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Abstract: Based on high energy expansions and Herglotz properties of Green and Weyl
m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In
addition, we consider connections with inverse spectral theory, in particular uniqueness
results. As an application we work out a new approach to the inverse spectral problem
of a class of reflectionless operators producing explicit formulas for the coefficients in
terms of minimal spectral data. Finally, trace formulas are applied to scattering theory
with periodic backgrounds.

1. Introduction

Trace formulas have a long history in the theory of one-dimensional second order equa-
tions. One case of particular importance are periodic potentials. Let

(Hf )(n) = a(n)f (n + 1) +a(n − 1)f (n − 1) + b(n)f (n), n ∈ Z (1.1)

be our Jacobi operator witha(n + N ) = a(n), b(n + N ) = b(n) for someN ∈ N. Then,
using Floquet theory (cf., e.g., [7], Appendix B, [30, 32]) one can show that the spectrum
σ(H) of H consists ofN bands (some of which might collide)

σ(H) =
N⋃
j=1

[E2j−2, E2j−1], E0 < E1 ≤ E2 · · · < E2N−1. (1.2)

Next, we consider finite matrices associated withH obtained by restrictingH to finite
intervals fromn0 to n0 +N and imposing boundary conditions at the endpoints. Denote
the matrix obtained with Dirichlet boundary conditions (i.e.,f (n0) = 0,f (n0 + N ) = 0)
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by H̃∞
n0

and the one obtained with periodic/anti periodic boundary conditions (i.e.,
f (n0) = ±f (n0 + N ), f (n0 + 1) = ±f (n0 + N + 1)) by H̃±

n0
. The eigenvalues of̃H+

n0
,

H̃−
n0

are precisely the even, odd band edgesE2j−2, E2j−1, 1 ≤ j ≤ N , respectively. The

eigenvalues of̃H∞
n are denoted byµj(n), 1 ≤ j ≤ N−1. Since tr(H̃±

n ) =
∑N−1

j=0 b(n+j)

and tr(H̃∞
n ) =

∑N−1
j=1 b(n + j) we infer fromb(n) = tr(H̃±

n − H̃∞
n ) = tr(H̃+

n + H̃−
n )/2−

trH̃∞
n by elementary linear algebra

b(n) =
1
2

2N−1∑
j=0

Ej −
N−1∑
j=1

µj(n). (1.3)

Similarly, considering tr((̃H+
n)` + (H̃−

n )`)/2 − tr(H̃∞
n )`, ` ∈ N one can obtain higher

order trace relations.
The corresponding formulas for` = 1 (i.e., (1.3)) and̀ = 2 were first given in [32].

Formula (1.3) plays a key role in the inverse spectral theory of periodic operators and
the reconstruction ofa, b from suitable spectral data. Those ingredients form the basis
for the solution of the periodic initial value problem of the Toda equations (cf., e.g.,
[7, 10, 39]). Moreover, relation (1.3) was extended to certain reflectionless operators in
[2] and successfully used in [2, 22] to solve inverse spectral problems for these operators.

To generalize trace formulas to arbitrary operators one invokes the measuredρδ of H
associated with the vectorδ ∈ `2(Z) (cf. Lemma 3.1) by the spectral theorem. Choosing,
e.g.,δ = δn (the standard basis of`2(Z)) we immediately obtain

〈δn, H`δn〉 =
∫

R
λ`dρδn

(λ), (1.4)

connecting the matrix elements〈δn, H`δn〉 with the moments of the measuredρδn
. In

the special case whereH has purely discrete spectrum, the integral can be evaluated,

〈δn, H`δn〉 =
∑

λ∈σ(H)

γ(λ, n, n)λ`, (1.5)

where−γ(λ, n, m) is the residue ofG(z, n, m) atz = λ ∈ σ(H), that is,

γ(λ, n, n) =
u(λ, n)u(λ, m)

‖u(λ)‖2
, λ ∈ σ(H), (1.6)

whereu(λ) is the eigenvector corresponding toλ ∈ σ(H). In particular, for̀ = 1 this
gives the interesting result that (forH with purely discrete spectrum)b(n) is equal to
the sum over all eigenvalues ofH weighted byγ(λ, n, n).

However, generalizations of (1.3) cannot be obtained in this way. This can be done
by using theexponential measureξdλ (cf. Appendix A) associated withdρ(λ) as was
discovered by F. Gesztesy and B. Simon in [17]. There they extended the analog of
(1.3) for Schr̈odinger operators to a much larger class of potentials (in essence, only
semiboundedness of the potential is needed) based on the theory of the Krein spectral
shift [29]. In a subsequent series of papers [18], [19, 21, 25], and [26] they, together
with H. Holden and Z. Zhao, exploit the ideas of [17] and extend them in various
directions. In [17] they also give a generalization of (1.3) to arbitrary bounded Jacobi
operators. However, a comprehensive treatment of trace formulas for Jacobi operators
is still missing. Since it is desirable, for further work in inverse spectral theory, to have
these powerful tools at one’s disposal, one goal of the present paper is to fill this gap.
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Furthermore, we want to point out an annoying mismatch in formula (1.3). In order to
expressb(n) for all n ∈ Z one needs{Ej}0≤j≤2N−1, {µj(n)}1≤j≤N for all n ∈ Z. On
the other hand, it is well-known that the spectral data{Ej}0≤j≤2N−1, {µj(n0)}1≤j≤N

plus some additional signs{σj(n0)}1≤j≤N for onefixed n0 ∈ Z already determine
a(n)2, b(n) for all n ∈ Z. Hence it must be, in principle, possible to expressa(n)2, b(n)
in terms of these spectral data for onen0 ∈ Z. This naturally raises the question whether
one might be able to find explicit expressions ofa(n)2, b(n) in terms of suitable minimal
spectral data for certain classes of operators. To the best of our knowledge a problem
of this kind has not been solved yet. Combining the approach of (1.4), the theory of
[17], Weyl–Titchmarsh theory, and the moment problem we will add a new wrinkle to
the theory of trace formulas and give a solution to this problem for a certain class of
bounded reflectionless Jacobi operators in Sect. 6.

To give the reader an overview of the results established, we briefly summarize the
content of the remaining sections.

Section 2 introduces all the necessary notation and is mainly added to make the paper
self-contained and easier to read.

Section 3 contains a comprehensive treatment of asymptotic expansions for Weylm
and Green functions. We establish that expansions for these objects always exist up to
arbitrary order. In addition, recursion relations for the expansion coefficients are derived.

Section 4 contains an alternate (recursive) approach to inverse spectral theory which
gives simple proofs for standard uniqueness theorems. Moreover, new uniqueness results
are established as well.

In Sect. 5 we derive infinite series of trace formulas for Jacobi operators in the spirit
of [17, 25]. The basic ingredients are the asymptotic expansions of Sect. 3 and Herglotz
properties of these objects. In particular, we extend (1.3) to

(i) arbitrary order̀ ∈ N,
(ii) arbitrary Jacobi operators, and
(iii) general boundary conditions.

Section 6 applies the results of Section 5 to the theory of reflectionless Jacobi op-
erators, producing formulas of type (1.3) plus an explicit expression of the coefficients
a2, b in terms of minimal spectral data.

Section 7 considers scattering theory with periodic backgrounds. Basic objects like
transmission and reflection coefficients are introduced. In addition, the analog of a trace
formula for Schr̈odinger operators involving the reflection coefficient is obtained.

Finally, an appendix collects some properties of Herglotz functions needed in the
main body of the paper.

2. Jacobi Operators, Resolvents, Green’s Functions and All That

Throughout this paper we denote by`(I) = `(M, N ), I = {n ∈ Z|M < n < N},
M, N ∈ Z ∪ {±∞} the set of complex-valued sequences{u(n)}n∈I and by`p(I),
1 ≤ p ≤ ∞ the sequencesu ∈ `(I) such that|u|p is summable overI. The scalar
product in the Hilbert spacè2(I) will be denoted by

〈u, v〉 =
∑
n∈I

u(n)v(n), u, v ∈ `2(I). (2.1)

We will be concerned with operators on`2(Z) associated with the difference expres-
sion
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(τf )(n) = a(n)f (n + 1) +a(n − 1)f (n − 1) + b(n)f (n), (2.2)

wherea, b ∈ `(Z) satisfy

Hypothesis 2.1.Suppose

a(n) ∈ R\{0}, b(n) ∈ R, n ∈ Z. (2.3)

If τ is limit point (l.p.) at both±∞ (cf., e.g., [5, 6]), thenτ gives rise to a unique
self-adjoint operatorH when defined maximally. Otherwise, we need to fix a boundary
condition at each endpoint whereτ is limit circle (l.c.) (cf., e.g., [5, 6]). Throughout
this paper we denote byu±(z, .), z ∈ C, nontrivial solutions ofτu = zu which satisfy
the boundary condition at±∞ (if any) with u±(z, .) ∈ `2

±(Z), respectively. Herè2
±(Z)

denotes the sequences in`(Z) being`2 near±∞. The solutionu±(z, .) might not exist
for z ∈ R (cf. [37], Lemma A.1), but if it exists it is unique up to a constant multiple.

