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Abstract: The quantum dynamical Yang—Baxter (QDYB) equation is a useful general-
ization of the quantum Yang—Baxter (QYB) equation. This generalization was introduced
by Gervais, Neveu, and Felder. Unlike the QYB equation, the QDYB equation is not
an algebraic but a difference equation, with respect to a matrix function rather than a
matrix. The QDYB equation and its quasiclassical analogue (the classical dynamical
Yang—Baxter equation) arise in several areas of mathematics and mathematical physics
(conformal field theory, integrable systems, representation theory). The most interesting
solution of the QDYB equation is the elliptic solution, discovered by Felder.

In this paper, we prove the first classification results for solutions of the QDYB equa-
tion. These results are parallel to the classification of solutions of the classical dynamical
Yang—Baxter equation, obtained in our previous paper. All solutions we found can be
obtained from Felder’s elliptic solution by a limiting process and gauge transformations.

Fifteen years ago the quantum Yang—Baxter equation gave rise to the theory of
guantum groups. Namely, it turned out that the language of quantum groups (Hopf
algebras) is the adequate algebraic language to talk about solutions of the quantum
Yang—-Baxter equation.

In this paper we propose a similar language, originating from Felder’s ideas, which
we found to be adequate for the dynamical Yang—Baxter equation. This is the language
of dynamical quantum groups (pfHopf algebroids), which is the quantum counterpart
of the language of dynamical Poisson groupoids, introduced in our previous papetr.

Introduction

This paper is devoted to the quantum dynamical Yang—Baxter equation, its solutions, and
the related algebraic structures (quantum groupoids, Hopf algebroids); abusing language,
we will call these structures by the collective nafdgnamical quantum groups”.

* The authors were supported in part by an NSF postdoctoral fellowship and NSF grant DMS-9501290.
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Let b be a finite dimensional commutative Lie algebra oiel” a semisimple finite
dimensionah-module, andy a complex number. The quantum dynamical Yang—Baxter
(QDYB) equation is the equation

R™(\ — yh®) RB(\) RB(\ — yhY)

= R%(\) R®(\ — vh®) R¥()) @
with respect to a meromorphic functidd : h* — End(V ® V), where by definition

R\ — vh®) (01 @ vo @ v3) = (RPN — vp)(v1 @ 1)) ® vs if vz has weightu, and

RB3(\ — vh@), RZ3(\ — vhY) are defined analogously.

It is also useful to consider the quantum dynamical Yang—Baxter equation with
spectral parameter, with respect to a meromorphic fundtior x h* — End(V @ V).

By definition, the QDYB equation with spectral parameter is just Eq. (1), Wittfx)
replaced byR" (z; — z;, x), wherezy, 23, z3 € C.

Solutions of the QDYB equation which are invariant ungeare called quantum
dynamical R-matrices.

A brief history of the QDYB equation is as follows. The QDYB equation was pro-
posed by Felder [F2] as a quantization of the classical dynamical Yang—Baxter equation
[F1], but it also appeared earlier in physical literature [GN]. Examples of dynamical R-
matrices appeared in [Fadl, AF]). As Felder showed [F2], the QDYB equation is equiv-
alent to the star-triangle relation in statistical mechanics. The most interesting known
solution of the QDYB equation with spectral parameter is the elliptic solution given in
[F1, F2]. As was shown in [TV], this solution arises when one studies monodromies of
the quantum KZ equation introduced in [FR], see also [FTV1-2]. The algebraic structure
corresponding to this solution was described in [F1,F2, FV1-3] and called “the elliptic
guantum group”. Although the elliptic quantum group is not a Hopf algebra, it is very
similar to a Hopf algebra in many respects. For example, its category of representations,
with a suitable definition of the tensor product, is a tensor category, which was studied
in [FV1, FV2].

This paper has two goals.

1. To classify quantum dynamical R-matrices in the case when End(/) is the
algebra of all diagonal operators in some basis.

2. To describe the axiomatics of the algebraic structure corresponding to a quantum
dynamical R-matrix.

The first goal is partially attained in Chapters 1 and 2.

In Chapter 1, we study dynamical R-matrices without spectral parameter. We define
the notion of a dynamical R-matrix of Hecke type which is a dynamical R-matrix sat-
isfying a generalized unitarity condition. Then we define gauge transformations, which
map the set of such dynamical R-matrices to itself. After this, we classify dynamical R-
matrices of Hecke type, with as above. The answer turns out to be completely parallel
to the classical case ([EV], Chapter 3). In particular, any classical dynamical r-matrix
from [EV] without spectral parameter (for the Lie algelpfa;) can be quantized.

In Chapter 2, we study dynamical R-matrices with spectral parameter, satisfying the
unitarity condition. As in Chapter 1, we define gauge transformations, which map the
set of such dynamical R-matrices to itself. After this, we list all known examples, and
give a partial classification result (for R-matrices given by a power serigswhich
are quantizations of elliptic r-matrices from [EV], Chapter 4). As before, the results are
parallel to the classical case. In particular, any classical dynamical r-matrix from [EV]
with spectral parameter (for the Lie algelmla,) can be quantized.
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Remark.We were not able to obtain a nice classification result for dynamical R-matrices
with spectral parameter and numerigabkince we do not understand what is the correct
analogue of the residue condition in [EV]. However, we expect that such a result can be
obtained along the same lines as in Chapter 4 of [EV], and Chapter 1 of this paper.

The second goal is attained in Chapters 3-6.

In Chapter 3, we explain the connection between dynamical R-matrices and monoidal
categories. We introduce the tensor categorly-eéctor spaces, and show that a tensor
functor from a braided monoidal category to the categoryj-e€ctor spaces gives a
dynamical R-matrix, in the same way as a tensor functor from a braided monoidal
category to the category of vector spaces gives a usual R-matrix. We also attach to
every dynamical R-matrix a tensor category of its representations, following the ideas
of [F1, F2, FV1, FV2]. This category is nontrivial (for example, it contains the basic
representation), has natural notions of the left and right dual objects, and is equipped
with a canonical tensor functor tpvector spaces.

In Chapter 4 we introduce the notions of gralgebrah-bialgebroid, and)-Hopf
algebroid, which are generalizations of the notions of an algebra, bialgebra, and Hopf
algebra. We define the notion of a dynamical representation §fagebra, and show
that the category of dynamical representations Rgp€ anh-bialgebroidA is a tensor
category with a natural tensor functorfevector spaces. Il is anh-Hopf algebroid,
this category in addition has natural notions of the left and right dual representation.

Using a generalization of the Faddeev—Reshetikhin—Sklyanin—Takhtajan formalism
[FRT, FT] which assigns a Hopf algebra to any R-matrix, we assigh-hialgebroid
Ap to any dynamical R-matri®. If R has an additional rigidity property, thefy, is an
h-Hopf algebroid. We call the bialgebroitlr the dynamical quantum group associated
to R. We show that the category of representation®2d$ equivalent to the category
Rep(Ar) as a tensor category with duality and with a functoh+teector spaces.

In Chapter 5, we define quantum counterparts of the quasiclassical objects defined
in [EV] (in the setting of perturbation theory). More specifically, we define the no-
tions of a biequivariant algebra (biequivariant quantum space), a biequivariant Hopf
algebroid (biequivariant quantum groupoid), a dynamical Hopf algebroid (dynamical
guantum groupoid), which are the quantum analogues of the notions of a biequivari-
ant Poisson algebra (biequivariant Poisson manifold), a biequivariant Poisson—Hopf
algebroid (biequivariant Poisson groupoid), a dynamical Poisson—Hopf algebroid (dy-
namical Poisson groupoid), introduced in [EV]. We introduce the notion of quantization
for biequivariant and dynamical objects, and conjecture that any dynamical Poisson
groupoid can be quantized.

This material is a generalization of the material of Chapter 4, because, as we explain
in Sect. 5.5, the notion of afralgebra §-bialgebroid,h-Hopf algebroid) is essentially
a special case of the notion of a biequivariant algebra (bialgebroid, Hopf algebroid).

Remark. The general notion of a Hopf algebroid was introduced by J. H. Lu [Lu]. Itis
easy to check that biequivariant and dynamical Hopf algebroids as defined in Chapter 5
of our paper are Hopf algebroids in the sense of Lu. However, the notion considered in
[Lu] is more general than the one considered in this paper.

In Chapter 6, we study-bialgebroids associated to dynamical R-matrices of strong
Hecke type. Using the semisimplicity of the Hecke algebra for a generic value of the
parameter, we prove a Poincare—Birkhoff—Witt theorem for such bialgebroids. This result
explains the meaning of the Hecke type condition, which was artificially introduced in
Chapter 1. Using the same method, we show thapthkepf algebroid associated to a
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dynamical R-matrix of Hecke type of the forfd = 1 — vr + ... is a flat deformation
(quantization) of the Poisson—Hopf algebroid corresponding to

In the next papers, we plan to develop the theory of dynamical quantum groups. We
plan to describe the infinite-dimensional dynamical quantum groups associated to dy-
namical R-matrices with spectral parameter, and dynamical quantum groups (both finite
and infinite dimensional) associated to Lie groups other thar . We plan to develop
the representation theory of dynamical quantum groups, and explain its connection with
exchange (Zamolodchikov) algebras, Kazhdan—Lusztig functors, KZ and quantum KZ
equations.

1. Classification of Quantum Dynamical R-matrices without Spectral Parameter

1.1. Quantum dynamical R-matrix.et h be an abelian finite dimensional Lie algebra.
A finite dimensional diagonalizablg-module is a complex finite dimensional vector
spaceV with a weight decompositiol” = @~V [1], such thath acts onV[1] by
zv = p(x)v, wherex € b, v € V[u].

LetV;, i =1, 2,3, be finite dimensional diagonalizatiemodules,

Ry, 1 b* — End(; ® V), 1<i<j<3,

meromorphic functionsya nonzero complex number. The equation in BAd(1>2V3),
Ry, (0 — vh®) B2, (N) REy, (A — v D)

= Ry, (V) Rty (A — vhP) RiZ,, (V)

is calledthe quantum dynamical Yang—Baxter equation with stépDYB equation).
Here we use the following notation. K € End(V;), then we denote bx® <
End(1 ® --- ® V,,) the operator-- ® Id ® X ® Id ® - - -, acting non-trivially on the
it factor of a tensor product of vector spaces, anll i 3~ X; ® Vi, € End(; ® V;),
then we setx” = 3" Xy, The shift of A by yh@ is defined in the standard way.
For instanceR{?,, (A — vh®) acts on a tensan ® v, ® vz asRi?y, (A — yus) ® Id if
vz has weighius.
A function Ry,v; : b* — End(V; ® V;) is calleda function of zero weight

(11.1)

[Ry.v,(\),h®1+1® 5] = 0 (1.1.2)

forall » € b, A € h*. A solution{ Ry,v, }1<i<;<3 Of the QDYB equation is called a
solution of zero weight if each of the functions is of zero weight.

If all the spaced/; are equal to a spadé, then consider the QDYB equation on one
functionR : h* — End(V @ V),

RP(\ = yh®) R¥¥(X) RZ(\ — yhY)

— st()\) RlS()\ _ ’Yh(z)) Rlz()\) (113)

An invertible functionR of zero weight satisfying the QDYB Eg. (1.1.3) is callad
guantum dynamical R-matrix

1.2. Quantization and quasiclassical limit.et z1, ...,z be a basis irh. The basis
defines a linear system of coordinategi6nFor any\ € b*, seth; = z;(A\),i =1,..., N.
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LetR, : h* — End(V ® V') be a smooth family of solutions to the QDYB equation
with stepy such that
R,(\) =1—vyr(\) +O(?). (1.2.1)

Then the function : h* — End(V ® V) satisfies the classical dynamical Yang—Baxter
Eq. (CDYB),

N N N
o 23 o 31 o 12
IRCENS JRLENP oR e
—~ ' O Owi < " O (1.2.2)

[T,12’ 7,13] + [T,12’ 7,23] + [7'13, ,],,23] =0.

Afunctionr of zero weight satisfying the CDYB equation is calkedassical dynamical
r-matrix. The functionr in (1.2.1) is calledhe quasiclassical limit ok, and the function
R is calleda quantization of-.

LetU C h* be an open set, and lIét : U — End(V ® V) be a zero weight
meromorphic function of/. We will say thatR is a quantum dynamical R-matrix on
U if the QDYB equation is satisfied faR whenever it makes sense.

Remark.If U is a bounded set, this notion is only interesting for smal$o that the
QDYB equation makes sense on a nonempty opefyset U.

A classical dynamical r-matrix(\) onU is calledquantizabléf there exists a power
series iny,

Ry(N) =1=7r(N)+) 7 ra(V), (1.23)
n=2
convergent for smally| for any fixed\ € U and such thaR., () is a quantum dynamical
R-matrix onU with stepry.

1.3. Quantum dynamical R-matrices of Hecke typet h be an abelian Lie algebra
of dimensionN. Let V' be a diagonalizablg-module of the same dimensid¥ such
that its weightsvy, ..., wy form a basis irh*. Let x4, ..., 2 5 be the dual basis df. Let
v1, ..., vy be an eigenbasis forin V' such that;;v; = §;;v;. Then theh-moduleV ® V'
has the weight decomposition,

VoV =eM Vi ©PactVas, (1.3.1)

whereV,, = Cv, @ v, andVy, = Cv, @ v, @ Cvp Q@ v, .

Introduce a basi&;; in End(V) by E;;vi, = 6;,v;.

A guantum dynamical R-matriR : h* — End(V ® V) for theseh and V" will be
called an R-matrix ofi v type.

The zero weight condition implies that the R-matrix preserves the weight decompo-
sition (1.3.1) and has the form

N
R()‘) = Z aab(A) Eaa b2 Ebb + Z ﬁab()‘) Eba 02y Eaba (132)
a,b=1 azb

whereag, 8. : h* — C are suitable meromorphic functions.

Let P € End(V ® V) be the permutation of factors. SRt = PR.

Let p, ¢ be nonzero complex numbeys7Z —q. A functionR : h* — End(V @ V)
will be calleda function of Hecke type with parametexs; if
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(1.3.3) The function preserves the weight decomposition (1.3.1).

(1.3.4) Forany: =1,..., N and) € b*, we haveR" (\)v, @ v, = pvs @ Uq.

(1.3.5) Forany: #band\ € h*, the operato” () restricted to the two dimensional
spaceV,, has eigenvalues and—gq.

A function R : h* — End( ® V) will be calleda function of weak Hecke type
with parameter, q if it preserves the weight decomposition (1.3.1) and for &y h*
satisfies the equation

(R'(N) —p) (RN +g) =0 (13.6)

A relation between Hecke types is given by the following simple observation. Let
R; 1 b* — End(V ® V), t € [0, 1], be a continuous family of meromorphic functions,
which is analytic whemn € (0, 1). Assume that for anythe functionR; is of weak Hecke
type andR,;- = Id. ThenR, is of Hecke type for any. In fact, the matrixR,., = P
satisfies (1.3.4-5) and hen&¥ satisfies (1.3.4-5) for any

In the following sections we classify quantum dynamical R-matriceg gfHecke
type.

1.4. Gauge transformations and multiplicative closed 2-forimsthis subsection we
introduce gauge transformations of quantum dynamical R-matrices of Hecke type. We
shall use the notion of a multiplicative form.
A multiplicativek-formon a vector space with a linear coordinate system.., Ay
is a collection,
Y= {991117---7(119 ()‘la [EE) AN)}&

of meromorphic functions , where, ..., a; run through all ordered element subsets
of {1,..., N}, such that for any subset, ..., a;, and anyi, 1 < i < k, we have

(pal,...,a,“l,ai,“.,ak(>\17---a)\N) @ul,...,ak(/\lw-w)\N) = 1

Let Q" be the set of all multiplicativé-forms.

If ¢ andy are multiplicativek-forms, then{pa, .. o, (M1, -, AN) * Yay...ar (A1, oo,
AN} and {@a;. . ar(Ms ooy AN) / Vay. (M1, - An)} are multiplicative k-forms.
This gives an abelian group structure 4. The zero element iR* is the form

{@a1,...7ak()\1a ceey )\N) = 1}
Fix a nonzero complex numbet For anya = 1, ...., N, introduce an operato,
on the space of meromorphic functiofi\s, ..., Ax) by

6a : f(>‘lv L) )‘N) = f()‘la ) )‘N)/f(Ala EE) )\a ) AN)
and an operatat,, : QF — Q"1 — d, ¢, by

k+1

i+l
(d’yw)a17~--,ak+1(/\l7 ceey )\N) = H (5% Qpal,...,a,i,l,awl,-..,ak+1(>\1a EEE) )‘N))(_l) .
=1

We haved? = 0. A form ¢ will be calledy-closedif d. ¢ = 0.

