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Abstract: The structure and representations of the quantum general linear supergroup
GL,(m|n) are studied systematically by investigating the Hopf superalgéfraf

its representative functionss, is factorized intoG7 G7, and a Peter—Weyl basis is
constructed for each factor. Parabolic induction for the quantum supergroup is developed.
The underlying geometry of induced representations is discussed, and an analog of
Frobenius reciprocity is obtained. A quantum Borel-Weil theorem is proven for the
irreducible covariant and contravariant tensorial representations, and explicit realizations
are given for classes of irreducible tensorial representations in terms of sections of
guantum super vector bundles over quantum projective superspaces.

1. Introduction

Quantized universal enveloping superalgebras [1, 2] (which will be called quantum su-
peralgebras for simplicity) represent the most important generalizations of the Drinfeld—
Jimbo [3] quantized universal enveloping algebras. Their origin can be traced back to the
Perk-Schultz solution of the Yang—Baxter equation and also the work of Bazhanov and
Shadrikov [4]. However, systematical investigations of such algebraic structures only
started about six years ago, but in an intensive manner. By now the subject has been
developed quite extensively: the quasi-triangular Hopf superalgebraic structure of the
guantum superalgebras was investigated [5]; the representation theory of large classes
of quantum (affine)superalgebras and super Yangians was developed [6, 7]; applications
of quantum superalgebras to two dimensional integrable models in statistical mechanics
and quantum field theory were extensively explored [1, 8]. Quantum superalgebras have
also been applied to the study of knot theory and 3-manifolds [9, 10], yielding many
new topological invariants, notably, the multi-parameter generalizations of Alexander—
Conway polynomials.

Closely related to the Drinfeld—Jimbo algebras are the quantum groups introduced
by Woronowicz and Faddeev—Reshetikhin—Takhatajan [11], which are, in the spirit of
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Tannaka—Krein duality theory, the “groups” associated with the quantized universal en-
veloping algebras. One very important aspect of quantum groups is their geometrical
significance: they provide a concrete framework for developing noncommutative geom-
etry [12], in particular, for investigating notions such as quantum flag varieties [13] and
guantum fibre bundles.

Our aim here is to study the structure and representations of the quantum general
linear supergrougr L, (m|n) in a systematical fashion by investigating the algebra of its
representative functions. We startin Sect. 2 with a concise treatment of finite dimensional
unitary representations 6f,(g!/(m|n)). Results will be repeatedly used in the remainder
of the paper. In Sect. 3 we define the quantum general linear super@toy(p:|n), or
more exactly, the superalgehfg, of functions on it. This is done by first defining the
bi-superalgebra&y andG7, which are respectively generated by the matrix elements
of the vector representation and its dual irreducible representation. Peter—\Weyl type of
bases for these bi-superalgebras are constructed-{ e defined to be generated by
Gy andG7 with some extra relations. It has the structures eftdopf superalgebra,
which separates points 6f,(g/(m|n)), and factorizes int¢-7 G7. Section 4 treats the
representation theory of the quantum supergroup, and in particular, parabolic induc-
tion. The geometrical interpretation of induced representations is discussed, leading
naturally to the concepts of quantum homogeneous spaces and quantum super vector
bundles. A quantum analog of Frobenius reciprocity is obtained; and a quantum version
of the Borel-Weil theorem is proven for the irreducible covariant and contravariant ten-
sorial representations. Section 5 gives the explicit realizations of two infinite classes of
irreducible tensorial representations in terms of sections of quantum super vector bun-
dles over the quantum projective superspace. In doing this, we also treat the quantum
projective superspace in some detail.

2. Unitary Representations ofU,(gl(m|n))

The finite dimensional unitary representationdy{gl(m|n)) were classified in [15].

Here we will reformulate the results on the covariant and contravariant tensor repre-
sentations so that they can be readily used in the remainder of the paper. The material
presented here also heavily relies on references [6] and [14].

2.1. Hopfk-superalgebras and unitary representatiohget A be aZ,-graded associative
algebra over the complex field. Its underlyingZ,-graded vector space is the direct
sumA = Ag ® A; of the even subspacéy and the odd subspacé;. We introduce
the grading index [ ] :Ao U A7 — Z, such that §] = 6 if a € Ay. We will call
A a Zj,-gradedx-algebra, orx-superalgebra, if there exists an even anti-linear anti-
automorphismx : A — A such that o x = id 4. We will denotex(a) by a*. Needless
to say,x(ab) = b*a*, a,b € A.

An important new feature of tH@,-graded case is that for a giveroperation of4,
there exists an associatedsuch that

+(a) = (-1)fa", 1)

for a being homogeneous, and extends to the wholé afti-linearly. There also exist
the so-called gradedoperations, which, however, are not useful for this paper, and thus
will not be discussed any further.

Let A and B be twoZ,-graded«-algebras. Theml ®¢ B has a natural,-graded
x-algebra structure, with the-operation defined for homogeneous elements by
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#(a @ b) = (1)l @ b,

and for all the elements by extending this anti-linearly.

Consider &,-graded Hopf algebra (also called Hopf superalgebra) H, with multi-
plicationm, unit 1z, co-multiplicationA, co-unite and antipodeS. We emphasize that
the antipode is &inear anti- automorphism of the underlying algebraléf In particu-
lar, for homogeneous, b € A, we haveS(ab) = (— 1)1 S(b)S(a). H will be called a
Z,-graded Hop#-algebra, or Hopk-superalgebra, if the underlying algebrarfis a
x-superalgebra such thatande arex-homomorphisms, i.e.,

*0 A= Ao, xk0€= €0 .
These properties together with the defining relations of the antipode
mo (S®id)A =mo (id® S)A = 1ge
imply that
SoxoSox*=idy.

