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Abstract: We revisit the Hitchin integrable system [11, 21] whose phase space is the
bundle cotangent to the moduli spateof holomorphicS L,-bundles over a smooth
complex curve of genus 2. As shown in [18],may be identified with the 3-dimensional
projective space of theta functions of th& @rder, i.e. ' = P3. We prove that the
Hitchin system onll™* A = T*P3 possesses a remarkable symmetry: it is invariant
under the interchange of positions and momenta. This property allows to complete the
work of van Geemen—Previato [21] which, basing on the classical results on geometry
of the Kummer quartic surfaces, specified the explicit form of the Hamiltonians of the
Hitchin system. The resulting integrable system resembles the classic Neumann systems
which are also self-dual. Its quantization produces a commuting family of differential
operators of the® order acting on homogeneous polynomials in four complex variables.
As recently shown by van Geemen—deJong [22], these operators realize the Knizhnik—
Zamolodchikov-Bernard—Hitchin connection for gratify (2) and genus 2 curves.

1. Introduction

In[11], Nigel Hitchin has discovered an interesting family of classical integrable models
related to modular geometry of holomorphic vector bundles or to 2-dimensional gauge
fields. The input data for Hitchin’s construction are a complex Lie grGuamd a com-

plex curveX of genusy. The configuration space of the integrable system is the moduli
space\ of (semi)stable holomorphi€-bundles overz. This is a finite-dimensional
complex variety and Hitchin’s construction is done in the holomorphic category. It ex-
hibits a complete family of Poisson-commuting Hamiltonians on the (complex) phase
spacel™* A. The Hitchin Hamiltonians have open subsets of abelian varieties as generic
level sets on which they induce additive flows [11]. More recently, Hitchin's construc-
tion was extended to the case of singular or punctured curves [16, 19, 7] providing a
unified construction of a vast family of classical integrable systemszFoC P! with
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punctures, one obtains this way the so called Gaudin chains ard fo6 Ly and X
of genus 1 with one puncture, the elliptic Calogero-Sutherland models which found an
unexpected application in the supersymmetric 4-dimensional gauge theories [6].

In Sect. 2 of the present paper we briefly recall the basic idea of Hitchin’s construc-
tion. The main aim of this contribution is to treat in detail the casé of SL, andX of
genus 2 (no punctures). The genus 2 curves are hyperelliptic, i.e., given by the equation

6
=T =), (1.1)
s=1

where)\, are 6 different complex numbers. The semistable moduli spatas a par-
ticularly simple form for genus 2, [18]: it is the projectivized space of theta functions of
the 29 order:

N =PHY(L2), (1.2)

whereLg is the theta-bundle over the Jacobi#rof (the isomorphism classes of) degree
v—1 = 1line bundles! over=. dim(H°(L3)) = 4 so that\" = P3. This picture of\/
is related to the realization ¢fL,-bundles as extensions of degree 1 line bundles. We
review some of the results in this direction in Sect. 3 using a less sophisticated language
than that of the original work [18]. The relation between the extensions and the theta
functions is lifted to the level of the cotangent bundle\ in Sect. 4. The language of
extensions proves suitable for a direct description of the Hitchin Hamiltoniad.6h
The main aim is, however, to present the Hitchin system as an explicit 3-dimensional
family of integrable systems ofi*P3, parametrized by the moduli of the curve. This
was first attempted, and almost achieved, in reference [21].

Let us recall that the Hitchin Hamiltonians are components of the map

H: T*N — HYK? (1.3)

with values in the (holomorphic) quadratic differentials §enotes the canonical bundle
of X). Due to relation (1.2), the maki may be viewed as &°(/?)-valued function of
pairs @, ¢), whered € H°(L2) and¢ from the dual spacé/®(L2)* are s.t.{6, ¢) = 0.
Fix a holomorphic trivialization ofLe around! € J* and denote by, the linear form
that computes the value of the theta functioh. #s was observed in [21],

H(O, 1) = — 1 (dO(1))? (1.4)

(with appropriate normalizations). In the above formulas viewed as a function on
J anddé(l) as an element of/°(K). Sinced(l) = 0, the equation is consistent with
changes of the trivialization dfg.

The mapJ! > [ — ¢; induces an embedding of the Kummer surfdé¢¢Z, with
I and!~1K identified into a quartidC* in PHO(L2)*. The Kummer quartic is a carrier
of a rich but classical structure, a subject of an intensive study of the nineteenth century
geometers, see [13] and also the last chapter of [10]. The reference [21] used the relation
(1.4) and a mixture of the classical results and of more modern algebraic geometry to
recover an explicit form of the components of the Hitchin ritapp to a multiplication
by a function on the configuration space. The authors of [21] checked that the simplest

1 We use the multiplicative notation for the tensor product of line bundles.
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way to fix this ambiguity leads to Poisson-commuting functions but they fell short of
showing that the latter coincide with the ones of the Hitchin construction.

Among the aims of the present paper is to fill the gap left in [21]. We observe
that the proposal of [21] has a remarkabédf-duality property: it is invariant under the
interchange of the positions and moment&iP3. We show that the Hitchin construction
leads to a system with the same symmetry. This limits the ambiguity left by the analysis
of [21] to a multiplication of the components &f by constants. A direct check based
on Eq. (1.4) fixes the normalizations and results in a formula for the Hitchin map which
uses the hyperelliptic description (1.1) of the curve. Namely,

_ 1 Tst 2
= Y 1,
[ =0 =g Y (1.9
1<s7#<6

wherer; are explicit polynomials ind, ¢) given, upon representation df, () by pairs

(g,p) € C*x C*, by Egs. (7.7) below. The above expressiorfionas a similar form as
that for the Hitchin map on the Riemann sphere with 6 insertion paintsee e.g. Sect.

4 of [9], except for the structure of the terms. This is not an accident but is connected

to the reduction of conformal field theory on genus 2 surfaces to an orbifold theory in
genus 0 [14, 23]. We plan to return to this relation in a future publication.

Let us discuss in more detail how we establish the self-duality of the Hitchin Hamil-
tonians. The main tool here is an explicit expression for the values of the Hitchin map
off the Kummer quartidC* which we obtain in Sect. 5. Our formula f@{(9, ¢) re-
quires a choice of a pair of perpendicular 2-dimensional subspatds), where
0 € 1 c H°(L3) and¢ € T1+ ¢ HO(L2)* (there is a complex line of such choices).
The planelT* corresponds to a linBIT+ in PH°(L2)* which intersects the Kummer
quartickC* in four pointsC* ¢, j = 1,2, 3,4, (counting with multiplicity). Whereas the
analysis of [21] was mainly concerned with the geometry of bitangerits tith two
pairs of coincident;;’s, we concentrate on the generic situation with's different.
Then any two of them, sa@*¢;, andC*¢,,, spanll*. IT is composed of the"8 order
theta functions vanishing & andl,. In particular,

¢ =a1¢y, +axp;, and 6(l1) =0 =06(l2). (1.6)

Let x4 + x> andxz + x4 be the divisors of,l, and oflllz‘lK, respectively, where;
are four point§in X. If 12 # K, which holds in a general situation, then the quadratic
differential H(¢, ¢) is determined by its values at which, as we show in Sect. 5, are

HO, ¢)w:) = — s (a2d0(l1) £ a2db(12))? (). (1.7)

Sign plus is taken for; andx, and sign minus fog:z andx4. Note that forg = ¢; with
6(1) = 0 the above equation reproduces the result (1.4).

As we recall at the end of Sect. 3, there exists an almost natural linear isomorphism
« betweenH®(L2)* and H°(L2). What follows is independent of the remaining ambi-
guity in the choice of. The identity(0, ¢) = (1(¢), . ~1(#)) implies that if @, ¢) is a
perpendicular pairthen so #'( ¢') whered’ = (¢) andg’ = . ~1(#). Thust interchanges
the positions and momentaTit \. We may take[l’, IT'") = (:(IT4), . ~1(IT)) as a pair
of perpendicular subspaces containidg ¢’). The linePIT’ meetskC* in four points

2 The other two lines of intersection 1 with C* correspond tdz andlg with 113 = O(x1 + x3),
hig 'K = Oz +4), lila = Ofwy + @), Ll 'K = Olwz + a3).
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C*(j)l}. Equivalently,(C*L(@;) are the points of intersection &1 with the Kummer

quartickC = ((K*) ¢ PH(L3). In a general situatiorl’ " is spanned by any pair of
qﬁl; ’s so that

¢ = dyoy +apey, and 0'(13) = 0 =6'(1h) (1.8)
which is the dual version of relations (1.6). Equivalently,
0 = ayey) +az(dy) and (oy), ¢) = 0= (), ¢). (1.9)

Lety; be the points associatedfothe same way as the pointswere associated 9.
I’ may be chosen so thgt andxz; coincide modulo the natural involution &f fixing
tl?1e six Weierstrass points. Formula (1.7) implies then that

HO', &) y:) = — 1o (ahd0 (1) = a5d0/(15))° (:): (1.10)

Pointsy; in Eq. (1.10) may be replaced hy since the quadratic differentials are equal

at pointz if and only if they are equal at the image ofby the involution ofX. A

direct calculation of the coefficients, a» anda?, o, appearing on the right-hand sides

of Egs. (1.7) and (1.10) shows then that both expressions coincide, establishing the
self-duality of H. The verification of this equality is the subject of Sect. 6.