Let o(7) = {@a,.....ar (A1s -, AN, )} De @ smooth family of multiplicativé-forms
such that for alky, ..., ag,

Pay,...,ax ()‘77) =1- Y Ca17'~~;ak ()‘) + O(’yz)
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for suitable function&’,,, . 4, (A). Then the function§C,, .., (\)} are skew-symme-
tric with respect to permutation of the indices, so it is natural to consider a differential
fomC =57, _ _. Ca.. a,(N)dze A ... \dz,,. The differential formC is called
thequasiclassical limibf the multiplicative formp(v) and the multiplicative fornp(~)
is called equantizatiorof the differential fornC. Itis easy to see thatgf(v) isy-closed,
thenC'is closed.

Let U ¢ CV be an open set, and letbe a multiplicative meromorphie-form on
U. We will say thaty is y-closed if the equatiot, ¢ = 0 is satisfied whenever it makes
sense.

A closed differential forr{ C,,
series iny,

o (\) } is calledquantizablef there exists a power

.....

PasreanM7) = 1= 7 Cayy o N+ )7 Criag,arn ),

n=2

convergent for smally| for a fixedA € U and such thafy,, ... 4, (X, %)} is ay-closed
multiplicative k-form.

Lemma 1.1. Every closed holomorphic differentigiform C defined on an open poly-
disc is quantizable to a holomorphic multiplicative clogetbrm ().

Proof. SinceU is a polydisc, we can find a holomorphik ¢ 1)-form E on U such
thatdF = C. Define a multiplicative  — 1)-formé onU by 0,,. ., , = e Parapy
Sety(y) = d, 0. Sinced% = 0, the formyp(y) is a desired multiplicative closedform.
O

Remark. The Taylor expansion af(v) in powers ofy is well defined inl/, but for each
particular (even very small) nonzetothe formp(y) is defined in a smaller open subset
U'(v) € U which tends tdJ asy — 0.

Now we introduce gauge transformations of quantum dynamical R-matfices,
h* — End(V ® V), of form (1.3.2) with stepy.

(1.4.1) Let{wqs} be a meromorphig-closed multiplicative 2-form oh*. Set

N
R()‘) = Z aaa()\) Eaa by Eaa + Z (pab()\) aab()\) Eaa 0y Ebb
a=1 a7b

+ Z ﬁab()\) Eba & Eab-
a7b

(1.4.2) Let the symmetric groufy , the Weyl group ofgly, act onh* and V' by
permutation of coordinates. For any permutatoa Sy, set

R(\) = (0@0)Re™ - N (0 t@o™).
(1.4.3) For anonzero complex numheset
R(A\) — cR(N).
(1.4.4) For a nonzero complex numhesind an element € h*, set

R(A\) — R(cA + p).
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Itis clear that any gauge transformation of types (1.4.2)—(1.4.3) transforms a quantum
dynamical R-matrix with stepto a quantum dynamical R-matrix with stepAny gauge
transformation of type (1.4.4) transforms a quantum dynamical R-matrix withystep
a quantum dynamical R-matrix with stegc. In all cases, if the R-matrix is of Hecke
type, then the transformed matrix is of Hecke type. If the transformation is of type (1.4.3)
and the Hecke parameters of the R-matrix;asedg, then the Hecke parameters of the
transformed matrix arep andcg.

Theorem 1.1. Any gauge transformation of type (1.4.1) transforms a quantum dynam-
ical R-matrix with stepy to a quantum dynamical R-matrix with steplf the R-matrix
is of Hecke type, then the transformed matrix is of Hecke type with the same parameters.

Theorem 1.1 is proved in Sect. 1.9.

Two R-matricesk : h* — End(V @ V) andR’ : h* — End(/ ® V) will be
calledequivalenif one of them can be transformed into another by a sequence of gauge
transformations.

1.5. Classification of quantum dynamical R-matrices of Hecke type with paramegers
such thaty = p. If Hecke parameters satisfy= ¢, then the Hecke Eq. (1.3.6) can be
written as

R?Y(\) R(\) = ¢21d.

Let X C {1,..., N} be a subset. Say thaf is decomposed into disjoint intervals
X = X1 U ... UX,, if every X, has the form{ax, ar + 1,...,bx} andag+1 > by, for
k=1,..,n—1.

A meromorphic functiony(\) will be calledvy-quasiconstanf 6, = 0 for all a. Fix
a~v-quasiconstant : h* — h* with v = 1. Define scalar meromorphicquasiconstant
functionsygy @ b* — C by pep(X) = 24 (1(N)) — 2p((N)). Let Ay denoter, — .

DefineRyx, : b* — End(V @ V) by

N n

1

Rix,(N) = > Eaa®Ep+> > m(EaaQ?Ebb"‘Eba@Eab)-
ab=1 k=1 a,be Xy azp ~‘ab  Hab

(15.1)

Theorem 1.2. 1. ForeveryX C {1,..., N}, the R-matrixR_x, defined by (1.5.1) is
a quantum dynamical R-matrix of Hecke type with parameterd, ¢ = 1 and step
v=1

2. Every quantum dynamical R-matrix of Hecke type with parameterssuch that
p = g, is equivalent to one of the matrices (1.5.1).

Theorem 1.2 is proved in Sect. 1.11.
1.6. Classification of quantum dynamical R-matrices of Hecke type with paramegers

such thaty #Z p . Assume that for anw, b, a #Z b, a~y-quasiconstant,; : h* — C is
given. We say that this collection of quasiconstantaistiplicativeif

(1.6.1) For any, b, we have
Mab()‘) Mba()‘) =1

(1.6.2) For any, b, ¢, we have

Mac(A) = ,U/ab(/\) Mbc()‘)
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Fix a multiplicative family ofy-quasiconstants withy = 1.

Fix a complex numbee such thate® # 1. Let X C {1,..., N} be a subsetX =
X1 U...U X, its decomposition into disjoint intervals.

For anya,b € {1,..., N}, a # b, we shall introduce functions,;, 8. : b* — C.
We shall introduce functions,; and then setv,;, = e + G45.

If a,b € X}, for some k, then we set

ec—1
()= ——————. 1.6.3
/8 b( ) /,Lab(A)eSAub _ 1 ( )
Otherwise we sef,;,(\) =0, if a < b, andB,(\) =1— e, if a > b.
DefineRyx, : b* — End(V ® V) by
N

Ruxc) = Y Baa®Faa*y | 0N Eaa®@Ep+ Y Bap() Epa® Eap. (1.6.4)

a=1 a7b a7b

Theorem 1.3. 1. For everyX C {1,..., N}, the R-matrixR_x, . defined by (1.6.4)
is a quantum dynamical R-matrix of Hecke type with parametersl, ¢ = e and
stepy = 1L

2. Every quantum dynamical R-matrix of Hecke type with parametersuch that
q # p is equivalent to one of the matrices (1.6.4).

Theorem 1.3 is proved in Sect. 1.12.

1.7. Quantization of classical dynamical r-matricegtf type. Let V' be theN dimen-
sionalh-module considered in Sect. 1.3. ket h* — End(V ® V) be a zero weight
meromorphic function satisfying CDYB (1.2.2). Assume thatatisfiesthe unitarity
condition,

r(\) +7r2(\) = eP+41d (1.7.2)

for some constants 6 € C and all\. The constant is calledthe coupling constanthe
constant is calledthe secondary coupling constaiihe zero weight condition implies
thatr has the form

N
’I"()\) = Z aab()‘) Eaa b2y Ebb + Z ﬁab()‘) Eab & Eba~ (172)
a,b=1 a7b

We recall a classification of such r-matrices. Firstwe introduce gauge transformations
of classical dynamical r-matrices.

(1.7.3) Lety = Za’b Yap(N)dz, A dzp be a closed meromorphic differential 2-form
onh*
(‘and the notion of a closed differential form has the standard meaning). Set

N
r() = 1)+ Yap(N) Baa ® Ep.
a7b
(1.7.4) Foru € bh*, set
r(A) — r(\+ p).
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(1.7.5) Let the symmetric groufiy act onh* andV by permutation of coordinates.
For any permutatios € Sy, set

r(\) = (c@o)re - N (et oo).
(1.7.6) For a nonzero complex humbesset
r(A\) — cr(ch).
(1.7.7) For a nonzero complex numheset
r(A) — r(\) +cld.

Any gauge transformation transforms a classical dynamical r-matrix to a classical
dynamical r-matrix [EV]. Two classical dynamical r-matricgg\) andr’()\) will be
calledequivalenif one of them can be transformed into another by a sequence of gauge
transformations.

The gauge transformations of quantum dynamical R-matrices described in Sect. 1.4
are analogs of gauge transformations of classical dynamical r-matrices.

Classification of r-matrices with zero coupling constar#, 0. Let X C {1,..., N} be
a subsetX = X; U... U X, its decomposition into disjoint intervals.
Define amap : h* — End(V ® V) by

< 1
EACVED DD DI e 2753 N3 (1.7.8)

k=1 a,be Xy, azb %

Theorem 1.4. 1. For any X and its decompositioX = X; U ... U X, into disjoint
intervals, the functiomy x, defined by (1.7.8) is a classical dynamical r-matrix with
zero coupling constant.

2. Any classical dynamical r-matrix: h* — End(/ ® V) with zero coupling constant
is equivalent to one of the matrices (1.7.8).

Theorem 1.4 follows from [EV].

Classification of r-matrices with nonzero coupling constagt,0. LetX c {1,..., N}
be a subsetX = X; U ... U X, its decomposition into disjoint intervals.
Foranya,b € {1,..., N}, a # b, we introduce functiong,, : b* — C.Ifa,b € X},
for some k, then we set
Ban(A) = cotanh () .

Otherwise we sef,;,(\) = —1,ifa < b, andBq,(\) = 1,if a > b.
Defineryx, : b* — End(V ® V) by

rux, () = P+ Ban(N) Bva @ Eap. (1.7.9)
ab

Theorem 1.5. 1. ForeveryX C {1,..., N} and its decompositioX = X; U... U X,
into disjoint intervals, the function, x, defined by (1.7.9) is a classical dynamical
r-matrix with nonzero coupling constaat= 2 and the secondary coupling constant
5=0.

2. Every classical dynamical r-matrix : h* — End(/ ® V) with nonzero coupling
constant is equivalent to one of the matrices (1.7.9).
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Theorem 1.5 follows from [EV].

Theorem 1.6. 1. Every classical dynamical r-matrix with zero coupling constant,
holomorphic on an open polydiét C h*, can be quantized to a quantum dynamical
R-matrix R, on U, of Hecke type with parametepsq such thatp = g.

2. Every classical dynamical r-matrixwith nonzero coupling constant, holomorphic
on an open polydist/ C h*, can be quantized to a quantum dynamical R-mafjx
onU, of Hecke type with parametepsq such thatp # q.

Proof. The R-matrix

N n
Rux,(\7) =Y Eaa®@Ew+> ., > )\l(Eaa®Ebb+Eba®Eab)
a,b=1 k=1 a,beXyazb

is a quantum dynamical R-matrix of Hecke type with parameters; = 1 and stepy.
Its quasiclassical limit is

" -1
HOED DY 3 (Faa ® Epy + Epa ® Eap ).
%=1 a,beXyazb

Making the gauge transformation (1.7.3) corresponding to the closed form

kY abex,.ach Moy Ta A dxp, We get the r-matrixx, defined by (1.7.8). This
remark and Lemma 1.1 easily imply the first statement of the theorem. The second
statement is proved analogously. [

1.8. Quantum dynamical Yang—Baxter equation in coordinatésnsider a quantum

dynamical R-matribx@(\) of form (1.3.2). Assume that the matrix is of Hecke type, with

stepy = 1 and Hecke parameteps= 1 andq. Any R-matrix of Hecke type can be

reduced to such an R-matrix by gauge transformations of types (1.4.3) and (1.4.4).
The Hecke property implies that,, = 1 and hence the matrix has the form

N
RO =Y Faa® Faa Y @ap(N) Baa @ Eyp + Y Bap(N) Fva @ Eap. (1.8.1)
a=1 azb a7b

The Hecke property also implies that for every: € {1,..., N}, a # ¢, we have
BacN) + Bea(N) = 1—gq, (1.8.2)

ﬂac(k) ﬁca()\) - O‘ac()‘) O‘ca(/\) =9, (183)

this is the trace and the determinantff restricted to/,...
Applying both sides of the QDYB Eqg. (1.1.3) to a basis veetpr v, ® v. €
V@3 a # ¢, we get equations

QeaO — Wa) Bac(N) AacOr — wa) + Bacr — wa)? = Bac(N — wy), (1.8.4)

ﬁca(A - wa) ﬁac(k) aac()‘ - wa) + aac()\ - wa) ﬁac(A - Wa) =

ﬁac()‘) aac()\ - wa)~ (185)
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Applying both sides of the QDYB Eq. (1.1.3) to a basis veetor v, @ v. € V3 with
pairwise distinct, b, c we get equations

ab(A — we) Aac(A) ape(A—wa) = ape(X) Qac(A — wp) aap(A), (1.8.6)
aac(A - wb) O‘ab()‘) 6bc(>\_wa) = ﬁbc(/\) aac(>\ - wb) aab()\)7 (187)
Bab(A — we) dac(A) Abe(A—wa) = ac(A) abe(A — wa) Bap(N), (18.8)
Beb(A = wa) Bac(A) abe(A—wa) + ape(A — wa) Bab(A) Boe(A — wa) =

Bac(A) (A — wa) Bab(N), (18.9)

acb(A — wa) Bac(N) ape(A — wa) + Boc(A — wa) Bab(A) Bpe(A — wa) =
pa(A) Bac(A — wp) @ap(A) + Bab(N) Boe(A — wa) Bab(N),
BacA = wp) @ab(A) Boe(A — wa) =
Bra(A) Bac(A — wb) @ap(A) + aap(A) Boe(A — wa) Ban(A)-

Lemma 1.2. For anya, ¢, a Z ¢, the functiongy,.()\) andq + 53,.()) are not identically
equal to zero.

Proof. If a,. = 0, then Egs. (B.2)4, (1.8.3)4¢, (1.8.4),., and (18.4)., give a con-
tradiction. Thus,. anda., are not identically equal to zero. Equationsg2),..,
(1.8.3),. imply

(1.8.10)

(1.8.11)

ac(N) aca(N) = (g + Bac(N) (@ + Bea(N))- (1.8.12)
The lemmais proved. O

1.9. Proof of Theorem 1.1Let {¢,; } be ay-closed multiplicative 2-form oh*. Itis easy
to see that Egs. (1.8.2)—(1.8.11) are invariant with respect to the gauge transformation
(1.4.1). This proves Theorem 1.1. O

1.10. Relationy,. = ¢ + B,.. Consider a quantum dynamical R-mat#iX\) of form

(1.3.2). Assume that the matrix is of Hecke type with step1 and Hecke parameters

p =1 andg. For anya, ¢, a 7 ¢, set

q+ Bac(N)
Qac(N)

Lemma 1.3. The collection of functiong = {¢,.} is ay-closed multiplicative 2-form

with~y = 1.

Pac(N) = (1.10.1)

Corollary 1.1. Apply to the R-matrixR(\) the gauge transformation (1.4.1) corre-
sponding to the multiplicative 2-form—1. Then the coefficients of the transformed
matrix satisfy the equation

Qac =G+ Bac (1.102)

forall a, c.

Proof of Lemma 1.3Equationy,.¢., = 1 follows from (1.8.12). Equatiot, ¢ = O is
a direct corollary of (1.8.6) and (1.8.7). O

1.11. Proof of Theorem 1.2Let R()\) be a quantum dynamical R-matrix of Hecke
type with parameterg, ¢ such thatp = ¢. Using gauge transformations (1.4.3) and
(1.4.4) we can make step= 1 andp = ¢ = 1. By Lemma 1.3 we may assume that
ae(A) =1+ 8,.()) forall a #Z c. By (1.8.2) we haved,.()\) = —B..(\) for all a #Z c.

Fix a, ¢, a # ¢, and solve Egs. (8.4),., (1.8.5)4¢, (1.8.4).q4, (1.8.5)c,.
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Lemma 1.4. Any solution G,.(\), Bea(A) of EQs. (1.8.4)c,(1.8.5)4c, (1.8.4)cq,
(1.8.5)., has one of the following two forms.

1' B(LC = /6(!(L = 0
2.
Bue) = ) B = (L111)
e )\ac - ac’ o )\ca - ,Uca’ o
wherepi,. = —peq andpuq.(A) is @ meromorphic function periodic with respect to
shifts of A by w, andw, trac(A — wa) = trac(A — we) = pac(N).

