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Abstract: Based on high energy expansions and Herglotz properties of Green and Weyl
m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In
addition, we consider connections with inverse spectral theory, in particular unigueness
results. As an application we work out a new approach to the inverse spectral problem
of a class of reflectionless operators producing explicit formulas for the coefficients in
terms of minimal spectral data. Finally, trace formulas are applied to scattering theory
with periodic backgrounds.

1. Introduction

Trace formulas have a long history in the theory of one-dimensional second order equa-
tions. One case of particular importance are periodic potentials. Let

(H[f)n) =am)f(n+1)+a(n —1)f(n - 1) +b(n)f(n), neZ  (1.1)

be our Jacobi operator witi{(n + N) = a(n), b(n + N) = b(n) for someN € N. Then,
using Floquet theory (cf., e.g., [7], Appendix B, [30, 32]) one can show that the spectrum
o(H) of H consists ofV bands (some of which might collide)

N
o(H)=| JIF2j 2, F2j-1], Eo<E1<Ep--- < Eav 1. 1.2)
j=1

Next, we consider finite matrices associated witlobtained by restrictindd to finite
intervals fronmg to ng + N and imposing boundary conditions at the endpoints. Denote
the matrix obtained with Dirichlet boundary conditions (i, &) = 0, f(no+ N) = 0)
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by H> and the one obtained with periodic/anti periodic boundary conditions (i.e.,

no

f(no) = £f(no + N), f(no+1) = £f(no + N + 1)) by f;5. The eigenvalues off;,

no?

H,, are precisely the even, odd band edfgs », F»; 1,1 < j < NV, respectively. The
eigenvalues off 2° are denoted by, (n), 1 < j < N—1.Sincetr@;F) = "o " b(n+j)
and tr(@°) = Y00y b(n + j) we infer fromb(n) = tr(;F — HX) = (L} + ;) /2 -
trH,° by elementary linear algebra

2N—-1

1 N-1
bn) =5 D B =D min) (1.3)
j=0 =1

Similarly, considering tr@@*) + (H;)")/2 — tr(A°)¢, ¢ € N one can obtain higher
order trace relations.

The corresponding formulas fér= 1 (i.e., (1.3)) and = 2 were first given in [32].
Formula (1.3) plays a key role in the inverse spectral theory of periodic operators and
the reconstruction of, b from suitable spectral data. Those ingredients form the basis
for the solution of the periodic initial value problem of the Toda equations (cf., e.g.,
[7, 10, 39]). Moreover, relation (1.3) was extended to certain reflectionless operators in
[2] and successfully used in[2, 22] to solve inverse spectral problems for these operators.

To generalize trace formulas to arbitrary operators one invokes the médagsufel!
associated with the vectére ¢2(Z) (cf. Lemma 3.1) by the spectral theorem. Choosing,
e.g.,0 = 4, (the standard basis 6%(Z)) we immediately obtain

(60, HS,) = / Ndps. (\), (1.4)
R

connecting the matrix elements,,, H*5,,) with the moments of the measudp;, . In
the special case whefé has purely discrete spectrum, the integral can be evaluated,

(n, H'0n) = > v\ n,m)N, (1.5)
A€o(H)

where—~(A, n, m) is the residue o7(z,n,m) atz = X € o(H), that is,

u(A, m)u(A, m)
fu(V[> 7

whereu()) is the eigenvector correspondingXos o(H). In particular, for¢ = 1 this
gives the interesting result that (féf with purely discrete spectrund)n) is equal to
the sum over all eigenvalues &f weighted byy(A, n, n).

However, generalizations of (1.3) cannot be obtained in this way. This can be done
by using theexponential measur&d\ (cf. Appendix A) associated witlip(\) as was
discovered by F. Gesztesy and B. Simon in [17]. There they extended the analog of
(1.3) for Schddinger operators to a much larger class of potentials (in essence, only
semiboundedness of the potential is needed) based on the theory of the Krein spectral
shift [29]. In a subsequent series of papers [18], [19, 21, 25], and [26] they, together
with H. Holden and Z. Zhao, exploit the ideas of [17] and extend them in various
directions. In [17] they also give a generalization of (1.3) to arbitrary bounded Jacobi
operators. However, a comprehensive treatment of trace formulas for Jacobi operators
is still missing. Since it is desirable, for further work in inverse spectral theory, to have
these powerful tools at one’s disposal, one goal of the present paper is to fill this gap.

(A, n,n) = A € o(H), (1.6)
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Furthermore, we want to point out an annoying mismatch in formula (1.3). In order to
expresd(n) for all n € Z one need$ E; }o<<an—1, {1;(n)}1<j<n forall n € Z. On
the other hand, it is well-known that the spectral d@#g }o< j<aon—1, {¢j(n0) }1<j<n
plus some additional signr;(no)}i<;<n for onefixed ng € Z already determine
a(n)?, b(n) for all n € Z. Hence it must be, in principle, possible to expregs)?, b(n)
in terms of these spectral data for onge Z. This naturally raises the question whether
one might be able to find explicit expressions:(f)?, b(n) in terms of suitable minimal
spectral data for certain classes of operators. To the best of our knowledge a problem
of this kind has not been solved yet. Combining the approach of (1.4), the theory of
[17], Weyl-Titchmarsh theory, and the moment problem we will add a new wrinkle to
the theory of trace formulas and give a solution to this problem for a certain class of
bounded reflectionless Jacobi operators in Sect. 6.

To give the reader an overview of the results established, we briefly summarize the
content of the remaining sections.

Section 2 introduces all the necessary notation and is mainly added to make the paper
self-contained and easier to read.

Section 3 contains a comprehensive treatment of asymptotic expansions fon\Weyl
and Green functions. We establish that expansions for these objects always exist up to
arbitrary order. In addition, recursion relations for the expansion coefficients are derived.

Section 4 contains an alternate (recursive) approach to inverse spectral theory which
gives simple proofs for standard uniqueness theorems. Moreover, new uniqueness results
are established as well.

In Sect. 5 we derive infinite series of trace formulas for Jacobi operators in the spirit
of [17, 25]. The basic ingredients are the asymptotic expansions of Sect. 3 and Herglotz
properties of these objects. In particular, we extend (1.3) to

(i) arbitrary order € N,
(ii) arbitrary Jacobi operators, and
(iif) general boundary conditions.

Section 6 applies the results of Section 5 to the theory of reflectionless Jacobi op-
erators, producing formulas of type (1.3) plus an explicit expression of the coefficients
a?, b in terms of minimal spectral data.

Section 7 considers scattering theory with periodic backgrounds. Basic objects like
transmission and reflection coefficients are introduced. In addition, the analog of a trace
formula for Schéddinger operators involving the reflection coefficient is obtained.

Finally, an appendix collects some properties of Herglotz functions needed in the
main body of the paper.

2. Jacobi Operators, Resolvents, Green’s Functions and All That

Throughout this paper we denote B{{) = ¢((M,N), I = {n € Z|M < n < N},
M,N € Z U {£oo} the set of complex-valued sequendegn)},cr and by (1),
1 < p < oo the sequences € ¢(I) such thatju|P is summable ovel. The scalar
product in the Hilbert spac&(I) will be denoted by

(u,v) = va(n), u,v € 03(I). (2.1)
nel

We will be concerned with operators 6#(Z) associated with the difference expres-
sion
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(7)) = a(n)f(n+ 1) +a(n — 1)f(n — 1) +b(n) f(n), (2.2)
wherea, b € ((Z) satisfy
Hypothesis 2.1. Suppose

a(n) € R\{0}, bn)eR, necZ (2.3)

If 7 is limit point (I.p.) at both+co (cf., e.g., [5, 6]), then gives rise to a unique
self-adjoint operatoff when defined maximally. Otherwise, we need to fix a boundary
condition at each endpoint whereis limit circle (i.c.) (cf., e.g., [5, 6]). Throughout
this paper we denote hyy (z,.), z € C, nontrivial solutions ofru = zu which satisfy
the boundary condition atoo (if any) with u.(z, .) € £3.(Z), respectively. Heré?. (Z)
denotes the sequences/{fZ.) being¢? near+oco. The solutionu(z, .) might not exist
for z € R (cf. [37], Lemma A.1), but if it exists it is unique up to a constant multiple.