In Sect. 7, we recall the main result of reference [21] and show how the self-duality
may be used to complete the analysis performed there and to obtain the explicit form
(1.5) of the Hitchin map. We briefly discuss the relation of that form to the classical
Yang-Baxter equation.

An appropriate quantization of Hitchin Hamiltonians leads to operators acting on
holomorphic sections of powers of the determinant line bundle &vand defining the
Knizhnik—Zamolodchikov—Bernard—Hitchin [15, 4, 5, 12] connection. In our case, the
sections of the powers of the determinant bundle are simply homogeneous polynomials
on H%(L2). Itis easy to quantize the Hamiltonians corresponding to the components of
the Hitchin map (1.5) in such a way that one obtains an explicit family of commuting
2" order differential operators acting on such polynomials. The corresponding connec-
tion coincides with the explicit form of the (projective) KZBH connection worked out
recently? in [22].

The quantization of the genus 2 Hitchin system is briefly discussed in the Con-
clusions, where we also mention other possible directions for further research. Four
appendices which close the paper contain some more technical material.

We would like to end the presentation of our paper by expressing some regrets. We
apologize to Ernst Eduard Kummer and other nineteenth century giants for our insuffi-
cient knowledge of their classic work. The apologies are also due to a few contemporary
algebraic geometers who could be interested in the present work for an analytic character
of our arguments. To the specialist in integrability we apologize for the yet incomplete
analysis of the integrable system studied here and, finally, we apologize to ourselves for
not having finished this work 2 years ago.

3 We thank B. van Geemen for attracting our attention to ref. [22] and for pointing out that this work may
be used to fix indirectly the precise form of the Hitchin map.
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2. Hitchin’s Construction

Let us assume, for simplicity, that the complex Lie gratifps simple, connected and
simply connected. We shall denote gyts Lie algebra. The complex curn will be
assumed smooth, compact and connected. Topologically;hllindles orx are trivial

and the complex structures in the trivial bundle may be described by giving operators
0+ A, whereA are smootly-valued 0,1-forms orx [1]. Let A denote the space of such
forms (i.e. of chiral gauge fields). The grogpof local (chiral) gauge transformations
composed of smooth mapsfrom X to G acts on operator8 + A by conjugation and

on the gauge fieldd by

A —s "M =nAnt+noh L.

Two holomorphiaz-bundles are equivalent iff the corresponding gauge fields are in the
same orbit ofG. Hence the space of orbit4/G coincides with the (moduli) space of
inequivalent holomorphi&-bundles. It may be supplied with a structure of a variety
provided one gets rid of bad orbits. This may be achieved by limiting the considerations
to (semi)stable bundles, i.e. such that the vector bundle associated with the adjoint
representations @¥ contains only holomorphic subbundles with negative (non-positive)
first Chern number. For genus > 1, the moduli spaceV; = A,/G of stableG-
bundles is a smooth complex variety with a natural compactification to a vavigty

the (Seshadri-) moduli space of semistable bundles [18].

The complex cotangent bundi& A/; may be obtained from the infinite-dimensional
bundleT™* A, by the symplectic reductiorf*.4, may be realized as the space of pairs
(A, @), whered is a (possibly distributionaly-valued 1,0-form ork, A € A, and the
duality with the vector$ A tangent ta4 is given by

/tTCD/\(SA
=

with ¢r standing for the Killing form. The action of the local gauge gréupn A, lifts
to a symplectic action ofi* A, by

& — "o =hont.
The moment map for the action ofg onT* N is
WA, @) =0P+ANDP+DPAA = 0, .

Note that it takes values igrvalued 2-forms ork. These may be naturally viewed as
elements of the space dual to the Lie algebrg ofhe symplectic reduction af* A,
realizesT™ N, as the space d@j-orbits in the zero level ofi:

TN ® p'({0})/G .

For a homogeneous-invariant polynomialP ong of degreelp, the gauge invariant
expressiorP(®) defines a section of the bundi&’” of d p-differentials on=. If & isin
the zero level of. then P(®) is also holomorphic. Hence the mdp— P(®) induces
amap

Hp: TN, — HO(KP)

into the finite dimensional vector space of holomorphic differentials of degpeen
¥. The components of such vector-valued Hamiltonians clearly Poisson-commute since
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upstairs (onZ™.A4;) they depend only on the momentum variabdesBy a beautiful
argument, Hitchin showed [11] that taking all polynomi&lsone obtains a complete
system of Hamiltonians in involution and that the collection of mafys defines in
generic points a foliation df'™* ; into (open subsets of) abelian varieties.

Let us briefly sketch Hitchin’s argument fa¥ = SL,. There is only one (up to
normalization) non-trivial invariant polynomiaP, on sl given by, say, half of the
Killing form. H = Hp, maps into the space of quadratic differentials. A non-trivial
holomorphic quadratic differentialdetermines a (spectral) cur¥® c K given by the
equation

&% = p(m(€)), (2.1)

where¢ € K andr is the projection of on X. The mapt — —£ gives an involution
o of ¥’. Restriction ofr to ¥’ is a 2-fold covering oft ramified over 4¢ — 1) points
fixed by o, the zeros op. X’ has genus’ = 4y — 3. If p = 3t (P)? then relation (2.1)
coincides with the eigen-value equation

det(® —¢-1)=0

for the Lax matrix®. Let for each 07 ¢ € X', [ denote the corresponding eigen-
subspace ofp. By continuity, [; extend to vanishing in ¥’ andU, [, forms a line
subbundlé of ¥’ x C2. In fact,! is a holomorphic subbundle with respect to the complex
structure defined o’ x C2 by 9 + A o 7. The degree ofis —2(y — 1). Besides,

l(o*) =K~ L. (2.2)

Conversely, giveix’ and a holomorphic line bundief degree-2(y — 1) on it satisfying
(2.2), we may recover a rank 2 holomorphic bungllef trivial determinant ovek as

a pushdown of to X. Thus for 07 £ € ¥/, Ey¢) = l¢ ® l_¢. E corresponds to a
unique holomorphics Lo-bundle which, if stable (what happens on an open subset of
I's) defines a point in the moduli spagé. A holomorphic 1,0-form with values in the
traceless endomorphisms Bfacting as multiplication by-£ onl., C E() defines

then a unigue covector af* ;. ThusX’ encodes the values of the quadratic Hitchin
Hamiltonian (i.e., of the action variables) whereas the line bunbéegisfying relation

(2.2) form the abelian (Prym) variety (of the angle variables) describing the level set of
H.

3. SL, Moduli Space at Genus 2

We shall present briefly the description of the moduli sp&Gdor G = SL, andy = 2
which was worked out in [18].
Let us start by recalling some basic facts about theta functions. We shall use a

coordinate rather than an abstract language. The space of degrdeholomorphic

line bundles forms a Jacobian tord—* of complex dimensiony. Fixing a marking

(a symplectic homology basisi(, By), a,b = 1,...,7), we may identify.J7~1 with
C/(@7 +720). 7 = (7°°) is the period matrix, i.er® = [, w“, wherew® are the

basic holomorphic forms ox normalized so thaan wb = §9. The point 0 CY

corresponds /7! to a (marking dependent) spin structufig i.e. a degree 1 bundle
such thatSg = K. u € C” describes the line bundlg(u)Sy, whereV (u) is the flat
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line bundle with the twists &+’ along theB,, cycles. The set of degree 1 bundles
with non-trivial holomorphic sections forms a divisérof a holomorphic line bundle

Le over J7~1. Holomorphic sections of the" power ¢ > 0) of Le are called theta
function of orderk. With the use of a marking, they may be represented by holomorphic
functionsu — 6(u) on C? satisfying

O(u+p+7q) = e TkaTImZmikaw g(y) 3.1)
for p, g € Z7. The functions

ek’e(u) - Z emlk(n+e/k:)~T(n+e/k)+27r7ik(n+e/k)~u7 (32)
nezZy

wheree € 7" /kZ" form a basis of the theta functions of ordeHencedim HO(LE) =
k7. In particular, the Riemann theta functiéno(u) = ¥(u) represents the unique (up
to normalization) non-trivial holomorphic section b§,. It vanishes on the set

=1,
{Zl)fw—A|x1€Z,...,xﬁf_1€Z}
i=1 "0

representing the divis@. HereA € C” denotes thexp-dependent) vector of Riemann
constants. All theta functions of order 1 and 2 are even functioms of

For v = 2, the divisor® is formed by the bundle®(z) with divisorsz € X.
O(x) = V(ffow — A)Sp. The pullback of the theta bundleg by means of the map
x — O(z) is equivalent to the canonical bundi& The equivalence assigns 1,0-forms
to functions representing sections of the pullback.gf

I w—A) = w(x). (3.3)

This is consistent since vanishing@f [ w — A) implies that

09([ w— A) w(z) = 0.

