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Abstract: Let dus(a) be a Gaussian measure on the finitely generated Grassmann
algebraA. Given an eveilV(a) € A, we construct an operat@t on A such that

5 [ 0 dusar= [ @-RH0 dus

for all f(a) € A. This representation of the Schwinger functional iteratively builds up
Feynman graphs by successively appending lines farther and fartherf fridrallows

the Pauli exclusion principle to be implemented quantitatively by a simple application
of Gram’s inequality.

1. Introduction

LetA(as, - - -, ay) be the finite dimensional, complex Grassmann algebra freely gener-
ated byay,---,a,.Let M, = {(z’l,n-,ir) | 157:1,-..4;9} be the set of all multi indices
of degreer > 0. For each multi index= (i,,--,i,.), Seta, = ay, - - - a;,.. By convention,

ag = 1. Let
1= U {(ilw-wir) | 1§i1<'-~<ir§n}

0<r<n

be the family of all strictly increasing multi indices. The set of monomials|i € 7 }
is a basis foA(ay, - - -, an).

LetS = (Si ) be a skew symmetric matrix of even orderRecall that the Grass-
mann, Gaussian integral with covariangés the unique linear map
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fap € Alag, -+, an,b1,--+,by) — / flap) dus@ € A(ba,---,by)

satisfying
/ eEaibi dus(a) = e*%zbiSijbj.

To manipulate Grassmann, Gaussian integrals, we can “integrate by parts” with
respect to the generatog , k=1,-- - n,

- 0
/akf(al,--~,an) dpg = E Sk-e/ <8ag f(aly---,an)> diis.
=1

The left partial derivative
0 _ 0
Taéf(a)— éz I T@a'

is determined by

9 _{0, ¢

87@( “= v ayax ,  a = a;apa.
Here, |3 is the degree of. Integrating by parts with respect &g, and then arguing by
induction ornr we find

/ a dus(a = Pf(SI)

where, for any multi index = (iy,-,i.) in M,., S, = (S,»W) is the skew symmetric
matrix with elementsy; k,t=1---,r,and where

ke

T

Pf(S,) = ! Z Eklmk" Sikvlikg Sik

25l
k1, kr=1

r—llkr

is its Pfaffian when = 2s is even. By convention, the Pfaffian of a skew symmetric
matrix of odd order is zero. As usual,

o 1, 44, ---,4, iSaneven permutation of, 1. -, r
gttt =49 =1, dq,---,14, isanodd permutation of | 1-- r .
0, i1, --,1, are not all distinct
Let W(a) be an element of the commutative subalgeiftéu,, - - - , a,,) of all “even”
Grassmann polynomials l(ay, - - - , a,,). That s,

W(a) = Z Z W1y +5dr) Gy * Gy

r>0 ji,oosgr

where, W.¢j1,---,5-), IS @an antisymmetric function of its arguments,,--- 5. <» that van-
ishes identically whemr is odd. By definition, the “Schwinger functionalS(f) on
A(ay, - - -, ay,) corresponding to the “interaction” W) and the “propagators = (Si )

is

1
Sh=3 / f@ eV dug(a),
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where Z = [ V@ dug . The associated “correlation functionS;), (j1,-+.jm) , m > 0,
are given by
1
Srn(jlf“yjm,) = E / gy * - Qg eW(a) dlus(a)'

In this paper we introduce an operator RAfu,, - - -, a,,) such that
st = [@-R () dus

holds for all f in A%ay,---,a,). The utility of this representation of the Schwinger
functional is demonstrated in Sect. Ill, where an elementary, but archetypical, bound on
the correlation functions,,, (j,--,5-) , m > 1is obtained by bounding the operator norm
of R in terms of a “naive power counting” norm on W( The tools developed here will
be used to simplify the rigorous construction of a class of two dimensional Fermi liquids
outlined in [FKLT].

The representation of the Schwinger functional derived in this paper grew out of the
“integration by parts expansion” of [FMRT, FKLT] which, in turn, was developed as
a replacement for the traditional “cluster/Mayer expansion”. In fact, the integration by
parts expansion can be obtained by first expanding the invérseR)t * in a Neumann
series and then selectively expanding, by repeated partial integrations, the Grassmann,
Gaussian integrals appearing in the definition of R. Apart from its conciseness, the
advantage of the representation of the Schwinger functional given in this paper lies
in the fact that the Pauli exclusion principle can be implemented quantitatively by a
simple application of Gram'’s inequality. This is in contrast to the “integration by parts
expansion”, where the Pauli exclusion principle is implemented by a more physical,
but more complicated, approach that involves carefully counting the number of fields in
position space cubes whose dimensions are matched to the decay of the free propagator.
There is a large literature devoted to the mathematical structure of Fermionic field
theories, for example [C, FMRS, GK, BW].

One more notion is required for the detailed formulation of our results. For this
purpose, lefS* be the complex, skew symmetric matrix of ordergven by

“=(2 %)

Also, for all multi indices andJin M, let S..; be the skew symmetric matrix of order

i +9 defined by
su=(g, §)=5-(3 o)
Here,5is the juxtaposition of ands and
S10= (St )
is the matrix with elements;, ;, , k = 1,---,7andf = 1,---,s. Now, suppose.azlti a,

is the monomial in the Grassmann algeB@;, - - - , a%, a1, - - - , a,) corresponding to
andiin M. Then, by construction,

/ af ay dpgs(@ta) = Pf(S..)
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In other words, the Grassmann, Gaussian integral with covarishexcludes “con-
tractions” between any pair of the generatejs - -, a, in A(aﬁl, ceesakan, e, ap).
For anyf(@) in A(as, - - -, a,), let f@* be the Grassmann polynomial belonging to

A(aﬁl, -+, ab) defined byf(@* = f@). If S is an invertible skew symmetric matrix, then
there is a unique linear map, called téck map with respect t§, from f() in the
Grassmann algebva(ay, - - -, a,) t0: f(a) :s iNA(ag, - - -, ay) such that

/ Cf@ s 9@ dus@ = / f@ g dug:(aa)

forall f@), g@ inA(ay, -, ay,).

