
Commun. Math. Phys. 196, 641 – 670 (1998) Communications in
Mathematical

Physics
© Springer-Verlag 1998

Self-Duality of the SL2 Hitchin Integrable System at
Genus 2
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Abstract: We revisit the Hitchin integrable system [11, 21] whose phase space is the
bundle cotangent to the moduli spaceN of holomorphicSL2-bundles over a smooth
complex curve of genus 2. As shown in [18],N may be identified with the 3-dimensional
projective space of theta functions of the 2nd order, i.e.N ∼= P3. We prove that the
Hitchin system onT ∗N ∼= T ∗P3 possesses a remarkable symmetry: it is invariant
under the interchange of positions and momenta. This property allows to complete the
work of van Geemen–Previato [21] which, basing on the classical results on geometry
of the Kummer quartic surfaces, specified the explicit form of the Hamiltonians of the
Hitchin system. The resulting integrable system resembles the classic Neumann systems
which are also self-dual. Its quantization produces a commuting family of differential
operators of the 2nd order acting on homogeneous polynomials in four complex variables.
As recently shown by van Geemen–deJong [22], these operators realize the Knizhnik–
Zamolodchikov–Bernard–Hitchin connection for groupSU (2) and genus 2 curves.

1. Introduction

In [11], Nigel Hitchin has discovered an interesting family of classical integrable models
related to modular geometry of holomorphic vector bundles or to 2-dimensional gauge
fields. The input data for Hitchin’s construction are a complex Lie groupG and a com-
plex curve6 of genusγ. The configuration space of the integrable system is the moduli
spaceN of (semi)stable holomorphicG-bundles over6. This is a finite-dimensional
complex variety and Hitchin’s construction is done in the holomorphic category. It ex-
hibits a complete family of Poisson-commuting Hamiltonians on the (complex) phase
spaceT ∗N . The Hitchin Hamiltonians have open subsets of abelian varieties as generic
level sets on which they induce additive flows [11]. More recently, Hitchin’s construc-
tion was extended to the case of singular or punctured curves [16, 19, 7] providing a
unified construction of a vast family of classical integrable systems. For6 = CP 1 with
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punctures, one obtains this way the so called Gaudin chains and forG = SLN and6

of genus 1 with one puncture, the elliptic Calogero-Sutherland models which found an
unexpected application in the supersymmetric 4-dimensional gauge theories [6].

In Sect. 2 of the present paper we briefly recall the basic idea of Hitchin’s construc-
tion. The main aim of this contribution is to treat in detail the case ofG = SL2 and6 of
genus 2 (no punctures). The genus 2 curves are hyperelliptic, i.e., given by the equation

ζ2 =
6∏
s=1

(λ− λs), (1.1)

whereλs are 6 different complex numbers. The semistable moduli spaceN has a par-
ticularly simple form for genus 2, [18]: it is the projectivized space of theta functions of
the 2nd order:

N = PH0(L2
2), (1.2)

whereL2 is the theta-bundle over the JacobianJ1 of (the isomorphism classes of) degree
γ−1 = 1 line bundles1 l over6. dimC(H0(L2

2)) = 4 so thatN ∼= P3. This picture ofN
is related to the realization ofSL2-bundles as extensions of degree 1 line bundles. We
review some of the results in this direction in Sect. 3 using a less sophisticated language
than that of the original work [18]. The relation between the extensions and the theta
functions is lifted to the level of the cotangent bundleT ∗N in Sect. 4. The language of
extensions proves suitable for a direct description of the Hitchin Hamiltonians onT ∗N .
The main aim is, however, to present the Hitchin system as an explicit 3-dimensional
family of integrable systems onT ∗P3, parametrized by the moduli of the curve. This
was first attempted, and almost achieved, in reference [21].

Let us recall that the Hitchin Hamiltonians are components of the map

H : T ∗N −→ H0(K2) (1.3)

with values in the (holomorphic) quadratic differentials (K denotes the canonical bundle
of 6). Due to relation (1.2), the mapH may be viewed as aH0(K2)-valued function of
pairs (θ, φ), whereθ ∈ H0(L2

2) andφ from the dual spaceH0(L2
2)∗ are s.t.〈θ, φ〉 = 0.

Fix a holomorphic trivialization ofL2 aroundl ∈ J1 and denote byφl the linear form
that computes the value of the theta function atl. As was observed in [21],

H(θ, φl) = − 1
16π2 (dθ(l))2 (1.4)

(with appropriate normalizations). In the above formula,θ is viewed as a function on
J1 anddθ(l) as an element ofH0(K). Sinceθ(l) = 0, the equation is consistent with
changes of the trivialization ofL2.

The mapJ1 3 l 7→ φl induces an embedding of the Kummer surfaceJ1/Z2 with
l andl−1K identified into a quarticK∗ in PH0(L2

2)∗. The Kummer quartic is a carrier
of a rich but classical structure, a subject of an intensive study of the nineteenth century
geometers, see [13] and also the last chapter of [10]. The reference [21] used the relation
(1.4) and a mixture of the classical results and of more modern algebraic geometry to
recover an explicit form of the components of the Hitchin mapH up to a multiplication
by a function on the configuration space. The authors of [21] checked that the simplest

1 We use the multiplicative notation for the tensor product of line bundles.
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way to fix this ambiguity leads to Poisson-commuting functions but they fell short of
showing that the latter coincide with the ones of the Hitchin construction.

Among the aims of the present paper is to fill the gap left in [21]. We observe
that the proposal of [21] has a remarkableself-duality property: it is invariant under the
interchange of the positions and momenta inT ∗P3. We show that the Hitchin construction
leads to a system with the same symmetry. This limits the ambiguity left by the analysis
of [21] to a multiplication of the components ofH by constants. A direct check based
on Eq. (1.4) fixes the normalizations and results in a formula for the Hitchin map which
uses the hyperelliptic description (1.1) of the curve. Namely,

H = − 1
128π2

∑
1≤s6=t≤6

rst
(λ− λs)(λ− λt)

(dλ)2, (1.5)

whererst are explicit polynomials in (θ, φ) given, upon representation of (θ, φ) by pairs
(q, p) ∈ C4 ×C4, by Eqs. (7.7) below. The above expression forH has a similar form as
that for the Hitchin map on the Riemann sphere with 6 insertion pointsλs, see e.g. Sect.
4 of [9], except for the structure of the termsrst. This is not an accident but is connected
to the reduction of conformal field theory on genus 2 surfaces to an orbifold theory in
genus 0 [14, 23]. We plan to return to this relation in a future publication.

Let us discuss in more detail how we establish the self-duality of the Hitchin Hamil-
tonians. The main tool here is an explicit expression for the values of the Hitchin map
off the Kummer quarticK∗ which we obtain in Sect. 5. Our formula forH(θ, φ) re-
quires a choice of a pair of perpendicular 2-dimensional subspaces (5,5⊥), where
θ ∈ 5 ⊂ H0(L2

2) andφ ∈ 5⊥ ⊂ H0(L2
2)∗ (there is a complex line of such choices).

The plane5⊥ corresponds to a lineP5⊥ in PH0(L2
2)∗ which intersects the Kummer

quarticK∗ in four pointsC∗φlj , j = 1, 2, 3, 4, (counting with multiplicity). Whereas the
analysis of [21] was mainly concerned with the geometry of bitangents toK∗ with two
pairs of coincidentφlj ’s, we concentrate on the generic situation withφlj ’s different.
Then any two of them, sayC∗φl1 andC∗φl2, span5⊥. 5 is composed of the 2nd order
theta functions vanishing atl1 andl2. In particular,

φ = a1φl1 + a2φl2 and θ(l1) = 0 = θ(l2). (1.6)

Let x1 + x2 andx3 + x4 be the divisors ofl1l2 and of l1l
−1
2 K, respectively, wherexi

are four points2 in 6. If l21 6= K, which holds in a general situation, then the quadratic
differentialH(θ, φ) is determined by its values atxi which, as we show in Sect. 5, are

H(θ, φ)(xi) = − 1
16π2 (a1dθ(l1) ± a2dθ(l2))2 (xi). (1.7)

Sign plus is taken forx1 andx2 and sign minus forx3 andx4. Note that forφ = φl with
θ(l) = 0 the above equation reproduces the result (1.4).

As we recall at the end of Sect. 3, there exists an almost natural linear isomorphism
ι betweenH0(L2

2)∗ andH0(L2
2). What follows is independent of the remaining ambi-

guity in the choice ofι. The identity〈θ, φ〉 = 〈ι(φ), ι−1(θ)〉 implies that if (θ, φ) is a
perpendicular pair then so is (θ′, φ′) whereθ′ = ι(φ) andφ′ = ι−1(θ). Thusι interchanges
the positions and momenta inT ∗N . We may take (5′,5′⊥) = (ι(5⊥), ι−1(5)) as a pair
of perpendicular subspaces containing (θ′, φ′). The lineP5′⊥ meetsK∗ in four points

2 The other two lines of intersection ofP5⊥ with K∗ correspond tol3 andl4 with l1l3 = O(x1 + x3),
l1l

−1
3 K = O(x2 + x4), l1l4 = O(x1 + x4), l1l

−1
4 K = O(x2 + x3).
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C∗φl′
j
. Equivalently,C∗ι(φl′

j
) are the points of intersection ofP5 with the Kummer

quarticK = ι(K∗) ⊂ PH0(L2
2). In a general situation,5′⊥ is spanned by any pair of

φl′
j
’s so that

φ′ = a′
1φl′1 + a′

2φl′2 and θ′(l′1) = 0 = θ′(l′2) (1.8)

which is the dual version of relations (1.6). Equivalently,

θ = a′
1ι(φl′1) + a′

2ι(φl′2) and 〈ι(φl′1), φ〉 = 0 = 〈ι(φl′2), φ〉. (1.9)

Let yi be the points associated tol′j the same way as the pointsxi were associated tolj .
l′j may be chosen so thatyi andxi coincide modulo the natural involution of6 fixing
the six Weierstrass points. Formula (1.7) implies then that

H(θ′, φ′)(yi) = − 1
16π2

(
a′

1dθ
′(l′1) ± a′

2dθ
′(l′2)

)2
(yi). (1.10)

Pointsyi in Eq. (1.10) may be replaced byxi since the quadratic differentials are equal
at pointx if and only if they are equal at the image ofx by the involution of6. A
direct calculation of the coefficientsa1, a2 anda′

1, a
′
2 appearing on the right-hand sides

of Eqs. (1.7) and (1.10) shows then that both expressions coincide, establishing the
self-duality ofH. The verification of this equality is the subject of Sect. 6.