Picking a fixedzp € C\R we can characterizH by

H:D(H) — 3(Z)

FRgues s (2.4)
where the domain off is explicitly given by
D(H) = {f € (3(Z)| 7f € (3(Z), M, 400 Wy (us(20), f) = O, (2.5)
lim,,— — oo Wy (u—(20), f) = 0}
and
Walf,9) = a@) (f(m)gln + 1)~ f(n + Dg(n)) (2.6)

denotes the (modified) Wronskian. The boundary conditigrratimposes no additional
restriction onf if 7 is [.p. at 00 and can hence be omitted in this case.
Next, consider the sequence

55 = COS()d,, +SIN@)Ines1, B = cCOt), a € [0,7), (2.7)

whered,, (n) is 1 forn = ng and 0 otherwise. Restri¢{ to the orthogonal complement
of 68 in ¢%(Z) and denote this restriction by , that is,

Hi f=71f, feDHL)={f<cDH)5),f) =0} (2.8)

Clearly HY is self-adjoint on the subspadg¢ € (%(Z)|(55 , f) = 0} but not onf?(Z)

since@(Hﬁo) is not dense. Now we turn to resolvents and introduce the Green'’s function

G(z,m,n) = (6, (H — 2)715,,)
1 {m(z, nu_(z,m) form<n

S W@, m@) Lusemu_Gon) forn<m @9

wherez € C\o(H) ando(H) denotes the spectrum &f. For later use we also introduce
the convenient abbreviations
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u+(z, M)u_(z,n)

g(z,n) = G(z,n,n) = TIORBRNE)L (2.10)
h(z,n) = 2a(n)G(z,n,n+1)—1
_ a(m)(u+(z, n)u_(z,n +1) +us(z, n)u_(z,n + 1)) 2.11)

W(u_(2), u+(2))

Similarly, the corresponding object f(ﬂfjo (viewed as a self-adjoint operator on

{f € ()07, f) = O}) reads
Go(z:m, ) = (O, (Hpyy = 2)7100) = Gz,m, n) + 77 (2,n0) * %
(GG, no+ 1)+ BG(z,m,n0) ) (G2, mo + 1,m) + BG(z, . o) ), (2.12)
where
(u+(z, n+1) + Bu+(z, n)) (u,(z, n+1) +Bu_(z, n))
W (u—(2), u+(2))

=g(z,n+1)+ ih(z, n) + §%g(z, n). (2.13)
a(n)

The quantitieg)(z, n) and+?(z, n) are most important for our purpose and satisfy the
following recurrence equations which can be verified by tedious but straightforward
calculations. We use the shortcufs((n) = f(n — 1), (f*)(n) = f(n + 1), (f*)(n) =
f(n+2), etc.

7 (zm) =

Lemma 2.2. Letu, v be two solutions ofu = zu. Theng(n) = u(n)v(n) satisfies

a+2++_a2 112+—a727 o

and
2
(a9" = @)™+~ 129) = — 0P(W(u, v +da’gg").  (215)
Moreover, sety”’(n) = (u(n + 1) + fu(n))(v(n + 1) + Bv(n)), then we have

(@ AP0 — (@40 +B57)

A
= (A BP((CW(w.v)? + 4@ (7)), (2.16)
with
A=a+p(z—0b")+ %", (2.17)
B=a (z—=b")+3((z —b)(z—b)+a*a” —a?
+ (5%a*(z — b). (2.18)

Remark 2.3.Equations (2.14) and (2.15) are the analogs of well-known differential
equations for the diagonal Green function of one-dimensionald8ahger operators

(cf., e.g., [14, 24], Egs. (5.19) and (5.20)). Equation (2.16) is the analog of Eq. (5.18) in
[24].
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Finally, we turn to half line restriction#l ;. ,,, of H defined by

Hy ot D(H o) — (2(no, £00)

[, : (2.19)

and

Q(H:I:,no) = {f € 62(”07 :l:OO)|Tf S KZ(TLO? :|:OO), lim Wn(u:t(ZO)7 f) = 0}7
e (2.20)

where we seff(ng) = 0 in the definition of £ f)(ng + 1). The corresponding Green
functions read

>
11 s(z,n,no)u+(z,m)  for m<n

G4 nolz,m,m) = m

)

>
s(z,m,no)us+(z,n)  for n<m (2.21)

wheres(z, ., ng) is the solution ofru = zu satisfying the Dirichlet boundary condition
s(z,no, ng) = 0. The analogous quantities @fz, n) are the Weyin-functions

mi(z, TL) = <57,:|:1, (H:I:,n — 2)71(57,,:|:1> = Gim(z, ntln+t 1)
ut(z,n £ 1)

- a(n — g)ui(z, n)’ (2.22)

which satisfy

a(n — g)zmi(z, n) + =b(n) — z. (2.23)

my(z,n F 1)

Remark 2.4.We can also consider half line operatdﬂﬁ,no on /2(ng, £00) associated
with the general boundary condition

flno+1)+Bf(no) =0, B eRU{oc} (2.24)
atng rather than only the Dirichlet boundary conditigtng) = 0. We set
H? = Hengrr, HP = Hing — a(no)8  (6ngsts )0nes1, B 70, (2.25)
and

H®, =H_,, H’, =H_ .- ano)B(dn, )0n, BFo0, (2.26)

—10

implying H? =~ H® | & HY,,.

—>»No
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3. Asymptotic Expansions

In the sequel, asymptotic expansions §¢t, n) = G(z, n, n) andy?(z, n) will turn out

to be very useful. Both quantities are Herglotz functions as can be seen from
g(za Tl) = <6n7 (H - Z)716n>a (31)

2 m) = (L B0 (H — =) o0y — (32)
a()

(we note that, by (2.13)(z,n) is the difference of two Herglotz functions) and the
following lemma which is immediate from the spectral theorem.

Lemma 3.1. Supposé € (2(Z) with ||5|| = 1. Then

9(2) = (6, (H — 2)7%) (3.3)
is Herglotz, that is,

1
9= [ eV (3.9
R —Z
wheredps(A\) = d{6, P—,(H)J) is the spectral measure df associated to the
sequencé. Moreover,
Im(g(2)) = Im(2)[|(H — 2)~*6]|? (3.5)

and
1

o Y a1
9D =96 19N < I -7 < (36)
Next, we turn to asymptotic expansions fde, n), h(z, n), andy?(z, n).

Theorem 3.2. The quantitieg(z, n), h(z, n), and~?(z, n) have the following asymp-
totic expansions for arbitrary > 0

> i\n
o) = 300 gm (3.7)
|z]—o00 j7=0
[Im(2)|=e
> hi(n
h(z,n) = —1-) ijﬂl), ho = 0, (3.8)
|z]—o0 =0
[Im(z)|>e
ey = oSO 39)
e |z|:oo (Z(Tl) i=0 PR To = ’ '
[Im(2)|=e
Moreover, the coefficients are given by
g;(n) = (6,, H?6,), j € No, (3.10)
hj(n) = 2a(n)(6ne1, H'8,), 5 € No, (3.11)

V5 () = ((Gnss + B00), HY (Spe1 + B65))

= g;(n+1) +%hj(n) +Bg(n). jeNo. (3.12)
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Proof. We only carry out the proof fay(z, n) since the remaining expansions are similar.
Rewriting g(z, n) as

g(z, n) = <6n7 (H - Z)_16n>

1
=y P (6, HY(H — 2)710,), NeN  (3.13)
z

shows that it suffices to vindicate that the last ter@{s~"). This follows from

NS _ [ HYS

-1
|0, HN(H — 2)7%6,,)| < me) .

