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Abstract: We give a highest weight classification of the finite-dimensional irreducible
representations of twisted quantum affine algebras. As in the untwisted case, such rep-
resentations are in one-to-one correspondence withples of monic polynomials in

one variable. But whereas in the untwisted case the rank of the underlying finite-
dimensional complex simple Lie algebgain the twisted case is the rank of the
subalgebra of fixed by the diagram automorphism. The way in which such-dnple
determines a representation is also more complicated than in the untwisted case.

Introduction

Quantum affine algebras are one of the most important classes of quantum groups.
Their finite-dimensional representations lead to solutions of the quantum Yang—Baxter
equation which are trigonometric functions of the spectral parameter (see [7], Sect. 12.5
B) and are thus related to various types of integrable models in statistical mechanics
and field theory. Quantum affine algebras have also been shown to arise as “quantum
symmetry groups” of certain integrable quantum field theories, such as affine Toda
field theories (see [2] and [10]). More precisely, there is an affine Toda field theory
associated to any affine Lie algeliraand this theory admits as a quantum symmetry
group the quantum affine algebtg (¢*), wheret* is the affine Lie algebraual to ¢
(whose Dynkin diagram is obtained from thattdsy reversing the arrows). Sin¢é is

often twisted even it is untwisted, this shows that the representation theory of twisted
guantum affine algebras is, in this context at least, just as important as that of untwisted
ones. However, there appear to be virtually no results in the literature on the twisted
case. The only exceptions appear to be [12] and [14], which prove the existence of
finite-dimensional irreducible representations of twisted quantum affine alg€pfgs

which are irreducible under certain subalgebras of the fGgm), wherem is a finite-
dimensional Lie subalgebra &fand [15] and [17] which construct, by vertex operator
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methods, quantum analogues of the standard modules (which are, of course, infinite-
dimensional).

In [6] and [8], we gave a classification of the finite-dimensional irreducible repre-
sentations of untwisted quantum affine algebras in terms of their highest weights, which
are in one-to-one correspondence withuples of polynomials in one variable with
constant coefficient onex(being the rank of the underlying finite-dimensional Lie alge-
bra). The purpose of this paper is to extend this result to the twisted case. We find that
the finite-dimensional irreducible representations of twisted quantum affine algebras
are again parametrized bytuples of polynomials. But is now the rank of the fixed
point subalgebra of the diagram automorphism, and the way in which sucHupie
determines a highest weight is more complicated than in the untwisted case.

In the analogous classical situation, we classified in [8] the finite-dimensional ir-
reducible representations of the twisted affine Lie alggBraassociated to a diagram
automorphismy of a finite-dimensional complex simple Lie algelyyaby using the
canonical embedding @ in the untwisted affine Lie algebfa Namely, we showed
that every finite-dimensional irreducible representatiof decomposes undgf into
a finite direct sum of irreducibles, and that every finite-dimensional irreducible repre-
sentation ofy“ arises in this way. Together with the results of [6] and [7], this gave the
desired classification. In the quantum case, Jing [16] has shown how to émiEq
into Uy(g), but this embedding is not as simple as in the classical case and we have
preferred to use a direct approach, following the method used for untwisted quantum
affine algebras in [6] and [8]. Since the proofs are similar to those for the untwisted case,
we omit many of the details.

1. Twisted Quantum Affine Algebras

Let g be a finite-dimensional complex simple Lie algebra with Cartan matrix
(aij)ijer. Leto 1 I — I be a bijection such that, ;) = a;; forall 4, j € I, and let
m be the order of; we assume that > 1 (thus,m = 2 or 3). We also denote ythe
corresponding Lie algebra automorphisnyof

Fix a primitivemth root of unityw € C*. Forr € Z/mZ, let g, be the eigenspace
of o on g with eigenvaluev”. Then,

i= P o

re€Z/mZ

is aZ/mZ-gradation ofg (see [18], Chapter 8).