The Wick map has a unique extension fréiu,, - - - , a,,) to the Grassmann algebra
Alay,---,an,b1,- -+, by) thatis left linear over the subalgeb®db, - - - , b,,). For exam-
ple, we can apply the Wick map to the exponentfat:®: as a Grassmann polynomial
in the generatorsy, - - - , a,, with coefficients inA(by, - - - , b,,). By definition,

b ph iy, i —Yb: S bt iyptg.  pt
/ 62 a;b; :S 62 albm d S(a) _ / 62 aibl 62 G.,,bi d Sﬁ(au,a) e Eblsz]bj e ZEbiSubj.
On the other hand,
b, 1 G .. pt _ g pt 1 tg. pt
/ (ez:a,.Lb1 ez):blSUbJ) eEalbi d @=e Zb,LSl]bj e ZEbiS”bj

and consequently,

. 1 . b b
Ta;b; o = ezzms b ):aibl.

'e vJ '76

It follows from the last identity that the Wick map :5 depends continuously asiand
has a unique continuous extension to the vector space of all skew symmetric matrices.

Definition 1.1. For any Grassmann polynomial
ha,b) = g, ab,
1,9
in A(alv cety Qny, blv Ty bn);

ch(a,b) isa = Z G5 1a s by
1,3eT

. h(avb) 5 = Z gy 2bys.

1,3

In other words, the Wick map with respect.$ois applied toh(a, b) as a Grassmann
polynomial in the generatoras, - - - , a,, with coefficients inA(by, - - -, b,) to obtain

> h(a,b) :s.. Similarly, itis applied toh(a, b) as a Grassmann polynomial in the gener-
atorsby, - - -, b, with coefficients irA(as, - - - , a,,) to obtain :h(a, b) s p.

Definition 1.2. The linear magR fromA(aq, - - -, a,,) to itself is (consciously suppress-
ing the dependence &l (a) andS) given by

(R())(a) = / L VEHWE 1 () dpuso.
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Our first result is

Theorem 1.3. Supposd. is not in the spectrum d?. Then,
St = [ @R dus

for everyf in A%aq, - - -, ay).

To exploit the representation of Theorem 1.3 we decompose R by expanding the
exponential in gW@)-W@) _ 1,

Definition 1.4. For each pairr,s € N’ ¢ > 1, and every polynomialf in
A(a, - - -, ay), the complex valued kern@} s (f)(«,,--,k,) ON My, g, x---x My, —s, IS (CON-
sciously suppressing the dependenc&\f{n) and S) given by

14
1
Res(farmd =20 77 D = D /n:II(Q)mA%«»mig fo) dusw

neMs,  yeMs, =1

whenr; > s; > 1,i=1--- (. Otherwise,R;s(f).,-x,) = 0. Here,

14

:l:(S) = H (*l)s’i(b'i+1+"'+5£).
i=1

The corresponding linear maR's fromA(ay, - - -, a,) to itself is

4
R = Y Y Rs(Pewxo [

K eM KpeM i=1

T1—51 Ty—Syp

Theorem 1.5. For everyf in A%ay, - - -, a,),
R(H=D D R.
£>1 r,seN¢

Remark 1.6.At the end of the introduction, we use Theorem 1.5 to interpret Definition
1.4 and Theorem 1.3 in terms of Feynman graphs.

We can combine Theorem 1.3 and Theorem 1.5 to obtain analytic control over the
Schwinger functionab(f). To do this, choose a nondecreasing functibon N and a
A > 0 such that

‘/a, tay s duga)

for all multi indices1 and J. The numberA is morally the supremuni|S||_. =

sup  |S,;| of the covariances. The numberd(i)) is intuitively the degree of can-
i,j€{1,,n}
cellation between the at mgst nonzero terms contributing to the Pfaffian

SI SI.J - . .
Pf(SJ,, 0 ) —/a| tay s dus(a).

$(n+1)

<{@wA NS
0, 19 > 1]
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At one extreme (see, Example 3.4), we can always chéqsg= |i|! for all multi indices
randA = ||S||_.. At the other extreme (see, Example 3.5), suppose that

(% 3

for some matrixs = (%;;) of orderZ, and further that there is a complex Hilbert space
H, elements);, w; € H,i=1,---,%, and a constam > 0 with

(Vi,wj)y = Tij,

1
vill# 5 lwslln < L2

foralli,j =1,---, 3. Then, by a variant of Gram’s inequality, we can chodsg) = 1
for all multi indicesi andA = 2L.

For example, the Grassmann algebra associated to a many fermion system has an
equal number of “annihilationé;, - - - , a,,, and “creation’ay, - - - , a,,, generators. Fur-
thermore, the physical covarian€ecannot pair two annihilation or two creation gener-
ators. ThatisC = (69— %j) Itis also often possible to wrii€,;as an inner product
between vectors in an appropriate Hilbert space with “naturally” bounded norms so that
d(ip =1, 1 € M, can be achieved in models of physical interest. See, [FMRT, p.682].

Now, let

fl@)= 3 [™(a)

m>0
be a Grassmann polynomial X(as, - - - , a,,) where, for eachn > 0,
S0 = Y0 fmlaein) g, ag,
jla"'7jrn
and the kernef,, (j1,---,j=) IS @an antisymmetric function of its arguments.

Definition 1.7. For all a > 2, the “external” and “internal” naive power counting
norms|| f||. and||| f|||. of the Grassmann polynomig(a) are

1
£llo =3 150 = D" a™ AT | fulls

m>0 m>0

and

_ 3(m-2)
e = 5= 1 e = 3 0™ it A2 o,

m>0 m>0

where

”me1: Z |fm(jl:"'7j7n)

Jisdm

100 = SUP S [ fmGrser-im)

J1€{1,-,n}

)

[ fm

Jorre i
are theL.! and “ mixedL?, L> " norms of the antisymmetric kernefs, (1)

In Sect. 3 we prove
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Theorem 1.8. Suppos@ |||W|||o+1 < 1. Then, for all polynomialg in the Grassmann
algebraA(ay, -, ay),

RN <20(n) [[IW][|a+z [[f]la-

In particular, the spectrum oR is bounded away frorh uniformly in the number of
degrees of freedomwhen® is constant and||W/|||.+1 is small enough.

A simple consequence of Theorem 1.8 is the archetypical bound on correlation
functions

Theorem 1.9. Suppose (1+o(n)) |||W||l.+2 < 1. Then, for eachn > 0 and all sequences
of indicesi< ji,,jm <n,

im

O
M

i S T390 [[Willam

|Sm(jl7"

In particular, the correlation functions are bounded uniformly in the number of degrees
of freedomn when® is constant and|W/|| .+ is small enough.