Let V be a leftH-module. If there exists a non-degenerate sesquilinear forjn (
V x V — C, such that

@). (av, u) = (v, a*u), Vu,v €V, a € H,
(42). (v, v) >0, (v, v) =0 iff v=0,

we callV and the associated representatiotofinitary.
Unitary representations have the following important properties:

i) A unitary representation is completely reducible;

ii) The tensor product of two unitary (with respect to the saroperation) represen-
tations is again unitary;

ii) If a representation is unitary with respect fothen its dual is unitary with respect
to«’.

All the three assertions are well known, but there are some related matters worth
discussing. One is concerned with the requirement that two representations must be
unitary with respect to the sameoperation in order for their tensor product to be
unitary as well. The tensor produktec W of two H-modules has a naturdl module
structure

af{v @ w} = A(a){v® w}

= Z(_l)[a(Z)l[U]a(l)U ® a@w.
(a)

If both V' and W are equipped with sesquilinear forms ( : V x V. — C, and
(,): W x W — C, we can define a sesquilinear form () : (V ®c W)*2 — C by

(v1 ® w1, v2 @ wp)) = (v1, v2)(w1, w2).

Now if both V andW are unitary with respect to the sameoperation, then (( )) is
clearly positive definite and nondegenerate. Furthermore,
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(1 ® w1, a{va @ w})) = > (=@ ((afyyv1 ® afzywn, v2 @ wy))
(a)
= ((@™{v1 @ w1}, v2 @ wy)).

ThereforeV @¢ W indeed furnishes a unitay -module. On the other hand, if, sdy,
is «-unitary, whileW is «’-unitary, then one can easily see that the above calculations
will fail to go through.

The other concerns the third assertion, the validity of which actually requires some
gualification, namely, the Hopf *-superalgelifain question must admit an even group
like elementk,, satisfying

K;p = KZpa SZ(a) = KZpaKz;l, Va € H. (2)
LetV be alocally finite module ovefl, which is unitary with respect to the sesquilinear
form (, ) :V x V — C. For everyv € V, we definev’ by vf(w) = (v, w), Vw € V,
and denote the linear span of all sugéhby V', which is a subspace of the dual vector
space of’. TheVT has a naturaH module structure, with the action &f given by
(avh)(w) = (1) T (S(@)w), we V.
Unitarity of V' leads to
av’ = (=) (xS (a)v)T .
We define a sesquilinear form (' : V1 x VT — C by
(vTa wT)I = (Kpr7 U)'
It follows from the properties of the original form dnthat (, )’ is positive definite and
nondegenerate. A straightforward calculation shows that
(avf, wl) = @1, + (@)w'),
wherex’ is defined by (1).

2.2.U,(gl(m|n)). Throughout the paper, we will denote bythe complex Lie super-
algebragl(m|n), and byU(g) its universal enveloping algebra. As is well known, there
are the Drinfeld and Jimbo versions of the quantized universal enveloping aldglb)a
of g, which, though, have very similar properties at generic
It is the Jimbo version of/,(g) that will be used in this paper. NoW,(g) is aZ,-
graded unital associative algebra o@y, ¢~ 1), ¢ being an indeterminate, generated by
{K,, Ka_l, a €1y Eypa, Eperp, b’} 1 ={1,2,...m+n},I"={1,2,...m+
n — 1}, subject to the following relations:
-1 +1 _ pot
KllKal_ ) K;,thbl_Kb lKailv
KBy pp1 Kt = qder 0 1By 1y,
[Ea a+l, Eb+lb} = 5ab(KaKa_+Ji_ - Ka_chﬁl)/(QCL - qa_l)7
(Em m+1)2 = (Em+lm)2 = 07
Eoav1Bppe1 = Fypi1Bg a1,
Eor1aEBy+1p = Epr1pFEos1a, |a —b] > 2,

Sc(:zzil = Séiz)il =0, aFm,
{Emflm+27 Em m+1} = {Em+2m717 Em+lm}’ = 07 (3)
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whereg, = ¢,

Sflﬂ = (Baa+1)?Bot1a+141 — (@ + ¢ D Eqas1 Battarier Baant
+ Fyt1ge141 (Baas1)?s
S((z_a?il = (Ba+10)? Bastt1at1 — (@ + 0 Y Eosa Bastttas1 Baria

+ Ea+1:tla:tl (Ea+la)27

andFE,,_1m+2 and E,,12,,_1 are thea = m — 1, b = m + 1, cases of the following
elements [16, 6]:

Eab = EacEcb - qglEchaca
Eba = EbcEca - chCU.EbC7 a<c<hb.

The Z, grading of the algebra is specified such that the elem&ijts, Va < 1, and
Ey i1, Epe1p, b 7 m, are even, whilé,, ,,,+1 andE,,+1,, are odd. Above, we have also
0, if a < m,
1 ifa>m.

On the other hand, the Drinfeld versionf(g) is defined oveC[[]], ¢ = exp(),
and is completed with respect to tteadic topology ofCl[[A]]. It is generated by
{Euwa;s a €1; Eypi1, Epiap, b € 1'}, subject to the same relations (3) with

used the notation] =

K, :quaa.

It is well known thatU,(g) has the structure of Z, graded Hopf algebra, with a
co-multiplication

A(Ea a+1) = Ea a+1 ® K(LK(;]E]_ +1 & Ea a+l;
A(-Ea+1|.a) = Ea+la & 1 +K¢1_1Ka+l ® Ea+1a7
MK = Ko K
co-unit
G(Ea a+]_) = G(Ea+la) = 0, Va € I/,
((Kifh=1, vel,
and antipode
S(Ea a+l) = _Ea a+lKa_1Ka+l>
S(Ea+la) = 7KaKa_+]iEa+laa
S(KFy=K'e Kit
At genericg, the Jimbo version ob/,(g) has more or less the same representation
theory as that of the Drinfeld version [6]. Lét,|a € |} be the basis of a vector space

with a bilinear form €,, €,) = (—1)4,,. The roots of the classical Lie superalgebra
gl(m|n) can be expressed as

€a —€p, 6 Fb,a, bel.