Proof. It is easy to see thaf,.(\) = G..(\) = 0 is a solution. Now assume that
Bae = —fea 7 0. Then (18.5),. gives

1 1
+ =1
/8G,C(>\) ﬁac()\ - wa) ’

and (18.5)., gives
1 1

ﬂac(/\) v ﬂac(A - wc) -
Let lffac()‘) = )‘ac - 1/5(1(:()‘) Then,ulac()‘ - wa) = ,U/ac()\) and,ufac()\ - wc) = ﬂac()‘)'
Hence 1

ﬁac(A) = )\7

?
ac /J/ac

-1

wherep,.(A) is @ meromorphic function periodic in, andw,. Similarly,

1
(V) = ————,
ﬂ ( ) )\ca - /J/ca
wherep., () is afunction periodic i, andw,. We haveu,. = —picq SINCEB,. = —Beq-
It is easy to see that these functighs andg,, solve Egs. (8.4),. and (18.4).,. The
lemmais proved. O

Equation (1.8.7) shows that the functigg.()\) and hence the function,.()) is
periodic with respects to shifts ofby w, for anyb different froma ande.

Consider Eq. (B.9),5. on functionsG,,(A), Buc(A), Bac(N). It is easy to see that if
one of these three functions is identically equal to zero, then there is another function in
this triple which is identically equal to zero.

Introduce a relation on the sél, ..., N}. For anya € {1,..., N}, leta be related
to a. For anya,b € {1,..., N},a # b, leta be related td if the function 3,,(}\) is not
identically equal to zero. It is easy to see that this is an equivalence relation.

LetY C {1, ..., N} be the union of all the equivalence classes containing more than
one element. LeY =Y; U... UY,, be its decomposition into equivalence classes.

If pairwise distincta, b, ¢ € {1, ..., N} do not belong to the same equivalence class,
then at least two of the three functiofig,()\), Bue(N), Bac()) are identically equal to
zero. Hence this triple of functions satisfies Eq8(Q).s.- If all three elements, b, ¢
belong to the same equivalence class, then equati8rdfl,. takes the form

1 11 11 1
/\cb — Meb Aac — Hac )\ab — Hab Abc — Hbe /\ac — Hac Au,b — Mab '

This implies thatu,.(A) = pap(A) + 1oe(A). Therefore there exists a 1-quasiconstant
meromorphic map : h* — h* such thas,.(\) = z,((N\) — z.(u(N)) for all a, ¢ such
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that u..(\) is not identically equal to zero. It is easy to see that if the functiopé))
have this property then Egs. (1.8.8) and (1.8.10) are also satisfied.

Let o be a permutation of1, ..., N} which transforms the sé&f and the decompo-
sitionY =Y, U...UY, into asetX C {1,..., N} and its decomposition into disjoint
intervals X = X; U ... U X,. Apply to the R-matrixRk()\) the gauge transformation
(1.4.2) corresponding to the permutatienThen the transformed R-matrix will have
form (1.5.1) corresponding to the constructed decomposiXion X; U ... U X,,. The-
orem 1.2 is proved. O

1.12. Proof of Theorem 1.3.et R(\) be a quantum dynamical R-matrix of Hecke type
with parameter®, ¢ such thap # ¢. Using gauge transformations (1.4.3) and (1.4.4)
we can make step = 1 andp = 1. Fix a numbet such thaty = e€.

By Lemma 1.3 we may assume thaf.()\) = g + B..()\) for all a Z c¢. By (1.8.2) we
havef..(A) =1 — g — B..(N) forall a # c.

Fix a, ¢, a # ¢, and solve Egs. (8.4),., (1.8.5)4c, (1.8.4)cq, (1.8.5)cq-

Lemma 1.5. Any solution SB,.(\), Bea(A) of EQs. (1.8.4)4c,(1.8.5),., (1.8.4).,,
(1.8.5),., has one of the following two forms.

1 Bac=0,80a=1—q0rB:a=0,084c=1—gq.
2.
ec—1 ec—1
ac A) = TN e\ o ca A) = TN e o
e e T e

wherepg (N ea (A) = Landpu, () is @ meromorphic function periodic with respect
to shifts of\ byw, andw,, ttac(A — wa) = prac(A — we) = fae(N).

(1.12.1)

Proof. Equation (18.4),. can be written in the form

(q + 5(16()‘ - wa)) (1 - Bac()\ - wa)) ﬁac(A) = (1 - 5(10()\ - wa)) ﬁac(A - wa)-
Hences,.(A) = 1 or

(C] + ﬂac()\ - wa)) 60,6()\) = /gac()\ - wa)- (1122)

The functiong,.(\) cannot be identically equal to 1. In fact, i,.(\) = 1, then
Eq. (18.4)., gives 0 =—q(1 + ¢) which is impossible since we always assume that
—qZp.

Equation (112.2),. has constant solutions,.(A) = 0 or 8,.(\) = 1 — ¢ which
correspond to the first statement of the lemma. Now assumgth@y) is not constant.
Introduce a new meromorphic functign.(A) = (Bac(\) + ¢ — 1)/Bac(N). It is easy to
see that/,.(A\) yeo(N) = 1. Now Egs. (112.2),., (1.12.2)., can be written as

yac()‘) =q yac(/\ - Wa)v yac()\) = q_l yac()\ - wc)~ (1123)

Setiqe(N) = Yae(N) e~ e, Then the functiom,.(\) is periodic with respect to shifts of
A by w, andw.. We haveu,.(\) peqo(\) = 1. Returning to functiong,.(\) and 5., ()
we get the second type of solutions. The lemma is proved(]

Equation (1.8.7) shows that the functigg.()\) and hence the functiop,.()) is
periodic with respect to shifts of by w;, for anyb different froma andec.

If the function 3,.()\) has form (1.12.1), then we say that the functigp()) is
finite. If 5,.(A\) = 1 — ¢, then we say that,.(\) = 0. If 5,.(\) = 0, then we say that
Hac(A) = 00. If fiac(A) = 0, thenucq(A) = 0o If pac(A) = 0o, thenpicq(A) = 0.
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For pairwise distinct;, b, ¢, we shall say that the equation

tab(A) f1oe(A) = tac(N) (1.12.4)
holds if one of the following four conditions is satisfied.

(1.12.5) All three functiong,,(A), tec(X), ac(N), are finite, and satisfy (1.12.4).

(1.12.6) pqec(A) = o and at least one of the functiops, (), pec(A) is equal toco.

(1.12.7) pqec(N) = 0 and at least one of the functiops, (1)), 1sc(A) is equal to 0.

(1.12.8) pqc(N) is finite, one of the functiong., (), pse(N) is equal to zero and the
other is equal to infinity.

Lemma 1.6. For any pairwise distinct, b, ¢, Eq. (1.12.4) holds.

The lemma easily follows from Eq. (1.8.9).
Introduce

Y ={(a,b) | (a,b) € {1,.... N},a # b, pgp = 0}. (1.12.9)
Then

(1.12.10) If @,b) € Y and ¢,c) € Y, then @,c) € Y.
(1.12.11) If @,b) belongs taY’, then 6, a) does not belong t&'".

By Theorem 3.11 in [EV], there exists a permutationf numbers{1, ..., N} such
that for the new order of, ..., N}, if (a,b) € Y, thena < b. Apply to the R-matrix
R()) the gauge transformation (1.4.2) corresponding to the permutatibhen the set
Y defined by (1.12.9) for the transformed R-matrix is such that Y € Y, thena < b.
From now on we denote bi()\) the transformed matrix.

LetZ = {(a,b)|a < b} - Y.

Lemma 1.7. 1. If (a,b) belongs toZ, then all pairs(c,c+ 1), ¢ =a,a+1,....,b — 1,
belong toZ.

2. Ifforsomeu, b, a < b, all pairs (c,c+ 1)forc =a,a+1,...,b — 1 belong toZ, then
(a, b) belongs taz.

Lemma 1.7 is a special case of Lemma 3.13 in [EV].

Consider the subséf C {1, ..., N} of all a such that there existawith the property
that (@, b) or (b, a) belongs taZ.

Introduce a relation on the sé&f. For anya € X, leta be related ta:. For any
a,b € X,a < b,letabe related td if (a,b) € Z. Lemma 1.7 implies that this relation
is an equivalence relation. Leéf = X; U ... U X,, be the decomposition ok into
equivalence classes. Lemma 1.7 implies that X; U... U X, is a decomposition into
a union of disjoint intervals. It is easy to see that the R-ma(ix) has form (1.6.4) for
the constructed decompositidh = X3 U ... U X,,. Theorem 1.3 is proved.

1.13. Quantum dynamical R-matrices as an extrapolation of constant quantum R-
matrices. Consider the vector representatibnof the quantum group/,(glx). Then
its R-matrixR € End( ® V) has the form,

N

R = Z Eaa & Eaa + Z Qab Eaa & Ebb + Z Bab Eba b2 Eab7 (1131)
a=1 azb a7b



606 P. Etingof, A. Varchenko

where the numbere,,;, 8., are defined as followsy,, = ¢, B, = 0if a < b and
agpy =1 Bay = 1— qif a > b. The matrixR is a constant solution of the quantum
dynamical Yang—Baxter equation (1.1.3).

For any permutatioa of numbers{1, ..., N} we construct a new constant solution,
R, of the quantum Yang—Baxter equatidR,, has form (1.13.1) where the numbers
Qap, Bap are defined by the rulei,, = q, Bap = 0ifo(a) < o(b)anday, =1, Bap = 1—¢q
if o(a) > o(b).

Fix a complex number such thak® = ¢q. Consider the matrix

N
R()\) = Z Erm, & Eaa + Z aab()\) Eaa & Ebb + Z ﬂab()‘) Eba 02y Eabv (1132)
a=1 azb azb

where the functions,.(\) andg,.()\) are defined by

ef—1
efrab — 1’

The matrix R()) is the R-matrix of form (1.6.4) corresponding to dafa= X; =
{1,..,N}.

The R-matrix R(\) extrapolates the constant R-matricgB, } in the following
sense. Lep = (852, X222 € ph*. Let o(p) be the vector obtained from by
permutation of coordinates by Then

ﬂab(/\) =

Qqp =€+ Bab-

limy o0 R % o(p)) = Ry (1133)

2. Quantum Dynamical R-matrices with Spectral Parameter

2.1. Definition. Let h be an abelian finite dimensional Lie algebra. keti = 1,2, 3,
be finite dimensional diagonalizalfemodules,

Ryy, i Cxbh* — EndVi@V;), 1<i<j<3,
meromorphic functionsya nonzero complex number. The equationin BAad(1>2V3),

R, (z1—22, A — Yh®) R\, (21 — 23, \) RE (22 — 23, A — vhY)

(2.1.1)
= RB\ (22 — 23, ) Ri2y. (21 — 23, A — vhP) RYZ, (21, —22, N)

is calledthe quantum dynamical Yang—Baxter equation with spectral parameter and
stepy (QDYB equation). In what follows we will use a notatiefy = z; — z;.
A function Ry,v, : C x h* — End(V; ® V}) is calleda function of zero weigtit

[Riv, (2, A),h@1+10h] = 0 (2.1.2)

forall h € b, z € C, A € h*. Asolution{Ry,v, }1<i<;j<3 Of the QDYB Eq. (2.1.1) is
called a solution of zero weight if each of the functions is of zero weight.

If all the spaced/; are equal to a spadé, then we consider the QDYB equation on
one function® : h* — End(V @ V),

R¥(212, A — vh®) R®¥(213, \) R¥(223, A — vhY)

(2.1.3)
= RB(223, \) R™(213, A — vh®) R(215, ).
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A zero weight functionR satisfying the QDYB Eqg. (2.1.3) is calledquantum dynam-
ical R-matrix with spectral parameteAn R-matrix is calledunitary, if it satisfies the
unitarity condition

R(z,\) R*Y{(—z,)\) =1 (2.1.4)

2.2. Quantization and quasiclassical limit.et x;, ..., zx be a basis irf. The basis
defines a linear system of coordinategjonFor any\ € h*, set\; = z;(\),i=1,..., N.

LetR, : Cx h* — End(V ® V) be a smooth family of solutions to Egs. (2 1.3)and
(2.1.4) Wlth stepy such that

R (z,\) =1—~vr(\) +O(?). (2.2.1)
Then the function : C x h* — End(/' ® V) satisfies the zero weight condition
[r(z,\),h®1+1®h] =0 (2.2.2)
forallh € b, z € C, A € h*, the unitarity condition
r(z, ) +r?{(=z,2) =0 (22.3)

and the classical dynamical Yang—Baxter equation with spectral parameter (CDYB),

N N N

ors3 or3t ort?
m=_ \) + @ \) + @)

12:1: Z; oz, (223, A) ; Z; o, (231, A) 22:1: z; oz,

[T12(2127 )\)a T13(213, )‘)] + [7"12(2127 >\)7 T23(223, )\)] + [T13(213’ )‘)7 7'23(223, )‘)] = 0.
(2.2.4)

A function r(z, \) with properties (2.2.2)—(2.2.4) is calledctssical dynamical
r-matrix with spectral parameter.

The functionr in (2.2.1) is calledhe quasiclassical limit oR, and the functiom?
is calleda quantization of-.

LetU C h* be anopen set,and I& : C x U — End(V ® V) be a zero weight
meromorphic function of® x U. We will say thatR is a guantum dynamical R-matrix
with spectral parameter 08 x U if the QDYB equation with spectral parameter is
satisfied forR whenever it makes sense.

A classical dynamical r-matrix(z, A) with spectral parameter dl x U is called
guantizabldf there exists a power seriesin

N +

Ry(z, ) = 1= yr(z, )+ > 7"ra(z,N) (2.2.5)
n=2

convergent for smally| for any fixed ¢, A) € C x U, such thatR,(z, A) is a quantum
dynamical R-matrix orfC x U with spectral parameter and step

2.3. R-matrices ofly type. Leth be an abelian Lie algebra of dimensidh Let V' be
a diagonalizablg-module of the same dimension such that its weights.., wy form
a basis im*. Letzy, ..., x ;y be the dual basis df. Let v, ..., vy be an eigenbasis faoy
in V such that;v; = 6;;v;. Then theh-moduleV ® V' has the weight decomposition,

VeV=elVi ©®ubVa, (2.3.1)
whereV,, = Cv, @ v, andVy,, = Cv, @ v, @ Cvp Q@ vy .
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A quantum dynamical R-matrix with spectral parameker,C x h* — End(/ @ V),
for thesel) andV will be called an R-matrix ofiy type.

The zero weight condition implies that the R-matrix preserves the weight decompo-
sition (2.3.1) and has the form

N
RN =Y aa(zA) Baa ® B+ > Bap(2,A) Era @ Eap, (2:32)
a,b=1 a7b

whereag, 8. @ C x h* — C are suitable meromorphic functions.

2.4. Gauge transformationdg-ix a nonzero complex number Let+ : h* — C be a
function. For anye, b =1, ..., N, set

9ath(A) = () = (A — wa),
Lapp(A) = 0atp(X) = Opp(A — wa) = P(X) — 20(X — wa) + (A — wa — wyp).

Introduce gauge transformations of quantum dynamical R-mattdte§; x h* —
End(V @ V), of type (2.3.2) with step.

(2.4.1) Lety) be a meromorphic function dy. Set
R(z,\) —

N
Z ezaaﬁbi/)(k) aab(za )‘) Eaa b2 Ebb + Z €ZLub1/)(>\) ﬁab(zv )‘) Eba & Eab~
a,b=1 a7b

(2.4.2) Let{pq} be a meromorphig-closed multiplicative 2-form of*. Set

N
R(z,A) = > 0ga(2,)) Bag ® Eqq +
a=1

Z wab()‘) aab(z7 A) Eaa oy Ebb + Z ﬁab(za )‘) Eba & Eab-
a7b a7b

(2.4.3) Let the symmetric groufiy act onh* andV by permutation of coordinates.
For any permutation € Sy, set

R(z,\) — (c®0)R(z,07 - N (e too™h).
(2.4.4) For a nonzero holomorphic scalar functigg), set
R(z,A) — c(2) R(z, \).
(2.4.5) For nonzero complex number and an element € h*, set

R(z,\) — R(bz, c\+ ).
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Itis clear that any gauge transformation of type (2.4.3) transforms a (unitary) quan-
tum dynamical R-matrix with spectral parameter and stee a (unitary) quantum
dynamical R-matrix with spectral parameter and stepny gauge transformation of
type (2.4.4) transforms a quantum dynamical R-matrix with spectral parameter and step
~ to a quantum dynamical R-matrix with spectral parameter ancystém addition we
havec(z)c(z~1) = 1, then the gauge transformation of type (2.4.4) transforms a unitary
guantum dynamical R-matrix with spectral parameter and-gtepa unitary quantum
dynamical R-matrix with spectral parameter and steny gauge transformation of
type (2.4.5) transforms a (unitary) quantum dynamical R-matrix with spectral parameter
and stepy to a (unitary) quantum dynamical R-matrix with spectral parameter and step

v/e.