The fixed point sefip of o is a simple Lie algebra. The nodes of its Dynkin diagram
are naturally indexed by,,, the set ofs-orbits oni. Moreover,g; is an irreducible
representation ofo. Let{«; };cs, be a set of simple roots @, and letd be the highest
weight ofg; as a representation @§. Let {n; },cs, be the positive integers such that

0= E n;oy.
i€l

The twisted affine Lie algebrg® is the universal central extension (with one-
dimensional centre) of the twisted loop algebra

L@’ ={feClt,t N@g | flw)=o(ft)}
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wheret is an indeterminate. It is well known (see [18]) th#t is a symmetrizable
Kac—Moody algebra whose Dynkin diagram has nodes indexed by

I, =1,11{0}.

(Note: the node labelled 0 here is labelledn [18].) Let A° = (a;’j)i,jda be the

(generalized) Cartan matrix @f, and let{d;},.; be the coprime positive integers
such that the matrixd;a?;) is symmetric. Settingo = 1, we have

> nidial; =0 forallj e I,. (1)
iel,
Sinceg? is a symmetrizable Kac—Moody algebra there is, according to Drinfel'd and
Jimbo, a corresponding quantum grolip(g?). Namely, letg be a non-zero complex

numberassumed throughout this paper not to be a root of uhigtg; = ¢% fori € I,.
If n € Z, set
qn _ qfn
[nlq = —,
R
and forn > r > 0,

[n]q! = [n]q[n - 1]q cee [Z]q[l]qa
{n} _ [n]4!
q

rlg [rlgl[n — 7]y

Proposition 1.1. There is a Hopf algebrd/,(g”) over C which is generated as an
algebra by elements’, k* (i € I,)), with the following defining relations:
bk Y=k Yk = 15 kiky = kiks;
— +af; 4.
kiejiki 1= q; eji,
ki — kit

-1
)

[ef,e;1=di;

1-aj -
s [15] orsron iz
T
r=0 qi

i

The comultiplicationA of U,(g7) is given by

Ae]) = ef@k; + 12el, Ale;) =e; @1+k ‘@e;, AT = kFlokh

7 7

It follows from (1) that

c= H k
icl,
lies in the centre of/,(g”). Let U,(L(g)°) be the quotient of/,(g”) by the ideal
generated by — 1. Note that, since is group-like,U,(L(g)?) inherits a natural Hopf
algebra structure fror®y,(g7).
The following theorem is an analogue of a result of Drinfel'd ([13], Theorem 4). To
state it, we introduce a quantity,, which is equal to 2 ifg is of type A,,, for some
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n > 1, and equal to 1 otherwise. Further dqtanduz be independent indeterminates

and, fori, j € I, defined;; € Q, P, W WG € Cluq, ug] as follows:

if o(i) = i, thend;; = 3, P (uy, up) = 1

if aio(;) = 0 ando(j) 7 j, thend;; = 7=, Pis (ug,uz) = 1
. _ N_ . _1 + _ mq:th wm
if Aig(s) = 0 al’ldO'(j) =1 thendij =% Pij (Ul, UZ) Wv

if a0y = —1, thend;; = %, Pi:;.:(ul’ up) = ulqil + up;

F5(ug,up) = [1rez/mz(ua — W g*retemouy);

Glj; (ulv u2) = HTEZ/mZ(ulingaigr(j) — (,,_)TU2)_

We note thatG'} (us, up) = —F; (uz, uy).
Definition 1.2. Fori € I, leti € I, be theo-orbit of i. Let D,(g)° be the associative

algebra overC with generatorsX (el keZ),Hy (i€l kez\{0}), KI*
(z € I), and the following deflnlng relat|ons

X;E(i)’k =W X5 Hogw =" Hig, KJ}= KEY
KK '=K'K; =1, K,K; = K;K;;
H;H;y=H; Hy gy KiHj = Hj K

+ -1_ :t/\ o™ (j) v+
K7X],k:K’L QZT€7/M7 JX]k,

1 .
[H;, k7X 1] =+ Z [kaia"(j)/d{]q; w" X]:“,:k+l;

k
reZ/mZ
/N
[X’L k> Jil] = Z 60_7“(7;)’],“)7"[ (M) 3
r€ZL/mL &~ q?

