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Abstract: We determine the quantum automorphism groups of finite spaces. These are
compact matrix quantum groups in the sense of Woronowicz.

1. Introduction

At Les Houches Summer School on Quantum Symmetries in 1995, Alain Connes posed
the following problem:What is the quantum automorphism group of a space?Here the
notion of a space is taken in the sense of noncommutative geometry [4], hence it can be
either commutative or noncommutative.

To put this problem in a proper context, let us recall that the notion of a group arises
most naturally as symmetries of various kinds of spaces. As a matter of fact, this is how
the notion of a group was discovered historically. However, the notion of a quantum
group was discovered from several different points of view [10, 11, 8, 28, 29, 30, 31, 9],
the most important of which is to view quantum groups as deformations of ordinary
Lie groups or Lie algebras, instead of viewing them as quantum symmetry objects of
noncommutative spaces. In [13], an important first step was made by Manin in this
latter direction, where quantum groups are described as quantum symmetry objects of
quadratic algebras.

In this paper, we solve the problem above for finite spaces (viz. finite dimensional
C∗-algebras). That is, we explicitly determine the quantum automorphism groups of such
spaces. These spaces do not carry the additional geometric (Riemannian) structures in
the sense of [4, 5]. The quantum automorphism groups for the latter geometric finite
spaces can be termed quantum isometry groups. At the end of his book [4], Connes
poses the problem of finding a finite quantum symmetry group for the finite geometric
space used in his formulation of the Standard Model in particle physics. This problem
is clearly related to the problem above he posed at Les Houches Summer School. We
expect that the results in our paper will be useful for this problem. As a matter of fact,
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the quantum symmetry group for the finite geometric space of [4] should be a quantum
subgroup of an appropriate quantum automorphism group described in this paper. The
main difficulty is to find thenatural quantum finite subgroup of the latter that deserves
to be called the quantum isometry group.

This paper can be viewed as a continuation of the work of Manin [13] in the sense that
the quantum groups we consider here are also quantum symmetry objects. However, it
differs from the work of Manin in three main aspects. First, the noncommutative spaces
on which Manin considers symmetries are quadratic algebras and are infinite; while
the spaces on which we consider symmetries are not quadratic and are finite. Second,
Manin’s quantum groups are generated by infinitely many multiplicative matrices and
admits many actions on the spaces in question, one action for each multiplicative matrix
(for the notion of multiplicative matrices, see Manin [13]); while our quantum groups are
generated by a single multiplicative matrix and they act on the spaces in question inone
natural manner. Finally, Manin’s quantum groups do not give rise to natural structures
ofC∗-algebras in general (see [18]); while our quantum groups, besides having a purely
algebraic formulation, are compact matrix quantum groups in the sense of Woronowicz
[30]. Consequently we need to invoke some basic results of Woronowicz [30]. Loosely
speaking, Manin’s quantum groups are noncompact quantum groups. But to the best
knowledge of the author, it is not known as to how one can make this precise in the
strict sense of Woronowicz [32]. On the other hand, it is natural to expect that quantum
automorphism groups of finite spaces are compact quantum groups without knowing
their explicit descriptions in this paper.

The ideas in our earlier papers [19, 20, 18] on universal quantum groups play an
important role in this paper. Note that finite spaces are just finite dimensionalC∗-
algebras, no deformation is involved. Moreover, as in [19, 20, 18], the quantum groups
considered in this paper areintrinsic objects, not as deformations of groups, so they are
different from the quantum groups obtained by the traditional method of deformations
of Lie groups (cf. [8, 9, 29, 31, 12, 16, 23]).

We summarize the contents of this paper. In Sect. 2, we recall some basic notions
concerning actions of quantum groups and define the notion of a quantum automor-
phism group of a space. The most natural way to define a quantum automorphism group
is by categorical method, viz, to define it as a universal object in a certain category of
quantum transformation groups. Sections. 3, 4, 5 are devoted to explicit determination of
quantum automorphism groups for several categories of quantum transformation groups
of the spacesXn,Mn(C), and⊕m

k=1Mnk
(C), respectively. Though the main idea in the

construction of quantum automorphism groups is the same for each of the spacesXn,
Mn(C) and⊕m

k=1Mnk
(C), the two special casesXn andMn offers interesting phenom-

ena in their own right. Hence we deal with them separately and begin by considering the
simplest caseXn. In Sect. 6, using the results of Sects. 3, 4, 5, we prove that a finite space
has a quantum automorphism group in the category ofall compact quantum transfor-
mation groups if and only if the finite space isXn, and that a measured finite space (i.e.
a finite space endowed with a positive functional) always has a quantum automorphism
group.

