presence of greater regularity.

This concludes our treatment of the Kac model. We now turn to the Maxwellian
case.

6. Geometric Lemmas for the Maxwellian Gain Term

Fix a unit vectorn in R3, and consider the two maps�± : R3 → R3 defined by

�±(ξ) = ξ± =
ξ ± |ξ|n

2
. (6.1)

Each of these maps “opens up”R3 into a half space withn as the bounding normal.
More precisely, notice that

2ξ+ · n = ξ · n + |ξ| (6.2)

which is always positive unlessξ is a negative multiple ofn, in which caseξ+ = 0. Thus,
if we delete the ray antiparallel ton from the domain of�+, its range is

H(n) = {η | η · n > 0}. (6.3)

Moreover, this restricted map is one-to-one on this range, and one easily works out,
using

|ξ+|2 = |ξ|(ξ · n), (6.4)

that the inverse map is

�−1
+ (η) = 2η − |η|2

(η · n)
n. (6.5)

Moreover, letθ and2± be defined by

cos(θ) =
ξ · n
|ξ| and cos(2±)

ξ± · n
|ξ±| . (6.6)

Then one easily deduces from the above that

2+ = θ/2 and |ξ+||ξ| cos(θ/2). (6.7)

It is now an easy matter to compute the Jacobian of the coordinate transformation given
by �+:

J

(
∂ξ

∂ξ+

)
=

4
cos2(2+)

=
4

cos2(θ/2)
. (6.8)

An exactly analogous analysis of�− leads to:

J

(
∂ξ

∂ξ−

)
4

cos2(2−)
=

4

sin2(θ/2)
. (6.9)

The first Jacobian is singular only nearθ = π, and the second only nearθ = 0. In
particular, away from the origin, at least one of the two is bounded by 8.
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7. Propagation of Smoothness for Maxwellian Molecules

Once again, we use the Fourier transform. Since the Maxwellian collision kernel is less
directly related to convolution than the Kac collision kernel, the computation is more
involved. But it has been carried out by Bobylev [Bo88] who found that

Q̂+(f, f )(ξ) =
∫

S2

f̂ (ξ+)f̂ (ξ−)B(n · ξ/|ξ|)dn. (7.1)

The notation is that introduced in the previous section. The next result contains Theorem
1.2, and provides some explicit information that we did not bring into the introduction.
It is possible to present it in a form analogous to that of Theorem 2.1 for the Kac model,
but this would require more work, and the present version suffices.

Moreover, to keep the formulas readable, we explicitly treat the caseB = 1. It will
be clear from the proof that all we really use is the fact that

∫ |B(ξ · n/|ξ|)dn < ∞.
Thus Theorem 1.2 will be established in the stated generality.

Theorem 7.1 (Smoothness bound on the gain term for Maxwellian molecules). Let f
be any probability density with finite second moments onR3 such that‖f‖Hm is finite.
Then there is a constantC(m, T ) so that

‖Q+(f )‖2
Hm ≤ (1/2)‖f‖2

Hm + C(m, T ) (7.2)

whenever
‖f − Mf‖2

L1 ≤ 2−(m+5). (7.3)

Proof. Fix anyε > 0. Then forj = 1, 2, define the setsA(ε)
j by

A(ε)
j = {(ξ, n) | ((1 + (−1)j cosθ)2 ≤ (2ε)2}. (7.4)

Then ∫
S2

∫
R3

|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn =

∑
j=1,2

∫
S2

∫
R3

1A(ε)
j

(ξ, n)|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn +

∫
S2

∫
R3

(1 −
∑
j=1,2

1A(ε)
j

(ξ, n))|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn.

Consider first the integral overA(ε)
2 . On the set,ξ+ andξ are close to one another, but we

have little control overξ−. Thus we use the Riemann-Lebesgue theorem to estimate:

|f̂ (ξ−)|2 ≤ 1.

Next we observe that

1 − cosθ = 1− cos(22+) = 2 sin2(2+)

and that
sin2(2+) ≥ (1 − cos2+).

