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Abstract: The quantum dynamical Yang–Baxter (QDYB) equation is a useful general-
ization of the quantum Yang–Baxter (QYB) equation. This generalization was introduced
by Gervais, Neveu, and Felder. Unlike the QYB equation, the QDYB equation is not
an algebraic but a difference equation, with respect to a matrix function rather than a
matrix. The QDYB equation and its quasiclassical analogue (the classical dynamical
Yang–Baxter equation) arise in several areas of mathematics and mathematical physics
(conformal field theory, integrable systems, representation theory). The most interesting
solution of the QDYB equation is the elliptic solution, discovered by Felder.

In this paper, we prove the first classification results for solutions of the QDYB equa-
tion. These results are parallel to the classification of solutions of the classical dynamical
Yang–Baxter equation, obtained in our previous paper. All solutions we found can be
obtained from Felder’s elliptic solution by a limiting process and gauge transformations.

Fifteen years ago the quantum Yang–Baxter equation gave rise to the theory of
quantum groups. Namely, it turned out that the language of quantum groups (Hopf
algebras) is the adequate algebraic language to talk about solutions of the quantum
Yang–Baxter equation.

In this paper we propose a similar language, originating from Felder’s ideas, which
we found to be adequate for the dynamical Yang–Baxter equation. This is the language
of dynamical quantum groups (orh-Hopf algebroids), which is the quantum counterpart
of the language of dynamical Poisson groupoids, introduced in our previous paper.

Introduction

This paper is devoted to the quantum dynamical Yang–Baxter equation, its solutions, and
the related algebraic structures (quantum groupoids, Hopf algebroids); abusing language,
we will call these structures by the collective name“dynamical quantum groups” .

? The authors were supported in part by an NSF postdoctoral fellowship and NSF grant DMS-9501290.
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Let h be a finite dimensional commutative Lie algebra overC, V a semisimple finite
dimensionalh-module, andγ a complex number. The quantum dynamical Yang–Baxter
(QDYB) equation is the equation

R12(λ− γh(3))R13(λ)R23(λ− γh(1))

= R23(λ)R13(λ− γh(2))R12(λ)
(1)

with respect to a meromorphic functionR : h∗ → End(V ⊗ V ), where by definition
R12(λ − γh(3))(v1 ⊗ v2 ⊗ v3) := (R12(λ − γµ)(v1 ⊗ v2)) ⊗ v3 if v3 has weightµ, and
R13(λ− γh(2)), R23(λ− γh(1)) are defined analogously.

It is also useful to consider the quantum dynamical Yang–Baxter equation with
spectral parameter, with respect to a meromorphic functionR : C×h∗ → End(V ⊗V ).
By definition, the QDYB equation with spectral parameter is just Eq. (1), withRij(∗)
replaced byRij(zi − zj , ∗), wherez1, z2, z3 ∈ C.

Solutions of the QDYB equation which are invariant underh are called quantum
dynamical R-matrices.

A brief history of the QDYB equation is as follows. The QDYB equation was pro-
posed by Felder [F2] as a quantization of the classical dynamical Yang–Baxter equation
[F1], but it also appeared earlier in physical literature [GN]. Examples of dynamical R-
matrices appeared in [Fad1, AF]). As Felder showed [F2], the QDYB equation is equiv-
alent to the star-triangle relation in statistical mechanics. The most interesting known
solution of the QDYB equation with spectral parameter is the elliptic solution given in
[F1, F2]. As was shown in [TV], this solution arises when one studies monodromies of
the quantum KZ equation introduced in [FR], see also [FTV1-2]. The algebraic structure
corresponding to this solution was described in [F1,F2, FV1-3] and called “the elliptic
quantum group”. Although the elliptic quantum group is not a Hopf algebra, it is very
similar to a Hopf algebra in many respects. For example, its category of representations,
with a suitable definition of the tensor product, is a tensor category, which was studied
in [FV1, FV2].

This paper has two goals.

1. To classify quantum dynamical R-matrices in the case whenh ⊂ End(V ) is the
algebra of all diagonal operators in some basis.

2. To describe the axiomatics of the algebraic structure corresponding to a quantum
dynamical R-matrix.

The first goal is partially attained in Chapters 1 and 2.
In Chapter 1, we study dynamical R-matrices without spectral parameter. We define

the notion of a dynamical R-matrix of Hecke type which is a dynamical R-matrix sat-
isfying a generalized unitarity condition. Then we define gauge transformations, which
map the set of such dynamical R-matrices to itself. After this, we classify dynamical R-
matrices of Hecke type, withh as above. The answer turns out to be completely parallel
to the classical case ([EV], Chapter 3). In particular, any classical dynamical r-matrix
from [EV] without spectral parameter (for the Lie algebraglN ) can be quantized.

In Chapter 2, we study dynamical R-matrices with spectral parameter, satisfying the
unitarity condition. As in Chapter 1, we define gauge transformations, which map the
set of such dynamical R-matrices to itself. After this, we list all known examples, and
give a partial classification result (for R-matrices given by a power series inγ, which
are quantizations of elliptic r-matrices from [EV], Chapter 4). As before, the results are
parallel to the classical case. In particular, any classical dynamical r-matrix from [EV]
with spectral parameter (for the Lie algebraglN ) can be quantized.
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Remark.We were not able to obtain a nice classification result for dynamical R-matrices
with spectral parameter and numericalγ, since we do not understand what is the correct
analogue of the residue condition in [EV]. However, we expect that such a result can be
obtained along the same lines as in Chapter 4 of [EV], and Chapter 1 of this paper.

The second goal is attained in Chapters 3–6.
In Chapter 3, we explain the connection between dynamical R-matrices and monoidal

categories. We introduce the tensor category ofh-vector spaces, and show that a tensor
functor from a braided monoidal category to the category ofh-vector spaces gives a
dynamical R-matrix, in the same way as a tensor functor from a braided monoidal
category to the category of vector spaces gives a usual R-matrix. We also attach to
every dynamical R-matrix a tensor category of its representations, following the ideas
of [F1, F2, FV1, FV2]. This category is nontrivial (for example, it contains the basic
representation), has natural notions of the left and right dual objects, and is equipped
with a canonical tensor functor toh-vector spaces.

In Chapter 4 we introduce the notions of anh-algebra,h-bialgebroid, andh-Hopf
algebroid, which are generalizations of the notions of an algebra, bialgebra, and Hopf
algebra. We define the notion of a dynamical representation of anh-algebra, and show
that the category of dynamical representations Rep(A) of anh-bialgebroidA is a tensor
category with a natural tensor functor toh-vector spaces. IfA is anh-Hopf algebroid,
this category in addition has natural notions of the left and right dual representation.

Using a generalization of the Faddeev–Reshetikhin–Sklyanin–Takhtajan formalism
[FRT, FT] which assigns a Hopf algebra to any R-matrix, we assign anh-bialgebroid
AR to any dynamical R-matrixR. If R has an additional rigidity property, thenAR is an
h-Hopf algebroid. We call the bialgebroidAR the dynamical quantum group associated
to R. We show that the category of representations ofR is equivalent to the category
Rep(AR) as a tensor category with duality and with a functor toh-vector spaces.

In Chapter 5, we define quantum counterparts of the quasiclassical objects defined
in [EV] (in the setting of perturbation theory). More specifically, we define the no-
tions of a biequivariant algebra (biequivariant quantum space), a biequivariant Hopf
algebroid (biequivariant quantum groupoid), a dynamical Hopf algebroid (dynamical
quantum groupoid), which are the quantum analogues of the notions of a biequivari-
ant Poisson algebra (biequivariant Poisson manifold), a biequivariant Poisson–Hopf
algebroid (biequivariant Poisson groupoid), a dynamical Poisson–Hopf algebroid (dy-
namical Poisson groupoid), introduced in [EV]. We introduce the notion of quantization
for biequivariant and dynamical objects, and conjecture that any dynamical Poisson
groupoid can be quantized.

This material is a generalization of the material of Chapter 4, because, as we explain
in Sect. 5.5, the notion of anh-algebra (h-bialgebroid,h-Hopf algebroid) is essentially
a special case of the notion of a biequivariant algebra (bialgebroid, Hopf algebroid).

Remark.The general notion of a Hopf algebroid was introduced by J. H. Lu [Lu]. It is
easy to check that biequivariant and dynamical Hopf algebroids as defined in Chapter 5
of our paper are Hopf algebroids in the sense of Lu. However, the notion considered in
[Lu] is more general than the one considered in this paper.

In Chapter 6, we studyh-bialgebroids associated to dynamical R-matrices of strong
Hecke type. Using the semisimplicity of the Hecke algebra for a generic value of the
parameter, we prove a Poincare–Birkhoff–Witt theorem for such bialgebroids. This result
explains the meaning of the Hecke type condition, which was artificially introduced in
Chapter 1. Using the same method, we show that theh-Hopf algebroid associated to a
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dynamical R-matrix of Hecke type of the formR = 1 − γr + ... is a flat deformation
(quantization) of the Poisson–Hopf algebroid corresponding tor.

In the next papers, we plan to develop the theory of dynamical quantum groups. We
plan to describe the infinite-dimensional dynamical quantum groups associated to dy-
namical R-matrices with spectral parameter, and dynamical quantum groups (both finite
and infinite dimensional) associated to Lie groups other thanGLN . We plan to develop
the representation theory of dynamical quantum groups, and explain its connection with
exchange (Zamolodchikov) algebras, Kazhdan–Lusztig functors, KZ and quantum KZ
equations.

1. Classification of Quantum Dynamical R-matrices without Spectral Parameter

1.1. Quantum dynamical R-matrix.Let h be an abelian finite dimensional Lie algebra.
A finite dimensional diagonalizableh-module is a complex finite dimensional vector
spaceV with a weight decompositionV = ⊕µ∈h∗V [µ], such thath acts onV [µ] by
xv = µ(x)v, wherex ∈ h, v ∈ V [µ].

Let Vi, i = 1, 2, 3, be finite dimensional diagonalizableh-modules,

RViVj : h∗ → End(Vi ⊗ Vj), 1 ≤ i < j ≤ 3,

meromorphic functions,γ a nonzero complex number. The equation in End(V1⊗V2⊗V3),

R12
V1V2

(λ− γh(3))R13
V1V3

(λ)R23
V2V3

(λ− γh(1))

= R23
V2V3

(λ)R13
V1V3

(λ− γh(2))R12
V1V2

(λ)
(1.1.1)

is calledthe quantum dynamical Yang–Baxter equation with stepγ (QDYB equation).
Here we use the following notation. IfX ∈ End(Vi), then we denote byX (i) ∈

End(V1 ⊗ · · · ⊗ Vn) the operator· · · ⊗ Id ⊗X ⊗ Id ⊗ · · · , acting non-trivially on the
ith factor of a tensor product of vector spaces, and ifX =

∑
Xk ⊗ Yk ∈ End(Vi ⊗ Vj),

then we setXij =
∑
X (i)
k Y

(j)
k . The shift ofλ by γh(i) is defined in the standard way.

For instance,R12
V1V2

(λ− γh(3)) acts on a tensorv1 ⊗ v2 ⊗ v3 asR12
V1V2

(λ− γµ3) ⊗ Id if
v3 has weightµ3.

A functionRViVj : h∗ → End(Vi ⊗ Vj) is calleda function of zero weightif

[RViVj (λ), h⊗ 1 + 1⊗ h] = 0 (1.1.2)

for all h ∈ h, λ ∈ h∗. A solution{RViVj}1≤i<j≤3 of the QDYB equation is called a
solution of zero weight if each of the functions is of zero weight.

If all the spacesVi are equal to a spaceV , then consider the QDYB equation on one
functionR : h∗ → End(V ⊗ V ),

R12(λ− γh(3))R13(λ)R23(λ− γh(1))

= R23(λ)R13(λ− γh(2))R12(λ).
(1.1.3)

An invertible functionR of zero weight satisfying the QDYB Eq. (1.1.3) is calleda
quantum dynamical R-matrix.

1.2. Quantization and quasiclassical limit.Let x1, ..., xN be a basis inh. The basis
defines a linear system of coordinates onh∗. For anyλ ∈ h∗, setλi = xi(λ), i = 1, ..., N .
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LetRγ : h∗ → End(V ⊗ V ) be a smooth family of solutions to the QDYB equation
with stepγ such that

Rγ(λ) = 1− γ r(λ) +O(γ2). (1.2.1)

Then the functionr : h∗ → End(V ⊗ V ) satisfies the classical dynamical Yang–Baxter
Eq. (CDYB),

N∑
i=1

x(1)
i

∂r23

∂xi
+

N∑
i=1

x(2)
i

∂r31

∂xi
+

N∑
i=1

x(3)
i

∂r12

∂xi
+

[r12, r13] + [r12, r23] + [r13, r23] = 0 .

(1.2.2)

A functionr of zero weight satisfying the CDYB equation is calleda classical dynamical
r-matrix. The functionr in (1.2.1) is calledthe quasiclassical limit ofR, and the function
R is calleda quantization ofr.

Let U ⊂ h∗ be an open set, and letR : U → End(V ⊗ V ) be a zero weight
meromorphic function onU . We will say thatR is a quantum dynamical R-matrix on
U if the QDYB equation is satisfied forR whenever it makes sense.

Remark.If U is a bounded set, this notion is only interesting for smallγ, so that the
QDYB equation makes sense on a nonempty open setU ′ ⊂ U .

A classical dynamical r-matrixr(λ) onU is calledquantizableif there exists a power
series inγ,

Rγ(λ) = 1− γ r(λ) +
∞∑
n=2

γnrn(λ), (1.2.3)

convergent for small|γ| for any fixedλ ∈ U and such thatRγ(λ) is a quantum dynamical
R-matrix onU with stepγ.

1.3. Quantum dynamical R-matrices of Hecke type.Let h be an abelian Lie algebra
of dimensionN . Let V be a diagonalizableh-module of the same dimensionN such
that its weightsω1, ..., ωN form a basis inh∗. Let x1, ..., xN be the dual basis ofh. Let
v1, ..., vN be an eigenbasis forh in V such thatxivj = δijvj . Then theh-moduleV ⊗V
has the weight decomposition,

V ⊗ V = ⊕N
a=1Vaa ⊕ ⊕a<bVab, (1.3.1)

whereVaa = C va ⊗ va andVab = C va ⊗ vb ⊕ C vb ⊗ va .
Introduce a basisEij in End(V ) byEijvk = δjkvi.
A quantum dynamical R-matrixR : h∗ → End(V ⊗ V ) for theseh andV will be

called an R-matrix ofglN type.
The zero weight condition implies that the R-matrix preserves the weight decompo-

sition (1.3.1) and has the form

R(λ) =
N∑

a,b=1

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eba ⊗ Eab, (1.3.2)

whereαab, βab : h∗ → C are suitable meromorphic functions.
Let P ∈ End(V ⊗ V ) be the permutation of factors. SetR∨ = PR.
Let p, q be nonzero complex numbers,p 6= −q. A functionR : h∗ → End(V ⊗ V )

will be calleda function of Hecke type with parametersp, q if
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(1.3.3) The function preserves the weight decomposition (1.3.1).
(1.3.4) For anya = 1, ..., N andλ ∈ h∗, we haveR∨(λ)va ⊗ va = p va ⊗ va.
(1.3.5) For anya 6= b andλ ∈ h∗, the operatorR∨(λ) restricted to the two dimensional

spaceVab has eigenvaluesp and−q.
A functionR : h∗ → End(V ⊗ V ) will be calleda function of weak Hecke type

with parametersp, q if it preserves the weight decomposition (1.3.1) and for anyλ ∈ h∗
satisfies the equation

(R∨(λ) − p) (R∨(λ) + q) = 0. (1.3.6)

A relation between Hecke types is given by the following simple observation. Let
Rt : h∗ → End(V ⊗ V ), t ∈ [0, 1], be a continuous family of meromorphic functions,
which is analytic whent ∈ (0, 1). Assume that for anyt the functionRt is of weak Hecke
type andRt=0 = Id. ThenRt is of Hecke type for anyt. In fact, the matrixR∨

t=0 = P
satisfies (1.3.4–5) and henceR∨

t satisfies (1.3.4–5) for anyt.
In the following sections we classify quantum dynamical R-matrices ofglN Hecke

type.

1.4. Gauge transformations and multiplicative closed 2-forms.In this subsection we
introduce gauge transformations of quantum dynamical R-matrices of Hecke type. We
shall use the notion of a multiplicative form.

A multiplicativek-formon a vector space with a linear coordinate systemλ1, ..., λN
is a collection,

ϕ = {ϕa1,...,ak (λ1, ..., λN )},
of meromorphic functions , wherea1, ..., ak run through all orderedk element subsets
of {1, ..., N}, such that for any subseta1, ..., ak and anyi, 1 ≤ i < k, we have

ϕa1,...,ai+1,ai,...,ak (λ1, ..., λN )ϕa1,...,ak (λ1, ..., λN ) = 1.

Let �k be the set of all multiplicativek-forms.
If ϕ andψ are multiplicativek-forms, then{ϕa1,...,ak (λ1, ..., λN ) · ψa1,...,ak (λ1, ...,

λN )} and {ϕa1,...,ak (λ1, ..., λN ) /ψa1,...,ak (λ1, ..., λN )} are multiplicativek-forms.
This gives an abelian group structure on�k. The zero element in�k is the form
{ϕa1,...,ak (λ1, ..., λN ) ≡ 1}.

Fix a nonzero complex numberγ. For anya = 1, ...., N , introduce an operatorδa
on the space of meromorphic functionsf (λ1, ..., λN ) by

δa : f (λ1, ..., λN ) 7→ f (λ1, ..., λN ) / f (λ1, ..., λa − γ, ..., λN )

and an operatordγ : �k → �k+1, ϕ 7→ dγϕ, by

(dγϕ)a1,...,ak+1(λ1, ..., λN ) =
k+1∏
i=1

(δaiϕa1,...,ai−1,ai+1,...,ak+1(λ1, ..., λN ))(−1)i+1

.

We haved2
γ = 0. A formϕ will be calledγ-closedif dγϕ = 0.

Let ϕ(γ) = {ϕa1,...,ak (λ1, ..., λN , γ)} be a smooth family of multiplicativek-forms
such that for alla1, ..., ak,

ϕa1,...,ak (λ, γ) = 1− γ Ca1,...,ak (λ) +O(γ2)



Quantum Dynamical Yang–Baxter Equation and Dynamical Quantum Groups 597

for suitable functionsCa1,...,ak (λ). Then the functions{Ca1,...,ak (λ)} are skew-symme-
tric with respect to permutation of the indices, so it is natural to consider a differential
formC =

∑
a1<...<ak

Ca1,...,ak (λ) dxa1 ∧ ... ∧ dxak . The differential formC is called
thequasiclassical limitof the multiplicative formϕ(γ) and the multiplicative formϕ(γ)
is called aquantizationof the differential formC. It is easy to see that ifϕ(γ) isγ-closed,
thenC is closed.