Picking a fixedz0 ∈ C\R we can characterizeH by

H : D(H) → `2(Z)
f 7→ τf

, (2.4)

where the domain ofH is explicitly given by

D(H) = {f ∈ `2(Z)| τf ∈ `2(Z), limn→+∞ Wn(u+(z0), f ) = 0,
limn→−∞ Wn(u−(z0), f ) = 0}

(2.5)

and

Wn(f, g) = a(n)
(
f (n)g(n + 1)− f (n + 1)g(n)

)
(2.6)

denotes the (modified) Wronskian. The boundary condition at±∞ imposes no additional
restriction onf if τ is l.p. at±∞ and can hence be omitted in this case.

Next, consider the sequence

δβ
n0

= cos(α)δn0 + sin(α)δn0+1, β = cot(α), α ∈ [0, π), (2.7)

whereδn0(n) is 1 forn = n0 and 0 otherwise. RestrictH to the orthogonal complement
of δβ

n0
in `2(Z) and denote this restriction byHβ

n0
, that is,

Hβ
n0

f = τf, f ∈ D(Hβ
n0

) = {f ∈ D(H)|〈δβ
n0

, f〉 = 0}. (2.8)

ClearlyHβ
n0

is self-adjoint on the subspace{f ∈ `2(Z)|〈δβ
n0

, f〉 = 0} but not on`2(Z)
sinceD(Hβ

n0
) is not dense. Now we turn to resolvents and introduce the Green’s function

G(z, m, n) = 〈δm, (H − z)−1δn〉
=

1
W (u−(z), u+(z))

{
u+(z, n)u−(z, m) for m ≤ n
u+(z, m)u−(z, n) for n ≤ m

, (2.9)

wherez ∈ C\σ(H) andσ(H) denotes the spectrum ofH. For later use we also introduce
the convenient abbreviations
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g(z, n) = G(z, n, n) =
u+(z, n)u−(z, n)
W (u−(z), u+(z))

, (2.10)

h(z, n) = 2a(n)G(z, n, n + 1)− 1

=
a(n)(u+(z, n)u−(z, n + 1) +u+(z, n)u−(z, n + 1))

W (u−(z), u+(z))
. (2.11)

Similarly, the corresponding object forHβ
n0

(viewed as a self-adjoint operator on
{f ∈ `2(Z)|〈δβ

n0
, f〉 = 0}) reads

Gβ
n0

(z, m, n) = 〈δm, (Hβ
n0

− z)−1δn〉 = G(z, m, n) + γβ(z, n0)−1 ×(
G(z, m, n0 + 1) +βG(z, m, n0)

)(
G(z, n0 + 1, n) + βG(z, n, n0)

)
, (2.12)

where

γβ(z, n) =

(
u+(z, n + 1) +βu+(z, n)

)(
u−(z, n + 1) +βu−(z, n)

)
W (u−(z), u+(z))

= g(z, n + 1) +
β

a(n)
h(z, n) + β2g(z, n). (2.13)

The quantitiesg(z, n) andγβ(z, n) are most important for our purpose and satisfy the
following recurrence equations which can be verified by tedious but straightforward
calculations. We use the shortcuts (f−)(n) = f (n − 1), (f+)(n) = f (n + 1), (f++)(n) =
f (n + 2), etc.

Lemma 2.2. Letu, v be two solutions ofτu = zu. Theng(n) = u(n)v(n) satisfies

(a+)2g++ − a2g

z − b+
+

a2g+ − (a−)2g−

z − b
= (z − b+)g+ − (z − b)g, (2.14)

and (
a2g+ − (a−)2g− + (z − b)2g

)2
= (z − b)2

(
W (u, v)2 + 4a2gg+

)
. (2.15)

Moreover, setγβ(n) = (u(n + 1) +βu(n))(v(n + 1) +βv(n)), then we have(
(a+A−)2(γβ)+ − (a−A)2(γβ)− + B2γβ

)2

= (A−B)2
(

(
A

a
W (u, v))2 + 4(a+)2γβ(γβ)+

)
, (2.16)

with

A = a + β(z − b+) + β2a+, (2.17)

B = a−(z − b+) + β((z − b+)(z − b) + a+a− − a2)

+ β2a+(z − b). (2.18)

Remark 2.3.Equations (2.14) and (2.15) are the analogs of well-known differential
equations for the diagonal Green function of one-dimensional Schrödinger operators
(cf., e.g., [14, 24], Eqs. (5.19) and (5.20)). Equation (2.16) is the analog of Eq. (5.18) in
[24].
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Finally, we turn to half line restrictionsH±,n0 of H defined by

H±,n0 : D(H±,n0) → `2(n0, ±∞)
f 7→ τf

, (2.19)

and

D(H±,n0) = {f ∈ `2(n0, ±∞)|τf ∈ `2(n0, ±∞), lim
n→±∞ Wn(u±(z0), f ) = 0},

(2.20)

where we setf (n0) = 0 in the definition of (τf )(n0 ± 1). The corresponding Green
functions read

G±,n0(z, m, n) =
±1

W (s(z), u±(z))


s(z, n, n0)u±(z, m) for m

≥
≤n

s(z, m, n0)u±(z, n) for n
≥
≤m

,
(2.21)

wheres(z, ., n0) is the solution ofτu = zu satisfying the Dirichlet boundary condition
s(z, n0, n0) = 0. The analogous quantities ofg(z, n) are the Weylm-functions

m±(z, n) = 〈δn±1, (H±,n − z)−1δn±1〉 = G±,n(z, n ± 1, n ± 1)

= − u±(z, n ± 1)

a(n − 0
1)u±(z, n)

, (2.22)

which satisfy

a(n − 0
1)2m±(z, n) +

1
m±(z, n ∓ 1)

= b(n) − z. (2.23)

Remark 2.4.We can also consider half line operatorsHβ
±,n0

on `2(n0, ±∞) associated
with the general boundary condition

f (n0 + 1) +βf (n0) = 0, β ∈ R ∪ {∞} (2.24)

atn0 rather than only the Dirichlet boundary conditionf (n0) = 0. We set

H0
+,n0

= H+,n0+1, Hβ
+,n0

= H+,n0 − a(n0)β−1〈δn0+1, .〉δn0+1, β 6= 0, (2.25)

and

H∞
−,n0

= H−,n0, Hβ
−,n0

= H−,n0+1 − a(n0)β〈δn0, .〉δn0, β 6= ∞, (2.26)

implying Hβ
n0

∼= Hβ
−,n0

⊕ Hβ
+,n0.
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3. Asymptotic Expansions

In the sequel, asymptotic expansions forg(z, n) = G(z, n, n) andγβ(z, n) will turn out
to be very useful. Both quantities are Herglotz functions as can be seen from

g(z, n) = 〈δn, (H − z)−1δn〉, (3.1)

γβ(z, n) = (1 +β2)〈δβ
n, (H − z)−1δβ

n〉 − β

a(n)
(3.2)

(we note that, by (2.13),h(z, n) is the difference of two Herglotz functions) and the
following lemma which is immediate from the spectral theorem.

Lemma 3.1. Supposeδ ∈ `2(Z) with ‖δ‖ = 1. Then

g(z) = 〈δ, (H − z)−1δ〉 (3.3)

is Herglotz, that is,

g(z) =
∫

R

1
λ − z

dρδ(λ), (3.4)

wheredρδ(λ) = d〈δ, P(−∞,λ] (H)δ〉 is the spectral measure ofH associated to the
sequenceδ. Moreover,

Im(g(z)) = Im(z)‖(H − z)−1δ‖2 (3.5)

and

g(z) = g(z), |g(z)| ≤ ‖(H − z)−1‖ ≤ 1
|Im(z)| . (3.6)

Next, we turn to asymptotic expansions forg(z, n), h(z, n), andγβ(z, n).

Theorem 3.2. The quantitiesg(z, n), h(z, n), andγβ(z, n) have the following asymp-
totic expansions for arbitraryε > 0

g(z, n) �
|z|→∞

|Im(z)|≥ε

−
∞∑
j=0

gj(n)
zj+1

, g0 = 1, (3.7)

h(z, n) �
|z|→∞

|Im(z)|≥ε

−1 −
∞∑
j=0

hj(n)
zj+1

, h0 = 0, (3.8)

γβ(z, n) �
|z|→∞

|Im(z)|≥ε

− β

a(n)
−

∞∑
j=0

γβ
j (n)

zj+1
, γβ

0 = 1 +β2. (3.9)

Moreover, the coefficients are given by

gj(n) = 〈δn, Hjδn〉, j ∈ N0, (3.10)

hj(n) = 2a(n)〈δn+1, H
jδn〉, j ∈ N0, (3.11)

γβ
j (n) = 〈(δn+1 + βδn), Hj(δn+1 + βδn)〉

= gj(n + 1) +
β

a(n)
hj(n) + β2gj(n), j ∈ N0. (3.12)
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Proof. We only carry out the proof forg(z, n) since the remaining expansions are similar.
Rewritingg(z, n) as

g(z, n) = 〈δn, (H − z)−1δn〉

= −
N−1∑
j=0

〈δn, Hjδn〉
zj+1

+
1

zN
〈δn, HN (H − z)−1δn〉, N ∈ N (3.13)

shows that it suffices to vindicate that the last term isO(z−N ). This follows from

|〈δn, HN (H − z)−1δn〉| ≤ ‖HNδn‖
|Im(z)| ≤ ‖HNδn‖

ε
. � (3.14)

Remark 3.3.(i) If H is bounded, the above expansions are in fact Laurent series con-
verging for|z| > ‖H‖.