. . L —mir®®—2mi( " w =A%)
Hence any multivalued function an picking up a factor e 0 when
x goes around th&,, cycle and univalued around the, cycles may be identified with
a 1,0-form onx.

As already suggested by the discussion at the end of Sect.2, féilthgroup it
is more convenient to use the language of holomorphic vector bundles (of rank 2 and
trivial determinant) than to work with princip& L,-bundles. Of course the first ones
are just associated to the second ones by the fundamental representation shy
stable rank 2 bundIl& with trivial determinant is an extension of a degree 1 line bundle
1 ([18], Lemmas 5.5 and 5.8), i.e. it appears in an exact sequence of holomorphic vector
bundles

0— It %FEZ0—0. (3.4)

The inequivalent extensions (3.4) are classified by the cohomology clasEéglir?).
This may be seen as follows. Taking a sectiowof.e., a smooth bundle homomorphism
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s .1l — Esuchthatoos = id;, we inferthatods = 0 and hence théts = sbforba0,1-
formwith valuesinifom(l,17Y) = 172,i.e.b € A°}(~2?). bis determined up tbp, where
pisasmooth section 6f?,i.e. € T'(172). The classf]in A°Y(1—2)/T(172) ~ HY(17?)
determines the extension (3.4) up to equivalence. Radrresponds to an extension:
one may simply take’ equal tol ~* & [ with the 9-operator given by) _, _ +(§ ).
Proportional §] correspond to equivalent bundlés If F is a stable bundle then the
extension (3.4) is necessarily nontrivial, i.8 ¥ 0.

Let C'z denote the set of degree 1 line bundlest. H°(I ® E) # 0 (equivalently,
s.t. E' is an extension of). This is a complex 1-dimensional variety. It was shown in
[18] thatC'r characterizes the bundke up to isomorphism and that there exists a theta
functiond of the 2 order which vanishes exactly @fz. The assignmenkt — C*6
gives an injective map

m: N, — PHO(L2) . (3.5)
LetV (u1)So = l,, € Cg. E may berealized as an extension,gfwhich is characterized
by [b] € H*(I,?). Then one may take

0(u) =/K(x;u1,u)/\b(x), (3.6)
where

K(m;ul,u):ﬁ(fw—ul—u—A)ﬂ(fw—u1+u—A)

= -1
: (e“b(?bﬁ( Jw— A)) w(z) (3.7)

(it does not depend on the choice @f= 1,2). Let us explain the above formulae.
K (x; u1,u), in its dependence an, is a multivalued holomorphic 1,0-form. More ex-
actly, the function

xHﬁ(}cw—ul—u—A) (3.8)

is multivalued around th&,,-cycles picking up the factor

77rz7'aa727rz(f w®—uf —u*—A")
0o

whenz goes around3,, so that it describes an elemeatc HO(l,,l,) (non-vanishing
if up +u ¢ Z2 + 772). Similarly,

T T -1
= HW[w—urtu—A) (eababﬁ(f w — A)) w(x)

Zo

picks up the factor

eZ‘n'i(uf—ua)
whenx goes around3, and describes a holomorphic 1,0-fosnwith values inl,, [;;*
(non-vanishing ifu; — u ¢ Z? + 77Z?). The productk,y = K(-; u1, 1) is a holomorphic
1,0-form with values iri2_ and it may be paired with € A%(I ?) via the integral over
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x onther.h.s. of Eq. (3.6). The integral is independent of the choice of the representative
b of the cohomology clas$]. In its dependence om, K (x; us,w) is a theta function of
the 2% order and so i8(). In Appendix 1 we check explicitly thatgiven by Eq. (3.6)
possesses the required property.

The product of the two shifted Riemann theta functig(g — u)9(u’ +u) is a theta
function of the 29 order both inu’ and inu (and it is invariant under the interchange
u’ < u). Let. denote the (marking dependent) linear isomorphism between the spaces
HO(L2)* and H°(L2) defined by

UP)(w) = (I( — u)d(- +u), ). (3.9)

An easy calculation shows that

O —u) I’ +u) = b0 (u') O (u). (3.10)

Hence: interchanges the basiéy(.) of H°(LZ) with the dual basist ) of H°(Lg)*.
Denote by, the linear form onf/°(L2) that computes the value of the theta function at
pointu € C2. The Kummer quartiéC* ¢ HO(L2)*, K* = {C* ¢,/ |[u’ € C?} is mapped
by the isomorphism into a quartickc C H°(L2) of theta functions proportional to

u — 9 —u) I +u)

for someu’ € C2.

One may define a projective action @f(27)* on H°(L?2)) by assigning to an element
(e,€') € (Z/27)%, with e, e’ = (0,0),(1,0),(0,1) or (1 1), a linear transformatiodl, .-
s.t.

(Ue,0)(u) = @2 7" 2mie"ug(yy + 2 (e + 7¢')). (3.11)

The reIationUel,eiUebeé = (—1)61'6§Ue1+52,e;+e; holds so that/ lifts to the Heisenberg
group. In the action on the basic theta functions,

Uel,eigle = (_1)81.8 02,e+ei' (312)

The marking-dependence of the isomorphisif Eq. (3.9) is given by the action of
(Z/27)*. Itis easy to check that this action preseriiand that the transposed action of
(Z./27)* preservesC*. The (/27)* symmetry of the Kummer quartics allows to find
easily their defining equation, see Appendix 3.

It was shown in [18] that the image df, under the map (3.5) contains all non-
zero theta functions of the"2order except the ones in the Kummer quaftic The
latter correspond, however, to the (Seshadri equivalence classes of) semistable but not
stable bundles so that the magextends to an isomorphism betwekf, andPH(L2)
showing thatV, is a smooth projective variety.
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4. Cotangent Bundle

Let us describe the cotangent spacé/gfat pointE. The covectors tangent {0, at &/
may be identified with holomorphic 1,0-formiswith values in the bundle of traceless
endomorphisms af'. We may assume that is an extension of a line bundlef degree

1 realized ag~1 @ { with 9, = a_,_l@l + B, whereB = (3 %). Then

_(nov
v ( ; u) , 4.1)
wherep € A% v € A(172), n € A19(1?) and

5_1277=07 O =—nAb, (9_172V=2;mb. (4.2)

It is easy to relate the above description of covectors tangeni} to the one of Sect. 2.
Letid : "1 @1 — X x C? be a smooth isomorphism of rank 2 bundles with trivial
determinant. Theld,U~* = 0+ Afor a certairsi,-valued 0,1-formd andd = ./ Wi/ 1
satisfiesd, ® = 0. TheG orbit of (A, ®) is independent of the choice of and the
guadratic Hitchin Hamiltonian takes valéer(@)2 on it. The latter expression is clearly

equal toitr(¥)? = p? + nrv which, as easily follows from relations (4.2), defines a
holomorphic quadratic differential. Hence
H(E,¥) = p?+nv . (4.3)

We would like to express the latter using the theta function descriptich*af,, =
T*PHO°(L2); where the covectors tangentta, atC*¢ are represented by linear forms
ponHO(LZ)s.t.(0,¢) =0.

Let! =1,, € Cg,i.e.0(us1) = O for the theta function corresponding b We shall
assume thaf # K i.e. that iy ¢ 72 +772. An infinitesimal variatiord E of the bundle

E in N, may be achieved by changiiy = 8_171@ +Bwith B=(3 %)to

= + mdur(Im7) 1o b+db

d_.,, ( 0 77r(5u1(|m7')*1(;) =, +6B (4.4)

(all other variations 05E may be obtained from (4.4) by infinitesimal gauge transfor-
mations). Clearly

(0B, W) = / tr WAOB = 727r5u1(|m7)71/ pAw+ / nA0b. (4.5)
z z )

Note that the line bundlé,, with the 8_—operator changed tglul— mour(Im7) =10 is

equivalent tdl,,+s,, = !’ and the equivalence is established by multiplication by the

. . 2risuy(Imr) = [F1 . = .
multivalued function: ~— € valm) fo ™ Hencd '@l with thed-operator given

by Eq. (4.4) is equivalent t8* & I’ with thea_-operatora_l,fl@l, +(3 0%y where
0'b(x) = 6b — 47ri6u1(lm7)—1(7 Imw)b(x). The last bundle corresponds by the relation
(3.6) to the theta function v

@ +00)(u) = / K(x;uq + dug, u) A (b(x) + 6'b(x)) .
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Henced E is represented by the variation

66(u) = — 2méui(Imr) /

=

LP(z; uq, ) A b(z) + / K(x;u1,u) A éb(zx) (4.6)

of the theta function, where

x
L%z uy,vw) = K(x;ug,u) [(W* —w?) — %ImT“hﬁuz{K(x; Uy, U) . 4.7
o

Note that as functions of, L*(z;u1,u) are 1,0-forms with values imﬁ1 (as are
K (x;uy,u)). They are not holomorphic:

By L% g, 1) = K (2 u1,u) A 0%(x).