O (3.14)

Remark 3.3.(i) If H is bounded, the above expansions are in fact Laurent series con-
verging for|z| > || H]|.
(i) Pick e(n) € {—1,+1} and introduceu.(n) = £(n)a(n) andb.(n) = b(n). Then
the operatorH, associated withu., b, is unitarily equivalent toH. Indeed, take
the unitary operatot/. = {&(n) d,nn tm,nez, Wheree(n + 1)é(n) = e(n), then
H. =U.HUZ . In particular, this shows thg(n), h(n) do not depend on the sign
of a, that is, they only depend arf.

The following lemma ([7], Lemma 2.1) shows how to compuyeh; recursively.

Lemma 3.4. The coefficients;(n) andh,;(n) for j € Ny satisfy the following recursion
relation;

o hithy 3.15
gj+1 2 95 (3.15)
By — Wy = 2(azg; - (a—)zg;) + b(hj - h;). (3.16)

Proof. The first equation follows from
_ hj(n) + hj(n —1)

gj+1(n) = (Hé,, H'6,,) 5 +b(n)g;(n). (3.17)
Similarly,
hyea(n) = b)hs (1) + 20(n)2g;(n + 1) + 2a(n — Da(n)(bye, HI 6, 1)
= b(n + 1)h;(n) + 2a%g;(n) + 2a(n)a(n + 1)(6,+2, H?S,,). (3.18)

Eliminating (1, H?5,,_1) completes the proof. [

This system does not determigg(n), h;(n) uniquely since it requires solving a
first-order recurrence relation at each step, producing an unknown summation constant
each time. To determine these constants we assign the weight aie)tand b(n),

n € Z. Theng;+1(n) andh;(n) have weighy + 1, fixing the summation constants.

To avoid this drawback we advocate a different approach using (2.15). First observe

thath;(n) can be determined #;(n) is known using

hjr = bhj + gjsa — 2bgjsa + a’g) — (a”)?g; +b%g;, jENo,  (3.19)

which follows after inserting (3.15) into (3.16). In addition, inserting the expansion (3.7)
for g(z,n) into (2.15) and comparing coefficients @f one infers
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go = 17 g1 = ba 92 = a2 + (ai)z + b27

g3 =a?(b* +2b) + (a7)2(2b + b7) + b°, (3.20)
and
12
gj+1 = 2bg; — aPg; 1+ (a7)?g;y — bPgi1 — > Z kj—e—1ke
£=0

j-1 j—2 -3
+2d” ( > gi-e-19; — 20 _gi—r—2g; +0?) gj-e_ng) . (3.21)
=0 £=0 =0

for j > 3, wherekg(n) = —b(n) and
kj=a’g;_y— (" Vg, 1 +b%gj-1 — 2bg; + gju, jEN. (3.22)

Analogously, one can get a recurrence relationvt;%rusing (2.16). Since this ap-

proach gets too cumbersome we omit further details at this point but notefﬂmn
be computed from (3.12). Invoking (3.19) one explicitly obtains

ho=0, hy=2a% hy=2a2(b"+b) (3.23)
and hence
Yo =1+32 4y =0+ 203+,
N9 = (a)? +a? + (b%)% + 2a(b* + b)B + (a + (a7)? + b)) 2. (3.24)
Remark 3.5.Instead of (3.19) and (3.21) one can also use (3.15) and

J J
1 .
hjs1 =20 gi_ug; — > > hjthe, jEN, (3.25)
¢=0 =0
together with (3.15) to determing, »;. The above equation follows as before using
(4.6) below.
Next we turn to Weyin-functions. As before we obtain
Lemma 3.6. The quantitiesn(z, n) have the asymptotic expansions

ma(z,n) lZ:w — Zo mjjign)7 m4 o(n) = 1. (3.26)
lim(z)|>& ’
The coefficients: ;(n) are given by
ma ;(n) = Opa1, (Hi ) 0ps1), jEN (3.27)
and satisfy
mio=1 myy=b",
s (@ .
M4 j+1 = b mg ; + (a2 ;miﬁ*é*lmiaf’ jeN. (3.28)

Remark 3.7.As in Remark 3.3 we have that (3.26) convergesfoc> || Hy || if Hy
is bounded anah.(z, n) depend only om?.
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4. Inverse Spectral Theory

In this section we present a simple recursive method of reconstructing the sequences
a?, b when the Weyl matrix

M(z,n)=< G(z,m.m) G(z,n+1,n)) 1 <01)

G(z,n,n+1)G(z,n+1n+1))  2q(n) \10
g(zn) G
= o o , z € C\o(H) 4.1)
< e oo+ ) '

is known for one fixedh € Z. As a consequence, we are led to several uniqueness
results.
From the previous section we know

oem=—1 o @2)
2
h(z,n) = —1— Zag) + O(%). 4.3)

Here and in the remainder of this paper@(lﬁ) terms apply folz| — oo, [Im(z)| >
e > 0. Hence

b(n) = — Iirp z(1 + zg(z,n)), (4.4)
a(n)? = —% lim 22(1 + h(z,n)). (4.5)
Moreover, we have the useful identities (use (2.10) and (2.11))
4a(n)?g(z,n)g(z,n + 1) =h(z,n)*> — 1 (4.6)
and
h(z,n+1)+h(z,n) = 2@ — b(n +1))g(z,n + 1), 4.7)

which show thaty(z, n) and h(z,n) together witha(n)? andb(n) can be determined
recursively if, sayg(z, ng) andh(z, ng) are given.
In addition, we infer thai.(n)?, g(z, n), g(z, n+ 1) determiné.(z, n) up to one sign,

h(z,n) = (1 +4a(n)?g(z,n)g(z,n + l)) V2 (4.8)

sinceh(z,n) is holomorphic with respect to € C\c(H) andh(z, n) = h(z, n). How-
ever, this sign can be determined from the asymptotic behayion) = —1 + O(z~?).

Hence we have reproved the well-known result thafz, ng) determines the se-
quences:?, b. In fact, we have proved the slightly stronger resuilt:

Theorem 4.1. One of the following set of data

() g(.,no) andh(., no)

(i) g(.,no+1)andh(.,no)

(iii) g(.,n0), g(.,no + 1), and a(no)? for one fixedny € Z uniquely determines the
sequences? andb.
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Remark 4.2.(i) We want to emphasize that the diagonal elemegfitsng) andg(z, no+1)

alone plusz(ng)? are sufficient to reconstruae{n)?, b(n). This is in contradistinction to

the case of one-dimensional Setimger operators, where the diagonal elements of the

Weyl matrix determine the potential only up to reflection. It is not clear to me whether

this different behavior of Jacobi operators has been previously noted in the literature.
The reader might wonder how the Weyl matrix of the operaigrassociated with

the (atng) reflected coefficientar, br (i.€.,ar(ng — k — 1) = a(ng + k), br(ng —

k) = b(no + k), k € 7Z) look like. Since reflection atg exchangesni(z,no) (i.e.,

mp +(z,no) = mz(z, no)) we infer

9r(z,m0) = g(z,n0), (4.9)
hr(z,no) = —h(z,m0) + 2(z — b(no))g(2, no), (4.10)
2 _
e+ 1) = 20 g+ 1)+ 200 (e
+(2 = b(no))g(z,m0)). (411)

in obvious notation.