where thel;", are defined by

Z‘Ijz +rU —Kilexp<i((1, —q )ZHLilU> >

=1

u being an indeterminate, andffk =0if ¥k > 0O;

F (ug, u2) X (u2) X (u2) = G35 (ug, u) X (u2) X (),
where
Xi(u) ZXZ LU k.
keZ
SYM{ P (us, u2)(XF (0) X (ua) X (uz) — (2% + ¢~ 2"49) X (ug) X (0) X (u)
+ X (u) X (u) X (0))} = 0
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if a;; = —1ando(i) 7 j, whereuy, u, andv are independent indeterminates and Sym
denotes symmetrization over, uy;

Sym{(g®e/2uf — (g*e/2 + ¢ Mo/ P)uFt + q*”s/Zu;“)xf(ul)xf(uz)Xf(w)}(:io
2

and

Sym{(q~ e/ 2ui™ — (102 + Pz + g Pug X (ua) X (u2) X (ug)} gio

if a;o(;) = —1, where Sym denotes symmetrization over the independent indeterminates
Uy, U2, U3.

Theorem 1.3. There exists an isomorphism of algebras betwégid.(g)?) and D,(g)”
such that
1
61.- = X:O’ e~ = 7X7;_07 k- = K?
7 Ly 7 pi 5 2

wherei € I belongs to ther-orbit 4.

Remarks. 1. There is a similar realization @f,(3”). Theorem 1.3 is, however, suf-
ficient for our purposes since it can be shown (cf. [7], Proposition 12.2.3) that the
central element acts as one on every finite-dimensional representati@n, ).

2. Relations (2) and (3) are present only whghis of type A(Zzn) Drinfel'd ([13],
Theorem 4) has analogues of only two of these four relations (namelyg@ad
(3%). The other two can be shown to be consequences of these together with the
other defining relations ab,(g)?. We have included all four partly for reasons of
symmetry, and partly because they are all needed in subsequent calculations.

3. The isomorphism in 1.3 depends on the choice of the sectien of the canonical
projection/ — I, but any two such isomorphisms differ only by a rescaling on the
generators= (i € I,).

For a proof of this theorem, and an explicit description of the isomorphism, see [16],
Theorem 3.1 and [17], Proposition 2.1. However, in ﬁ@ case, they in [16] and
[17] must be replaced hy? to get the algebras denoted herelhyL(g)°) andD,,(g)° .
Compare also [1] and [11] for analogous results in the untwisted case.

For later use, we record here the defining relations, and the form of the isomorphism
in 1.3, for the simplest twisted quantum affine algeldrél(si3)™), wherer is the non-
trivial diagram automorphism ofi3(C). In this case, we may drop the indekom the
generators ot/,(L(sl3)™) (since|l,| = 1). The generalized Cartan matrix is

_(2 -1
=(47%)
so thatdg = 4 andd; = 1.

The defining relations are as follows:
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KK_]- :K_lK = 1, KHk :Hk;K Hk;Hl :HlHk?a

KXEIK'=¢®2XE (X5, X, = Vier ~ d’f”
44"

where i YT uk = K exp (:I:(q —q¢ Y i Hilul> ,
k=0 =1
[H]in] - [ k]q( 2k + —2k +( 1)k+1)Xk+l if k 7/0’
X;izXli +(gT - jEA')Xk+1Xl%r1 ﬁinleiz
= qﬁXliX;iz + (g™ - jFZ)Xzle/il - leszia
Sym(qufaniXi (Q"'qfl)X;;thfFlXi 73XiXiX$zF1) 0,
Sym@ X XEXE — (q+ e WXEXE XE+AXEXEXE, ) =0,

where Sym means the sum over all permutations, &fm.
The isomorphism in 1.3 is given by

%=Kﬂ%X5w%;wx%=]grﬁh qAX{XT K2,

[4
ko=K2 el=X§, e] =Xy, k1 =K.
LetUy (resp.U?, Ug) be the subalgebras 6f generated by thﬁf;k (resp. by the
X; . by thew ) forie I,k € Z.
Proposition 1.4. U° = U2.U§ .UY.

The proof is straightforward.