As functions ofu, L(z; u1, u) are theta functions of the'®order.

We would like to find an explicit form of the Lax matri¥ representing the linear
form ¢ on HY(L2) s.t. (0, ¢) = 0. We shall achieve this goal partially, finding the entries
n andy of the matrix (4.1). The correspondence betwgeand¢ is determined by the
equality

(OF, W) = (66, ¢).
Since the left-hand side is given by Eq. (4.5) afdy Eq. (4.6), we obtain
—27r5u1(|m7')71/ AW+ / nA6b

z P

= —2nbug(mo) (20,00 A 0) + (R, 0,00 A ). @8)

x z

Takingduy = 0 we infer that

n(x) = (K(z;u1, ), 9) (4.9)

is the lower left entry of the matri¥ corresponding to the linear foreh

It is easy to find the entry, of W representing the linear form,,, (recall thatg,,
computes the value of a theta functionfif?(L2) at pointus). SinceK (z; uz, uz) = 0,
it follows from Eq. (4.9) that) = 0 in this case. Equation (4.8) reduces then to

72775u1(|m7')71/ A w=duf / Oug K (z; u1, u1) A b(x)
z

z
= fé'u‘l‘/ Oy K (z; ug, u1) A b(x) = —duf 0,0(u1).
z
This fixesy uniquely:

1= 2= 0a0(ur)w” . (4.10)

Let us check that there existse A1(I;?) such that the last equation of (4.2) holds. For
this it is necessary and sufficient that

/fw/\bZO (4.11)
z
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for a non-zero holomorphic sectionof 12 = V(2uy)K (dimH°(12)) = 1if 2uy ¢
77 + 172). But such a section may be represented by the function

T ﬁ(fw—Zul—A)
o
so that, recalling the definition (3.7), we obtain

/ Kw® ANb = / €90 K (z; u, ug) A b(x) = € 9y0(u1) . (4.12)
z =

Hence the relation (4.11) follows far given by Eg. (4.10). The 1,0-form satisfying
the last relation of (4.2) is now unique sinB&(l; 2K) = {0}.

We would like to find the entry; of W corresponding to more general linear forms
¢ s.t. (0,¢) = 0. Recall tha®¥ with 6(u;) = 0 may be given by formula (3.6) with
b € A\%}(1;;2). Note that any P-order theta functiod¢ vanishing at:; and not in the
Kummer quartidC may be written as

00(u) = / K (x;ug, u) A ob(x) (4.13)

with §b € A%Y(I,?) since it corresponds to an extensiori,gf The space of¢ vanishing

atu, is 3-dimensional, as well as the spdﬁé(l;lz) of classesdb] and the assumption
thats6 ¢ K is obviously superfluous. Set for a linear foghon H°(L2),

() = (K(zu1,),4) - (4.14)

ny defines a holomorphic 1,0-form with valuesif). We have
(60,4) = / 7o A 8b (4.15)
z

for 50 given by Eq. (4.13). By dimensional count, the map- 7, is onto H%(2, K)

uy

with the 1-dimensional kernel spanned by,. Specifying Eq. (4.15) t@f « 6, we
obtain the relation

0, 9) :/nw/\b (4.16)

which determines the clas [e H(/,;?) in terms off. On the other hand, taking = ¢
in Eq. (4.14), we infer thay = O if and only if ¢ is proportional tap,,,, the case studied
before.

If ny 7 0 theny depends on the choice of the representaiive the class §] e
HY(1;2) characterizing® as the extension @f,,. Under the transformatiain— b +d¢,
wherey is a section of 2,

N, g pten, v v —2pp— 9.

The pairing of the theta functions®(z; u1, -) of Eq. (4.7) with the linear forng gives
two 1,0-forms with values it :

x“(x) = (LYx; -, u1), ) St 8_)(“ =nAw”. (4.17)
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Specifying the equality (4.8) to the case with= 0, we infer the relation

/u/\&‘l=/xa/\b (4.18)
z z

which, together with the equation

ou=—-nANb (4.19)

determinesu completely. In Appendix 2, we show thatfixed this way satisfies the
relation [ _rp A'b = 0 and hence defines a unique 1,0-farmwith values ini;; 2 s.t.

Ov =2uNb.

5. Hitchin Hamiltonians

From the relation (4.3) and the explicit form @fcorresponding t@,,, (n vanishing,u
given by Eq. (4.10)), one obtains

H(O, a164,) = — 155 03(0a(u) w2, (5.1)

The right -and side is a quadratic differential. Equation (5.1), whose projective version
was first obtained in [21], is consistent with the rescaling: t0 and¢ — t~1¢ for
t € C*. It describes the value of the Hitchin m&pon the special covectors, namely
those represented by the paifs¢) s.t. C*¢ is in the intersectiorCy, of the Kummer
quartic/C* with the plane(d, ¢) = 0. The linear span dof}, gives the whole cotangent
spacel ;N Indeed, any theta function of thé®rders¢ which vanishes o' has
to be proportional t@ and defines a zero vectorIip N K}, is itself a quartic. Hence
the restriction of the quadratic polynomi# to six lines inC}, in a general position
determineg{ completely.

It is possible to find a more explicit description of the valuegfaway from},
and this is the main aim of the rest of the present section. Suppose then that the entry
7 in ¥ does not vanish. Let;, i = 1,...,4, be its four zeros. We shall assume that
cannot be written asw for k € H°(I2 ) andw € H(K). This is true for generig. In
this casey = azny,, for somea; € C* and foru, satisfying

1 T2 T3 x4
utuz= [w+ [w—2A and wui—uz=[fw+ [w—2A, (5.2)

Zo xo o Zo

uy £ up ¢ Z+7Z. Indeedy,,, (x) is a holomorphic section dﬁlK represented by the
multivalued functiond(/;, w — u1 — up — A)J(/;, w — u1 +uz — A) vanishing exactly

atx; and such a section is unique up to normalization. We infer that in the action on the
theta functions of Eq. (4.13), the linear formsanda,¢,, coincide. Since Eq. (4.13)
gives all theta functions vanishing &, it follows that

d) = al¢u1 + a2¢uz (53)

for somea, € C. Let us stress that, to fix normalizations, andu, should be viewed
as elements of? with z; in relations (5.2) belonging to the covering spatef . The
relation(6, ¢) = 0 implies that)(uy) = 0.
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Summarizing, we have shown that a generic ghipf s.t.(d, ¢) = 0 may be obtained
by first choosing:; anduy S.t. 2ug, 2up, ug + up € Z + 77 and then taking from the
2-dimensional space of theta functions vanishingyandu, and¢ from the orthogonal
subspace. The zeras of ;) are determined from Egs. (5.2) (as the zeros(gf, w —
uy + up — A)). For simplicity, we shall assume that they are distinct (this is true for
genericg). Then the differential®n(z;) € (12, K2),, do not vanish.

A quadratic differentiap € H°(?) is determined by its values at four points
which form a divisor of2 K # K2. Sincedim H°(K?) = 3, there is one linear relation
satisfied by alp(z;):

4
> plw)(e)on(z) =0

=1

forO#k € Ho(lil). It expresses the fact that the sum of residues of the meromorphic

1,0-formpxn~! has to vanish. Fop = H(0, ¢) = 12 + nv,
pw:) = pla:)?
so that it is enough to know(z;) in order to determiné{(6, ¢). Note that although

the 1,0-formy, depends on the choice of the representdtivéthe classf] < Hl(l;f

defined by Eq. (4.16), the valugéz;) are invariant since undér— b+ Jy the 1,0-form
1 changes tqu + 1.