(i) Remark 3.3(ii) shows that the sign ofn) cannot be determined from eithgr, no),
h(z,ng), or g(z,ng + 1).

(iii) Clearly, if H isl.c. at+oo the corresponding boundary condition is determined by
M(z,n) as well.

(iv). Equation (4.6) is equivalent to d&f (z, n) = —1/(2a(n))?. The analogous equation

for the Schodinger case was first used by Rofe—Beketov in connection with inverse
problems (see [31], Sect. 7.3).

The off diagonal Green function can be recovered as follows

n+tk—1

G(z,n,n+k) =g(z,n) H 1+h(z,j)
Jj=n

and we remark

a(n)’g(z,n +1) = a(n — 1¥g(z,n — 1) + (z — b(n)’g(z, )
= (z — b(n))h(z,n). (4.13)

A similar procedure works fof,. The asymptotic expansion

2 2
m(emy =~ Mot o IPAB AT ey (400
z z z

shows thata(n + 1)%,b(n + 1) can be recovered fromn.(z,n). In addition, (2.23)
shows thatm.(z, ng) determinesa(n)?, b(n), m+(z,n), n > no. Similarly, (by re-
flection) m_(z, ng) determinesu(n — 1)?,b(n), m_(z,n — 1), n < ng. Hence both
m4(z, ng) determinea(n)?, b(n) except fora(ng — 1), a(ng)?, b(ng). However, intro-
ducingmiy(z,n) = Fux(z,n + 1)/(a(n)us(z,n)) and considering

z —b(n) + a(n — 1)"2m_(z,n)
a(n)?

m+(z,n) =ms(z,n), m_(z,n)= (4.15)

we see thain™ (z, ng) determines(no—1)?, a(ng)?, b(no) andm_(z, ng). Summarizing:
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Theorem 4.3. The quantitiesi (z, no) uniquely determine(n)?, b(n) for all n € Z.
Moreover, we have

—a(n)—2 ma(z,n)m_(z,n)

9(27 n) = ﬁ”L+(Z, n) + T’hi(z7 n)’ g(Z, nt 1) - T?L+(Z, n) + T;L,(Z, n)’
_ T7L+(Z, n) - ﬁl—(zvn)
h(z,n) = Fa(en) + i (2m)’ (4.16)
and conversely
Fra(ein) = i) 29Gn+ D) (4.17)

2a(n)2g(z,m) 15 h(z,n)’
Next we recall the function”(z, n) introduced in (2.13) with asymptotic expansion

B L1+F  b(n+1)+20a(n) + 5b(n)
2

a(n) z z

v (z,n) = — + 0(33). (4.18)
z

Our goal is to prove

Theorem 4.4. Let 31, € R U {oo} with 31 # 3, be given. Then”i (., ng), j = 1,2 for
one fixethg € Z uniquely determines(n)?, b(n) for all n € Z (sety>(z,n) = g(z,n))
unless(31, 32) = (0, %), (00, 0). In the latter casei(no)? is needed in addition. More
explicitly, we have

Y (z,n) + 472 (2, n) + 2R(2)

g(zn) = i , (4.19)

_ B571(z,n) + B30 (2,n) + 26132 R(2)
g(z,n+1) = (52— 517 , (4.20)
Mooy = B By ) + (5 + ) R(E) @21

(—2a(n))~1(B2 — B1)? ’

whereR(z) is the branch of

CRY: 1/2
#e) = (Gt e e

_ Pt 2
2a(n)

+ O(%), (4.22)

which is holomorphic foz € C\R and has asymptotic behavior as indicated. If one
of the numbers3; » equalsco, one has to replace all formulas by their limit using

9(z,n) = lim B729P(z,m).

Proof. Clearly, if (61, 32) # (0, 00), (c0, 0) we can determine(n) from (4.18). Hence

by Theorem 4.1 it suffices to show (4.19) — (4.21). Since (4.19) follows from (4.6) and
the other two, it remains to establish (4.20) and (4.21). This will follow if we prove that
the system

B
4a(n

B;
2a(n)

(g+)2 +2 hg+ + )2 (h2 - 1) = g"',yﬂj (Za n)a .] = 17 2 (423)
has a unique solutiony{, i) = (9(z, n + 1), h(z, n)) for |z| large enoughjim(z)| > &,
which is holomorphic with respect toand satisfies the asymptotic requirements from
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above. We first consider the case 7 0, co. Changing to new variables{, x2), z; =
(2a(n)/B;)g" + h, our system reads

21 =P 2a(n)y" (2,n)
! B b

Picking |z| large enough we can assumé (z,n) # 0 and the solution set of the new
system is given by the intersection of two parabolas. In particular, (4.23) has at most four
solutions. Two of them are clearly = 0, & = 41. But they do not have the correct
asymptotic behavior and hence are of no interest to us. The remaining two solutions are
given by (4.20) and (4.21) with the branch B{z) arbitrarily. However, we only get
correct asymptoticsgt = —z~1 + O(272) resp.h = —1 + O(z?)) if we fix the branch

as in (4.22). This shows thafz, n + 1), h(z, n) can be reconstructed frons, j = 1,2

and we are done. The remaining cases can be treated similarlyl

(r1—x2), j=12 (4.24)

Corollary 4.5. Supposed has purely discrete spectrum. Theto), o(H) plus §;,

a(Hffg), § =1, 2 for two values3; ¥ (3, uniquely determine the coefficient)?, b(n)
(and the boundary condition atoc if any).

Proof. SinceH has purely discrete spectrum the same is truéifﬁ]r. Hencey?(z, no)

is meromorphic with poles at the eigenvaluegband zeros at the eigenvalueslfﬁif0
following from (2.13) (if eigenvalues off and Hﬁo coincide we have a double zero

in the numerator of (2.13) and a single zero in the denominator). Thus we know when
v3(z,no) changes sign implying that we know the exponential Herglotz measure of
7v3(z,ng) (cf. (A.2)). The remaining constartin (A.2) follows from the asymptotic
behavior (see also (5.19)). Hence we can reconstii(et, ng) from a(no), o(H) andg,
o(HJ ) completing the proof. [

Finally, let us turn to half line operatoﬁﬁ = Hfo (cf. Remark 2.4). Since the
dependence ong0) can be removed by scalifig we assume without restrictiarf0) =
1 for the remainder of this section. We will now prove the following generalization of a
result by Fu and Hochstadt [13] (where the special ¢ase0, 5, = co is proved under
somewhat more restrictive conditions).

Theorem 4.6. Suppose the spectrumHﬁ is purely discrete forong € RU{oc} (and
hence for all3) and lets;, j = 1,2 be two different values which have opposite signs
if 0 < |8;] < oco. Theng; plus a(Hfj),j = 1,2 uniquely determine the coefficients
a(n)?, b(n) (and the boundary condition atx if any).

Proof. Without restriction we suppos® # 0 andg; # oco. Then

_Ba(mi(z)=PBy) _ =1 P

TN Ty Al s s & R

(4.25)

is a meromorphic Herglotz function singe.(z) = m.(z, 0) is. Moreover, sincei.(z) =
g;gg;gg (Whereu,(z, 0) has to be defined asa(1)us(z, 2) + (= — b(1))u(z, 1); recall our
conventiona(0) = 1), we infer that the zeros d@f/(z) are given by the eigenvalues of

% and the poles by the eigenvaluesif?. Thus we know the exponential Herglotz
measure(A) of F(z) (cf. (A.2)). The remaining constantin (A.2) can be determined
from the asymptotic behavidr(z) = -6, — (1 — 6162*1)[l +0(z72). ThusF(z) is
known and solving?(z) for m.(z) finishes the proof. O
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5. General Trace Formulas and¢ Functions

In this section we will investigate trace formulas for Jacobi operdioréd/e will essen-
tially follow the philosophy of [17, 25] and use the exponential Herglotz representation
(A.2) rather than (A.1). This will produce generalizations of the formula (1.3).