For later use, we define



530 R. B. Zhang

2p =) ()6, — ).

a<b

From [6] we know that every finite dimensional irreducililg(g) module is of
highest weight type and is essentially uniquely characterized by a highest weight. Let
W (X) be anirreduciblé/,(g) module with highest weight = >~ Aseq, Aq € C. There
exists a unique (up to scalar multiples) veaidr# 0 in W ()\), called the highest weight
vector, such that

Foqs1v} =0, ael’,
Kyvy = qi‘”vﬁ, bel.
W () is finite dimensional if and only if\ satisfies\, — A,+1 € Z+, a ¥ m, and in that
case, it has the same weight space decomposition as that of the corresponding irreducible
gl(m|n) module with the same highest weight.

2.3. Unitarity of covariant and contravariant tensor representatioReom this section
on, we will assume thdt,(g) is obtained from the Jimbo algebra by specializjrtg a
real positive parametedifferent from 1. To construct &operation forlU,(g), we first
consider the Hopf subalgebra generatedby E,, ,+1, f = Fu+1 4, andk = KaKa‘fl,
for a fixeda 7 m. It is not difficult to show that(e) = fk, *(f) = k~te, *(k*t) = k*1
defines ax-operation for thid/,(sl(2)) subalgebra. Possible generalizations of this to
U,(g) are

*(Ea a+l) = (*]—)(6*—1)677“1 Ea,+laKaKa_+Ji7

*(Ea,+la) = (*]—)(6*—1)6"“1 K(IlKa+lEa a+l,
w(KFY) = K (4)

wheref = 1 or 2. It is quite obvious that the “quadratic” relations of (3) are preserved
by the x-operations, and we have also explicitly checked that the “Serre relations” are
preserved as well. We will call the-operations type 1 and type 2 respectively when
f=1and 2.

It is also well known that

K3, = H (Ka Kb_l)
a<b

(- 1)[(1]"[*7]

satisfies Eqg. (2).

Now we consider the irreducible covariant and contravariant tensor representations
of U,(g). The vector representatiarof U, (g) is of highest weight;. The corresponding
moduleE has the standard badis,|a € 1}, such that

1)

Kavb = qa“b’Um
Eqy a+10p = 0p q£1Va-

Define a sesquilinear form di x E by

a—1
(va; vb) = 6ab H qc_1~
c=1
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Then it is straightforward to show that with respect to the typedberation, we have

*

(ELL (Lilvb7 U(:) = (Ub7 Ea (Lilvc)7
(Kavp, v) = (vb, Kave).

Therefore, the vector representation is unitary of type 1.

TheU,(g) modulesE®*, k € Z, (E° = C), obtained by repeated tensor products of
the vector module with itself can be decomposed into direct sums of irreducible type 1
unitary modules, and we will call each direct summand an irreducible contravariant ten-
sormodule, and the correspondingirreducible representation anirreducible contravariant
tensor representation.

The irreducible contravariant tensor representations can be characterized in the fol-
lowing way. LetZ. be the set of nonnegative integers. Define a subset 7, ©(mm)

by
P = {p = (p17p27 ~-~7pm+n) S Z+®(m+n) | Pm+1 SN, Pg 2 Pa+l, @ € Il}
We associate with eaghe P a A\® = 37" \ ¢, defined by

Aa =Pas a<m,

n N Pm+v
Z Amep€mep = Z Z Emtp-
pn=1 v=1 p=1
Introduce the set
AD = (NP | p e Py (5)

From results of [6, 14] we know that an irreducible representatioti,¢f) is a con-
travariant tensor if and only if its highest weight belongsAtd). Needless to say, all
such irreducible representations are type 1 unitary.

Let W () be an irreducible contravariant tengdy(g) module with highest weight
X e AW, We define) to be its lowest weight, and saf = —\. An explicit formula
for AT was given in [14] (Sect. llI. B.), where a more compact characterization was also
given for the sete\® and

A®@ =T e AWy, (6)

We refer to that paper for details. Now the dual moddié\)t of 1/ (\), which we will

call a covariant tensor module, has highest weightAll irreducible covariant tensor
modules are unitary of type 2. The most important example is the covariant vector
moduleE’, which is the dual of the vector modul Its highest weight is given by

—€m+n-

We summarize our discussions in the following

Proposition 1. 1. EachU,(g) moduleE®* (resp.(E")®*), k € Z., can be decomposed
ingg a direct sum of irreducible modules with highest weights belongind*qresp.
A,

2. Every irreducibleU,(g) module with highest weight belonging 24" (resp. A®)
is contained in some repeated tensor product®&diesp. Et) as an irreducible
component.
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More detailed structures of the irreducible covariant and contravariant tensor repre-
sentations can be understood, e.g., their characters and super characters can be computed,
the Clebsch-Gordan problem of irreducible representations within a given tensor type
can also be resolved by using the supersymmetric Young diagram method. Here we
elucidate some general aspects of the Clebsch-Gordan problem, which will play an
important role in the remainder of the paper.

Denote by p] the equivalence class of irreducible representations with highest
weight X. For A and X’ both belonging toA®, we interpret A] + [\'] as the equiv-
alence class of the direct sum representations, #n¢X'] as that of the direct products.

Let [AW] be theZ* module with a basig[\] | A € A®}. Then the *” operation defines

a multiplication on[A®]. Clearly [\] - [0] = [0] - [\] = [A]. Furthermore, from Sect. V

of [14] we can deduce that if\] - [\'] = [A\1] + [A\?] + ... + [\¥], then none of the\’ is
zero unless both and )\’ are zero. This is in agreement with the fact that

A m A@ = {0}

The discussions above can be repeated word by word for the irreducible representations
with highest weights belonging .