It remains to findu(z;). Consider the meromorphic functiop,n—!. Viewed as a
distribution,d(n,n~1) is supported at the poles gfn~! and

_ 4
[ nn = <250 > wdmeonte)

=1

for any (smooth) 1,0-fornu. In particular, foru satisfying Eq. (4.19) we obtain

4
S u@anp@)on(@) ™t = 5 [ 1y Ab= 5 (0,). (5.4)

4
i=1 z

Recall thatn,, run through the three-dimensional spa¢&(i2 K). If ny(z;) = 0 for
all 7 thenny, has to be proportional tg = azny,,,. Hence vectorsif,(z;)) form a 2-

dimensional subspace (?(lﬁlK)xl and Egs. (5.4) determine vector(f;)) € ?Kx

up to a 2-dimensional ambiguity spanned by (z;)) (indeed, as the residues of the
meromorphic 1,0-formy,,n~1we, the numberss®(x;)n, (x;)0n(z;)~* sum to zero). It
is clearly enough to take fap in Eq. (5.4) any two linear forms independentgf and
¢u,- In the generic situation, we may choose the fofing,, defined by

<07 8a¢u1> = a(ze(ul)

Denoting the corresponding 1,0-forms by 7., we obtain 2 relations fo(z;):

4
> @y ()o@ = 5 0a0(ua). (5.5)

=1
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Alternatively, we may choose faf the linear forms),¢,,, corresponding to 1,0-forms
n/. This gives the relations

4
> il @)on(x:) ™t = 550a0(u). (5.6)
=1

7’/ must be linearly dependent fron) andn (in the generic situation):

i =Dinj +n (5.7)

a

leading via Egs. (5.5) and (5.6) to the relation
a8(uz) = Dy yf(uy).

We need 2 more equations to determiife;). They may be obtained from Eqgs. (4.18)
fixing the holomorphic contributions te. Indeed, using the"® equation in (4.17), and
Eq. (4.19) we infer that

/Eu A = /Z(lml)n A = /E(unl)a_xa = /Z X“ A O(un™)

4
= [ Ab-2n Y e @)t (6

i=1
so that Eq. (4.18) implies that

4
> )X (@:)on(a:) = 0. (5.9)

=1

These are the two missing equations. To see this, repeat the calculation (5.8) for
replaced by.?. This gives the relation

4
%Imr“” = Zwb(xi)xa(wi)an(xi)_l-
=1

Suppose now that, x*(x;) + eny(z;) = 0fori =1,..., 4. It follows that

4
0= w’(2) (daX(w:) * eny(@:)) Onlas) ™ = Imrd,
=1
so thatd, = 0. Hence the vectors¢((z;)) span a 2-dimensional subspacedof(,
transversal to the 2-dimensional subspace spanned by the vegtbrg) and the linear
equations (5.4) and (5.9) determinér;) completely.

Itis enough to consider the cage= ¢,,. Indeed, the shif — ¢ + a1¢,, results in
the change

T TR ﬁalﬁaG(ul)wa,
see Eq. (4.10). Identifying 1,0-forms with multivalued functions by the relation (3.3) and

settingy, = 27T(|m7');blxb, w; = ;Ol w—A,G1=G12=—-GorandG3 = Gzs = -Gy
where
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o 019(w;)  O19(wy)
Gir =det (Gay omiun)
we obtain
on(z1) = G1 Y(w1 — wa — wa), Xa(71) = —0,9(w2) V(w1 — w3 — wa),
On(z2) = G2 Y(wz2 — w3 — wa), Xa(2) = —0,9(w1) V(w2 — w3 — wa),
on(zxs) = Gz H(wz — w1 — wy), Xa(73) = =0, (wa) Hwz — w1 — wo),
on(z4) = G4 V(ws — w1 — wo), Xa(Za) = —0,0(ws) V(ws — w1 — wo),

n,(x1) = 0a9(w1) W wz + w3 +wa), 1, (x1) = uV(w2) I(wi — w3 — ws),
0, (22) = 0 0(w2) Hwy + w3 +wa), n),(x2) = I H(w1) Hw2 — w3 — wa),
n,(x3) = 0 (ws) H(wy + wz +wa), 1, (x3) = —0V(wa) V(wz — w1 — wy),
Na(4) = 0a9(wa) V(w1 + w2 +w3), 0y (x4) = —0uF(w3) V(wa — w1 — w).

Given these values, it is easy to find the explicit form of the matfi¥)(appearing in
the relation between the derivatives®f atu; andu, by specifying Eq. (5.7) to two
of the pointsz;. One form of these relations is

029(w3)010(uz) — 019 (w3)920(u2)

= — Jws—wi v (5 9(13)010(us) — D19 (wa)D20(us)),

Y (w1twrtws)

020(w4)010(uz) — 019(w4)920(uz)

= Mwawn—wa) (5 (15)D10(us) — Dy0(ws)Dob(us)).

19(w1+w2+w3)
Let us denotei(z;) = u(x;)/G;. Equations (5.9) have the general solution
(fu(a), - - ., pi(4)) = 91(G34, 0, G23, —G24) + g2(0, G34, G13, —G14)
and Egs. (5.6) fix the values ¢f andg, to

_ 020(w1)b(uz) — 019(w1)0260(uz)

- 47TiG12G34 ’

_ 020(w2)010(uz) — 010(w2)020(uz2)
92 47iGroGaa ‘

This leads to the following simple result;

(@) = £ 5= (020(w;)910(uz) — O19(w;)320(u2)) (5.10)
or, in a more abstract notation from the introduction,
) = +=d0(1,)
with the plus sign foi = 1, 2 and the minus one far= 3, 4.
Since the Hitchin Hamiltonian is quadratic ¢nhand its values om,, and¢,,, are
given by Eq. (5.1), it follows that
H(aa Clj_¢u1 + a2¢uz)

= aiH(ea ¢u1) + CL%H(O, (buz) + 2a1a2(cl(wl)2 + Czwlwz + 63("‘}2)2)'



Self-Duality of theS L, Hitchin Integrable System at Genus 2 657

The mixed term may be found from the linear equations
7 (029(w;) 016 (ua) — Ord(w;)00(w1)) Filw:) G
= 1009 (w;) 029 (w;) — 20, (w;)019(w;) + ez I (w;) I (w;).
Their explicit solution leads to the expression

HO, a1, + a26u,) = — 1z (020a0(ur)w® + 20,0(uz)w)?

e (00(ws)016(ur) — On(w3)9a0(u1)) (5.11)

- (029(w3)010(uz) — 1D (w3)D20(u2)) D (w1)Fpd(wp)w w’.

The second term on the right-hand side is a quadratic differential that vanishesat
z, and is equal td:% 0, 6(u1)0,0(uz)ww® atzs andz, so that

HG, d)(x;) = —# (a10a0(ur)w® (x;) + a20,0(uz)w™(2:))?, (5.12)

where sign plus should be taken forandz, and sign minus foxs andx,4. This is the
result (1.7) described in Introduction.

6. Self-Duality

We would like to compare the values of the Hitchin Hamiltonians on the dual gaip$ (
and @', ¢'), whered’ = 1(¢) and¢’ = .~1(#) with . defined by Eqg. (3.9). Recall that,
givenus s.t.0(u1) = 0, we associated to the linear forna 1,0-formn by Eq. (4.9).
Viewed as a holomorphic section &f K,

n@) = W[ w—ug—— &) O(f w—ug+-— A), ¢).
Let us denote

u), = ?w—ul—A. (6.1)

o
The vanishing of)(x;) implies then that the linear formannihilates the theta functions
u (g — u)d(ug +u) = (b )(u) (6.2)

and also, if we rewrite)(x;) as (¢)(u}), thatd’'(u}) = 0. Since¢ = a1¢y, + axdy,
and¢,,, annihilates the theta functions (6.2) as well, it follows that they belorig.to
HenceC~(¢,) are the 4 points of intersection of the lift€l with the Kummer quartic

K. Equivalently,C*¢, are the points of intersection BT with £*. In the generic
situation, any pair of theta functiomst; spanﬂ'[’L and sincey’ € n'", we may write
¢/ = a?l.¢v1 + a/2¢v2 (63)

or, equivalently,

0 = a1(bv,) + azt(pu,)- (6.4)
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The involutionl — (1K of the Jacobiaw! lifts to C? to the flip of sign ofu. By
restriction to the bundle®(z), it induces the involutior: — z’ of ¥ which leaves 6
Weierstrass points invariant. The latter involution lifts to an involution (without fixed
points) of the covering spac% determined by the equation

fw—A:—g}/w+A. (6.5)

Zo Zo

Definitions (6.1) together with Egs. (5.2) give the relations

/ !/ o 2 ! / 3 T4
up—up = fw— fw and wuitu,=— fw— [w+2A
xo o xo Zo

holding inC?, with z; € =. They may be rewritten as

uy — up = ?w+ fzw—ZA and wj+uhH= f3w+ faw—ZA, (6.6)
zo o zo o
which, upon the flip of the sign af, Ieaving¢ué unchanged, provides the dual version of

relations (5.2) corresponding to points, =5, x4, x) € . Applying the previous result
(5.12) and using the possibility to exchange a point with its image under the involution
of X in the argument of a quadratic differential, we infer that

HO', &) (@:) = — g5 (a10a6' (W) () F 42048 () ;). (6.7)

The sign minus should be taken for andxz, and sign plus for:3 andxz4. The exchange
of signs in comparison with Eq. (5.12) is due to the flijp— —u5.