To avoid the Abelian limits of [17] we will first consider the case wh&réand thus
a, b) is bounded. We abbreviate

Eo =inf o(H), E, =supo(H), (5.1)

and note that(\, n,n) > 0 for A < Ey, which follows from  — \) > 0 (implying

(H — X)~1 > 0). Similarly, G(\, n,n) < 0 for A > E., following from (H — \) < 0.

Our main tool will be the following exponential representation of the Herglotz function
g(z,n) = G(z,n,n) (cf. Theorem A.2)

g(z,n) = |g(i7n)|exp</R (Af A )g(A,@dA), 2 € C\o(H), (5.2)

z 1+X2
where the function&(\, n) is defined by
&\, n) = 1 Iirlra argg(\ +ie, n), arg() € (—m, ). (5.3)
T €

In addition,£(A, n) (which is only defined a.e.) satisfies0¢(\, n) < 1,

£\, n)
r 1+X2

. 0 forz < E
d\ = argg(i, n), and&é(\, n) = { 1 forz S Ezo . (5.4)

Using (5.4) together with the asymptotic behaviogof n) we infer

Boo n
g(z,n) = ﬁ exp (/E f(i\\’_)j)\> . (5.5)

Theorem 5.1. Supposé is bounded and lef(\, n) be defined as above. Then we have
the following trace formula:

Ew
bOm)=E, —¢ AL, n)dA, (5.6)
Eo
where
B0(n) = b(n),
-1
0(n) = Lgen) = > g (D), £>1. (5.7)
j=1

Proof. The claim follows after expanding both sides of

In ((Bac — 2)g(z,m)) = /Eoc £A n)dA (5.8)

Eo A—2z

and comparing coefficients using the following connections between the seriég of
and In(1 +¢(2)) (cf., e.g., [33]). Lety(z) have the asymptotic expansion
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— g
9= (5.9)
=1
asz — oo. Then we have
e} e
| =2 _
nL+g() =D . (5.10)
=1
where
-1 ]
C1=01, Ce=ge— Z 79e=3C> (> 2. O (5.12)
j=1

We remark that the special caée 1 of Eq. (5.6)

B +Fo 1

b(n) = Eoo — /E T O n)d) = EOT +3 /EEm(l — 260\, n))dX (5.12)

has first been given in [17].

Next we turn to unbounded operators. In order to avoid Abelian limits here as well,
we resort to a little trick. This will also show how our investigations tie in with the theory
of Krein [29] and rank one perturbations (see also [17], Appendix A, [19, 34]). Consider

H,9=H+0(5,,.)0,, 6>0. (5.13)
Then, as in [17], Appendix A, one computes

59(/\a Tl)
r (A —2)?

tr((H ) (Hp - z)_l) = L@ +0g(z.n)) = ), (5.14)
dz

where

1+0g(z,n) = exp(/Rfi\(/\_’:)d/\), €9\, n) = %Igirlrg arg(l +9g()\+ie,n)2.

(5.15)
By Theorem A.2 (iii) all moments ofy (A, n)d\ are finite and[,, o (A, n)dA = 6.
Taking logarithms in (5.15) and expanding yields as before
Theorem 5.2. Let&y(\, n) be defined as above. Then we have
Ko =+ 1) [ NeOumar (5.16)

with

l
P =0, bP(n) =000+ D)ge(n) +0>_ ge— ()Y P(n), ¢ €N. (5.17)
j=1
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Again, in the special cage= 1 we obtain

b(n) = % /R Aép(\, n)dA — g (5.18)

In addition, we remark that letting the coupling constémend tooco implies H,, 9 —
H in a suitable sense (i.e., norm resolvent sensgfoa (3(Z)|(,, f) = 0}, cf. [19]).
Similarly, H can be obtained as the limit of the operatbr (52, .)57 asf — oco.

Clearly, the same procedure can be applied to (cf. Theorem A.2 (i), (iii))

__ B 7 (A, n)dX
Bz, n) = —m exp(/]R ﬁ)’ z € C\o(H)), 3 € R\{0}, (5.19)

where

1. .
&\ n)= p I;rB arg (75()\ + |s,n)) -6, 8P = {% gggzg ; 8 (5.20)

and 0< sgn(-a(n)B) €%(\, n) < 1. This yields as before

Theorem 5.3. Let£?(\, n) be defined as above. Then we have
O = (0 + 1)L / MmN, LEN, (5.21)
a(n) Jr

where
0 Om) = 1+52,
4
v Om) = (¢ + 1/ (n) — % S A2 Dm), CeN. (5.22)
J=1

Again specializing fo¥ = 0 in (5.21) we obtain

a(n) =

5 +lﬁfl /R &5\, n)dA. (5.23)

Finally, we want to find out whe&% (X, no), j = 1,2, for one fixedno determines
a(n), b(n), n € Z. Sincet?(.,ng), B € R anda(ne) determinesy”(z, ng) by (5.19) we
conclude from Theorem 4.4

Corollary 5.4. Let;» € RU {co} be given. Theks;, % (., ng)), j = 1, 2, anda(no)
for one fixedhg € Z uniquely determines(n)?, b(n) for all n € Z.
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6. Reflectionless Operators

Reflectionless operators have attracted a considerable amount of interest recently in
connection with inverse spectral theory [2, 22, 35, 36] and completely integrable lattices
[7, 32]. In this section we show that the trace formulas of the previous section become
particularly transparent in this case.

We will assume thakf is a bounded self-adjoint Jacobi operator. Hence its spectrum
can be written as the complement of a countable union of disjoint open intervals, that is,

oH)=R\ |J » (6.1)
Jj€JoU{oco}
whereJ C N, Jo = J U {0},
Po = (—OO, E0)7 Poo = (EOO7 00)7

FEo< Epj 1< Ep < Ey, pj=(FEz-1,Ez), j€, (6.2)
—00 < Ep < Esg <00, p;Np,=0forjZk.

In addition, we will require that? is reflectionless, that is, for all € Z,
&\, n) = % fora.e.\ € o.s5(H). (6.3)

By [22], Lemma 3.3 the requirement (6.3) is equivalent to one of the following:

(i) Forsomeng € Z, n1 € Z\{ng,no + 1},
E0\ 7o) = €0\ mo+ 1) =60\ m1) = 5 for a.ed € o, (H).

(i) For someng € Z,
m+(\ +10,m0) = m_(\ +10, no) for a.e.\ € o.s(H),
whereni_ (A + 10, ng) abbreviates limyom_ (A + ie, ng).
The last equation implies
us(\ +10,n) = u_(\ +10,n) for a.e.\ € ooss(H) (6.4)

for us(z,n) = c(z,n,n0) + a(no)m+(z,no)s(z, n, ng), wheree, s are the solutions of
Tu = zu corresponding to the initial conditiongz, ng, ng) = s(z,n0 + L,ng) = 1,
s(z,m0,n0) = (2,0 + 1,n0) = 0.
The name reflectionless will become clear in the next section. There the above con-
ditions will turn out to be equivalent to the vanishing of thlection coefficient®.(z)
(cf. (7.16)). For instance periodic operators, operators with purely discrete spectrum, and
stationary solutions of the Toda hierarchy are special cases of reflectionless operators.
Next we turn to Dirichlet eigenvalues associated wittorresponding to a Dirichlet
boundary condition at € Z. Associated with each spectral gapwe set

pj(n) = sup{Ezj_1} U{A € pjlg(A,n) <O} €p;, je (6.5)
The numberg:;(n) are called Dirichlet eigenvalues &f since we have

o(H°) = 0ess(H) U{pj(n)}je (6.6)
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However, we want to point out that;(n) is not necessarily an eigenvalue/éf® unless