2. Some Subalgebras o/4(L(g)?)

The study of untwisted quantum affine algebras can be reduced, to some extent at least,
to the case of quantum affiné,, by noting that any algebra of the former type can be
generated by finitely many copies of the latter (see [1], Proposition 3.8). In the twisted
case, one needs,(L(sl3)") in addition, wherer is the unique non-trivial diagram
automorphism o#i3(C).

We recall the definition of quantum affirsé:

Definition 2.1. U,(L(sl>)) is the associative algebra with generatd(%t (k € Z), Hy,
(k € Z\{0}), K*1, and the following defining relations:

KK '=K 'K =1, KH, = H,K; H.H,=H Hy;

KX:I:K—l - iZX]zI:.
[HmXﬂ—i[%ﬂXM;
+ yE + vyt + v+ + yE.
X X iZX Xk+1 izX Xl+1 Xl+1X

‘I/k+l B ‘Ill;l

(X X, 1= ,
S q—qt
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where

> vt = K exp (i(q ) Hﬂul> :
k=0

=1

and¥; = 0if ¥k > 0.

See [7], Theorem 12.2.1 — we have set the central ele@léhequal to one.
The result we need is the following:

Proposition 2.2. Leti € 1.

(i) If o(?) Zianda;s(;) 7 O, there is a homomorphism of algebras: U, (L(sl3)™) —
Uqy(L(g)?) such that

0i(Xi5) = X5 il Hy) = Hig, @i(W5) = 97, @i(K) = K;.

(i) If o(i) Zianda;s) = 0, there is a homomorphism of algebras: U,(L(sl,)) —
Uqy(L(g)?) such that

0i(XiE) = X3, wilHy) = Hig, (W) =V, oi(K) = K;.

(i) If o(é) = 4, there is a homomorphism of algebras : U, (L(sl2)) — Uq,(L(g)7)
such that

1 _ _
(pl(X;) = EX;:mkv @Z(Xk ) = Xi,mkv
Ci(Hy) = Hi e, @i(W5) = V5, 0i(K) = K.

i,mk’
Proof. Straightforward verification, using 1.3 and 2.1. O

Remarks. 1. We have dropped the subscripirom the generators d,(L(sl3)") in
(i), since| .| = 1.

2. In (jii), the generators(;,, H; », W7, of U,(L(g)) vanish if is not a multiple of
m.

3. We expect that the homomorphismsare injective, but we shall not need this.

3. Finite-Dimensional Representations

A representatiort of U7 (i.e. a leftU7-module) is said to be of type | if each
(7 € 1) acts semisimply oY with eigenvalues which are integer powergofit is not
difficult to show that every finite-dimensional irreducible representatiotiotan be
obtained from a type | representation by twisting with an automorphisti’obf the
forme} — eel,e; — e; , k; — €k;, where each; = +1 (cf. [7], Proposition 12.2.3).
If V is atype | representation &f°, a vectorv € V is said to be a highest weight
vector if v is annihilated by thex7, for all i € I, k € Z, and is a simultaneous
eigenvector for the elements 0f . If, in addition,V' = U?.v, thenV is said to be a
highest weight representation. Moreover{zﬁfk}iel,kez are the scalars such that

£ .=
Wikv = ik,

?
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the pair of ( x Z)-tuplesyp® = {1/;3?,6},;617,‘)@ is called the highest weight &f (or the
weight ofv). Note that we necessarily have

Ui, =0 if Th>0, Yigip=1,
bon =Wy, forallie Ik eZ. (4)

Conversely, by the usual Verma module construction, it is easy to show that, for any
P* = {z/)fk}iemez satisfying (4), there is, up to isomorphism, exactly one irreducible
representatiol () with highest weight).

The following theorem is the main result of this paper:

Theorem 3.1. (i) Every finite-dimensional irreducible type | representation of
Uqy(L(g)?) is highest weight.

(i) If * = Wfk}iel,kezy the highest weight representatiéf(y*) of U,(L(g)°) is
finite-dimensional if and only if there exist polynomidls € C[u] (i € I) with
constant coefficient one such that

(g~ 2™ . . .