In order to compare expressions (5.12) and (6.7) we shall calculate the coefficients
a1,2 anda , of the linear combinations (5.3) and (6.3). Note that the definttion«(¢)
implies that

9'(7w—u1—A):azﬁ(fw—ul—uz—A)ﬁ(fw—u1+uz—A).
Taking the derivative over atx,, we obtain
0,0 (W)w (1) = —ax Vw1 — w3z — wa) FgI(w2)w (1),

where we employed Egs. (5.2) and the abbreviated notatiprs/;, ' —A. Hence

940" (u})we (21)

42 =~ Hlwr —ws—wa) Do N we)w (@) ° (6.8)
Similarly,
0 ([ w—us—A)=a19(] w—us — us — A) ([ w+u1 — uz — A).
o o o
Taking the derivative at = =1 and noting thatv, — up = —uj5, we infer that
ay = a0 i) (6.9)

T Y(witwatws) 0aV(w)wa(w1)
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To calculaten; ,, we note that Eq. (6.4) implies that
x x T
O(fw—v1—A)=ap, I([ w—uj —uy — A)I([ w—uj +up — A).
xo xo o

Upon derivation at: = x; and with the use of relations (6.6) and (6.5), this gives

_ 9aB(ur)w (1) (6.10)

/
G2 = — Y(witwsz+wyg) Oq I (w2)w®(x1)

Finally, since
xr T xT
O(f w+vy— A)=al I([ w—uj+us— A)YI([ w+ul +up— A),
xo xo Zo

andw; + uj = up we infer that

, 90 0(ur)w (1) (6.11)

A1 = T P(wi—ws—wa) Ba Dw)w (@) °

Substitution of expressions (6.9),(6.8),(6.11) and (6.10) shows equality of the right-hand
sides of Egs. (5.12) and (6.7) for = x,. Since there is a full symmetry between points

z; (hidden in our arbitrary choices of the order and the signa;&f andu’;’s), the
self-duality

H(O, ¢) = H(O', &) (6.12)

follows.

7. van Geemen—Previato’s Result and Beyond

The genus 2 curves are hyperelliptic. The ii&(K) > w — w(x) defines an element
of PH°(K)* and varyingr € X one obtains a realization &f as a ramified double cover
PHO(K)* = PL. One may use the 1,0-forms* ¢ H°(K) to define the homogeneous
coordinates ofP H°(K)*. Then

W(z) . O([E w—4)
wiw) ~  80(fF w—A)

Az) = (7.1)

becomes the inhomogeneous coordinate of the ima§é af the pointr € X. If 2/ is
the image of: under the involutiorO(x) — O(—z)K = O(z'), i.e. if

fw+ffw72A € Z+7Z then Mx) = A\).

xo xo

Hence the involution: — 2’ permutes the sheets of the coverlig— P! ramified over
the 6 Weierstrass points,, s = 1,. .., 6, fixed by the involutionO(z,) is an odd spin
structure. i.e.

fw—A=E, mod@?+r7?

Zo

and
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(B,
As = Mzg) = _8;9535;’ (7.2)

whereE; = i(es + 7€) with e, e/, = (1,0), (0, 1) or (1 1) such that; - €. is odd. The
possibilities are:
€1 = (17 0)7 6/1 = (15 0)1 €2 = (17 1)7 6/2 = (17 0)1 €3 = (07 1)7 6/3 = (Oa 1)1
(7.3)
€4 = (17 1)7 eﬁl = (07 1)1 €5 = (07 1)7 eé = (17 1)1 €6 = (17 O)v 623 = (17 1)7

and we shall number the Weierstrass points (in a marking-dependent way) in agreement
with this list. ¥ may be identified with the hyperelliptic curve given by the equation

6
=T =) (7.4)

s=1
with the involution mappingX, ¢) to (A, —¢). The expressions
AdA
2 _
w - SR
¢
where(C' is a constant, give the basis of holomorphic 1,0-form&afthe right-hand
sides vanish exactly where the left-hand sides do).
Let us recall the main result of [21] based on the analysis of the formula (5.1) for

the Hitchin Hamiltonians on the Kummer quarkic'. It will be convenient to identify
the pairs §, ¢) s.t. (0, ¢) = 0 with pairs ¢, p) € C* x C*s.t.q - p = 0 by the relations

wl= % and (7.5)

0 = q102,0,0) + 9202,(1,0) + q362,(0,1) + 9a02,(1,1),
¢ = p192,0,0) * P202,1,0) * P302,0,1) + P42, a,1).

The symplectic form of P2 is the standardp/Adg and the isomorphismrinterchanges
andq. By examining the values of the quadratic differentials givefitat the Weierstrass
pointsz,, van Geemen and Previato showed that

Ziq)={plq-p=0, H(g, p)(zs) = O}

is a union of a pair of bitangents #*. Then classical results giving the equations
for bitangents to the Kummer surface permitted the authors of [21] to write an almost
explicit formula forH(x,) in the form

Mg p)e) =h, Y2 8D 7.6)
ts s t

whererg; = rs are homogeneous polynomials,

r12(¢,p) = (q1p1+ q2p2 — q3p3 — Q4p4)27

r13(¢,p) = (q1pa — q2p3 — qapa + qap)?,

r14(q, p) = —(q1pa + q2p3 — qap2 — Q4p1)2,

715, p) = —(q1p3 — G2pa — qap1 + qap2)?,

r16(¢,p) = (q1ps + qopa + qap1 + qap2)?,

r23(¢, p) = —(q1pa — q2p3 + qap2 — Q4p1)2,

r24(¢,p) = (q1pa+ q2p3 + qap2 + (J4p1)2,

r25(¢,p) = (q1ps — qopa + q3p1 — qap2)?, (7.7
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r26(q, p) = —(q1p3 + q2ps — qap1 — (J4P2)2,
r3a(q,p) = (q1p1 — qop2 + g3ps — CI4P4)27
r35(q,p) = (qup2 + @2p1 + q3pa + qaps)?,

r36(¢, p) = —(q1p2 — q2p1 — q3pa + Q4p3)2,
745(q, p) = —(q1p2 — q2p1 + q3pa — qap3)°,
ras(q,p) = (q1p2 + g2p1 — q3pa — QAP3)27
rse(q,p) = (q1p1 — qop2 — q3ps + qapa)?,

andhg € Kﬁs could still depend omg. In the original language of pairg,(¢), and of
the (Z/27Z)*-action (3.12) on{°(L2) one has

T'st (03 ¢) = <Ues el Uet el 07 ¢> <Uet,e; U’eS el 07 ¢>
with e, €/, from the list (7.3). The polynomials,; are self-dual:

rst(q,p) = rst(p, q) (7.8)

and the self-duality o#{ proven in the present paper forces coefficiéntin Eq. (7.6)
to beg-independent filling partially the gap left in [21]. An easy but important identity
is

> rala:p)=(g-p)*=0 (7.9)
tHs

for any fixeds. It implies that the Hamiltonians (7.6) are preserved up to normalization
by the isomorphisms of the hyperelliptic surfaces induced by the fractional actien
N =220 of S1(2,C) on P,

We would still like to fix the values of the constaritsin Eqgs. (7.6). We claim that

they are such that the Hitchin map is given by Eq. (1.5), i.e. that

H(q,p) = — s 26 %(dx)? (7.10)

s,t=1,...,
s7t

First note that the above formula is consistent withSlig2, C) transformations. Indeed,
relations (7.9) imply that

Tst N2 _ Tst
2 o™ 2 aa

for \' = ‘C‘ijg. Taking, in particular)’ = A~* one verifies that the quadratic differentials

(7.10) are regular at infinity. They are also regular at the branching points-sif¢
is a local holomorphic differential around,. Hence the r.h.s. of Eqg. (7.10) is indeed
a (holomorphic) quadratic differential. Thus Eq. (7.10) is equivalent to relations (7.6)

with h, = &dfi)bs, modulo an overall normalization. To prove Eq. (7.10) we shall
verify it at a point of the phase space for whiktfq, p)(zs) 7 0 for s # 1. This will fix
hs for s Z 1 and hence all of them (two quadratic differentials equal at paintsith

s # 1 have to coincide).
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Consider a pair, ¢.,,) lying in the productC x K* of the Kummer quartics with
O(u) = prmielTert2mic; us Y(ug + By — u) H(uy + By +u)

=Y ey epf2.e)wa) 20 (u)  (7.11)

for e; = €] = (1,0). Note that(d, ¢,,,) = 0. Equation (5.1) together with the relations
(7.5) and the equation

0a6(ug) = —e2™iTERTI N § 9([1) (2uy + Fr)

results in the identity

H(O, pus) = — oy €7 4TI (0,0( 1)) 20(2ua + Ex)? (A — M)? DF, (7.12)
where (' is the constant appearing in Eqg. (7.5). Note thd?, ¢,,) 7 O as long as
9(2us + E1) Z 0. It follows thatH (6, ¢,,,) is a quadratic differential proportional to
A\ — )\1)2@%}2 which has the % order zero at:;. The latter property characterizes it
uniquely up to normalization.