In Sect. 7, we recall the main result of reference [21] and show how the self-duality
may be used to complete the analysis performed there and to obtain the explicit form
(1.5) of the Hitchin map. We briefly discuss the relation of that form to the classical
Yang-Baxter equation.

An appropriate quantization of Hitchin Hamiltonians leads to operators acting on
holomorphic sections of powers of the determinant line bundle overN and defining the
Knizhnik–Zamolodchikov–Bernard–Hitchin [15, 4, 5, 12] connection. In our case, the
sections of the powers of the determinant bundle are simply homogeneous polynomials
onH0(L2

2). It is easy to quantize the Hamiltonians corresponding to the components of
the Hitchin map (1.5) in such a way that one obtains an explicit family of commuting
2nd order differential operators acting on such polynomials. The corresponding connec-
tion coincides with the explicit form of the (projective) KZBH connection worked out
recently3 in [22].

The quantization of the genus 2 Hitchin system is briefly discussed in the Con-
clusions, where we also mention other possible directions for further research. Four
appendices which close the paper contain some more technical material.

We would like to end the presentation of our paper by expressing some regrets. We
apologize to Ernst Eduard Kummer and other nineteenth century giants for our insuffi-
cient knowledge of their classic work. The apologies are also due to a few contemporary
algebraic geometers who could be interested in the present work for an analytic character
of our arguments. To the specialist in integrability we apologize for the yet incomplete
analysis of the integrable system studied here and, finally, we apologize to ourselves for
not having finished this work 2 years ago.

3 We thank B. van Geemen for attracting our attention to ref. [22] and for pointing out that this work may
be used to fix indirectly the precise form of the Hitchin map.



Self-Duality of theSL2 Hitchin Integrable System at Genus 2 645

2. Hitchin’s Construction

Let us assume, for simplicity, that the complex Lie groupG is simple, connected and
simply connected. We shall denote byg its Lie algebra. The complex curve6 will be
assumed smooth, compact and connected. Topologically, allG-bundles on6 are trivial
and the complex structures in the trivial bundle may be described by giving operators
∂̄ +A, whereA are smoothg-valued 0,1-forms on6 [1]. Let A denote the space of such
forms (i.e. of chiral gauge fields). The groupG of local (chiral) gauge transformations
composed of smooth mapsh from 6 toG acts on operators̄∂ +A by conjugation and
on the gauge fieldsA by

A 7−→ hA ≡ hAh−1 + h∂̄h−1.

Two holomorphicG-bundles are equivalent iff the corresponding gauge fields are in the
same orbit ofG. Hence the space of orbitsA/G coincides with the (moduli) space of
inequivalent holomorphicG-bundles. It may be supplied with a structure of a variety
provided one gets rid of bad orbits. This may be achieved by limiting the considerations
to (semi)stable bundles, i.e. such that the vector bundle associated with the adjoint
representations ofG contains only holomorphic subbundles with negative (non-positive)
first Chern number. For genusγ > 1, the moduli spaceNs ≡ As/G of stableG-
bundles is a smooth complex variety with a natural compactification to a varietyNss,
the (Seshadri-) moduli space of semistable bundles [18].

The complex cotangent bundleT ∗Ns may be obtained from the infinite-dimensional
bundleT ∗As by the symplectic reduction.T ∗As may be realized as the space of pairs
(A,8), where8 is a (possibly distributional)g-valued 1,0-form on6,A ∈ As and the
duality with the vectorsδA tangent toA is given by∫

6

tr 8 ∧ δA

with tr standing for the Killing form. The action of the local gauge groupG onAs lifts
to a symplectic action onT ∗As by

8 7−→ h8 ≡ h8h−1 .

The moment mapµ for the action ofG onT ∗Ns is

µ(A,8) = ∂̄8 +A ∧ 8 + 8 ∧A ≡ ∂̄
A
8 .

Note that it takes values ing-valued 2-forms on6. These may be naturally viewed as
elements of the space dual to the Lie algebra ofG. The symplectic reduction ofT ∗As

realizesT ∗Ns as the space ofG-orbits in the zero level ofµ:

T ∗Ns
∼= µ−1({0})/G .

For a homogeneousG-invariant polynomialP ongof degreedP , the gauge invariant
expressionP (8) defines a section of the bundleKdP of dP -differentials on6. If 8 is in
the zero level ofµ thenP (8) is also holomorphic. Hence the map8 7→ P (8) induces
a map

HP : T ∗Ns −→ H0(KdP )

into the finite dimensional vector space of holomorphic differentials of degreedP on
6. The components of such vector-valued Hamiltonians clearly Poisson-commute since



646 K. Gawe¸dzki, P. Tran-Ngoc-Bich

upstairs (onT ∗As) they depend only on the momentum variables8. By a beautiful
argument, Hitchin showed [11] that taking all polynomialsP one obtains a complete
system of Hamiltonians in involution and that the collection of mapsHP defines in
generic points a foliation ofT ∗Ns into (open subsets of) abelian varieties.

Let us briefly sketch Hitchin’s argument forG = SL2. There is only one (up to
normalization) non-trivial invariant polynomialP2 on sl2 given by, say, half of the
Killing form. H ≡ HP2 maps into the space of quadratic differentials. A non-trivial
holomorphic quadratic differentialρ determines a (spectral) curve6′ ⊂ K given by the
equation

ξ2 = ρ(π(ξ)), (2.1)

whereξ ∈ K andπ is the projection ofK on6. The mapξ 7→ −ξ gives an involution
σ of 6′. Restriction ofπ to 6′ is a 2-fold covering of6 ramified over 4(γ − 1) points
fixed byσ, the zeros ofρ. 6′ has genusγ′ = 4γ − 3. If ρ = 1

2 tr (8)2 then relation (2.1)
coincides with the eigen-value equation

det(8 − ξ · I) = 0

for the Lax matrix8. Let for each 06= ξ ∈ 6′, lξ denote the corresponding eigen-
subspace of8. By continuity, lξ extend to vanishingξ in 6′ and∪

ξ
lξ forms a line

subbundlel of 6′ ×C2. In fact,l is a holomorphic subbundle with respect to the complex
structure defined on6′ × C2 by ∂̄ +A ◦ π. The degree ofl is −2(γ − 1). Besides,

l(σ∗l) = π∗K−1. (2.2)

Conversely, given6′ and a holomorphic line bundlel of degree−2(γ−1) on it satisfying
(2.2), we may recover a rank 2 holomorphic bundleE of trivial determinant over6 as
a pushdown ofl to 6. Thus for 0 6= ξ ∈ 6′, Eπ(ξ) = lξ ⊕ l−ξ. E corresponds to a
unique holomorphicSL2-bundle which, if stable (what happens on an open subset of
l’s) defines a point in the moduli spaceNs. A holomorphic 1,0-form with values in the
traceless endomorphisms ofE acting as multiplication by±ξ on l±ξ ⊂ Eπ(ξ) defines
then a unique covector ofT ∗Ns. Thus6′ encodes the values of the quadratic Hitchin
HamiltonianH (i.e., of the action variables) whereas the line bundlesl satisfying relation
(2.2) form the abelian (Prym) variety (of the angle variables) describing the level set of
H.

3. SL2 Moduli Space at Genus 2

We shall present briefly the description of the moduli spaceNs for G = SL2 andγ = 2
which was worked out in [18].

Let us start by recalling some basic facts about theta functions. We shall use a
coordinate rather than an abstract language. The space of degreeγ − 1 holomorphic
line bundles forms a Jacobian torusJγ−1 of complex dimensionγ. Fixing a marking
(a symplectic homology basis (Aa, Bb), a, b = 1, . . . , γ), we may identifyJγ−1 with
Cγ/(Zγ + τZγ). τ ≡ (τab) is the period matrix, i.e.τab =

∫
Bb
ωa, whereωa are the

basic holomorphic forms on6 normalized so that
∫
Aa
ωb = δab. The point 0∈ Cγ

corresponds inJγ−1 to a (marking dependent) spin structureS0, i.e. a degree 1 bundle
such thatS2

0 = K. u ∈ Cγ describes the line bundleV (u)S0, whereV (u) is the flat
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line bundle with the twists e2πiu
b

along theBb cycles. The set of degree 1 bundlesl
with non-trivial holomorphic sections forms a divisor2 of a holomorphic line bundle
L2 overJγ−1. Holomorphic sections of thekth power (k > 0) of L2 are called theta
function of orderk. With the use of a marking, they may be represented by holomorphic
functionsu 7→ θ(u) onC2 satisfying

θ(u + p + τq) = e−πikq·τq−2πikq·u θ(u) (3.1)

for p, q ∈ Zγ . The functions

θk,e(u) =
∑
n∈Zγ

eπik(n+e/k)·τ (n+e/k)+2πik(n+e/k)·u, (3.2)

wheree ∈ Zγ/kZγ form a basis of the theta functions of orderk. HencedimH0(Lk2) =
kγ . In particular, the Riemann theta functionθ1,0(u) ≡ ϑ(u) represents the unique (up
to normalization) non-trivial holomorphic section ofL2. It vanishes on the set

{
γ−1∑
i=1

xi∫
x0

ω − 1 | x1 ∈ 6, . . . , xγ−1 ∈ 6}

representing the divisor2. Here1 ∈ Cγ denotes the (x0-dependent) vector of Riemann
constants. All theta functions of order 1 and 2 are even functions ofu.

For γ = 2, the divisor2 is formed by the bundlesO(x) with divisorsx ∈ 6.
O(x) = V (

∫ x
x0
ω − 1)S0. The pullback of the theta bundleL2 by means of the map

x 7→ O(x) is equivalent to the canonical bundleK. The equivalence assigns 1,0-forms
to functions representing sections of the pullback ofL2:

εab∂bϑ(
x

∫
x0

ω − 1) 7→ ωa(x). (3.3)

This is consistent since vanishing ofϑ(
x∫
x0

ω − 1) implies that

∂aϑ(
x

∫
x0

ω − 1) ωa(x) = 0 .

Hence any multivalued function on6 picking up a factor e
−πiτaa−2πi(

∫ x

x0
ωa−1a)

when
x goes around theBa cycle and univalued around theAa cycles may be identified with
a 1,0-form on6.