3. Quantum General Linear SupergroupGL,(m|n)

For compact Lie groups in the classical setting, there exists the celebrated Tannaka-Krein
duality theory [18], which enables the reconstruction of a group from the Hopf algebra
of its representative functions. The theory of quantum groups [11] makes essential use
of a quantum analog of the duality [17], and is formulated entirely in terms of the
algebra of functions. We will adopt the same philosophy here to formulate and study
guantum supergroups. However, we should mention that Lie supergroups are much more
complicated than ordinary compact Lie groups in structures; at the best, the Tannaka-
Krein duality holds in arestricted sense for Lie supergroups even at the classical situation,
though we have not come across any treatment of the problem in the literature.

3.1. Subalgebra of functions associated with the vector representatisefore, we
denote byr the vector representation &7, (g) relative to the standard bagis, | a € 1}
of E. Then

TV, = Zﬂ(x)bavb, x € Uylg).
b

Let (U,(g))° be the finite dual ot/,(g). Consider the elements;, a,b € | of (U,(g))°
satisfying

tan(z) = m(2)an, Yz € Uy(g).

It is easy to show that the, , indeed belong tol(,(g))°. Also note that,,; is even if
[a] + [b] = O(mod 2), and odd otherwise.

Standard Hopf algebra theory asserts tiaf(§))° is aZ, - graded Hopf algebra
with its structures dualizing those 6f,(g). Consider the subalgebr@ of (Uy(g)°
generated by, ;, a,b € |. The multiplication whichG7 inherits from Uq(g))O is given
by
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(tt', z) = (tat, zq) @ z()
@)
=Y leelit so)(t, ze), VLt €GT, w €U (7)
@)

To better understand the algebraic structur@pfwe recall that the Drinfeld version
of U,(g) admits a universak matrix, which in particular satisfies

RA(z) = A'(z)R, Vax € Uy(g). (8)
Applying 7 ® 7 to both sides of the equation yields
R™™(n @ m)A(z) = (m @ T)A'(z)R™ ™, 9)

whereR™™ = (r ® m)R. The universalR-matrix of U,(g) can be extracted from the
Khoroshkin-Tolstoy paper of [5] by appropriately adjusting the conventions. We can
then applyr ® 7w to R to get R™™. The matricesR™™ and R™™ which will be used

later, can also be obtained similarly. However, the explicit form of these matrices can be
extracted more easily from the results of [16]. Here we cBfY from that reference

L - €aa®€aa —1[a] —
R = guecr @ 4 (0 ) S e @ e (1),
a<b

We may also mention th@™ ™ is the infinite spectral parameter limit of the Perk-Schultz
R-matrix.

Itisimportantto realize that Eq. (9) makes perfect sense within the Jimbo formulation
of the quantized universal enveloping algebigg), even whery is specialized to a
real parameter. We can re-interpret the equation in terms of,thelhen by setting
t= Za’b €ab D tap, We have

The co-multiplicationA of G7 is also defined in the standard way by

<A(tab)> TR y> = <tab> xy> = 7T(xy)aba Vx,y € Uq(g)
We have

A(tap) = > (DI, @ ¢y, (12)

cel
G7 also has the uni¢, and the co-unit & ;). Therefore G7 has the structures of a

Z,-graded bi- algebra. However, it does not admit an antipode, as we will explain later.
Let 7™ be an arbitrary irreducible contravariant tensor representatioi (@). We

may also regard® as a representative of], where\ € AY. Define the elementé*j),
i, j=1,2,...,dimcm™, of (U,(g))° by

(@) = 70();;, Va € Uy(g).

It is an immediate consequence of Proposition 1 tﬁ?te G7, foralli, jand\ €
AW, and everyf e G7 can be expressed as a linear sum of these elements. From
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the representation theory 60f,(g) we can deduce that these elements are also linearly
independent. Introduce the vector spaces

dimm™

™= P .

i,j=1
Then

Proposition 2. As a vector space,

Gr= ™.

AeA®

To return to the question wh§7 admits no antipode, we consider an arbitré?}/
€ G with A 7 0. Denote also by the antipode off,())°. Then

SE@) =10 (S@). Vo € Uya).

That is,S(t?j)) are the matrix elements of the dual irreducible representatiafi*afthe
highest weight of which is not contained /¥ unless the irreducible representation
W is trivial, i.e., A = 0. ThereforeS(tEAj)) ¢ Gr.

Let us now recapitulate thdt7 is defined as the sub bi-superalgebra 6f(g))°
generated by the matrix elements of the vector representatioip(gj. Equation (10)
is a set of relations satisfied by thg, as elements oft{,(g))°. However, we may also
consider a bi-superalgebfg generated by, a,b € |, subject to the same relations
as (10) but witht replaced byza,b eab ® T4p, @and with a similar co-multiplication as
(11). Clearly, the bi-superalgebra map

V11, — Gy,
Tab — taba
is surjective. Now a natural and important question is whether also injective. The
answer to this question is affirmative, as can be shown by adapting the method of
Takeuchi[19] to the present situation. The question is also closely related to the problem

of “connectedness” of quantum supergroups (see [19] about the corresponding problem
for ordinaryG L,(n)), which will be treated in detail on another occasion.

3.2. Subalgebra of functions associated with the dual vector representaéofu,, | a €
|’} be the basis oE' dual to the standard basisBfi.e.,

az(vb) = 5ub-
Denote byr the covariant vector representation relative to this basist g, b € I,
be the elements off,(g))° such that
tap(z) = T(@)ap, Vo € Uylg).

Note that,, , is even if ;] +[b] = O(mod 2), and odd otherwise. These elements generate
aZ,-graded bi- subalgeblﬁgr of (Uq(g))0 in the standard fashion. Here we merely point
out that they obey the relation
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Bl

R, 111y = to t1RYy, (12)

=

with

:=Zeab®t_ba, R™™ := (r ® TR.
a,b

™

The following explicit form of R™ ™ is obtained from [16]
T aa®eaa(—1" -
R77 = qdaua fee®eeel 0y (g g DY ear @ epa(—1M.
a>b
Also, the co-multiplication is given by
Alta) = S (DM 70,
cel

Denote byr™™ the irreducible representation dual6V, A € A®, in a given

homogeneous basis. Introduce the elem&nt8, i, j = 1,2, ..., dimcn™, of (U,(g))°
such that

£5() =7 V(2), Vo € Uy0)-
Then it follows from Proposition 1 that these elements form a basd?sjfoSet
TM = ®i,j<CtT,;‘}).
We have
Proposition 3.