A convention on terminology: In the following, we will use interchangeably both
the term compact quantum groups and the term Woronowicz HopfC∗-algebras. The
meaning should be clear from the context (cf. [19, 20, 23, 18]).

Notation. For every natural numbern, and every *-algebraA, Mn(A) denotes the *-
algebra ofn× n matrix with entries inA. We also useMn to denoteMn(C), whereC
is the algebra of complex numbers. For every matrixu = (aij) ∈ Mn(A), ut denotes
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the transpose ofu; ū = (a∗
ij) denotes the conjugate matrix ofu; u∗ = ūt denotes the

adjoint matrix ofu (this defines the ordinary *-operation onMn(A)). The symbolX(A)
denotes the set of all unital *-homomorphism fromA to C. Finally,Xn = {x1, · · · , xn}
is the finite space withn letters.

2. The Notion of Quantum Automorphism Groups

Part of the problem of Connes mentioned in the introduction is to make precise the notion
of a quantum automorphism group, which we address in this section. First recall that the
usual automorphism groupAut(X) of a spaceX consists of the set of all transformations
onX that preserve the structure ofX. A quantum group is not a set of transformations
in general. Thus a naive imitation of the above definition ofAut(X) for quantum au-
tomorphisms will not work. However, we recapture the definition ofAut(X) from the
following universal property ofAut(X) in the category of transformation groups ofX:
If G is any group acting onX, then there is a unique morphism of transformation groups
fromG toAut(X). This motivates our Definition 2.3 of quantum automorphism groups
below.

The automorphism groups of finite spaces are compact Lie groups (e.g.Aut(Xn) =
Sn, the symmetric group onn letters, andAut(Mn) = SU (n)). For this reason, it is
natural to expect that the quantum automorphism groups of such spaces are compact
quantum groups, viz., Woronowicz HopfC∗-algebras. We will consider only such quan-
tum groups in this paper. For basic notions on compact quantum groups, we refer the
reader to [30, 19, 20]. Note that for every compact quantum group, there corresponds a
full Woronowicz HopfC∗-algebra and a reduced Woronowicz HopfC∗-algebra [1, 22].
We will assume that all the Woronowicz HopfC∗-algebras in this paper are full, as
morphisms behave well only with such algebras (see the discussions in III.7 of [22]).
LetA be a compact quantum group. Letε be the unit of this quantum group (or counit
of the full Woronowicz HopfC∗-algebra). LetA denote the canonical dense Hopf *-
subalgebra ofA consisting of coefficients of finite dimensional representations of the
quantum groupA.

Definition 2.1. [cf. [1, 3, 14]] A left action of a compact quantum groupA on aC∗-
algebraB is a unital *-homomorphismα fromB toB ⊗A such that

(1) (idB ⊗ 8)α = (α⊗ idA)α, where8 is the coproduct onA;
(2) (idB ⊗ ε)α = idB ;
(3) There is a dense *-subalgebraB of B, such thatα restricts to a right coaction of

the Hopf *-algebraA onB.

We also call(A,α) a left quantum transformation group ofB. Let(Ã, α̃) be another
left quantum transformation group ofB. We define amorphism from(Ã, α̃) to (A,α) to
be a morphismπ of quantum groups from̃A toA (which is the same thing as a morphism
of Woronowicz HopfC∗-algebras fromA to Ã, see [20]), such that

α̃ = (idB ⊗ π)α.

It is easy to see that left quantum transformation groups ofB form a category with
the morphisms defined above. We call it thecategory of left quantum transformation
groupsofB.
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Our definition of an action of a quantum group above appears to be different from
the one in [14], but it is equivalent to the latter. More precisely, conditions (2) and (3)
above are equivalent to the following density requirement, which is used in [1, 3, 14]
for the definition of an action:

(I ⊗A)α(B) is norm dense inB ⊗A,

but they are more natural and convenient for our purposes. It is not clear whether the
injectivity condition onα imposed in [1, 3] is implied by the three conditions in the
definition above. Our definition coincides with the notion of actions of groups on spaces
when the quantum groupA is a group andB is an ordinary space (simply by reversing
the arrows).