As already suggested by the discussion at the end of Sect.2, for theSL2 group it
is more convenient to use the language of holomorphic vector bundles (of rank 2 and
trivial determinant) than to work with principalSL2-bundles. Of course the first ones
are just associated to the second ones by the fundamental representation ofSL2. Any
stable rank 2 bundleE with trivial determinant is an extension of a degree 1 line bundle
l ([18], Lemmas 5.5 and 5.8), i.e. it appears in an exact sequence of holomorphic vector
bundles

0 −→ l−1 σ−→E
$−→l −→ 0 . (3.4)

The inequivalent extensions (3.4) are classified by the cohomology classes inH1(l−2).
This may be seen as follows. Taking a section of$, i.e., a smooth bundle homomorphism
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s : l → E such that$◦s = idl, we infer that$∂̄s = 0 and hence that̄∂s = σb for b a 0,1-
form with values inHom(l, l−1) = l−2, i.e.b ∈ ∧01(l−2).b is determined up tō∂ϕ, where
ϕ is a smooth section ofl−2, i.e.ϕ ∈ 0(l−2). The class [b] in ∧01(l−2)/0(l−2) ∼= H1(l−2)
determines the extension (3.4) up to equivalence. Eachb corresponds to an extension:

one may simply takeE equal tol−1 ⊕ l with the ∂̄-operator given bȳ∂
l−1⊕l

+ ( 0 b
0 0 ).

Proportional [b] correspond to equivalent bundlesE. If E is a stable bundle then the
extension (3.4) is necessarily nontrivial, i.e. [b] 6= 0.

Let CE denote the set of degree 1 line bundlesl s.t.H0(l ⊗ E) 6= 0 (equivalently,
s.t.E is an extension ofl). This is a complex 1-dimensional variety. It was shown in
[18] thatCE characterizes the bundleE up to isomorphism and that there exists a theta
functionθ of the 2nd order which vanishes exactly onCE . The assignmentE 7→ C∗θ
gives an injective map

m : Ns −→ PH0(L2
2) . (3.5)

LetV (u1)S0 ≡ lu1 ∈ CE .Emay be realized as an extension oflu1 which is characterized
by [b] ∈ H1(l−2

u1
). Then one may take

θ(u) =
∫

6

K(x;u1, u) ∧ b(x), (3.6)

where

K(x;u1, u) = ϑ(
x

∫
x0

ω − u1 − u− 1) ϑ(
x

∫
x0

ω − u1 + u− 1)

·
(
εab∂bϑ(

x

∫
x0

ω − 1)

)−1

ωa(x) (3.7)

(it does not depend on the choice ofa = 1, 2). Let us explain the above formulae.
K(x;u1, u), in its dependence onx, is a multivalued holomorphic 1,0-form. More ex-
actly, the function

x 7→ ϑ(
x

∫
x0

ω − u1 − u− 1) (3.8)

is multivalued around theBa-cycles picking up the factor

e
−πiτaa−2πi(

∫ x

x0
ωa−ua

1 −ua−1a)

whenx goes aroundBa so that it describes an elements2 ∈ H0(lu1lu) (non-vanishing
if u1 + u 6∈ Z2 + τZ2). Similarly,

x 7→ ϑ(
x

∫
x0

ω − u1 + u− 1)

(
εab∂bϑ(

x

∫
x0

ω − 1)

)−1

ωa(x)

picks up the factor
e2πi(ua

1 −ua)

whenx goes aroundBa and describes a holomorphic 1,0-formχ with values inlu1l
−1
u

(non-vanishing ifu1 − u 6∈ Z2 + τZ2). The products2χ = K(·;u1, u) is a holomorphic
1,0-form with values inl2u1

and it may be paired withb ∈ ∧01(l−2
u1

) via the integral over
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x on the r.h.s. of Eq. (3.6). The integral is independent of the choice of the representative
b of the cohomology class [b]. In its dependence onu,K(x;u1, u) is a theta function of
the 2nd order and so isθ(u). In Appendix 1 we check explicitly thatθ given by Eq. (3.6)
possesses the required property.

The product of the two shifted Riemann theta functionsϑ(u′ −u)ϑ(u′ +u) is a theta
function of the 2nd order both inu′ and inu (and it is invariant under the interchange
u′ ↔ u). Let ι denote the (marking dependent) linear isomorphism between the spaces
H0(L2

2)∗ andH0(L2
2) defined by

ι(φ)(u) = 〈ϑ(· − u)ϑ(· + u), φ〉. (3.9)

An easy calculation shows that

ϑ(u′ − u) ϑ(u′ + u) =
∑
e

θ2,e(u
′) θ2,e(u). (3.10)

Henceι interchanges the basis (θ2,e) of H0(L2
2) with the dual basis (θ∗

2,e) of H0(L2
2)∗.

Denote byφu the linear form onH0(L2
2) that computes the value of the theta function at

pointu ∈ C2. The Kummer quarticK∗ ⊂ H0(L2
2)∗, K∗ = {C∗φu′ |u′ ∈ C2} is mapped

by the isomorphismι into a quarticK ⊂ H0(L2
2) of theta functions proportional to

u 7→ ϑ(u′ − u) ϑ(u′ + u)

for someu′ ∈ C2.
One may define a projective action of (Z/2Z)4 onH0(L2

2) by assigning to an element
(e, e′) ∈ (Z/2Z)4, with e, e′ = (0, 0), (1, 0), (0, 1) or (1, 1), a linear transformationUe,e′

s.t.

(Ue,e′θ)(u) = e
1
2πie

′·τe′+2πie′·uθ(u + 1
2
(e + τe′)). (3.11)

The relationUe1,e′
1
Ue2,e′

2
= (−1)e1·e′

2Ue1+e2,e′
1+e′

2
holds so thatU lifts to the Heisenberg

group. In the action on the basic theta functions,

Ue1,e′
1
θ2,e = (−1)e1·e θ2,e+e′

1
. (3.12)

The marking-dependence of the isomorphismι of Eq. (3.9) is given by the action of
(Z/2Z)4. It is easy to check that this action preservesK and that the transposed action of
(Z/2Z)4 preservesK∗. The (Z/2Z)4 symmetry of the Kummer quartics allows to find
easily their defining equation, see Appendix 3.

It was shown in [18] that the image ofNs under the map (3.5) contains all non-
zero theta functions of the 2nd order except the ones in the Kummer quarticK. The
latter correspond, however, to the (Seshadri equivalence classes of) semistable but not
stable bundles so that the mapm extends to an isomorphism betweenNss andPH0(L2

2)
showing thatNss is a smooth projective variety.
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4. Cotangent Bundle

Let us describe the cotangent space ofNs at pointE. The covectors tangent toNs atE
may be identified with holomorphic 1,0-forms9 with values in the bundle of traceless
endomorphisms ofE. We may assume thatE is an extension of a line bundlel of degree

1 realized asl−1 ⊕ l with ∂̄
E

= ∂̄
l−1⊕l

+B, whereB = ( 0 b
0 0 ). Then

9 =
( −µ ν
η µ

)
, (4.1)

whereµ ∈ ∧10, ν ∈ ∧10(l−2), η ∈ ∧10(l2) and

∂̄
l2η = 0, ∂̄µ = −η ∧ b, ∂̄

l−2ν = 2µ ∧ b . (4.2)

It is easy to relate the above description of covectors tangent toNs to the one of Sect. 2.
Let U : l−1 ⊕ l → 6 × C2 be a smooth isomorphism of rank 2 bundles with trivial
determinant. ThenU ∂̄

E
U−1 = ∂̄+A for a certainsl2-valued 0,1-formAand8 = U9U−1

satisfies∂̄
A
8 = 0. TheG orbit of (A,8) is independent of the choice ofU and the

quadratic Hitchin Hamiltonian takes value1
2tr(8)2 on it. The latter expression is clearly

equal to 1
2 tr(9)2 = µ2 + ην which, as easily follows from relations (4.2), defines a

holomorphic quadratic differential. Hence

H(E,9) = µ2 + ην . (4.3)

We would like to express the latter using the theta function description ofT ∗Nss =
T ∗PH0(L2

2); where the covectors tangent toNss atC∗θ are represented by linear forms
φ onH0(L2

2) s.t.〈θ, φ〉 = 0.
Let l = lu1 ∈ CE , i.e.θ(u1) = 0 for the theta function corresponding toE. We shall

assume thatl2 6= K i.e. that 2u1 6∈ Z2 +τZ2. An infinitesimal variationδE of the bundle

E in Ns may be achieved by changinḡ∂
E

= ∂̄
l−1⊕l

+B with B = ( 0 b
0 0 ) to

∂̄
l−1⊕l

+
(
πδu1(Imτ )−1ω̄ b + δb

0 −πδu1(Imτ )−1ω̄

)
≡ ∂̄

E
+ δB (4.4)

(all other variations of̄∂
E

may be obtained from (4.4) by infinitesimal gauge transfor-
mations). Clearly

〈δE,9〉 =
∫

6

tr 9 ∧ δB = −2πδu1(Imτ )−1
∫

6

µ ∧ ω̄ +
∫

6

η ∧ δb . (4.5)

Note that the line bundlelu1 with the ∂̄-operator changed tō∂
lu1

− πδu1(Imτ )−1ω̄ is
equivalent tolu1+δu1 ≡ l′ and the equivalence is established by multiplication by the

multivalued functionx 7→ e
2πiδu1(Imτ )−1

∫ x

x0
Imω

. Hencel−1⊕lwith the∂̄-operator given

by Eq. (4.4) is equivalent tol′−1 ⊕ l′ with the ∂̄-operator∂̄
l′−1⊕l′ + ( 0 b+δ′b

0 0 ); where

δ′b(x) = δb− 4πiδu1(Imτ )−1(
x

∫
x0

Imω)b(x). The last bundle corresponds by the relation

(3.6) to the theta function

(θ + δθ)(u) =
∫

6

K(x;u1 + δu1, u) ∧ (b(x) + δ′b(x)) .



Self-Duality of theSL2 Hitchin Integrable System at Genus 2 651

HenceδE is represented by the variation

δθ(u) = − 2πδua1(Imτ )−1
ab

∫
6

Lb(x;u1, u) ∧ b(x) +
∫

6

K(x;u1, u) ∧ δb(x) (4.6)

of the theta function, where

La(x;u1, u) = K(x;u1, u)
x

∫
x0

(ωa − ω̄a) − 1
2π

Imτab∂ub
1
K(x;u1, u) . (4.7)

Note that as functions ofx, La(x;u1, u) are 1,0-forms with values inl2u1
(as are

K(x;u1, u)). They are not holomorphic:

∂̄xL
a(x;u1, u) = K(x;u1, u) ∧ ω̄a(x).