- . g B ifo(i) #iandaise 70,
— -_— N . -2 B . .

D owiut = gt = { gl %ufz if o(i) 7 i andais(;) = 0,
k=0 k=0 ™ dedp; Pi(gi(u#; ) jf o(i) =1,

in the sense that the first two terms are the Laurent expansions of the third term
aboutu = 0 andu = oo, respectively.

The proof of (i) is straightforward (cf. [7], Proposition 12.2.3). The proof of (i) will
occupy the next two sections.

Remark.SinceW;,, , = w*W7,, the polynomialsP;, if they exist, necessarily satisfy
the condition

Pogiy(u) = Pi(wu). ®)

Let IT be the set off -tuples of polynomials?; € C[u] with constant coefficient one
satisfying (5). IfP = {P;},cr € TI, we denote by (P) the irreducible highest weight
representatio’ (1) of U (abusing notation), the relation betweRrandy* being
asin 3.1.

Proposition 3.2. LetP = {P; };c7, Q = {Q; }ier € I1, and letvp € V(P), vg € V(Q)
be highest weight vectors. Them, ® vg is a highest weight vector i (P) ® V(Q)
of weightg®, whereg* is related to thel-tuple { P;Q; }ic; in the same way ag* is
related to{ P; } ;< in 3.1.

This will be proved in Sects. 4 and 5. The following corollary is immediate:
Corollary 3.3. Let the notation be as in 3.2, and denote thauple { P,Q;};cr by

P® Q. Then,V(P® Q) is isomorphic as a representationf(L(g)”) to a subquotient
of V(P) ® V(Q).
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4. TheUy(L(sl3)™) Case

In this section, we prove 3.1 and 3.2 165(L(sl3)"), wherer is the non-trivial diagram
automorphism okl3(C), and we denoté/,(L(si3)7) by U™. The explicit form of the
generators and relations bf" was given at the end of Sect. 1. It will be convenient to
set

go=Xy X7 — ¢*X; Xy,

so that, in the isomorphism in 1.&; = K—28,, and to write
(X (%0)"

[’I“]q! ’ [T]q4!

The crucial result for the proof of 3.1 in this case is the next proposition.

(X)) = (é0)" =

Definition 4.1. Define element§P, },.cn in UJ by Py = 1and

r—1

1 _
Pr= g 3 VP ®)
7=0

If we introduce the formal power series

P(u) = ZPTUT, Wt (u) = Z [Tl
r=0 r=0
in an indeterminate, then 4.1 is equivalent to saying thafu) has constant coefficient

one and that
Pq*u)

Pu)
Let X* be the linear subspace bf spanned by th&; for k € Z.

Ur(u) = K

Proposition 4.2. For all » € N, we have the following congruencesod U™ X*):
(i)r (Xa-)(2r+2)('éo)(r+1) = (_1)r+1q—2(r+1)(2r+1)[4]g+173T+1K2r+2;

(ii)r (Xg)(2r+1)(éo)(r+1) = (71)Tq74r(r+1)[4]7[;+1 Z;:o Xj—+l73r_jK2r+l;

(i) - (X5) @D (@)Y = ¢~ *2[4], K X1 (X5)@)(E0)"

_ 4 —1)/~
+q oA e K2[Hy, (X3)@ D(E0) ).

Proof. All three congruences are easily checked when0.

Assuming (iii)., one deduces (if)from (i),—1, (ii) .—1 and (6), and then (i)follows
from (ii),. by multiplying on the left byX§ and using (6) again.

Thus, the main point is to prove (iji) For this, one needs identities (7)—(16) below:

() X] = =¥ r — U XT (X)) + g X X7 ()Y, )

—3r+3 4 q—r+3 _ q—r+1 _

L, (X)) = [3]q{ (q "_H) X;(xg)0Y

q—qt

+q2’°+“X3XI<Xa)<’"2’}: ®)
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[(X0)7. X7 1= ¢ " K Hy(X)" ™
—2r+l 4 —2r—1 _ —2r+5 _ —4r+5
+ <q q gl q ) KXI(XS)(er)
q—q
g TR XX, ©