Let U ⊂ CN be an open set, and letϕ be a multiplicative meromorphick-form on
U . We will say thatϕ is γ-closed if the equationdγϕ = 0 is satisfied whenever it makes
sense.

A closed differential form{Ca1,...,ak (λ)} is calledquantizableif there exists a power
series inγ,

ϕa1,...,ak (λ, γ) = 1− γ Ca1,...,ak (λ) +
∞∑
n=2

γnCn; a1,...,ak (λ),

convergent for small|γ| for a fixedλ ∈ U and such that{ϕa1,...,ak (λ, γ)} is aγ-closed
multiplicativek-form.

Lemma 1.1. Every closed holomorphic differentialk-formC defined on an open poly-
disc is quantizable to a holomorphic multiplicative closedk-formϕ(γ).

Proof. SinceU is a polydisc, we can find a holomorphic (k − 1)-formE on U such
thatdE = C. Define a multiplicative (k − 1)-form θ onU by θa1...ak−1 = e−Ea1...ak−1 .
Setϕ(γ) = dγθ. Sinced2

γ = 0, the formϕ(γ) is a desired multiplicative closedk-form.
�

Remark.The Taylor expansion ofϕ(γ) in powers ofγ is well defined inU , but for each
particular (even very small) nonzeroγ, the formϕ(γ) is defined in a smaller open subset
U ′(γ) ⊂ U which tends toU asγ → 0.

Now we introduce gauge transformations of quantum dynamical R-matrices,R :
h∗ → End(V ⊗ V ), of form (1.3.2) with stepγ.

(1.4.1) Let{ϕab} be a meromorphicγ-closed multiplicative 2-form onh∗. Set

R(λ) 7→
N∑
a=1

αaa(λ)Eaa ⊗ Eaa +
∑
a 6=b

ϕab(λ)αab(λ)Eaa ⊗ Ebb

+
∑
a 6=b

βab(λ)Eba ⊗ Eab.

(1.4.2) Let the symmetric groupSN , the Weyl group ofglN , act onh∗ andV by
permutation of coordinates. For any permutationσ ∈ SN , set

R(λ) 7→ (σ ⊗ σ)R(σ−1 · λ) (σ−1 ⊗ σ−1).

(1.4.3) For a nonzero complex numberc, set

R(λ) 7→ cR(λ).

(1.4.4) For a nonzero complex numberc and an elementµ ∈ h∗, set

R(λ) 7→ R(c λ + µ).
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It is clear that any gauge transformation of types (1.4.2)–(1.4.3) transforms a quantum
dynamical R-matrix with stepγ to a quantum dynamical R-matrix with stepγ. Any gauge
transformation of type (1.4.4) transforms a quantum dynamical R-matrix with stepγ to
a quantum dynamical R-matrix with stepγ/c. In all cases, if the R-matrix is of Hecke
type, then the transformed matrix is of Hecke type. If the transformation is of type (1.4.3)
and the Hecke parameters of the R-matrix arep andq, then the Hecke parameters of the
transformed matrix arecp andcq.

Theorem 1.1. Any gauge transformation of type (1.4.1) transforms a quantum dynam-
ical R-matrix with stepγ to a quantum dynamical R-matrix with stepγ. If the R-matrix
is of Hecke type, then the transformed matrix is of Hecke type with the same parameters.

Theorem 1.1 is proved in Sect. 1.9.
Two R-matricesR : h∗ → End(V ⊗ V ) andR′ : h∗ → End(V ⊗ V ) will be

calledequivalentif one of them can be transformed into another by a sequence of gauge
transformations.

1.5. Classification of quantum dynamical R-matrices of Hecke type with parametersp, q
such thatq = p. If Hecke parameters satisfyp = q, then the Hecke Eq. (1.3.6) can be
written as

R21(λ)R(λ) = q2 Id.

LetX ⊂ {1, ..., N} be a subset. Say thatX is decomposed into disjoint intervals,
X = X1 ∪ ... ∪ Xn, if everyXk has the form{ak, ak + 1, ..., bk} andak+1 > bk for
k = 1, ..., n− 1.

A meromorphic functionµ(λ) will be calledγ-quasiconstantif δaµ = 0 for alla. Fix
aγ-quasiconstantµ : h∗ → h∗ with γ = 1. Define scalar meromorphicγ-quasiconstant
functionsµab : h∗ → C by µab(λ) = xa(µ(λ)) − xb(µ(λ)). Letλab denoteλa − λb.

DefineR∪Xk : h∗ → End(V ⊗ V ) by

R∪Xk (λ) =
N∑

a,b=1

Eaa⊗Ebb +
n∑
k=1

∑
a,b∈Xk a 6=b

1
λab − µab(λ)

(Eaa⊗Ebb +Eba⊗Eab ).

(1.5.1)

Theorem 1.2. 1. For everyX ⊂ {1, ..., N} , the R-matrixR∪Xk defined by (1.5.1) is
a quantum dynamical R-matrix of Hecke type with parametersp = 1, q = 1 and step
γ = 1.

2. Every quantum dynamical R-matrix of Hecke type with parametersp, q, such that
p = q, is equivalent to one of the matrices (1.5.1).

Theorem 1.2 is proved in Sect. 1.11.

1.6. Classification of quantum dynamical R-matrices of Hecke type with parametersp, q
such thatq 6= p . Assume that for anya, b, a 6= b, a γ-quasiconstantµab : h∗ → C is
given. We say that this collection of quasiconstants ismultiplicativeif

(1.6.1) For anya, b, we have
µab(λ)µba(λ) = 1.

(1.6.2) For anya, b, c, we have

µac(λ) = µab(λ)µbc(λ).
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Fix a multiplicative family ofγ-quasiconstants withγ = 1.
Fix a complex numberε such thateε 6= 1. LetX ⊂ {1, ..., N} be a subset,X =

X1 ∪ ... ∪Xn its decomposition into disjoint intervals.
For anya, b ∈ {1, ..., N}, a 6= b, we shall introduce functionsαab, βab : h∗ → C.

We shall introduce functionsβab and then setαab = eε + βab.
If a, b ∈ Xk for some k, then we set

βab(λ) =
eε − 1

µab(λ)eελab − 1
. (1.6.3)

Otherwise we setβab(λ) = 0 , if a < b, andβab(λ) = 1− eε, if a > b.
DefineR∪Xk : h∗ → End(V ⊗ V ) by

R∪Xk,ε(λ) =
N∑
a=1

Eaa⊗Eaa+
∑
a 6=b

αab(λ)Eaa⊗Ebb+
∑
a 6=b

βab(λ)Eba⊗Eab. (1.6.4)

Theorem 1.3. 1. For everyX ⊂ {1, ..., N} , the R-matrixR∪Xk,ε defined by (1.6.4)
is a quantum dynamical R-matrix of Hecke type with parametersp = 1, q = eε and
stepγ = 1.

2. Every quantum dynamical R-matrix of Hecke type with parametersp, q such that
q 6= p is equivalent to one of the matrices (1.6.4).

Theorem 1.3 is proved in Sect. 1.12.

1.7. Quantization of classical dynamical r-matrices ofglN type. LetV be theN dimen-
sionalh-module considered in Sect. 1.3. Letr : h∗ → End(V ⊗ V ) be a zero weight
meromorphic function satisfying CDYB (1.2.2). Assume thatr satisfiesthe unitarity
condition,

r(λ) + r21(λ) = ε P + δ Id (1.7.1)

for some constantsε, δ ∈ C and allλ. The constantε is calledthe coupling constant, the
constantδ is calledthe secondary coupling constant.The zero weight condition implies
thatr has the form

r(λ) =
N∑

a,b=1

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eab ⊗ Eba. (1.7.2)

We recall a classification of such r-matrices. First we introduce gauge transformations
of classical dynamical r-matrices.

(1.7.3) Letψ =
∑
a,b ψab(λ)dxa ∧ dxb be a closed meromorphic differential 2-form

onh∗
( and the notion of a closed differential form has the standard meaning). Set

r(λ) 7→ r(λ) +
N∑
a 6=b

ψab(λ)Eaa ⊗ Ebb.

(1.7.4) Forµ ∈ h∗, set
r(λ) 7→ r(λ + µ).
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(1.7.5) Let the symmetric groupSN act onh∗ andV by permutation of coordinates.
For any permutationσ ∈ SN , set

r(λ) 7→ (σ ⊗ σ) r(σ−1 · λ) (σ−1 ⊗ σ−1).

(1.7.6) For a nonzero complex numberc, set

r(λ) 7→ c r(cλ).

(1.7.7) For a nonzero complex numberc, set

r(λ) 7→ r(λ) + c Id.

Any gauge transformation transforms a classical dynamical r-matrix to a classical
dynamical r-matrix [EV]. Two classical dynamical r-matricesr(λ) and r′(λ) will be
calledequivalentif one of them can be transformed into another by a sequence of gauge
transformations.

The gauge transformations of quantum dynamical R-matrices described in Sect. 1.4
are analogs of gauge transformations of classical dynamical r-matrices.

Classification of r-matrices with zero coupling constant,ε = 0. LetX ⊂ {1, ..., N} be
a subset,X = X1 ∪ ... ∪Xn its decomposition into disjoint intervals.

Define a mapr : h∗ → End(V ⊗ V ) by

r∪Xk (λ) =
n∑
k=1

∑
a,b∈Xk a 6=b

1
λba

Eba ⊗ Eab. (1.7.8)

Theorem 1.4. 1. For anyX and its decompositionX = X1 ∪ ... ∪ Xn into disjoint
intervals, the functionr∪Xk defined by (1.7.8) is a classical dynamical r-matrix with
zero coupling constant.

2. Any classical dynamical r-matrixr : h∗ → End(V ⊗V ) with zero coupling constant
is equivalent to one of the matrices (1.7.8).

Theorem 1.4 follows from [EV].

Classification of r-matrices with nonzero coupling constant,ε 6= 0. LetX ⊂ {1, ..., N}
be a subset,X = X1 ∪ ... ∪Xn its decomposition into disjoint intervals.

For anya, b ∈ {1, ..., N},a 6= b, we introduce functionsβab : h∗ → C. If a, b ∈ Xk

for some k, then we set
βab(λ) = cotanh (λba) .

Otherwise we setβab(λ) = −1, if a < b , andβab(λ) = 1, if a > b.
Definer∪Xk : h∗ → End(V ⊗ V ) by

r∪Xk (λ) = P +
∑
a 6=b

βab(λ)Eba ⊗ Eab. (1.7.9)

Theorem 1.5. 1. For everyX ⊂ {1, ..., N} and its decompositionX = X1 ∪ ... ∪Xn

into disjoint intervals, the functionr∪Xk defined by (1.7.9) is a classical dynamical
r-matrix with nonzero coupling constantε = 2 and the secondary coupling constant
δ = 0.

2. Every classical dynamical r-matrixr : h∗ → End(V ⊗ V ) with nonzero coupling
constant is equivalent to one of the matrices (1.7.9).
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Theorem 1.5 follows from [EV].

Theorem 1.6. 1. Every classical dynamical r-matrixr with zero coupling constant,
holomorphic on an open polydiscU ⊂ h∗, can be quantized to a quantum dynamical
R-matrixRγ onU , of Hecke type with parametersp, q such thatp = q.

2. Every classical dynamical r-matrixr with nonzero coupling constant, holomorphic
on an open polydiscU ⊂ h∗, can be quantized to a quantum dynamical R-matrixRγ
onU , of Hecke type with parametersp, q such thatp 6= q.

Proof. The R-matrix

R∪Xk (λ, γ) =
N∑

a,b=1

Eaa ⊗ Ebb +
n∑
k=1

∑
a,b∈Xk a 6=b

γ

λab
(Eaa ⊗ Ebb +Eba ⊗ Eab )

is a quantum dynamical R-matrix of Hecke type with parametersp = q = 1 and stepγ.
Its quasiclassical limit is

r′(λ) =
n∑
k=1

∑
a,b∈Xk a 6=b

−1
λab

(Eaa ⊗ Ebb +Eba ⊗ Eab ).

Making the gauge transformation (1.7.3) corresponding to the closed form∑
k

∑
a,b∈Xk,a<b λ

−1
ab dxa ∧ dxb, we get the r-matrixr∪Xk defined by (1.7.8). This

remark and Lemma 1.1 easily imply the first statement of the theorem. The second
statement is proved analogously. �

1.8. Quantum dynamical Yang–Baxter equation in coordinates.Consider a quantum
dynamical R-matrixR(λ) of form (1.3.2). Assume that the matrix is of Hecke type, with
stepγ = 1 and Hecke parametersp = 1 andq. Any R-matrix of Hecke type can be
reduced to such an R-matrix by gauge transformations of types (1.4.3) and (1.4.4).

The Hecke property implies thatαaa = 1 and hence the matrix has the form

R(λ) =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eba ⊗ Eab. (1.8.1)

The Hecke property also implies that for everya, c ∈ {1, ..., N}, a 6= c, we have

βac(λ) + βca(λ) = 1− q, (1.8.2)

βac(λ)βca(λ) − αac(λ)αca(λ) = −q, (1.8.3)

this is the trace and the determinant ofR∨ restricted toVac.
Applying both sides of the QDYB Eq. (1.1.3) to a basis vectorva ⊗ va ⊗ vc ∈

V ⊗3, a 6= c, we get equations

αca(λ− ωa)βac(λ)αac(λ− ωa) + βac(λ− ωa)2 = βac(λ− ωa), (1.8.4)

βca(λ− ωa)βac(λ)αac(λ− ωa) + αac(λ− ωa)βac(λ− ωa) =

βac(λ)αac(λ− ωa).
(1.8.5)
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Applying both sides of the QDYB Eq. (1.1.3) to a basis vectorva⊗ vb⊗ vc ∈ V ⊗3 with
pairwise distincta, b, c we get equations

αab(λ− ωc)αac(λ)αbc(λ−ωa) = αbc(λ)αac(λ− ωb)αab(λ), (1.8.6)

αac(λ− ωb)αab(λ)βbc(λ−ωa) = βbc(λ)αac(λ− ωb)αab(λ), (1.8.7)

βab(λ− ωc)αac(λ)αbc(λ−ωa) = αac(λ)αbc(λ− ωa)βab(λ), (1.8.8)

βcb(λ− ωa)βac(λ)αbc(λ−ωa) + αbc(λ− ωa)βab(λ)βbc(λ− ωa) =

βac(λ)αbc(λ− ωa)βab(λ), (1.8.9)

αcb(λ− ωa)βac(λ)αbc(λ− ωa) + βbc(λ− ωa)βab(λ)βbc(λ− ωa) =

αba(λ)βac(λ− ωb)αab(λ) + βab(λ)βbc(λ− ωa)βab(λ),
(1.8.10)

βac(λ− ωb)αab(λ)βbc(λ− ωa) =

βba(λ)βac(λ− ωb)αab(λ) + αab(λ)βbc(λ− ωa)βab(λ).
(1.8.11)

Lemma 1.2. For anya, c, a 6= c, the functionsαac(λ) andq+βac(λ) are not identically
equal to zero.

Proof. If αac ≡ 0, then Eqs. (1.8.2)ac, (1.8.3)ac, (1.8.4)ac, and (1.8.4)ca give a con-
tradiction. Thus,αac andαca are not identically equal to zero. Equations (1.8.2)ac,
(1.8.3)ac imply

αac(λ)αca(λ) = (q + βac(λ)) (q + βca(λ)). (1.8.12)

The lemma is proved. �

1.9. Proof of Theorem 1.1.Let{ϕab} be aγ-closed multiplicative 2-form onh∗. It is easy
to see that Eqs. (1.8.2)–(1.8.11) are invariant with respect to the gauge transformation
(1.4.1). This proves Theorem 1.1. �

1.10. Relationαac = q + βac. Consider a quantum dynamical R-matrixR(λ) of form
(1.3.2). Assume that the matrix is of Hecke type with stepγ = 1 and Hecke parameters
p = 1 andq. For anya, c, a 6= c, set

ϕac(λ) =
q + βac(λ)
αac(λ)

. (1.10.1)

Lemma 1.3. The collection of functionsϕ = {ϕac} is aγ-closed multiplicative 2-form
with γ = 1.

Corollary 1.1. Apply to the R-matrixR(λ) the gauge transformation (1.4.1) corre-
sponding to the multiplicative 2-formϕ−1. Then the coefficients of the transformed
matrix satisfy the equation

αac = q + βac (1.10.2)

for all a, c.

Proof of Lemma 1.3.Equationϕacϕca = 1 follows from (1.8.12). Equationdγϕ = 0 is
a direct corollary of (1.8.6) and (1.8.7). �

1.11. Proof of Theorem 1.2.Let R(λ) be a quantum dynamical R-matrix of Hecke
type with parametersp, q such thatp = q. Using gauge transformations (1.4.3) and
(1.4.4) we can make stepγ = 1 andp = q = 1. By Lemma 1.3 we may assume that
αac(λ) = 1 +βac(λ) for all a 6= c. By (1.8.2) we haveβac(λ) = −βca(λ) for all a 6= c.

Fix a, c, a 6= c, and solve Eqs. (1.8.4)ac, (1.8.5)ac, (1.8.4)ca, (1.8.5)ca.
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Lemma 1.4. Any solution βac(λ), βca(λ) of Eqs. (1.8.4)ac, (1.8.5)ac, (1.8.4)ca,
(1.8.5)ca has one of the following two forms.

1. βac = βca = 0.
2.

βac(λ) =
1

λac − µac
, βca(λ) =

1
λca − µca

, (1.11.1)

whereµac = −µca andµac(λ) is a meromorphic function periodic with respect to
shifts ofλ byωa andωc, µac(λ− ωa) = µac(λ− ωc) = µac(λ).

Proof. It is easy to see thatβac(λ) = βca(λ) ≡ 0 is a solution. Now assume that
βac = −βca 6= 0. Then (1.8.5)ac gives

1
βac(λ)

+
1

βac(λ− ωa)
= 1,

and (1.8.5)ca gives
1

βac(λ)
+

1
βac(λ− ωc)

= −1.

Let µac(λ) = λac − 1/βac(λ). Thenµac(λ − ωa) = µac(λ) andµac(λ − ωc) = µac(λ).
Hence

βac(λ) =
1

λac − µac
,

whereµac(λ) is a meromorphic function periodic inωa andωc. Similarly,

βca(λ) =
1

λca − µca
,

whereµca(λ) is a function periodic inωa andωc. We haveµac = −µca sinceβac = −βca.
It is easy to see that these functionsβac andβca solve Eqs. (1.8.4)ac and (1.8.4)ca. The
lemma is proved. �

Equation (1.8.7) shows that the functionβac(λ) and hence the functionµac(λ) is
periodic with respects to shifts ofλ by ωb for anyb different froma andc.