As functions ofu, La(x;u1, u) are theta functions of the 2nd order.
We would like to find an explicit form of the Lax matrix9 representing the linear

formφ onH0(L2
2) s.t.〈θ, φ〉 = 0. We shall achieve this goal partially, finding the entries

η andµ of the matrix (4.1). The correspondence between9 andφ is determined by the
equality

〈δE,9〉 = 〈δθ, φ〉.
Since the left-hand side is given by Eq. (4.5) andδθ by Eq. (4.6), we obtain

−2πδu1(Imτ )−1
∫

6

µ ∧ ω̄ +
∫

6

η ∧ δb

= −2πδua1(Imτ )−1
ab

∫
6

〈Lb(x;u1, ·), φ〉 ∧ b(x) +
∫

6

〈K(x;u1, ·), φ〉 ∧ δb(x). (4.8)

Takingδu1 = 0 we infer that

η(x) = 〈K(x;u1, ·), φ〉 (4.9)

is the lower left entry of the matrix9 corresponding to the linear formφ.
It is easy to find the entryµ of 9 representing the linear formφu1 (recall thatφu1

computes the value of a theta function inH0(L2
2) at pointu1). SinceK(x;u1, u1) = 0,

it follows from Eq. (4.9) thatη = 0 in this case. Equation (4.8) reduces then to

−2πδu1(Imτ )−1
∫

6

µ ∧ ω̄ = δua1

∫
6

∂ua
1
K(x;u1, u1) ∧ b(x)

= −δua1
∫

6

∂uaK(x;u1, u1) ∧ b(x) = −δua1 ∂aθ(u1).

This fixesµ uniquely:

µ = i

4π
∂aθ(u1)ωa . (4.10)

Let us check that there existsν ∈ ∧10(l−2
u1

) such that the last equation of (4.2) holds. For
this it is necessary and sufficient that∫

6

κµ ∧ b = 0 (4.11)
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for a non-zero holomorphic sectionκ of l2u1
= V (2u1)K (dimH0(l2u1

) = 1 if 2u1 6∈
Z2 + τZ2). But such a section may be represented by the function

x 7→ ϑ(
x

∫
x0

ω − 2u1 − 1)

so that, recalling the definition (3.7), we obtain∫
6

κωa ∧ b =
∫

6

εab∂ubK(x;u1, u1) ∧ b(x) = εab ∂bθ(u1) . (4.12)

Hence the relation (4.11) follows forµ given by Eq. (4.10). The 1,0-formν satisfying
the last relation of (4.2) is now unique sinceH0(l−2

u1
K) = {0}.

We would like to find the entryµ of 9 corresponding to more general linear forms
φ s.t. 〈θ, φ〉 = 0. Recall thatθ with θ(u1) = 0 may be given by formula (3.6) with
b ∈ ∧0,1(l−2

u1
). Note that any 2nd-order theta functionδθ vanishing atu1 and not in the

Kummer quarticK may be written as

δθ(u) =
∫

6

K(x;u1, u) ∧ δb(x) (4.13)

with δb ∈ ∧01(l−2
u1

) since it corresponds to an extension oflu1. The space ofδθ vanishing
atu1 is 3-dimensional, as well as the spaceH1(l−2

u1
) of classes [δb] and the assumption

thatδθ 6∈ K is obviously superfluous. Set for a linear formψ onH0(L2
2),

ηψ(x) = 〈K(x;u1, ·), ψ〉 . (4.14)

ηψ defines a holomorphic 1,0-form with values inl2u1
. We have

〈δθ, ψ〉 =
∫

6

ηψ ∧ δb (4.15)

for δθ given by Eq. (4.13). By dimensional count, the mapψ 7→ ηψ is ontoH0(l2u1
K)

with the 1-dimensional kernel spanned byφu1. Specifying Eq. (4.15) toδθ ∝ θ, we
obtain the relation

〈θ, ψ〉 =
∫

6

ηψ ∧ b (4.16)

which determines the class [b] ∈ H1(l−2
u1

) in terms ofθ. On the other hand, takingψ = φ
in Eq. (4.14), we infer thatη = 0 if and only ifφ is proportional toφu1, the case studied
before.

If ηφ 6= 0 thenµ depends on the choice of the representativeb in the class [b] ∈
H1(l−2

u1
) characterizingE as the extension oflu1. Under the transformationb 7→ b+ ∂̄ϕ,

whereϕ is a section ofl−2
u1

,

η 7→ η, µ 7→ µ + ϕη, ν 7→ ν − 2ϕµ− ϕ2η.

The pairing of the theta functionsLa(x;u1, ·) of Eq. (4.7) with the linear formφ gives
two 1,0-forms with values inl2u1

:

χa(x) = 〈La(x; ·, u1), φ〉 s.t. ∂̄χa = η ∧ ω̄a. (4.17)
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Specifying the equality (4.8) to the case withδb = 0, we infer the relation∫
6

µ ∧ ω̄a =
∫

6

χa ∧ b (4.18)

which, together with the equation

∂̄µ = −η ∧ b (4.19)

determinesµ completely. In Appendix 2, we show thatµ fixed this way satisfies the
relation

∫
6
κµ ∧ b = 0 and hence defines a unique 1,0-formν with values inl−2

u1
s.t.

∂̄ν = 2µ ∧ b.

5. Hitchin Hamiltonians

From the relation (4.3) and the explicit form of9 corresponding toφu1 (η vanishing,µ
given by Eq. (4.10)), one obtains

H(θ, a1φu1) = − 1
16π2 a

2
1(∂aθ(u1) ωa)2. (5.1)

The right -and side is a quadratic differential. Equation (5.1), whose projective version
was first obtained in [21], is consistent with the rescalingθ 7→ tθ andφ 7→ t−1φ for
t ∈ C∗. It describes the value of the Hitchin mapH on the special covectors, namely
those represented by the pairs (θ, φ) s.t.C∗φ is in the intersectionK∗

E of the Kummer
quarticK∗ with the plane〈θ, φ〉 = 0. The linear span ofK∗

E gives the whole cotangent
spaceT ∗

ENss. Indeed, any theta function of the 2nd orderδθ which vanishes onCE has
to be proportional toθ and defines a zero vector inTENss. K∗

E is itself a quartic. Hence
the restriction of the quadratic polynomialH to six lines inK∗

E in a general position
determinesH completely.

It is possible to find a more explicit description of the values ofH away fromK∗
E

and this is the main aim of the rest of the present section. Suppose then that the entry
η in 9 does not vanish. Letxi, i = 1, . . . , 4, be its four zeros. We shall assume thatη
cannot be written asκω for κ ∈ H0(l2u1

) andω ∈ H0(K). This is true for genericφ. In
this case,η = a2ηφu2

for somea2 ∈ C∗ and foru2 satisfying

u1 + u2 =
x1∫
x0

ω +
x2∫
x0

ω − 21 and u1 − u2 =
x3∫
x0

ω +
x4∫
x0

ω − 21, (5.2)

u1 ± u2 6∈ Z + τZ. Indeed,ηφu2
(x) is a holomorphic section ofl2u1

K represented by the
multivalued functionϑ(∫xx0

ω− u1 − u2 − 1)ϑ(∫xx0
ω− u1 + u2 − 1) vanishing exactly

atxi and such a section is unique up to normalization. We infer that in the action on the
theta functions of Eq. (4.13), the linear formsφ anda2φu2 coincide. Since Eq. (4.13)
gives all theta functions vanishing atu1, it follows that

φ = a1φu1 + a2φu2 (5.3)

for somea1 ∈ C. Let us stress that, to fix normalizations,u1 andu2 should be viewed
as elements ofC2 with xi in relations (5.2) belonging to the covering space6̃ of 6. The
relation〈θ, φ〉 = 0 implies thatθ(u2) = 0.
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Summarizing, we have shown that a generic pair (θ, φ) s.t.〈θ, φ〉 = 0 may be obtained
by first choosingu1 andu2 s.t. 2u1, 2u2, u1 ± u2 6∈ Z + τZ and then takingθ from the
2-dimensional space of theta functions vanishing atu1 andu2 andφ from the orthogonal
subspace. The zerosxi of η are determined from Eqs. (5.2) (as the zeros ofϑ(∫xx0

ω −
u1 ± u2 − 1)). For simplicity, we shall assume that they are distinct (this is true for
genericφ). Then the differentials∂η(xi) ∈ (l2u1

K2)xi
do not vanish.

A quadratic differentialρ ∈ H0(K2) is determined by its values at four pointsxi
which form a divisor ofl2u1

K 6= K2. SincedimH0(K2) = 3, there is one linear relation
satisfied by allρ(xi):

4∑
i=1

ρ(xi)κ(xi)∂η(xi)
−1 = 0

for 0 6= κ ∈ H0(l2u1
). It expresses the fact that the sum of residues of the meromorphic

1,0-formρκη−1 has to vanish. Forρ = H(θ, φ) = µ2 + ην,

ρ(xi) = µ(xi)
2

so that it is enough to knowµ(xi) in order to determineH(θ, φ). Note that although
the 1,0-formµ depends on the choice of the representativeb of the class [b] ∈ H1(l−2

u1
)

defined by Eq. (4.16), the valuesµ(xi) are invariant since underb 7→ b+ ∂̄ϕ the 1,0-form
µ changes toµ + ϕη.

It remains to findµ(xi). Consider the meromorphic functionηψη−1. Viewed as a
distribution,∂̄(ηψη−1) is supported at the poles ofηψη−1 and∫

6

µ ∧ ∂̄(ηψη
−1) = −2πi

4∑
i=1

µ(xi)ηψ(xi)∂η(xi)
−1

for any (smooth) 1,0-formµ. In particular, forµ satisfying Eq. (4.19) we obtain

4∑
i=1

µ(xi)ηψ(xi)∂η(xi)
−1 = 1

2πi

∫
6

ηψ ∧ b = 1
2πi

〈θ, ψ〉. (5.4)

Recall thatηψ run through the three-dimensional spaceH0(l2u1
K). If ηψ(xi) = 0 for

all i thenηψ has to be proportional toη = a2ηφu2
. Hence vectors (ηψ(xi)) form a 2-

dimensional subspace in⊕
i
(l2u1

K)xi
and Eqs. (5.4) determine vector (µ(xi)) ∈ ⊕

i
Kxi

up to a 2-dimensional ambiguity spanned by (ωa(xi)) (indeed, as the residues of the
meromorphic 1,0-formηψη−1ωa, the numbersωa(xi)ηψ(xi)∂η(xi)−1 sum to zero). It
is clearly enough to take forψ in Eq. (5.4) any two linear forms independent ofφu1 and
φu2. In the generic situation, we may choose the forms∂aφu1 defined by

〈θ, ∂aφu1〉 = ∂aθ(u1).

Denoting the corresponding 1,0-formsηψ by η′
a, we obtain 2 relations forµ(xi):

4∑
i=1

µ(xi)η
′
a(xi)∂η(xi)

−1 = 1
2πi
∂aθ(u1). (5.5)
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Alternatively, we may choose forψ the linear forms∂aφu2 corresponding to 1,0-forms
η′′
a . This gives the relations

4∑
i=1

µ(xi)η
′′
a (xi)∂η(xi)

−1 = 1
2πi
∂aθ(u2). (5.6)

η′′
a must be linearly dependent fromη′

a andη (in the generic situation):

η′′
a = Db

aη
′
b + η (5.7)

leading via Eqs. (5.5) and (5.6) to the relation

∂aθ(u2) = Db
a ∂bθ(u1).