(ii) Pick ε(n) ∈ {−1, +1} and introduceaε(n) = ε(n)a(n) and bε(n) = b(n). Then
the operatorHε associated withaε, bε is unitarily equivalent toH. Indeed, take
the unitary operatorUε = {ε̃(n) δm,n}m,n∈Z, whereε(n + 1)ε̃(n) = ε(n), then
Hε = UεHU−1

ε . In particular, this shows thatg(n), h(n) do not depend on the sign
of a, that is, they only depend ona2.

The following lemma ([7], Lemma 2.1) shows how to computegj , hj recursively.

Lemma 3.4. The coefficientsgj(n) andhj(n) for j ∈ N0 satisfy the following recursion
relation;

gj+1 =
hj + h−

j

2
+ bgj , (3.15)

hj+1 − h−
j+1 = 2

(
a2g+

j − (a−)2g−
j

)
+ b
(
hj − h−

j

)
. (3.16)

Proof. The first equation follows from

gj+1(n) = 〈Hδn, Hjδn〉 =
hj(n) + hj(n − 1)

2
+ b(n)gj(n). (3.17)

Similarly,

hj+1(n) = b(n)hj(n) + 2a(n)2gj(n + 1) + 2a(n − 1)a(n)〈δn+1, H
jδn−1〉

= b(n + 1)hj(n) + 2a2gj(n) + 2a(n)a(n + 1)〈δn+2, H
jδn〉. (3.18)

Eliminating〈δn+1, H
jδn−1〉 completes the proof. �

This system does not determinegj(n), hj(n) uniquely since it requires solving a
first-order recurrence relation at each step, producing an unknown summation constant
each time. To determine these constants we assign the weight one toa(n) and b(n),
n ∈ Z. Thengj+1(n) andhj(n) have weightj + 1, fixing the summation constants.

To avoid this drawback we advocate a different approach using (2.15). First observe
thathj(n) can be determined ifgj(n) is known using

hj+1 = bhj + gj+2 − 2bgj+1 + a2g+
j − (a−)2g−

j + b2gj , j ∈ N0, (3.19)

which follows after inserting (3.15) into (3.16). In addition, inserting the expansion (3.7)
for g(z, n) into (2.15) and comparing coefficients ofzj one infers



Trace Formulas for Jacobi Operators 183

g0 = 1, g1 = b, g2 = a2 + (a−)2 + b2,

g3 = a2(b+ + 2b) + (a−)2(2b + b−) + b3, (3.20)

and

gj+1 = 2bgj − a2g+
j−1 + (a−)2g−

j−1 − b2gj−1 − 1
2

j−1∑
`=0

kj−`−1k`

+ 2a2
( j−1∑

`=0

gj−`−1g
+
` − 2b

j−2∑
`=0

gj−`−2g
+
` + b2

j−3∑
`=0

gj−`−3g
+
`

)
, (3.21)

for j ≥ 3, wherek0(n) = −b(n) and

kj = a2g+
j−1 − (a−)2g−

j−1 + b2gj−1 − 2bgj + gj+1, j ∈ N. (3.22)

Analogously, one can get a recurrence relation forγβ
j using (2.16). Since this ap-

proach gets too cumbersome we omit further details at this point but note thatγβ
j can

be computed from (3.12). Invoking (3.19) one explicitly obtains

h0 = 0, h1 = 2a2, h2 = 2a2(b+ + b) (3.23)

and hence

γβ
0 = 1 +β2, γβ

1 = b+ + 2aβ + bβ2,

γβ
2 = (a+)2 + a2 + (b+)2 + 2a(b+ + b)β + (a2 + (a−)2 + b2)β2. (3.24)

Remark 3.5.Instead of (3.19) and (3.21) one can also use (3.15) and

hj+1 = 2a2
j∑

`=0

gj−`g
+
` − 1

2

j∑
`=0

hj−`h`, j ∈ N, (3.25)

together with (3.15) to determinegj , hj . The above equation follows as before using
(4.6) below.

Next we turn to Weylm-functions. As before we obtain

Lemma 3.6. The quantitiesm±(z, n) have the asymptotic expansions

m±(z, n) �
|z|→∞

|Im(z)|≥ε

−
∞∑
j=0

m±,j(n)
zj+1

, m±,0(n) = 1. (3.26)

The coefficientsm±,j(n) are given by

m±,j(n) = 〈δn±1, (H±,n)jδn±1〉, j ∈ N (3.27)

and satisfy

m±,0 = 1, m±,1 = b±,

m±,j+1 = b±m±,j +
(a+)2

(a−−)2

j−1∑
`=0

m±,j−`−1m
+
±,`, j ∈ N. (3.28)

Remark 3.7.As in Remark 3.3 we have that (3.26) converges for|z| > ‖H±,n‖ if H±,n

is bounded andm±(z, n) depend only ona2.
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4. Inverse Spectral Theory

In this section we present a simple recursive method of reconstructing the sequences
a2, b when the Weyl matrix

M (z, n) =

(
G(z, n, n) G(z, n + 1, n)

G(z, n, n + 1) G(z, n + 1, n + 1)

)
− 1

2a(n)

(
0 1
1 0

)
=

(
g(z, n) h(z,n)

2a(n)
h(z,n)
2a(n) g(z, n + 1)

)
, z ∈ C\σ(H) (4.1)

is known for one fixedn ∈ Z. As a consequence, we are led to several uniqueness
results.

From the previous section we know

g(z, n) = −1
z

− b(n)
z2

+ O(
1
z3

), (4.2)

h(z, n) = −1 − 2a(n)2

z2
+ O(

1
z3

). (4.3)

Here and in the remainder of this paper allO( 1
z` ) terms apply for|z| → ∞, |Im(z)| ≥

ε > 0. Hence

b(n) = − lim
z→i∞

z(1 + zg(z, n)), (4.4)

a(n)2 = −1
2

lim
z→i∞

z2(1 +h(z, n)). (4.5)

Moreover, we have the useful identities (use (2.10) and (2.11))

4a(n)2g(z, n)g(z, n + 1) = h(z, n)2 − 1 (4.6)

and

h(z, n + 1) +h(z, n) = 2(z − b(n + 1))g(z, n + 1), (4.7)

which show thatg(z, n) andh(z, n) together witha(n)2 andb(n) can be determined
recursively if, say,g(z, n0) andh(z, n0) are given.

In addition, we infer thata(n)2, g(z, n), g(z, n+ 1) determineh(z, n) up to one sign,

h(z, n) =
(

1 + 4a(n)2g(z, n)g(z, n + 1)
)1/2

(4.8)

sinceh(z, n) is holomorphic with respect toz ∈ C\σ(H) andh(z, n) = h(z, n). How-
ever, this sign can be determined from the asymptotic behaviorh(z, n) = −1 +O(z−2).

Hence we have reproved the well-known result thatM (z, n0) determines the se-
quencesa2, b. In fact, we have proved the slightly stronger result:

Theorem 4.1. One of the following set of data
(i) g(., n0) andh(., n0)
(ii) g(., n0 + 1) andh(., n0)
(iii) g(., n0), g(., n0 + 1), and a(n0)2 for one fixedn0 ∈ Z uniquely determines the

sequencesa2 andb.
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Remark 4.2.(i) We want to emphasize that the diagonal elementsg(z, n0) andg(z, n0+1)
alone plusa(n0)2 are sufficient to reconstructa(n)2, b(n). This is in contradistinction to
the case of one-dimensional Schrödinger operators, where the diagonal elements of the
Weyl matrix determine the potential only up to reflection. It is not clear to me whether
this different behavior of Jacobi operators has been previously noted in the literature.

The reader might wonder how the Weyl matrix of the operatorHR associated with
the (atn0) reflected coefficientsaR, bR (i.e., aR(n0 − k − 1) = a(n0 + k), bR(n0 −
k) = b(n0 + k), k ∈ Z) look like. Since reflection atn0 exchangesm±(z, n0) (i.e.,
mR,±(z, n0) = m∓(z, n0)) we infer

gR(z, n0) = g(z, n0), (4.9)

hR(z, n0) = −h(z, n0) + 2(z − b(n0))g(z, n0), (4.10)

gR(z, n0 + 1) =
a(n0)2

a(n0 − 1)2
g(z, n0 + 1) +

z − b(n0)
a(n0 − 1)2

(
h(z, n0)

+ (z − b(n0))g(z, n0)
)
, (4.11)

in obvious notation.
(ii) Remark 3.3(ii) shows that the sign ofa(n) cannot be determined from eitherg(z, n0),
h(z, n0), or g(z, n0 + 1).
(iii) Clearly, if H is l.c. at±∞ the corresponding boundary condition is determined by
M (z, n) as well.
(iv). Equation (4.6) is equivalent to detM (z, n) = −1/(2a(n))2. The analogous equation
for the Schr̈odinger case was first used by Rofe–Beketov in connection with inverse
problems (see [31], Sect. 7.3).