Consider Eq. (1.8.9)abc on functionsβab(λ), βbc(λ), βac(λ). It is easy to see that if
one of these three functions is identically equal to zero, then there is another function in
this triple which is identically equal to zero.

Introduce a relation on the set{1, ..., N}. For anya ∈ {1, ..., N}, let a be related
to a. For anya, b ∈ {1, ..., N}, a 6= b, let a be related tob if the functionβab(λ) is not
identically equal to zero. It is easy to see that this is an equivalence relation.

LetY ⊂ {1, ..., N} be the union of all the equivalence classes containing more than
one element. LetY = Y1 ∪ ... ∪ Yn be its decomposition into equivalence classes.

If pairwise distincta, b, c ∈ {1, ..., N} do not belong to the same equivalence class,
then at least two of the three functionsβab(λ), βbc(λ), βac(λ) are identically equal to
zero. Hence this triple of functions satisfies Eq. (1.8.9)abc. If all three elementsa, b, c
belong to the same equivalence class, then equation (1.8.9)abc takes the form

1
λcb − µcb

1
λac − µac

+
1

λab − µab

1
λbc − µbc

=
1

λac − µac

1
λab − µab

.

This implies thatµac(λ) = µab(λ) + µbc(λ). Therefore there exists a 1-quasiconstant
meromorphic mapµ : h∗ → h∗ such thatµac(λ) = xa(µ(λ))−xc(µ(λ)) for all a, c such
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thatµac(λ) is not identically equal to zero. It is easy to see that if the functionsµab(λ)
have this property then Eqs. (1.8.8) and (1.8.10) are also satisfied.

Let σ be a permutation of{1, ..., N} which transforms the setY and the decompo-
sitionY = Y1 ∪ ... ∪ Yn into a setX ⊂ {1, ..., N} and its decomposition into disjoint
intervalsX = X1 ∪ ... ∪ Xn. Apply to the R-matrixR(λ) the gauge transformation
(1.4.2) corresponding to the permutationσ. Then the transformed R-matrix will have
form (1.5.1) corresponding to the constructed decompositionX = X1 ∪ ... ∪Xn. The-
orem 1.2 is proved. �

1.12. Proof of Theorem 1.3.LetR(λ) be a quantum dynamical R-matrix of Hecke type
with parametersp, q such thatp 6= q. Using gauge transformations (1.4.3) and (1.4.4)
we can make stepγ = 1 andp = 1. Fix a numberε such thatq = eε.

By Lemma 1.3 we may assume thatαac(λ) = q +βac(λ) for all a 6= c. By (1.8.2) we
haveβca(λ) = 1− q − βac(λ) for all a 6= c.

Fix a, c, a 6= c, and solve Eqs. (1.8.4)ac, (1.8.5)ac, (1.8.4)ca, (1.8.5)ca.

Lemma 1.5. Any solution βac(λ), βca(λ) of Eqs. (1.8.4)ac, (1.8.5)ac, (1.8.4)ca,
(1.8.5)ca has one of the following two forms.

1. βac = 0, βca = 1− q or βca = 0, βac = 1− q.
2.

βac(λ) =
eε − 1

µac(λ)eελac − 1
, βca(λ) =

eε − 1
µca(λ)eελca − 1

, (1.12.1)

whereµac(λ)µca(λ) = 1andµac(λ) is a meromorphic function periodic with respect
to shifts ofλ byωa andωc, µac(λ− ωa) = µac(λ− ωc) = µac(λ).

Proof. Equation (1.8.4)ac can be written in the form

(q + βac(λ− ωa)) (1 − βac(λ− ωa))βac(λ) = (1− βac(λ− ωa))βac(λ− ωa).

Henceβac(λ) ≡ 1 or

(q + βac(λ− ωa))βac(λ) = βac(λ− ωa). (1.12.2)

The functionβac(λ) cannot be identically equal to 1. In fact, ifβac(λ) ≡ 1, then
Eq. (1.8.4)ca gives 0 =−q(1 + q) which is impossible since we always assume that
−q 6= p.

Equation (1.12.2)ac has constant solutionsβac(λ) = 0 or βac(λ) = 1 − q which
correspond to the first statement of the lemma. Now assume thatβac(λ) is not constant.
Introduce a new meromorphic functionyac(λ) = (βac(λ) + q − 1)/βac(λ). It is easy to
see thatyac(λ) yca(λ) = 1. Now Eqs. (1.12.2)ac, (1.12.2)ca can be written as

yac(λ) = q yac(λ− ωa), yac(λ) = q−1 yac(λ− ωc). (1.12.3)

Setµac(λ) = yac(λ) e−ελac . Then the functionµac(λ) is periodic with respect to shifts of
λ by ωa andωc. We haveµac(λ)µca(λ) = 1. Returning to functionsβac(λ) andβca(λ)
we get the second type of solutions. The lemma is proved.�

Equation (1.8.7) shows that the functionβac(λ) and hence the functionµac(λ) is
periodic with respect to shifts ofλ by ωb for anyb different froma andc.

If the functionβac(λ) has form (1.12.1), then we say that the functionµac(λ) is
finite. If βac(λ) = 1 − q, then we say thatµac(λ) = 0. If βac(λ) = 0, then we say that
µac(λ) = ∞. If µac(λ) = 0, thenµca(λ) = ∞. If µac(λ) = ∞, thenµca(λ) = 0.
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For pairwise distincta, b, c, we shall say that the equation

µab(λ)µbc(λ) = µac(λ) (1.12.4)

holds if one of the following four conditions is satisfied.

(1.12.5) All three functionsµab(λ), µbc(λ), µac(λ), are finite, and satisfy (1.12.4).
(1.12.6) µac(λ) = ∞ and at least one of the functionsµab(λ), µbc(λ) is equal to∞.
(1.12.7) µac(λ) = 0 and at least one of the functionsµab(λ), µbc(λ) is equal to 0.
(1.12.8) µac(λ) is finite, one of the functionsµab(λ), µbc(λ) is equal to zero and the

other is equal to infinity.

Lemma 1.6. For any pairwise distincta, b, c, Eq. (1.12.4) holds.

The lemma easily follows from Eq. (1.8.9).
Introduce

Y = {(a, b) | (a, b) ∈ {1, ..., N}, a 6= b, µab = ∞}. (1.12.9)

Then

(1.12.10) If (a, b) ∈ Y and (b, c) ∈ Y , then (a, c) ∈ Y .
(1.12.11) If (a, b) belongs toY , then (b, a) does not belong toY .

By Theorem 3.11 in [EV], there exists a permutationσ of numbers{1, ..., N} such
that for the new order on{1, ..., N}, if (a, b) ∈ Y , thena < b. Apply to the R-matrix
R(λ) the gauge transformation (1.4.2) corresponding to the permutationσ. Then the set
Y defined by (1.12.9) for the transformed R-matrix is such that if (a, b) ∈ Y , thena < b.
From now on we denote byR(λ) the transformed matrix.

LetZ = {(a, b) | a < b} − Y .

Lemma 1.7. 1. If (a, b) belongs toZ, then all pairs(c, c + 1), c = a, a + 1, ..., b − 1,
belong toZ.

2. If for somea, b, a < b, all pairs (c, c + 1) for c = a, a + 1, ..., b− 1 belong toZ, then
(a, b) belongs toZ.

Lemma 1.7 is a special case of Lemma 3.13 in [EV].
Consider the subsetX ⊂ {1, ..., N} of all a such that there existsbwith the property

that (a, b) or (b, a) belongs toZ.
Introduce a relation on the setX. For anya ∈ X, let a be related toa. For any

a, b ∈ X, a < b, let a be related tob if (a, b) ∈ Z. Lemma 1.7 implies that this relation
is an equivalence relation. LetX = X1 ∪ ... ∪ Xn be the decomposition ofX into
equivalence classes. Lemma 1.7 implies thatX = X1 ∪ ...∪Xn is a decomposition into
a union of disjoint intervals. It is easy to see that the R-matrixR(λ) has form (1.6.4) for
the constructed decompositionX = X1 ∪ ... ∪Xn. Theorem 1.3 is proved.�

1.13. Quantum dynamical R-matrices as an extrapolation of constant quantum R-
matrices. Consider the vector representationV of the quantum groupUq(glN ). Then
its R-matrixR ∈ End(V ⊗ V ) has the form,

R =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

αabEaa ⊗ Ebb +
∑
a 6=b

βabEba ⊗ Eab, (1.13.1)
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where the numbersαab, βab are defined as follows:αab = q, βab = 0 if a < b and
αab = 1, βab = 1 − q if a > b. The matrixR is a constant solution of the quantum
dynamical Yang–Baxter equation (1.1.3).

For any permutationσ of numbers{1, ..., N} we construct a new constant solution,
Rσ, of the quantum Yang–Baxter equation.Rσ has form (1.13.1) where the numbers
αab, βab are defined by the rule:αab = q, βab = 0 if σ(a) < σ(b) andαab = 1, βab = 1−q
if σ(a) > σ(b).

Fix a complex numberε such thateε = q. Consider the matrix

R(λ) =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eba ⊗ Eab, (1.13.2)

where the functionsαac(λ) andβac(λ) are defined by

βab(λ) =
eε − 1
eελab − 1

, αab = eε + βab.

The matrixR(λ) is the R-matrix of form (1.6.4) corresponding to dataX = X1 =
{1, ..., N}.

The R-matrixR(λ) extrapolates the constant R-matrices{Rσ} in the following
sense. Letρ = (N−1

2 , N−3
2 , ..., 1−N

2 ) ∈ h∗. Let σ(ρ) be the vector obtained fromρ by
permutation of coordinates byσ. Then

limt→+∞R(
t

ε
σ(ρ)) = Rσ. (1.13.3)

2. Quantum Dynamical R-matrices with Spectral Parameter

2.1. Definition. Let h be an abelian finite dimensional Lie algebra. LetVi, i = 1, 2, 3,
be finite dimensional diagonalizableh-modules,

RViVj : C × h∗ → End(Vi ⊗ Vj), 1 ≤ i < j ≤ 3,

meromorphic functions,γ a nonzero complex number. The equation in End(V1⊗V2⊗V3),

R12
V1V2

(z1−z2, λ− γh(3))R13
V1V3

(z1 − z3, λ)R23
V2V3

(z2 − z3, λ− γh(1))

= R23
V2V3

(z2 − z3, λ)R13
V1V3

(z1 − z3, λ− γh(2))R12
V1V2

(z1,−z2, λ)
(2.1.1)

is calledthe quantum dynamical Yang–Baxter equation with spectral parameter and
stepγ (QDYB equation). In what follows we will use a notationzij = zi − zj .

A functionRViVj : C × h∗ → End(Vi ⊗ Vj) is calleda function of zero weightif

[RViVj (z, λ), h⊗ 1 + 1⊗ h] = 0 (2.1.2)

for all h ∈ h, z ∈ C, λ ∈ h∗. A solution{RViVj}1≤i<j≤3 of the QDYB Eq. (2.1.1) is
called a solution of zero weight if each of the functions is of zero weight.

If all the spacesVi are equal to a spaceV , then we consider the QDYB equation on
one functionR : h∗ → End(V ⊗ V ),

R12(z12, λ− γh(3))R13(z13, λ)R23(z23, λ− γh(1))

= R23(z23, λ)R13(z13, λ− γh(2))R12(z12, λ).
(2.1.3)
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A zero weight functionR satisfying the QDYB Eq. (2.1.3) is calleda quantum dynam-
ical R-matrix with spectral parameter. An R-matrix is calledunitary, if it satisfies the
unitarity condition

R(z, λ)R21(−z, λ) = 1. (2.1.4)

2.2. Quantization and quasiclassical limit.Let x1, ..., xN be a basis inh. The basis
defines a linear system of coordinates onh∗. For anyλ ∈ h∗, setλi = xi(λ), i = 1, ..., N .

LetRγ : C×h∗ → End(V ⊗V ) be a smooth family of solutions to Eqs. (2.1.3) and
(2.1.4) with stepγ such that

Rγ(z, λ) = 1− γ r(λ) +O(γ2). (2.2.1)

Then the functionr : C × h∗ → End(V ⊗ V ) satisfies the zero weight condition

[r(z, λ), h⊗ 1 + 1⊗ h] = 0 (2.2.2)

for all h ∈ h, z ∈ C, λ ∈ h∗, the unitarity condition

r(z, λ) + r21(−z, λ) = 0 (2.2.3)

and the classical dynamical Yang–Baxter equation with spectral parameter (CDYB),

N∑
i=1

x(1)
i

∂r23

∂xi
(z23, λ) +

N∑
i=1

x(2)
i

∂r31

∂xi
(z31, λ) +

N∑
i=1

x(3)
i

∂r12

∂xi
(z12, λ) +

[r12(z12, λ), r13(z13, λ)] + [r12(z12, λ), r23(z23, λ)] + [r13(z13, λ), r23(z23, λ)] = 0 .
(2.2.4)

A function r(z, λ) with properties (2.2.2)–(2.2.4) is called aclassical dynamical
r-matrix with spectral parameter.

The functionr in (2.2.1) is calledthe quasiclassical limit ofR, and the functionR
is calleda quantization ofr.

Let U ⊂ h∗ be an open set, and letR : C × U → End(V ⊗ V ) be a zero weight
meromorphic function onC × U . We will say thatR is a quantum dynamical R-matrix
with spectral parameter onC × U if the QDYB equation with spectral parameter is
satisfied forR whenever it makes sense.

A classical dynamical r-matrixr(z, λ) with spectral parameter onC × U is called
quantizableif there exists a power series inγ,

Rγ(z, λ) = 1− γ r(z, λ) +
∞∑
n=2

γnrn(z, λ) (2.2.5)

convergent for small|γ| for any fixed (z, λ) ∈ C × U , such thatRγ(z, λ) is a quantum
dynamical R-matrix onC × U with spectral parameter and stepγ.

2.3. R-matrices ofglN type. Let h be an abelian Lie algebra of dimensionN . LetV be
a diagonalizableh-module of the same dimension such that its weightsω1, ..., ωN form
a basis inh∗. Letx1, ..., xN be the dual basis ofh. Let v1, ..., vN be an eigenbasis forh
in V such thatxivj = δijvj . Then theh-moduleV ⊗ V has the weight decomposition,

V ⊗ V = ⊕N
a=1Vaa ⊕ ⊕a<bVab, (2.3.1)

whereVaa = C va ⊗ va andVab = C va ⊗ vb ⊕ C vb ⊗ va .
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A quantum dynamical R-matrix with spectral parameter,R : C×h∗ → End(V ⊗V ),
for theseh andV will be called an R-matrix ofglN type.

The zero weight condition implies that the R-matrix preserves the weight decompo-
sition (2.3.1) and has the form

R(z, λ) =
N∑

a,b=1

αab(z, λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(z, λ)Eba ⊗ Eab, (2.3.2)

whereαab, βab : C × h∗ → C are suitable meromorphic functions.

2.4. Gauge transformations.Fix a nonzero complex numberγ. Let ψ : h∗ → C be a
function. For anya, b = 1, ..., N , set

∂aψ(λ) = ψ(λ) − ψ(λ− ωa),

Labψ(λ) = ∂aψ(λ) − ∂bψ(λ− ωa) = ψ(λ) − 2ψ(λ− ωa) + ψ(λ− ωa − ωb).

Introduce gauge transformations of quantum dynamical R-matrices,R : C × h∗ →
End(V ⊗ V ), of type (2.3.2) with stepγ.

(2.4.1) Letψ be a meromorphic function onh∗. Set

R(z, λ) 7→
N∑

a,b=1

ez∂a∂bψ(λ) αab(z, λ)Eaa ⊗ Ebb +
∑
a 6=b

ezLabψ(λ) βab(z, λ)Eba ⊗ Eab.

(2.4.2) Let{ϕab} be a meromorphicγ-closed multiplicative 2-form onh∗. Set

R(z, λ) 7→
N∑
a=1

αaa(z, λ)Eaa ⊗ Eaa +∑
a 6=b

ϕab(λ)αab(z, λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(z, λ)Eba ⊗ Eab.

(2.4.3) Let the symmetric groupSN act onh∗ andV by permutation of coordinates.
For any permutationσ ∈ SN , set

R(z, λ) 7→ (σ ⊗ σ)R(z, σ−1 · λ) (σ−1 ⊗ σ−1).

(2.4.4) For a nonzero holomorphic scalar functionc(z), set

R(z, λ) 7→ c(z)R(z, λ).

(2.4.5) For nonzero complex numberb, c and an elementµ ∈ h∗, set

R(z, λ) 7→ R(bz, cλ + µ).
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It is clear that any gauge transformation of type (2.4.3) transforms a (unitary) quan-
tum dynamical R-matrix with spectral parameter and stepγ to a (unitary) quantum
dynamical R-matrix with spectral parameter and stepγ. Any gauge transformation of
type (2.4.4) transforms a quantum dynamical R-matrix with spectral parameter and step
γ to a quantum dynamical R-matrix with spectral parameter and stepγ. If in addition we
havec(z)c(z−1) = 1, then the gauge transformation of type (2.4.4) transforms a unitary
quantum dynamical R-matrix with spectral parameter and stepγ to a unitary quantum
dynamical R-matrix with spectral parameter and stepγ. Any gauge transformation of
type (2.4.5) transforms a (unitary) quantum dynamical R-matrix with spectral parameter
and stepγ to a (unitary) quantum dynamical R-matrix with spectral parameter and step
γ/c.

Theorem 2.1. Any gauge transformation of type (2.4.1) or (2.4.2) transforms a quantum
dynamical R-matrix with spectral parameter and stepγ to a quantum dynamical R-matrix
with spectral parameter and stepγ. Moreover, if the initial quantum dynamical R-matrix
is unitary, then the transformed R-matrix is unitary.

Theorem 2.1 is analogous to Theorem 1.1 and is also proved by direct verification.
Namely, in order to prove Theorem 2.1 it is enough to write the QDYB Eq. (2.1.3) in
coordinates, as it was done for Eq. (1.1.3) in Sect. 1.8, and then check that if functions
αab(z, α) andβab(z, α) form a solution of the coordinate equations, then the transformed
functions also form a solution.

Two R-matricesR : C × h∗ → End(V ⊗ V ) andR′ : C × h∗ → End(V ⊗ V )
will be calledequivalentif one of them can be transformed into another by a sequence
of gauge transformations.

2.5. Examples.

The elliptic R-matrix. Fix a pointτ in the upper half plane and a complex numberγ.
Let

θ(z, τ ) = −
∑
j∈Z+ 1

2

eπij
2τ+2πij(z+ 1

2 )

be Jacobi’s first theta function.
Let h be the Cartan subalgebra ofglN . It is the abelian Lie algebra of diagonal

complexN × N matrices with the standard basisxi = diag(0, . . . , 0, 1i, 0, . . . , 0),
i = 1, . . . , N . Its dual spaceh∗ has the dual basisωi.