[, 20l = 4™ 0A, KX, ()0 + 242 + g R (X))

-5 -3 3 —2r+3
+ q—3r+6 <q + q —q —q g ) KZXI-(XS-)(T’—B)

q—qt
_ q—4r+8K2X6rX1r(X6r)(r—4); (10)
toXy =q¢*X[ & ; (12)
[H1, 85 = —q~**%(q — ¢ 13144145 D(X1)?; (12)
(X5, 85 = ¢ 44,0 VXK ; (13)

[(Xa)(?”*'l)’ €o] = q*T+4[2]qKXl— (Xa')(r) + qfr[z]qK(Xar)(r)Xl—
+ K, (X)) g - g YR
(3, (14)

. 1
XK = Wxgag‘”) (modU™X*); (15)
q

8r—2 Ar—2
VXY=L (g VK- L 0, (modUTXxY).  (16)
[4]q [4]q
Identities (7)—(10) are proved successively by inductiom;ofi1) is a consequence of
(37); (12) and (13) are proved by induction oasing (11); (14) follows from (8) and (9);
congruence (15) follows from (11) and (13); and (16) follows by a double application
of (13).
Finally, to prove (iii)., we compute
[+ (X)), &™)
= q 21 KX (X0)®E) + ¢ (2] K (X)X &)
q—47"
+
(3],

K2[Hy, (X3)2 =90 + ¢4*3(q — ¢ K2 Hy(X)@ Ve

(by (14))
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- 72r+4[2] KX*(XS-)(ZT)é(T) + q72r[2] K(Xa-)(Zr)Xf ~(r)
_4r
[3]q [3]
+q 4r+3(q _ —l)KZ[H (X+)(2r 1)~ (’l“)] + q—4r+3(q _ q—l)KZ(Xg)(Zr—l)ég)Hl
= 2 KX (X)) + 47 (2], K(XO)Q”X-”(”
—4r+6
KZ[HL (X+)(2rfl)é(7")] q KZ(X )(2r l)[H ~(r)]
31, N €T
+ q—4r+3(q _ q—l)KZ(Xa-)(Zr—l)'ég)Hl

KZ[H (XO)(ZT 1)~ (’I‘)] KZ(X )(27“ l)[H ~(r)]

L4

—2r — ) ~(7T —2r— 2)4[2r +1 r+1)~(7r
= 4 2R KXy (X)) + g2 2%@5)@ D
q
q—4r+6 q
e 9 R, (o) VR - Ry, )
31, 31,

+q g — g HEAX)PVEH (modUT X)
( by (15) applied to the second term)
_or—2[2]q[2r + 1],
[4],

K2[Hy, (X3)2r D0 + ¢~85(q — ¢~ H[4], K2(Xg) @~ De8 (X, )?

= q—2r+4[2]qKX; (X-OF)(Zr)é'gr‘) + q (X-OF)(ZT+1)58"+1)

—4r+6

(3],
+ q74r+3(q 71)K2(X )(2r 1) (OT)Hl (mOd UTX+)
(by (12) applied to the fourth term)

L4

—27r —_ ) ~\T —2r— [2] [2r+1] T ~\7r
= PRI KXy (X E) + g S (X))
q
e, +y(2r—1)x(r)
+ K*[Hz1,(Xg) €]
(34

e - g R (L ap

+ q74r+3(q . qfl)KZ(Xg)(erl)égr‘)Hl (mOd UTX+)
(by (16) applied to the fourth term)

Ar—
Xt 2~(T+1) K2 _ q Mg
( 0 ) [4] . €9 1

a s o2 [20a2 1)y
=q 2], K X[ (X3)®@ )eg) +q2 ZW(XS)Q +1)eg+1)
q
q74r+6 _2
+ KZ[HL(XO)(ZT 1)~ (7)] + =1 [2r+ 1]q[2T] (XO)(2r+1) (r+1)
31, [4]q
(modU™ X™).