The off diagonal Green function can be recovered as follows

G(z, n, n + k) = g(z, n)
n+k−1∏

j=n

1 +h(z, j)
2a(j)g(z, j)

, k > 0, (4.12)

and we remark

a(n)2g(z, n + 1)− a(n − 1)2g(z, n − 1) + (z − b(n))2g(z, n)

= (z − b(n))h(z, n). (4.13)

A similar procedure works forH+. The asymptotic expansion

m+(z, n) = −1
z

− b(n + 1)
z2

− a(n + 1)2 + b(n + 1)2

z3
+ O(z−4) (4.14)

shows thata(n + 1)2, b(n + 1) can be recovered fromm+(z, n). In addition, (2.23)
shows thatm+(z, n0) determinesa(n)2, b(n), m+(z, n), n > n0. Similarly, (by re-
flection) m−(z, n0) determinesa(n − 1)2, b(n), m−(z, n − 1), n < n0. Hence both
m±(z, n0) determinea(n)2, b(n) except fora(n0 − 1)2, a(n0)2, b(n0). However, intro-
ducingm̃±(z, n) = ∓u±(z, n + 1)/(a(n)u±(z, n)) and considering

m̃+(z, n) = m+(z, n), m̃−(z, n) =
z − b(n) + a(n − 1)−2m−(z, n)

a(n)2
(4.15)

we see that ˜m−(z, n0) determinesa(n0−1)2, a(n0)2, b(n0) andm−(z, n0). Summarizing:
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Theorem 4.3. The quantitiesm̃±(z, n0) uniquely determinea(n)2, b(n) for all n ∈ Z.
Moreover, we have

g(z, n) =
−a(n)−2

m̃+(z, n) + m̃−(z, n)
, g(z, n + 1) =

m̃+(z, n)m̃−(z, n)
m̃+(z, n) + m̃−(z, n)

,

h(z, n) =
m̃+(z, n) − m̃−(z, n)
m̃+(z, n) + m̃−(z, n)

, (4.16)

and conversely

m̃±(z, n) =
1 ± h(z, n)

2a(n)2g(z, n)
= −2g(z, n + 1)

1 ∓ h(z, n)
. (4.17)

Next we recall the functionγβ(z, n) introduced in (2.13) with asymptotic expansion

γβ(z, n) = − β

a(n)
− 1 +β2

z
− b(n + 1) + 2βa(n) + β2b(n)

z2
+ O(

1
z3

). (4.18)

Our goal is to prove

Theorem 4.4. Letβ1,2 ∈ R ∪ {∞} with β1 6= β2 be given. Thenγβj (., n0), j = 1, 2 for
one fixedn0 ∈ Z uniquely determinesa(n)2, b(n) for all n ∈ Z (setγ∞(z, n) = g(z, n))
unless(β1, β2) = (0, ∞), (∞, 0). In the latter casea(n0)2 is needed in addition. More
explicitly, we have

g(z, n) =
γβ1(z, n) + γβ2(z, n) + 2R(z)

(β2 − β1)2
, (4.19)

g(z, n + 1) =
β2

2γ
β1(z, n) + β2

1γ
β2(z, n) + 2β1β2R(z)

(β2 − β1)2
, (4.20)

h(z, n) =
β2γ

β1(z, n) + β1γ
β2(z, n) + (β1 + β2)R(z)

(−2a(n))−1(β2 − β1)2
, (4.21)

whereR(z) is the branch of

R(z) =

(
(β2 − β1)2

4a(n)2
+ γβ1(z, n)γβ2(z, n)

)1/2

=
β1 + β2

2a(n)
+ O(

1
z

), (4.22)

which is holomorphic forz ∈ C\R and has asymptotic behavior as indicated. If one
of the numbersβ1,2 equals∞, one has to replace all formulas by their limit using
g(z, n) = lim

β→∞
β−2γβ(z, n).

Proof. Clearly, if (β1, β2) 6= (0, ∞), (∞, 0) we can determinea(n) from (4.18). Hence
by Theorem 4.1 it suffices to show (4.19) – (4.21). Since (4.19) follows from (4.6) and
the other two, it remains to establish (4.20) and (4.21). This will follow if we prove that
the system

(g+)2 + 2
βj

2a(n)
hg+ +

β2
j

4a(n)2
(h2 − 1) = g+γβj (z, n), j = 1, 2 (4.23)

has a unique solution (g+, h) = (g(z, n + 1), h(z, n)) for |z| large enough,|Im(z)| ≥ ε,
which is holomorphic with respect toz and satisfies the asymptotic requirements from
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above. We first consider the caseβj 6= 0, ∞. Changing to new variables (x1, x2), xj =
(2a(n)/βj)g+ + h, our system reads

x2
j − 1 =

β1β2

β2
j

2a(n)γβj (z, n)
β2 − β1

(x1 − x2), j = 1, 2. (4.24)

Picking |z| large enough we can assumeγβj (z, n) 6= 0 and the solution set of the new
system is given by the intersection of two parabolas. In particular, (4.23) has at most four
solutions. Two of them are clearlyg+ = 0, h = ±1. But they do not have the correct
asymptotic behavior and hence are of no interest to us. The remaining two solutions are
given by (4.20) and (4.21) with the branch ofR(z) arbitrarily. However, we only get
correct asymptotics (g+ = −z−1 + O(z−2) resp.h = −1 +O(z−2)) if we fix the branch
as in (4.22). This shows thatg(z, n + 1), h(z, n) can be reconstructed fromγβj , j = 1, 2
and we are done. The remaining cases can be treated similarly.�
Corollary 4.5. SupposeH has purely discrete spectrum. Thena(n0), σ(H) plus βj ,

σ(Hβj
n0 ), j = 1, 2 for two valuesβ1 6= β2 uniquely determine the coefficientsa(n)2, b(n)

(and the boundary condition at±∞ if any).

Proof. SinceH has purely discrete spectrum the same is true forHβ
n0

. Henceγβ(z, n0)
is meromorphic with poles at the eigenvalues ofH and zeros at the eigenvalues ofHβ

n0

following from (2.13) (if eigenvalues ofH andHβ
n0

coincide we have a double zero
in the numerator of (2.13) and a single zero in the denominator). Thus we know when
γβ(z, n0) changes sign implying that we know the exponential Herglotz measure of
γβ(z, n0) (cf. (A.2)). The remaining constantc in (A.2) follows from the asymptotic
behavior (see also (5.19)). Hence we can reconstructγβ(z, n0) from a(n0), σ(H) andβ,
σ(Hβ

n0
) completing the proof. �

Finally, let us turn to half line operatorsHβ
+ = Hβ

+,0 (cf. Remark 2.4). Since the
dependence onea(0) can be removed by scalingβ, we assume without restrictiona(0) =
1 for the remainder of this section. We will now prove the following generalization of a
result by Fu and Hochstadt [13] (where the special caseβ1 = 0, β2 = ∞ is proved under
somewhat more restrictive conditions).

Theorem 4.6. Suppose the spectrum ofHβ
+ is purely discrete for oneβ ∈ R∪{∞} (and

hence for allβ) and letβj , j = 1, 2 be two different values which have opposite signs

if 0 < |βj | < ∞. Thenβj plus σ(Hβj
+ ), j = 1, 2 uniquely determine the coefficients

a(n)2, b(n) (and the boundary condition at+∞ if any).

Proof. Without restriction we supposeβ2 6= 0 andβ1 6= ∞. Then

F (z) = −β2(m+(z) − β1)
m+(z) − β2

=
−1

1
β2

− 1
m+(z)

+
β1β2

m+(z) − β2
(4.25)

is a meromorphic Herglotz function sincem+(z) = m+(z, 0) is. Moreover, sincem+(z) =
u+(z,1)
u+(z,0) (whereu+(z, 0) has to be defined as−a(1)u+(z, 2) + (z − b(1))u(z, 1); recall our
conventiona(0) = 1), we infer that the zeros ofM (z) are given by the eigenvalues of
Hβ1

+ and the poles by the eigenvalues ofHβ2
+ . Thus we know the exponential Herglotz

measureξ(λ) of F (z) (cf. (A.2)). The remaining constantc in (A.2) can be determined
from the asymptotic behaviorF (z) = −β1 − (1 − β1β

−1
2 )z−1 + O(z−2). ThusF (z) is

known and solvingF (z) for m+(z) finishes the proof. �



188 G. Teschl

5. General Trace Formulas andξ Functions

In this section we will investigate trace formulas for Jacobi operatorsH. We will essen-
tially follow the philosophy of [17, 25] and use the exponential Herglotz representation
(A.2) rather than (A.1). This will produce generalizations of the formula (1.3).