The vector representation ofglN is V = CN with the standard basisv1, . . . , vN ,
xivj = δijvj .

Let Rellγ,τ (z, λ) ∈ End(V ⊗ V ) be theR-matrix of the elliptic quantum group
Eτ,γ/2(slN ), [F1-2, FV2]. It is a function of the spectral parameterz ∈ C and an
additional variableλ = (λ1, . . . , λN ) ∈ h∗. It is a solution of the CDYB Eq. (2.1.3) and
satisfies the unitarity condition (2.1.4) [F1-2]. The formula forRellγ,τ is

Rellγ,τ (z, λ) =
N∑
a=1

Eaa⊗Eaa+
∑
a 6=b

α(z, λab)Eaa⊗Ebb+
∑
a 6=b

β(z, λab)Eba⊗Eab, (2.5.1)

whereλab = λa − λb and the functionsα, β are ratios of theta functions:

α(z, λ) =
θ(λ + γ, τ )θ(z, τ )
θ(λ, τ )θ(z − γ, τ )

, β(z, λ) =
θ(z − λ, τ )θ(γ, τ )
θ(z − γ, τ )θ(λ, τ )

. (2.5.2)
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Trigonometric R-matrices.Let X ⊂ {1, ..., N} be a subset,X = X1 ∪ ... ∪ Xn its
decomposition into disjoint intervals.

For anya, b ∈ {1, ..., N}, a 6= b, we introduce functionsαab, βab : C × h∗ → C.
If a, b ∈ Xk for some k, then we set

αab(z, λ) =
sin(λab + γ) sin(z)
sin(λab) sin(z − γ)

, βab(z, λ) =
sin(z − λab) sin(γ)
sin(λab) sin(z − γ)

. (2.5.3)

Otherwise we set

αab(z, λ) = e−iγ sin(z)
sin(z − γ)

, βab(z, λ) = − eiz
sin(γ)

sin(z − γ)
(2.5.4)

if a < b, and

αab(z, λ) = eiγ
sin(z)

sin(z − γ)
, βab(z, λ) = − e−iz sin(γ)

sin(z − γ)
(2.5.5)

if a > b.
Define a functionRtrig∪Xk,γ : C × h∗ → End(V ⊗ V ) by

Rtrig∪Xk,γ(z, λ) =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eba ⊗ Eab,

(2.5.6)
whereαab andβab are defined by (2.5.3) - (2.5.5).

Rational R-matrices.LetX ⊂ {1, ..., N} be a subset,X = X1 ∪ ... ∪Xn its decom-
position into disjoint intervals.

For anya, b ∈ {1, ..., N}, a 6= b, we shall introduce functionsαab, βab : C × h∗ →
C.

If a, b ∈ Xk for some k, then we set

αab(z, λ) =
(λab + γ) z
λab (z − γ)

, βab(z, λ) =
(z − λab) γ
λab (z − γ)

. (2.5.7)

Otherwise we set

αab(z, λ) =
z

z − γ
, βab(z, λ) = − γ

z − γ
. (2.5.8)

Define a functionRrat∪Xk,γ : C × h∗ → End(V ⊗ V ) by

Rrat∪Xk,γ(z, λ) =
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

αab(λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(λ)Eba ⊗ Eab,

(2.5.9)
whereαab andβab are defined by (2.5.7) - (2.5.8).

Theorem 2.2. For any subsetX ⊂ {1, ..., N} and its decompositionX = X1∪ ...∪Xn

into disjoint intervals, the functionsRtrig∪Xk,γ andRrat∪Xk,γ are zero weight solutions of
the QDYB Eq. (2.1.3) satisfying the unitarity condition (2.1.4).
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Proof. According to [F1-2] the elliptic R-matrixRellγ,τ is a zero weight solution of the
QDYB Eq. (2.1.3) satisfying the unitarity condition (2.1.4).

If q = e2πiτ → 0, thenθ(z) ∼ 2q1/8 sin(πz).
These two facts show that the R-matrixR0(z, λ) of the form (2.3.2), with

αab(z, λ) =
sin(λab + γ) sin(z)
sin(λab) sin(z − γ)

, βab(z, λ) =
sin(z − λab) sin(γ)
sin(λab) sin(z − γ)

for all a 6= b andαaa ≡ 1 for all a, is a zero weight solution of the QDYB Eq. (2.1.3)
satisfying the unitarity condition (2.1.4).

For any fixedd ∈ h∗, the R-matrixR0(z, λ + d) is also a zero weight solution of the
QDYB Eq. (2.1.3) satisfying the unitarity condition (2.1.4).

Fix a subsetX ⊂ {1, ..., N} and its decompositionX = X1 ∪ ...∪Xn into disjoint
intervals. It is easy to see that there exists a sequence of elementsdi ∈ h∗, i = 1, 2, ...
such that the R-matrixR0(z, λ + di) has a limit wheni tends to infinity, and this limit
is equal toRtrig∪Xk,γ(z, λ). This observation shows thatRtrig∪Xk,γ(z, λ) is a zero weight
solution of the QDYB Eq. (2.1.3) satisfying the unitarity condition (2.1.4).
Rescale the R-matrixRtrig∪Xk,γ(z, λ) and consider a matrixRε(z, λ) = Rtrig∪Xk,εγ(εz, ελ),
whereε is a new parameter. Letγ, z, λ be fixed and letε tends to 0. Then the limit
of Rε(z, λ) is equal toRrat∪Xk,γ(z, λ). Hence,Rrat∪Xk,γ(z, λ) is a zero weight solution of
the QDYB Eq. (2.1.3) satisfying the unitarity condition (2.1.4). Theorem 2.2 is proved.
�

2.6. Quantization of classical dynamical r-matrices ofglN type with spectral parameter.
Let V be theN dimensionalh-module considered in Sect. 2.3. Letr : C × h∗ →

End(V ⊗ V ) be a zero weight meromorphic function satisfying CDYB (2.2.4) and the
unitarity condition (2.2.3).

The zero weight condition implies thatr has the form

r(z, λ) =
N∑

a,b=1

αab(z, λ)Eaa ⊗ Ebb +
∑
a 6=b

βab(z, λ)Eab ⊗ Eba. (2.6.1)

Assume that the functionr satisfies also theresidue condition

Resz=0 r(λ, z) = ε P + δ Id.

HereP ∈ End(V ⊗ V ) is the permutation of factors and Id∈ End(V ⊗ V ) is the
identity operator. The complex numbersε andδ are calledthe coupling constantandthe
secondary coupling constant, respectively. We always assume that the coupling constant
ε is not equal to zero.

We recall a classification of such r-matrices. First we introduce gauge transformations
of classical dynamical r-matrices with spectral parameter.

(2.6.2) Letψ =
∑
a,b ψab(λ)dxa ∧ dxb be a closed meromorphic differential 2-form

onh∗. Set

r(z, λ) 7→ r(z, λ) +
∑
a 6=b

ψab(λ)Eaa ⊗ Ebb.
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(2.6.3) For a holomorphic functionψ : h∗ → C, set

r(z, λ) 7→
N∑

a,b=1

(αab(z, λ)+ z
∂2ψ

∂xa ∂xb
(λ))Eaa ⊗ Ebb +

∑
a 6=b

βab(z, λ) ez( ∂ψ∂xa (λ)− ∂ψ
∂xb

(λ))
Eab ⊗ Eba.

(2.6.4) Forµ ∈ h∗, set
r(z, λ) 7→ r(z, λ + µ).

(2.6.5) Let the symmetric groupSN act onh∗ andV by permutation of coordinates.
For any permutationσ ∈ SN , set

r(z, λ) 7→ (σ ⊗ σ) r(z, σ−1 · λ) (σ−1 ⊗ σ−1).

(2.6.6) For a nonzero complex numberc, set

r(z, λ) 7→ c r(z, cλ).

(2.6.7) For an odd scalar meromorphic functionf (z), f (z) + f (−z) = 0, set

r(z, λ) 7→ r(z, λ) + f (z) Id.

Any gauge transformation transforms a classical dynamical r-matrix with spectral
parameter to a classical dynamical r-matrix with spectral parameter [EV]. Two classical
dynamical r-matricesr(z, λ) andr′(z, λ) will be calledequivalentif one of them can be
transformed into another by a sequence of gauge transformations.

The gauge transformations of quantum dynamical R-matrices with spectral parame-
ter described in Sect. 2.4 are analogs of the gauge transformations of classical dynamical
r-matrices with spectral parameter.

Classification of the classical dynamical r-matrices with spectral parameter.

The elliptic r-matrix. Fix a pointτ in the upper half plane. Introduce the functions

σw(z) =
θ(w − z, τ ) θ′(0, τ )
θ(w, τ ) θ(z, τ )

, ρ(z) =
θ′(z, τ )
θ(z, τ )

,

whereθ′(z, τ ) = ∂θ(z,τ )
∂z . Set

rellτ (z, λ) = ρ(z)
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

σλba (z)Eab ⊗ Eba. (2.6.8)

For everyτ ∈ C, Im τ > 0, the functionrellτ (z, λ) is a classical dynamical r-matrix with
spectral parameterz, coupling constantε = 1 and secondary constantδ = 0, [FW].

Trigonometric r-matrices. Let X ⊂ {1, ..., N} be a subset,X = X1 ∪ ... ∪ Xn its
decomposition into disjoint intervals.

For anya, b ∈ {1, ..., N}, a 6= b, we introduce a functionβab : C ⊕ h∗ → C.
If a, b ∈ Xk for some k, then we set

βab(z, λ) = − sin(λab + z)
sin(λab) sin(z)

.
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Otherwise we set

βab(z, λ) =
e−iz

sin(z)
, for a < b, βab(z, λ) =

eiz

sin(z)
for a > b.

We introduce a trigonometric r-matrixrtrig∪Xk,γ : C ⊕ h∗ → End(V ⊗ V ) by

rtrig∪Xk (z, λ) = cotan (z)
N∑
a=1

Eaa ⊗ Eaa +
∑
a 6=b

βab(z, λ) Eab ⊗ Eba, (2.6.9)

where cotan (z) = cos (z) /sin (z).

Rational r-matrices. LetX ⊂ {1, ..., N} be a subset,X = X1 ∪ ... ∪Xn its decom-
position into disjoint intervals. Set

rrat∪Xk (z, λ) =
P

z
+

n∑
k=1

∑
a,b∈Xk, a 6=b

1
λab

Eab ⊗ Eba . (2.6.10)

Theorem 2.3. 1. For every subsetX ⊂ {1, ..., N} and its decompositionX = X1 ∪
...∪Xn into disjoint intervals, the matricesrtrig∪Xk andrrat∪Xk are classical dynamical
r-matrices with spectral parameter.

2. Every classical dynamical r-matrixr : C×h∗ → End(V ⊗V ) with nonzero coupling
constant is equivalent to one of the matrices (2.6.8)–(2.6.10).

Theorem 2.3 follows from [EV].

Theorem 2.4. Let r(z, λ) be a unitary classical dynamical r-matrix with spectral pa-
rameter and nonzero coupling constant, meromorphic onC × U , whereU is an open
polydisc. Assume that for anyλ ∈ U there existsz ∈ C such thatr is holomorphic
at (λ, z). Thenr can be quantized to a unitary quantum dynamical R-matrixRγ on
C × U of glN type. Moreover, if a classical dynamical r-matrix with spectral parame-
ter and nonzero coupling constant is equivalent to the elliptic r-matrix (2.6.8) (resp., a
trigonometric r-matrix (2.6.9) or a rational r-matrix (2.6.10)), then it has a quantization
equivalent to the elliptic R-matrix (2.5.1) (resp., a trigonometric R-matrix (2.5.6) or a
rational R-matrix (2.5.9)).

Proof. We shall prove that if a classical dynamical r-matrix is equivalent to the elliptic
r-matrix (2.6.8), then it is quantizable to a quantum dynamical R-matrix equivalent to
the elliptic R-matrix (2.5.1). The other statements of the theorem are proved similarly.

Compute the quasiclassical limit ofRellγ,τ (z, λ). For the functionsα(z, λ, γ) and
β(z, λ, γ) defined in (2.5.2), we have

limγ→0
α(z, λ, γ) − 1

γ
=
θ′(λ)
θ(λ)

+
θ′(z)
θ(z)

, limγ→0
β(z, λ, γ)

γ
=
θ′(0)θ(z − λ)
θ(λ)θ(z)

.

Hence
Rellγ,τ (z, λ) = 1 − γ r(z, λ) +O(γ2),

where
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r(z, λ) = −
∑
a 6=b

(
θ′(λab)
θ(λab)

+
θ′(z)
θ(z)

)Eaa ⊗ Ebb −
∑
a 6=b

θ′(0)θ(z − λab)
θ(λab)θ(z)

Eba ⊗ Eab

= −
∑
a 6=b

(
θ′(λab)
θ(λab)

+
θ′(z)
θ(z)

)Eaa ⊗ Ebb +
∑
a 6=b

σλba (z)Eab ⊗ Eba.

Now applying to the r-matrixr(z, λ) the transformation (2.6.2) corresponding to the
closed differential 2-form ∑

a 6=b

θ′(λab)
θ(λab)

dxa ∧ dxb,

and then applying to the result the transformation (2.6.7) corresponding to the function
f (z) = θ′(z)/θ(z) we get the matrixrellτ (z, λ) defined by (2.6.8). This remark and Lemma
1.1 easily imply the statement of the Theorem concerning the elliptic r-matrix. Theorem
2.4 is proved. �

Remark.The elliptic quantum dynamical R-matrix (2.5.1) was invented by G. Felder
[F1-2] as a quantization of the classical dynamical r-matrix (2.6.8).

2.7. Formal dynamical R-matrices and gauge fixing conditions.Let Rγ(z, λ) =
1 − γr(z, λ) +

∑
n≥2 γ

nrn(z, λ) be a power series inλ andγ, whose coefficients are
meromorphic functions ofz, taking values in End(V ⊗ V ). The seriesRγ is called a
formal quantum dynamical R-matrix ofglN type with spectral parameter and stepγ
if it is of zero weight and satisfies the quantum dynamical Yang–Baxter equation. In
addition,Rγ is called unitary if it satisfies the unitarity condition (2.1.4). In this section
for brevity we will refer to formal quantum dynamical R-matrices ofglN type with
spectral parameter and stepγ as “formal dynamical R-matrices”. As we know, any such
R-matrix has form (2.3.2).

The theory of formal dynamical R-matrices is completely analogous to the theory of
analytic dynamical R-matrices. In particular, one can define formal classical dynamical
r-matrices and formal gauge transformations in an obvious way. IfRγ = 1− γr + ... is
a (unitary) formal dynamical R-matrix, thenr is a (unitary) formal dynamical r-matrix.

An example of a formal dynamical R-matrix is the Taylor expansion of an analytic
dynamical R-matrixRγ(z, λ) at a pointγ = 0, λ = λ0, such thatR is regular at this point
for generic values ofz.

Proposition 2.1. LetRγ = 1 − γr + ... be a unitary formal dynamical R-matrix, and
z0 ∈ C a point whereRγ is regular. Letαab, βab be the matrix coefficients ofRγ , see
(2.3.2). ThenRγ can be transformed, by a sequence of formal gauge transformations,
to a unitary formal dynamical R-matrix satisfying the following conditions:

1) for everya, b, c, the ratio αab(z,λ−γωc)
αab(z,λ) is independent ofz;

2) for everya < b, αab(z0, λ) = 1;
3) the coefficientα11(z, λ) is independent ofz.

Proof. The QDYB equation with spectral parameter implies the equation

αab(u, λ−γωc)αac(u+v, λ)αbc(v, λ−γωa) = αbc(v, λ)αac(u+v, λ−γωb)αab(u, λ)
(2.7.1)

for anya, b, c. Therefore, we have
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αab(u, λ− γωc)
αab(u, λ)

= Habc(λ)eDabc(λ)u, (2.7.2)

for suitable power seriesHabc(λ), Dabc(λ).

Lemma 2.1. There exists a formal power seriesψ(λ) such thatDabc = ∂a∂b∂cψ.

Proof. From (2.7.1) it follows thatDabc is symmetric. From (2.7.2) it follows that
∂dDabc is symmetric. The rest of the proof of the lemma follows from the basic theory
of difference equations with infinitesimal shift. �

Corollary 2.1. Performing a gauge transformation (2.4.1), we can arrangeD = 0, i.e.
condition 1.

From now on we assume thatD = 0, i.e.

αab(u, λ− γωc)
αab(u, λ)

= Habc(λ). (2.7.3)

This implies thatαab(u, λ) = α1
ab(u)α2

ab(λ), whereαiab are new functions.
Consider the multiplicative 2-formϕ defined byϕab(λ) = αab(z0, λ), a < b. It

follows from (2.7.1) thatdγϕ = 0. Therefore, by a gauge transformation of type (2.4.2)
we can arrangeϕ = 1, i.e. condition 2.

It remains to arrange condition 3. By (2.7.3),α11(z, λ) = f (z)g(λ) for a suitable
formal power seriesg(λ) and a meromorphic functionf (z) such thatf (z)f (−z) = 1.
Applying transformation (2.4.4) withc(z) = 1/f (z), we get condition 3. The proposition
is proved. �

We will call conditions 1–3 the gauge fixing conditions.

2.8. Classification of unitary formal dynamical R-matrices with elliptic quasiclassical
limit. We will say that a formal classical dynamical r-matrixr is of elliptic, trigonometric,
or rational type if it is gauge equivalent (by formal gauge transformations) to an r-matrix
of the form (2.6.8), (2.6.9),(2.6.10), respectively, expanded near a pointλ0 ∈ h∗. It
follows from [EV] that any formal classical dynamical r-matrix satisfying the residue
condition with coupling constantε 6= 0 is of elliptic, trigonometric, or rational type.

Theorem 2.5. LetRγ = 1−γr +O(γ2) be a unitary formal dynamical R-matrix whose
quasiclassical limitr is of the elliptic type. Then there exist a pointλ0 ∈ h∗ and a
power seriesτ (γ) = τ0 +O(γ) ∈ C[[γ]] , Im(τ0) > 0 such that the R-matrixRγ can be
transformed, by a sequence of formal gauge transformations, into the Taylor series of
Rellγ,τ (γ)(z, λ− λ0), whereRellγ,τ (z, λ) is the elliptic R-matrix (2.5.1).

The proof of this Theorem occupies the next section.