We need 2 more equations to determineµ(xi). They may be obtained from Eqs. (4.18)
fixing the holomorphic contributions toµ. Indeed, using the 2nd equation in (4.17), and
Eq. (4.19) we infer that∫

6

µ ∧ ω̄a =
∫

6

(µη−1)η ∧ ω̄a =
∫

6

(µη−1)∂̄χa =
∫

6

χa ∧ ∂̄(µη−1)

=
∫

6

χa ∧ b− 2πi
4∑
i=1

µ(xi)χ
a(xi)∂η(xi)

−1 (5.8)

so that Eq. (4.18) implies that

4∑
i=1

µ(xi)χ
a(xi)∂η(xi)

−1 = 0. (5.9)

These are the two missing equations. To see this, repeat the calculation (5.8) forµ
replaced byωb. This gives the relation

1
π

Imτab =
4∑
i=1

ωb(xi)χ
a(xi)∂η(xi)

−1.

Suppose now thatdaχa(xi) + eηψ(xi) = 0 for i = 1, . . . , 4. It follows that

0 =
4∑
i=1

ωb(xi)
(
daχ

a(xi) + eηψ(xi)
)
∂η(xi)

−1 = 1
π

Imτabda

so thatda = 0. Hence the vectors (χa(xi)) span a 2-dimensional subspace of⊕
i
Kxi

transversal to the 2-dimensional subspace spanned by the vectors (ηψ(xi)) and the linear
equations (5.4) and (5.9) determineµ(xi) completely.

It is enough to consider the caseφ = φu2. Indeed, the shiftφ 7→ φ + a1φu1 results in
the change

µ 7→ µ + i

4π
a1∂aθ(u1)ωa,

see Eq. (4.10). Identifying 1,0-forms with multivalued functions by the relation (3.3) and
settingχa = 2π(Imτ )−1

ab χ
b, wi = ∫xi

x0
ω − 1, G1 = G12 = −G2 andG3 = G34 = −G4

where



656 K. Gawe¸dzki, P. Tran-Ngoc-Bich

Gij = det
(
∂1ϑ(wi) ∂1ϑ(wj)
∂2ϑ(wi) ∂2ϑ(wj)

)
,

we obtain

∂η(x1) = G1 ϑ(w1 − w3 − w4), χa(x1) = −∂aϑ(w2) ϑ(w1 − w3 − w4),
∂η(x2) = G2 ϑ(w2 − w3 − w4), χa(x2) = −∂aϑ(w1) ϑ(w2 − w3 − w4),
∂η(x3) = G3 ϑ(w3 − w1 − w2), χa(x3) = −∂aϑ(w4) ϑ(w3 − w1 − w2),
∂η(x4) = G4 ϑ(w4 − w1 − w2), χa(x4) = −∂aϑ(w3) ϑ(w4 − w1 − w2),

η′
a(x1) = ∂aϑ(w1) ϑ(w2 +w3 +w4), η′′

a (x1) = ∂aϑ(w2) ϑ(w1 − w3 − w4),
η′
a(x2) = ∂aϑ(w2) ϑ(w1 +w3 +w4), η′′

a (x2) = ∂aϑ(w1) ϑ(w2 − w3 − w4),
η′
a(x3) = ∂aϑ(w3) ϑ(w1 +w2 +w4), η′′

a (x3) = −∂aϑ(w4) ϑ(w3 − w1 − w2),
η′
a(x4) = ∂aϑ(w4) ϑ(w1 +w2 +w3), η′′

a (x4) = −∂aϑ(w3) ϑ(w4 − w1 − w2).

Given these values, it is easy to find the explicit form of the matrix (Db
a) appearing in

the relation between the derivatives of∂aθ atu1 andu2 by specifying Eq. (5.7) to two
of the pointsxi. One form of these relations is

∂2ϑ(w3)∂1θ(u2) − ∂1ϑ(w3)∂2θ(u2)

= −ϑ(w3−w1−w2)
ϑ(w1+w2+w4)

(∂2ϑ(w4)∂1θ(u1) − ∂1ϑ(w4)∂2θ(u1)),

∂2ϑ(w4)∂1θ(u2) − ∂1ϑ(w4)∂2θ(u2)

= −ϑ(w4−w1−w2)
ϑ(w1+w2+w3)

(∂2ϑ(w3)∂1θ(u1) − ∂1ϑ(w3)∂2θ(u1)).

Let us denotẽµ(xi) = µ(xi)/Gi. Equations (5.9) have the general solution

(µ̃(x1), . . . , µ̃(x4)) = g1(G34, 0, G23,−G24) + g2(0, G34, G13,−G14)

and Eqs. (5.6) fix the values ofg1 andg2 to

g1 = −∂2ϑ(w1)∂1θ(u2) − ∂1ϑ(w1)∂2θ(u2)
4πiG12G34

,

g2 =
∂2ϑ(w2)∂1θ(u2) − ∂1ϑ(w2)∂2θ(u2)

4πiG12G34
.

This leads to the following simple result:

µ(xi) = ± i

4π
(∂2ϑ(wi)∂1θ(u2) − ∂1ϑ(wi)∂2θ(u2)) (5.10)

or, in a more abstract notation from the introduction,

µ(xi) = ± i

4π
dθ(lu2)

with the plus sign fori = 1, 2 and the minus one fori = 3, 4.
Since the Hitchin Hamiltonian is quadratic inφ and its values onφu1 andφu2 are

given by Eq. (5.1), it follows that

H(θ, a1φu1 + a2φu2)

= a2
1H(θ, φu1) + a2

2H(θ, φu2) + 2a1a2(c1(ω1)2 + c2ω
1ω2 + c3(ω2)2).
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The mixed term may be found from the linear equations

i

4π
(∂2ϑ(wi)∂1θ(u1) − ∂1ϑ(wi)∂2θ(u1)) µ̃(xi)Gi

= c1∂2ϑ(wi)∂2ϑ(wi) − c2∂2ϑ(wi)∂1ϑ(wi) + c3∂1ϑ(wi)∂1ϑ(wi).

Their explicit solution leads to the expression

H(θ, a1φu1 + a2φu2) = − 1
16π2 (a1∂aθ(u1)ωa + a2∂aθ(u2)ωa)2

+ a1a2

4π2G13G23
(∂2ϑ(w3)∂1θ(u1) − ∂1ϑ(w3)∂2θ(u1)) (5.11)

· (∂2ϑ(w3)∂1θ(u2) − ∂1ϑ(w3)∂2θ(u2)) ∂aϑ(w1)∂bϑ(w2)ωaωb.

The second term on the right-hand side is a quadratic differential that vanishes atx1 and
x2 and is equal toa1a2

4π2 ∂aθ(u1)∂bθ(u2)ωaωb atx3 andx4 so that

H(θ, φ)(xi) = − 1
16π2 (a1∂aθ(u1)ωa(xi) ± a2∂aθ(u2)ωa(xi))

2, (5.12)

where sign plus should be taken forx1 andx2 and sign minus forx3 andx4. This is the
result (1.7) described in Introduction.

6. Self-Duality

We would like to compare the values of the Hitchin Hamiltonians on the dual pairs (θ, φ)
and (θ′, φ′), whereθ′ = ι(φ) andφ′ = ι−1(θ) with ι defined by Eq. (3.9). Recall that,
givenu1 s.t. θ(u1) = 0, we associated to the linear formφ a 1,0-formη by Eq. (4.9).
Viewed as a holomorphic section ofl2u1

K,

η(x) = 〈ϑ(
x

∫
x0

ω − u1 − · − 1) ϑ(
x

∫
x0

ω − u1 + · − 1) , φ〉.

Let us denote

u′
i =

xi∫
x0

ω − u1 − 1. (6.1)

The vanishing ofη(xi) implies then that the linear formφ annihilates the theta functions

u 7→ ϑ(u′
i − u)ϑ(u′

i + u) = ι(φu′
i
)(u) (6.2)

and also, if we rewriteη(xi) as ι(φ)(u′
i), that θ′(u′

i) = 0. Sinceφ = a1φu1 + a2φu2

andφu1 annihilates the theta functions (6.2) as well, it follows that they belong to5.
HenceC∗ι(φu′

i
) are the 4 points of intersection of the lineP5 with the Kummer quartic

K. Equivalently,C∗φu′
i

are the points of intersection ofP5′⊥ with K∗. In the generic

situation, any pair of theta functionsφu′
i

spans5′⊥ and sinceφ′ ∈ 5′⊥, we may write

φ′ = a′
1φv1 + a′

2φv2 (6.3)

or, equivalently,

θ = a′
1ι(φv1) + a′

2ι(φv2). (6.4)
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The involutionl 7→ l−1K of the JacobianJ1 lifts to C2 to the flip of sign ofu. By
restriction to the bundlesO(x), it induces the involutionx 7→ x′ of 6 which leaves 6
Weierstrass points invariant. The latter involution lifts to an involution (without fixed
points) of the covering spacẽ6 determined by the equation

x

∫
x0

ω − 1 = −
x′

∫
x0

ω + 1. (6.5)

Definitions (6.1) together with Eqs. (5.2) give the relations

u′
1 − u′

2 =
x1∫
x0

ω −
x2∫
x0

ω and u′
1 + u′

2 = −
x3∫
x0

ω −
x4∫
x0

ω + 21

holding inC2, with xi ∈ 6̃. They may be rewritten as

u′
1 − u′

2 =
x1∫
x0

ω +
x′

2∫
x0

ω − 21 and u′
1 + u′

2 =
x′

3∫
x0

ω +
x′

4∫
x0

ω − 21, (6.6)

which, upon the flip of the sign ofu′
2 leavingφu′

2
unchanged, provides the dual version of

relations (5.2) corresponding to pointsx1, x
′
2, x

′
3, x

′
4 ∈ 6̃. Applying the previous result

(5.12) and using the possibility to exchange a point with its image under the involution
of 6 in the argument of a quadratic differential, we infer that

H(θ′, φ′)(xi) = − 1
16π2 (a′

1∂aθ
′(u′

1)ωa(xi) ∓ a2∂aθ
′(u′

2)ωa(xi))
2. (6.7)

The sign minus should be taken forx1 andx2 and sign plus forx3 andx4. The exchange
of signs in comparison with Eq. (5.12) is due to the flipu′

2 7→ −u′
2.