Theorem 2.1. Any gauge transformation of type (2.4.1) or (2.4.2) transforms a quantum
dynamical R-matrix with spectral parameter and s{¢p a quantum dynamical R-matrix
with spectral parameter and stepMoreover, if the initial quantum dynamical R-matrix

is unitary, then the transformed R-matrix is unitary.

Theorem 2.1 is analogous to Theorem 1.1 and is also proved by direct verification.
Namely, in order to prove Theorem 2.1 it is enough to write the QDYB Eg. (2.1.3) in
coordinates, as it was done for Eq. (1.1.3) in Sect. 1.8, and then check that if functions
aap(z, @) andBy, (2, o) form a solution of the coordinate equations, then the transformed
functions also form a solution.

Two R-matricesk : C x h* — End(V @ V) andR’' : C x h* — End(V @ V)
will be calledequivalentf one of them can be transformed into another by a sequence
of gauge transformations.

2.5. Examples.

The elliptic R-matrix. Fix a pointr in the upper half plane and a complex number

Let
er)=— 3 e
JEZ+3
be Jacobi’s first theta function.

Let h be the Cartan subalgebra gfy. It is the abelian Lie algebra of diagonal
complex N x N matrices with the standard basis = diag(Q...,0,1;,0,...,0),
1=1,...,N.Its dual spacé* has the dual basis;.

The vector representation gf y is V' = CV with the standard basis,, . .., vy,
;05 = 0350,

Let R“” ‘(z,A) € End(V ® V) be the R-matrix of the elliptic quantum group
m/z(slN) [F1-2, FV2]. It is a function of the spectral parameterce C and an
additional variable = (A1, ..., Ax) € b*. Itis a solution of the CDYB Eg. (2.1.3) and

satisfies the unitarity condition (2.1.4) [F1-2]. The formula if’. is

N
Rfey”T (Z7 /\) = Z Eu ®Eaa+z a(za /\a,b)Eaa ®Ebb+z ﬁ(*’% Aab)Eba ®Eap, (251)
a=1 a7b azb

wherel,, = A\, — A\, and the functions, 3 are ratios of theta functions:

O\ +~,7)0(z,7) 0(z — N\, 7)0(v,7)

oz, A) = O\, T)0(z — v, 7)’ 0(z — v, 7)0(\, 1)

B(z, ) = (2.5.2)
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Trigonometric R-matrices.Let X C {1,..., N} be a subsetX = X; U ... U X,, its
decomposition into disjoint intervals.
Foranya,b € {1,..., N}, a # b, we introduce function&,, 5.» : C x h* — C.
If a,b € X for some k, then we set

sin(\qp + ) sin(z) sin(z — A\ap) Sin(y)

= = . 2 .
(=N = Ginysne =) PN gnaysine =) @Y
Otherwise we set
_, sin() . Sin()
- iy = _ iz
agp(z,A) =e Y A— Ban(z, A) e sinG — ) (2.5.4)
if a < b, and
. sin(z) _..  Sin(y)
= vy XS - _ 1tz T NI
Oéab(z, )‘) € Sin(Z — 7)7 ﬁab(za A) € Sin(Z — '7) (255)
if a > 0.
Define a function?(y _ : C x h* — End(V ® V) by
N
RU;(!]k ,Y(Z, )‘) = Z Euo @ Eqq + Z Oéab()\) Euo @ Epp + Z ﬁab()‘) Epa ® Eab7
a=1 a7b a7b
(2.5.6)

whereay;, andg,; are defined by (2.5.3) - (2.5.5).

Rational R-matrices.Let X C {1,..., N} be a subsetX = X; U ... U X,, its decom-
position into disjoint intervals.
Foranya,b € {1,..., N}, a # b, we shall introduce functions,, 3. : C x h* —

If a,b € X}, for some k, then we set

(Aab + 'Y) z (Z - )\ab) Y
Qap(2,\) = ———, (2, ) = —————. 257
b( ) Aab (Z - ’7) 6 b( ) )\ab (Z - ’7) ( )
Otherwise we set
aap(z,\) = ——, T (2.5.8)
z—=7 zZ—="

Define a function?’y, . : C x h* — End(V @ V) by

N
U?)ék ,Y(Z >\) - Z Eaa & Eaa + Z aab()\) Eaa ® Ebb + Z ﬂab()\) Eba ® Ealn
a=1 azb a7b

(2.5.9)
wherea,;, andg,; are defined by (2.5.7) - (2.5.8).

Theorem 2.2. For any subseX C {1,..., N} and its decompositioA’ = X;U...UX,

into disjoint intervals, the funCtIOﬂRtMg and R{7, . are zero weight solutions of
the QDYB Eqg. (2.1.3) satisfying the unltanty condmon (2.1.4).
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Proof. According to [F1-2] the elliptic R- matrnRe” is a zero weight solution of the
QDYB Eg. (2.1.3) satisfying the unitarity condmon (2.1.4).

If ¢ = e2™™ — 0, thend(z) ~ 2¢~/8sin(rz).

These two facts show that the R-matf(z, \) of the form (2.3.2), with

sin(\qp +7y) sin(z)
sin(\p) Siniz — 7))’

sin(z — Aap) SiN(Y)
sin(\gp) Sin(z — )

aap(z, A) = Bap(z, A) =

forall a # b anda,, = 1 for all a, is a zero weight solution of the QDYB Eq. (2.1.3)
satisfying the unitarity condition (2.1.4).

For any fixedd € h*, the R-matrixR%(z, A + d) is also a zero weight solution of the
QDYB Eg. (2.1.3) satisfying the unitarity condition (2.1.4).

Fix a subseX C {1,..., N} and its decompositioX = X; U ... U X,, into disjoint
intervals. It is easy to see that there exists a sequence of elethents*, i = 1,2, ...
such that the R-matriR°(z, A + d;) has a limit wheni tends to infinity, and this limit
is equal toR]3. _(z,\). This observation shows that' |3/ ' (2, )) is a zero weight
solution of the él?)YB Eqg. (2.1.3) satisfying the un|tar|ty condmon (2.1.4).

Rescale the R-matrig}3¢ _(z, ) and consider a matrik.(z, A) = R(y _ (ez, €)),
wheree is a new parameter. Let, z, A be fixed and let tends to 0. Then the limit

of R(z, ) is equal toR[7, _ (2, ). Hence RU%, (2, ) is a zero weight solution of
the QDYB Eq. (2.1.3) sansfylng the unitarity condmon (2.1.4). Theorem 2.2 is proved.

d

2.6. Quantization of classical dynamical r-matricegbf type with spectral parameter.
Let V' be theN dimensionalj-module considered in Sect. 2.3. Let C x h* —
End(V ® V) be a zero weight meromorphic function satisfying CDYB (2.2.4) and the
unitarity condition (2.2.3).
The zero weight condition implies thathas the form

N
r(%N) =Y aup(2,N) Baa © By + > Ban(2, ) Bap ® Epa- (26.1)
a,b=1 azb

Assume that the function satisfies also theesidue condition
Res-or(\,z) = e P +41d.

Here P € End(V ® V) is the permutation of factors and ld End(/ ® V) is the
identity operator. The complex numberando are calledhe coupling constarandthe
secondary coupling constamespectively. We always assume that the coupling constant
€ is not equal to zero.

We recall a classification of such r-matrices. Firstwe introduce gauge transformations
of classical dynamical r-matrices with spectral parameter.

(2.6.2) Lety = Za,b Yap(N)dz, A dxy, be a closed meromorphic differential 2-form
onh*. Set

’I“(Z, >‘) = T(Zv )‘) + Z wab()\) Eaa & Ebb~
a7b
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(2.6.3) For a holomorphic functiop : h* — C, set

N azw
’I“(Z, )‘) = § (aab(za )‘)+ z (/\)) Eaa & Ebb +
ab=1 Bxa Bxb

O (\)_ Ov
5 e VOO 5,
azb

(2.6.4) Foru € b*, set
r(z,A) — r(z, A+ p).

(2.6.5) Let the symmetric groufy act onh* andV by permutation of coordinates.
For any permutation € Sy, set

r(z,\) = (6@0)r(z,0 - N (e teoh).
(2.6.6) For a nonzero complex numheset
r(z,A) — cr(z,c)).
(2.6.7) For an odd scalar meromorphic functifn), f(z) + f(—z) = 0, set
r(z,\) — r(z,\) + f(2)Id.

Any gauge transformation transforms a classical dynamical r-matrix with spectral
parameter to a classical dynamical r-matrix with spectral parameter [EV]. Two classical
dynamical r-matrices(z, A) andr’(z, \) will be calledequivalenif one of them can be
transformed into another by a sequence of gauge transformations.

The gauge transformations of quantum dynamical R-matrices with spectral parame-
ter described in Sect. 2.4 are analogs of the gauge transformations of classical dynamical
r-matrices with spectral parameter.

Classification of the classical dynamical r-matrices with spectral parameter.
The elliptic r-matrix. Fix a pointr in the upper half plane. Introduce the functions

() = O(w — z,7)0'(0, 1) () = 0'(z,7)
T w0 T P T )
whered'(z, 7) = 2%&7) | Set
N
Till(zv >\) = P(Z) Z Eaa & Eaa + Z OX\pa (Z)Eab by Eba~ (268)
a=1 a7b

For everyr € C, Im 7 > 0, the function-¢!!(z, \) is a classical dynamical r-matrix with
spectral parameter, coupling constant = 1 and secondary constant 0, [FW].

Trigonometric r-matrices. Let X C {1,...,N} be a subsetX = X; U ... U X,, its
decomposition into disjoint intervals.

Foranya,b € {1, ..., N}, a #b, we introduce a functiof,, : C @ h* — C.

If a,b € X}, for some k, then we set

SiNQ\ap + 2)
~ sin(\yp) SiNG)

ﬁab(zv )‘) =
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Otherwise we set

—iz eiz
fora < b, ﬂab(z, A) = W(Z)

e

=< f b.
Sln(z)7 Oora >

ﬂab(z, )\)

We introduce a trigonometric r-matri J};’M :Coebh* —EndlV @ V) by

N
rO (2, 0) = cotan€) > Eao @ Eag + Y Ban(zA) Eap @ Epa, (2.6.9)
a=1 a7b

where cotan{) = cos ) /sin (z).

Rational r-matrices. Let X C {1,..., N} be a subsetX = X; U ... U X,, its decom-
position into disjoint intervals. Set

n
Z 1
ab
k=1 a,be Xy, a7b

Sl

rUx, (2 A) =

Theorem 2.3. 1. For every subseX C {1,..., N} and its decompositioX = X; U
... U X, into disjoint intervals, the matriceﬁj}é andr{/%, are classical dynamical
r-matrices with spectral parameter.

2. Every classical dynamical r-matrix: C x h* — End( ® V) with nonzero coupling
constant is equivalent to one of the matrices (2.6.8)—(2.6.10).

Theorem 2.3 follows from [EV].

Theorem 2.4. Letr(z, A) be a unitary classical dynamical r-matrix with spectral pa-
rameter and nonzero coupling constant, meromorphi€or U, whereU is an open
polydisc. Assume that for any € U there exists: € C such thatr is holomorphic

at (A, z). Thenr can be quantized to a unitary quantum dynamical R-mal&ixon

C x U of gly type. Moreover, if a classical dynamical r-matrix with spectral parame-
ter and nonzero coupling constant is equivalent to the elliptic r-matrix (2.6.8) (resp., a
trigonometric r-matrix (2.6.9) or a rational r-matrix (2.6.10)), then it has a quantization
equivalent to the elliptic R-matrix (2.5.1) (resp., a trigonometric R-matrix (2.5.6) or a
rational R-matrix (2.5.9)).

Proof. We shall prove that if a classical dynamical r-matrix is equivalent to the elliptic

r-matrix (2.6.8), then it is quantizable to a quantum dynamical R-matrix equivalent to

the elliptic R-matrix (2.5.1). The other statements of the theorem are proved similarly.
Compute the quasiclassical limit ¢t¢’’ (z, \). For the functionsx(z, \,~) and

8(z, \,~) defined in (2.5.2), we have
im 0oz(z, Ay =1 - 0'(\) N 0'(2) | . B(z, A\, ) _ 0'(0)0(z — \)
T ¥ o0\ 0(z)’ T ¥ o(N0(z)

Hence
R (2,0) =1 — yr(z,0) + 0(4?),

where
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T(Zv )‘) Z (0 ()\ab) 9/(2)) Eaa ® Ebb - Z w Eba ® Eab

00ap)  0(2) = 00aw)0()
Z (Z((i‘ab) 0’ (Z))) FEuoo ® By + Z Orpa (Z) E.p @ Epg.
a7b

Now applying to the r-matrix:(z, A) the transformation (2.6.2) corresponding to the
closed differential 2-form

9/()‘111))
Z ———=dx, Ndxy,
~ 60)

and then applying to the result the transformation (2.6.7) corresponding to the function
f(z) = 0'(2)/6(z) we getthe matrix<!(z, \) defined by (2.6.8). This remark and Lemma
1.1 easily imply the statement of the Theorem concerning the elliptic r-matrix. Theorem
2.4isproved. O

Remark.The elliptic quantum dynamical R-matrix (2.5.1) was invented by G. Felder
[F1-2] as a quantization of the classical dynamical r-matrix (2.6.8).

2.7. Formal dynamical R-matrices and gauge fixing conditioriset R, (z,A) =
1—9r(z,\) +>,-,7"rn(z, A) be a power series ik and~, whose coefficients are
meromorphic functions of, taking values in End( ® V). The seriesk,, is called a
formal quantum dynamical R-matrix @f 5 type with spectral parameter and stgp

if it is of zero weight and satisfies the quantum dynamical Yang—Baxter equation. In
addition, R, is called unitary if it satisfies the unitarity condition (2.1.4). In this section
for brevity we will refer to formal quantum dynamical R-matricesgdf; type with
spectral parameter and stgps “formal dynamical R-matrices”. As we know, any such
R-matrix has form (2.3.2).

The theory of formal dynamical R-matrices is completely analogous to the theory of
analytic dynamical R-matrices. In particular, one can define formal classical dynamical
r-matrices and formal gauge transformations in an obvious wa, ¥ 1 — yr + ... is
a (unitary) formal dynamical R-matrix, theris a (unitary) formal dynamical r-matrix.

An example of a formal dynamical R-matrix is the Taylor expansion of an analytic
dynamical R-matrix®, (z, A) ata pointy = 0, A = Ao, such thafR is regular at this point
for generic values of.

Proposition 2.1. Let R, = 1 — vr + ... be a unitary formal dynamical R-matrix, and

zp € C a point whereR,, is regular. Leta,s, B, be the matrix coefficients @i, see
(2.3.2). Thenk, can be transformed, by a sequence of formal gauge transformations,
to a unitary formal dynamical R-matrix satisfying the following conditions:

1) for everya, b, ¢, the ratio 2«tZ:2=3<<) is independent of;

2) foreverya < b, agp(z0,\) =1

3) the coefficientv11(z, A) is independent of.

Proof. The QDYB equation with spectral parameter implies the equation
Qap (U, A —ywe) Qe+, A) ape(v, A —ywga) = ape(v, A) @ge(utv, A—ywp) agp(u, A)

(2.7.1)
for anya, b, c. Therefore, we have
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Qap(t A = 70e) _ e DancW 2.7.2)
aab(ua )‘) e 7

for suitable power serieH ;.()\), Dapc(N).
Lemma 2.1. There exists a formal power serié¢$\) such thatD,,;,. = 0,0,0.1.

Proof. From (2.7.1) it follows thatD,;. is symmetric. From (2.7.2) it follows that
04D qpc is symmetric. The rest of the proof of the lemma follows from the basic theory
of difference equations with infinitesimal shift. O

Corollary 2.1. Performing a gauge transformation (2.4.1), we can arrafige 0, i.e.
condition 1.

From now on we assume thBx= 0, i.e.

aap(U, A — ywe)
4010,(;(114, )\) - Habc()‘)' (273)

This implies thatv,, (u, A) = o, (u)a?,(\), wherea!, are new functions.

Consider the multiplicative 2-fornp defined bypas(A) = aas(z0,A), a < b. It
follows from (2.7.1) thatl,¢ = 0. Therefore, by a gauge transformation of type (2.4.2)
we can arrange = 1, i.e. condition 2.