2.9. Proof of Theorem 2.5 .LetX0 be the space of unitary formal classical dynamical
r-matrices with spectral parameter and a nonzero coupling constant. LetX0

∗ be the subset
of elements ofX0 which satisfy the following gauge fixing conditions:

1c) ∂
∂λc

αab(z, λ) is independent ofz;
2c) αab(z0, λ) = 0,a < b;
3c) α11(z, λ) is independent ofz (these conditions are quasiclassical analogues of con-

ditions 1–3 above).
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According to the results of [EV], the spaceX0
∗ is a connected, finite-dimensional

complex manifold (with singularities), and any element ofX0 is gauge equivalent to an
element ofX0

∗. (i.e.X0
∗ is a “cross-section”). Moreover, sincer ∈ X0

∗ is of elliptic type,
the manifoldX0

∗ is smooth atr.
LetX be the space of unitary formal quantum dynamical R-matrices with spectral

parameter, andX∗ the subset of elements ofX satisfying the gauge fixing conditions
1-3.

As we have shown in Sect. 2.7, we can assume that our familyRγ is inX∗. In this
case,r ∈ X0

∗.
Now let us prove the statement of the theorem moduloγm+1 by induction inm.
Form = 1, the theorem is a tautology. Suppose we know the theorem form = k ≥ 1,

and want to prove it form = k + 1.
We have a polynomialRk = 1−γr+...+γkrk which satisfies the conditionRk ∈ X∗

moduloγk+1. We know thatRk satisfies the conclusion of Theorem 2.5 moduloγk+1,
i.e. is of the form (2.5.1) moduloγk+1.

Consider any extension of this polynomial to orderk+1:Rk+1 = Rk +γk+1rk+1. The
condition thatRk+1 ∈ X∗ moduloγk+2 can be expressed as a nonhomogeneous linear
equation with respect tork+1 having the formArk+1 = sk+1(rk, ..., r2, r), whereA is a
linear operator.

The obvious, but crucial observation now is the following.

Lemma 2.2. KerA = TrX0
∗, whereTrX0

∗ denotes the tangent space at the pointr.

Proof. Indeed, it is easy to see by an explicit calculation that the linear homogeneous
equationAρ = 0 is nothing else but the equation for a tangent vector toX0

∗ at the point
r. �

Corollary 2.2. The dimension of the space of solutions ofArk+1 = sk+1 is less than or
equal toK = dim(X0

∗).

However, by Theorem 2.4, we already have a family of elements ofX∗ with K pa-
rameters – the quantizations of elements ofX0

∗. Therefore, using dimension arguments,
we obtain that ifrk+1 satisfiesArk+1 = sk+1, thenRk+1(γ) has to be in this K-parametric
family, which completes the induction step.

The theorem is proved. �

Remark.If r is not elliptic but rational or trigonometric, the result of Theorem 2.5 can
be generalized, in the sense that formal dynamical R-matricesRγ = 1 − γr + ... with
rational or trigonometricr can be explicitly classified up to gauge transformations by the
same method as above. However, both the statement and the proof in this case are more
delicate, as the manifoldX∗

0 may now be singular atr, and it is necessary to describe
carefully these singularities. For simplicity one should first consider the case dimV = 2,
and then generalize to an arbitrary dimension. We are not giving this argument here.

3. Quantum Dynamical R-matrices and Monoidal Categories

Let us briefly recall some standard notions of the category theory [Mac, Kass].
Recall that a morphisma : F → G of two functors from a categoryC to a categoryC′

is a choice of a morphismaX : F (X) → G(X) for any objectX in C, such that for any
two objectsX,Y ∈ C and any morphismg : X → Y we haveaY ◦ F (g) = G(g) ◦ aX .
An endomorphism of a functor is just a morphism of this functor into itself.
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Recall that amonoidal categoryis a categoryC with a bifunctor⊗ : C ×C → C (i.e.
a functor with respect to each factor), called the tensor product, and an isomorphism
of functors8 : (∗ ⊗ ∗) ⊗ ∗ → ∗ ⊗ (∗ ⊗ ∗), called the associativity isomorphism,
such that8 satisfies the pentagon relation, and there exists a unit object1 ∈ C with
certain properties. Abraided monoidal categoryis a monoidal category with a functorial
isomorphismβ : ⊗ → ⊗op called the commutativity isomorphism, which satisfies the
hexagon relations. A braided category is calledsymmetricif β2 = 1. A monoidal category
will be called atensor categoryif it has an additive structure⊕, such that⊗ is distributive
with respect to⊕.

3.1. The category ofh-vector spaces.Let h be a finite-dimensional commutative Lie
algebra overC. LetMh∗ denote the field of meromorphic functions onh∗. Fix a complex
numberγ.

Let Vh denote the category whose objects are diagonalizableh-modules, and mor-
phisms are defined by HomVh

(X,Y ) = Homh(X,Y ⊗C Mh∗ ).
Let W ⊗ ∗ be the functor of multiplication byW . For anyW ∈ Vh and f ∈

EndVh
(W ), definef (∗ − γh(2)) ∈ End(W ⊗ ∗) by the formula

fV (λ− γh(2))(w ⊗ v) = fV (λ− γµ)w ⊗ v, (3.1.1)

for anyv ∈ V of weightµ (cf. Sect. 1.1).
Define a bifunctor̄⊗ : Vh × Vh → Vh as follows. For anyX,Y ∈ Vh, defineX⊗̄Y

to be the usual tensor productX⊗Y . For any two morphismsf : X → X ′, g : Y → Y ′
define the morphismf⊗̄g : X ⊗ Y → X ′ ⊗ Y ′ by the formula

f⊗̄g(λ) = f (1)(λ− γh(2))(1 ⊗ g(λ)). (3.1.2)

It is easy to see that the categoryVh equipped with the bifunctor̄⊗ is a tensor category
(cf. [Mac]). Indeed, the functors∗⊗̄(∗⊗̄∗) and (∗⊗̄∗)⊗̄∗ are equal, sō⊗ is associative.
Moreover, the object1 = C (the trivialh-module), satisfies the condition1 = 1⊗̄1, and
the functorsX → 1⊗̄X, X → X⊗̄1 are autoequivalences ofVh, so1 is an identity
object inVh.

We will call this monoidal category the category ofh-vector spaces. Ifh = 0, the
categoryVh coincides with the category of complex vector spaces.

If γ = 0, the categoryVh is equivalent, as a tensor category, to the category of
diagonalizableh-modules, with scalars extended fromC toMh∗ . This case is not very
interesting, so from now on we will assume thatγ 6= 0.

The categoryVh depends onγ, but the categories with different nonzeroγ are
obviously equivalent. We will suppress the dependence ofVh onγ in the notation.

Remark.It is clear that for any two objectsX,Y ∈ Vh the permutation operatorσXY :
X⊗̄Y → Y ⊗̄X is an isomorphism inVh. However, ifh 6= 0, then this isomorphism
is not functorial inX andY . In fact, it is quite easy to see that ifh 6= 0, there is no
functorial isomorphism betweenX⊗̄Y andY ⊗̄X: such an isomorphism would have to
conjugatef (1)(λ− γh(2))(1⊗ g(λ)) into g(1)(λ− γh(2))(1⊗ f (λ)) for anyf, g, which is
impossible, since there is no relation betweenf (λ) andf (λ−γµ) for a generic function
f . Thus, the categoryVh is a tensor category which in general does not admit a braided
structure.

3.2. Dynamical quantum R-matrices and tensor functors.It is known from the theory
of quantum groups that if we are given a braided monoidal categoryB, a symmetric
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tensor categoryV, and a tensor functorF : B → V, then for any objectX ∈ B we can
construct an elementR(B, F,X) ∈ AutV (F (X) ⊗ F (X)) which satisfies the quantum
Yang–Baxter equation, by the formula

R(B, F,X) = σF (βXX ), (3.2.1)

where
βXY : X ⊗ Y → Y ⊗X

is the braiding inB, andσ is the permutation. For brevity we will writeR(B, F,X) as
RX .

Suppose now that we are given a braided monoidal categoryB and a tensor functor
F : B → Vh. Observe that formula (3.2.1) makes sense in this situation. However, since
σXY is not a functorial isomorphism, we should not expectRX to be a solution to the
quantum Yang–Baxter equation. Still, it turns out thatRX satisfies a modified version
of the quantum Yang–Baxter equation, namely, the quantum dynamical Yang–Baxter
Eq. (1.1.3).

Theorem 3.1. The elementRX satisfies the quantum dynamical Yang–Baxter Eq. (1.1.3)
in EndVh

(F (X)⊗̄3).

Proof. We start with the braid relation

(β ⊗ 1)(1⊗ β)(β ⊗ 1) = (1⊗ β)(β ⊗ 1)(1⊗ β). (3.2.2)

Applying the functorF to (3.2.2), and using the definition of the tensor product of
morphisms inVh, we get (1.1.3). �

3.3. Representations of a quantum dynamical R-matrix.The notions discussed in this
section were introduced in [F1, F2, FV1].

LetR : h∗ → End(V ⊗ V ) be a quantum dynamical R-matrix (see Chapter 1).

Definition. A representation ofR is an objectW ∈ Vh endowed with an invertible
morphismL ∈ EndVh

(V ⊗̄W ), called the L-operator, such that

R12(λ− γh(3))L13(λ)L23(λ− γh(1))

= L23(λ)L13(λ− γh(2))R12(λ),
(3.3.1)

in EndVh
(V ⊗̄V ⊗̄W ).

Examples.1. The trivial representation:W = C, L = Id.
2. The basic representation:W = V , L = R.

Let (W,L) be a representation ofR. Let A ∈ AutVh
(W ). Let LA(λ) :=

(1 ⊗A(λ)−1)L(λ)(1 ⊗A(λ− γh(1))).

Lemma 3.1. (W,LA) is a representation ofR.

Proof. Straightforward. �

Let (W,LW ) and (U,LU ) be representations ofR.

Definition. A morphismA ∈ HomVh
(W,U ) is called anR-morphism if

(1 ⊗A(λ))LW (λ) = LU (λ)(1 ⊗A(λ− γh(1))), (3.3.2)
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Denote the space ofR-morphisms fromW toU by HomR(W,U ).
It is clear that the composition of two R-morphisms is again an R-morphism. Thus,

representations ofR form a category, which we denote byRep(R). This category is
additive, with the obvious notion of direct sum.

Definition. The tensor product ofW andU is the pair(W ⊗ U,LW⊗U ), where

LW⊗U (λ) = L12
W (λ− γh(3))L13

U (λ). (3.3.3)

Lemma 3.2. (W ⊗ U,LW⊗U ) is a representation ofR.

Proof. Straightforward. �

It is clear that (W ⊗ U ) ⊗X = W ⊗ (U ⊗X).

Lemma 3.3. If W,W ′, U, U ′ are representations ofR andf, g areR-morphisms then
f⊗̄g is anR-morphism.

Proof. Straightforward. �

Thus, we have equipped the categoryRep(R) with a structure of a tensor category.
Moreover, the forgetful functorF : Rep(R) → Vh is naturally a tensor functor.

Theorem 3.1 shows that any pair (B, F : B → Vh) defines a system of quantum
dynamical R-matrices. It turns out that conversely, any quantum dynamical R-matrixR
definesB, F , andX, such thatR = R(B, F,X). The construction ofB, F,X is parallel
to the case of usual R-matrices (h = 0), where it is well known.

Namely, letB be the subcategory ofRep(R) whose objects are tensor powers ofV ,
and morphisms are the same as in Rep(R). It is clearly a monoidal category. Define a
braidingβ on B by βV V = σR. It is easy to check using the hexagon axioms for the
braiding that there exists a unique braiding onB with suchβV V .

Let F : B → Vh be the forgetful functor. We assign the pair (B, F ) toR. It is clear
thatR = R(B, F,X) if we takeX = V .

3.4. Dual representations.It is useful to define the notion of the left and right dual
representations.

Definition. Let (W,LW ) be a representation ofR. The right dual representation toW
is the pair(W ∗, LW∗ ), whereW ∗ denotes theh-graded dual ofW , and

LW∗ (λ) = L−1
W (λ + γh(2))t2, (3.4.1)

provided that the r.h.s. of (3.4.1) is invertible (heret2 denotes dualization in the second
component). The left dual representation toW is the pair(∗W,L∗W ), where∗W = W ∗,
and

L∗W (λ) = Lt2W (λ− γh(2))−1, (3.4.2)

provided that the r.h.s. of (3.4.2) is well defined.

Remark 1.HereL−1
W (λ + γh(2))t2 denotes the result of three operations applied suc-

cessively toLW : inversion, shifting of the argument, and dualization in the second
component. Similarly,Lt2W (λ − γh(2))−1 denotes the result of three operations applied
successively toLW : dualization in the second component, shifting of the argument, and
inversion.
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Remark 2.We do not define the representationW ∗ if LW∗ is not invertible, and do not
define the representation∗W if Lt2W is not invertible.

Lemma 3.4. The right dual representation(W ∗, LW∗ ) and the left dual representation
(∗W,L∗W ) are representations ofR, and ifW has finite dimensional weight subspaces
then∗(W ∗) = (∗W )∗ = W .

Proof. The lemma can be checked by a direct calculation. It also follows from Propo-
sitions 4.1 and 4.4 below. �

Lemma 3.5. If A : W1 → W2 is a homomorphism of representations ofR, then the
linear mapA∗(λ) := A(λ+γh(1))t = At(λ−γh(1)) is a homomorphism of representations
W ∗

2 → W ∗
1 , and is a homomorphism of representations∗W2 → ∗W1, when these

representations are defined.

Proof. The lemma can be checked by a direct calculation. It also follows from Propo-
sitions 4.1 and 4.4. �

Remark.It is easy to show that for two finite dimensional representationsW1,W2 ofR,
the representation (W1 ⊗W2)∗ is naturally isomorphic toW ∗

2 ⊗W ∗
1 , and similarly for

the left dual, if the corresponding dual representations are defined.

4. h-Hopf Algebroids and Their Dynamical Representations

In this chapter we will define the notion of anh-bialgebroid, and give the simplest
nontrivial examples – dynamical quantum groups associated to quantum dynamical R-
matrices from Chapter 1. We will generalize this material in the next chapter.

4.1.h-bialgebroids.Leth be a finite dimensional commutative Lie algebra overC, andγ
a nonzero complex number. Recall thatMh∗ denotes the field of meromorphic functions
onh∗.

Definition. Anh-algebra with stepγ is an associative algebraAoverC with1, endowed
with an h∗-bigradingA = ⊕α,β∈h∗Aαβ (called the weight decomposition), and two
algebra embeddingsµl, µr : Mh∗ → A00 (the left and the right moment maps), such
that for anya ∈ Aαβ andf ∈ Mh∗ , we have

µl(f (λ))a = aµl(f (λ + γα)), µr(f (λ))a = aµr(f (λ + γβ)). (4.1.1)

A morphismϕ : A → B of two h-algebras is an algebra homomorphism, pre-
serving the moment maps. By (4.1.1), such a homomorphism also preserves the weight
decomposition.

Let A,B be twoh-algebras with stepγ, andµAl , µ
A
r , µ

B
l , µ

B
r their moment maps.

Define their “matrix tensor product”,A⊗̃B, which is also anh-algebra.

Definition. Let
(A⊗̃B)αδ := ⊕βAαβ ⊗Mh∗ Bβδ, (4.1.2)

where⊗Mh∗ means the usual tensor product modulo the relationµAr (f )a ⊗ b = a ⊗
µBl (f )b, for anya ∈ A, b ∈ B, f ∈ Mh∗ .
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Introduce a multiplication inA⊗̃B by the rule (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. It is easy
to show that this product is well defined (cf. Proposition 5.1). Define the moment maps

for A⊗̃B by µA⊗̃B
l (f ) = µAl (f ) ⊗ 1, µA⊗̃B

r (f ) = 1 ⊗ µBr (f ). It is easy to check that
this makesA⊗̃B into anh-algebra. It is clear that̃⊗ is functorial with respect to both
factors, and (A⊗̃B)⊗̃C = A⊗̃(B⊗̃C). However,A⊗̃B is not, in general, isomorphic to
B⊗̃A.

Remark.The name “matrix tensor product” is used because formula (4.1.2) reminds of
the matrix multiplication.

Definition. A coproduct on anh-algebraA is a homomorphism ofh-algebras1 : A →
A⊗̃A.

LetDh be the algebra of difference operatorsMh∗ → Mh∗ , i.e. operators of the form∑n
i=1 fi(λ)Tβi , wherefi ∈ Mh∗ , and forβ ∈ h∗ we denote byTβ the field automorphism

of Mh∗ given by (Tβf )(λ) = f (λ + γβ).
The algebraDh is the simplest nontrivial example of anh-algebra. Indeed if we

define the weight decomposition byDh = ⊕(Dh)αβ , where (Dh)αβ = 0 if α 6= β, and
(Dh)αα = {f (λ)T−1

α : f ∈ Mh∗}, and the moment mapsµl = µr : Mh∗ → (Dh)00 to
be the tautological isomorphism, thenDh becomes anh-algebra.

Lemma 4.1. For any h-algebraA, the algebrasA⊗̃Dh andDh⊗̃A are canonically
isomorphic toA.

Proof. Straightforward. �

Lemma 4.1 shows that the category ofh-algebras equipped with the product⊗̃ is a
monoidal category, where the unit object isDh.

Definition. A counit on anh-algebraA is a homomorphism ofh-algebrasε : A → Dh.

Definition. Anh-bialgebroid is anh-algebraAequipped with a coassociative coproduct
1 (i.e. such that(1⊗ IdA)◦1 = (IdA⊗1)◦1), and a counitε such that(ε⊗ IdA)◦1 =
(IdA ⊗ ε) ◦ 1 = IdA.

The property of the counit in the definition makes sense because of Lemma 4.1.

4.2. Dynamical representations ofh-bialgebroids.LetW be a diagonalizableh-module,
and letDα

h,W ⊂ HomC(W,W ⊗Dh) be the space of all difference operators onh∗ with
coefficients in EndC(W ), which have weightα with respect to the action ofh in W .

Consider the algebraDh,W = ⊕αD
α
h,W . This algebra has a weight decomposition

Dh,W = ⊕α,β(Dh,W )αβ defined as follows: ifg ∈ HomC(W,W ⊗Mh∗ ) is an operator
of weightβ − α thengT−1

β ∈ (Dh,W )αβ .
Define the moment mapsµl, µr : Mh∗ → (Dh,W )00 by the formulasµr(f (λ)) =

f (λ), µl(f (λ)) = f (λ− γh).

Lemma 4.2. The algebraDh,W equipped with this weight decomposition and these
moment maps is anh-algebra.

Proof. Straightforward. �
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Lemma 4.3. There is a natural embedding ofh-algebrasθWU : Dh,W ⊗̃Dh,U →
Dh,W⊗U , given by the formulafTβ ⊗ gTδ → (f⊗̄g)Tδ, where⊗̄ is defined in Chap-
ter 3, andf ∈ Hom(W,W ⊗ Mh∗ ). This embedding is an isomorphism ifW,U are
finite-dimensional.

Proof. We have to show that the mapθWU is well defined, and is an embedding. We
also have to show thatθWU is a homomorphism ofh-algebras, which is an isomorphism
in the finite-dimensional case.