It is not difficult to check that Eq. (7.10) gives a quadratic differential with the same
property. Indeed, in the language ¢¢ andp’s, the linear forme,,, corresponds to a
vectorp € C*andé to g = (p2, —p1, pa, —p3)- A straightforward verification shows that
r14(q, p) = O for allt # 1. This implies that the quadratic differential given by Eq. (7.10)
vanishes to the second orderat The condition that it vanishes to the fourth order is

Z Tst((pZa —DP1, Pa, _p3)7p) H (Al - AU) =0.

:7:;4 vFL st
A direct calculation shows that this is exactly Eq. (A3.2) of the Kummer quartic with
the coefficients (A3.4) so that it holds fa@r corresponding tap,,,. This establishes
proportionality between the Hitchin map and the right-hand side of Eqg. (7.10) with a
coefficient that may be still curve-dependent.

Fixing the overall normalization of the Hitchin map is more involved. We shall
calculate the value of the quadratic differential on the right-hand side of Eq. (7.12) at
A = Xz and compare it to the value given by Eq. (7.10). Since this is somewhat technical,
we defer the argument to Appendix 4.

The system with Hamiltonians (7.6) bears some similarity to the classic Neumann
systems$, also anchored in modular geometry [17, 2]. The Hamiltonians of a Neumann
system have the form

_ JZ
Ho= > SV (7.13)
1<ts<n 9

whereJ,; = gsp; — q:ps are the functions off*C" generating the infinitesimal action
of the complex groupO,,:

4 We thank M. Olshanetsky for attracting our attention to this fact.
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{Jsty v} = —JTsw for s,t,v different,
(7.14)
{Jst; Jow} =0 for s,t,v,w different

The fact that the Hamiltonians (7.6) (with constag} Poisson commute reduces, as is
well known, to the identities

{rst + sy, Tt} =0 and cyclic permutations thereof
(7.15)
{Tstar'uw} =0 for {s,t}ﬂ{v,w} :Q).

If we setr,; = J2 for the Neumann system, then Egs. (7.15) follow from the relations
(7.14). It appears that the same algebra stands behind tRéfat,; given by Eq. (7.7)
verify (7.15). The phase spa@&N;; = {(q, p)|q-p = 0} /C*, whereC* acts by ¢, p) —
(tq,t~1p), may be identified with the coadjoint orbit of the groSi, composed of
the traceless complex>4 matrices|p)(g| of rank 1. Using the isomorphism of the
complex Lie algebrasi, = sog, we obtain the functiond,; = —J;s on this SL,-
orbit which generate the action e and have the Poisson brackets given by (7.14). A
straightforward check shows that, fay; of Eq. (7.7),

ro = —4J% (7.16)

so that Eq. (7.15) follows from theg-algebra (7.14).
Upon the introduction of the rational functiofig, Egs. (7.15) take the form

1S v vl s v SR b v vl veus vl SRR & s wilh veus vl Al U
(7.17)

soset=0 for {spn{ew}=0.

The first of these identities is, essentially, the classical Yang-Baxter equation. Note,
however, that-,;, unlike in the Gaudin and Neumann systems, is not an element of a
product of two copies of a Poisson algebra of functions: there is no sign of an explicit
product structure, or of a reduction thereof, in our phase space. The important question
is whetherr,, come from a rational solution of the CYBE. The conformal field theory
work [14, 23] suggests that the answer may be positive, at least in some sense.

The knowledge of the explicit form of the quadratic differentialé;, p) allows to
write the explicit equations for the genus 5 spectral curve ofthgHitchin system at
genus 2, see Eq. (2.1). They take the form

6
G=T[=2), €= ralep) [T =) (7.18)
s=1 s7t

v7s,t
The involution of the spectral curve flips the signéofTo extract explicit formulae for
the angle variables describing the point on the Prym variety of the spectral curve, we
would need, however, a more explicit knowledge of the entire Lax mdtrix

5 This is the classical version of the observation of [22].
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8. Conclusions

The main result of the present paper is the proof of self-duality of the Hitchin Hamil-
tonians on the cotangent bundle to the moduli space of the holomasighibundles

on a genus 2 complex curve. The result was based on an expression for the Hitchin
Hamiltonians off the Kummer quartic on which the values of the Hamiltonians were
determined in [21]. Using the self-duality, we were able to complete the analysis of
[21] and to obtain the explicit formula (1.5) for the Hitchin map (1.3) giving the action
variables of the integrable system. The explicit formula for the angle variables remains
still to be found. An interesting open problem is an extension of the present work to the
case with insertion points.

Another important problem related to Hitchin's construction is the quantization of
the corresponding integrable systems. For §tie case such a quantization is essen-
tially provided by the Knizhnik—Zamolodchikov—-Bernard—Hitchin connection [15, 4, 5]
which describes the variation of conformal blocks of $%, WZW conformal field
theory under the change of the complex structure of the curve. The (partition function)
conformal blocks are holomorphic sections of #i&-power of the determinant line
bundle over the moduli spad€,, (k is the level of the WZW theory). In our case, they
are simplyktM-order homogeneous polynomials &ff(L2). It is easy to quantize the
Hitchin Hamiltonians

_ Tst
H, = Z WY
tFs

If one keeps the original formulae (7.7) fog; in which p; stands now for%aqi, the
relations (7.15) or (7.17) still hold after the replacement of the Poisson brackets by the
commutators. One obtains this way the commuting operdignaiapping the space of
homogeneous, degrégpolynomials in variableg into itself. Note, however, that now

> ra = —k(k+4)
tFs

for each fixeds so that the quantization changes the conformal properties of the Hamil-
tonians. A direct construction of the projective version of the KZBH connection for
group SU, and genus 2 has been recently given in ref. [22] by following Hitchin’s ap-
proach [12]. It is consistent with the aboad hocquantization of the classical Hitchin
Hamiltonians.

The integral formulae for the conformal blocks [3, 20, 8] or, equivalently, the integral
formulae for the scalar product of the conformal blocks [9] have been used at genus 0 and
1 to extract the Bethe Ansatz eigen-vectors and eigen-values of the quantized version
of the quadratic Hitchin Hamiltonians. The Bethe-Ansatz type diagonalization of the
guantization of the genus 2 Hitchin Hamiltonians is among the issues that will have to
be examined.

Finally, as we stressed in the text, the relations between the conformal WZW field
theory on a genus 2 surface and an orbifold theory in genus 0 requires further study.
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Appendix 1
Let us check thafl given by Eq. (3.6) vanishes if and only if

H(, @ E) = {(s1,2) | 52 € H(lulw), 9_, s1+s5b=0} 7 O.

Foru—uy € Z?+772the F'theta function on the r.h.s. of Eq. (3.7) vanishesput [,,,
andl,, € Cp. Assume now that — uy ¢ Z? + 7Z2. Thendim HO(l; ', K) = 1 with
anon-zerog € H°(I; %1, K). The necessary and sufficient condition for the solvability
of the equatiorﬁl 151t sob =0 for a givens, € HO(l,ly,) is

wloyq

/ xs2b = 0. (Al1.1)
z

If u+uy € Z2 + 772 thenl,l,, = K anddimHO(l,l,,,) = 2 so that there always is a
non-zero solution but alsé(x) = 0 in this case due to the vanishing of tH¥ theta
function on the r.h.s. of Eq. (3.7). Finally,if+ u; ¢ Z2+ 772 thens, € H°(l,l,,) has

to be proportional to the element defined by (3.8) and the condition (Al1.1) coincides
with the equatiord(u) = 0.

Appendix 2
Let us show that the 1,0-form satisfying relations (4.18) and (4.19) automatically
fulfills the condition

/I{/L/\b: 0. (A2.1)
V2

Among the infinitesimal gauge field variatiod® given by Eq. (4.4) there are ones
which are equivalent to infinitesimal gauge transformations:

§B =0A +[B, A].