1.1. Decomposition of Feynman graphs into annuin the rest of the introduction

we motivate and interpret Definition 1.4 and Theorem 1.3 “graphically”. However, we

emphasize that the purely algebraic proof of Theorem 1.3 given in the next section is

completely independent of this discussion and, in particular, does not refer to graphs.
Recall that, fon = (iy,---,i,.) in M,. with r even,

T

— — ky---k,
/ adps@=Pi(S)= S s s,
[
koj_1<kp; for i<r/2
ky<kg<---<kp_1

can be thought of as the sum of the amplitudes of all graphs hawegtices labelled
i1,---,i, and having precisely one line attached to each vertex. The amplitude of the graph
having lines{ir, , ix,} , -+ {ik, _1, ik, } ISEM T Si i -+ Si iy, -

This graphical representation has an immediate extension to

0
[ac dusw=3" 3 5 3 3 [ a4 J[wtoa, dusco

£>0 reNt T yeMp 1 eMg, i=1

with H € M,,, . One merely has to substitute ---1, for 1. In general, a “Feynman graph
I with m external legs and internal verticesv,, - - -, w,, (the vertexw., havingr;
legs) is a partition of then + r1 +--- + 1, legs into disjoint pairs that are represented
as lines. The amplitude of the graphs defined to be

4
Am(F)(H):;il Z Z eri(u) H Sicjc7

D neMy 1peM,, 0=l lines cinl"

where we choose any ordering ;) of the pairs in the partition determined by the lines
c of I and where: is the signature of the permutation that brings the juxtaposition of
these pairs to the juxtapositien.--, of the multiindices4, 1, , ---,1,. Then, fom € M, ,
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/ an €V duga) = > Am(D)(k).

Feynman graphs

A Feynman grapli is “externally connected” when each connected component con-
tains a line with an external leg. In other words, there are no “vacuum components”. It is
well known (and can also be derived from Theorem 1.3 and Theorem 1.5) that the corre-
lation functionS(ay) = £ [ ay e™@ dus(a) is the sum of the amplitudes of all externally

connected graphs. Roughly speaking, the represent&{gh = i J R™(f)dus gen-
n=0

erates these graphs a bit at a time with#t#€ application of R adding those lines that
are of distancen — 1 from f and those vertices that are of distamedrom f.

To make this more precise, we return to Definition 1.4 and choase N* satisfying
ri>s;>1,4=1,.-,¢. We first explain how to visualize the action of the operatbt & a
homogeneous Grassmann polynomial

f(a) = Z FntGredo) G5 =Y fonlH)

Jihdm HeEM
of degreem.
Suppose, f(a) ay 1S a monomial wherey = (hs,---,h. ), and select a multi index
Ki € My, s, , 1= -, £. To graphically interpret the coefficient
¢
Res(@)es ) = i(s) D D / T we 0k by, s by dpse
Jle/\/lel yeMs, =1

of a, ---a, in R"®(a,), we imagine an annulus that has, for each generator in the
incoming monomiab,, an “external leg” entering some point on its outer boundary

and that has, for each generator in the outgoing profipa; of R™s an “external leg”

Ieavmg some point on its inner boundary, and that furthermore contaifis\kheices”
Wy s w” in its interior. There are no other external legs or vertices. The vertex
Wy, , 1= -, £, hasr; “legs”. One leg, for each generator in the monomial

Wi (3, K l)b a,. The leg attached ta,, for a given generator im,. is joined by
a “passive” line to the corresponding external leg leaving the inner boundary of the
annulus.

hi ho

(=4 m=10 7=(4,24,2) 5=(21,3,2)
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We construct “annular graphs of type r, s’ out of our annulus, whem > sy+..-+s,
and m+s:+--+s, IS €ven, by connecting each legof., ,i = 1,---,¢, representing a
generator irb,, , |3|=s;, by an “active” line with an external leg representing a generator
in b, entering the outer boundary or connecting, again by an “active” line, two external
legs entering the outer boundary corresponding to a pair of generatqr&iach vertex
is connected to at least one external leg entering the outer boundary because 1 <
1 < £.Note that there is a bijection between annular graphs and partitadiise disjoint
unionHu U g into disjoint unordered pairs such that each elementof;, is paired

1<i<e 1<i<t

with an element of.

Two annular graphs of type 104, 2,4, 2), (2,1, 3,2)

For each sequencge «, , - «,) of multi indices inm,, x My, — g, x-x My, _s,, the ampli-
tude AM(A)+ .« . -, «,) Of an annular graph A of type:, r, sis

¢
Am(A)(H,Kl,-.-,Kz):i(S)KE!E Z Z H(;’j)wy-i(ami) H Sie jos

heM JyeM =1 active lines
! a1 ¢ se cin A

where we choose any orderiig, ;) of the pairs in the partition, determined by the
active lines ¢ of A and where is the signature of the permutation that brings the
juxtaposition of these pairs to the juxtapositian-.J, of the multi indicesH,3, -, 3.
The amplitude Am(A} ., . -, «,) is a function of the external legs of the annular graph
A.

Recall that the Grassmann, Gaussian integral

L

£
[0t s bedusor= [ (I %) b dussoin
=1

=1

4
is equal to a Pfaffian that is the sum over all the partitions of the prc(dﬂcbi) by into
i=1

4
disjoint pairs such that each generatoﬂnb’i. contracts, via a matrix element 8f to
i=1
a generator ih,,. Therefore, by construction,
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i(s)— S W, (05,6) by, 1 by dpns(v)
> [ H()

HeMs,  yeMs,

= D AMA)e K k)

annular graphs A
of type |H|,r,s

That is,
Rrs(f"™)(q,kp) = Z fm®H) Z AM(A) (. ky . Ky)
HeMom e

Suppose|)| < 1. Then, the partition functioZ) = [ W@ dug # 0 and all the
eigenvalues of R ©)()) lie strictly inside the unit disc. In this case, the Neumann series

(1 - R)~1'= 3" R converges. Writing out all the terms,
p>0

/(Jl—R)*l(f‘"“) dps = Y > Y / R'»S . RIS(F0) dprg.