The fact thatθWU is well defined follows from the identityϕ(λ)f⊗̄g = f⊗̄ϕ(λ −
γh)g, for any functionϕ ∈ Mh∗ . The injectivity ofθWU , and its surjectivity in the finite
dimensional case are straightforward.

It remains to show thatθWU is a homomorphism ofh-algebras. It is obvious that
θWU preserves the moment maps, so it remains to show that it is multiplicative. We have

θWU ((f (λ)T−1
β ⊗ g(λ)T−1

δ )(f ′(λ)T−1
β′ ⊗ g′(λ)T−1

δ′ )) =

θWU (f (λ)f ′(λ− γβ)T−1
β+β′ ⊗ g(λ)g′(λ− γδ)T−1

δ+δ′ ) =

f (1)(λ− γh(2))f
′(1)(λ− γh(2) − γβ)(1 ⊗ g(λ)g′(λ− γδ))T−1

δ+δ′ =

f (1)(λ− γh(2))(1 ⊗ g(λ))f
′(1)(λ− γh(2) − γδ)(1 ⊗ g′(λ− γδ))T−1

δ+δ′ =

f (1)(λ− γh(2))(1 ⊗ g(λ))T−1
δ f

′(1)(λ− γh(2))(1 ⊗ g′(λ))T−1
δ′ =

θWU (f (λ)T−1
β ⊗ g(λ)T−1

δ )θWU (f ′(λ)T−1
β′ ⊗ g′(λ)T−1

δ′ ).

(4.2.1)

The lemma is proved. �
Definition. A dynamical representation of anh-algebraA is a diagonalizableh-module
W endowed with a homomorphism ofh-algebrasπW : A → Dh,W . A homomorphism
of dynamical representationsϕ : W1 → W2 is an element of HomC(W1,W2 ⊗ Mh∗ )
such thatϕ ◦ πW1(x) = πW2(x) ◦ ϕ for all x ∈ A.

Example.If A has a counit, then it has the trivial representation:W = C, π = ε.
Suppose now thatA is an h-bialgebroid. Then, ifW andU are two dynamical

representations ofA, theh-moduleW ⊗ U also has a natural structure of a dynamical
representation, defined byπW⊗U (x) = θWU ◦ (πW ⊗ πU ) ◦ 1(x).

It is easy to show that iff : W1 → W2 andg : U1 → U2 are homomorphisms of
dynamical representations, thenf⊗̄g is a homomorphismW1 ⊗U1 → W2 ⊗U2 (where
⊗̄ is defined in Chapter 3). This gives a rule of tensoring morphisms. Thus, dynamical
representations ofA form a monoidal category Rep(A), whose identity object is the
trivial representation.

Moreover, the category Rep(A) is equipped with a natural tensor functor Rep(A) →
Vh to the category ofh-vector spaces – the forgetful functor.

4.3. h-Hopf algebroids and dual representations.Let us introduce the notion of an
antipode on anh-bialgebroid.

LetA be anh-algebra. A linear mapS : A → A is called an antiautomorphism of
h-algebras if it is an antiautomorphism of algebras andµr ◦ S = µl, µl ◦ S = µr. From
these conditions it follows thatS(Aαβ) = A−β,−α.

LetA be anh-bialgebroid, and let1, ε be the coproduct and counit ofA. Fora ∈ A,
let

1(a) =
∑
i

a1
i ⊗ a2

i . (4.3.1)
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Definition. An antipode on theh-bialgebroidA is an antiautomorphism ofh-algebras
S : A → A such that for anya ∈ A and any presentation (4.3.1) of1(a), one has∑

i

a1
iS(a2

i ) = µl(ε(a)1),
∑
i

S(a1
i )a

2
i = µr(ε(a)1), (4.3.2)

whereε(a)1 ∈ Mh∗ is the result of application of the difference operatorε(a) to the
constant function1.

Remark.It is easy to see that
∑
i a

1
iS(a2

i ) and
∑
i S(a1

i )a
2
i depends only ona and not

on the choice of the presentation (4.3.1).

Definition. Anh-bialgebroid with an antipode is called anh-Hopf algebroid.

Remark.If h = 0, the notions of anh-algebra,h-bialgebroid,h-Hopf algebroid coincide
with the notions of an algebra, bialgebra, and Hopf algebra, respectively.

For anyh-Hopf algebroidA, the category Rep(A) has the following natural notion
of the left and right dual representation.

If (W,πW ) is a dynamical representation of anh-algebraA, we denote byπ0
W : A →

Hom(W,W ⊗ Mh∗ ) the map defined byπ0
W (x)w = πW (x)w, w ∈ W (the difference

operatorπW (x) restricted to the constant functions). It is clear thatπW is completely
determined byπ0

W .

Definition. Let (W,πW ) be a dynamical representation ofA. Then the right dual rep-
resentation toW is (W ∗, πW∗ ), whereW ∗ is theh-graded dual toW , and

π0
W∗ (x)(λ) = π0

W (S(x))(λ + γh− γα)t (4.3.3)

for x ∈ Aαβ , where t denotes dualization. The left dual representation toW is
(∗W,π∗W ), where∗W = W ∗, and

π0
∗W (x)(λ) = π0

W (S−1(x))(λ + γh− γα)t (4.3.4)

for x ∈ Aαβ .

Proposition 4.1. Formulas (4.3.3) and (4.3.4) define dynamical representations ofA.
Moreover, ifA(λ) : W1 → W2 is a morphism of dynamical representations, then
A∗(λ) := A(λ + γh)t defines a morphismW ∗

2 → W ∗
1 and∗W2 → ∗W1.

Proof. Let x ∈ Aαxβx , y ∈ Aαyβy . Thenπ0
W (xy)(λ) = π0

W (x)(λ)π0
W (y)(λ − γβx) by

the definition of a dynamical representation. Therefore, we have

π0
W∗ (xy)(λ)t = π0

W (S(xy))(λ + γh− γαx − γαy) =

π0
W (S(y)S(x))(λ + γh− γαx − γαy) =

π0
W (S(y))(λ + γh− γαx − γαy + γαS(x)

−γβS(x))π
0
W (S(x))(λ + γh− γαx − γαy − βS(y)) =

π0
W (S(y))(λ + γh− γαy − γβx)π0

W (S(x))(λ + γh− γαx).

(4.3.5)

Dualizing (4.3.5), we get
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π0
W∗ (xy)(λ) = π0

W (S(x))(λ + γh− γαx)tπ0
W (S(y))(λ + γh− γαy − γβx)t =

π0
W∗ (x)(λ)π0

W∗ (y)(λ− γβx),
(4.3.6)

which implies the first statement of the proposition forW ∗. The proof for∗W is obtained
by replacingS by S−1.

Let us prove the second statement. The intertwining property ofA(λ) can be written
as

A(λ)π0
W (x)(λ) = π0

W (x)(λ)A(λ− γβx). (4.3.7)

Replacingx with S(x) and shifting the arguments, we get

A(λ + γh− γβx)π0
W (S(x))(λ + γh− γαx) =

π0
W (S(x))(λ + γh− γαx)A(λ + γh− γαx − γβS(x)).

(4.3.8)

Dualizing (4.3.8) and using the identityβS(x) + αx = 0, we get the second statement of
the proposition. The proposition is proved. �

4.4. h-bialgebroids associated to a functionR : h∗ → End(V ⊗ V ). Let h be a
finite dimensional commutative Lie algebra, andV = ⊕α∈h∗Vα a finite dimensional
diagonalizableh-module. LetR(λ) be a meromorphic functionh∗ → End(V ⊗ V ) of
zero weight, such thatR(λ) is invertible for a genericλ. UsingR, we will now define an
h-bialgebroidAR which we call thedynamical quantum groupcorresponding toR. This
construction is analogous to the Faddeev–Reshetikhin–Sklyanin–Takhtajan construction
of the quantum function algebra onGLN .

As an algebra,AR by definition is generated by two copies ofMh∗ (embedded
as subalgebras) and certain new generators, which are matrix elements of the operators
L±1 ∈ End(V )⊗AR. We denote the elements of the first copy ofMh∗ asf (λ1) and of the
second copy asf (λ2), wheref ∈ Mh∗ . We denote by (L±1)αβ the weight components
of L±1 with respect to the naturalh-bigrading on End(V ), so thatL±1 = (L±1

αβ), where

L±1
αβ ∈ HomC(Vβ , Vα) ⊗AR.

Then the defining relations forAR are:

f (λ1)Lαβ = Lαβf (λ1 +γα); f (λ2)Lαβ = Lαβf (λ2 +γβ); [f (λ1), g(λ2)] = 0; (4.4.1)

LL−1 = L−1L = 1; (4.4.2)

and the dynamical Yang–Baxter relation

R12(λ1)L13L23 =: L23L13R12(λ2) : . (4.4.3)

Here the :: sign (“normal ordering”) means that the matrix elements ofL should be put
on the right of the matrix elements ofR. Thus, if{va} is a homogeneous basis ofV ,
andL =

∑
Eab ⊗ Lab,R(λ)(va ⊗ vb) =

∑
Rabcd(λ)vc ⊗ vd, then (4.4.3) has the form∑

Rxyac (λ1)LxbLyd =
∑

Rbdxy(λ2)LcyLax, (4.4.4)

where we sum over repeated indices.
More precisely, the algebraAR is, by definition, the quotient of the algebrãA freely

generated byMh∗ ⊗ Mh∗ and elementsLab, (L−1)ab, a, b = 1, ..., dimV , by the ideal
defined by relations (4.4.1)–(4.4.3).
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Introduce the moment maps forAR byµl(f ) = f (λ1),µr(f ) = f (λ2), and the weight
decomposition byf (λ1), f (λ2) ∈ (AR)00, Lαβ ∈ HomC(Vβ , Vα) ⊗ (AR)αβ . It is clear
thatAR equipped with such structures is anh-algebra.

Now define the coproduct onAR, 1 : AR → AR⊗̃AR, by the usual Lie-theoretic
formulas

1(L) = L12L13,1(L−1) = (L−1)13(L−1)12 (4.4.5)

(here1 is applied to the second component ofL,L−1).

Proposition 4.2. 1 extends to a well defined homomorphismA → A⊗̃A.

Proof. From (4.4.5) we get

1(Lαβ) =
∑
θ

L12
αθL

13
θβ . (4.4.6)

So it remains to show that the defining relations ofAR are invariant under1. The
invariance of relations (4.4.1) follows directly from (4.4.6). Relation (4.4.2) is obviously
invariant. To check the invariance of relation (4.4.3), we have to show that

R12(λ1
1)L13L14L23L24 =: L23L24L13L14R12(λ2

2) : (4.4.7)

(the subscripts 1, 2 underλ indicate that the corresponding functions are taken from the
first and the second components ofAR in the productAR⊗̃AR; and, as before, the ::
sign indicates that the functions ofλi are written on the left from the L-operators).

We have

R12(λ1
1)L13L14L23L24 = R12(λ1

1)L13L23L14L24 =: L23L13R12(λ2
1) : L14L24 =

L23L13R12(λ1
2)L14L24 = L23L13 : L24L14R12(λ2

2) :=: L23L24L13L14R12(λ2
2) : .

(4.4.8)
(We replacedλ2

1 by λ1
2 in the middle of (4.4.8) sinceAR⊗̃AR is by definition inside of

the tensor productAR ⊗Mh∗ AR, whereMh∗ is mapped into the first component ofAR
byµr and into the second byµl, acting from the left). The proposition is proved. �

Now define the counit on the algebraAR. Recall that the counit has to be an algebra
homomorphismε : AR → Dh.

Define the counit by the formula

ε(Lαβ) = δαβ IdVα ⊗ T−1
α , ε((L−1)αβ) = δαβ IdVα ⊗ Tα, (4.4.9)

where IdVα : Vα → Vα is the identity operator.
We need to check that the counit is well defined, i.e. that the defining relations are

annihilated by it. For relations (4.4.1),(4.4.2) it is obvious. Relation (4.4.3) reduces to
checking that

(
∑
α,β

R12(λ)(IdVα ⊗ IdVβ )) ⊗ T−1
α+β = (

∑
α,β

(IdVα ⊗ IdVβ )R12(λ)) ⊗ T−1
α+β , (4.4.10)

which holds becauseR has zero weight.

Proposition 4.3. The counit axiom(Id ⊗ ε) ◦ 1 = (ε⊗ Id) ◦ 1 = Id is satisfied forAR.
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Proof. We need to check the relations onL. These relations follow from the fact that the
elementsT−1

α ⊗ Lαβ , Lαβ ⊗ T−1
β are mapped toLαβ under the natural isomorphisms

Dh⊗̃AR → AR,AR⊗̃Dh → AR. �

Thus,AR is anh-bialgebroid. We will call it thedynamical quantum groupcorre-
sponding to the functionR.

It is also possible to consider the algebra generated byf (λ1), f (λ2), L (without
L−1). Denote this algebra bȳAR. The algebraĀR is anh-bialgebroid, which is naturally
mapped toAR.

Remark.The algebraĀR was introduced in [FV1] under the name of “the operator
algebra”.

4.5. The antipode onAR. Let A,B be algebras with 1. ForX ∈ B ⊗ A, definei(X)
to be the inverse ofX, andi∗(X) to be the inverse ofX in the algebraB ⊗Aop, where
Aop isA with the reversed order of multiplication. Clearly,i2 = i2∗ = Id.

Let I be the group freely generated byi, i∗ with relationsi2 = i2∗ = Id. We will
say that an elementX is strongly invertibleif for any g ∈ I the elementg(X) is well
defined.

Definition. An invertible, weight zero matrix functionR is said to be rigid if the element
L ∈ End(V ) ⊗AR is strongly invertible.

Proposition 4.4. R is rigid if and only ifAR admits an antipodeS such thatS(L) = L−1.
In this case,S2n(L) = (i∗i)n(L), S2n+1(L) = i(i∗i)n(L). In particular,S(L−1) = i∗i(L).

Proof. Suppose thatR is rigid. Extend the definition of the antipode byS(L−1) =
i∗(L−1) = i∗i(L). It is easy to see that the relations ofAR are preserved, so this indeed
defines an antihomomorphismS : A → A. Moreover,S is an isomorphism: the inverse
is given byS−1(L−1) = L, S−1(L) = i∗(L).

Now suppose thatS is defined. Then it is easy to check that (i∗i)n(L) = S2n(L),
i(i∗i)n(L) = S2n+1(L),n ∈ Z. This definesg(L) for all g ∈ I. The proposition is proved.
�

Remark 1.The proposition shows that for rigidity ofR, it is sufficient thati∗(L) and
i∗(L−1) be defined.

Remark 2.Observe that in generalS2 6= 1.

Thus, ifR is rigid thenAR is anh-Hopf algebroid.

4.6. Representation theory ofAR. Now consider the representation theory ofAR. As
was pointed out in [FV1], the category Rep(AR) of dynamical representations ofAR is
tautologically isomorphic to the category Rep(R) of representations ofR.

Proposition 4.5. The tensor categoriesRep(AR) andRep(R) are equivalent.

Proof. Define the functor0 : Rep(AR) → Rep(R) to be the identity at the level of
vector spaces, and set

L0(W ) = π0
W (L). (4.6.1)
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Define the functor0−1 : Rep(R) → Rep(AR) by

π0
0−1(W )(L) = LW . (4.6.2)

These functors preserve tensor structure, and are obviously inverse to each other. The
proposition is proved. �

It is easy to see that the functor0 commutes with the duality functors. Therefore, if
R is rigid, then the representationsW ∗,∗W of R are well defined for anyW , and the
categoryRepf (R) of finite-dimensional representations ofR (= the categoryRepf (AR)
of finite dimensional dynamical representations ofAR) is a rigid tensor category[DM].
This explains our use of the word “rigid”.

AlthoughAR is anh-Hopf algebroid for any rigid zero weight functionR, it does
not always have nice properties. For a genericR, this algebra will be very small and will
not have interesting dynamical representations. However ifR is a dynamical quantum
R-matrix, then the category Rep(R) is nontrivial (it contains the basic representation
defined in Chapter 3), so by Proposition 4.4 the category Rep(AR) is also nontrivial.
Thus, algebrasAR with R being a dynamical quantum R-matrix form a good class of
h-Hopf algebroids. From now on we will only considerAR for R being a dynamical
quantum R-matrix.

4.7. Sufficient conditions for rigidity.Unfortunately, the definition of rigidity cannot be
effectively checked, since it depends on the properties of the algebraAR, about whose
structure we do not know very much. Therefore, we would like to find some effective
sufficient conditions of rigidity.

For any functionX : h∗ → End(V ⊗V ), define the functioñX : h∗ → End(V ⊗V )
as follows. Suppose that forv, w ∈ V one hasX(λ)(v ⊗ w) =

∑
i fi(λ)vi ⊗ wi, where

fi ∈ Mh∗ andwi are homogeneous. Then setX̃(λ)(v⊗w) =
∑
i fi(λ+γ wt(wi))vi⊗wi,

wherewt(wi) denotes the weight ofwi.
LetR be a dynamical quantum R-matrix with stepγ. Assume thati∗(R̃) is defined.
Let us writeR̃ in the formR̃ =

∑
ai ⊗ bi, andi∗(R̃) in the formi∗(R̃) =

∑
ci ⊗ di.

Define the operatorsQ =
∑
dici, Q

′ =
∑
cidi : h∗ → End(V ). These operators are

of weight zero with respect toh, sinceR is of weight zero.

Proposition 4.6. SupposeR is such thati∗(R̃) is defined, andR satisfies the following
conditions:

(i) The operatorQ is invertible for a genericλ.
(ii) The operatorQ′ is invertible for a genericλ.

ThenR is rigid, and

i∗(L−1) = S2(L) =: (Q(λ1) ⊗ 1)L(Q−1(λ2) ⊗ 1) :

=: (Q′(λ1 + γh)−1 ⊗ 1)L(Q′(λ2 + γh) ⊗ 1) : .
(4.7.1)

Remark.It is clear that (i) and (ii) are satisfied forR = 1 and are open conditions.
Therefore, Proposition 4.5 shows that ifRγ is a continuous family of quantum dynamical
R-matrices with stepγ such thatR0 = 1, thenRγ is rigid for smallγ.
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Proof. First of all, let us deduce a commutation relation betweenL andL−1.
Multiplying the dynamical Yang–Baxter equation by (L−1)23 on the right, we get

R12(λ1)L13 =: L23L13R12(λ2)(L23)−1 : . (4.7.2)

Let {va} be anh-homogeneous basis ofV , andL =
∑
Eab ⊗ Lab. Denote byωa the

weight ofva. Then we have

: L23L13R12(λ2) : (L23)−1 =
∑

E(2)
ab : L(3)

abL
13R12(λ2)(L23)−1 :=∑

E(2)
abL

(3)
ab : L13R12((λ + γωb)

2)(L23)−1 :=∑
E(2)
abL

(3)
ab : L13R̃12(λ2)(L23)−1 := L23 : L13R̃12(λ2) : (L23)−1.