To avoid the Abelian limits of [17] we will first consider the case whereH (and thus
a, b) is bounded. We abbreviate

E0 = inf σ(H), E∞ = supσ(H), (5.1)

and note thatG(λ, n, n) > 0 for λ < E0, which follows from (H − λ) > 0 (implying
(H − λ)−1 > 0). Similarly,G(λ, n, n) < 0 for λ > E∞, following from (H − λ) < 0.
Our main tool will be the following exponential representation of the Herglotz function
g(z, n) = G(z, n, n) (cf. Theorem A.2)

g(z, n) = |g(i, n)| exp

(∫
R

( 1
λ − z

− λ

1 +λ2

)
ξ(λ, n)dλ

)
, z ∈ C\σ(H), (5.2)

where theξ functionξ(λ, n) is defined by

ξ(λ, n) =
1
π

lim
ε↓0

argg(λ + iε, n), arg(.) ∈ (−π, π]. (5.3)

In addition,ξ(λ, n) (which is only defined a.e.) satisfies 0≤ ξ(λ, n) ≤ 1,∫
R

ξ(λ, n)
1 +λ2

dλ = argg(i, n), andξ(λ, n) =

{
0 for z < E0
1 for z > E∞

. (5.4)

Using (5.4) together with the asymptotic behavior ofg(., n) we infer

g(z, n) =
1

E∞ − z
exp

(∫ E∞

E0

ξ(λ, n)dλ

λ − z

)
. (5.5)

Theorem 5.1. SupposeH is bounded and letξ(λ, n) be defined as above. Then we have
the following trace formula:

b(`)(n) = E`
∞ − `

∫ E∞

E0

λ`−1ξ(λ, n)dλ, (5.6)

where

b(1)(n) = b(n),

b(`)(n) = ` g`(n) −
`−1∑
j=1

g`−j(n)b(j)(n), ` > 1. (5.7)

Proof. The claim follows after expanding both sides of

ln
(

(E∞ − z)g(z, n)
)

=
∫ E∞

E0

ξ(λ, n)dλ

λ − z
(5.8)

and comparing coefficients using the following connections between the series ofg(z)
and ln(1 +g(z)) (cf., e.g., [33]). Letg(z) have the asymptotic expansion
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g(z) =
∞∑
`=1

g`

z`
(5.9)

asz → ∞. Then we have

ln(1 + g(z)) =
∞∑
`=1

c`

z`
, (5.10)

where

c1 = g1, c` = g` −
`−1∑
j=1

j

`
g`−jcj , ` ≥ 2. � (5.11)

We remark that the special case` = 1 of Eq. (5.6)

b(n) = E∞ −
∫ E∞

E0

ξ(λ, n)dλ =
E0 + E∞

2
+

1
2

∫ E∞

E0

(1 − 2ξ(λ, n))dλ (5.12)

has first been given in [17].
Next we turn to unbounded operators. In order to avoid Abelian limits here as well,

we resort to a little trick. This will also show how our investigations tie in with the theory
of Krein [29] and rank one perturbations (see also [17], Appendix A, [19, 34]). Consider

Hn,θ = H + θ〈δn, .〉δn, θ ≥ 0. (5.13)

Then, as in [17], Appendix A, one computes

tr
(

(H − z)−1 − (Hn,θ − z)−1
)

=
d

dz
ln(1 + θg(z, n)) =

∫
R

ξθ(λ, n)
(λ − z)2

dλ, (5.14)

where

1 + θg(z, n) = exp
(∫

R

ξθ(λ, n)
λ − z

dλ
)
, ξθ(λ, n) =

1
π

lim
ε↓0

arg
(

1 + θg(λ + iε, n)
)
.

(5.15)

By Theorem A.2 (iii) all moments ofξθ(λ, n)dλ are finite and
∫

R ξθ(λ, n)dλ = θ.
Taking logarithms in (5.15) and expanding yields as before

Theorem 5.2. Let ξθ(λ, n) be defined as above. Then we have

b(`)
θ (n) = (` + 1)

∫
R

λ`ξθ(λ, n)dλ, (5.16)

with

b(0)
θ (n) = θ, b(`)

θ (n) = θ(` + 1)g`(n) + θ
∑̀
j=1

g`−j(n)b(j−1)
θ (n), ` ∈ N. (5.17)
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Again, in the special casè= 1 we obtain

b(n) =
1
θ

∫
R

λξθ(λ, n)dλ − θ

2
. (5.18)

In addition, we remark that letting the coupling constantθ tend to∞ impliesHn,θ →
H∞

n in a suitable sense (i.e., norm resolvent sense on{f ∈ `2(Z)|〈δn, f〉 = 0}, cf. [19]).
Similarly, Hβ

n0
can be obtained as the limit of the operatorH + θ〈δβ

n, .〉δβ
n asθ → ∞.

Clearly, the same procedure can be applied to (cf. Theorem A.2 (i), (iii))

γβ(z, n) = − β

a(n)
exp

(∫
R

ξβ(λ, n)dλ

λ − z

)
, z ∈ C\σ(Hβ

n ), β ∈ R\{0}, (5.19)

where

ξβ(λ, n) =
1
π

lim
ε↓0

arg
(
γβ(λ + iε, n)

)
− δβ , δβ =

{
0, βa(n) < 0
1, βa(n) > 0 (5.20)

and 0≤ sgn(−a(n)β) ξβ(λ, n) ≤ 1. This yields as before

Theorem 5.3. Let ξβ(λ, n) be defined as above. Then we have

bβ,(`)(n) = (` + 1)
β

a(n)

∫
R

λ`ξβ(λ, n)dλ, ` ∈ N, (5.21)

where

bβ,(0)(n) = 1 +β2,

bβ,(`)(n) = (` + 1)γβ
` (n) − β

a(n)

∑̀
j=1

γβ
`−j(n)bβ,(j−1)(n), ` ∈ N. (5.22)

Again specializing for̀ = 0 in (5.21) we obtain

a(n) =
1

β + β−1

∫
R

ξβ(λ, n)dλ. (5.23)

Finally, we want to find out whenξβj (λ, n0), j = 1, 2, for one fixedn0 determines
a(n), b(n), n ∈ Z. Sinceξβ(., n0), β ∈ R anda(n0) determinesγβ(z, n0) by (5.19) we
conclude from Theorem 4.4

Corollary 5.4. Letβ1,2 ∈ R ∪ {∞} be given. Then(βj , ξ
βj (., n0)), j = 1, 2, anda(n0)

for one fixedn0 ∈ Z uniquely determinesa(n)2, b(n) for all n ∈ Z.
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6. Reflectionless Operators

Reflectionless operators have attracted a considerable amount of interest recently in
connection with inverse spectral theory [2, 22, 35, 36] and completely integrable lattices
[7, 32]. In this section we show that the trace formulas of the previous section become
particularly transparent in this case.

We will assume thatH is a bounded self-adjoint Jacobi operator. Hence its spectrum
can be written as the complement of a countable union of disjoint open intervals, that is,

σ(H) = R\
⋃

j∈J0∪{∞}
ρj , (6.1)

whereJ ⊆ N, J0 = J ∪ {0},

ρ0 = (−∞, E0), ρ∞ = (E∞, ∞),

E0 ≤ E2j−1 < E2j ≤ E∞, ρj = (E2j−1, E2j), j ∈ J, (6.2)

−∞ < E0 < E∞ < ∞, ρj ∩ ρk = ∅ for j 6= k.

In addition, we will require thatH is reflectionless, that is, for alln ∈ Z,

ξ(λ, n) =
1
2

for a.e.λ ∈ σess(H). (6.3)

By [22], Lemma 3.3 the requirement (6.3) is equivalent to one of the following:

(i) For somen0 ∈ Z, n1 ∈ Z\{n0, n0 + 1},

ξ(λ, n0) = ξ(λ, n0 + 1) = ξ(λ, n1) =
1
2

for a.eλ ∈ σess(H).

(ii) For somen0 ∈ Z,

m̃+(λ + i0, n0) = m̃−(λ + i0, n0) for a.e.λ ∈ σess(H),

wherem̃−(λ + i0, n0) abbreviates limε↓0 m̃−(λ + iε, n0).

The last equation implies

u+(λ + i0, n) = u−(λ + i0, n) for a.e.λ ∈ σess(H) (6.4)

for u±(z, n) = c(z, n, n0) + a(n0)m̃±(z, n0)s(z, n, n0), wherec, s are the solutions of
τu = zu corresponding to the initial conditionsc(z, n0, n0) = s(z, n0 + 1, n0) = 1,
s(z, n0, n0) = c(z, n0 + 1, n0) = 0.

The name reflectionless will become clear in the next section. There the above con-
ditions will turn out to be equivalent to the vanishing of thereflection coefficientsR±(z)
(cf. (7.16)). For instance periodic operators, operators with purely discrete spectrum, and
stationary solutions of the Toda hierarchy are special cases of reflectionless operators.