Collecting the terms involvingX)@ Vel ™Y on the left-hand side and simplifying
gives (iii),. O

Let V' be the finite-dimensional |rredu0|ble type | representatiobi ©fvith highest
weight given by the pair of- tuples{w,C }rez, and letv be a highest weight vector in
V. We have
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Arg

kow=q"v, kiv=q"v

for somerg, r; € Z. Note thatr; = —2rg; in particular,r, is even. Writerg = —r,
ry1 = 2r from now on.

Regarding/ as a representation of thg (si,) subalgebra o/ ™ generated byli and
kfl, vis ahighestweight vector (so that> 0), and we have a direct sum decomposition

Vv,

peEN

whereV/, is the irreducible representation &f (sl,) of dimensiorp + 1 (and on which
k1 acts with eigenvalues igf'), and then,, > 0 are certain multiplicities. By 1.4, = 0
if pis odd or> 2r. Applying both sides of (i) in 4.2 towv, it follows thatP,.v = O if
s > r. Hence,

Pu).v = P(u)v,

where P € C[u] is a polynomial with constant coefficient 1 and degree-. By the
remarks following 4.1,

P(g~*u)
+ — 2r
U (u).v =q P@) . a7
Multiplying both sides of (i} on the left byX* _,, wheren € N, we see that
Z \I—’;_”PT_]'.’U = Z \I’j:nP,._j.v (18)
j=n j=0
if n <r,and
Z \Iljinpr,j.v =0 (19)
=0
if n > r. By 4.1, (18) is equivalent to
TP, =) W P (20)
J=0
Equations (19) and (20) are together equivalent to
_ P(g*u)
— 2r
U (u).v=gq P@) (21)

Finally, to compute ded@, note that if degP = s, Eq. (21) implies that

2r—4s (q74u)7sp(q74u) v
u=sP(u) ’

U (u).v =¢q

and hence thak —.v = ¢ ~*v. But from Eq. (17) we havé&.v = ¢*"v, SOs = 7.
This completes the proof of the “only if” part of 3.1(ii) in th& case. Before proving
the “if” part, we prove 3.2 in thé/™ case. This depends on the following proposition.
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Proposition 4.3. Letk > 0.
() AXD)=Ybo X, ®@W+10 X (mod UT(X*2®UT);
(i) AW =Y"W@w , (mod UTX*@U™ +UT @ UTXY).
Proof. Making use of 1.1 and the isomorphism in 1.3, one computes that
A(Hy) = H1®1+19H1 —(q—¢ 21484 Xg@ X1 +¢ g — ¢ HBl(X5) ® K e
The formula in (i) now follows by an easy induction énThen (ii) follows from (i) by
using
W= (- ¢ XXl O

Part (ii) of 4.3 implies that, when acting on a tensor product of two highest weight
vectors,¥*(u) acts as a group-like element of the formal power series Hopf algebra
U™ [[u]]. Proposition 3.2 follows.

To prove the “if” part of 3.1(ii) forU", it suffices by 3.3 to show that'(P) is
finite-dimensional when def = 1. This is accomplished in the next proposition.

Proposition 4.4. The following is a representation 6f", for anya € C*:

01 © 0 0 o0
Xi a2, {00 (1)F¢®* |, X, —d" (1 0 O],
00 © 0 (-1)k¢? 0

—2k 2
q 0 0 q¢c0 0
HkHak% 0 (-1 —-¢* 0 ,K— |01 0|,
k 0 0 (_1)k+1q4k 0 0q72

1 0 0
Wi (g2 — g da" [0 (—1)kg? -1 0 if k>0,
0 0 (1)L

1 0 0
W= —(®—q aF [0(-1fg* -1 0 if k < 0.
0 0 (_1)k+lq2k
Proof. Straightforward verification. [

The representatlon defined in 4.4, day is clearly irreducible and of type I. More-
over, if {wk }rez is its highest weight, we have

ok _ 2Pl
Zw § q2+;(q — g %)ad" " = ¢ ZOR

whereP(u) = 1 — au. Thus, we have exhibited a finite-dimensional irreducible type |
representation of/” with highest weight given (as in 3.1) by an arbitrary polynomial
of degree one. This completes the proof of 3.1(ii) intffecase. (Note that, iP = 1 is

the constant polynomial, théi(P) is the trivial representation.)
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5. The general case

In this section, we outline the proofs of 3.1 and 3.2 for an arbitrary twisted quantum
affine algebrd/,(L(g)?), which we denote by/“.