It remains to arrange condition 3. By (2.7.3h1(2, A) = f(2)g()\) for a suitable
formal power serieg()\) and a meromorphic functiofi(z) such thatf(z) f(—z) = 1.
Applying transformation (2.4.4) with(z) = 1/ f(z), we get condition 3. The proposition
isproved. O

We will call conditions 1-3 the gauge fixing conditions.

2.8. Classification of unitary formal dynamical R-matrices with elliptic quasiclassical
limit. We will say that a formal classical dynamical r-mattiis of elliptic, trigonometric,

or rational type if it is gauge equivalent (by formal gauge transformations) to an r-matrix
of the form (2.6.8), (2.6.9),(2.6.10), respectively, expanded near a pgirt h*. It
follows from [EV] that any formal classical dynamical r-matrix satisfying the residue
condition with coupling constart= 0 is of elliptic, trigonometric, or rational type.

Theorem 2.5. Let R, = 1— 7+ 0O(?) be a unitary formal dynamical R-matrix whose
guasiclassical limitr is of the elliptic type. Then there exist a pokg € h* and a
power series(y) = 79 + O(y) € C[[~]], Im(rp) > 0 such that the R-matri®., can be
transformed, by a sequence of formal gauge transformations, into the Taylor series of

R (2, A = Xo), whereR<' (2, )) is the elliptic R-matrix (2.5.1).

The proof of this Theorem occupies the next section.

2.9. Proof of Theorem 2.5Let X° be the space of unitary formal classical dynamical
r-matrices with spectral parameter and a nonzero coupling constaiflbet the subset
of elements ofX® which satisfy the following gauge fixing conditions:

1c) 3%-an(z, A) is independent of;

2¢) agp(zo,A) =0,a < b;

3¢) aiq1(z, A) is independent of (these conditions are quasiclassical analogues of con-
ditions 1-3 above).
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According to the results of [EV], the spac€? is a connected, finite-dimensional
complex manifold (with singularities), and any elemenfdfis gauge equivalent to an
element ofX?. (i.e. X0 is a “cross-section”). Moreover, sinee= X? is of elliptic type,
the manifoldX? is smooth at-.

Let X be the space of unitary formal quantum dynamical R-matrices with spectral
parameter, an, the subset of elements df satisfying the gauge fixing conditions
1-3.

As we have shown in Sect. 2.7, we can assume that our fa®ilig in X... In this
casey € X0.

Now let us prove the statement of the theorem modfité! by induction inm.

Form = 1, the theorem is a tautology. Suppose we know the theorem fok > 1,
and want to prove it forn = k + 1.

We have a polynomiak;, = 1—~r+...+~v"r;, which satisfies the conditioR;, € X,
modulo~y**1. We know thatR,, satisfies the conclusion of Theorem 2.5 modufd?!,

i.e. is of the form (2.5.1) modulg**2.

Consider any extension of this polynomial to oréler1: Ry.1 = Ry, +7"*1r41. The
condition thatR;+1 € X, modulo~**2 can be expressed as a nonhomogeneous linear
equation with respect ta,.1 having the formA ri.1 = sg+1(rk, ..., 72, 1), WhereA is a
linear operator.

The obvious, but crucial observation now is the following.

Lemma 2.2. Ker A = T, X2, whereT,. X? denotes the tangent space at the peint

Proof. Indeed, it is easy to see by an explicit calculation that the linear homogeneous
equationAp = 0 is nothing else but the equation for a tangent vectdt §at the point
r. O

Corollary 2.2. The dimension of the space of solutionsief..; = sx+1 is less than or
equal toK = dim(X79).

However, by Theorem 2.4, we already have a family of elemeni$.afiith K pa-
rameters — the quantizations of element@f Therefore, using dimension arguments,
we obtain that if;.+1 satisfiesAri+1 = sk+1, thenR.1(y) has to be in this K-parametric
family, which completes the induction step.

The theorem is proved. [

Remark.If r is not elliptic but rational or trigonometric, the result of Theorem 2.5 can

be generalized, in the sense that formal dynamical R-matfges 1 — vr + ... with

rational or trigonometrie can be explicitly classified up to gauge transformations by the
same method as above. However, both the statement and the proof in this case are more
delicate, as the manifold; may now be singular at, and it is necessary to describe
carefully these singularities. For simplicity one should first consider the case din2,

and then generalize to an arbitrary dimension. We are not giving this argument here.

3. Quantum Dynamical R-matrices and Monoidal Categories

Let us briefly recall some standard notions of the category theory [Mac, Kass].

Recall that a morphism : F' — G of two functors from a categoiyto a categorg’
is a choice of a morphismy : F'(X) — G(X) for any objectX in C, such that for any
two objectsX,Y € C and any morphismg : X — Y we haveay o F(g) = G(g) o ax.
An endomorphism of a functor is just a morphism of this functor into itself.
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Recall that anonoidal categorys a category’ with a bifunctor® : C x C — C (i.e.
a functor with respect to each factor), called the tensor product, and an isomorphism
of functors® : (x ® *) ® * — * ® (x ® x), called the associativity isomorphism,
such thatd satisfies the pentagon relation, and there exists a unit objectC with
certain properties. Araided monoidal categofig a monoidal category with a functorial
isomorphismg : ® — ®°P called the commutativity isomorphism, which satisfies the
hexagon relations. A braided category is cafigchmetrigf 32 = 1. A monoidal category
will be called aensor categorif it has an additive structur@, such that is distributive
with respect tap.

3.1. The category af-vector spaces.Let h be a finite-dimensional commutative Lie
algebra ove€. Let My - denote the field of meromorphic functionsigh Fix a complex
numbery.

Let Vy denote the category whose objects are diagonalizghtedules, and mor-
phisms are defined by Hom(X, Y)) = Homy (X, Y ®@c Mp-).

Let W ® * be the functor of multiplication byV. For anyW € V, and f €
End,, (W), definef(x — vh®) € End(¥ ® *) by the formula

v =hP)w @) = fr(\ = yw ® v, (3.11)

for anyv € V of weighty (cf. Sect. 1.1).

Define a bifunctor : Vy, x Vy — W, as follows. For anyX, Y € V, defineX®Y
to be the usual tensor produ€tx Y. For any two morphismg: X — X', ¢:Y — Y’
define the morphisnfeg : X ® Y — X’ @ Y’ by the formula

F@g(N) = FON =P (L @ g(). (312

Itis easy to see that the categdkyequipped with the bifunctap is a tensor category
(cf. [Mac]). Indeed, the functors®(+®+) and &®+)@* are equal, S® is associative.
Moreover, the object = C (the trivial h-module), satisfies the conditidn= 121, and
the functorsX — 18X, X — X®1 are autoequivalences d%, sol is an identity
object inVy.

We will call this monoidal category the category pivector spaces. I = 0, the
categoryV, coincides with the category of complex vector spaces.

If v = 0, the category is equivalent, as a tensor category, to the category of
diagonalizablé)-modules, with scalars extended frdirto My . This case is not very
interesting, so from now on we will assume thag 0.

The category), depends ony, but the categories with different nonzeyoare
obviously equivalent. We will suppress the dependendg,ain v in the notation.

Remark. It is clear that for any two objectX, Y € Vj the permutation operatoryy :

X®Y — Y®X is an isomorphism Wh However, if # 0, then this isomorphism

is not functorial inX andY'. In fact, it is quite easy to see thattif7 O, there is no
functorial isomorphism betweekl®Y andY ® X : such an isomorphism would have to
conjugatef M\ — vh@) (L@ g()\)) into gV (X — vR@) (1 ® f(\)) for any f, g, which is
impossible, since there is no relation betwgéh) and f(\ — yu) for a generic function

f. Thus, the category is a tensor category which in general does not admit a braided
structure.

3.2. Dynamical quantum R-matrices and tensor functdrss known from the theory
of quantum groups that if we are given a braided monoidal cate§pey symmetric
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tensor category, and a tensor functa¥ : 5 — V), then for any objecK € B we can
construct an eleme®(B, F, X) € Auty(F(X) ® F(X)) which satisfies the qguantum
Yang—-Baxter equation, by the formula

R(B, F, X) = o F(Bxx), (3.2.1)
where
Bxy : XY -Y®X

is the braiding inB3, ando is the permutation. For brevity we will writB(5, F, X) as
Rx.

Suppose how that we are given a braided monoidal catdgand a tensor functor
F : B — V. Observe that formula (3.2.1) makes sense in this situation. However, since
oxv is not a functorial isomorphism, we should not expBgt to be a solution to the
guantum Yang—Baxter equation. Still, it turns out tiiat satisfies a modified version
of the quantum Yang—Baxter equation, namely, the quantum dynamical Yang—Baxter
Eq. (1.1.3).

Theorem 3.1. The elemenk x satisfies the quantum dynamical Yang—Baxter Eq. (1.1.3)
in Endy, (F(X)®3).

Proof. We start with the braid relation

Gelep)(fel)=18)E @)1 H). (322)

Applying the functorF' to (3.2.2), and using the definition of the tensor product of
morphisms inVy, we get (1.1.3). O

3.3. Representations of a quantum dynamical R-maffixe notions discussed in this
section were introduced in [F1, F2, FV1].
Let R : h* — End(V ® V) be a quantum dynamical R-matrix (see Chapter 1).

Definition. A representation of? is an objectiV’ € V), endowed with an invertible
morphismL € Endy, (V®@W), called the L-operator, such that

R™Z(\ — vh®) LB(\) L2\ — v M)

23 13 2 12 (3'3'1)
= L2 LB = yh@) RN,

in Endy, (VRVRW).

Examples.1. The trivial representatiodd = C, L = Id.
2. The basic representatioll =V, L = R.
Let (W,L) be a representation ofR. Let A € Auty (W). Let LA =

1®ANHLO)A @ AN — yhDY).
Lemma 3.1. (W, L4) is a representation oR.
Proof. Straightforward. O
Let (W, Lw) and (U, Ly) be representations @f.
Definition. A morphismA € Homy, (W, U) is called anR-morphism if

(1@ AN\)Lw(N\) = Lu(\)(A ® A\ — vh®b)), (3.3.2)
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Denote the space @t-morphisms fromV to U by Homg (W, U).

It is clear that the composition of two R-morphisms is again an R-morphism. Thus,
representations ok form a category, which we denote Wiep(R). This category is
additive, with the obvious notion of direct sum.

Definition. The tensor product d and U is the pair(W @ U, Lwgu), where
Lweu(N) = Lig(A = YhO)LFO). (333)
Lemma 3.2. (W ® U, Lwgy) is a representation aoR.
Proof. Straightforward. O
ItisclearthattV @ U) @ X =W ® (U ® X).

Lemma 3.3. If W,W’,U,U’ are representations dk and f, g are R-morphisms then
f®g is an R-morphism.

Proof. Straightforward. [

Thus, we have equipped the categ®sp(R) with a structure of a tensor category.
Moreover, the forgetful functoF' : Rep(R) — Vj is naturally a tensor functor.

Theorem 3.1 shows that any pal8,(F : B — V) defines a system of quantum
dynamical R-matrices. It turns out that conversely, any quantum dynamical R-rRatrix
defines, F', and X, such thatk = R(B, F, X). The construction oB, F, X is parallel
to the case of usual R-matricas£ 0), where it is well known.

Namely, let5 be the subcategory dtep(R) whose objects are tensor powerdgf
and morphisms are the same as in Rgp(t is clearly a monoidal category. Define a
braiding s on B by By = oR. Itis easy to check using the hexagon axioms for the
braiding that there exists a unique braiding/®with suchgy .

Let F' : B — Vy be the forgetful functor. We assign the paf;, ') to R. It is clear
thatR = R(B, F, X) if we take X = V.

3.4. Dual representationslt is useful to define the notion of the left and right dual
representations.

Definition. Let(W, Ly ) be a representation d®. The right dual representation 3
is the pair(W*, Ly +), wherelV* denotes th@-graded dual ofiV, and

Ly-(\) = Lit(\ + yh@)t2, (3.4.1)

provided that the r.h.s. of (3.4.1) is invertible (hegedenotes dualization in the second
component). The left dual representatiotois the pair(* W, L-yw ), where*WW = W*,
and

Lew(\) = L (A — yh@) 1) (3.4.2)

provided that the r.h.s. of (3.4.2) is well defined.

Remark 1.Here L;Vl(/\ +yh@)t2 denotes the result of three operations applied suc-
cessively toLy,: inversion, shifting of the argument, and dualization in the second
component. SimilarlyLiz, (A — vh®)~1 denotes the result of three operations applied

successively td.yy: dualization in the second component, shifting of the argument, and
inversion.
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Remark 2.We do not define the representatidf if Ly~ is not invertible, and do not
define the representatiohl’ if L, is not invertible.

Lemma 3.4. The right dual representatiofi¥*, Ly ~) and the left dual representation
(*W, L-w ) are representations a®, and if I/ has finite dimensional weight subspaces
then*(W*) = *W)* =W.

Proof. The lemma can be checked by a direct calculation. It also follows from Propo-
sitions 4.1 and 4.4 below. O

Lemma 3.5. If A : W7 — W5 is a homomorphism of representationsRfthen the
linear mapA*()\) := A\+yh W)t = AY(A—~hM)is ahomomorphism of representations
Wy — W, and is a homomorphism of representationi®>, — *W31, when these
representations are defined.

Proof. The lemma can be checked by a direct calculation. It also follows from Propo-
sitions4.1and 4.4. O

Remark. It is easy to show that for two finite dimensional representatibnsi?, of R,
the representatiori{y ® W2)* is naturally isomorphic t6V; ® W7, and similarly for
the left dual, if the corresponding dual representations are defined.

4. h-Hopf Algebroids and Their Dynamical Representations

In this chapter we will define the notion of dnbialgebroid, and give the simplest
nontrivial examples — dynamical quantum groups associated to quantum dynamical R-
matrices from Chapter 1. We will generalize this material in the next chapter.

4.1.n-bialgebroids.Leth be afinite dimensional commutative Lie algebra deandy
anonzero complex number. Recall tiid§- denotes the field of meromorphic functions
onh*.

Definition. Anh-algebrawith stepy is an associative algebrd overC with 1, endowed
with an h*-bigrading A = ®, gecy~Aqp (called the weight decomposition), and two
algebra embeddingg;, (i, : My- — Ago (the left and the right moment maps), such
that for anya € A, and f € My, we have

m(f(N)a = ap(fA+7a)),  pr(f(N)a = apr(f(A+75)). (4.1.1)

A morphismy : A — B of two h-algebras is an algebra homomorphism, pre-
serving the moment maps. By (4.1.1), such a homomorphism also preserves the weight
decomposition.

Let A, B be twoh-algebras with step, andpi®, u2, uP, uZ their moment maps.
Define their “matrix tensor productA® B, which is also arh-algebra.

Definition. Let
(A®B)as = ®pAas @n,. Bgs, (4.1.2)

where®,,. means the usual tensor product modulo the relafigh{f)a ® b = a ®
puB(f)b, foranya € A,b € B, f € My-.
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Introduce a multiplication i@ B by the rule ¢ ® b)(a’ ® b') = aa’ @ bb'. Itis easy
to show that this product is well defined (cf. Proposition 5.1). Define the moment maps
for A®B by NA®B(f) = uM(f) @ 1, p? ABB(f) = 1@ uP(f). Itis easy to check that
this make34®§ into anh-algebra. It is clear tha;@ is functorial with respect to both
factors, and 4@ B)®C = A®(B®C). However,A® B is not, in general, isomorphic to
BRA.

Remark. The name “matrix tensor product” is used because formula (4.1.2) reminds of
the matrix multiplication.

Definition. A coproduct on amy-algebraA is a homomorphism ¢f-algebrasA : A —
ARA.

Let Dy, be the algebra of difference operatdrg. — My-, i.e. operators of the form
Yoy fi(N)Tg,, wheref; € My-,andfor3 € h* we denote by's the field automorphism
of My- given by (5 £)(\) = F(A +5).

The algebraDy, is the simplest nontrivial example of dnalgebra. Indeed if we
define the weight decomposition By, = ®&(Dy)qs, Where Oy)qs = 0if a 7 3, and
(Dp)aa = {fNT1: f € My-}, and the moment mapg = i, : My« — (Dp)oo tO
be the tautological isomorphism, théh, becomes akh-algebra.

Lemma 4.1. For any h-algebra A, the algebrasA&}Dh and DhéA are canonically
isomorphic toA.

Proof. Straightforward. O

Lemma 4.1 shows that the categoryheélgebras equipped with the producis a
monoidal category, where the unit objectlis.

Definition. A counit on arf)-algebraA is a homomorphism df-algebrass : A — Dy.