Hence,
A(ε)

2 (ξ, n) ⊂ A(ε)
2 (ξ−, n). (7.5)
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Furthermore, onA(ε)
2 , cosθ ≥ 1 − 2ε. Hence cos2(θ/2) ≥ 1 − ε, and the Jacobian

J(∂ξ/∂ξ±) is bounded above 4/(1 − ε). Finally, |ξ| ≤ |ξ−|/√
1 − ε. Hence,∫

S2

∫
R3

1A(ε)
2

(ξ, n)|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn ≤
4

(1 − ε)(m+1)

∫
S2

∫
H(n)

1A(ε)
2

(η, n)|f̂ (η)|2||η|2mdηdn ≤
4

(1 − ε)(m+1)

∫
S2

∫
R3

1A(ε)
2

(η, n)|f̂ (η)|2||η|2mdηdn =

4
(1 − ε)(m+1)

∫
R3

(∫
S2

1A(ε)
2

(ξ, n)dn
)

|f̂ (η)|2||η|2mdη =

4
(1 − ε)(m+1)

(
4πε

)‖f‖2
Hm ,

(7.6)

whereH(n) is defined in (6.3). Clearly, we get the same bound for the integral over
A(ε)

1 . Now fix someR > 0 to be chosen later, and split the remaining integration into
the two parts where|ξ| > R and |ξ| ≤ R. On the latter region, we again use the
Riemann–Lebesgue estimate to obtain∫

S2

∫
|ξ|≤R

(1 −
∑
j=1,2

1A(ε)
j

(ξ, n))|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn ≤
∫

S2

∫
|ξ|≤R

|ξ|2mdξdn ≤

R2m+1π

2m + 1
.

(7.7)

To handle the integration over the remaining region, we first simplify notation by
writing c = ‖f − Mf‖L1. Then by one more use of the Riemann–Lebesgue lemma,

|f̂ (ξ±)| ≤ c + |M̂f (ξ±)| = c + e−T |ξ±|2/2. (7.8)

Again withn fixed, consider thoseξ in the final region of integration withξ · n ≥ 0.
Recall that|ξ+| = |ξ| cos2+ and|ξ−| = |ξ| sin2+. This is the region where cos2 ≤ π/4,
but sin2 2 ≥ ε. Hence in this region

|f̂ (ξ−)| ≤ c + e−εTR2/2 ≤ 2cρ

when we chooseR =
√−2 lnc/Tε. We now fix this choice ofR. Making the same sort

of estimates forξ · n ≤ 0, we get∫
S2

∫
|ξ|>R

(1 −
∑
j=1,2

1A(ε)
j

(ξ, n))|f̂ (ξ+)|2|f̂ (ξ−)|2|ξ|2mdξdn ≤

2c22m 4
1 − ε

∫
S2

∫
R3

|f̂ (η)|2|η|2mdηdn ≤
2m+2c2

1 − ε
‖f‖2

Hm .

(7.9)

Putting together all of the pieces yields
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‖Q+(f )‖2
Hm ≤ (2m+2c2

1 − ε
+

8ε

(1 − ε)(m+1)

)‖f‖2
Hm + K(c, T, ε),

where

K(c, T, ε) =
1

2m + 1
(−2 lnc/Tε)(2m+1)/2.

Finally, chooseε = c2/2 to obtain the required multiple of‖f‖2
Hm . �

Several useful variants of the inequality are easily established. First, the Kullback–
Cszilar inequality says that

‖f − Mf‖2
L1 ≤ 1

2

(
H(Mf ) − H(f )

)
and thus we immediately have

Theorem 7.2. (Smoothness bound on the gain term for Maxwellian molecules, entropic
version). Letf be any probability density onR3 with finite second moments such that
‖f‖Hm is finite. Then there is a constantC(m, T ) so that

‖Q+(f )‖2
Hm ≤ (1/2)‖f‖2

Hm + C(m, T ) (7.10)

whenever (
H(Mf ) − H(f )

) ≤ 2−(m+4). (7.11)

The utility of this simple variant lies in the monotonicity of the entropy: once we
arrive at a time for which the condition (7.11) is satisfied, it remains satisfied forever.

The next version is given in terms of the Fisher information, and is different in that
it does not require any “smallness” condition to apply.

Theorem 7.3. (Smoothness bound on the gain term for Maxwellian molecules, Fisher
information version). Letf be any probability density onR3 with finite second moments
and such that‖f‖Hm is finite. Then there is a constantC(m, T, I(f )) so that

‖Q+(f )‖2
Hm ≤ 1

2
‖f‖2

Hm + C(m, T, I(f )). (7.12)

Proof. We proceed as in the proof of the main theorem, except that we useI(f ), through
Lemma 2.3, to control the size of|f̂ (ξ)| for largeξ. �

8. Optimal Exponential Convergence in the||| · ||| Norm for Maxwellian Molecules

Here we prove Theorem 1.3, which is for Maxwellian molecules the analog of Theorem
3.1. In the course of the proof we obtain an interesting, somewhat indirect, explicit
evaluation ofλ1.