The above definition is commonly called theright coactionof a unital HopfC∗-
algebra. Note that for the HopfC∗-algebraA = C(G) of continuous functions over a
compact groupG, the notion of right coaction ofA corresponds to the notion of left action
of G on aC∗-algebraB. For this reason, when we are dealing with a compact quantum
groupA, we call a right coaction of the underlying Woronowicz HopfC∗-algebra ofA
a left action of the quantum groupA. In the following, we will omit the wordleft for
actions of quantum transformation groups. This should not cause confusion.

Definition 2.2. Let (A,α) be a quantum transformation group ofB. An elementb ofB
is said to befixed under α (or invariant under α) if

α(b) = b⊗ 1A.

Thefixed point algebraAα of the actionα is

{b ∈ B | α(b) = b⊗ 1A}.

The quantum transformation group(A,α) is said to beergodic if Aα = CI. A (contin-
uous) functionalφ onB is said to beinvariant under α if

(φ⊗ idA)α(b) = φ(b)IA

for all b ∈ B. For a given functionalφ onB, we define thecategory of quantum trans-
formation groups of the pair (B, φ) to be the category with objects that leave invariant
the functionalφ. This is a subcategory of the category of all quantum transformation
groups.

Besides the two categories of quantum transformation groups mentioned above, we also
have the category of quantum transformation groups of Kac type forB, which is a full
subcategory of the category of quantum transformation groups ofB.

Definition 2.3. LetC be a category of quantum transformation groups ofB. Thequan-
tum automorphism group ofB in C is a universal final object in the categoryC. That
is, if (Ã, α̃) is an object in this category, then there is a unique morphismπ of quantum
transformation groups from(Ã, α̃) to (A,α).

Letφ be a continuous functional on the algebraB. We definequantum automor-
phism group of the pair (B, φ) to be the universal object in the category of quantum
transformation groups of the pair(B, φ) (cf. Definition 2.1).
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From categorical abstract nonsense, the quantum automorphism group ofB (in a
given category) is unique (up to isomorphism) if it exists. We emphasize in particular
that the notion of a quantum automorphism group depends on the category of quantum
transformation groups ofB, not only onB. As a matter of fact, for a finite spaceB other
thanXn, we will show in Theorem 6.1 that the quantum automorphism group does
not exist for the category of all quantum transformation groups. In the subcategory of
quantum transformation groups ofB with objects consisting of compact transformation
groups, the universal object is precisely the ordinary automorphism groupAut(B), as
mentioned in the beginning of this section.

We will also use the following notion, which generalizes the usual notion of a faithful
group action.

Definition 2.4. Let (A,α) be a quantum transformation group ofB. We say that the
actionα is faithful if there is no proper Woronowicz HopfC∗-subalgebraA1 ofA such
thatα is an action ofA1 onB.

If (A,α) is a quantum automorphism group in some category of quantum transfor-
mation groups onB, then the actionα is faithful. We leave the verification of this to the
reader as an exercise.

3. Quantum Automorphism Group of Finite SpaceXn

By the Gelfand–Naimark theorem, we can identifyXn = {x1, · · · , xn} with theC∗-
algebraB = C(Xn) of continuous functions onXn. The algebraB has the following
presentation,

B = C∗{ei | e2
i = ei = e∗

i ,

n∑
r=1

er = 1, i = 1, · · · , n}.

The ordinary automorphism groupAut(Xn) = Aut(B) of Xn is the symmetric group
Sn onn symbols. We can put the groupSn in the framework of Woronowicz as follows.
As a transformation group,Sn can be thought of as the collection of all permutation
matrices

g =

 a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 .

Wheng varies inSn, theaij ’s (i, j = 1, · · · , n) are functions on the groupSn satisfying
the following relations:

a2
ij = aij = a∗

ij , i, j = 1, · · · , n, (3.1)
n∑

j=1

aij = 1, i = 1, · · · , n, (3.2)

n∑
i=1

aij = 1, i = 1, · · · , n. (3.3)

It is easy to see that the commutativeC∗-algebra generated by the above commutation
relations is the Woronowicz HopfC∗-algebraC(Sn). In other words, the groupSn is
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completely determined by these relations. The following theorem shows that we have
obtained much more: If we remove the condition that theaij ’s commute with each other,
these relations define the quantum automorphism group ofXn.