Next we turn to Dirichlet eigenvalues associated withτ corresponding to a Dirichlet
boundary condition atn ∈ Z. Associated with each spectral gapρj we set

µj(n) = sup{E2j−1} ∪ {λ ∈ ρj |g(λ, n) < 0} ∈ ρj , j ∈ J. (6.5)

The numbersµj(n) are called Dirichlet eigenvalues ofH since we have

σ(H∞
n ) = σess(H) ∪ {µj(n)}j∈J . (6.6)
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However, we want to point out thatµj(n) is not necessarily an eigenvalue ofH∞
n unless

µj(n) 6∈ σess(H).
The strict monotonicity ofg(λ, n) with respect toλ ∈ ρj , that is,

d

dλ
g(λ, n) = 〈δn, (H − λ)−2δn〉 =

∑
m∈Z

G(λ, n, m)2 > 0, λ ∈ ρj , (6.7)

then yields

g(λ, n) < 0, λ ∈ (E2j−1, µj(n)),
g(λ, n) > 0, λ ∈ (µj(n), E2j), j ∈ J. (6.8)

Thus we concludeξ(λ, n) = 1, λ ∈ (E2j−1, µj(n)) andξ(λ, n) = 0, λ ∈ (µj(n), E2j),
j ∈ J . Using this information to evaluate the exponential Herglotz representation of
g(z, n) then implies ([22], Lemma 1.1)

g(z, n) =
−1√

z − E0
√

z − E∞

∏
j∈J

z − µj(n)√
z − E2j−1

√
z − E2j

, (6.9)

where the square root branch used is defined as
√

z = |√z| exp(i arg(z)/2),−π < z ≤ π.
In addition, denoting byχ�(.) the characteristic function of the set� ⊂ R, one can
representξ(λ, n) by

ξ(λ, n) =
1
2

(
χ(E0,∞)(λ) + χ(E∞,∞)(λ)

)
+

1
2

∑
j∈J

(
χ(E2j−1,∞)(λ) + χ(E2j ,∞)(λ) − 2χ(µj (n),∞)(λ)

)
=

1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,µj (n))(λ) − χ(µj (n),E2j )(λ)

)
+ χ(E∞,∞)(λ) for a.e.λ ∈ R. (6.10)

Evaluation of (5.6) shows

b(`)(n) =
1
2

(
E`

0 + E`
∞ +

∑
j∈J

(E`
2j−1 + E`

2j − 2µj(n)`)
)

(6.11)

and in the special casè= 1

b(n) =
1
2

(
E0 + E∞ +

∑
j∈J

(E2j−1 + E2j − 2µj(n))
)
. (6.12)

The formulas for̀ = 1, 2 were first given in [2], Theorem 5.2.
Next, we want to address the problem of expressinga(n)2 as a function ofEj and

µj(n). This endeavor turns out to be impossible unless we introduce additional data.
This will be done first by defining

{µ̃j(n)}j∈J̃ = {µj(n)}j∈J ∪ σp(H∞
n ), J̃ ⊆ N (6.13)

andẼ0 = E0, Ẽ∞ = E∞,

Ẽ2j−1 = sup{E ∈ σ(H)|E < µ̃j(n)}, Ẽ2j = inf{E ∈ σ(H)|µ̃j(n) < E}.
(6.14)



Trace Formulas for Jacobi Operators 193

A few remarks are in order:

Remark 6.1.(i) We note that ˜µj = µk implies Ẽ2j−1 = E2k−1, Ẽ2j = E2k and
Ẽ2j−1 < Ẽ2j implies µ̃j(n) = µk(n) for somek ∈ J . Indeed, ifẼ2j−1 < Ẽ2j we
infer limλ→µ̃j (n), λ∈(Ẽ2j−1,Ẽ2j ) g(λ, n) = 0 and hence ˜µj(n) = µk(n) for somek ∈ J by
monotonicity ofg(., n) in spectral gaps. In other words, computing all previous formulas
with µj(n), Ej replaced by ˜µj(n), Ẽj leaves them unchanged since the new factors drop
out.
(ii) Our notation concerning̃Ej is imprecise since the list of numbers [Ẽj ]j∈J̃ might, in
general, depend onn. Suppose for instance, that ˜µj(n) is also an eigenvalue ofH such
thatẼ2j−1 = µ̃j(n) = Ẽ2j . Then the pairẼ2j−1, Ẽ2j shows up in the list corresponding
to n but not in the one corresponding ton + 1 since the eigenfunction for ˜µj(n) cannot
vanish at two consecutive points.

Moreover, following [22], we introduce the numbers

R̃j(n) = lim
ε↓0

iεg(µ̃j(n) + iε, n)−1 ≥ 0, (6.15)

and

σ̃j(n) =

{
lim
ε↓0

h(µ̃j(n) + iε, n) if R̃j(n) > 0

2 if R̃j(n) = 0
. (6.16)

The actual value of ˜σj(n) if R̃j(n) = 0 is immaterial and is chosen in accordance with
[22]. The above limits exist if ˜µj ∈ σ(H∞

n ) (i.e., if R̃j(n) > 0) andσ̃j(n) is either±1
(depending on whether ˜µj is an eigenvalue ofH±,n) or in (−1, +1) (if µ̃j is an eigenvalue
of bothH±,n and hence also ofH). For more details see [22].

The numbers̃Rj(n) can be evaluated using (6.9)

R̃j(n) =

√
µ̃j(n) − E0

√
µ̃j(n) − E∞

√
µ̃j(n) − E2j−1

√
µ̃j(n) − E2j∏

k∈J\{j}
µ̃j (n)−µk(n)√

µ̃j (n)−E2k−1

√
µ̃j (n)−E2k

. (6.17)

If µ̃j = µk = E2k = E2j−1 for somek (resp.µ̃j = µk = E2k−1 = E2j) the vanishing
factorsµ̃j − µk in the denominator and ˜µj − E2j (resp.µ̃j − E2j−1) in the numerator
have to be omitted. In particular, we want to point out thatR̃j(n) depend onEj , µj only.

In addition, we require that the singularly continuous spectrum ofH∞
n is empty

(the absolutely continuous spectrum being taken care of by the reflectionless condition).
Then it is shown in [22] that the spectral dataEj , j ∈ J ∪{0, ∞} plusµj(n0), j ∈ J plus
σ̃j(n0) , j ∈ J̃ for one fixedn0 ∈ Z are minimal and uniquely determinea(n)2, b(n).
(To be precise, the class of operators considered here is slightly larger than the one in
[22], however, the same proof applies.) Moreover, necessary and sufficient conditions
for given spectral data to be the spectral data of some Jacobi operator were derived. Here
we want to focus on the reconstruction ofa(n)2, b(n) from given spectral data as above
and present anexplicitexpression ofa(n)2, b(n) in terms of the spectral data.

Our point of departure will be the formulas (use (4.15) and (4.17))

a(n)2m+(z, n) ± a(n − 1)2m−(z, n) = ∓z ± b(n) −
{ 1

g(z,n)

h(z,n)
g(z,n)

= −
∞∑
j=0

c±,j(n)
zj+1

, (6.18)
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where the coefficientsc±,j(n) are to be determined. Arguing similarly as for (1.4) one
obtains

c±,`(n) =
∫

R
λ`
(
a(n)2dρ+,n(λ) ± a(n − 1)2dρ−,n(λ)

)
, ` ∈ N0, (6.19)

wheredρ±,n(λ) are the spectral measures ofH±,n associated with the vectorδn±1.
The evaluation of this integral will now be done for the minus sign. Due to the

reflectionless condition, the integral over the (absolutely) continuous spectrum is zero
(there is no singularly continuous part by assumption) and it remains to evaluate the
pure point part. To do this it suffices to know the jumps of the measure which are given
by the residues of the corresponding Herglotz function. Evaluating the residues (using
(6.18) plus the notation from above) shows

c−,`(n) =
∑
j∈J̃

σ̃j(n)R̃j(n)µ̃j(n)`, ` ∈ N0. (6.20)

Clearly it suffices to sum over all ˜µj(n) ∈ σp(H∞
n ) since for all other terms we have

R̃j(n) = 0.
Next we turn to the coefficientsc+,`(n). They can be determined from (cf. (5.5))

1
g(z, n)

= −z exp
(

−
∞∑
`=1

b(`)(n)
`z`

)
, (6.21)

which implies

c+,−2(n) = 1,

c+,`−2(n) =
1
`

∑̀
j=1

c+,`−j−2(n)b(j)(n), ` ∈ N. (6.22)

Thusc+,`(n) are expressed in terms ofEj , µj(n). Herec+,−2(n) andc+,−1(n) have been
introduced for notational convenience only.

In particular, combining the case` = 0 with our previous results we obtain

a(n − 0
1)2 =

b(2)(n) − b(n)
4

±
∑
j∈J̃

σ̃j(n)
2

R̃j(n). (6.23)

Similarly, for ` = 1,

b(n ± 1) =
1

a(n − 0
1)2

(2b(3)(n) − 3b(n)b(2)(n) + b(n)3

12

±
∑
j∈J̃

σ̃j(n)
2

R̃j(n)µ̃j(n)
)
. (6.24)

However, these formulas are only the tip of the iceberg. Combining

c±,`(n) = a(n)2m+,`(n) ± a(n − 1)2m−,`(n) (6.25)

with some basic facts from the moment problem we obtain our main result:
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Theorem 6.2. Let H be a given bounded reflectionless Jacobi operator. Suppose the
singularly continuous spectrum ofH∞

n is empty and the spectral data corresponding to
H (as above) are given for one fixedn ∈ Z. Then the sequencesa2, b can be expressed
explicitly in terms of the spectral data as follows:

a(n ± k − 0
1)2 =

C±,n(k + 1)C±,n(k − 1)
C±,n(k)2

, (6.26)

b(n ± k) =
D±,n(k)
C±,n(k)

− D±,n(k − 1)
C±,n(k − 1)

, k ∈ N, (6.27)

whereC±,n(0) = 1, D±,n(0) = 0,

C±,n(k) = det


m±,0(n) m±,1(n) · · · m±,k−1(n)
m±,1(n) m±,2(n) · · · m±,k(n)

...
...