Proof of Theorem 3.1.Once again, we putφ(ξ, t) = f̂ (ξ, t) − M̂ (ξ), and we letP (ξ, t)
denote the third degree Taylor polynomial ofφ(ξ, t), and letR(ξ) denote the third degree
Taylor polynomial ofM̂ (ξ). This is a bit more complicated than in the one dimensional
Kac case, in that now there can be second degree differences betweenP (ξ, t) and the
third degree Taylor polynomial for̂M (ξ).
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However, we still proceed in the same way. First, letK(ξ), a cut-off function, be any
smooth approximation to 1{|ξ|≤1} agreeing with it outside a thin neighborhood of the
unit sphere. Then define

Ŝ(ξ, t) = K(ξ)(P (ξ, t) − R(ξ)). (8.1)

Clearly, since the fourth moment off is finite, so is|||φ(·, t) − S(·, t)|||.
Moreover,[IT56], the coefficients ofP are simply multiples of certain corresponding

moments off . And, as proved in this reference, these moments tend to their equilibrium
values exponentially fastwith a rate that is independent of the initial data, as in the
Kac model case, provided only that the moment exists initially. ThusS(·, t) has the
form K(ξ) times a polynomial of degree three whose coefficients are decaying to zero
exponentially fast.

Now any monomial inξ multiplied byK(ξ) is the Fourier transform of a function
that has a finite norm in bothL1 and Hm for anyn. Hence we have that(‖S(·, t)‖L1 + ‖S(·, t)‖Hm

) ≤ Ce−tλ (8.2)

for someC depending onf andn, and someuniversalλ.
In our treatment of the Kac model, we computed the correspondingλ. Here we avoid

this, and simply make the observation that we require: whatever the value ofλ, it is the
case thatλ ≥ λ1.

Because of the universality ofλ, this follows from the results of Cercignani, Lampis
and Sgarra [CLS88] concerning the behavior of small perturbations of equilibrium.
Specifically, consider the coefficientc1,2(t) of K(ξ)ξ1ξ2 in S(·, t). Pickδ small enough
thatδv1v2 + |v|4 ≥ 0, and then pickε small enough that

f0(v) = C(1 + ε(δv1v2 + |v|4))M (v) (8.3)

in whichC is the normalizing constant, is close enough to equilibrium for the theorem of
[CGS88] to apply. Then the corresponding solution of the Boltzmann equation approches
equilibrium likee−tλ1. But clearly it appraches equilibrium no faster thanc1,2(t) tends
to zero. Hencec1,2(t) must tend to zero at least as fast ase−tλ1. The argument for the
other coefficients is the same. Thus, (8.3) holds withλ = λ1.

Not only doesS(·, t) decay at this rate, but since its coefficients in the Fourier
transform respresentation satisfy the ordinary differential equations derived in [IT56],
we have that the time derivative ofS(·, t) does as well.

At this point we have stepped around most of the direct computation in the proof
of Theorem 3.1 – which was only possible there because we made the simplifying
assumption of constant rate function – and can easily conclude the proof.

Let φ1 = φ − S as before. Then

∂φ1

∂t
+ φ1 =

(
∂S

∂t
+ S

)
+

Q̂+(f̂ , Ŝ) + Q̂+(Ŝ, M̂ ) + Q̂+(f̂ , φ1) + Q̂+(φ1, M̂ ).

Then, all the terms involvingS are estimated as in the proof of Theorem 3.1, and
we obtain that

|∂φ1

∂t
+ φ1 − (Q̂+(f̂ , φ1) + Q̂+(φ1, M̂ )

)| ≤ C|ξ|4e−tλ1
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for some constantC. Again as before, defineφ2(ξ, t) = φ1(ξ, t)/|ξ|4. Then the above
estimate becomes

|∂φ2

∂t
+ φ2 − (Q̂+(f̂ , φ1) + Q̂+(φ1, M̂ )

)
/|ξ|4| ≤ Ce−tλ1.

It remains to estimate

|Q̂+(f̂ , φ1) + Q̂+(φ1, M̂ )|/|ξ|4. (8.4)

Consider first

|Q̂+(φ1, M̂ )|/|ξ|4 ≤∫
S2

|M̂ (ξ−)||φ2(ξ+)| cos4(θ/2)B(cos(θ))dn,

where we have used the formulas (6.6) and (6.7). This in turn is dominated by

‖M̂‖L∞‖φ2‖L∞

∫
S2

cos4(θ/2)B(cos(θ))dn =

|||φ1|||
∫

S2

cos4(θ/2)B(cos(θ))dn.