M](n) € JeL?S(H)' . . .
The strict monotonicity of(\, n) with respect to\ € p;, that is,

d - —2¢ 1\ — Z 2 ‘
ag()‘vn) - <6n7 (H - )‘) 6n> - ~ G()‘7nam) > 07 A S p]7 (67)
then yields

g()‘vn) < Oa NS (EZj—lvﬂj(n))a
g()‘7n) > Oa A€ (:U/j(n)v E2j)7

Thus we conclud€(\,n) = 1, A € (Ezj—1, 1;(n)) andé(A, n) = 0, A € (u;j(n), Ey;j),
j € J. Using this information to evaluate the exponential Herglotz representation of
g(z,n) then implies ([22], Lemma 1.1)

jeJd (6.8)

_ -1 Q)
g(z,n) V2 — E()\/Z — Eoo g] \/Z — Ezj_l\/z — E2j7 (69)

where the square root branch used is defingdas |\/z| exp(iarg¢)/2),—m < z < 7.
In addition, denoting byq(.) the characteristic function of the s@t ¢ R, one can
represen(\, n) by

A\, n) = %(X(EO,OO)O\) + X(E(x,,oo)()‘))

1
*s ; (X(Ezj_l,oo)(k) + X(E2y,00) (A) — 2X (1 (n),oo)(k))
J

1 1
= SXE )W)+ 5D (X(Ezjvfl,uj(n»(k) - X(m(n),Ezjv)(A))

jeJ
+ X(Ew,00)(A) forae X e R. (6.10)
Evaluation of (5.6) shows
1
LOES (Eg FEL+ S (B + B — 21 (n)f)> (6.11)
jeJ
and in the special cage= 1
1
b(n) = 5 (Eo+ Boe + Y (Ezj-1+ By — 2115(n)))- (6.12)
jeJ

The formulas for = 1, 2 were first given in [2], Theorem 5.2.

Next, we want to address the problem of expressifig? as a function off; and
w;(n). This endeavor turns out to be impossible unless we introduce additional data.
This will be done first by defining

{i; )} e5 = i)} jes Uop(H®), JCN (6.13)
andEo = Fj, EOO =F,

Eyi 1 =sup(E € o(H)|E < fi;(n)}, Enj =inf{E € o(H)|fi;(n) < E}.
(6.14)
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A few remarks are in order:

Remark 6.1.(i) We note thatyj = sy implies Ezj 1 = Eoa, E2J = Ey, and
Ezj 1 < Ezj implies /z;(n) = pr(n) for somek € J. Indeed, |fE2j 1 < Ezj we
infer IImA—»pJ(n),AG(E2_7_1,E2_7)g(/\ n) = 0 and hence;(n) = px(n) for somek € J by
monotonicity ofg(., n) in spectral gaps. In other words, computing all previous formulas
with p;(n), E; replaced by.j(n), E; leaves them unchanged since the new factors drop
out.

(i) Our notation concernln@?j is imprecise since the list of numberﬁjl] ;.7 might, in
general depend om. Suppose for instance, thﬁ;(n) is also an elgenvalue df such
thathj 1= uj(n) EZJ Then the panEgj 1, Ezj shows up in the list corresponding
to  but not in the one correspondingot 1 since the eigenfunction fer;(n) cannot
vanish at two consecutive points.

Moreover, following [22], we introduce the numbers
Rj(n) = m ieg(fij(n) +ie,n)"t >0, (6.15)
€

and

51(n) = { I|m h(fi;(n) +ie, n) if R i(n)>0 (6.16)

2 if R;(n)=0 "

The actual value of ;(n) if Rj(n) = 0 is immaterial and is chosen in accordance with
[22]. The above limits exist ifi; € o(H°) (i.e., if }?j(n) > 0) andc;(n) is either=1
(depending on whether; is an eigenvalue ol .. ,,) orin (—1, +1) (if i; is an eigenvalue
of both H, ,, and hence also aff). For more details see [22].

The numbersf%j(n) can be evaluated using (6.9)

V() = Eov/[i;(n) — Eso\/fi;(n) — E2j—1y/fi;(n) — Eo;
I 4 7y () ()
R€INTY /Ty (0)— Bak—17/Fig (n)— Ear

If To; = pp = Eo = Ej_1 for somek (resp.u; = pur = Eop—1 = Ezj) the vanishing
factorsyi; — pu, in the denominator and;™— E»; (resp. 4y — Eoj 1) in the numerator
have to be omitted. In particular, we want to point out tRagn) depend ort;, 11, only.

In addition, we require that the singularly continuous spectrur®gf is empty
(the absolutely continuous spectrum being taken care of by the reflectionless condition).
Thenitis shown in[22] that the spectral ddtg, j € JU{0, co} plusy;(no),j € J plus
oj(no) ., j € J for one fixedno € Z are minimal and uniquely determingn)?, b(n).
(To be precise, the class of operators considered here is slightly larger than the one in
[22], however, the same proof applies.) Moreover, necessary and sufficient conditions
for given spectral data to be the spectral data of some Jacobi operator were derived. Here
we want to focus on the reconstructionagf)?, b(n) from given spectral data as above
and present aexplicit expression ofi(n)?, b(n) in terms of the spectral data.

Our point of departure will be the formulas (use (4.15) and (4.17))

1
a(n)®>m+(z,n) £ a(n — 1’m_(z,n) = Fz + b(n) — { gtz.m)

Rj(n) = . (6.17)

h(z,n)
9(z,n)

Zj+l

=_ i e (). (6.18)
§=0
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where the coefficients,. ;(n) are to be determined. Arguing similarly as for (1.4) one
obtains

cxo(n) = /R e (a(n)zdpm(x) +a(n — 1)2dp_,,,,(A)), (eNo, (6.19)

wheredp. ,()) are the spectral measuresiéi. ,, associated with the vectoy, 1.

The evaluation of this integral will now be done for the minus sign. Due to the
reflectionless condition, the integral over the (absolutely) continuous spectrum is zero
(there is no singularly continuous part by assumption) and it remains to evaluate the
pure point part. To do this it suffices to know the jumps of the measure which are given
by the residues of the corresponding Herglotz function. Evaluating the residues (using
(6.18) plus the notation from above) shows

c_u(n) = 5;(n)R;(n)ji;(n), ¢ € No. (6.20)
jeJ

Clearly it suffices to sum over ajl;Tn) € 0,(H>°) since for all other terms we have

o (TI\Zl)e;t?/\./e turn to the coefficients. ,(n). They can be determined from (cf. (5.5))
g(zl, n exp( - ; b(Zz(‘?)) (6.21)
which implies
cr,—2(n) =1,
1o .
cre-2() = 7D crrja(mpP(n), LEN. (6.22)

J=1

Thusc, ¢(n) are expressed in terms &5, 1 ;(n). Herecy, _»(n) andc, _1(n) have been
introduced for notational convenience only.
In particular, combining the cage= 0 with our previous results we obtain

an — 9)? = %;b‘”) * 2; &jén) R;(n). (6.23)
J

Similarly, forZ =1,

1 2bC)(n) — 3b(n)bA(n) + b(n)3
b(n+1)= o ( (n) (Tll)2 (n) +b(n)
+3 57”;") Ri(n)ji; (n)). (6.24)

jed
However, these formulas are only the tip of the iceberg. Combining
c,0(n) = a(n)Pma(n) £ a(n — 1Pm_ o(n) (6.25)

with some basic facts from the moment problem we obtain our main result:
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Theorem 6.2. Let H be a given bounded reflectionless Jacobi operator. Suppose the
singularly continuous spectrum é£5° is empty and the spectral data corresponding to
H (as above) are given for one fixade Z. Then the sequences$, b can be expressed
explicitly in terms of the spectral data as follows:

Cin(k+1)Cs n(k —1)

0\2 _
an £k — ) = o (k)2 , (6.26)
b(n L k)= gi"éll:)) - gi"gz — i)) . keN, (6.27)
whereC ,(0) =1, D+ ,(0) =0,
mi,o(n) mi,l(n) mi,k—l(n)
m:l:,l(n) mi,z(n) m:l:,k(n)
Cy n(k) = det : . _ : (6.28)
Mt o a(n) M () - Mt g o(n)
maxo(n) mea(n) - myp_o(n) mgpn)
maxa(n) mia(n) - mep_1(n) ma pea(n)
D (k) = det _ . . : , (6.29)

m:b,k.—l(n) mi;k(n) ..