Definition. Anp-bialgebroid is arh-algebraA equipped with a coassociative coproduct
A (i.e.suchthafA®Id4)o A = (Id4 ® A)o A), and a counit suchthale ® Id4) o A =
(ldg ® ) o A = ld 4.

The property of the counit in the definition makes sense because of Lemma 4.1.

4.2. Dynamical representationsipbialgebroids.Let W be a diagonalizablg-module,
and Ieth‘ w C Home(W, W ® Dy) be the space of all difference operatorshdmwith
coefficients in End(17), which have weightx with respect to the action dfin 7.

Consider the algebr®y, = ®a D w . This algebra has a weight decomposition
Dy w = @a,5(Dy,w)ap deflned as foIIows iy € Homc(W, W ® Mj-) is an operator
of weight3 — a thengT';’ le (Dy,w)asp-

Define the moment mags;, it My« — (Dy,w)oo Dy the formulasu, (f(N)) =
S, i (f(A) = fF(A = 7h).

Lemma 4.2. The algebraDy - equipped with this weight decomposition and these
moment maps is afp-algebra.

Proof. Straightforward. [
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Lemma 4.3. There is a natural embedding ofalgebrasfy; : Dy w®Dyy —
Dy weu, given by the formulgTs @ ¢Ts — (f®g)Ts, where® is defined in Chap-
ter 3, andf € Hom(W, W ® Mj-). This embedding is an isomorphismiif, U are
finite-dimensional.

Proof. We have to show that the mapy, is well defined, and is an embedding. We
also have to show th&ty iy is a homomorphism df-algebras, which is an isomorphism
in the finite-dimensional case. B B

The fact thaty ¢ is well defined follows from the identity(\) f®g = fRp(A —
~h)g, for any functionp € My-. The injectivity offy ¢, and its surjectivity in the finite
dimensional case are straightforward.

It remains to show thaiy ¢ is a homomorphism ofi-algebras. It is obvious that
Owu preserves the moment maps, so it remains to show that it is multiplicative. We have

Owo (FNT5 @ gWNT; N NT5 @ g/ (W) =

Owu (O N = 18Tk @ g(Ng' (A — v0)T5.5) =

FOO = yh@) f OO — 42 — 48) (1 ® g(N)g' (N — 1) T3 =
FON = yh®) L@ g F DA — 7h® — 48)(1 @ g'(\ — ¥8)) T55,
FON = yh®) A @ gONT; DO = 1) (1@ g (\)T; =
Owu(FNT; @ gy Howo (f (VI3 @ g (VT ).

The lemmais proved. O

(4.2.1)

Definition. A dynamical representation of &nalgebraA is a diagonalizablé-module
W endowed with a homomorphismighlgebrasmy, : A — Dy . A homomorphism
of dynamical representations : W1 — W5 is an element of Hoa(Wy, W, ® My-)
such thatp o Ty, (z) = 7w, (z) o p for all z € A.

Example.If A has a counit, then it has the trivial representatidh= C, = = €.

Suppose now thatl is an h-bialgebroid. Then, ifi and U are two dynamical
representations od, thefh-moduleW ® U also has a natural structure of a dynamical
representation, defined byy ¢ (z) = 0wy o (mw @ 7y) o A(z).

It is easy to show that if : Wy — W> andg : Uy — U, are homomorphisms of
dynamical representations, thg¢mg is a homomorphisnil’y ® Uy — W ® U, (where
® is defined in Chapter 3). This gives a rule of tensoring morphisms. Thus, dynamical
representations ofl form a monoidal category Regpj, whose identity object is the
trivial representation.

Moreover, the category Regj is equipped with a natural tensor functor Rép{—

Vy to the category of-vector spaces — the forgetful functor.

4.3. h-Hopf algebroids and dual representationget us introduce the notion of an
antipode on am-bialgebroid.

Let A be anh-algebra. A linear map : A — A is called an antiautomorphism of
h-algebras if it is an antiautomorphism of algebras apd S = py, y; 0 S = p,-. From
these conditions it follows theff(A.g) = A_g,—a.

Let A be an-bialgebroid, and lef,  be the coproduct and counit df Fora € A,

let
Aa) = Z al @ a?. (4.3.1)
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Definition. An antipode on th@-bialgebroid A is an antiautomorphism df-algebras
S : A — A such that for any: € A and any presentation (4.3.1) of(a), one has

> atS(ad) = ule(@)l), Y S(ah)a? = py(e(a)l), (43.2)

wheree(a)l € My- is the result of application of the difference operatda) to the
constant functior.

Remark.It is easy to see that_, atS(a?) and > S(a})a? depends only o and not
on the choice of the presentation (4.3.1).

Definition. Anh-bialgebroid with an antipode is called anHopf algebroid.

Remark.If h = 0, the notions of ah-algebraf-bialgebroid h-Hopf algebroid coincide
with the notions of an algebra, bialgebra, and Hopf algebra, respectively.

For anyh-Hopf algebroidA, the category Rep{) has the following natural notion
of the left and right dual representation.

If (W, mw) is a dynamical representation of gralgebrad, we denote byt9, : A —
Hom(W, W ® Mjy-) the map defined by, (z)w = mw (x)w, w € W (the difference
operatormyy (x) restricted to the constant functions). It is clear that is completely
determined byr¥,.

Definition. Let (W, 7y ) be a dynamical representation df Then the right dual rep-
resentation td¥ is (W*, my« ), whereWW* is theh-graded dual td¥/, and

T+ (@)(N) = 7 (S@)\ + vk — 7a) (4.3.3)

for z € A,p, wheret denotes dualization. The left dual representationito is
(W, m«w), where*W = W*, and

o (@) = 7 (S 2)A + vh — ya)’ (4.3.4)
forx € Aqg.

Proposition 4.1. Formulas (4.3.3) and (4.3.4) define dynamical representations. of
Moreover, if A(\) : W1 — WS> is a morphism of dynamical representations, then
A*(N) := A(\ +~h)* defines a morphisiV; — W and*W, — *Wi.

Proof. Letz € Aq,p,,y € Aa,p,. Thenad, (zy)(N) = 7, ()N, (1)(A — v5:) by
the definition of a dynamical representation. Therefore, we have
- (@y)(N)* = 1o (S(@y)) (A +vh — you — yay) =
T (S@)S @) +7h — ya, —yay) =

T (S +vh — ya, — ey +yase) (4.3.5)
By (S@)A +vh — v, — yay, — Bsy) =
Ty (SN +vh = yay, — 1B2)m (S(@) (A +vh — ya).

Dualizing (4.3.5), we get
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Ty (@y)(N) = 7 (S (@)X +7h — ya) T (S +vh — yay, —48,)" =
Ty« (@ N 7 (A — 782),
(4.3.6)
which implies the first statement of the propositionif¥ . The proof for* W is obtained
by replacingS by S—1.
Let us prove the second statement. The intertwining property{ df can be written
as
AN (@) (V) = 7 (@)W AR = ~8s). (4.3.7)

Replacingr with S(z) and shifting the arguments, we get
A+ yh = 8)m (S@)A + b — yay) =
T (S@)A +7h = yaz) A+ yh = yag — Bs(x)).

Dualizing (4.3.8) and using the identiBi ., + a, = 0, we get the second statement of
the proposition. The proposition is proved. O

(4.3.8)

4.4. n-bialgebroids associated to a functiaR : h* — End(V @ V). Leth be a
finite dimensional commutative Lie algebra, avid= @©,cy- V., a finite dimensional
diagonalizabléy-module. LetR(\) be a meromorphic functioh* — End(V ® V) of
zero weight, such thak()\) is invertible for a generid. Using R, we will now define an
h-bialgebroidA ; which we call thedynamical quantum grougorresponding td. This
construction is analogous to the Faddeev—Reshetikhin—Sklyanin—Takhtajan construction
of the quantum function algebra ¢hL .

As an algebraAr by definition is generated by two copies &fy- (embedded
as subalgebras) and certain new generators, which are matrix elements of the operators
L*! € End(V)® Ar. We denote the elements of the first copyéf- asf (A1) and of the
second copy ag(\?), wheref € My-. We denote by{*1), s the weight components

of L*! with respect to the naturgtbigrading on End{), so thatL** = (Lfg), where
L4 € Home(Vs, Vo) ® Ag.
Then the defining relations fot; are:

FOLap = LagfA +7a); f(N)Lag = LapfOZ+48); [f(A), 9(A)] = 0; (4.4.1)

LL =71 =1, (44.2)
and the dynamical Yang—Baxter relation
RPONLBL? = LPLPRY(V) : (4.4.3)

Here the :: sign (“normal ordering”) means that the matrix elemenissifould be put
on the right of the matrix elements &. Thus, if{v,} is @ homogeneous basis Bf
andL =5 E., @ Lap, R (vg @ vp) =5 Rgdb(A)uc ® vq, then (4.4.3) has the form

> R LepLya =Y RN LeyLax, (4.4.4)

where we sum over repeated indices. .

More precisely, the algebréy, is, by definition, the quotient of the algeh#dareely
generated by @ My- and elementdp, (L5, a,b = 1,...,dimV/, by the ideal
defined by relations (4.4.1)—(4.4.3).
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Introduce the moment maps fdr; by 1;(f) = (A1), u-(f) = f(A\?), and the weight
decomposition byf(A\!), £(A2) € (Ar)oo, Las € Home(Vs, Vi) ® (AR)ags. Itis clear
that A equipped with such structures is gyalgebra.

Now define the coproduct oAg, A : Ap — Ar®AR, by the usual Lie-theoretic
formulas

A(L) = LB ALY = (@~ HB¥L )2 (4.4.5)
(hereA is applied to the second componentlfl.—1).
Proposition 4.2. A extends to a well defined homomorphidm- A®A.

Proof. From (4.4.5) we get

A(Lag) = Z LI, (4.4.6)
0

So it remains to show that the defining relations4Af are invariant undens. The
invariance of relations (4.4.1) follows directly from (4.4.6). Relation (4.4.2) is obviously
invariant. To check the invariance of relation (4.4.3), we have to show that

Rlz()\%)Ll3L14L23L24 = L23L24L13L14R12()\5) : (447)

(the subscripts,2 under) indicate that the corresponding functions are taken from the
first and the second componentsA# in the productd @ Ar; and, as before, the ::
sign indicates that the functions &f are written on the left from the L-operators).

We have

Rlz(Ai)L13L14L23L24 - Rl2(>\%)Ll3L23Ll4L24 = L23L13R12(>\i) : L14L24 -
LBLBRPON LML = 128113 [ALMRI2(\) = IPLALBLYRY(ND) : .
- (4.4.8)
(We replaced\? by A} in the middle of (4.4.8) sincel p® A, is by definition inside of

the tensor product r @, AR, wherelMy, is mapped into the first component4f;
by 1,- and into the second hy;, acting from the left). The proposition is proved. [

Now define the counit on the algeb#g;. Recall that the counit has to be an algebra
homomorphisnz : Ar — Dy.
Define the counit by the formula

E(L(xﬁ) = 604[)’|dVLY ® T(;la 8((L71)aﬁ) = 5aﬁ|dVa ® Taa (449)

where Id,, : V,, — V,, is the identity operator.

We need to check that the counit is well defined, i.e. that the defining relations are
annihilated by it. For relations (4.4.1),(4.4.2) it is obvious. Relation (4.4.3) reduces to
checking that

O~ RP(N)(idy, @ 1dv,)) @ T, = O _(Idy, @ 1dy,)RP*(\) @ T},  (4.4.10)
a,3 a,3
which holds becaus® has zero weight.

Proposition 4.3. The counit axionfld ® €) o A = (e ® Id) o A = Id is satisfied forA z.
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Proof. We need to check the relations bnThese relations follow from the fact that the
elementsl;t ® Log, Log ® Tgl are mapped td.,g under the natural isomorphisms

Dy®@Ag — Ag, AR®Dy — Ag. O

Thus, A is anh-bialgebroid. We will call it thedynamical quantum grouporre-
sponding to the functior.

It is also possible to consider the algebra generated(By), f(A\2), L (without
L~1). Denote this algebra by z. The algebral ; is anh-bialgebroid, which is naturally
mapped tad ;.

Remark.The aIgebra/TR was introduced in [FV1] under the name of “the operator
algebra”.

4.5. The antipode ol ;. Let A, B be algebras with 1. Fak € B ® A, definei(X)
to be the inverse ok, ands..(X) to be the inverse ok in the algebraB @ A,,, where
A, is A with the reversed order of multiplication. Clearly,= i2 = Id.

Let I be the group freely generated byi, with relationsi® = 2 = 1d. We will
say that an element is strongly invertibleif for any g € I the elemeny(X) is well
defined.

Definition. Aninvertible, weight zero matrix functidiis said to be rigid if the element
L € End(V) ® Ay is strongly invertible.

Proposition 4.4. Risrigid if and only ifA  admits an antipod$ such thatS(L) = L.
In this caseS?"(L) = (i,4)" (L), S?**Y(L) = i(i,3)™(L). In particular, S(L 1) = i,i(L).

Proof. Suppose thaR is rigid. Extend the definition of the antipode I$(L 1) =
i.(L7Y) =i,i(L). Itis easy to see that the relations4f, are preserved, so this indeed
defines an antihomomorphisth: A — A. Moreover,S is an isomorphism: the inverse
is given byS—Y(L—Y) = L, S~Y(L) = i.(L).

Now suppose tha$ is defined. Then it is easy to check thati{*(L) = S?*(L),
i(ii)™(L) = S?™*Y(L),n € Z. This defineg(L) forall g € I. The proposition is proved.
O

Remark 1.The proposition shows that for rigidity @k, it is sufficient thati,.(L) and
i.(L™1) be defined.
Remark 2.0bserve that in generaf # 1.

Thus, if R is rigid then AR, is anh-Hopf algebroid.

4.6. Representation theory dfz. Now consider the representation theoryAt. As
was pointed out in [FV1], the category Rehf) of dynamical representations dfx is
tautologically isomorphic to the category R&)(of representations aR.

Proposition 4.5. The tensor categorieBep(Ar) and Rep(R) are equivalent.

Proof. Define the functo” : Rep(Agr) — Rep(R) to be the identity at the level of
vector spaces, and set
Lrawy = 79 (L). (4.6.1)
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Define the functoi’ ! : Rep(R) — Rep(Ag) by
sy (L) = L. (4.6.2)

These functors preserve tensor structure, and are obviously inverse to each other. The
proposition is proved. [

It is easy to see that the functbrcommutes with the duality functors. Therefore, if
R is rigid, then the representatioms™*,*W of R are well defined for anyV, and the
categoryRep ¢ (R) of finite-dimensional representationsi®{= the categorRep;(Ar)
of finite dimensional dynamical representationsigf) is a rigid tensor category[DM].
This explains our use of the word “rigid”.

Although Ay, is anh-Hopf algebroid for any rigid zero weight functiaR, it does
not always have nice properties. For a gen&ithis algebra will be very small and will
not have interesting dynamical representations. Howevgrig a dynamical quantum
R-matrix, then the category ReR) is nontrivial (it contains the basic representation
defined in Chapter 3), so by Proposition 4.4 the category Rgp{s also nontrivial.
Thus, algebrasiz with R being a dynamical guantum R-matrix form a good class of
h-Hopf algebroids. From now on we will only considdr; for R being a dynamical
guantum R-matrix.

4.7. Sufficient conditions for rigidityUnfortunately, the definition of rigidity cannot be
effectively checked, since it depends on the properties of the alggbrabout whose
structure we do not know very much. Therefore, we would like to find some effective
sufficient conditions of rigidity. 5

For any functionX : h* — End(V ® V'), define the functioX : h* — End(V @ V)
as follows. Suppose that for w € V one hasX(\)(v ® w) = ). fi(A)v; ® w;, where
fi € My~ andw; are homogeneous. Then e\ (vQw) = Yo fild+y wt(w;))v; @w;,
wherewt(w;) denotes the weight ab,. B

Let R be a dynamical quantum R-matrix with stepAssume that, () is defined.

Let us writeR in the formR = > a; ® b;, andi..(R) in the formi.(R) = > ¢; ® d;.

Define the operator® = > d,;c;, Q' = ¢;d; : h* — End(V). These operators are
of weight zero with respect tip, sinceR is of weight zero.

Proposition 4.6. SupposeR is such that'*(ﬁ%) is defined, andR satisfies the following
conditions:

(i) The operatorQ is invertible for a generic\.
(i) The operatorQ’ is invertible for a generic\.