To convey the intuition that leads to the statement of Theorem 1.3, we examine both
the action of a productR® - - - R"*% contributing to R on /™ and the corresponding
Grassmann Gaussian integrals

/ R'»S ... RS f0) dpg.
Forp = 2,

ersz (er Sq(f(m))) (L17"'aLl2)
Z fTrM(H) Z Z Am(Al)(H Kio oo Key) Am(AZ)(Kl'“Kel L1y Le)

He M, annular graphs A
1 “ of type m;,r;,S;
for i=1,2
The degreen,=m and the degree., =r;1—si1+-+r1,, —s10,, the second sum is over all
sequences of multi indicas, - «,,) IN My, ;g x- XMy g 5100 and the multi in-
dex«,.-«,, occurring in the amplltude Am(A is the juxtaposmon of the multi indices
Ky, Ky Now

Am(AlAZ)(H L1, '—132 Z Am(Al)(H S Ktzl) Am(AZ)(Kl'“Kzl L, '-132)

Ky, Koy
is the “amplitude of the double annular grapp® of typem, rq1,s;,r2, " obtained by
inserting A just inside the inner boundary of;Aand then, for each generatorm a,

joining the associated external leg (at the end of a passive line) leaving the mner bound-
ary of A; to its mate (at the beginning of an active line) entering the outer boundary
of A,. Notice that, by construction, each vertex in i& connected by a line to at least

one vertex in A that, in turn, is connected to at least one external leg entering the outer
boundary of A.
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A double annular graphA;A, with A; of type 8 (2,6,2,4,4), (1,3,1,2,1) and A, of type
10, (4,2,4,2), (2,1,2,2)

For p > 3, one obtains the amplitude of the completely analogous p-annular graph
Ai---A,oftypem,rq, sy, ---,rp, S, inwhich each vertex in the annular graph A =
Li—1
2,---,poftypem;=>" ri_1;-si_1;, I'4,S;, IS connected by a line to at least one vertex
J=1
in A;_1 and ultimately to at least one external leg entering the outer boundary. of A
An “externally connected Feynman graphof type m,r1,s;,---,rp,S," is a p-
annular graph A--- A, of typem,ry,s,---,r,,S,, as in the last paragraph, together
with a partitionp of the legs emanating from the inner boundary gfidto disjoint pairs
that are joined to form lines.

Supposel” is an externally connected Feynman graph withexternal legs and the
internal verticesv,., - - - ,w,.,,. Set

Al(F) = { Wi | at least one leg of W, is connected by a line il to an external Ieg}
and then define AT") , > 2, inductively by

i—1
Ai(F) = { Wr- ¢ U An() | at least one leg of W, is connected by a line il to a vertex inA_1 }
h=1

Also, set’; = |A,;(T")| fori>1. Thereisa < p <nsuchthat A(I") #Z 0, while A,+1(T") = 0,
and
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P
{er o, W b UA7(F)

=1

Letw,, ,---,w., be the vertices in AT). For eachk=1,.,¢;, lets;, be the
number of legs of thelvertex,xj/\é that are attached by lines to a vertex in AT"). Also,
let m} be the total number of legs emanating from the vertices;im @) that are not
attached by lines to vertices in; &(T"). For eachi = 1,-- -, p, setr! = (rigsig,) and
s = (si35,,)- Observe that the graghinduces a unique annular graph structure on
A;(T) of typem},r}, s foreachi = 1,---,p, and a partitior- of the legs leaving the
inner boundary of A(T") into pairs. Thus, every externally connected Feynman graph
" with m external legs corresponds to a unique externally connected Feynman graph of
typem7 rL S!I_“a Ty r;v S;

For each multi index in M,,,, the amplitude AmI()(H) of the externally connected
Feynman grapl of typem,ry, sy, -+, rp,S, is defined by

AMMD)H) =ePr) Y AMAL A ) ] S
M1, -+, Mg, (é,5)€Pr

wherezs(Py) is the signature of the permutation that brings the juxtaposition of the pairs in
the partitiorey. to the juxtapositiom,--m,,,. The sumis over all sequences of multiindices
(Mg, mg,) N Moy s —spa X XMpy s, - BY definition, the amplitude Am{)(+) of an
externally connected Feynman grdpfs the amplitude of the corresponding externally
connected Feynman graph of typery,s;,---,r,,,s,.

We can now write

/RrZSQersl(f("L)) d,LLS
> huty [ REERS (@) dus

HEM

123
S g XY AmAAden. ) [ [a dus
L1, ,Le i=1

HeM annular graphs A
of type m;,r;,S;
for i=1,2

ST fmty > AMD)(H)

HeM externally connected
Feynman graphF' of
type mq,r1,81,m2,M2,S

£2
since, the integraf H a, dugs is equal to a Pfaffian that is the sum over all partitions
=1

L2
of the product[ ] a,, into disjoint pairs that are contracted via matrix elements of
=1
Similarly,
/ RIvS - ROS(f™) dpus = ) fin() Y. AmD)H)

HeM externally connected
Feynman graphF' of
type ml,rl,sl,m,mp ,rp ,Sp

for all p > 3. It follows that
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/ (@~ R (/) dpus

DI CED YD DI > Am(I)(H)

HeM, p>0, r. N1 Lp externally connected
m £y, lp>1 1L%1€ rp,speN Feynman graphFE' of

type my,r1,8,--,mp,lp,Sp
or, equivalently,

J@a-RE N dus= 3 g S AmOYe),

He Mm externally connected
Feynman graphE'

where the last sum is over all externally connected Feymann graphsrwétkternal
legs and any finite set,,, - - -, w,, of vertices chosen from, , > 1. As mentioned
before, it is “a well known fact” that

S¢E™ =S far S AN

HeM . externally connected
Feynman graphF'

Therefore,
SU)= [@=RIHG™). dus

This completes the graphical interpretation of Theorem 1.3.

2. The Proofs of Theorem 1.3 and Theorem 1.5

Again, letS = (S;;) be a skew symmetric matrix of even order
Lemma 2.1. For eachh(v, c) in A(by, -+, by, 1,5 Cn),

// h(b, a+bt) dusu(b”,b)dus(a):/h(b,c) d,u(gg)(b,c).

Proof. LetI be the linear functional on the Grassmann algét{ta, - - - , b, c1, - -, ¢n)
given by

F(h)=// h(b, a+b?) dpgs®,b) dpis(a),
Then,
[ (e>bedireics) =// B biditarbiies gy, vt by dpug(a)

:/GEaiei/eEbgei+bidi d,usﬁ(bﬁ,b)dﬂs(a)

= e—ZeiS,ijdj e—%EdLS”dJ /e):aiei dus(a)

:e—%Eej,SUej e—ZeiSijdj e—%Ed,;Sijdj.

By unigueness,
F(h) = / h(b7 c) dﬂ(g g)(b,c).