Explicitly, for A = (7,7 ¢) with ¢ a function, a section ol;f andx a section of?

u?

this requires that
0k=0,  mouy(m7) o= —8o+kb,  &b=0p+20b. (A2.2)

Such variations may only change the normalization of the theta funétibmegrating
the second of the above relations against faxrhand using Eq. (4.12) we find that

Juf = — 5 0y0(uy) (A2.3)
for the proper normalization of. For suchju; the first term on the right-hand side of
Eqg. (4.6) gives a theta function vanishingwat u; and may be compensated by the
second term. The"8equation of (A2.2) gives the compensatifige A%(l;?). Pairing
Eq. (4.6) with the abovéu; anddb with the linear formyp, we obtain the identity

2 0,0(ur)(ImT) / YCAb+2 / onAb=0. (A2.4)

P z
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On the other hand,

/ KA b= / A do — %eababH(ul)(lm);cl/ A W°

z ) z

=— / onA\b— %e“l’abH(ul)(lm)gcl/ xAb=0,
) ))

where we have subsequently used tHeguation in (A2.2) witlu, given by Eq. (A2.3),
the relationdp = —n A b and Eq. (4.18) fixing: and, finally, the identity (A2.4).

Appendix 3
It is not difficult to see that there exist a non-zero elemerg S*H°(L2), a homoge-
neous polynomial of degree 4 di°(L2)*, s.t.

P((rbu/) =0

for all v’ € C2. Indeed dimS*HO(L3) = (4) = 35 but the map’ — P(¢,) defines
an even theta function of order 8 addn HQ,.(L8) = 34. P is a quartic expression in
02..(u") which vanishes for all’. It has to be preserved by th& (2Z)*-action (3.12)
and hence it must be of the form

P= C1(‘931,(0,0) + 93,(1,0) + 93,(0,1) + ‘93,(1,1))
+ (05,0005 1.0 * 05,0.005.1,1))
+¢3(05,0005 0.1) * 05,1.0/%5.1,1))

+ C4(9§,(0,0)9§,(1,1) + 95,(1,0)95,(0,1))

+¢502,0,002,(1,002,(0,2)02,1,1)-

It is not difficult to calculate the values of coefficients Denotinga = 65 (0,)(0),
B = 02,1,0)(0), 7 = 02,0,1)(0) ands = 602,(1,1)(0), one has

(1= (0252 = y2)a%y? — FP6%)(0%% — 5P7P),
==+ 31— o = §)(a%? = G277 — FP),
(A3.1)
cs=—(0* = 547" = (0202 — 1292) (267 — P2),
ca=—(0* = §* = 4+ 525 — 427) (22 — 567),
es= 20070](a* — F*+ 94 — 642 — 4aP? — G257,

If we use the basis dual taf{.) to identify ¢ € H(L2)* with a vectorp =
(p1, p2, p3, pa) € C*, the equation of the Kummer quarfi¢ becomes
ca(p] +p5 + p3 + p3) + c2(pip5 + papa) + ca(pip5 + p5p3)

(A3.2)
+c4(pTp§ + p3p3) + cspipapspa = O.
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Similarly, identifyingd € H°(L3) with ¢ = (q1, g2, g3, ¢4) € C* with the help of the
basis ¢,.). the same equation with replaced byy defines the Kummer quartic,
compare [13], p. 81.

We shall also need another well known presentation of the above equation using the
inhomogeneous coordinates of the Weierstrass paingéven by Eq. (7.2). Itis usually
obtained by beautiful geometric considerations about quadratic line complexes, see [10].
It may be also obtained analytically by observing that the multivalued functions

T 9276(fw7A)
zo

transform like bilinears i, ([, w—A), i.e., that they represent quadratic differentials.
It follows that

S 02.(E) O2.0([ w— A) =9(E, + [ w— A) I(E, — [w+A)
= 0. (0u(EDoe0(] - 8) - 00D - 8)) (A3
: (alﬁ(E;’)azﬂ(f w— A) — BIENNI(] w — A)> ,

whereFE; = (es + 7e.) is an odd characteristics from the list (7.3) aifl £ are the

two other ones s.t&, + £/, = Emod{Z? + 77?). The odd characteristics,, ', E"

are either a permutation dfy, F,4, E5 or a permutation off,, F3, Es. The relations
(A3.3) hold since both sides represent a quadratic differential with double zeros at the
Weierstrass points corresponding i) and E”/. One may obtain expressions for the
coefficientsD; by the de I'Hospital rule applied twice at those points. Specifying then
4w — A'to E, or to 3 remaining odd characteristics one obtains relations for quadratic
combinations o), .(0) of the form+-a? + 32 + 42 4 §2 with 2 plus and 2 minus signs

as well as fore8 + 79, ay £ 86 andad + Bv. These relations may be used to compute
the ratios of the coefficients (A3.1) which become functions of; only. One obtains

this way an alternative expression for the coefficients

c1= (A1 — A2)(As — Ag)(As — Ne),
2=2(A1 = A2)((A3 = As)(Aa = Ae) + (A3 = As)(Aa — As)),
3= =23 — A)((A1 — As)(A2 — Xe) + (A1 — Xe)(\2 — ), (A3.9)
ca=2(\s — A6)(A1 — A3) (N2 — Aa) + (A1 — Ag)(A2 — A3)),

c5=—2(A1 — A3)(As — As)(A2 — Ag) + (A4 — Ag)(A2 — As))
—2(A1 — A2)(Az3 — As)(A2 — Ae) + (A3 — X6)(A2 — As))
—2(A1 — As)(A2 — Aa)(A3 — Ae) + (A2 — A3)(Aa — Xe))
—2(A1 — A6)((A2 — Aa)(Az — As) + (A2 — A3)(Aa — As))

equivalent to the previous one up to normalization. Note thabth@, C) transforma-
tions A\, — ZQ&:S preserve the form of the quartic equation. The virtue of the analytic
approach is that it also provides useful expressions for the non-homogeneous ratios like

e.g.
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aB+yd e #mOTRO (3, — X5)(Ap — Ne)(\z — Aa)
a?y? — 3262 202 (0,0(E))? A1 — A2 '

(A3.5)

C? is given by the equations

2 _ 1 (819)3039—3(010)20200,820+3010(829)2820,0— (829)3039
=3 H()‘s —At)

(0209)*
: Es t7s

holding for any fixeds. It is not difficult to see by differentiating twice Eq. (7.1) at
x = x5 thatC is the same constant that appears in Eq. (7.5). The expression (A3.5) is
used below to fix the normalization of the Hitchin map.

Appendix 4
We shall show here that the overall normalization of the Hitchin map is as in Eq. (7.10).
Since

eﬂ'iei#ei+4ﬂ'iei‘u1 19(2”1 + E]_)2
= —€™T Y(2uy + Fy) 9(uy — Er) = —€TATY " 0 () 0,0 (2u1)

= _e%ﬂi(l,O)ﬂ'(l,O) Z(_l)(l,O)e 92,e+(l’0)(0) 9276(21”.)7
e

the coefficient oiﬂ)z on the right-hand side of Eq. (7.12) takes\at )\, the value

% et OO (9)9(E1))2 (A1 — A2)? (B02,0,0)(2u1) — a2, (1,0)(2u1)
+602,00,1)(2u1) — v02,1,1)(2u1)) (A4.1)

in the notations of Appendix 3. This coefficient should coincide with the one obtained
from the right-hand side of Eq. (7.10) which is equal to

—az 3 _rala.p) [ G2 — M) (A4.2)
t72 vF2,t

calculated atq, p) corresponding tod; ¢,,,) with 6 given by Eq. (7.11). The respective
values ofr,, are:

T = 07

723=2(—ay?02,0,0)(2u1) — B5%02,1,0)(2u1) — v*0,0,1)(2u1)
—83%02,1,1)(2u1) — B7602,(0,0/(2u1) — a8, (1,0)(2u1)
—a3605 (0,1)(2u1) — fv02,(1,1y(2u1)),

r24=2(°02,(0,0)(2u1) + B6°02,1,0)(2u1) + 70?02,(0,1)(2u1)
+83%02,(1.1)(2u1) — $73602,0,0)(2u1) — y302,(1.0)(2u1)
—a 3602 0,1)(2u1) — aBv02,(1,1)(2u1)), (A4.3)
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725 = 2(a6%02,0,0(2u1) + B7202,1,0)(2u1) + 75%02,(0.1)(2u1)
+80207 (1.1)(2u1) + $7002,(0.0)(2u1) + ay602,(1.0)(2u1)
+a3002,0,1)(2u1) + Bv02,(1,1)(2u1)),

726 = 2(— 0?02 (0,0)(2u1) — BY?02,1,0)(2u1) — 7/3%02,0,1)(2u1)
—80%07,1.1)(2u1) + By3602,0,0)(2u1) + Y802 (1.0)(2u1)
+a3002,(0,1)(2u1) + afv02,(1,1)(2u1))-

Multiplying the coefficients at subsequeit.(2uy) in expression (A4.1) by, —5, v
and—J, respectively, and summing them up we obtain

C2 hmiOT0) (9B (A — M)’ (a +9).

A similar operation on expression (A4.2) gives

— 1o (A = A2 — M)Az — M) — Aa)(aPy? — 267

The equality of the two expressions follows from Eq. (A3.5). This verifies the correctness
of the overall normalization of the Hitchin map in Eq. (7.10).
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