ThenR is rigid, and

(LY = S3(0) = Q) @ DLQ (W) @ 1) :
3 (4.7.1)
= QW+ T DLQI P+ ) © 1) ¢

Remark.lIt is clear that (i) and (ii) are satisfied f&8 = 1 and are open conditions.
Therefore, Proposition 4.5 shows thakif is a continuous family of quantum dynamical
R-matrices with step such thatR, = 1, thenR, is rigid for smally.
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Proof. First of all, let us deduce a commutation relation betwBemd L.
Multiplying the dynamical Yang—-Baxter equation by (*)?3 on the right, we get

RPONLY = LPLBRZ(MV)(LP) . (4.7.2)

Let {v,} be anj-homogeneous basis ®f, andL = }_ F,;, ® Lu. Denote byw, the
weight ofv,. Then we have

: L23L13R12(/\2) : (L23)71 - Z EL(sz) : L233L13R12()\2)(L23)’1 .

S EQLE) IR\ )L = (47.3)
ZEt(IZb)LESb) CLBR2O(LP) 1= 128 L1BR1()?) : (1)L,
Therefore, multiplying (4.7.2) on the left by.£3)~* we get
(1231 : RZON LI = [BRI2(0\2)([5) 1 : | (4.7.4)

Transforming the left hand side of this equation similarly to (4.7.3), we arrive at the
equation ~ ~
(LB TIRVPANHLE = LBRYOH)(LB) L, (4.7.5)

which is the desired commutation relation.
Now, using property (i), define

T=(QM\Y)®1)LQ M) ®1):cEnd(l)® Ag. (4.7.6)

Let * denote the product in the algebra ENQ(® (Ar).p. Let us compute the product
L= 1«T.
SetL 1 =Y E, ® (L™Y4. Then we get

LT =) (EpgQW)ErQ (M) @ 1)(A® Lya(L7Y,0)- (4.7.7)
Using (4.7.5), we can rewrite (4.7.7) in the form

LT =) (di(V)Ersb; ADQMANa; (N Epgci(W)Q (V) @ 1)(1& Lys (L™ )pg)-
(4.7.8)
Using the definition of), we have

> biQa; =1 (4.7.9)

Substituting (4.7.9) into (4.7.8), we gt 1 + T' = 1.
Now, using property (ii), define

T = (Q' M\ +~h) @ DHLQ' (N2 +~vh) ® 1) :. (4.7.10)

Then, analogously to the above, we @&t L~ = 1. Thus,T = T’ = i.(L™Y).
It is easy to see that

i(L) = Q)@ LMY ®1):. (4.7.11)
Thus, R is rigid. O
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Now we will show that any rigid quantum dynamical R-matrix satisfies a certain
crossing symmetry condition.
For an invertible zero weight functiok (\) € End( ® V), set

(X)) = X Y\ +yh@)t2, (4.7.12)

Corollary 4.1. Let R be a rigid quantum dynamical R-matrix dri. Thent(R) is
invertible, andR satisfies the crossing symmetry condition

72(R) = (Q(\ — vA®) @ HRM\Q (N ® 1). (4.7.13)

Proof. Itisclearthat-?(R) = Ly-~, whereV is the basic representation&f Therefore,
using (4.7.1) in the basic representation, we get (4.7.12).00

4.8. Dynamical quantum groups associated to dynamical R-matriags,df/pe. Now
suppose thaR is a dynamical R-matrix ofi-type. Then it has form (1.3.2), and we
can write the defining relations fotr more explicitly. Since all weight subspaceslof
are 1-dimensional, we havét?t),; € A. For brevity we write {+1),;, for (L¥1),,w, -
Thus, we have.®! =" E,, @ (L) 4.

In this notation, the defining relations fdrz look like

LL7'=17'L =1,
FONLie = Lye f(A +9ws), F(N)Lpe = Lye (A +qwe),

ast()‘z)
LasLa = 7-[10, La57 t,
A 00 ke s 7
() (4.8.1)
L sLas = aiLasL S ba
’ 1= Gy el 0 7

aab()‘l)Lasth - ast()\Z)thLas = (ﬁts()‘Z) - ﬁab()‘l))LbsLatz a 71)7 S 7/757
whereay;, Bqp are the functions from (1.3.2).

Remark.lt is also possible to define dynamical quantum groups associated with dy-
namical R-matrices with spectral parameter. It is done analogously to the above, and
we will do it in detail in a forthcoming paper. For example,Af{z, \) is a quantum
dynamical R-matrix with spectral parameter of elliptic type (i.e. of the form (2.5.1)),
we will get the elliptic quantum group defined in [F1, F2, FV1, FV2]. Relations (4.8.1)
(for dynamical R-matrices aofl ;v Hecke type) can be obtained as a limiting case of the
defining relations for the elliptic quantum group.

4.9. Rigidity of the rational and the trigonometric dynamical R-matrGonsider the
trigonometric dynamical R-matriR()\) defined by (1.6.4), withiX = {1,..., N}, and
Hab = 1.

Proposition 4.7. R()) is rigid, and the matrices), Q' are given by the formulas
Q = diag(Q1, ..., Qn), Q' =diag(@y, ..., @),
gt — g
Qa(N) = H e (4.9.1)
i7a
QL) = 4@,

whereq = e°.
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Proof. First of all, it is not hard to show by a direct computation that the mafmfe)
is defined. So it remains to show that the eleménht’ are invertible.

Let P(\) = Q'(\ +~h). Let P;, Q; be the diagonal entries d?, Q. As we know,
these entries are defined by the following systems of linear equations:

Qa+ > Bap(A +7wa)Qy = 1,
b7a

P, + Z Bra(A +ywp) Py = 1.
b7a

The explicit form of the systems (4.9.2) is

Qu+) o 1 1+/\ —’\b—l =1

b;/a

P+Z 1+)\b )m_]_ B=1
b?a

(4.9.2)

Thus, if one of these systems is nondegenerate (which we show below{)thén=
P(—=\).

From now on we consider only the first system. Note that it can be conveniently
written as

-1 -
; pics e e L (493)

Define X, = ¢**Qy. Then (4.9.3) can be written as

1 —_
zb: W wR (4.9.4)

where [r] = q;jll. Thus, the vectok is defined byX = C—11, whereC,;, =
andlis the vector whose components are all equal to 1.

To invert the matrixC, we use the well known combinatorial identity (which is called
the “Bose-Fermi correspondence” in physics):

1 _ Hi<j($i - xj) Hi<j(yi - yj)
det(xl_ — yj) = MG ) .

Applying this identity tox; = [1 + A;],y; = [A;], and using the usual rule of inverting
matrices, we get

1
[l+)‘a] 7[)‘b] !

(4.9.5)

H(i,j):i=b 0rj=a(xi —yj)

—1 -
e = T oo — ) T — 9) (4.9)
In particular,
Ly — [L;(i — ya) Hj;/a(xb_yj)

X, Z(C Jab = Moa@r 00) 2 T o) (4.9.7)

Claim 1. ( )

37‘1 Lo — _

ZHH{,(% ) =1 (4.9.8)
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Proof of the claimConsider the expression on the I.h.s. of (4.9.8) as a rational function
of z = x, for fixed zy, b # a. This function has no more than simple polesatb 7 a,

and no other singularities; it equals 1 at infinity. Thus, it suffices to show that its residues
vanish, which is obvious: only two terms contribute to each residue, ant these two terms
cancel each other.

Thus, we get:
e LLAL AT = [Aa])
Qa(N) = ¢ P22 : (4.9.9)
[Tize(TN] = [AaD)
ie.
1+N; _ e
QW =I1" 5=
ﬁ”qu . (4.9.10)
P,(\) = _—
( ) g q_)\i — q_>\u
Therefore,
) gt — gt Gt — gt L
QN =P —w) = [ —= = [ 5 =@V (49.11)
i7a q q i7a q q
Thus, R is rigid, andQ@, Q' are given by formula (4.9.1). The proposition is proved.
([

An analogous theorem holds for the rational dynamical R-matrix (1.5.1) (With
{1, ..., N} andu., = 0). The formulas for), Q" for suchR are obtained from (4.9.1)
asq — 1.

Itis easy to show that the property of rigidity is preserved by gauge transformations,
so we get

Corollary 4.2. Any quantum dynamical R-matri of gl y Hecke type is rigid.

Clearly, the element®, Q’ for any suchRk can be easily computed from (4.9.1).

5. H-Biequivariant Hopf Algebroids

Inthis chapter we generalize the notions ofjaaigebrah-bialgebroidj-Hopf algebroid
to the case when the Lie algeliyas not necessarily commutative, and define quantum
counterparts of the quasiclassical notions introduced in Chapters 1-2 of [EV].

We will define the notions of ari/-biequivariant Hopf algebroid and quantum
groupoid. The notion of ai/-biequivariant quantum groupoid is a quantum analogue
of the notion of anf -biequivariant Poisson groupoid, introduced in [EV]. We will also
introduce less general notions of a dynamical quantum groupoid and Hopf algebroid,
which are quantum analogues of the notions of a dynamical Poisson groupoid and Hopf
algebroid.

In this chapter we will work mostly in the setting of perturbation theory. That is,
guantum objects will be defined ovi[ #]], where k is some field, and give classical
objects moduld and quasiclassical ones modiifoWe discuss the relationship between
the quasiclassical and quantum objects, and questions regarding quantization.
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5.1. Quantization of Poisson algebrak this section we will recall some well known
facts from the theory of deformation quantization.

Let k& be a field of characteristic zero. L&f = k[[Ah]]. By a topologically free
K-module we mean & -module of the formV[[%]], where V' is a k-vector space.
All K-modules we will use will be topologically free. By tensor product of two such
modules we will always mean completed tensor product éver

Let Ag be acommutative algebra ovewith 1. Recall that according to Grothendieck,
alinear operatoD : Ag — Ay is a differential operator of ordet N, N > 1 if for any
a € Apthe operatof — D(af)— aD f is a differential operator of ordet N — 1, and
a differential operator of order 0 is the operator of multiplication by an eleme#g.df
Apisthe algebra of regular functions on a manifold (smooth, analytic, algebraic, formal)
then “differential operator of orde¥” means what it usually means in geometry.

Let Ap be a Poisson algebra ovemwith 1, with Poisson bracke, }. Recall that by
a quantization ofig is meant a-moduleA = Ag[[ #]] equipped with a K-linear binary
operationx : A ® A — A, which defines an associative algebra structurelpauch
thatA/hA = A as an algebra, an#(f xg—gx* fymodh ={f, g}, f,g € Ao C A.

In this caseAy is called the quasiclassical limit of.

Let f,g € Ao. Then

fxg=fg+hef,g)+MPcaf g) + ..., (511)

wherec; 1 Ag ® Ag — Ap are linear maps. A quantization defined by (5.1.1) is called
local if ¢;(f, g) is a differential operator iff andg for anyi. If Agis the algebr&)(X) of
regular functions on a smooth manifald, and A is a local quantization ofly, thenA
defines (by formula (5.1.1)) a quantizatidp; of the algebra)o = O(U) of regular
functions on any open subsEtof X. In other words, it defines a quantization of the
sheaf of regular functions. This holds also in the holomorphic and algebraic situations,
if X is affine.

Let X be a manifold, and leT™ X be its cotangent bundle. Lety = O(T™X),
be the Poisson algebra of regular functionsZonX which are fiberwise polynomial
of a uniformly bounded degree. This Poisson algebra has a distinguished quantization
A = O,(T*X), called the canonical quantization (g is not a parameter here but the first
letter of the word “quantum”). Namely is the algebra of formal series of the form
Ym0 V" Dy, whereD; are differential operators o, such that: > order(D,,), and
n — order(D,,) — +oo, asn — oo. It is easy to check that this quantization is local, so
it defines a quantizatiod; = O,(U) of the Poisson algebrad(;)o = O(U) of regular
functions on an open subgéte T+ X.

Let g be a Lie algebra, ang* be its dual space, with the usual Poisson structure.
Consider the Poisson algelifi{g*),, of polynomial functions omg*. This algebra has a
distinguished quantizatiah = O,(g*),,, called the geometric quantization. Namelys
the algebra of formal series of the fobm), .., A" D,,, whereD; € U(g),n > order(D,,),
andn — order(D,,) — +00, n — oo. Itis easy to check that this quantization is local, so
it defines a quantizatiod; = O,(U) of the Poisson algebrad(;)o = O(U) of regular
functions on an open subgéte g*.

5.2. H-biequivariant associative algebrasn this section we will introduce the notion
of an H-biequivariant associative algebra. This notion is a quantum analogue of the
notion of anH -biequivariant Poisson algebra, introduced in a previous paper [EV].

Let A be an associative algebra ov&rwith 1, which is commutative mod, H a
connected affine algebraic group o¥eandy : A x H — A be aright algebraic action
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of H on A by automorphisms, defined ovierThis means thatl, as a representation of
H, has the formAo[[ 7], where Ag is a sum of finite dimensional representationghof
overk.

Leth be the Lie algebra off. LetU C h* be anH -invariant open set. A homomor-
phismpy : Oy(U) — Alis called a quantum moment map foif for any linear function
onU given bya € h and anyf € A we have

[1(a), f1= hdip|p=1(a, [). (6.2.1)

Heredy|,=1 : h x A — Ais the differential ofy ath = 1 € H. Using the Leibnitz
identity for the operatoy — [u(g), f], from (5.2.1) one can computg(g), f] for any
rational functiory.

For a left action off a quantum moment map is defined in the same way, with the
only difference that it is an anti-homomorphism rather than a homomorphism.

Definition. An H-biequivariant associative algebra overis a 5-tuple(A, I, r, py, i),
where A is an associative algebra with over K, which is commutative mad [, r is
a pair of commuting algebraic actions &f on A (a left action and a right action) by
algebra automorphisms, defined oveand;, u, : Oy(U) — A are quantum moment
maps forl, r, such that

(i) p,p are embeddings, and their images commute;

(i) There exists ai(H) x r(H)-invariant k-subspace, of A such that the multiplica-
tion mapu,. (0, (U))® Al — Aisalinearisomorphism; there exists &l ) x r(H)-
invariant k-subspacdy of A such that the multiplication map (O, (U))® Ay — A
is a linear isomorphism.

A morphism of -biequivariant associative algebras ov&ris a morphism of algebras
which preserves r and py, ;.

Remark 1.From [, r] = Oitfollows that [i1; o x, - 0] is @ central element far, y € b,
but it does not follow that this commutator equals 0. So we require that it is zero by
condition (i).

Remark 2.Condition (i) is of a technical nature and is not very important in the dis-
cussion below.

Denote the category df -biequivariant associative algebras oleby A7, (q stands
for “quantum?).

For convenience we will writé(h)a asha andr(h)a asah.

Let us now describe the monoidal structure.4f.

Let A, B € A,. Then the groupH acts inA ® B by A(h)(a ® b) = ah™ @ hb.
We will construct a newH -biequivariant associative algebrs B, which is obtained
by quantum Hamiltonian reduction &f ® B by the action of.

Denote byA * B the spaced ®o, ) B, whereO,(U) is mapped to4 via pd, and
to B via uP, acting in both algebras from the left. Thein« B is the quotient ofA ® B
by the linear spar of elements of the formA(f)a ® b — a ® uP(f)b, f € O, (U),
a € A,b € B. The spacel x B has two commuting actions é¢f (I, ® 1 and 1® rg).
But we cannot claim thatl « B € A, since the algebra structure @n® B does not,
in general, descend té « B (I is only a right ideal and not necessarily a left ideal).

However, the actiom of H on A ® B descends to one aof x B, so we can define
A®B := (A« B)Y, whereH acts byA.
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Proposition 5.1. The algebra structure oA @ B descends to one aA® B.

Proof. Letz,y € A®B. We can regard, y as elements afl « B. Choose their liftings
X=>a;®b;,Y => ¢; ®d; into A® B. By definition,zy is the image ofXY in
Ax B.

We have to check two things.

1. Thatzy is H-invariant.

2. Thatzy does not depend on the choice of liftingsY'.

First we check property 1. Sinee y are H-invariant, we have

S Tt ), al @b+ a; @ [pf(2),bi] €1,
i), al@di+Y e @lu’(z),di] € 1,z €.
Therefore, sincd is a right ideal,
> Tt (2), aics] @ bidy + Y aie; ® [ (), bid;] € XT+1. (5.2.3)

Lemma5.1. If X is H-invariant modulo!l, thenX T C I.

(5.2.2)

Proof of the LemmaSince)  ¢; ® d; is H-invariant modulal, for anyz € h we have

chuf(z) ®dj — ch ® djuf(2) € I. (5.2.4)

Therefore, the same equality holds any rational funciian O,(U) instead ofz. This
proves the lemma.

The Lemma shows that the RHS of (5.2.3) idin.e. zy is H-invariant.

Now we check property 2. IK’, Y are any other liftings of andy, thenX — X’ € I,
andY — Y’ € I. So it remains to show tha (Y — Y”) € I. But this follows from the
lemma. ]

Thus, we have shown that the product descendsid. The two commuting actions
of H on A® B by (h1, ho)(a®b) = hia ® bhy, and the corresponding quantum moment
maps descend td®B. So, in order to check thal®@B € A, it suffices to check
properties (i) and (ii).