Gr= P 1.

HEAD

3.3. AlgebraG, of functions onGL,(m|n). We define the algebré&, of functions
on the quantum general linear supergrdkip,(m|n) to be theZ,-graded subalgebra
of (U,(g))° generated by{t, s, tap | a,b € 1}. Thet,, andt,,, besides obeying the
relations (10) and (12), also satisfy

RYJ tita = ta t1 RL, (13)
whereR™ ™ := (7 ® m)R. Equation (13) arises by first applyings = to both sides of

(8), then interpreting the resulting equation in terms ofttheandt,, ;. The following
explicit expression oR™ ™ is extracted from [16],

R = g 2oaer Cae®@eaaUT o1y S 0 © e o(— DM,
a<b
Equation (13) enables us to factorigg into
G,=GIGT. (14)

As bothGy andG;_r areZy-graded bi-algebras;, inherits a natural bi-algebra structure.
It also admits an antipode. By considering

(#0a)(wp) = (1) My, (S(2)wp), z € Uy(g),

where{v, } is the standard basis of the vector representation{apHis the basis of
the covariant vector representation dua{tq}, we arrive at
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Lemma 1. The antipodeS : G, — G, is a linear anti-automorphism given by

S(ta b) = (71)[a][b]+[a]t_b as
S(tas) = (D)l =y, (15)

Therefore G, has the structures ofZ&-graded Hopf algebra.
Furthermorex-operations can also be constructed@yt thus turning it into a Hopf
x-superalgebra. We have

*(E‘ p) = (—1)@Hablalohg
#(tqp) = (—1)0ablaltDy

wheref € Z,.

An important property of5, is that it separates points of,(g), that is, for any
nonvanishinge € U,(g), there existsf € G, such thatf(z) 7 0. As a matter of fact,
G7 by itself separates points 6f,(g). Put differently, for any. € U,(g), if u 70, then
7P (u) # 0 for somep € Z..

To verify our assertion, we first consider the corresponding proposition in the clas-
sical situation ofU(g) in detail. LetEflOg, a, b € |, be the standard generators gof
embedded in its universal enveloping algebra. In the vector representé¥ioone has

7O = eqs.
We isolate theu(1) subalgebra of with the generator

70) = Z E©

aa’
a€l

and denote b0, A= 1,...., (m +n)? — 1, the element&® — EY, ,;,ce’,and

Eflog, a # b, in any fixed ordering. Then a PoinéasBirkhoff-Witt basis folJ (g) is given
by,

(BO 4, =N XDQ XDkl €Zi, A < Aty Ai 7 A F[XD] =1}

Setr@(x©) = ¢ ,. Denote byM the vector space ofif +n) x (m +n) matrices, and
define

k—1
Re=> MR.OMRIOMR..0M.
=0 i k—1—i

Let

— g
bAl Ak - § (_1)| {A}‘eAn(l) ® eAU(Z) ® o ® eA"'(k)’
o€Sk

where|o 4| is the number of permutations required amongst odd elements in order to
changeX 4, ® X4, ®...® X4, 0 Xa,, ® X4, ®...0 Xa,, - Clearly, the elements

{bAl...Ak |k S Z+7 Al S Ai+l7 Al 7Ai+l If [XA,L] = 1}
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are linearly independent inv®*, and we will denote byZ,, their linear span. By con-
sidering the trace (not the supertrace!) on each factovt6¥, we can easily see that
L}, intersectsk, trivially. Therefore,

(W(O))®(k+p)(B(()(,))A1...Ak) - ((W(O))®k ® (W(O))®p) (Bf()(,))Al...Ak)
=ba, A, QTP +7p, Thp € RE @ MEP,

are linearly indepenedent as elementg\of+»),
Consideru € U(g) given by

K L
— 0
w=>"3">"Cr ar.aBO 4, 4> Ck oan.a €C.
k=0 =0 {A}

Usin
i (rO)*r(z%) = p* 17,

we immediately see that{?)®?(u) = 0,Vp > L, requires

K
> p*Ch oay.a, =0, Vp> L,
k=0

which forces all the”, 4,...4, to vanish. This completes the proof for the classical case.

Remarks.There is something slightly unnatural about our proof, that is, the combination
EQ _gO does not belong tel(m|n) C g, and this in turn forced us to consider

mm m+l m+l

the ordinary trace instead of the supertrace in prodipg R, = {0}. We can avoid this
unnaturalness whem % n by usinge®@ _ + E©,  instead, but not whem = n.

m

With the above preparations we can now readily prove our assertion for the quantum
superalgebra. We first consider the Drinfeld versior/gfg). Similar to the classical

case, we set
7= Eaa,

a€l

and denote byX 4, A = 1, .....(m + n)® — 1, the element&,. . — E 41 o1, ¢ € I’ and
E.p, a 7 b, in afixed ordering. Then

{Br, Ao, =Z5Xa,.. X, | k1 € Zay Ay < Ajp1, Ay F Ain if[ X a,]1=1}
forms a Poinca&@—Birkhoff-Witt basis fo/,(g) [6]. Given
w = WP (ug + hug + FPup +...),

where eachy; is a finite C-combination of some3y,, 4, . 4,, andug is assumed to be
nonzero. Then it follows from the classical case that there exist infinitely man¥..
such that

7®P(u) # O(mod KF*™Y).