M 2k —3(n) M 2 —1(n)

% The quantities(n)?, a(n — 1)?, andcy ¢(n) have to be
1

expressed in terms of the spectral data using (6.23), (6.22), (6.20) and (6.11).

andmiyg(n) =

Proof. It remains to show the expressions (6.26) and (6.27)fa) andb(n) in terms

of the momentsV/4. ((no), ¢ € N. Both can be found in [1] (first equation on p. 5).
However, the equation fé(n) here differs from the one in [1] since we have performed
the integration (see [38], Sect. 2.5 for details). [

In the special case of periodic Jacobi operators, the formula (6.23) was first given in
[7]. In addition, we get a discrete version of Borg’s theorem.

Corollary 6.3. Let H be a reflectionless Jacobi operator with spectrum consisting of
only one band, that is(H) = [Fo, Fs]. Then the sequenceg)?, b(n) are necessarily
constant

(Eoo - E‘O)2
16 ’

The special case whei# is periodic seems due to [12] (Proposition 2 on p. 451).
The formula forb(n) also follows directly from (5.12).

E0+E

a(n)? = b(n) = (6.30)

Remark 6.4.() If J is finite, that is,H has only finitely many spectral gaps, then
{ii(n)}je5 = {rj(n)};es and we can forget about the additiopes.

(ii) The reader might Wonder whether a similar procedure for one-dimensionabd-Schr
dinger operatorg{ = —d— + V(x) is possible. This is in fact the case but under more
restrictive conditions ofv (z). Without going into technical details we remark that in
the continuous case the asymptotic expansions of the Wefginctions contain the
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information of all derivatives oV at the base point. Hencelif is assumed real analytic

(e.g., finite gap) it can be expressed in terms of its derivatives using Taylor’s formula.

(i) Concerning general Jacobi operators we note that Theorem 4.4 indicate@§)at
751 (no), j = 1,2, ¢ € Nis solvable fora(n)?, b(n) as well.

Finally, we turn to general eigenvalues associated With Associated with each
spectral gap; we set

X (n) = sup(Ez; 1} U{\ € pjln®(\n) <O} €p;, jeJ  (631)
The strict monotonicity of/? (), n) with respect to\ € p;,j € Jo U {oc}, that is,
d _
NV On) = @)L (H = 07200, A€ py, (6.32)
then yields

YAn) <0, A€ (21, N (n)),

| € J. 6.33
V) >0, Ae (). By (633)

Sincey?(\, n) is positive (resp. negative) fai(n)3 > 0 (resp.a(n)f < 0) asA — oo
(resp.A — —o0), there must be an additional zex§, for A\ > E, (resp.A < Ej).
Summarizing£”(\, n) is given by

1 1
E7Om) = SXmom0 V) + 5 Z; (X169 = X 9P
Jje
+X(Eoo,>\§c)()‘)’ a(n)g >0 (6.34)

and

1 1
&0 = = 5Xuw 0N+ 5D (X(Ezj_l,xf(n»(/\) - X(Af(n),Ezj)(A))

jeJ
— X(/\é’c,Eo)o‘)’ a(n)s < 0. (6.35)
Thus we have fofs # 0, co,
e = M) 2= N

Pz, n) = (6.36)

Vz—EoVz— Ew o5 \/2— E2j1y/z — Eaj’
and we remark that the numbe\rjg(n) are related to the spectrum Hf® as follows:
0(H})) = 0eos(H) U L] (M)} 10001 (6.37)

Again we point out thaik? (n) is not necessarily an eigenvalue &f’ unIessAf (n) &
UESS(H)'
Evaluation of (5.6) shows
3,(£) — _ﬁ EZ+1+EZ+1 —2 B /+1
WO = 5 (B B - 20 0)
N (gt + B -2 (n)“l)) (6.38)
JjeJ
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and in the special cage= 0,

a(n) = (Eo $ B — 200+ (Byy_1+ By — 2A§’(n))) :

26+571) =y, (6.39)

7. Scattering Theory

One important class of Jacobi operators are periodic ones. In this section we want to
consider scattering theory with periodic background operators and apply the results of
Sect. 5. Even though this problem arises naturally if one considers an infinite harmonic
crystal (with/V atoms in the base cell) with impurities, not too many articles are available
on this problem (cf., e.g., [15, 28]). The case with constant background (i.e., only one
atom in the base cell) is treated, for instance in [9, 27]. For a comprehensive treatmentin
the case of Sclkdinger operators with fairly arbitrary backgrounds we refer the reader
to [23] and the references therein.

We first recall some basic facts from the theory of periodic operators (cf., e.g., [7],
Appendix B, [30, 32]). LetH,, be a Jacobi operator associated with periodic sequences
ap, 7 0, by, that is,

ap(n + N) = ap(n), bp(n + N) = by(n), (7.1)

for some fixedV € N. The spectrum off, is purely absolutely continuous and consists
of a finite number of gaps, that is,

N
o(H) = JEp2j-2,Bpaj-1], Epo<--- < Epan-1. (7.2)
=1

Moreover, Floguet theory implies the existence of solutiops.(z,.) of Tyu = zu,
z € C (1, the difference expression correspondingdp) satisfying

Up +(z,n+ N) = mi(z)upi(z, n) (7.3)
and hence
up,i(z7n) :pi(z7n) exp&th(z)n), pi(zan) :pi(z?n+N)7 (74)

wherem*(z) = exp@iq(z)N) € C are called Floquet multipliers angz) is called
Floquet momentumig®(z) is not related to the Weyth-function m(z, n)). m*(z)
satisfym™*(2)m~(2) = 1,m*(2)? = 1 forz € {Epvj}ii\g*l, |m*(2)| = 1forz € o(H,),
and|m*(z)| < 1forz € C\o(H,). (This says in particular, that, . (z, .) are bounded
for z € o(H,) and linearly independent for ¢ C\{E;}3X,".) Requiringm*(\) =
lim.jom®(\ +ig), A € o(H,) determinesn(z) uniquely.