478 J. Feldman, H. Karrer, E. Trubowitz

The main ingredient required for the proof of Theorem 1.3 is
Proposition 2.2. For all f andg in A(a,- - -, a,),
/ / J®) T gla+d) isp dus®) dpsia) = / f(@) g(a) dpis(a).
Proof. By Lemma 2.1,

/ / f®) D gla+h) isp dps®)disa) = / / F®) gla+v®) dpugs vF,b) dpis(a)

:/ f® g dﬂ(g g)(b,c).
Now, observe that for all multi indices= (i1,---,i.) ands = (j1,--,5,) in M, the juxtapo-
sition
13+n) = (i17...71‘r 7j1+7l7"-,jd+n)

is @ multi index in{1,---,2n}"** and by construction,

/ by dprgs sy0.0) = PE((E 8).,)) = PH(S0) = / a a; dps(a).

It follows that

/ / f®) 1 gla+h) sy dps®)dis) = / f@ g dus@)
O
Again, let

W(@)=>" > Wl ajy - aj,

r>0 i,
be an even Grassmann polynomial wherggw.-,5,), is an antisymmetric function of
its argumentsa<;,---,j.<n that vanishes identically whenis odd. Let R be the linear
map onA(as, - - -, a,), corresponding to W) and.S, that was introduced in Definition
1.2.

Theorem 2.3. For all fin A(a, -, an),

/ f@ e dpg@ = / (Ro+R)(f)@ " dps(a)

where,

Ro(f)@) = / f®) dusw) ap.
Proof. By Proposition 2.2,

/ (Ro+R)(f)@) eV dps(a) = / / P W)= f () dus®) eV dusi
= / / V) sy () dus®) dusi
= / f(@) e dpuga),
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It is now easy to give the
Proof of Theorem 1.3f |\| < r < 1, then

Zw = / MW dug 7 0,

and all the eigenvalues of R&(\) lie strictly inside the unit disc. In this case,

1 1
Z / ay e dpg = / aydps + / R(an) e dpg

and
> R(a) =@ -R) ta.
s>0

Iterating,

1 1
E/ a, M dus=/aH dps + /R(aH) dps + 2/ R2(ay) M@ dpg

t
1
= [ S R@dus + 5 [ R*@) M ds

s=0
for all £ > 0. In the limit,

1

when|A| < r <« 1. To complete the proof, observe that both sides of the last identity
are rational functions of € C. d

To prove Theorem [.5 we make

Convention 2.4. Leti = (iy,---,i,) be any multi index. A “sub multi indexici is a multi
indexJs = (j1,---,5.) together with a strictly increasing mag from {1,---,s} to {1,--.,»} such
that ji, =i, ), k = 1,---, s. If the multi indices andJ belong toZ and, in addition,

Jci as sets, thenis uniquely determined as a sub multi index by the inclusion map of
{41,--4s } INtO {i1,---,i,. }. FOr every sub multi indexci, there is a unique complementary
sub multi index\ac1 such that the image af,, is the complement af{1,--,s}) in
{1,--,+}. The “relative sign” p(,)) of the pairici is the signature of the permutation that
brings the sequenc@,--,r—s,r—s+1,--,7) 10 (y1), - -+, Us(s), va(d), -, vna(r—s)). BY
constructiong, = p@,) a,an,. The relative sign is defined on all fx Z by

_(pEn, Il
PN = {0, Izl

Proof of Theorem 1.80bserve that for each> 1,

Z W,.(l)((a+b)I — a,) = Z W (1) Z Z JUeN) b, Ay

leM, leM, 1<s<r Ja subindex

of Iin Ms

Z Z Z A PE) Wi(3, 1) by Ay

1<s<r 1eM, I a subindex
- " ot 1in M

= Z Z Z (1) we, 1) by ag

1<s<r 3eMg KeM, _,
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and consequently, for eache N,

0
11 ( > w0y, — a.i)>
i=1 M eM,
4
= < E E E (:z) W, (35, K;) in aKi)
=1 1<s;<r; JiEMsi KiGMTi_Si
4
= E E E (H (:Z) W, (3, K;) in a/Ki>
sent neMs, yeMs, =1
rzszl eM, Dy, KpeM,, s,
4 14
= > > 2o [ weea by [] a
SENfl neMs, yeMs, =1 =1
252 keMy . KeeM,, g,

Now, we can expand the
. eW(a+b)—W(a) —1:

exponential to obtain

s,b
¢
_ 1 , _
- E Z ) H Z WTi(|i)((a+b)|i - a'i) -s,b
>1 7 reNt i=l NyeM,,
¢ ¢
= 7 Z Z Z +(9) .H(s;) W, (k) by, s H a,
€21 7 rsent yeMa yeMs, i=1 i=1
r>s>1 KleM,.l,Sl KZEMW—W
¢
- Z Z Z Qrs(ky,-kg,b) H ay,
>1 F,SGNZ KleMrl—sl KZEM"‘(Z*SE i=1
where
1 ¢
£(9) 71 Z Z . H (:2) Wi, (95 K;) in sy mizsi>l,i=le L
Qrsteymweb) = neMs  yeMs, =1 .
0, otherwise

Integrating,

/ - WD) ~W(a) _

=22 X

£>1 r,seN? KeM

1
£>1 r,seN* Kle/\/lr1

=Y > RE(H

£>1 r,seNt

15y f(D) dusw)

D

¢
/Qrs(Klv"'thb) J(0) dusw) H ay,
=1

—s1 KI{EMT[—SZ
4
§ Res(f) ke, x0) H Ay,
—s1 Kle/\/lw_sg i=1
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That s,

R(H=D_ D R(H.