For the Jimbo algebra, we observe that ordered monomidlg jna # b, andKail
form a basis ofU/,(g). Givenu € U,(g), and a positive integeps, we consider the
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matrix elements ofr®?(u)|,=expp:) @S @ power series ih. 7®7(u) # 0 if and only if
some of these power series do not vanish identically. Now for the purpose of computing
TP (u)|4=expy, We can make the identification

woniae) = Y E oy

k=0
p—1

aalp) :ZI®...®I®eaa®I®...®I.
=0

i p—i—1

This takes us back to the Drinfeld algebra situation, and we have already shown that in
that situation ther®?, p € Z,, separates points &f,(g).

We summarize the discussions of this section into a proposition, points ii) and iii) of
which may be considered as a partial generalization of the classical Peter-Weyl theorem
to the quantum supergroup in an algebraic setting:

Proposition 4. (i) G, is ax-Hopf superalgebra;

(i) G, separates points df,(g);
(iii) The following elements spa#,:

40,0 =12, dima™, X e AD,
i =12, ., dimT™, e A®.

However, we should point out that these elementsiatéinearly independent.

4. Induced Representations of7,

We will develop parabolic induction for representations®,(m|n) in this section.
Recall that corresponding to every locally finite right co-module W — W ® G,
over GGy, there exists a unique leff,(g) moduleU,(g) ® W — W with the module
action defined by

zw =w(w)(z), xeUilg), weW.

Asimilar correspondence exists for I€f, co-modules and righif, modules. Therefore,

we can describe the representation theor§ pfn both theGG, co-module language and
U,(g) module language, depending on which one is more convenient in a given situation.
We will largely use the latter here.

4.1. Parabolic subalgebras df,(gl(m|n)). Let ©® be a subset of’. Introduce the
following sets of elements df,(g):

Sl = {Kail7a € lv Ec c+1y Ec+1c7 (RS @},
Sp, =S U{E. c1, c €1'\O};
S, =S U{Eu1., ce'\O}
The elements of each set genera# agraded Hopf subalgebra b6f,(g). We denote by

U, (1) the Hopf subalgebra generated by the elemensg,a@ind byU, (p.+) the Hopf sub-
algebras respectively generated by the elemens of In the classical limit, the Hopf
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subalgebra#/,(p.) coincide with the universal enveloping algebras of parabolic subal-
gebras of the Lie superalgebyaTherefore, we will call/,(p.+) parabolic subalgebras
of Uy(g)-

LetV,, be afinite dimensional irreduciblg, (f) module. TherV,, is of highest weight
type. Lety be the highest weight and the lowest weight o/, respectively. We can
extendV,, in a unique fashion to &,(p+) module, which we still denote by, such
that the elements af,, \S; act by zero. Similarly}/, also leads to &,(p_) module,
on which the elements af, \S; act by zero. It is not difficult to see that all finite
dimensional irreduciblé/,(p+) modules are of this kind.

Consider afinite dimensional irreducililg (g) modulel () with highest weighi\
and lowest weighh. W () can be restricted into&, (p-+) or U,(p—) module in a natural
way, and the resultant module is always indecomposable, but not irreducible in general.

Consider first the case &f,(p+). We wish to examine th&,-graded vector space
Homy,p,)(W()), V,.), which graded-commutes with, (p.), namely,

po— (1P p =0, peUyps), ¢ € Homu, )W), V).

Because of the irreducibility df,, every non-zere € Homy,,)(W (), V,,) must be
surjective, and thug,, =~ W(\)/Ker¢. As alU,(p+) module,IW (1)) is indecomposable,
and contains a unigue maximal proper submodulsuch that the lowest weight vector
w_ of W(\) does not belong td/. Therefore Ker¢ = M, andV,, = ¢(Uy(Dw_). This
forces\ = fi, and all elements offomy, (,.)(W()), V,) are scalar multiples of one
another. It is worth observing that the mapnay be odd. In fact its degree is given by
[¢] = [w_] + [¢(w-)] (mod2). The case ob/,(p_) can be studied in exactly the same
way. To summarize, we have

Lemma 2.

)

dime Homy, (o) (W (N), V) = {

SN

)

)

NN

N
TE R

oOpRFr OoOPF

)

dime¢ HOrqu(Pf)(W(A)a Vu) = {

4.2. Induced representations and quantum superbuntksis first introduce two types
of left actions ofU,(g) on G, which correspond to the left and right translations in the
classical situation.

Define a bilinear map: U,(g) ® G, — G, by

rRf—ux-f
= (fay ST @) f, (16)
o)
which can be easily shown to satisfy

(@ Ny) = D £ H)y),
z-(y-f)=@y) - f, x yeUlg), f€Gq
(We assume that the elementsy € U,(g) andg, f € G, are homogeneous for the

sake of simplicity. All the statements below generalize to inhomogeneous elements in
the obvious way.) Therefore, this defines a left actiobi g{is) on G, which corresponds
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to the left translation of Lie groups in the classical situation. It is worth observing that
we may replaces— in the above definition, and arrive at a different left action.
Another left action 8" of U,(g) on G, can be defined by

wo f = (DD fofe, ). (17)
()
Straightforward calculations can show that
zo(yof)=(zy)of;
(o N) = fy),
(ida, ® ©o)A(f) = Az o f).

This corresponds to the right translation in the classical theory. It graded-commutes with
the action ¥, namely,

zo(y- )=y (o f).

Let U,(p) denote eithet/,(p+) or U,(p_). Given any finite dimensional letf,(p)
moduleV, we form the tensor produdt ®c G, which is a subspace of functions
Uq(g) -V

(=) vi®fieVeg,
S Uq(g)7
(@) = fil@vi.
The leftactions *” and “o” of U,(g) onG, can be extended in an obvious way to actions
onV ®c Gg,
v-¢= Y (Y @w- f,
ro¢= Yy (DM 0a0 i, e Uye):

Furthermore, there also exists a co-actioof G, onV @¢ G, defined byw = idy ® A/,
whereA’ represents the opposite co-multiplication(gf.
Consider the subspace Bf®c G, defined by

OV ={CeV&cGy|po¢=(Sh)®idg,)C, ¥Vp e Uyp)} (18)

Lemma 3. OV furnishes a left/,(g) module under ¥, and at the same time a right
G, co-module undep.