(4.7.3)

Therefore, multiplying (4.7.2) on the left by (L23)−1 we get

(L23)−1 : R12(λ1)L13 :=: L13R̃12(λ2)(L23)−1 : . (4.7.4)

Transforming the left hand side of this equation similarly to (4.7.3), we arrive at the
equation

: (L23)−1R̃12(λ1)L13 :=: L13R̃12(λ2)(L23)−1 :, (4.7.5)

which is the desired commutation relation.
Now, using property (i), define

T =: (Q(λ1) ⊗ 1)L(Q−1(λ2) ⊗ 1) :∈ End(V ) ⊗AR. (4.7.6)

Let * denote the product in the algebra End(V ) ⊗ (AR)op. Let us compute the product
L−1 ∗ T .

SetL−1 =
∑
Eab ⊗ (L−1)ab. Then we get

L−1 ∗ T =
∑

(EpqQ(λ2)ErsQ
−1(λ1) ⊗ 1)(1⊗ Lrs(L

−1)pq). (4.7.7)

Using (4.7.5), we can rewrite (4.7.7) in the form

L−1 ∗ T =
∑

(di(λ
2)Ersbj(λ

1)Q(λ1)aj(λ
1)Epqci(λ

2)Q−1(λ2) ⊗ 1)(1⊗Lrs(L
−1)pq).
(4.7.8)

Using the definition ofQ, we have∑
biQai = 1. (4.7.9)

Substituting (4.7.9) into (4.7.8), we getL−1 ∗ T = 1.
Now, using property (ii), define

T ′ =: (Q′(λ1 + γh)−1 ⊗ 1)L(Q′(λ2 + γh) ⊗ 1) : . (4.7.10)

Then, analogously to the above, we getT ′ ∗ L−1 = 1. Thus,T = T ′ = i∗(L−1).
It is easy to see that

i∗(L) =: (Q−1(λ2) ⊗ 1)L(Q(λ1) ⊗ 1) : . (4.7.11)

Thus,R is rigid. �
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Now we will show that any rigid quantum dynamical R-matrix satisfies a certain
crossing symmetry condition.

For an invertible zero weight functionX(λ) ∈ End(V ⊗ V ), set

τ (X)(λ) = X−1(λ + γh(2))t2. (4.7.12)

Corollary 4.1. Let R be a rigid quantum dynamical R-matrix onV . Thenτ (R) is
invertible, andR satisfies the crossing symmetry condition

τ2(R) = (Q(λ− γh(2)) ⊗ 1)R(λ)(Q−1(λ) ⊗ 1). (4.7.13)

Proof. It is clear thatτ2(R) = LV ∗∗ , whereV is the basic representation ofR. Therefore,
using (4.7.1) in the basic representation, we get (4.7.12).�

4.8. Dynamical quantum groups associated to dynamical R-matrices ofglN type. Now
suppose thatR is a dynamical R-matrix ofglN -type. Then it has form (1.3.2), and we
can write the defining relations forAR more explicitly. Since all weight subspaces ofV
are 1-dimensional, we have (L±1)αβ ∈ A. For brevity we write (L±1)ab for (L±1)ωaωb .
Thus, we haveL±1 =

∑
Eab ⊗ (L±1)ab.

In this notation, the defining relations forAR look like

LL−1 = L−1L = 1,

f (λ1)Lbc = Lbcf (λ1 + γωb), f (λ2)Lbc = Lbcf (λ2 + γωc),

LasLat =
αst(λ2)

1 − βts(λ2)
LatLas, s 6= t,

LbsLas =
αab(λ1)

1 − βab(λ1)
LasLbs, a 6= b,

αab(λ1)LasLbt − αst(λ2)LbtLas = (βts(λ2) − βab(λ1))LbsLat, a 6= b, s 6= t,

(4.8.1)

whereαab, βab are the functions from (1.3.2).

Remark.It is also possible to define dynamical quantum groups associated with dy-
namical R-matrices with spectral parameter. It is done analogously to the above, and
we will do it in detail in a forthcoming paper. For example, ifR(z, λ) is a quantum
dynamical R-matrix with spectral parameter of elliptic type (i.e. of the form (2.5.1)),
we will get the elliptic quantum group defined in [F1, F2, FV1, FV2]. Relations (4.8.1)
(for dynamical R-matrices ofglN Hecke type) can be obtained as a limiting case of the
defining relations for the elliptic quantum group.

4.9. Rigidity of the rational and the trigonometric dynamical R-matrix.Consider the
trigonometric dynamical R-matrixR(λ) defined by (1.6.4), withX = {1, ..., N}, and
µab = 1.

Proposition 4.7. R(λ) is rigid, and the matricesQ,Q′ are given by the formulas

Q = diag(Q1, ..., QN ), Q′ = diag(Q′
1, ..., Q

′
N ),

Qa(λ) =
∏
i6=a

q1+λi − qλa

qλi − qλa
,

Q′
a(λ) = qQ−1

a (λ),

(4.9.1)

whereq = eε.
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Proof. First of all, it is not hard to show by a direct computation that the matrixi∗(R̃)
is defined. So it remains to show that the elementsQ,Q′ are invertible.

Let P (λ) = Q′(λ + γh). Let Pi, Qi be the diagonal entries ofP,Q. As we know,
these entries are defined by the following systems of linear equations:

Qa +
∑
b6=a

βab(λ + γωa)Qb = 1,

Pa +
∑
b6=a

βba(λ + γωb)Pb = 1.
(4.9.2)

The explicit form of the systems (4.9.2) is

Qa +
∑
b6=a

q − 1
q1+λa−λb − 1

Qb = 1,

Pa +
∑
b6=a

q − 1
q1+λb−λa − 1

Pb = 1.

Thus, if one of these systems is nondegenerate (which we show below) thenQ(λ) =
P (−λ).

From now on we consider only the first system. Note that it can be conveniently
written as ∑

b

q − 1
q1+λa−λb − 1

Qb = 1. (4.9.3)

DefineXb = qλbQb. Then (4.9.3) can be written as∑
b

1
[1 + λa] − [λb]

Xb = 1, (4.9.4)

where [x] = qx−1
q−1 . Thus, the vectorX is defined byX = C−11, whereCab = 1

[1+λa]−[λb] ,
and1 is the vector whose components are all equal to 1.

To invert the matrixC, we use the well known combinatorial identity (which is called
the “Bose-Fermi correspondence” in physics):

det(
1

xi − yj
) =

∏
i<j(xi − xj)

∏
i<j(yi − yj)∏

i,j(xi − yj)
. (4.9.5)

Applying this identity toxi = [1 + λi], yi = [λi], and using the usual rule of inverting
matrices, we get

(C−1)ab =

∏
(i,j):i=b or j=a(xi − yj)∏

j 6=b(xb − xj)
∏
i6=a(yi − ya)

. (4.9.6)

In particular,

Xa =
∑
b

(C−1)ab =

∏
i(xi − ya)∏
i6=a(yi − ya)

∑
b

∏
j 6=a(xb − yj)∏
j 6=b(xb − xj)

. (4.9.7)

Claim 1. ∑
b

∏
j 6=a(xb − yj)∏
j 6=b(xb − xj)

= 1. (4.9.8)
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Proof of the claim.Consider the expression on the l.h.s. of (4.9.8) as a rational function
of z = xa for fixedxb, b 6= a. This function has no more than simple poles atxb, b 6= a,
and no other singularities; it equals 1 at infinity. Thus, it suffices to show that its residues
vanish, which is obvious: only two terms contribute to each residue, ant these two terms
cancel each other.

Thus, we get:

Qa(λ) = q−λa
∏
i([1 + λi] − [λa])∏
i6=a([λi] − [λa])

, (4.9.9)

i.e.

Qa(λ) =
∏
i6=a

q1+λi − qλa

qλi − qλa
,

Pa(λ) =
∏
i6=a

q1−λi − q−λa

q−λi − q−λa .
(4.9.10)

Therefore,

Q′
a(λ) = Pa(λ− ωa) =

∏
i6=a

q1−λi − q1−λa

q−λi − q1−λa =
∏
i6=a

q1+λi − q1+λa

q1+λi − qλa
= qQ−1

a (λ). (4.9.11)

Thus,R is rigid, andQ,Q′ are given by formula (4.9.1). The proposition is proved.
�

An analogous theorem holds for the rational dynamical R-matrix (1.5.1) (withX =
{1, ..., N} andµab = 0). The formulas forQ,Q′ for suchR are obtained from (4.9.1)
asq → 1.

It is easy to show that the property of rigidity is preserved by gauge transformations,
so we get

Corollary 4.2. Any quantum dynamical R-matrixR of glN Hecke type is rigid.

Clearly, the elementsQ,Q′ for any suchR can be easily computed from (4.9.1).

5. H-Biequivariant Hopf Algebroids

In this chapter we generalize the notions of anh-algebra,h-bialgebroid,h-Hopf algebroid
to the case when the Lie algebrah is not necessarily commutative, and define quantum
counterparts of the quasiclassical notions introduced in Chapters 1-2 of [EV].

We will define the notions of anH-biequivariant Hopf algebroid and quantum
groupoid. The notion of anH-biequivariant quantum groupoid is a quantum analogue
of the notion of anH-biequivariant Poisson groupoid, introduced in [EV]. We will also
introduce less general notions of a dynamical quantum groupoid and Hopf algebroid,
which are quantum analogues of the notions of a dynamical Poisson groupoid and Hopf
algebroid.

In this chapter we will work mostly in the setting of perturbation theory. That is,
quantum objects will be defined overk[[~]], wherek is some field, and give classical
objects modulo~ and quasiclassical ones modulo~2. We discuss the relationship between
the quasiclassical and quantum objects, and questions regarding quantization.
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5.1. Quantization of Poisson algebras.In this section we will recall some well known
facts from the theory of deformation quantization.

Let k be a field of characteristic zero. LetK = k[[~]]. By a topologically free
K-module we mean aK-module of the formV [[~]], where V is a k-vector space.
All K-modules we will use will be topologically free. By tensor product of two such
modules we will always mean completed tensor product overK.

LetA0 be a commutative algebra overkwith 1. Recall that according to Grothendieck,
a linear operatorD : A0 → A0 is a differential operator of order≤ N,N ≥ 1 if for any
a ∈ A0 the operatorf → D(af )−aDf is a differential operator of order≤ N −1, and
a differential operator of order 0 is the operator of multiplication by an element ofA0. If
A0 is the algebra of regular functions on a manifold (smooth, analytic, algebraic, formal)
then “differential operator of orderN ” means what it usually means in geometry.

LetA0 be a Poisson algebra overk with 1, with Poisson bracket{, }. Recall that by
a quantization ofA0 is meant aK-moduleA = A0[[~]] equipped with a K-linear binary
operation∗ : A ⊗ A → A, which defines an associative algebra structure onA, such
thatA/~A = A0 as an algebra, and1~ (f ∗ g − g ∗ f ) mod~ = {f, g}, f, g ∈ A0 ⊂ A.
In this caseA0 is called the quasiclassical limit ofA.

Let f, g ∈ A0. Then

f ∗ g = fg + ~c1(f, g) + ~2c2(f, g) + ..., (5.1.1)

whereci : A0 ⊗ A0 → A0 are linear maps. A quantization defined by (5.1.1) is called
local if ci(f, g) is a differential operator inf andg for anyi. If A0 is the algebraO(X) of
regular functions on a smooth manifoldX, andA is a local quantization ofA0, thenA
defines (by formula (5.1.1)) a quantizationAU of the algebra (AU )0 = O(U ) of regular
functions on any open subsetU of X. In other words, it defines a quantization of the
sheaf of regular functions. This holds also in the holomorphic and algebraic situations,
if X is affine.

Let X be a manifold, and letT ∗X be its cotangent bundle. LetA0 = O(T ∗X)p
be the Poisson algebra of regular functions onT ∗X which are fiberwise polynomial
of a uniformly bounded degree. This Poisson algebra has a distinguished quantization
A = Oq(T ∗X)p called the canonical quantization (q is not a parameter here but the first
letter of the word “quantum”). Namely,A is the algebra of formal series of the form∑
n≥0 ~nDn, whereDi are differential operators onX, such thatn ≥ order(Dn), and

n− order(Dn) → +∞, asn → ∞. It is easy to check that this quantization is local, so
it defines a quantizationAU = Oq(U ) of the Poisson algebra (AU )0 = O(U ) of regular
functions on an open subsetU ∈ T ∗X.

Let g be a Lie algebra, andg∗ be its dual space, with the usual Poisson structure.
Consider the Poisson algebraO(g∗)p of polynomial functions ong∗. This algebra has a
distinguished quantizationA = Oq(g∗)p, called the geometric quantization. Namely,A is
the algebra of formal series of the form

∑
n≥0 ~nDn, whereDi ∈ U (g),n ≥ order(Dn),

andn− order(Dn) → +∞, n → ∞. It is easy to check that this quantization is local, so
it defines a quantizationAU = Oq(U ) of the Poisson algebra (AU )0 = O(U ) of regular
functions on an open subsetU ∈ g∗.

5.2.H-biequivariant associative algebras.In this section we will introduce the notion
of anH-biequivariant associative algebra. This notion is a quantum analogue of the
notion of anH-biequivariant Poisson algebra, introduced in a previous paper [EV].

LetA be an associative algebra overK with 1, which is commutative mod~, H a
connected affine algebraic group overk, andψ : A×H → A be a right algebraic action
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ofH onA by automorphisms, defined overk. This means thatA, as a representation of
H, has the formA0[[~]], whereA0 is a sum of finite dimensional representations ofH
overk.

Let h be the Lie algebra ofH. LetU ⊂ h∗ be anH-invariant open set. A homomor-
phismµ : Oq(U ) → A is called a quantum moment map forψ if for any linear function
onU given bya ∈ h and anyf ∈ A we have

[µ(a), f ] = ~dψ|h=1(a, f ). (5.2.1)

Heredψ|h=1 : h × A → A is the differential ofψ at h = 1 ∈ H. Using the Leibnitz
identity for the operatorg → [µ(g), f ], from (5.2.1) one can compute [µ(g), f ] for any
rational functiong.

For a left action ofH a quantum moment map is defined in the same way, with the
only difference that it is an anti-homomorphism rather than a homomorphism.

Definition. AnH-biequivariant associative algebra overU is a 5-tuple(A, l, r, µl, µr),
whereA is an associative algebra with1 overK, which is commutative mod~, l, r is
a pair of commuting algebraic actions ofH onA (a left action and a right action) by
algebra automorphisms, defined overk, andµl, µr : Oq(U ) → A are quantum moment
maps forl, r, such that

(i) µl, µr are embeddings, and their images commute;
(ii) There exists anl(H)× r(H)-invariant k-subspaceAl0 ofA such that the multiplica-

tion mapµr(Oq(U ))⊗Al0 → A is a linear isomorphism; there exists anl(H)×r(H)-
invariant k-subspaceAr0 ofA such that the multiplication mapµl(Oq(U ))⊗Ar0 → A
is a linear isomorphism.

A morphism ofH-biequivariant associative algebras overU is a morphism of algebras
which preservesl, r andµl, µr.

Remark 1.From [l, r] = 0 it follows that [µl ◦x, µr ◦y] is a central element forx, y ∈ h,
but it does not follow that this commutator equals 0. So we require that it is zero by
condition (i).

Remark 2.Condition (ii) is of a technical nature and is not very important in the dis-
cussion below.

Denote the category ofH-biequivariant associative algebras overU byAq
U (q stands

for “quantum”).
For convenience we will writel(h)a asha andr(h)a asah.
Let us now describe the monoidal structure onAq

U .
Let A,B ∈ Aq

U . Then the groupH acts inA ⊗ B by 1(h)(a ⊗ b) = ah−1 ⊗ hb.
We will construct a newH-biequivariant associative algebraA⊗̃B, which is obtained
by quantum Hamiltonian reduction ofA⊗B by the action ofH.

Denote byA ∗B the spaceA⊗Oq(U ) B, whereOq(U ) is mapped toA via µAr , and
toB viaµBl , acting in both algebras from the left. ThenA ∗B is the quotient ofA⊗B
by the linear spanI of elements of the formµAr (f )a ⊗ b − a ⊗ µBl (f )b, f ∈ Oq(U ),
a ∈ A, b ∈ B. The spaceA ∗B has two commuting actions ofH (lA ⊗ 1 and 1⊗ rB).
But we cannot claim thatA ∗B ∈ Aq

U , since the algebra structure onA⊗B does not,
in general, descend toA ∗B (I is only a right ideal and not necessarily a left ideal).

However, the action1 of H onA⊗B descends to one onA ∗B, so we can define
A⊗̃B := (A ∗B)H , whereH acts by1.
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Proposition 5.1. The algebra structure onA⊗B descends to one onA⊗̃B.

Proof. Letx, y ∈ A⊗̃B. We can regardx, y as elements ofA ∗B. Choose their liftings
X =

∑
ai ⊗ bi, Y =

∑
ci ⊗ di into A ⊗ B. By definition,xy is the image ofXY in

A ∗B.
We have to check two things.
1. Thatxy isH-invariant.
2. Thatxy does not depend on the choice of liftingsX,Y .
First we check property 1. Sincex, y areH-invariant, we have∑

[µAr (z), ai] ⊗ bi +
∑

ai ⊗ [µBl (z), bi] ∈ I,∑
[µAr (z), ci] ⊗ di +

∑
ci ⊗ [µBl (z), di] ∈ I, z ∈ h.

(5.2.2)

Therefore, sinceI is a right ideal,∑
[µAr (z), aicj ] ⊗ bidj +

∑
aicj ⊗ [µBl (z), bidj ] ∈ XI + I. (5.2.3)

Lemma 5.1. If X isH-invariant moduloI, thenXI ⊂ I.

Proof of the Lemma.Since
∑
cj ⊗ dj isH-invariant moduloI, for anyz ∈ h we have∑

cjµ
A
r (z) ⊗ dj −

∑
cj ⊗ djµ

B
l (z) ∈ I. (5.2.4)

Therefore, the same equality holds any rational functiong ∈ Oq(U ) instead ofz. This
proves the lemma.

The Lemma shows that the RHS of (5.2.3) is inI, i.e.xy isH-invariant.
Now we check property 2. IfX ′, Y ′ are any other liftings ofxandy, thenX−X ′ ∈ I,

andY − Y ′ ∈ I. So it remains to show thatX(Y − Y ′) ∈ I. But this follows from the
lemma. �

Thus, we have shown that the product descends toA⊗̃B. The two commuting actions
ofH onA⊗B by (h1, h2)(a⊗ b) = h1a⊗ bh2, and the corresponding quantum moment
maps descend toA⊗̃B. So, in order to check thatA⊗̃B ∈ Aq

U , it suffices to check
properties (i) and (ii).