We are going to investigate scattering theory for the pHirf{,), whereH is a
Jacobi operator satisfying

> In(a(n) — ap(m)| < 00, > n(b(n) — by(n))| < oo (7.5)
nez nez

By [37], Theorem 5.1 the requirement (7.5) implies that the essential spectriisof
equal toos(H)) and purely absolutely continuous. Moreover, the point spectrufh isf
finite and confined to the spectral gapsHf, that is,o,(H) C R\o(H,).
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As in the proof of [37], Theorem 5.1 one can use the sum equation

oo

u+(z,n) = ap(n — 1)up.i(z,n) F i ap(n — l)K(z,n, m)u(z,m), (7.6)
( - 1) m= 71,+l ( - 1)
where
Koy = = T )1 (m) = ) = ) ()

Wi (up,—(2), up,+(2))
sp(A,m,m+1) sp(A,m,m)

= 2202 Z(a(m) — ay(m)) + (b(m) — by(m))

ap(m +1) ap(m)
+ W(a(m —1)—a,(m — 1)) (7.7)
P

(Wp(., ..) denotes the Wronskian formed wiih rather thar) to show the existence of
solutionsu(z, .) of T7u = zu satisfying

im_exp@Eim(g(2))n)us(z,n) —up+(2,n)[ =0, z€C. (7.8)

Since we are most of the time interested in the cases(H,) we shall normalize
up +(A,0) = 1for\ € o(H,). In what follows we will freely use the notation and results
found in [7], Appendix B. In particular, note that we havg. (\) = u, =(\), where the
bar denotes complex conjugation. Since one computes

W (), T200) = Wyltpos O, 5 O0) = F oM -y gy

o4 N) (7.9)
(sp(A,n) is the solution ofr,u = zu corresponding to the initial conditios(, 0) = 0
sp(A, 1) = 1) we conclude thaty (A), u+ (X)) are linearly independent forin the interior
of o(H,) (if two bands collide a¥, numerator and denominator of (7.9) both approach
zero when\ — FE and have a nonzero limit). Hence we might set

us (A, n) = a(Nuz (1) + Be(Nuz (A1), X € o(Hy), (7.10)
where
W(uz(A), u£(N) _  sp(A, N)
W(uz(\),ux(N)  2ising(A\)N)
Wz, us() _ | s\ N)
W(us(\),ux(V) — 2isin@(\N)

a(A) =

W (u_ (), us(\)), (7.11)

Bi(z) = Wu=(\), us(V).  (7.12)

The functiona()) can be defined for al € C\{E, ;}. Note that we have

[a)I? = 1+|6:(V)|* and B () = —Fx(N). (7.13)

Using (7.6) one can also show

W (= (N), us (V) = W (up,— (V) s (W) + Y us (A, n) (7 — ) (W) (1)
nez ( 14)
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and

W (s (), ux(N) = F Y ur(\,n)(7 = 7)up £ (N))(n)- (7.15)
nez

We now define the scattering matrix

SO = ( fg((AA)) RT((S)) . Aeo(H,) (7.16)

of the pair @, H,), whereT'(\) = a(\)~tand R+ (\) = a(N) 14 ()). The matrixS(\)
is easily seen to be unitary since by (7.1BJ\)|? + |R+(\)|? = 1 andT(\)R+()\) =
~TR-(N).

The quantities/'(\) and R () are called transmission and reflection coefficients
respectively. The following equation further explains this notation:

TNup (A, ), n — 400

TNux(A,n) = { € o(H,y).
up,ﬂ:(A7 n) + R:F()\)UP,:F()\? n)7 n — +00 (717)

Clearly (6.4) impliesR.()\) = 0, explaining the ternmeflectionlessn the previous
section. The quantiti€5(\) and R ()\) can be expressed in termsraf.{z) = m4.(z, 0)
as follows

_ux(A0) 2ilm(m+ (X +1i0))
T = uz(\, 0) m_(\ +i0) +1m.(\ +i0)’
ux (X, 0) (A +i0) + mx (A +i0)
~ur (M, 0) A (A +i0) + g (A +i0)

(7.18)

Ry()) = Neo(H,).  (7.19)

In addition, one verifies
u_ (A, n)us(A\,n) _
W (u—(A), u+(N))

__sp(A,N)
= mw&&nﬂz(l*ﬁ?i()\)

Sp(/\7 N)
2isinG()N)
u:i:()‘v TZ)

u+ (A, n)

g(A+i0,n) =

T(\) u_ (A, n)us(A, n)

), X € o(H,). (7.20)

Construct the list £;)3X7** by taking all E,, ; plus two copies of each eigenvalue
of H. We can assumé&y < F; < Fy < -+ < Eoy < Eopg+1 and equality holds if
and only if E»; = E»;+1 is an eigenvalue off. Define the Dirichlet eigenvalugs;(n)
associated with each spectral gdf (i1, F»;+2) as in (6.5). Then we infer

M
1 1
§X 1) = Sx(E BN + 5 > (X(Ezjvfl,w(n))(A) - X(uj(n),EzJ-)(A))
j=1

1 A
+ X(Boo,00)(A) + —arg (1 + RAA)ZIE)\’Z;)XU(HP)(/\) (7.21)
since we have
£\ n) = % " % arg (1 +Ri()\)3i87 :3) € o(H,). (7.22)
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Hence we obtain from (5.6)

1 2M+1 M-1
Oy =3 > B = D )
=0 =1
£ / A-larg (1 + Ri(A)M)dA, (7.23)
m o(Hp) u:i:()‘a n)
and in the special cage= 1
1 2M+1 M-1
b =35> Bi= ) )
7=0 7=1
L1 / arg (1 F Ry ()T )dA. (7.24)
T Jo(m,) us (A, n)

The analog of (7.24) in the case of Sgétlinger operators with constant background and
no eigenvalues was first derived in [11]. The general case foild8etger operators can

be found in [21]. For further trace formulas in the constant background case, in particular
in connection with the Toda lattice, we refer the reader to [8, 16].

Remark 7.1.I1f R4 (\) = OthenH can be obtained frorf{,, by inserting the correspond-
ing number of eigenvalues using the double commutation method provided in [20] since
this transformation is easily seen to preserve the reflectionless property.

Acknowledgementl thank the referee for making several valuable suggestions.

A. Herglotz Functions

The results stated in this section can be found in [4] (see also [3]).

We setC.. = {z € C| £Im(z) > 0}. AfunctionF : C; — C, is called a Herglotz
function (sometimes also Pick or Nevanlinna—Pick function}; i§ analytic inC... For
convenience one usually definfsonC_ by F(z) = F ().

Herglotz functions can be characterized by

Theorem A.1. F'is a Herglotz function if and only if

(; A )dpl), zeC., (A1)

Fe=avoze [ (325 - iy

R

wherea = Re(F(i)) € R, b > 0, andp is a measure ofR which satisfiesz(l +
A2~ Ldp(\) < oo.

Let In(z) be defined such that Ia = In|z| +iarg(z), —7 < arg(z) < . Then Ing)
is holomorphic and Irﬁln(z)) > 0 for z € C.. Hence Ing) is a Herglotz function.

The sum of two Herglotz functions is again a Herglotz function, similarly the com-
position of two Herglotz functions is Herglotz. In particularFi{z) is a Herglotz func-

tion, the same holds for IfF(2)) and— ;. Thus, using the representation (A.1) for

In (F(z)), we get another representation f6¢z).
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Theorem A.2. (i) F'is a Herglotz function if and only if it has the representation

F(z) = exp{c+/]R (Tiz - 1%%) £0) d)\}, 1eCy, (A2

wherec = In|F(i)| € R, ¢ € LY(R, (1 + \?)~1d)\) real-valued and is not identi-
cally zero. Moreover,

€0 = % im Im(ln (F(\+ ie))) = % im arg(F(\ +i)) (A.3)

fora.e.d € R,and0 < £()\) < 1fora.e.A € R. Here—m < arg(F (A +ig)) <7
according to the definition dh(z).

(i) Fix n € Nand sett,(\) = £(\), £ (\) = 1— £(A). Then
/ A" (N)dA < oo (A.4)
R
if and only if
. Adp(A
/ A" dp(\) < oo and  lm £F(z) = +aF / a 2) >0. (A5)
R zZ—100 R l + )\
(iii) We have
dp(\ .
F(z)=+1+ / 4P jith / dp()) < o0 (A.6)
RA— 2 JR
if and only if
dX . 1
F) = iexp( + §i()\)/\—) with &4 € LY(R) (A7)
R —Z
(&+ from above). In this case
[ann= [ exovar (A8)
R R
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