Proof. The lemma can be confirmed by direct calculations.#ear U, (g), p € U,(p),
¢ € OV, we have

po(z-¢) =1z . (poy)
= (S(p) ® idg, )z - C);
(p o ®idg,)w(C) = (po ®idg,)(idy © A')¢
(idy @ T)(idy ®idg, ® po)(idy @ A)¢
(idy @ 7)(idy @ A")(p o ()
=w(S(p) ®ida,),

wherer is the flip mapping.
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We call OV the induced/,(g) module, and also the induc€d, co-module, which
gives rise to a co-representation(@.

A conceptual understanding &8 can be gained by considering its classical analog,
which was investigated by Manin [20] and Penkov [21]. Very briefly (precise and exten-
sive treatments can be found in the references just give®)sif. parabolic subgroup of
the complex Lie supergroufZ(m|n), andE a finite dimensional representation Bf
thenSL(m|n) x p E, the quotient space &fL(m|n) x E under the equivalence relation
(g,v) ~ (gp, p~tv) for all p € P, defines a super vector bundle over the supermanifold
SL(m|n)/P. A function f : SL(m|n) — E satisfying f(gp) = p~1f(g), ¥p € P
defines a section of the bundie : SL(m|n)/P — SL(m|n) x p E. Analogously, we
may regard?" as the vector space of sections of a quantum super vector bundle over
the quantum counterpart 8tL(m|n)/P.

It is of great importance to systematically develop the theory of quantum homoge-
neous super vector bundles, and we hope to return to the subject in the future. In this
paper, we will restrict ourselves to issues directly related to representation theory, and
will not further ponder noncommutative geometry, except for the last section, where we
will discuss in some detail quantum projective superspaces when dealing with explicit
realizations of the irreducible skew supersymmetric tensor representations and their
duals.

We have the following quantum analog of Frobenius reciprocity.

Proposition 5. Let be a quotient/,(g) module oip,_, E®F @ (E*)® (the restric-
tion of which furnishes @/,(p) module in a natural way). Then there is a canonical
isomorphism

Homy, o) (W, ©Y) = Homy, (W, V). (19)

Proof. We prove the proposition by explicitly constructing the isomorphism, which we
claim to be the linear map

F : Homy, (W, 0Y) — Homy, ) (W, V),
Y = Y(Lu,(g):
with the inverse map
F : Homy, (W, V) — Homy, (W, OV),
¢ = 9,
whereg is defined by
Pw)(@) = (D IDG(S(@)w), = € Uy(g), w € W

As for I, we need to show that its image is contained in Hog(W, V). This is
indeed the case, as

P(Fp(w)) = (p - ()L, @)
= (- Py pw),  p e Uylp), we W.

In order to show thak is the inverse of”, we first need to demonstrate that the image
Im(F)of Fis contained in Hom, () (W, OV). Note thafm(F) C Home(W, V®G,),
sincelV is a subquotient @?z:o E®F @ (E*)®!. Some relatively simple manipulations
lead to
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(y - ¢_(w))(x) = (_1)[y][¢?]+[w]([w]+[r]+[y]) A(S(z)yw)

= (1) G (yw)(z),
(p 0 H(w))(x) = (~ DI DWI oS (p) S (w)w)
= SO)OW)@), x, y € Uy(g), p € Uylp), w e W,

Therefore Jm(F) C Homy, (W, OV).
Now we show thaf” and F’ are inverse to each other. Fpre Homy, o) (W, OV),
and¢ € Homy, (W, V), we have

(FF@)(w) = (F)(w)(1u, ()
- = p(w),
(FFy)(w)(z) = (D Fg)(S(a)w)
= (DY (S (@)w) (Lo, (o)

= (- S () - P (w)) (Lo, @)
=P(w)(x), xe€Uyg), weW.

This completes the proof of the proposition.

4.3. Quantum Borel-Weil theorem for the irreducible covariant and contravariant ten-
sor representationsin this subsection we study in detail the irreducible covariant and
contravariant tensor representationg/g{g) within the framework of parabolic induc-
tion. Our main result here will be a quantum version of the Borel-Weil theorem for these
irreducible representations.

For the classical Lie supergroups, the program of developing a Bott—Borel-Weil
theory was initiated and extensively investigated by Penkov and co-workers [21, 22],
although much remains to be done on the subject. Their program has also revealed a very
rich content and various interesting new phenomena. It appears that the Hopf algebraic
approach to the Bott—Borel-Weil theory developed here is also worth exploring at the
classical level, and is likely to provide a new method complementary to the geometric
approach of [21].

LetV be afinite dimensional irreducibl&, (p) module, with thd/, (I) highest weight
wandU, (1) lowest weight.” For the purpose of studying the tensor representations, we
need to consider

O(u)=0"N (Ve dr),
o) =0"nN(VeGr). (20)
Let us studyO(y) first. A typical element of(y) is of the form

(=3 Y Qdsavetl),

AEAD .,

. . T
where{v;} is a basis of/, and thec), ; ; are complex numbers. Thfg\ﬁ) are elements

of the Peter-Weyl basis foﬁg_f, which, needless to say, are polynomialsn a, b € 1.
The property thati{oc () = (S(p) ® idg, )¢, Vp € U,(p) leads to

S (~WOFD N Gy =D eh s s pvis VP EUg(p).  (21)

Vst
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Let W () with the basis{w, } be the irreduciblé/,(g) module associated with the
irreducible representatiod®. We define the linear maps betwegn gradedvector
spaces

W W) -,

A
wg g Co B, i Vi-
i

There is no particular significance attached to the maps at this stage, apart from the mere
fact that they can be employed to re-express Eq. (21) as

SR )6 w,) = p 6 (wp).
-

We emphasize that this equation is entirely equivalent to (21). Now something of crucial
importance appears: this equation requires that é&éfbe aU,(p) module homomor-
phism of degreeq{(f)]. Lemma 2 forces

(b()\a) = Cq ¢)\; Ca € (C,
andg¢, may be nonzero only when

i) A= i, if Uy(p) = Uy(pa),
i) A= p, if Ug(p) = Ug(p-).