In order to compare expressions (5.12) and (6.7) we shall calculate the coefficients
a1,2 anda′

1,2 of the linear combinations (5.3) and (6.3). Note that the definitionθ′ = ι(φ)
implies that

θ′(
x

∫
x0

ω − u1 − 1) = a2 ϑ(
x

∫
x0

ω − u1 − u2 − 1) ϑ(
x

∫
x0

ω − u1 + u2 − 1).

Taking the derivative overx atx1, we obtain

∂aθ
′(u′

1)ωa(x1) = −a2 ϑ(w1 − w3 − w4) ∂aϑ(w2)ωa(x1),

where we employed Eqs. (5.2) and the abbreviated notationswi = ∫xi
x0

−1. Hence

a2 = − ∂aθ′(u′
1)ωa(x1)

ϑ(w1−w3−w4) ∂aϑ(w2)ωa(x1)
. (6.8)

Similarly,

θ′(
x

∫
x0

ω − u2 − 1) = a1 ϑ(
x

∫
x0

ω − u1 − u2 − 1) ϑ(
x

∫
x0

ω + u1 − u2 − 1).

Taking the derivative atx = x1 and noting thatw1 − u2 = −u′
2, we infer that

a1 =
∂aθ′(u′

2)ωa(x1)

ϑ(w1+w3+w4) ∂aϑ(w2)ωa(x1)
. (6.9)
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To calculatea′
1,2, we note that Eq. (6.4) implies that

θ(
x

∫
x0

ω − v1 − 1) = a′
2 ϑ(

x

∫
x0

ω − u′
1 − u′

2 − 1)ϑ(
x

∫
x0

ω − u′
1 + u′

2 − 1).

Upon derivation atx = x1 and with the use of relations (6.6) and (6.5), this gives

a′
2 = − ∂aθ(u1)ωa(x1)

ϑ(w1+w3+w4) ∂aϑ(w2)ωa(x1)
. (6.10)

Finally, since

θ(
x

∫
x0

ω + v2 − 1) = a′
1 ϑ(

x

∫
x0

ω − u′
1 + u′

2 − 1)ϑ(
x

∫
x0

ω + u′
1 + u′

2 − 1),

andw1 + u′
2 = u2 we infer that

a′
1 = − ∂aθ(u2)ωa(x1)

ϑ(w1−w3−w4) ∂aϑ(w2)ωa(x1)
. (6.11)

Substitution of expressions (6.9),(6.8),(6.11) and (6.10) shows equality of the right-hand
sides of Eqs. (5.12) and (6.7) forxi = x1. Since there is a full symmetry between points
xi (hidden in our arbitrary choices of the order and the signs ofuj ’s andu′

j ’s), the
self-duality

H(θ, φ) = H(θ′, φ′) (6.12)

follows.

7. van Geemen–Previato’s Result and Beyond

The genus 2 curves are hyperelliptic. The mapH0(K) 3 ω 7→ ω(x) defines an element
of PH0(K)∗ and varyingx ∈ 6 one obtains a realization of6 as a ramified double cover
PH0(K)∗ ∼= P1. One may use the 1,0-formsωa ∈ H0(K) to define the homogeneous
coordinates onPH0(K)∗. Then

λ(x) = ω2(x)
ω1(x)

= −∂1ϑ(∫x
x0
ω−1)

∂2ϑ(∫x
x0
ω−1) (7.1)

becomes the inhomogeneous coordinate of the image inP1 of the pointx ∈ 6. If x′ is
the image ofx under the involutionO(x) 7→ O(−x)K = O(x′), i.e. if

x

∫
x0

ω +
x′

∫
x0

ω − 21 ∈ Z + τZ then λ(x) = λ(x′).

Hence the involutionx 7→ x′ permutes the sheets of the covering6 7→ P1 ramified over
the 6 Weierstrass pointsxs, s = 1, . . . , 6, fixed by the involution.O(xs) is an odd spin
structure. i.e.

xs∫
x0

ω − 1 = Es mod(Z2 + τZ2)

and
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λs ≡ λ(xs) = −∂1ϑ(Es)
∂2ϑ(Es)

, (7.2)

whereEs = 1
2 (es + τe′

s) with es, e′
s = (1, 0), (0, 1) or (1, 1) such thates · e′

s is odd. The
possibilities are:

e1 = (1, 0), e′
1 = (1, 0); e2 = (1, 1), e′

2 = (1, 0); e3 = (0, 1), e′
3 = (0, 1);

(7.3)
e4 = (1, 1), e′

4 = (0, 1); e5 = (0, 1), e′
5 = (1, 1); e6 = (1, 0), e′

6 = (1, 1),

and we shall number the Weierstrass points (in a marking-dependent way) in agreement
with this list.6 may be identified with the hyperelliptic curve given by the equation

ζ2 =
6∏
s=1

(λ− λs) (7.4)

with the involution mapping (λ, ζ) to (λ,−ζ). The expressions

ω1 = C
dλ

ζ
and ω2 = C

λdλ

ζ
, (7.5)

whereC is a constant, give the basis of holomorphic 1,0-forms of6 (the right-hand
sides vanish exactly where the left-hand sides do).

Let us recall the main result of [21] based on the analysis of the formula (5.1) for
the Hitchin Hamiltonians on the Kummer quarticK∗. It will be convenient to identify
the pairs (θ, φ) s.t.〈θ, φ〉 = 0 with pairs (q, p) ∈ C4 × C4 s.t.q · p = 0 by the relations

θ = q1θ2,(0,0) + q2θ2,(1,0) + q3θ2,(0,1) + q4θ2,(1,1),
φ = p1θ

∗
2,(0,0) + p2θ

∗
2,(1,0) + p3θ

∗
2,(0,1) + p4θ

∗
2,(1,1).

The symplectic form ofT ∗P3 is the standarddp∧dq and the isomorphismι interchangesp
andq. By examining the values of the quadratic differentials given byH at the Weierstrass
pointsxs, van Geemen and Previato showed that

Zs(q) = {p |q · p = 0, H(q, p)(xs) = 0}
is a union of a pair of bitangents toK∗. Then classical results giving the equations
for bitangents to the Kummer surface permitted the authors of [21] to write an almost
explicit formula forH(xs) in the form

H(q, p)(xs) = hs
∑
t 6=s

rst(q, p)
λs − λt

, (7.6)

whererst = rts are homogeneous polynomials,

r12(q, p) = (q1p1 + q2p2 − q3p3 − q4p4)2,
r13(q, p) = (q1p4 − q2p3 − q3p2 + q4p1)2,
r14(q, p) = −(q1p4 + q2p3 − q3p2 − q4p1)2,
r15(q, p) = −(q1p3 − q2p4 − q3p1 + q4p2)2,
r16(q, p) = (q1p3 + q2p4 + q3p1 + q4p2)2,
r23(q, p) = −(q1p4 − q2p3 + q3p2 − q4p1)2,
r24(q, p) = (q1p4 + q2p3 + q3p2 + q4p1)2,
r25(q, p) = (q1p3 − q2p4 + q3p1 − q4p2)2, (7.7)
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r26(q, p) = −(q1p3 + q2p4 − q3p1 − q4p2)2,
r34(q, p) = (q1p1 − q2p2 + q3p3 − q4p4)2,
r35(q, p) = (q1p2 + q2p1 + q3p4 + q4p3)2,
r36(q, p) = −(q1p2 − q2p1 − q3p4 + q4p3)2,
r45(q, p) = −(q1p2 − q2p1 + q3p4 − q4p3)2,
r46(q, p) = (q1p2 + q2p1 − q3p4 − q4p3)2,
r56(q, p) = (q1p1 − q2p2 − q3p3 + q4p4)2,

andhs ∈ K2
xs

could still depend onq. In the original language of pairs (θ, φ), and of
the (Z/2Z)4-action (3.12) onH0(L2

2) one has

rst(θ, φ) = 〈Ues,e′
s
Uet,e′

t
θ, φ〉〈Uet,e′

t
Ues,e′

s
θ, φ〉

with es, e′
s from the list (7.3). The polynomialsrst are self-dual:

rst(q, p) = rst(p, q) (7.8)

and the self-duality ofH proven in the present paper forces coefficientshs in Eq. (7.6)
to beq-independent filling partially the gap left in [21]. An easy but important identity
is ∑

t 6=s
rst(q, p) = (q · p)2 = 0 (7.9)

for any fixeds. It implies that the Hamiltonians (7.6) are preserved up to normalization
by the isomorphisms of the hyperelliptic surfaces induced by the fractional actionλ 7→
λ′ = aλ+b

cλ+d of SL(2,C) onP1.
We would still like to fix the values of the constantshs in Eqs. (7.6). We claim that

they are such that the Hitchin map is given by Eq. (1.5), i.e. that

H(q, p) = − 1
128π2

∑
s,t=1,...,6,

s6=t

rst(q, p)
(λ− λs)(λ− λt)

(dλ)2. (7.10)

First note that the above formula is consistent with theSL(2,C) transformations. Indeed,
relations (7.9) imply that∑

s6=t

rst
(λ′ − λ′

s)(λ′ − λ′
t)

(dλ′)2 =
∑
s6=t

rst
(λ− λs)(λ− λt)

(dλ)2

for λ′ = aλ+b
cλ+d . Taking, in particular,λ′ = λ−1 one verifies that the quadratic differentials

(7.10) are regular at infinity. They are also regular at the branching points sincedλ√
λ−λs

is a local holomorphic differential aroundxs. Hence the r.h.s. of Eq. (7.10) is indeed
a (holomorphic) quadratic differential. Thus Eq. (7.10) is equivalent to relations (7.6)

with hs = (dλ)2

(λ−λs) |xs
, modulo an overall normalization. To prove Eq. (7.10) we shall

verify it at a point of the phase space for whichH(q, p)(xs) 6= 0 for s 6= 1. This will fix
hs for s 6= 1 and hence all of them (two quadratic differentials equal at pointsxs with
s 6= 1 have to coincide).
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Consider a pair (θ, φu1) lying in the productK × K∗ of the Kummer quartics with

θ(u) = e
1
2πie

′
1·τe′

1+2πie′
1·u1 ϑ(u1 +E1 − u) ϑ(u1 +E1 + u)

=
∑
e

(Ue1,e′
1
θ2,e)(u1) θ2,e(u) (7.11)

for e1 = e′
1 = (1, 0). Note that〈θ, φu1〉 = 0. Equation (5.1) together with the relations

(7.5) and the equation

∂aθ(u1) = −e
1
2πie

′
1·τe′

1+2πie′
1·u1 ∂aϑ(E1) ϑ(2u1 +E1)

results in the identity

H(θ, φu1) = − C2

16π2 eπie
′
1·τe′

1+4πie′
1·u1 (∂2ϑ(E1))2ϑ(2u1 +E1)2 (λ− λ1)2 (dλ)2

ζ2 , (7.12)

whereC is the constant appearing in Eq. (7.5). Note thatH(θ, φu1) 6= 0 as long as
ϑ(2u1 + E1) 6= 0. It follows thatH(θ, φu1) is a quadratic differential proportional to

(λ − λ1)2 (dλ)2

ζ2 which has the 4th order zero atx1. The latter property characterizes it
uniquely up to normalization.