£>1 r seN¢

3. An Archetypical Bound and “Naive Power Counting”

Fix a complex, skew symmetric matrix = (Sij) of ordern and an even Grassmann

polynomial
W(a) = Z Z Wi-(ja,,0r) Gy * 0 @,y

r>0 ju,dr
where W.(j1,---,5,) is an antisymmetric function of its argumemts; ,---,j,. <n that vanishes
identically when-is odd. In this section we introduce a family of normsX(@a, - - - , a,,)
and then derive an archetypical bound on

R(H=D D R
£>1 r,seN¢
for every f in A(as, - - -, a,). Recall that
14

RE(H= >~ > Rs(Hwwo [[an

KieMy  KpgeMy, im1
for all r, s € N with the conventiort = r — s, where
1 £
Rrs(f)(Klv"'yKE) =+ 67' Z Z / : H (Zz)WTi(JivKi) in s f(b) dMS
QeMs,  yeMs,, i=1
WhenriZSiZ:L, 7 = 1, N ,E, and RS(f)(Kl-,'“yKe) = 0 otherwise. The Sigﬂ: = 19 is
4
given by +(5) = H (,1)5i(5i+1+"~+s£) )

=1
Afirst prerequisite for introducing an appropriate family of norm&\da;, - - - , a,,)
is to define the “ £ norm” |ju||; and the “ mixed E, L norm” ||u||1 - of a function

UGi,++,4) ON{1,--,n}" Dy
ula= " (UG-

Jidr

and

Ju

Loo= SUP  SUp Z Z (VG2 PR A ey 9 |
i=1,---,r j;€{1,---,n} G, dio1 Jivlyeade
If u@s,--.4-) Is @an antisymmetric function of its arguments, then

Uliee = sup Y [UGiiorir)

(bt g

For example,
1S

1,00 = SUp |Sz|
i€{l,---,n} 27: !
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Remark 3.1.Let W, -,j-) be a function o{1,---,»}" and set

1
Altugy, 4. = 0 Z sgner) m-UGa, ,5.),
" wEeS,

where - UGy, jr) = U(irqa,-jrm). Observe thatiz-ul|y = |Jul|; for all 7 € S, and
consequently,

1
IAtulls < = > -yl = [ulls-
" wEeS,

Thatis, ||Altu]|s < |lull1 . Similarly, ||Altu]|1,cc < |JUll1,00-

Proposition 3.2 (Tree Bound). Let  f(ry,-hm)  aNd w(G.Ky) = w0, ki kie,)
i1=1,---,¢, be antisymmetric functions of their arguments with> ¢. Let
14 n
Tepwd = Y |fomna ] (Z E |Ui(j7Kz:)‘)-
hi, sl =1 j=1
Then,
14
Tl < 11 T 1SN0 lullaeo-
=1
Proof. We have
HT”l: Z |T(K1,"'7Kz)|
Ky, Kp
4 n
= > > Mfew-rl ] (Z|Shm‘ ui(j,Ki))
Ki,---Kp hl)"'7h7n =1 j:l
14 n 4
< > el TT (3 18nal) TT Il
ha,ee o =1 5=l i=1
4 14
< >0 Afenena [ 1SIee JT ol
hi,-hm i=1 i=1

L
1l T 1S nee llusllz,cc-
=1

O

A second prerequisite for introducing a family of norms&fa,, - - - , a,,) that “cor-
rectly measures” the size of R(is to choose a nondecreasing functibron N and a
A > 0 satisfying the

Hypothesis 3.3. For all multi indicesi andy,

o 2(n1+191) <
‘ /a. tay s dﬂs‘ < (A NI
o, [ > .
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The form of this hypothesis is motivated by two examples.

Example 3.4 (Global Factorial)For any complex, skew symmetric matisx= (Sij),

the bound
| FT(UEREED) <
‘/m Cay s dus‘g TN ;<
0, R

holds for all multi indices anda. The proof of this crude inequality is by induction on
13. Supposey = 0. If 1 = {i1,--,i,.}, then

/ a dug = { Pf(Sik,ig) , riseven

0, ris odd,

where PI(SI»W) is the Pfaffian of the matrix with elements,;, , k,¢=1,---,7. We
have

r

’ /al d,uS‘ < Z ‘gklu.kT‘ ‘Slkllkz‘ |S’ikr71ik,.

k1, kr=1
T
1
[ (A N
o0
k1, kp=1
=152 .

Supposey > 0. Integration by parts with respectat@1 gives

/a. Day s duSZ/maﬁ dugs

— 11 b #

=D /ajlal @ gy dhbse
I

— 11 (-1 q. . #

=0 Y e S /al\w}aJ\{m dyiss
=1

I
=" Z 0" S, /al\m} Sy gy s dis.
=1

Our induction hypothesis implies that

1 —
‘ /al\m} SAn gy vs d/JS’ < ||5||20(“MJ‘ 2 (1-2!

foreach? =1,---, i|. Now,

I
/ai\{m Dangyy s dps

‘ /a| tayis d,uS" < Z |Sj1iz‘
=1
1]

< ISI2=2 -t S Sy,
/=1

< [ -t 1]
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This “perturbative bound” is obtained by ignoring all potential cancellations between

the at mosti|! nonzero terms appearing in Pfaffian equa/th. a? dugt .

Example 3.5 (Gram’s Inequality)Suppose that = (Sij) is a complex, skew symmet-
ric matrix of the form

_( 0 X
5= (—zt 0) ’
whereX = (Eij) is a matrix of order;. Suppose, in addition, that there is a complex
Hilbert spaceft, elements;, w; € H,i=1,---, %, and a constank > 0 with

Xij = (vi, W)y

and A
1
[vill# s llw;lln < (5)2
foralli,j=1,---,Z. Then, the “nonperturbative bound”

L(+1a1)
’/m;aj;s dus‘g A <
0, 13 > |1

holds for all multi indices anda. The proof is presented in the Appendix.

Now, let

f@)=>" f™(a)

m>0
be a Grassmann polynomial X(as, - - - , a,,) where, for eachn > 0,
f(m)(a) = Z fm(jl-,'“,jm) aj, - aj,,
J1yedm

and the kernef,, ¢1,--.4) IS @n antisymmetric function of its arguments. Fix a complex,
skew symmetric matrix¥ = (Si ) of ordern satisfying Hypothesis 3.3. We recall

Definition 1.4. For all o > 2, the “external” and “internal” naive power counting

norms|| f|l. and||| f|||. of the Grassmann polynomigl{a) are

e = 30 1F0a = 3 0™ A | fnlla

m>0 m>0

and

— m, — l( ’_2)
e = S 1A = 3 ™ it A2 o

m>0 m>0
By the triangle inequality,

RO <Y S IR <> S 3 [RS()

£>1 r,seN¢ m>0 £>1 r,seNt

o

and consequently,
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RO <> > > IRSUE)a

m>1 =1 rscN¢

since, RS(f™) = 0 for allr, s € N* when/ > m. Furthermore

I4 I4
m 2(ri—si) 13 (ri—si) -
IR o = al B0 AREO a R (o)

since,
RSU™) = S AR s(f™) i) gy -
J1ydm
With M = (ry—s1)+--+(r,—s,). Altogether,
£
Z(T’z 81) 13(ri—si) -
IR <D Z > a AP Res(f )1
m>1 £=1 r seN*

Proposition 3.2 will now be used to obtain a bound on the ngiRm (f™)||, of the
kernel Rs(f™) (s, k,).