In these case€)(u) is spanned by
1
Ca =Y oawp) @105,
B

which are obviously linearly independent. Furthermore,

2 Co = (DN "N @) o, @ € Uyla). (22)
B

The case of)(y) can be studied in exactly the same way. To summarize, we have the
following quantum analog of the Borel-Weil theorem for the irreducible covariant and
contravariant tensor representations

Proposition 6. AsU,(g) modules,

W((=)"), if i € —A®, Uy(p) = Uy(p-),

O(w) = { W),  ifpea®, Uyp)=Uylp-), (23)
{0}, otherwise

_ W((=)"), if i € =AW, Uy(p) = Uy(p-),

O(w) = W),  ifpeA® Uyp)=Uylp-), (24)
{0}, otherwise

In the proposition, the notatidi’ (\) signifies the irreducibl&,(g) module with highest
weight\.
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Remarks.O(u) andO(u), which form irreduciblé/, (g)-modules, are proper subspaces

of OV Although OV itself also furnishes a left/,(g)-module, it is not irreducible in
general. This fact differs drastically from the ordinary quantum group case, where the
counter part of®Y, which may be regarded as the quantum analog of the sheaf of
holomorphic sections of a homogeneous vector bundle, forms an irreducible module
over the corresponding quantized universal enveloping algebra.

5. Quantum Projective Superspaces and Skew Supersymmetric Tensors

We will apply the general theory developed in the last section to study two infinite classes
of irreducible representations, namely, the irreducible skew supersymmetric tensor rep-
resentations and their duals. Explicit realizations of these irreducible representations will
be given in terms of sections of quantum super vector bundles over quantum projective
superspaces.

5.1. Quantum projective superspacest U,(g’), ¢’ = gl(m|n — 1), be the subalgebra
of U,(g) generated by the following elements:

{Kaa ac Ila Ecc+la Ec+1 ey CE Il\{m tn— 1}}
ClearlyU,(g¢') is a Hopf subalgebra. Define

Ar={f € G| f(zp) = e(p)f (@), Vo € Ugla), p € Ug(a}
A ={f € G7| f(zp) = e(p) f(2), V& € Uy(g), p € Ug(a")}-

The Hopf algebra structure &f,(g’) implies that bothA, and.A_ are subalgebras of

G,. Together they generate another subalgeb(@ofvhich we will denote b)@Z"”’l.
Set

Za _tam+na Z_a :Ezm+na a € I
Thenz, andz, are conjugate to each other under theperation withd = 0. More
explicitly,
*(24) = 24, Vae€l.

Now SZ”'"_l is generated by the's andz’s, which satisfy the following commutations
relations:

zo 2y = (1) g2y 200 a < b,

(22 =0, c<m;

Zazp = (DRI 52, a <b,

(Z) =0, c<m

Zozy = q(=1)Fde 2 2 46,0, {(1 - 47 Y70 2a

- (1)[2“](qql)zz_czc}, Va, bel,
c<a
Zz_czc =1

cel
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It can be shown that the last two equations imply that

$ e )z, 5, = g en),
cel

Sp'" =1 furnishes a rightz, co-module algebra, with the co-module actionS;""*

— st @ G, defined by

w(za) = Z ZC ® t[lC7

cel

W(Z) =Y Z Otac

cel

Also, ST'"’l gives rise to a right/,(g) module algebra with the module actios’de-

fined by (17). This module algebra structure restricts naturally to a module algebra struc-
ture over/,(¢')® U, (gl(1)), wherel, (gi(1)) is generated b ;=1 . The action o/, (g')
onSy" s trivial following the definitions ofA..; U,(gl(1)) also acts in a very simple
manner. To be explicit, we introduce the notations thatffor (04, ..., 0,,; 11, ..., 1) €

{0, 1}8m 2™, L] = 37 6+ S, 1,.. Set

zt = zfl...zz;”zﬁjwl...zf;{m,
Zt = P, (25)
Then for anyk € Z, andp € U,(g'), we have
—L' ’n_ =L’
(K pn) 0 (2" Z7) = elp)g™ 171D ZE 77 (26)

We will define the quantum projective superspaB;""~* to be theU,(gl(1))
invariant subalgebra (S’Z,"'"’l, namely,

Uq(gl(2))

Cpyint= (st 27)

5.2. Irreducible skew supersymmetric tensor representations and their ddielspe-
cialize U,(p+) and Uy(p_) to the case witt® = I"'\{m + n — 1}. Consider a one-
dimensional irreduciblé/, (p.) moduleV; = Cv such that

Eypr1v = Ecrpcv = 0,
Kyv = v,
Km+nv = q_k%
k€Zi, b,ccl,c<m+n-—1,
and denote the associated representation. liyefine

Or ={Ce Vi@ Gy | (po)() = ¢(SP)(x), VY € Uy(g), p € Uyg(p+)} -
Direct calculations can show that

Or=p Cve z~, (28)
|L|=k
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whereZ* is defined by (25). The®, gives rise to the rank irreducible skew super-
symmetric tensor representationl@f(g), with the highest weight

)= Zf:l €i5 k < m,
Y€+ (k — m)emar, k> m.

Now letV_ = Cw be a one dimensional irreduciblg,(p_) module such that

Ecc+1v = Epeapv = 0,
Kyv =,
Ko inv = qu,
k€Zi, b,cel,c<m+n—1,

and denote the corresponding irreducible representationh Befine

Or={CeV_®G] |(po{)(x) = ¥(SE))(x), Vo € Uyla), p € Uglp-)} -
Then

0= P cwsz". (29)

|L|=k
This time Oy, yields an irreducible representationwith highest weight
/\ = _ke’rn+n7

which is dual to the rank irreducible skew supersymmetric tensor representation.
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