...
...

m±,k−1(n) m±,k(n) · · · m±,2k−2(n)

 , (6.28)

D±,n(k) = det


m±,0(n) m±,1(n) · · · m±,k−2(n) m±,k(n)
m±,1(n) m±,2(n) · · · m±,k−1(n) m±,k+1(n)

...
...

...
...

...
m±,k−1(n) m±,k(n) · · · m±,2k−3(n) m±,2k−1(n)

 , (6.29)

andm±,`(n) = c+,`(n)±c−,`(n)

2a(n− 0
1 )

. The quantitiesa(n)2, a(n − 1)2, andc±,`(n) have to be

expressed in terms of the spectral data using (6.23), (6.22), (6.20) and (6.11).

Proof. It remains to show the expressions (6.26) and (6.27) fora(n) andb(n) in terms
of the momentsM±,`(n0), ` ∈ N. Both can be found in [1] (first equation on p. 5).
However, the equation forb(n) here differs from the one in [1] since we have performed
the integration (see [38], Sect. 2.5 for details). �

In the special case of periodic Jacobi operators, the formula (6.23) was first given in
[7]. In addition, we get a discrete version of Borg’s theorem.

Corollary 6.3. Let H be a reflectionless Jacobi operator with spectrum consisting of
only one band, that isσ(H) = [E0, E∞]. Then the sequencesa(n)2, b(n) are necessarily
constant

a(n)2 =
(E∞ − E0)2

16
, b(n) =

E0 + E∞
2

. (6.30)

The special case whereH is periodic seems due to [12] (Proposition 2 on p. 451).
The formula forb(n) also follows directly from (5.12).

Remark 6.4.(i) If J is finite, that is,H has only finitely many spectral gaps, then
{µ̃j(n)}j∈J̃ = {µj(n)}j∈J and we can forget about the additionalµ’s.
(ii) The reader might wonder whether a similar procedure for one-dimensional Schrö-
dinger operatorsH = − d2

dx2 + V (x) is possible. This is in fact the case but under more
restrictive conditions onV (x). Without going into technical details we remark that in
the continuous case the asymptotic expansions of the Weylm-functions contain the
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information of all derivatives ofV at the base point. Hence ifV is assumed real analytic
(e.g., finite gap) it can be expressed in terms of its derivatives using Taylor’s formula.
(iii) Concerning general Jacobi operators we note that Theorem 4.4 indicates thata(n0)2,
γ

βj

` (n0), j = 1, 2, ` ∈ N is solvable fora(n)2, b(n) as well.

Finally, we turn to general eigenvalues associated withHβ
n . Associated with each

spectral gapρj we set

λβ
j (n) = sup{E2j−1} ∪ {λ ∈ ρj |γβ(λ, n) < 0} ∈ ρj , j ∈ J. (6.31)

The strict monotonicity ofγβ(λ, n) with respect toλ ∈ ρj , j ∈ J0 ∪ {∞}, that is,

d

dλ
γβ(λ, n) = (1 +β2)〈δβ

n, (H − λ)−2δβ
n〉, λ ∈ ρj , (6.32)

then yields

γβ(λ, n) < 0, λ ∈ (E2j−1, λ
β
j (n)),

γβ(λ, n) > 0, λ ∈ (λβ
j (n), E2j),

j ∈ J. (6.33)

Sinceγβ(λ, n) is positive (resp. negative) fora(n)β > 0 (resp.a(n)β < 0) asλ → ∞
(resp.λ → −∞), there must be an additional zeroλβ

∞ for λ ≥ E∞ (resp.λ ≤ E0).
Summarizing,ξβ(λ, n) is given by

ξβ(λ, n) =
1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,λ

β
j

(n))(λ) − χ(λβ
j

(n),E2j )(λ)
)

+ χ(E∞,λβ
∞)(λ), a(n)β > 0 (6.34)

and

ξβ(λ, n) = −1
2
χ(E0,E∞)(λ) +

1
2

∑
j∈J

(
χ(E2j−1,λ

β
j

(n))(λ) − χ(λβ
j

(n),E2j )(λ)
)

− χ(λβ
∞,E0)(λ), a(n)β < 0. (6.35)

Thus we have forβ 6= 0, ∞,

γβ(z, n) =
z − λβ

∞(n)√
z − E0

√
z − E∞

∏
j∈J

z − λβ
j (n)√

z − E2j−1
√

z − E2j

, (6.36)

and we remark that the numbersλβ
j (n) are related to the spectrum ofHβ

n as follows:

σ(Hβ
n ) = σess(H) ∪ {λβ

j (n)}j∈J∪{∞}. (6.37)

Again we point out thatλβ
j (n) is not necessarily an eigenvalue ofHβ

n unlessλβ
j (n) 6∈

σess(H).
Evaluation of (5.6) shows

bβ,(`)(n) =
−β

2a(n)

(
E`+1

0 + E`+1
∞ − 2λβ

∞(n)`+1

+
∑
j∈J

(E`+1
2j−1 + E`+1

2j − 2λβ
j (n)`+1)

)
(6.38)
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and in the special casè= 0,

a(n) =
1

2(β + β−1)

(
E0 + E∞ − 2λβ

∞(n) +
∑
j∈J

(E2j−1 + E2j − 2λβ
j (n))

)
.

(6.39)

7. Scattering Theory

One important class of Jacobi operators are periodic ones. In this section we want to
consider scattering theory with periodic background operators and apply the results of
Sect. 5. Even though this problem arises naturally if one considers an infinite harmonic
crystal (withN atoms in the base cell) with impurities, not too many articles are available
on this problem (cf., e.g., [15, 28]). The case with constant background (i.e., only one
atom in the base cell) is treated, for instance in [9, 27]. For a comprehensive treatment in
the case of Schrödinger operators with fairly arbitrary backgrounds we refer the reader
to [23] and the references therein.

We first recall some basic facts from the theory of periodic operators (cf., e.g., [7],
Appendix B, [30, 32]). LetHp be a Jacobi operator associated with periodic sequences
ap 6= 0, bp, that is,

ap(n + N ) = ap(n), bp(n + N ) = bp(n), (7.1)

for some fixedN ∈ N. The spectrum ofHp is purely absolutely continuous and consists
of a finite number of gaps, that is,

σ(H) =
N⋃
j=1

[Ep,2j−2, Ep,2j−1], Ep,0 < · · · < Ep,2N−1. (7.2)

Moreover, Floquet theory implies the existence of solutionsup,±(z, .) of τpu = zu,
z ∈ C (τp the difference expression corresponding toHp) satisfying

up,±(z, n + N ) = m±(z)up,±(z, n) (7.3)

and hence

up,±(z, n) = p±(z, n) exp(±iq(z)n), p±(z, n) = p±(z, n + N ), (7.4)

wherem±(z) = exp(±iq(z)N ) ∈ C are called Floquet multipliers andq(z) is called
Floquet momentum (m±(z) is not related to the Weylm-function m±(z, n)). m±(z)
satisfym+(z)m−(z) = 1,m±(z)2 = 1 for z ∈ {Ep,j}2N−1

j=0 , |m±(z)| = 1 for z ∈ σ(Hp),
and|m+(z)| < 1 for z ∈ C\σ(Hp). (This says in particular, thatup,±(z, .) are bounded
for z ∈ σ(Hp) and linearly independent forz ∈ C\{Ej}2N−1

j=0 .) Requiringm±(λ) =
limε↓0 m±(λ + iε), λ ∈ σ(Hp) determinesm±(z) uniquely.

We are going to investigate scattering theory for the pair (H, Hp), whereH is a
Jacobi operator satisfying∑

n∈Z
|n(a(n) − ap(n))| < ∞,

∑
n∈Z

|n(b(n) − bp(n))| < ∞. (7.5)

By [37], Theorem 5.1 the requirement (7.5) implies that the essential spectrum ofH is
equal toσ(Hp) and purely absolutely continuous. Moreover, the point spectrum ofH is
finite and confined to the spectral gaps ofHp, that is,σp(H) ⊂ R\σ(Hp).
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As in the proof of [37], Theorem 5.1 one can use the sum equation

u±(z, n) =
ap(n − 0

1)

a(n − 0
1)

up,±(z, n) ∓
∞

n−1∑
m= n+1

−∞

ap(n − 0
1)

a(n − 0
1)

K(z, n, m)u±(z, m), (7.6)

where

K(z, n, m) =
((τ − τp)up,−(z))(m)up,+(z, n) − up,−(z, n)((τ − τp)up,+(z))(m)

Wp(up,−(z), up,+(z))

=
sp(λ, n, m + 1)

ap(m + 1)
(a(m) − ap(m)) +

sp(λ, n, m)
ap(m)

(b(m) − bp(m))

+
sp(λ, n, m − 1)

ap(m − 1)
(a(m − 1) − ap(m − 1)) (7.7)

(Wp(., ..) denotes the Wronskian formed withap rather thana) to show the existence of
solutionsu±(z, .) of τu = zu satisfying

lim
n→±∞ exp(∓Im(q(z))n)|u±(z, n) − up,±(z, n)| = 0, z ∈ C. (7.8)