Suppose then th&i is a finite-dimensional highest weight representatiofi ©fvith
highest weight vector and highest Weigh{wjfk}iel,kez. We consider three cases, as
in Proposition 2.2:

Case (i).0(7) 7 i anda;,(;) 7 0. Note thain = 2 in this case. Using the homomorphism
p; described in 2.1(i), we can vieW as a representation &f,(L(sl3)7), and as such
v is still a highest weight vector ifv. By the U,(L(sl3)") case of 3.1, proved in the
previous section, there exist € I1 such that

= -k — 2dePP(q U)
;¢zku —ZT/) U ? 2O

Case (ii).o(¢) 7 ¢ and a;,) = 0. This time, we can view as a representation of
Uqy(L(sl2)). By [6], Theorem 3.4, there exist3 € IT such that

Pi(g™*u
Z%’“" —Zw ot =gran .

Case (iii).o(¢) = 7. Viewing V' as a representation 6f, (L(sl,)), there exists’; € I1
such that

oo

S - 7k_mdePP(q72 u)
;wimku —Zl/) —mi U 9 7P(u) .

Noting that\Ilfk, = 0 unlessk is divisible bym, we find that

Zmum)

k — m degP
7, u [ U m

This proves the “only if” part of 3.1(ii). The “if” part is proved by an argument
similar to that used in the untwisted case in [8], Sect. 5. In that case, the crucial point
was to establish the result fof,(L(sl2)). In the present case, we also need the result for
Uq(L(sl3)™), which was proved at the end of Sect. 4. We omit further details.

Finally, to prove 3.3 in the general case, one uses the methods of [9], Sectl[2. Let
denotd/,(L(sl3)™), Us(L(sl2)) orUgsm (L(sl2)) in cases (i), (ii) or (iii) of 2.2, respectively.

If V' is an irreducible highest weight representatio/6fwith highest weight vectos,
denote the representatign(U;).v of U; by V.

Lemma 5.1. With the above notatior/; is an irreducible representation df; with
highest weight vector.

The proofis similar to that of Lemma 2.3 in [9]. In particular, for &y {P; }icr €
I1, V(P); = V(F;), whereV (P;) is the finite-dimensional irreducible representation of
U, associated to the polynomi&} as in 3.1(ii) ifU; = U,(L(sl3)™), and as in Theorem
3.4in [6] if U; = Uy(L(sl2)) or Ugm (L(sl2)).

If V andWW are two irreducible highest weight representation&6fwith highest
weightvectors andw, then, forany € I, V;QW,; isarepresentation &f; via (p; Q¢;)o
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A;. On the other hand, it is not difficult to show that the subsggcdV; of VW is
preserved by A o ¢;)(U;), giving a second way of viewinlf;@W; as a representation
of U;. We denote these representationdby; W, andV;W;, respectively.

Lemma 5.2. With the above notation, the identity m&px,; W, — V;QW, is an iso-
morphism of representations bf.

The proof is similar to that of Proposition 2.2 in [9]. The necessary facts about the
comultiplication ofU,(L(g)?) can be established by computations similar to those used
to prove Theorem 2.2 in [17].

Now letP = {P;}icr, Q = {Q:}icr € II. Then, by thelU,(L(sl3)") case of 3.2,
proved in the previous section, and the analogous resulffQi(sl»)) (Proposition 4.3
in [6]), we have the following isomorphisms of representation& of

V(P)i@:iV(Q): = V(P)®:V(Q:) = V(F;Q:).
If vp andvg are highest weight vectors ii(P) andV (Q), it follows from 5.2 that
VE (pug) = U (vpv0),

the action on the left being given hy, Where{¢fk}iel7kez corresponds to the poly-
nomial P;Q; as in thel/,(L(sl3)™) case of 3.1(ii) (proved in the previous section) or the
analogous result fot/,(L(sl2)) or Uy~ (L(sl2)) (Theorem 3.4 in [6]). This proves 3.2
forU°.
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