It is not difficult to check that Eq. (7.10) gives a quadratic differential with the same
property. Indeed, in the language ofq’s andp’s, the linear formφu1 corresponds to a
vectorp ∈ C4 andθ to q = (p2,−p1, p4,−p3). A straightforward verification shows that
r1t(q, p) = 0 for all t 6= 1. This implies that the quadratic differential given by Eq. (7.10)
vanishes to the second order atx1. The condition that it vanishes to the fourth order is∑

s6=t,
s,t 6=1

rst((p2,−p1, p4,−p3), p)
∏
v 6=1,s,t

(λ1 − λv) = 0.

A direct calculation shows that this is exactly Eq. (A3.2) of the Kummer quartic with
the coefficients (A3.4) so that it holds forp corresponding toφu1. This establishes
proportionality between the Hitchin map and the right-hand side of Eq. (7.10) with a
coefficient that may be still curve-dependent.

Fixing the overall normalization of the Hitchin map is more involved. We shall
calculate the value of the quadratic differential on the right-hand side of Eq. (7.12) at
λ = λ2 and compare it to the value given by Eq. (7.10). Since this is somewhat technical,
we defer the argument to Appendix 4.

The system with Hamiltonians (7.6) bears some similarity to the classic Neumann
systems4, also anchored in modular geometry [17, 2]. The Hamiltonians of a Neumann
system have the form

Hs =
∑

1≤t 6=s≤n

J2
st

λs − λt
, (7.13)

whereJst = qspt − qtps are the functions onT ∗Cn generating the infinitesimal action
of the complex groupSOn:

4 We thank M. Olshanetsky for attracting our attention to this fact.
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{Jst, Jtv} = −Jsv for s, t, v different,
(7.14)

{Jst, Jvw} = 0 for s, t, v, w different.

The fact that the Hamiltonians (7.6) (with constanths) Poisson commute reduces, as is
well known, to the identities

{rst + rsv, rtv} = 0 and cyclic permutations thereof,
(7.15)

{rst, rvw} = 0 for {s, t} ∩ {v, w} = ∅.

If we setrst = J2
st for the Neumann system, then Eqs. (7.15) follow from the relations

(7.14). It appears that the same algebra stands behind the fact5 thatrst given by Eq. (7.7)
verify (7.15). The phase spaceT ∗Nss

∼= {(q, p)|q·p = 0}/C∗, whereC∗ acts by (q, p) 7→
(tq, t−1p), may be identified with the coadjoint orbit of the groupSL4 composed of
the traceless complex 4×4 matrices|p〉〈q| of rank 1. Using the isomorphism of the
complex Lie algebrassl4 ∼= so6, we obtain the functionsJst = −Jts on thisSL4-
orbit which generate the action ofso6 and have the Poisson brackets given by (7.14). A
straightforward check shows that, forrst of Eq. (7.7),

rst = −4J2
st (7.16)

so that Eq. (7.15) follows from theso6-algebra (7.14).
Upon the introduction of the rational functionsrst

λ , Eqs. (7.15) take the form

{ rst

λs−λt
,

rsv

λs−λv
} + { rst

λs−λt
,

rtv

λt−λv
} + { rsv

λs−λv
,

rtv

λt−λv
} = 0,

(7.17)
{ rst

λs−λt
,

rvw

λv−λw
} = 0 for {s, t} ∩ {v, w} = ∅.

The first of these identities is, essentially, the classical Yang-Baxter equation. Note,
however, thatrst, unlike in the Gaudin and Neumann systems, is not an element of a
product of two copies of a Poisson algebra of functions: there is no sign of an explicit
product structure, or of a reduction thereof, in our phase space. The important question
is whetherrst come from a rational solution of the CYBE. The conformal field theory
work [14, 23] suggests that the answer may be positive, at least in some sense.

The knowledge of the explicit form of the quadratic differentialsH(q, p) allows to
write the explicit equations for the genus 5 spectral curve of theSL2 Hitchin system at
genus 2, see Eq. (2.1). They take the form

ζ2 =
6∏
s=1

(λ− λs), ξ2 =
∑
s6=t

rst(q, p)
∏
v 6=s,t

(λ− λv). (7.18)

The involution of the spectral curve flips the sign ofξ. To extract explicit formulae for
the angle variables describing the point on the Prym variety of the spectral curve, we
would need, however, a more explicit knowledge of the entire Lax matrix9.

5 This is the classical version of the observation of [22].
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8. Conclusions

The main result of the present paper is the proof of self-duality of the Hitchin Hamil-
tonians on the cotangent bundle to the moduli space of the holomorphicSL2 bundles
on a genus 2 complex curve. The result was based on an expression for the Hitchin
Hamiltonians off the Kummer quartic on which the values of the Hamiltonians were
determined in [21]. Using the self-duality, we were able to complete the analysis of
[21] and to obtain the explicit formula (1.5) for the Hitchin map (1.3) giving the action
variables of the integrable system. The explicit formula for the angle variables remains
still to be found. An interesting open problem is an extension of the present work to the
case with insertion points.

Another important problem related to Hitchin’s construction is the quantization of
the corresponding integrable systems. For theSL2 case such a quantization is essen-
tially provided by the Knizhnik–Zamolodchikov–Bernard–Hitchin connection [15, 4, 5]
which describes the variation of conformal blocks of theSU2 WZW conformal field
theory under the change of the complex structure of the curve. The (partition function)
conformal blocks are holomorphic sections of thekth-power of the determinant line
bundle over the moduli spaceNss (k is the level of the WZW theory). In our case, they
are simplykth-order homogeneous polynomials onH0(L2

θ). It is easy to quantize the
Hitchin Hamiltonians

Hs =
∑
t 6=s

rst
λs − λt

.

If one keeps the original formulae (7.7) forrst in which pi stands now for1i∂qi
, the

relations (7.15) or (7.17) still hold after the replacement of the Poisson brackets by the
commutators. One obtains this way the commuting operatorsHs mapping the space of
homogeneous, degreek polynomials in variablesq into itself. Note, however, that now

∑
t 6=s

rst = −k(k + 4)

for each fixeds so that the quantization changes the conformal properties of the Hamil-
tonians. A direct construction of the projective version of the KZBH connection for
groupSU2 and genus 2 has been recently given in ref. [22] by following Hitchin’s ap-
proach [12]. It is consistent with the abovead hocquantization of the classical Hitchin
Hamiltonians.

The integral formulae for the conformal blocks [3, 20, 8] or, equivalently, the integral
formulae for the scalar product of the conformal blocks [9] have been used at genus 0 and
1 to extract the Bethe Ansatz eigen-vectors and eigen-values of the quantized version
of the quadratic Hitchin Hamiltonians. The Bethe-Ansatz type diagonalization of the
quantization of the genus 2 Hitchin Hamiltonians is among the issues that will have to
be examined.

Finally, as we stressed in the text, the relations between the conformal WZW field
theory on a genus 2 surface and an orbifold theory in genus 0 requires further study.
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Appendix 1
Let us check thatθ given by Eq. (3.6) vanishes if and only if

H0(lu ⊗ E) = {(s1, s2) | s2 ∈ H0(lulu1), ∂̄
l
−1
u lu1

s1 + s2b = 0} 6= 0.

Foru−u1 ∈ Z2+τZ2 the 1st theta function on the r.h.s. of Eq. (3.7) vanishes butlu = lu1

andlu1 ∈ CE . Assume now thatu− u1 6∈ Z2 + τZ2. Thendim H0(l−1
u lu1K) = 1 with

a non-zeroχ ∈ H0(l−1
u lu1K). The necessary and sufficient condition for the solvability

of the equation̄∂
lul

−1
u1

s1 + s2b = 0 for a givens2 ∈ H0(lulu1) is∫
6

χs2b = 0. (A1.1)

If u + u1 ∈ Z2 + τZ2 thenlulu1 = K anddimH0(lulu1) = 2 so that there always is a
non-zero solution but alsoθ(u) = 0 in this case due to the vanishing of the 2nd theta
function on the r.h.s. of Eq. (3.7). Finally, ifu±u1 6∈ Z2 + τZ2 thens2 ∈ H0(lulu1) has
to be proportional to the element defined by (3.8) and the condition (A1.1) coincides
with the equationθ(u) = 0.

Appendix 2
Let us show that the 1,0-formµ satisfying relations (4.18) and (4.19) automatically
fulfills the condition ∫

6

κµ ∧ b = 0. (A2.1)

Among the infinitesimal gauge field variationsδB given by Eq. (4.4) there are ones
which are equivalent to infinitesimal gauge transformations:

δB = ∂̄3 + [B,3].

Explicitly, for 3 = ( −σ ϕ
κ σ ) with σ a function,ϕ a section ofl−2

u1
andκ a section ofl2u1

,

this requires that

∂̄κ = 0, πδu1(Imτ )−1ω̄ = −∂̄σ + κb, δb = ∂̄ϕ + 2σb. (A2.2)

Such variations may only change the normalization of the theta functionθ. Integrating
the second of the above relations against formsωa and using Eq. (4.12) we find that

δua1 = − 1
2πi
εab∂bθ(u1) (A2.3)

for the proper normalization ofκ. For suchδu1 the first term on the right-hand side of
Eq. (4.6) gives a theta function vanishing atu = u1 and may be compensated by the
second term. The 3rd equation of (A2.2) gives the compensatingδb ∈ ∧01(l−2

u1
). Pairing

Eq. (4.6) with the aboveδu1 andδb with the linear formφ, we obtain the identity

1
i
εab∂bθ(u1)(Imτ )−1

ac

∫
6

χc ∧ b + 2
∫

6

ση ∧ b = 0 . (A2.4)
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On the other hand,∫
6

κµ ∧ b =
∫

6

µ ∧ ∂̄σ − 1
2i
εab∂bθ(u1)(Im)−1

ac

∫
6

µ ∧ ω̄c

= −
∫

6

ση ∧ b− 1
2i
εab∂bθ(u1)(Im)−1

ac

∫
6

χc ∧ b = 0,

where we have subsequently used the 2nd equation in (A2.2) withδu1 given by Eq. (A2.3),
the relation∂̄µ = −η ∧ b and Eq. (4.18) fixingµ and, finally, the identity (A2.4).

Appendix 3
It is not difficult to see that there exist a non-zero elementP ∈ S4H0(L2

2), a homoge-
neous polynomial of degree 4 onH0(L2

2)∗, s.t.