Naturally we obtain the same estimate for|Q̂+(f̂ , φ1)|/|ξ|4. Putting it all together,
we then have

∂|||φ1|||
∂t

+
(
1 − 2

∫
S2

cos4(θ/2)B(cos(θ))dn
)|||φ1||| ≤ Ce−tλ1.

Solving this differential inequality gives us exponential decay at rateλ with

λ = min{λ1, (1 − 2
∫

S2

cos4(θ/2)B(cos(θ))dn
)}.

We now claim that the terms in the minimum are actually equal.
To see this, leth(v) = |v|4 − b|v|2 − c, whereb andc are chosen to make∫

R3

h(v)|v|2M (v)d3v =
∫

R3

h(v)M (v)d3v = 0.

Of course,h is just the spherically symmetric fourth order Hermite polynomial. Now
pick a small enough that 1 +ah(v) is positive, and considerf (v) = M (v)(1 + ah(v)),
thenφ1(ξ) = aM (ξ)|ξ|4, so thatφ2(ξ) = aM (ξ). In this case, we lose nothing in the
estimate above:

|Q̂+(φ1, M̂ )|/‖ξ|4 = aM (ξ)
∫

S2

cos4(θ/2)B(cos(θ))dn.

Again, as we have observed in Sect. 3,

Q̂+(φ1, M̂ ) + Q̂+(M̂, φ1) − φ1 = M̂Lh, (8.5)

and hence

M̂Lh = −(
1 − 2

∫
S2

cos4(θ/2)B(cos(θ))dn
))

h.
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Thus, as is well known,h(v) is an eigenvector ofL, and the corresponding eigenvalue
is given by the above formula. This means that

λ1 ≤ (1 − 2
∫

S2

cos4(θ/2)B(cos(θ))dn
)

and while at first sight one might suppose that another Hermite polynomial of order
higher than four produces the gap, the estimate that was applied to (8.4) can be equally
well applied to (8.5) for these higher eigenfunctions to see that this is not the case. Thus
we have computedλ1, and proved that

∂|||φ2|||
∂t

+ λ1|||φ2||| ≤ Ce−tλ1.

This together with our bounds onS yield the theorem. �

9. Optimal Exponential Convergence in the StrongL1 Norm and Sobolev Norms
for Maxwellian Molecules

This section is very short; we only need collect results to provide a proof of Theorem
1.1, and to explain how to compute the constants involved in it.

Proof of Theorem 1.1.Since we have established Theorem 1.3 in Sect. 8, and have estab-
lished Theorem 1.2 in Sect. 7, Theorem 1.1 follows from the interpolation inequalities,
Theorems 4.1 and 4.2 , just as in the case of the Kac model.�
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Math. Palermo, in press

[GTW95] Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to
equilibrium for solutions of the Boltzmann equation. J. Stat. Phys.81, 901–934 (1995)

[IT56] Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy according to Maxwell’s
kinetic energy I. J. Rat. Mech. Anal.5, 1–54 (1956)

[Ka57] Kac, M.:Probability and Related Topics in Physical Sciences. London, New York: Interscience
Publ. LTD., 1957

[Mk66] McKean Jr., H.P.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas.
Arch. Rational Mech. Anal.21, 343–367 (1966)

[Li95] Lions, P.L.: Compactness in Boltzmann’s equation via Fourier integral operatorsand applications
III. J. Math. Kyoto Univ.34, 539–584 (1994)

[LT95] Lions, P.L., Toscani, G.: A sthrenghtened central limit theorem for smooth densities. J. Funct.
Anal. 128, 148–167 (1995)

[To92] Toscani, G.: New a priori estimates for the spatially homogeneous Boltzmann equation. Cont.
Mech. Termodyn.4, 81–93 (1992)

[To95] Toscani, G.: On regularity and asymptotic behaviour of a spatially homogeneous Maxwell gas.
Preprint (1995); Rend. Seminario Matem. Palermo, in press

[WU70] Wang Chang, C.S., Uhlenbeck, G.E.: The kinetic Theory of Gases. In:Studies in Statistical
mechanics V, eds. J. de Boer and G.E. Uhlenbeck, Amsterdam: North Holland Publishing Co.,
1970 (This is a collection of Michigan Research Institute Reports written by the authors during
the period 1948 to 1956)

[We93] Wennberg, B.: Stability and exponential convergence for the Boltzmann equation. Thesis,
Chalmers University of Technology (1993)

[We94] Wennberg, B.: Regularity in the Boltzmann equation and the Radon transform. Commun. Part.
Diff. Eq. 19, 2057–2074 (1994)

Communicated by J. L. Lebowitz