Lemma 3.6. LetH, 3, ---, 3, be multi indices withH| = m > £. Then,

L
‘ / : H&Ji s Qy d,us‘ < M(H, &, -, %) Z H |Shu Jll
i=1

1<pg,-pup<m  ¢=1
pairwise
different

where
Y
M(H, 3, -, 3) = sup / QA (g g} - Ha%\{jil} s dus ’
1<Spg, o pg<m i=1
pairwise

different

Proof. For convenience, séf = j;1, 4

-, £. By antisymmetry, the integrand can
be rewritten so that

4
ﬁ

=1
Now, integrate by parts successively with respect?ﬂtgq- e a?ﬁ, and then apply Leib-
niz's rule to obtain
¢ ¢ n 9 ¢
[t ems (S 5o )] it
i=1 =1 m=1 m i=1
¢ ¢
= Z + HSkih“i / aH\{hul'“"hw} Hai‘\{ki} d,u,sn
1<pg, pg<m i=1 i=1
Gierent

since
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14 n P ) 9
(X $um g ) o= 3 (L Sum, o) o

1<pg,pp<m
pairwise
different

¢
E + Hsklh,ﬁ A\ hpug gy

1<pg, o up<m =1
pairwise
different

It follows immediately that

¢
‘/aH :Ha% s duS’
i=1
¢

4
< E H |Shuiki| ’/QH\(h,ul‘---,h,ug} :Haa]i\{ki} s dus
i=1

1<pg,-pps<m 4=1
pairwise
different

4

< M(H7~317"'7J/z) Z H |Sh/.b13k7i|'

1<pg,ppes<m ¢=1
pairwise
different

O
Proposition 3.7. Let

@)= D fmline b an, - an,,

h1, - hm

be a homogeneous Grassmann polynomial of degreeheref,, (1,--,h,) iS @an anti-
symmetric function of its arguments. Let.., 3, be multi indices withn > ¢. Then,

¢
’/ 1o s 70 dus’

i=1

m ¢
S 14 (f) M(ma-]l;"';-]é) Z |fm(h1,“‘7hm)| 1:{ |Sh13ji1|a

hi,ham

where M(m, &, -, 3) = sup M(H, &, -, ) .

[H|=m

Proof. For convenience, sét = j;1, ¢ =1, -- -, £. By the preceding lemma,

)4 )4
‘/ o s 0 dus‘ <Y ] M(H, 3, ,9) Y 11 Isn,.x
=1 =1

1<pg, - up<m
pairwise
different

J4
SMGm,a,,0) Y fmel D ] 1Sk, k-
i=1

1<pg, s ppS<m
pairwise
different

|H|=m

|H[=m
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Observe that, by the antisymmetry 6f,

> | fm] Z H | Shy, i

[H]=m. 1<pg,pp<m =1
pairwise
different
£
= Z § : |fm(hh 7hm,)| || |Shu»1€i|
i
1<pg,- - ng<m  hy,- vy
pa|rw|se
different

= Z Z | frnsoein)]|

1<pg,- [J.e<m h17

pairwise
different
m L
= [l (€> E ‘fm(hlf'whm)‘ H
R, hom =1

O

Proposition 3.8. Let
f(m)(a) = Z fm(hlv"'7h7n,) Apy * " Gp,,
Ry, hom

be as above. Lat,s € N’ with m > £. Then, theL? norm ||R:s(f™)
Res(f“)(ks, k) is bounded by

(@)

|1 of the kernel

Jlzec),

0
m
IRt < (7} ) Moo 1l
i=1
where M(m,s) = sup M(m, %, -, %) .

\J\bq
=1, 0

(b)
IR (£ |2

[ 14
m 1 m — >(ri—s;) - l(Ti—)
< B(m-—) (é) i A (T € st A7 w,
=1

l,oo)

when, in addition, Hypothesis 3.3 is satisfied.
Proof. To verify (a), set

ui(j,Ki) = E Wi, (.7, ;) -

|J;\:si—l
i=1,---,£

foreachi = 1,---, ¢. By construction,||u;||1,c0 = |lws; i=1---,¢. Also, set

J4 n
Teowd = Y |fmtanl ] (Z |Shis] Iui(j,K,-)I)

hy,-hm =1 j=1
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By Proposition 3.7,
l4

m
| Res(f)sko) | < Men, s (] () Tocwo)
¢

i=1

since,

4
Z M(m,-]l, ..4,.][) Z |.fm(h1,“'7hm)| H |Shz:jz:1| |Wri(Ji,K,L)
=1

13 =5 ha,- b
Q=100

J4 n
SMen,9 Y Y [ fmlaehn)] H(ZISM

=1 j=1

N———

|Wri (jv-],liv Ki)

[ 1=s; =1 hi,hm

§=1,-0,0

= M(m,S) Z ‘fm(hlw""hm)

Ry hom

n

é (Z |Shij

J=1

ui (7, Ks)

).

It follows from Proposition 3.2 that
14

Rl < (') o (T €9) 17l

=1

1,00

4 V4
< (m) Mom s (TT €9) Imlls TT IS0 e,
i=1

T\ i=1

For (b), simply observe that, by Hypothesis 3.3,

£ 1

. . 3

’ /CLH\{JL“F..-,JLW} -HaJi\{jﬂ} .S dus‘ < d)(m_e) A
i=1

for any multi indicesd, 3, -, 3, with |H| = m > ¢ and any pairwise different sequence of
indices 1< pg, - - -, e < m. Consequently,

(- o1-2)

(m +ié(s,, —2)) .