Using properties (i) and (ii) of the quantum moment mapsµAl , µ
A
r , µ

B
l , µ

B
r , it is

easy to see thatA ∗B is naturally identified withµAl (Oq(U )) ⊗Ar0 ⊗Br0 , andA⊗̃B is
identified withµAl (Oq(U )) ⊗ (Ar0 ⊗Br0)H , whereH acts bya⊗ b → ah−1 ⊗ hb. This
implies properties (i) and (ii) for the quantum moment mapµAl ⊗ 1 : Oq(U ) → A⊗̃B,
corresponding to the left action ofH onA⊗̃B (with (A⊗̃B)r0 = (Ar0 ⊗ Br0)H ). For the
quantum moment map 1⊗ µBr : Oq(U ) → A⊗̃B corresponding to the right action,
these properties are proved analogously.

Thus,A⊗̃B ∈ Aq
U . It is clear that the assignmentA,B → A⊗̃B is a bifunctor

Aq
U × Aq

U → Aq
U .

Recall [EV] that (T ∗H)U denotes the variety of points (h, p) ∈ T ∗H such that
h−1p ∈ U . Consider the algebraOq((T ∗H)U ), which is the canonical quantization of
the standard symplectic structure on (T ∗H)U . It is equipped with the standard actions
l, r of H on left and right given by (x, p) → (h1xh2, h1ph2) (these actions obviously
respect the quantization).

Let µl,r : Oq(U ) → Oq((T ∗H)U ) be the embeddings, which assign to an element
of U (h) the corresponding right-, respectively left-invariant differential operator onH.
It is easy to check thatµl,r are quantum moment maps forl, r.
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Let 1 = (Oq((T ∗H)U ), l, r, µl, µr). It is easy to check that we have natural isomor-
phismsA⊗̃1 ≡ A ≡ 1⊗̃A.

Proposition 5.2. (i) (A⊗̃B)⊗̃C = A⊗̃(B⊗̃C).
(ii) 1 is a unit object inAq

U with respect tõ⊗, and(Aq
U , ⊗̃, 1) is a monoidal category.

Proof. Easy. �

Let A ∈ Aq
U . Denote byĀ the new object ofAq

U obtained as follows:Ā is Aop

(the opposite algebra), with the left and the right actions ofH permuted (i.e. the left,
respectively right, action ofh on Ā is the right, respectively left, action ofh−1 onA),
and the quantum moment maps also permuted. We will callĀ the dual object toA. By a
quasireflectiononA we will mean a morphismi : Ā → A. Note that unlike [EV], here
we do not require thati2 = 1.

LetA ∈ Aq
U andi : Ā → A be a quasireflection. Letϕi+, ϕ

i
− : A⊗A → A be given

by the formulasϕi+(a⊗ b) = ai(b), ϕi−(a⊗ b) = i(a)b. It is easy to see that these maps
descend to linear mapsψi± : A⊗̃A → A.

5.3.H-biequivariant Hopf algebroids.Now let us define the quantum version of the
notion of anH-biequivariant Poisson–Hopf algebroid.

Definition. LetA be anH-biequivariant associative algebra. ThenA is called anH-
biequivariant Hopf algebroid overU if it is equipped with a coassociativeAq

U -morphism
1 : A → A⊗̃A called the coproduct, aAq

U -morphismε : A → 1 called the counit, and
a quasireflectionS : Ā → A called the antipode, such that

(i) (id • ε) ◦ 1 = (ε • id) ◦ 1 = id, and
(ii) ψS+ ◦ 1 = µl ◦P ◦ ε, ψS− ◦ 1 = µr ◦P ◦ ε, whereP : 1 → Oq(U ) is the map which

assigns to a differential operator onH its value at the identity element (which is in
U (h)).

The same structure without the antipode will be called anH-biequivariant bialge-
broid.

If H = 1, then these notions coincide with notions of a Hopf algebra and a bialgebra
overK.

Remark 1.In the above discussion,U is a Zariski open set. Ifk = R or C, then we
can takeU to be an open set in the usual sense, and defineO(U ) to be the algebra of
smooth, respectively analytic, functions onU . Then we can repeat Sect. 5.2, 5.3, and
thus define the notions of anH-biequivariant associative algebra and Hopf algebroid
overU . Similarly, one can takeU to be the infinitesimal neighborhood of zero inh∗
(i.e. O(U ) = k[[h]]). The material of Sects. 5.2 and 5.3 can be generalized to this case
as well.

Remark 2.In the smooth, analytic, and formal case one has to drop the condition thatA
is the sum of finite dimensional representations ofH (becauseOq(U ) does not satisfy
this condition). One should instead require thatA is a representation ofh. One should
also impose the locality condition for a quantum moment mapµ: for any f ∈ A the
operationg → [µ(g), f ] is local in g, in the sense that [µ(g), f ] =

∑
µ(Dig)fi, where

fi ∈ A, andDi are h-adically convergent series of differential operators onU . Using
(5.2.1) and the locality property, one can compute [µ(g), f ] not only for rational functions
g but for arbitrary smooth, holomorphic, or formal functions.
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5.4. Quantization ofH-biequivariant Poisson–Hopf algebroids and Poisson groupoids.
In this section we will heavily use notations and definitions from [EV], Chapters 1 and
2. We advise the reader to look through these chapters before reading this section.

Consider the following two settings.
1. LetA0 be anH-biequivariant Poisson algebra (see Sect. 2.3 of [EV]). LetA =

A0[[~]]. Suppose thatA is equipped with an associative product∗ in such a way that
A is a local quantization ofA0 as a Poisson algebra, and the 5-tuple (A, l, r, µl, µr) is
anH-biequivariant associative algebra (wherel, r, µr, µr are theK-linear extensions
of the structure maps ofA0 toA).

2. Assume that in additionA0 is anH-biequivariant Poisson–Hopf algebroid, i.e.
it is equipped with maps10, ε0, S0 satisfying certain axioms (see Sect. 2.4 of [EV]).
Suppose thatA is as above, and in addition thatA is equipped with maps1, ε, S, which
makeA anH-biequivariant Hopf algebroid, and equal10, ε0, S0 modulo~.

Definition. In these cases,A0 is called the quasiclassical limit ofA, andA is called a
quantization ofA0.

If H = 1, then this definition is the usual definition of a quantization of a Poisson
and Poisson–Hopf algebra.

Now consider the geometric version of this definition. LetX be anH-biequivariant
Poisson manifold overU . Let A0 = O(X). ThenA0 satisfies the axioms of anH-
biequivariant Poisson algebra, except for maybe property (ii). The notion of quantization
of A0 is defined as above. A quantizationA of A0 will be called anH-biequivariant
quantum space.

If X is in addition anH-biequivariant Poisson groupoid, thenA0 satisfies the axioms
of anH-biequivariant Poisson–Hopf algebroid, except for property (ii) and the fact that
the coproduct1 mapsA0 toA2

0 := O(X •X)[[~]], which is a completion ofA0⊗̃A0, but
not toA0⊗̃A0 itself (hereX •Y is the product of theX-biequivariant Poisson manifolds,
defined in [EV]). (This problem already exists for Lie groups, where the coproduct maps
O(G) toO(G×G) and not toO(G)⊗O(G).) The notion of quantization ofA0 is defined
as above. The quantization is called local iff∗g is a bidifferential operator off, gmodulo
any power of~, and1(f ) = D10(f ), whereD is a differential operator modulo any
power of~. A local quantizationA of A0 will be called anH-biequivariant quantum
groupoid.

Suppose thatX = X(G,H,U ) is a dynamical Poisson groupoid (see Chapter 1 of
[EV]), andA0 = O(X) is as above. In this case a local quantizationA of A0 will be
called adynamical quantum groupoid. If the subspaceO(U ) ⊗ O(G) ⊗ O(U )[[~]] ⊂ A
is closed under the product, then it is anH-biequivariant Hopf algebroid. Such Hopf
algebroid is called adynamical Hopf algebroid.

Recall that by a preferred quantization of a Poisson Lie group is meant to be a quan-
tization in which the coproduct is undeformed. The notion of a preferred quantization of
anH-biequivariant Poisson groupoid or Poisson–Hopf algebroid is defined in the same
way.

Conjecture. (i) Any dynamical Poisson groupoid admits a quantization.
(ii) Any quasitriangular dynamical Poisson groupoid admits a preferred quantization.

In the caseH = 1 (Poisson–Lie groups), this conjecture goes back to Drinfeld and
is proved in [EK1, EK2].
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5.5. The caseH = (C∗)N . In this section we will consider the special case when
H = (C∗)N , and establish the connection between the constructions of this chapter and
Chapter 4.

LetH = (C∗)N . In this case, the main notions of Chapter 5 are simplified:
1. SinceH is commutative, the algebraOq(U ) is justO(U )[[~]].
2. Denote byP ⊂ h∗ the lattice of characters ofH (P = Zn). Let A be anH-

biequivariant associative algebra. Then the algebraA can be written asA = ⊕α,β∈PAαβ ,
whereAαβ is the set of elementsa ∈ A such thath1ah2 = α(h1)β(h2)a (the direct sum
is understood in the~-adically complete sense). The images of the mapsµl, µr are in
A00. The productA⊗̃B can be written in the form (A⊗̃B)αδ = ⊕β∈PAαβ ⊗O(U ) Bβδ ,
whereO(U ) is embedded inA viaµAr and inB viaµBl , and acts from the left (thus this
product is similar to the matrix product).

3. The algebraOq((T ∗H)U ) = 1 can be written in formO(U ) ⊗ O(H)[[~]] =
O(U ) ⊗C[P ][[ ~]], where the commutation relations betweenP andO(U ) are given by
fχ = χfχ, f ∈ O(U ), χ ∈ P , wherefχ(u) = f (u + ~χ).

In particular, in this case we can replace the algebraO(U ) with the fieldMh∗ of
meromorphic functions onh∗, imposing the locality condition (see Remark 2, Sect. 5.3).
Then Eq. (5.2.1) together with the locality condition implies identities (4.1.1).

Now nothing prevents us from setting~ to be no longer a formal parameter, but a
nonzero complex numberγ. In this situation, it is easy to see that anH-biequivariant
algebra (bialgebroid, Hopf algebroid) is the same as anh-algebra (h-bialgebroid,h-Hopf
algebroid) with weights belonging toP ⊂ h∗. This gives a connection between Chapters
4 and 5.

6. h-Bialgebroids Associated to Quantum Dynamical R-Matrices of Hecke Type

6.1. The Hecke condition.LetR : h∗ → End(V ⊗V ) be a quantum dynamical R-matrix
with stepγ. Consider theh-bialgebroidĀR introduced in Chapter 4.

It is clear that ifR = 1 andγ = 0 thenĀR = Mh∗ ⊗Mh∗ ⊗ O(End(V )). Therefore,
forR 6= 1 we want the algebrāAR to look like a quantum deformation ofMh∗ ⊗Mh∗ ⊗
O(End(V )).

A natural formalization of this wish is the PBW property, defined below.
The algebraĀR has a naturalZ+-grading, given bydeg(f (λi)) = 0, deg(Lab) = 1.

Denote byĀnR the degreen component ofĀR. It is clear thatĀnR areMh∗ ⊗ Mh∗ -
modules, where the two components ofMh∗ act by left multiplication byf (λ1) and
f (λ2).

Definition. The algebraĀR is said to satisfy the Poincare–Birkhoff–Witt (PBW) prop-
erty if theMh∗ ⊗ Mh∗ -moduleĀnR is isomorphic to the free moduleMh∗ ⊗ Mh∗ ⊗
SnEnd(V ).

For a general dynamical R-matrix, the PBW property is not the case. However, the
property holds if one imposes an additional “Hecke type” condition onR.

Definition. R is said to be of strong Hecke type if

(i) R satisfies Eq. (1.3.6) for some nonzero parametersp, q ∈ C, p 6= −q, such that
q/p is not a root of unity, and
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(ii) There exists a continuous familyR(t), t ∈ [0, 1], of quantum dynamical R-matrices
with stepγ(t) continuously depending ont, satisfying (i) with parametersp(t), q(t),
such thatR(0) = 1, p(0) = q(0) = 1, γ(0) = 0, R(1) =R, p(1) = p, q(1) = q, γ(1) =
γ.

Example.It is easy to see from the classification that all dynamical R-matrices ofglN
Hecke type are of strong Hecke type. Thus, for dynamical R-matrices ofglN -type, strong
Hecke type is the same as the Hecke type.

Theorem 6.1. If R is of strong Hecke type then̄AR satisfies the PBW property.

This theorem explains the meaning of the Hecke type conditions introduced in Chap-
ter 1. If h = 0, this theorem is well known (see [FRT]).

6.2. Proof of Theorem 6.1.Let Ã be the algebra with the same generators asĀR and
the same relations except the Yang–Baxter relation. Then, as a vector space, the algebra
Ã has the form⊕n≥0Ã

n, Ãn = Mh∗ ⊗Mh∗ ⊗ (End(V ))⊗n, andĀR is the quotient of
Ã by the Yang–Baxter relation.

Let Hn(v) be the Hecke algebra of typeAn with parameterv. It is the algebra
generated by elementsTi, 1 ≤ i ≤ n− 1, with relations

[Ti, Tj ] = 0, |i− j| ≥ 2; TiTi+1Ti = Ti+1TiTi+1; (Ti − 1)(Ti + v) = 0. (6.2.1)

If v is not a root of unity of degreen, this algebra is isomorphic toC[Sn] and therefore
semisimple.

Denote byRii+1(λ) the operator 1i−1⊗̄R(λ)⊗̄1n−i−1 : V ⊗n → Mh∗ ⊗V ⊗n, where
⊗̄ has the meaning defined by (3.1.2).

If R satisfies condition (i), then we have an action ofHn(v), v = q/p, on the
Mh∗ ⊗Mh∗ -moduleÃn, defined by the formula

TiX = Pii+1 : Rii+1(λ1)XRii+1(λ2)−1 : Pii+1, (6.2.2)

wherePii+1 is the permutation of theith and thei+ 1st components in the tensor product
V ⊗n. This construction explains the origin of the term “Hecke type”.

The Yang–Baxter relation inAR implies that the degreen componentĀnR of ĀR
is isomorphic to the space of coinvariants ofT1, ..., Tn−1 in Ãn. By semisimplicity of
Hn(v), this space is isomorphic to the space of vectors inMh∗ ⊗Mh∗ ⊗ (End(V ))⊗n,
which are invariant underTi.

Now recall thatR satisfies condition (ii). LetR(t) be the corresponding fam-
ily. Consider the corresponding modules̄AnR(t). Since they can be defined both as
coinvariants and invariants, their dimensions cannot jump, which implies thatĀnR(0)

is isomorphic toĀnR(1) as aMh∗ ⊗ Mh∗ -module. However, by our assumptions,
ĀnR(0) = Mh∗ ⊗Mh∗ ⊗SnEnd(V ), while ĀnR(1) = ĀnR. This proves the theorem. �

6.3. Hecke condition and quantization.Theorem 6.1 has the following generalization
to the case when the stepγ is a formal parameter.

LetRγ = 1− γr +
∑
γnrn be a formal series whose coefficients are meromorphic

functionsh∗ → End(V ⊗ V ). Suppose thatR is a quantum dynamical R-matrix with
stepγ. Let ĀRγ ,ARγ denote the algebras overK := C[[γ]] defined as in Chapter 4.

It is clear thatĀRγ/γĀRγ = Mh∗ ⊗ Mh∗ ⊗ O(End(V )). Thus the analogue of
the PBW property forĀRγ in this case is the property that theK-moduleĀRγ is a
topologically free module, i.e. provides a flat deformation ofMh∗ ⊗Mh∗ ⊗O(End(V )).
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Theorem 6.2. If Rγ satisfies the Hecke equation (1.3.6) for somep(γ) = 1 +O(γ),
q(γ) = 1 +O(γ), thenĀRγ is a flat deformation ofMh∗ ⊗Mh∗ ⊗ O(End(V )).

Proof. Analogous to the proof of Theorem 6.1 �

Corollary 6.1. Under the assumption of Theorem 6.2,ARγ is a flat deformation of
Mh∗ ⊗Mh∗ ⊗ O(GL(V )).

If Rγ is holomorphic in an open setU ⊂ h∗ then we can define algebras̄AURγ ,

AURγ in the same way as̄ARγ , ARγ , except thatMh∗ is replaced with the algebra of
holomorphic functionsO(U ) onU . It is clear that Theorem 6.2 and Corollary 6.1 are
valid for these algebras:

Proposition 6.1. Under the assumptions of Theorem 6.2, the algebrasĀURγ , AURγ are
topologically free overK.

Now letRγ : U → End(V ⊗V )[[γ]] be a quantum dynamical R-matrix holomorphic
onU which satisfies the condition of Theorem 6.2. Letp(γ) = 1 +aγ +O(γ2), q(γ) =
1 + bγ +O(γ2), γ → 0. Then from the quadratic equation forR∨ we get the unitarity
condition

r21 + r = (b− a)P − (b + a), (6.3.1)

and from the quantum dynamical Yang–Baxter equation forR we get the classical
dynamical Yang–Baxter equation forr. Thus, according to Chapter 1 of [EV],r de-
fines a structure of a quasitriangular dynamical Poisson groupoid onU ×GL(V ) × U .
In particular, we have the corresponding dynamical Poisson–Hopf algebroidA0U

r =
O(U ) ⊗ O(GL(V )) ⊗ O(U ) (hereO(G) denotes the algebra of polynomial functions
onG).

Theorem 6.3. The dynamical Hopf algebroidAURγ is a quantization of the dynamical

Poisson–Hopf algebroidA0U
r .

Proof. Since we know thatAURγ is topologically free, the proof is the direct computation
of the quasiclassical limit and then comparison with Chapter 1 of [EV]. �

LetG = GL(V ),H be a maximal torus inG, andU ⊂ h∗ a polydisc. LetX(G,H,U )
be the Lie groupoidU ×G× U with two actions ofH, defined in Chapter 1 of [EV].

Theorem 6.4. Any structure of a quasitriangular dynamical Poisson groupoid on
X(G,H,U ) admits a preferred quantization.

Proof. The statement follows from Theorem 1.6 and Theorem 6.3.�

Remark.Notice that ifRγ fails to satisfy the Hecke condition moduloγ2, then the
algebraARγ is not topologically free. Indeed, in this caser does not satisfy the unitarity
condition, so according to Chapter 1 of [EV] the bracket defined byr onU×GL(V )×U is
not Poisson (i.e. does not satisfy the Jacobi identity). This means that the corresponding
deformation is not flat, since a flat deformation of a commutative algebra induces a
Poisson structure on this algebra. Thus, the Hecke condition seems to be intrinsic for
good properties of the algebraAR.
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