Since we are most of the time interested in the casez ∈ σ(Hp) we shall normalize
up,±(λ, 0) = 1 forλ ∈ σ(Hp). In what follows we will freely use the notation and results
found in [7], Appendix B. In particular, note that we haveup,±(λ) = up,∓(λ), where the
bar denotes complex conjugation. Since one computes

W (u±(λ), u±(λ)) = Wp(up,±(λ), up,∓(λ)) = ∓2i sin(q(λ)N )
sp(λ, N )

, λ ∈ σ(Hp)
(7.9)

(sp(λ, n) is the solution ofτpu = zu corresponding to the initial conditions(λ, 0) = 0,
sp(λ, 1) = 1) we conclude thatu±(λ),u±(λ) are linearly independent forλ in the interior
of σ(Hp) (if two bands collide atE, numerator and denominator of (7.9) both approach
zero whenλ → E and have a nonzero limit). Hence we might set

u±(λ, n) = α(λ)u∓(λ, n) + β∓(λ)u∓(λ, n), λ ∈ σ(Hp), (7.10)

where

α(λ) =
W (u∓(λ), u±(λ))

W (u∓(λ), u∓(λ))
=

sp(λ, N )
2i sin(q(λ)N )

W (u−(λ), u+(λ)), (7.11)

β±(z) =
W (u∓(λ)), u±(λ)

W (u±(λ), u±(λ))
= ± sp(λ, N )

2i sin(q(λ)N )
W (u∓(λ), u±(λ)). (7.12)

The functionα(λ) can be defined for allλ ∈ C\{Ep,j}. Note that we have

|α(λ)|2 = 1 + |β±(λ)|2 andβ±(λ) = −β∓(λ). (7.13)

Using (7.6) one can also show

W (u−(λ), u+(λ)) = Wp(up,−(λ), up,+(λ)) +
∑
n∈Z

u±(λ, n)((τ − τp)up,∓(λ))(n)
(7.14)



Trace Formulas for Jacobi Operators 199

and

W (u∓(λ), u±(λ)) = ∓
∑
n∈Z

u±(λ, n)((τ − τp)up,±(λ))(n). (7.15)

We now define the scattering matrix

S(λ) =

(
T (λ) R−(λ)
R+(λ) T (λ)

)
, λ ∈ σ(Hp) (7.16)

of the pair (H, Hp), whereT (λ) = α(λ)−1 andR±(λ) = α(λ)−1β±(λ). The matrixS(λ)
is easily seen to be unitary since by (7.13)|T (λ)|2 + |R±(λ)|2 = 1 andT (λ)R+(λ) =
−T (λ)R−(λ).

The quantitiesT (λ) andR±(λ) are called transmission and reflection coefficients
respectively. The following equation further explains this notation:

T (λ)u±(λ, n) =

T (λ)up,±(λ, n), n → ±∞

up,±(λ, n) + R∓(λ)up,∓(λ, n), n → ∓∞
, λ ∈ σ(Hp).

(7.17)

Clearly (6.4) impliesR±(λ) = 0, explaining the termreflectionlessin the previous
section. The quantitiesT (λ) andR±(λ) can be expressed in terms of ˜m±(z) = m̃±(z, 0)
as follows

T (λ) =
u±(λ, 0)
u∓(λ, 0)

2iIm(m̃±(λ + i0))
m̃−(λ + i0) + m̃+(λ + i0)

, (7.18)

R±(λ) = −u±(λ, 0)
u±(λ, 0)

m̃∓(λ + i0) + m̃±(λ + i0)
m̃−(λ + i0) + m̃+(λ + i0)

, λ ∈ σ(Hp). (7.19)

In addition, one verifies

g(λ + i0, n) =
u−(λ, n)u+(λ, n)
W (u−(λ), u+(λ))

= T (λ)
sp(λ, N )

2i sin(q(λ)N )
u−(λ, n)u+(λ, n)

=
sp(λ, N )

2i sin(q(λ)N )
|u±(λ, n)|2

(
1 +R±(λ)

u±(λ, n)

u±(λ, n)

)
, λ ∈ σ(Hp). (7.20)

Construct the list (Ej)2M+1
j=0 by taking allEp,j plus two copies of each eigenvalue

of H. We can assumeE0 ≤ E1 < E2 ≤ · · · < E2M ≤ E2M+1 and equality holds if
and only ifE2j = E2j+1 is an eigenvalue ofH. Define the Dirichlet eigenvaluesµj(n)
associated with each spectral gap (E2j+1, E2j+2) as in (6.5). Then we infer

ξ(λ, n) =
1
2
χ(E0,E∞)(λ) +

1
2

M∑
j=1

(
χ(E2j−1,µj (n))(λ) − χ(µj (n),E2j )(λ)

)
+ χ(E∞,∞)(λ) +

1
π

arg
(

1 +R±(λ)
u±(λ, n)

u±(λ, n)

)
χσ(Hp)(λ) (7.21)

since we have

ξ(λ, n) =
1
2

+
1
π

arg
(

1 +R±(λ)
u±(λ, n)

u±(λ, n)

)
, λ ∈ σ(Hp). (7.22)
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Hence we obtain from (5.6)

b(`)(n) =
1
2

2M+1∑
j=0

E`
j −

M−1∑
j=1

µj(n)`

+
`

π

∫
σ(Hp)

λ`−1 arg
(

1 +R±(λ)
u±(λ, n)

u±(λ, n)

)
dλ, (7.23)

and in the special casè= 1

b(n) =
1
2

2M+1∑
j=0

Ej −
M−1∑
j=1

µj(n)

+
1
π

∫
σ(Hp)

arg
(

1 +R±(λ)
u±(λ, n)

u±(λ, n)

)
dλ. (7.24)

The analog of (7.24) in the case of Schrödinger operators with constant background and
no eigenvalues was first derived in [11]. The general case for Schrödinger operators can
be found in [21]. For further trace formulas in the constant background case, in particular
in connection with the Toda lattice, we refer the reader to [8, 16].

Remark 7.1.If R±(λ) = 0 thenH can be obtained fromHp by inserting the correspond-
ing number of eigenvalues using the double commutation method provided in [20] since
this transformation is easily seen to preserve the reflectionless property.

Acknowledgement.I thank the referee for making several valuable suggestions.

A. Herglotz Functions

The results stated in this section can be found in [4] (see also [3]).
We setC± = {z ∈ C| ± Im(z) > 0}. A functionF : C+ → C+ is called a Herglotz

function (sometimes also Pick or Nevanlinna–Pick function), ifF is analytic inC+. For
convenience one usually definesF onC− by F (z) = F (z).

Herglotz functions can be characterized by

Theorem A.1. F is a Herglotz function if and only if

F (z) = a + b z +
∫

R

( 1
λ − z

− λ

1 +λ2

)
dρ(λ), z ∈ C+, (A.1)

wherea = Re
(
F (i)

) ∈ R, b ≥ 0, and ρ is a measure onR which satisfies
∫

R(1 +
λ2)−1dρ(λ) < ∞.

Let ln(z) be defined such that ln(z) = ln |z| + i arg(z), −π < arg(z) ≤ π. Then ln(z)
is holomorphic and Im

(
ln(z)

)
> 0 for z ∈ C+. Hence ln(z) is a Herglotz function.

The sum of two Herglotz functions is again a Herglotz function, similarly the com-
position of two Herglotz functions is Herglotz. In particular, ifF (z) is a Herglotz func-
tion, the same holds for ln

(
F (z)

)
and− 1

F (z) . Thus, using the representation (A.1) for

ln
(
F (z)

)
, we get another representation forF (z).
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Theorem A.2. (i) F is a Herglotz function if and only if it has the representation

F (z) = exp
{

c +
∫

R

( 1
λ − z

− λ

1 +λ2

)
ξ(λ) dλ

}
, z ∈ C+, (A.2)

wherec = ln |F (i)| ∈ R, ξ ∈ L1(R, (1 + λ2)−1dλ) real-valued andξ is not identi-
cally zero. Moreover,

ξ(λ) =
1
π

lim
ε↓0

Im
(

ln
(
F (λ + iε)

))
=

1
π

lim
ε↓0

arg
(
F (λ + iε)

)
(A.3)

for a.e.λ ∈ R, and0 ≤ ξ(λ) ≤ 1 for a.e.λ ∈ R. Here−π < arg(F (λ + iε)) ≤ π
according to the definition ofln(z).

(ii) Fix n ∈ N and setξ+(λ) = ξ(λ), ξ−(λ) = 1− ξ(λ). Then∫
R

|λ|nξ±(λ)dλ < ∞ (A.4)

if and only if∫
R

|λ|n dρ(λ) < ∞ and lim
z→i∞

±F (z) = ±a ∓
∫

R

λdρ(λ)
1 +λ2

> 0. (A.5)

(iii) We have

F (z) = ±1 +
∫

R

dρ(λ)
λ − z

with
∫

R
dρ(λ) < ∞ (A.6)

if and only if

F (z) = ± exp
(

±
∫

R
ξ±(λ)

dλ

λ − z

)
with ξ± ∈ L1(R) (A.7)

(ξ± from above). In this case∫
R

dρ(λ) =
∫

R
ξ±(λ)dλ. (A.8)
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