1
M(m,9= sup sup M(H, &, %) < O(m—r) AZ
il=s;  [H;|=m
i 4

iz,

O
We have developed all the material required for a useful bound on the operator R.
For the rest of this section we assume

Lemma 3.9. Let

f(m)(a’) = Z fer(hl»""hwz) Apy - Ap,,

h1,+hm

be as above and let. > /. Then, for allae > 2,
¢

> IREU ) < Dlm—e) (S [[[W][E 01

r,seN¢
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Proof. By Proposition 3.8 (b),

IR™(f") |
< a( _é(h:*sz‘)) A%/‘é(ri*&)

Restr s < 00 (] ) A8 Ll P

14 L(p _
where, for convenienc&s = [ (01) o™ =% |51 AT I, ||1,00- However,
=1

m 1 1 /m 1 -
(7) a2 1l = 2 (7) @™ A Ul < 17

‘ am
whena > 2, and consequently,

S IR < D) (70 S Prs

r,SEN¢ rizai21
§=1,-0 .0
Observe that
o r—s %(r—z) ‘ 14
Z Prs = Z () o [1S1l1,00 A ”Wr”l,oo < |||W|||a+l
T,i_%sizél r>s>1

since

1 Lp_
> 00 ke A Wl £ D ()@ st A2 W1

r>s>1 r>s>0
— r %(T*Z)
=) @) 1Sl AT [We 1,00
r>0
= |[|W][[a+1-
Therefore,

> IR < Dlm—o) (S [[[W]][E02-

r,seN¢

O

We can now prove

Theorem 1.8. Suppose |||W/[||a+1 < 1. Then, for all polynomialg in the Grassmann
algebraA(ay, - -, ay),

IRNNa <20n) [[IW][lars [|f]la-

Proof. By Lemma 3.9,
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NE

ROL<Y S S IR
m>1 r,seN¢

~
1

1

<o) o 1 > W[50
m>1 =1

<o a —————— |||W|||a

<20(n) [[flla [[[W[lla+
O

Corollary 3.10. Suppose (1+e(n)) [||W|l|..2 < 1. Then, for all polynomialsf in the
Grassmann algebra(ay, - - -, a,),

1

_ py-1
@R Do < T g T e

Lemma 3.11. For all Grassmann polynomialg in A(ay, - - -, a,),

| / #(@) dus| < o) [1fla

Proof. As usual, write

f@)=>" fa),

m>0
where, for eachn > 0, f™(a) = >  fiGiim) aj, ---aj, and the kernel

s Im

J1
fmG1,-.dm) IS @n antisymmetric function of its arguments. Then, by Hypothesis 3.3,

[ 1@ dusl < 3 | [ 5@ dus|

m>0

<D D fmtaein)l |/a.71"'ajm dps|

m20 ji,oJm

1
< Z Z ‘fm(]'lv“-,jm)| D(m) Azm

m20 ji,-,jm

1
< lfmlls Demy @™ A2
m>0

<o || flla-
O
Recall that the correlation functior$,,(1,--.5m), m > 0, corresponding to the

interaction W¢) and the propagatdf = (S;;) are given by

1
Smn,dm) = Z / Qjy - Ay W@ dps(a).
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Theorem 1.9. Suppose (1+o(n)) |||W||l.+2 < 1. Then, for eachn > 0 and all sequences
of indicesi < ji,-,jm < n,

(n)
Sty im)| <
St < 35 G0y [WilToms

1
5MmM
m A2 .

Proof. Fix 1<ji,-,jm <n and rewrite the monomial, = a;, - - - a;,, as

A= > A(Gky gy - Oy o) Gy -
k1, km
Then,
1 1
laslla = @™ A" AR(S. ;- 6.5, )11 < o™ AP

By Theorem 1.3, Lemma 3.11 and Corollary 3.10,

(St = | / (1 Ry (a) dys|

®(n) (L -R)*(a)a
®(n)
1—20(n) [|[W]|[a+s

IN

IN

sl

so that
®(n)

—im)] <
1-2d(n) [||W]|[a+1

1
5M
a™ A’

| S G-

O

Appendix: Gram’s Inequality for Pfaffians

Proposition. Suppose that = (.5;;) is a complex, skew symmetric matrix of the form

s=(% %)

whereXx = (Eij) is a matrix of order3. Suppose, in addition, that there is a complex
Hilbert spaceft, elements);, w; € H,i=1,---, 3, and a constan > 0 with

Tij = (Vi wj)

and
loille Twlhe < ()
forall 4,5 =1,---,%. Then, for all multi indices ands,
| [ oaus| <
and

2(11+121)
‘/a.:aj:s dMS‘S{AZIJ’ <
0, 19> 1.
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Proof. To prove the first inequality, suppose ---<i,, and observe that

/ Qi - a, dug = Pf(Sikie),

where PI(SZ-,QZ-[) is the Pfaffian of the matrix with elements,;, , k£,¢=1,---,r, given
by

o, 1<iy, i <2
Sii, = i -3 1§ik.§% and %<‘ig§n
— Zi[ =2 s F<ip<n and Ki, <%
o, 2 <ip<n and 2 <ig<n.

More concisely,
0O U
/ail"'air dﬂS:Pf(iUt o)a
whereU = (Uyy) is thep = max{r|i.<2} by r — p matrix with elements
Ukt = Ziy ige,—3 = (Vi » wz‘g+p—%>H .
By direct inspection,

0 U\N_]JO, pFr—p
Pt (—Ut 0 ) - { (—1)%[)([)_1) det((]) ,  p=r—p.

If » = 2p, then by Gram’s inequality for determinants
’ / Qiy - A, dus‘
_ - Ao
= |det( (Ui Wi, ) )| < T Il i3l < ()"
k=1

Finally, by antisymmetry,
ALy
| [ ads] < )
for any multi index.

To prove the second inequality, set

1 (0 X
x (2 E)'
The matrix
0 0 0 X
0 S 0 0 -t 0
ﬁ: =
$=(5 5)=| 0 = o =
-t 0 =3t 0

is conjugated by the permutation matrix

1 0 O
1
0
0

Rooo

0 0
0 1
0 0
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to
0 0 0 %

( 0, Eﬁ)_ 0 0 T %

- o)l 0o -t 0 O

-t —_* 0 0

Also, define the vectors, w?, i = 1,- - -, n, in the Hilbert spacé{ ¢ H by

s _ [ Ow) 1<i<2
v; = ) ,
(vivi),, % <i<n
[ wi0), 1<i<i
w; =
’ Ow;), %<i<n
Then, .
— /o #
Eij = <vi , wj>H€BH
and

1
[0} [ Hane s 1wllnan < A2
forall 4,5 = 1,---,n. The second inequality has now been reduced to the first for the

matrix
o xf
(—EW 0)’

the Hilbert spacé{ & H and the vectors}, w!, i=1,---, n. O

Acknowledgementlt is a pleasure to thank Detlef Lehmann for many stimulating discussions.

Note added in proof. After this article was accepted for publication, we were informed
that Abdesselam and Rivasseau propose a combination of Gram’s inequalitseasd
forests and jungles: A botanical garden for cluster expansi@mstructive Physics,
Lecture Notes in Physie®i6, Berlin—Heidelberg—New York: Springer-Verlag, 1995, for
controlling fermionic systems.
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