Using properties (i) and (i) of the quantum moment mags 2, uP, 2, it is
easy to see that x B is naturally identified with:*(0,(U)) ® A5 @ B, andA®B is
identified withy*(O,(U)) ® (A5 @ Bg)H, whereH acts bya ® b — ah~! @ hb. This
implies properties (i) and (ii) for the quantum moment m@‘p@ 1:0,00) — A®B,
corresponding to the left action &f on A B (with (A2 B)j = (A5 @ By)H). For the
guantum moment map & 2 : O,(U) — A®B corresponding to the right action,
these properties are proved analogously.

Thus, ARB € A{. It is clear that the assignmert, B — A®B is a bifunctor
.Arq] X .AqU — .A?]

Recall [EV] that ("* H)y denotes the variety of pointdi(p) € T*H such that
h~'p € U. Consider the algebr@,((T* H)r;), which is the canonical quantization of
the standard symplectic structure ai“*{)y . It is equipped with the standard actions
I,r of H on left and right given by, p) — (hizh,, hiph,) (these actions obviously
respect the quantization).

Let pyr 1 Og(U) — O4((T* H)y) be the embeddings, which assign to an element
of U(h) the corresponding right-, respectively left-invariant differential operataf/on
Itis easy to check that; , are quantum moment maps or-.
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Letl = (O, ((T*H)v),l,r, i, pr). It is easy to check that we have natural isomor-
phismsA®l = A = 10 A.

Proposition 5.2. () (AR B)®C = AR(BRC). B
(ii) Lis a unit objectinAf, with respect tav, and(A{;, ®, 1) is a monoidal category.

Proof. Easy. O

Let A € A},. Denote byA the new object of4}, obtained as followsA is A%
(the opposite algebra), with the_left and the right actiong/ogbermuted (i.e. the left,
respectively right, action of on A is the right, respectively left, action af~* on A),
and the quantum moment maps also permuted. We will&#ile dual object tol. By a
quasireflectioron A we will mean a morphism: A — A. Note that unlike [EV], here
we do not require thaf = 1.

LetA € A andi : A — A be aquasireflection. Let,, " : A® A — Abe given
by the formulasy’(a ® b) = ai(b), ¢ (a ® b) = i(a)b. It is easy to see that these maps
descend to linear maps, : ARA — A.

5.3. H-biequivariant Hopf algebroids Now let us define the quantum version of the
notion of anH -biequivariant Poisson—Hopf algebroid.

Definition. Let A be anH-biequivariant associative algebra. Thehis called anH -
biequivariant Hopf algebroid ovéY if itis equipped with a coassociativ4,-morphism
A1 A — A®A called the coproduct, al,-morphisme : A — 1 called the counit, and
a quasireflectiors : A — A called the antipode, such that

() (idec)oA=(ceid)o A =1id, and
(il) Y oA =poPoe S oA =p,0oPoe whereP:1— O,U)isthe map which
assigns to a differential operator off its value at the identity element (which is in

U(h)).

The same structure without the antipode will be calledd&abiequivariant bialge-
broid.

If H = 1, then these notions coincide with notions of a Hopf algebra and a bialgebra
overK.

Remark 1.In the above discussior] is a Zariski open set. Ik = R or C, then we

can takel/ to be an open set in the usual sense, and dé¥ifié) to be the algebra of
smooth, respectively analytic, functions bh Then we can repeat Sect. 5.2, 5.3, and
thus define the notions of al-biequivariant associative algebra and Hopf algebroid
overU. Similarly, one can tak& to be the infinitesimal neighborhood of zerohh

(i.e. O(U) = E[[6]). The material of Sects. 5.2 and 5.3 can be generalized to this case
as well.

Remark 2.In the smooth, analytic, and formal case one has to drop the conditioA that
is the sum of finite dimensional representationgiotbecause),(U) does not satisfy
this condition). One should instead require tHaits a representation d¢f. One should
also impose the locality condition for a quantum moment mafor any f € A the
operationg — [u(g), f]is local in g, in the sense thaifg), f1= > u(D;g)f:, where

fi € A, andD, are h-adically convergent series of differential operator§/otJsing
(5.2.1) and the locality property, one can compuyig], f] not only for rational functions

g but for arbitrary smooth, holomorphic, or formal functions.
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5.4. Quantization off -biequivariant Poisson—Hopf algebroids and Poisson groupoids.
In this section we will heavily use notations and definitions from [EV], Chapters 1 and
2. We advise the reader to look through these chapters before reading this section.

Consider the following two settings.

1. Let Ap be anH-biequivariant Poisson algebra (see Sect. 2.3 of [EV]). A et
Ao[[R]]. Suppose thatd is equipped with an associative prodidn such a way that
A is a local quantization ofly as a Poisson algebra, and the 5-tuplei(r, u;, u,-) is
an H-biequivariant associative algebra (whére, 1., 11, are theK-linear extensions
of the structure maps ofg to A).

2. Assume that in additiorlg is an H-biequivariant Poisson—Hopf algebroid, i.e.
it is equipped with mapg\g, g, So satisfying certain axioms (see Sect. 2.4 of [EV]).
Suppose thatl is as above, and in addition thatis equipped with map4, ¢, S, which
make A an H-biequivariant Hopf algebroid, and equa), o, So modulo#.

Definition. In these cases)y is called the quasiclassical limit of, and A is called a
guantization ofA.

If H =1, then this definition is the usual definition of a quantization of a Poisson
and Poisson—Hopf algebra.

Now consider the geometric version of this definition. kebe anH-biequivariant
Poisson manifold ovet/. Let Ag = O(X). Then Aq satisfies the axioms of aH -
biequivariant Poisson algebra, except for maybe property (ii). The notion of quantization
of Ap is defined as above. A quantizatighof Ay will be called anH-biequivariant
guantum space

If X isinaddition anf -biequivariant Poisson groupoid, thdp satisfies the axioms
of an H-biequivariant Poisson—Hopf algebroid, except for property (ii) and the fact that
the coproduch mapsAg to A3 := O(X e X)[[A]], which is a completion ofi,® Ao, but
notto Ag® Ag itself (hereX Y is the product of thé -biequivariant Poisson manifolds,
defined in [EV]). (This problem already exists for Lie groups, where the coproduct maps
O(G) to O(G x G) and not taD(G) ® O(G).) The notion of quantization oy is defined
as above. The quantization is called locdl+fy is a bidifferential operator of, ¢ modulo
any power offi, and A(f) = DAo(f), whereD is a differential operator modulo any
power of . A local quantizationA of Ag will be called anH-biequivariant quantum
groupoid.

Suppose thak = X (G, H, U) is a dynamical Poisson groupoid (see Chapter 1 of
[EV]), and Ag = O(X) is as above. In this case a local quantizatibof Ay will be
called adynamical quantum groupoidf the subspac&®(U) @ O(G) @ O(U)[[H]] c A
is closed under the product, then it is Ahlbiequivariant Hopf algebroid. Such Hopf
algebroid is called dynamical Hopf algebroid

Recall that by a preferred quantization of a Poisson Lie group is meant to be a quan-
tization in which the coproduct is undeformed. The notion of a preferred quantization of
an H-biequivariant Poisson groupoid or Poisson—Hopf algebroid is defined in the same
way.

Conjecture. (i) Any dynamical Poisson groupoid admits a quantization.
(i) Any quasitriangular dynamical Poisson groupoid admits a preferred quantization.

In the caseH = 1 (Poisson—Lie groups), this conjecture goes back to Drinfeld and
is proved in [EK1, EK2].
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5.5. The cased = (C*)V. In this section we will consider the special case when
H = (C*)", and establish the connection between the constructions of this chapter and
Chapter 4.

Let H = (C*)V. In this case, the main notions of Chapter 5 are simplified:

1. SinceH is commutative, the algeb@,(U) is justO(U)[[ 7]].

2. Denote byP C bh* the lattice of characters dff (P = Z™). Let A be anH-
biequivariant associative algebra. Then the algeloran be written agl = @4, gc pAag,
whereA, is the set of elements € A such thatiyah, = a(h1)B(h2)a (the direct sum
is understood in thé-adically complete sense). The images of the mapg,. are in
Aoo. The productA®@ B can be written in the formA® B) s = GpepAas @o@) Bss »
whereO(U) is embedded im via 2 and inB via 12, and acts from the left (thus this
product is similar to the matrix product).

3. The algebrad,((I"* H)y) = 1 can be written in formO(U) ® O(H)[[A]] =
O(U) ® C[P][[ h]], where the commutation relations betwemandO(U) are given by
fx=x/x f€0OWU), x € P,wherefX(u) = f(u + hx).

In particular, in this case we can replace the algeB(&) with the field M- of
meromorphic functions olf*, imposing the locality condition (see Remark 2, Sect. 5.3).
Then Eq. (5.2.1) together with the locality condition implies identities (4.1.1).

Now nothing prevents us from settiigto be no longer a formal parameter, but a
nonzero complex number. In this situation, it is easy to see that &rbiequivariant
algebra (bialgebroid, Hopf algebroid) is the same dg-algebra §-bialgebroid h-Hopf
algebroid) with weights belonging 8 C h*. This gives a connection between Chapters
4 and 5.

6. h-Bialgebroids Associated to Quantum Dynamical R-Matrices of Hecke Type

6.1. The Hecke conditiorLet R : h* — End( ® V') be a quantum dynamical R-matrix
with step~y. Consider théy-bialgebroidA  introduced in Chapter 4.

Itis clear that ifR = 1 andy = O thenAr = My~ ® My~ ® O(End(V)). Therefore,
for R 7 1 we want the algebrd r to look like a quantum deformation éf/y« @ My~ ®
O(End(V)).

A natural formalization of this wish is the PBW property, defined below.

The algebradr has a natural.-grading, given byleg(f(\*)) = 0, deg(L4p) = 1.
Denote byA’; the degree: component ofdp. It is clear thatA} are My- @ My-«-
modules, where the two componentsidf- act by left multiplication byf(\!) and

FO3).

Definition. The aIgebrafTR is said to satisfy the Poincare—Birkhoff—Witt (PBW) prop-
erty if the My~ ® My--moduleA”; is isomorphic to the free modulely- ® My- ®
S"End V).

For a general dynamical R-matrix, the PBW property is not the case. However, the
property holds if one imposes an additional “Hecke type” conditioizon

Definition. R is said to be of strong Hecke type if

() R satisfies Eq. (1.3.6) for some nonzero parametetse C, p # —q, such that
q/p is not a root of unity, and
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(i) There exists a continuous famiR(t), ¢ € [0, 1], of quantum dynamical R-matrices
with stepy(t) continuously depending dnsatisfying (i) with parametens(t), ¢(¢),
such that’?(0) = 1,p(0) = ¢(0) = 1L, v(0) = 0, (1) = R, p(1) =p,q(1) = ¢,¥(1) =
.

Example.lt is easy to see from the classification that all dynamical R-matriceg\of
Hecke type are of strong Hecke type. Thus, for dynamical R-matrigggefype, strong
Hecke type is the same as the Hecke type.

Theorem 6.1. If R is of strong Hecke type theti; satisfies the PBW property.

This theorem explains the meaning of the Hecke type conditions introduced in Chap-
ter 1. If h = 0, this theorem is well known (see [FRT]).

6.2. Proof of Theorem 6.1Let A be the algebra with the same generatorgiasand
the same relations except the Yang—Baxter relation. Then, as_a vector space, the algebra
A has the formp,,>0A4", A" = My~ @ My~ @ (End(V))®™, and A is the quotient of
A by the Yang—Baxter relation.

Let H,(v) be the Hecke algebra of typ4, with parameten. It is the algebra
generated by elemen$, 1 < i < n — 1, with relations

[Ti7 Tj] = 0, |Z — ]‘ > 2, ;T T; = T3 T Tq; (TZ — 1)(Tz + ’U) =0. (621)

If v is not a root of unity of degree, this algebra is isomorphic td[S,,] and therefore
semisimple.

Denote byR"**(\) the operator T 1@ R(A\)@1" 11 Ve — My. @ Ve, where
® has the meaning defined by (3.1.2).

If R satisfies condition (i), then we have an actionff(v), v = ¢/p, on the
My~ ® My--moduleA™, defined by the formula

T;X = Pisp - R7YODX RN L2 Py, (6.2.2)

whereP;;41 is the permutation of thé" and thei + 1t components in the tensor product
V®n_ This construction explains the origin of the term “Hecke type”.

The Yang—Baxter relation inlr implies that the degree component4}; of Ap
is isomorphic to the space of coinvariantsiaf ..., T, in Am, By semisimplicity of
H,,(v), this space is isomorphic to the space of vectordfip @ My- ® (End(V))®",
which are invariant undéer;.

Now recall thatR satisfies condition_(ii). LetR(t) be the corresponding fam-
ily. Consider the corresponding module; . Since they can be defined both as

coinvariants and invariants, their dimensions cannot jump, which mphesAﬁgg
is isomorphic toA k@ @s aMy- @ My--module. However, by our assumptions,
AR(O) = My- ® My~ ® S"End(V), while A%, = A” This proves the theorem. O

6.3. Hecke condition and quantizatioheorem 6.1 has the following generalization
to the case when the steqis a formal parameter.

LetR, =1—~r+> ~"r, be aformal series whose coefficients are meromorphic
functionsh* — End(V ® V). Suppose thak is a quantum dynamical R-matrix with
stepy. Let Ar, Ag, denote the algebras ovér := C[[+]] defined as in Chapter 4.

It is clear thatAr. /vAr, = My @ My- @ O(End(V)). Thus the analogue of
the PBW property fordr_ in this case is the property that tile-module Ar_ is a
topologically free module, i.e. provides a flat deformatiodfif- @ My- @ O(End(V)).
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Theorem 6.2. If R, satisfies the Hecke equation (1.3.6) for sapfe) = 1 + O(v),
q(7) = 1+0(y), thenAg_ is a flat deformation oMy~ @ My- @ O(EndV)).

Proof. Analogous to the proof of Theorem 6.1 [

Corollary 6.1. Under the assumption of Theorem 625 is a flat deformation of
My~ @ My~ @ O(GL(V)).

If R, is hoIomorphic in an open séf C h* then we can define algebraa_é,{z
AU in the same way aﬂR , Ar., except thatMy- is replaced with the algebra of

holomorphlc function®)(U) on U. It is clear that Theorem 6.2 and Corollary 6.1 are
valid for these algebras:

Proposition 6.1. Under the assumptions of Theorem 6.2, the algeb?’é§, A%w are
topologically free overx.

NowletR, : U — End(V @ V)[[v]] be a quantum dynamical R-matrix holomorphic
on U which satisfies the condition of Theorem 6.2. bét) = 1 +ay + O(y?), ¢(7) =
1+by+O(y?), vy — 0. Then from the quadratic equation f&" we get the unitarity
condition

4+ r=(b—a)P — (b+a), (6.31)

and from the quantum dynamical Yang—Baxter equationHowe get the classical
dynamical Yang—Baxter equation for Thus, according to Chapter 1 of [EV]],de-
fines a structure of a quasitriangular dynamical Poisson groupadid oG L(V) x U.

In particular, we have the corresponding dynamical Poisson—-Hopf algefbid=
OU) ® O(GL(V)) ® O(U) (hereO(G) denotes the algebra of polynomial functions
onG).

Theorem 6.3. The dynamical Hopf algebroifal}U2w is a quantization of the dynamical
Poisson—Hopf algebroidi® .

Proof. Since we know thaﬁgw is topologically free, the proof is the direct computation
of the quasiclassical limit and then comparison with Chapter 1 of [EV]. O

LetG = GL(V), H be amaximaltorusitr,andU C h* apolydisc. LetX (G, H, U)
be the Lie groupoid/ x G x U with two actions ofH, defined in Chapter 1 of [EV].

Theorem 6.4. Any structure of a quasitriangular dynamical Poisson groupoid on
X (G, H,U) admits a preferred quantization.

Proof. The statement follows from Theorem 1.6 and Theorem 6.3.

Remark.Notice that if R, fails to satisfy the Hecke condition modul@, then the
algebradr_ is nottopologically free. Indeed, in this casdoes not satisfy the unitarity
condition, so according to Chapter 1 of [EV] the bracket defineddn/ x GL(V)x U is

not Poisson (i.e. does not satisfy the Jacobi identity). This means that the corresponding
deformation is not flat, since a flat deformation of a commutative algebra induces a
Poisson structure on this algebra. Thus, the Hecke condition seems to be intrinsic for
good properties of the algebrig.
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