P (φu′ ) = 0

for all u′ ∈ C2. Indeed,dimS4H0(L2
2) = (7

3) = 35 but the mapu′ 7→ P (φu′ ) defines
an even theta function of order 8 anddimH0

even(L
8
2) = 34.P is a quartic expression in

θ2,e(u′) which vanishes for allu′. It has to be preserved by the (Z/2Z)4-action (3.12)
and hence it must be of the form

P = c1(θ4
2,(0,0) + θ4

2,(1,0) + θ4
2,(0,1) + θ4

2,(1,1))

+ c2(θ2
2,(0,0)θ

2
2,(1,0) + θ2

2,(0,1)θ
2
2,(1,1))

+ c3(θ2
2,(0,0)θ

2
2,(0,1) + θ2

2,(1,0)θ
2
2,(1,1))

+ c4(θ2
2,(0,0)θ

2
2,(1,1) + θ2

2,(1,0)θ
2
2,(0,1))

+ c5θ2,(0,0)θ2,(1,0)θ2,(0,1)θ2,(1,1).

It is not difficult to calculate the values of coefficientsci. Denotingα ≡ θ2,(0,0)(0),
β ≡ θ2,(1,0)(0), γ ≡ θ2,(0,1)(0) andδ ≡ θ2,(1,1)(0), one has

c1 = (α2β2 − γ2δ2)(α2γ2 − β2δ2)(α2δ2 − β2γ2),

c2 =−(α4 + β4 − γ4 − δ4)(α2γ2 − β2δ2)(α2δ2 − β2γ2),
(A3.1)

c3 =−(α4 − β4 + γ4 − δ4)(α2β2 − γ2δ2)(α2δ2 − β2γ2),

c4 =−(α4 − β4 − γ4 + δ4)(α2β2 − γ2δ2)(α2γ2 − β2δ2),

c5 = 2αβγδ[(α4 − β4 + γ4 − δ4)2 − 4(α2γ2 − β2δ2)2].

If we use the basis dual to (θ2,e) to identify φ ∈ H0(L2
2)∗ with a vector p =

(p1, p2, p3, p4) ∈ C4, the equation of the Kummer quarticK∗ becomes

c1(p4
1 + p4

2 + p4
3 + p4

4) + c2(p2
1p

2
2 + p2

3p
2
4) + c3(p2

1p
2
3 + p2

2p
2
4)

(A3.2)
+c4(p2

1p
2
4 + p2

2p
2
3) + c5p1p2p3p4 = 0.
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Similarly, identifyingθ ∈ H0(L2
2) with q = (q1, q2, q3, q4) ∈ C4 with the help of the

basis (θ2,e), the same equation withp replaced byq defines the Kummer quarticK,
compare [13], p. 81.

We shall also need another well known presentation of the above equation using the
inhomogeneous coordinates of the Weierstrass pointsλs given by Eq. (7.2). It is usually
obtained by beautiful geometric considerations about quadratic line complexes, see [10].
It may be also obtained analytically by observing that the multivalued functions

x 7→ θ2,e(
x

∫
x0

ω − 1)

transform like bilinears in∂aϑ(∫xx0
ω−1), i.e., that they represent quadratic differentials.

It follows that∑
e

θ2,e(Es) θ2,e(
x

∫
x0

ω − 1) = ϑ(Es +
x

∫
x0

ω − 1) ϑ(Es −
x

∫
x0

ω + 1)

= Ds

(
∂1ϑ(E′

s)∂2ϑ(
x

∫
x0

ω − 1) − ∂2ϑ(E′
s)∂1ϑ(

x

∫
x0

ω − 1)

)
(A3.3)

·
(
∂1ϑ(E′′

s )∂2ϑ(
x

∫
x0

ω − 1) − ∂2ϑ(E′′
s )∂1ϑ(

x

∫
x0

ω − 1)

)
,

whereEs = 1
2 (es + τe′

s) is an odd characteristics from the list (7.3) andE′
s, E

′′
s are the

two other ones s.t.Es + E′
s = E′′

smod(Z2 + τZ2). The odd characteristicsEs, E′
s, E

′′
s

are either a permutation ofE1, E4, E5 or a permutation ofE2, E3, E6. The relations
(A3.3) hold since both sides represent a quadratic differential with double zeros at the
Weierstrass points corresponding toE′

s andE′′
s . One may obtain expressions for the

coefficientsDs by the de l’Hospital rule applied twice at those points. Specifying then
∫xx0

ω−1 toEs or to 3 remaining odd characteristics one obtains relations for quadratic
combinations ofθ2,e(0) of the form±α2 ± β2 ± γ2 ± δ2 with 2 plus and 2 minus signs
as well as forαβ ± γδ, αγ ± βδ andαδ± βγ. These relations may be used to compute
the ratios of the coefficientsci (A3.1) which become functions ofλs only. One obtains
this way an alternative expression for the coefficientsci

c1 = (λ1 − λ2)(λ3 − λ4)(λ5 − λ6),

c2 = 2(λ1 − λ2)((λ3 − λ5)(λ4 − λ6) + (λ3 − λ6)(λ4 − λ5)),

c3 =−2(λ3 − λ4)((λ1 − λ5)(λ2 − λ6) + (λ1 − λ6)(λ2 − λ5)), (A3.4)

c4 = 2(λ5 − λ6)((λ1 − λ3)(λ2 − λ4) + (λ1 − λ4)(λ2 − λ3)),

c5 =−2(λ1 − λ3)((λ4 − λ5)(λ2 − λ6) + (λ4 − λ6)(λ2 − λ5))
−2(λ1 − λ4)((λ3 − λ5)(λ2 − λ6) + (λ3 − λ6)(λ2 − λ5))
−2(λ1 − λ5)((λ2 − λ4)(λ3 − λ6) + (λ2 − λ3)(λ4 − λ6))
−2(λ1 − λ6)((λ2 − λ4)(λ3 − λ5) + (λ2 − λ3)(λ4 − λ5))

equivalent to the previous one up to normalization. Note that theSL(2,C) transforma-
tionsλs 7→ aλs+b

cλs+d preserve the form of the quartic equation. The virtue of the analytic
approach is that it also provides useful expressions for the non-homogeneous ratios like
e.g.
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αβ + γδ
α2γ2 − β2δ2

= − e− 1
2πi(1,0)·τ (1,0)

2C2 (∂2ϑ(E1))2

(λ2 − λ5)(λ2 − λ6)(λ3 − λ4)
λ1 − λ2

. (A3.5)

C2 is given by the equations

C2 = 1
2

(∂1ϑ)3∂3
2ϑ−3(∂1ϑ)2∂2ϑ∂1∂2

2ϑ+3∂1ϑ(∂2ϑ)2∂2
1∂2ϑ−(∂2ϑ)3∂3

1ϑ

(∂2ϑ)4

∣∣∣∣
Es

∏
t 6=s

(λs − λt)

holding for any fixeds. It is not difficult to see by differentiating twice Eq. (7.1) at
x = xs thatC is the same constant that appears in Eq. (7.5). The expression (A3.5) is
used below to fix the normalization of the Hitchin map.

Appendix 4
We shall show here that the overall normalization of the Hitchin map is as in Eq. (7.10).
Since

eπie
′
1·τe′

1+4πie′
1·u1 ϑ(2u1 +E1)2

= −eπie
′
1·τe′

1 ϑ(2u1 +E1) ϑ(2u1 − E1) = −eπie
′
1·τe′

1

∑
e

θ2,e(E1) θ2,e(2u1)

= −e
1
2πi(1,0)·τ (1,0)

∑
e

(−1)(1,0)·e θ2,e+(1,0)(0) θ2,e(2u1),

the coefficient of(dλ)2

ζ2 on the right-hand side of Eq. (7.12) takes atλ = λ2 the value

C2

16π2 e
1
2πi(1,0)·τ (1,0) (∂2ϑ(E1))2 (λ1 − λ2)2 (βθ2,(0,0)(2u1) − αθ2,(1,0)(2u1)

+δθ2,(0,1)(2u1) − γθ2,(1,1)(2u1)) (A4.1)

in the notations of Appendix 3. This coefficient should coincide with the one obtained
from the right-hand side of Eq. (7.10) which is equal to

− 1
64π2

∑
t 6=2

r2t(q, p)
∏
v 6=2,t

(λ2 − λv) (A4.2)

calculated at (q, p) corresponding to (θ, φu1) with θ given by Eq. (7.11). The respective
values ofrst are:

r1t = 0,

r23 = 2(−αγ2θ2,(0,0)(2u1) − βδ2θ2,(1,0)(2u1) − γα2θ2,(0,1)(2u1)
−δβ2θ2,(1,1)(2u1) − βγδθ2,(0,0)(2u1) − αγδθ2,(1,0)(2u1)
−αβδθ2,(0,1)(2u1) − αβγθ2,(1,1)(2u1)),

r24 = 2(αγ2θ2,(0,0)(2u1) + βδ2θ2,(1,0)(2u1) + γα2θ2,(0,1)(2u1)
+δβ2θ2,(1,1)(2u1) − βγδθ2,(0,0)(2u1) − αγδθ2,(1,0)(2u1)
−αβδθ2,(0,1)(2u1) − αβγθ2,(1,1)(2u1)), (A4.3)
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r25 = 2(αδ2θ2,(0,0)(2u1) + βγ2θ2,(1,0)(2u1) + γβ2θ2,(0,1)(2u1)
+δα2θ2,(1,1)(2u1) + βγδθ2,(0,0)(2u1) + αγδθ2,(1,0)(2u1)
+αβδθ2,(0,1)(2u1) + αβγθ2,(1,1)(2u1)),

r26 = 2(−αδ2θ2,(0,0)(2u1) − βγ2θ2,(1,0)(2u1) − γβ2θ2,(0,1)(2u1)
−δα2θ2,(1,1)(2u1) + βγδθ2,(0,0)(2u1) + αγδθ2,(1,0)(2u1)
+αβδθ2,(0,1)(2u1) + αβγθ2,(1,1)(2u1)).

Multiplying the coefficients at subsequentθ2,e(2u1) in expression (A4.1) byα,−β, γ
and−δ, respectively, and summing them up we obtain

C2

8π2 e
1
2πi(1,0)·τ (1,0) (∂2ϑ(E1))2 (λ1 − λ2)2 (αβ + γδ).

A similar operation on expression (A4.2) gives

− 1
16π2 (λ1 − λ2)(λ2 − λ5)(λ2 − λ6)(λ3 − λ4)(α2γ2 − β2δ2).

The equality of the two expressions follows from Eq. (A3.5). This verifies the correctness
of the overall normalization of the Hitchin map in Eq. (7.10).
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