Theorem 3.1. LetA be theC∗-algebra with generatorsaij (i, j = 1, · · · , n) and defin-
ing relations (3.1)–(3.3). Then

(1) A is a compact quantum group of Kac type;
(2) The formulas

α(ej) =
n∑

i=1

ei ⊗ aij , j = 1, · · · , n

defines a quantum transformation group(A,α) ofB. It is the quantum automorphism
group ofB in the category of all compact quantum transformation groups (hence
also in the category of compact quantum groups of Kac type) ofB, and it contains
the ordinary automorphism groupAut(Xn) = Sn (in fact,{(χ(aij)) | χ ∈ X(A)}
is precisely the set of permutation matrices).

Because of (2) above, we will denote the quantum group above byAaut(Xn). We
will call it the quantum permutation group onn symbols.

Proof. (1) It is easy to check that there is a well-defined homomorphism8 fromA to
A⊗A with the property

8(aij) =
n∑

k=1

aik ⊗ akj , i, j = 1, · · · , n.

Using (3.1)–(3.3), it is also easy to check thatu = (aij) is an orthogonal matrix. Hence
(A, u) is a quantum subgroup ofAo(n), so it is of Kac type (cf. [19, 20, 18]).

To prove (2), note that the generators{ei}n
i=1 form a basis of the vector spaceB, so

an action ˜α of any quantum group̃A onB is uniquely determined by its effect on the
ei’s:

α̃(ej) =
n∑

i=1

ei ⊗ ãij , j = 1, · · · , n.

The condition that ˜α is a *-homomorphism together with the equations

e2
i = ei = e∗

i , i = 1, · · · , n
shows that the ˜aij ’s satisfy the relations (3.1). The condition that ˜α is a unital homo-
morphism together with the equation

n∑
i=1

ei = 1

shows that the ˜aij ’s satisfy (3.2). Let ˜u = (ãij). Then we have

ũũ∗ = In.

The condition in Definition 2.1 (2) means that

ε(ãij) = δij , i, j = 1, · · · , n.



Quantum Symmetry Groups of Finite Spaces 201

By condition (3) of Definition 2.1, the ˜aij ’s are inÃ. Hence by Proposition 3.2 of [30], it
follows thatũ = (ãij) is a non-degenerate smooth representation of the quantum group
Ã. In particular,ũ is also left invertible,

ũ∗ũ = In.

This implies that the ˜aij ’s satisfy the relations (3.3). From these we see that (A,α) is a
universal quantum transformation group ofB: there is a unique morphismπ of quantum
transformation groups from (̃A, α̃) to (A,α) such that

π(aij) = ãij , i, j = 1, · · · , n.
It is clear that the maximal subgroup of the quantum groupA is Sn, that is, the set

{(χ(aij)) | χ ∈ X(A)} is precisely the set of permutation matrices. �
Remarks.(1) For each pairi, j, letAij be the groupC∗-algebraC∗(Z/2Z) with gener-
atorpij , p2

ij = pij = p∗
ij (i, j = 1, · · · , n). Then theC∗-algebraA is isomorphic to the

following quotientC∗-algebra of the free product of theAij ’s:

(∗n
i,j=1Aij)/ <

n∑
r=1

prj = 1 =
n∑

s=1

pis, i, j = 1, · · · , n > .

(2) Letφ be the uniqueSn-invariant probability measure onXn. Then it is easy to see
thatφ is a fixed functional under the action of the quantum groupAaut(Xn) defined in
Theorem 3.1. HenceAaut(Xn) is also the quantum automorphism group for the pair
(Xn, φ).

(3) Let Q > 0 be a positiven × n matrix. LetAQ
aut(Xn) be theC∗-algebra with

generatorsaij (i, j = 1, · · · , n) and the defining relations given by (3.1)–(3.2) along
with the following set of relations:

utQuQ−1 = In = QuQ−1ut, (3.4)

whereu = (aij). Then it not hard to verify that (AQ
aut(Xn), α) is a compact quantum

transformation subgroup of the one defined in Theorem 3.1 (hence theaij ’s also satisfy
the relations (3.3)), hereα is as in Theorem 3.1. Note also forQ = In, AQ

aut(Xn) =
Aaut(Xn).

4. Quantum Automorphism Group of Finite SpaceMn(C)

Notation. Let u = (akl
ij )ni,j,k,l=1 and v = (bkl

ij )ni,j,k,l=1 with entries from a *-algebra.
Defineuv to be the matrix whose entries are given by

(uv)kl
ij =

n∑
r,s=1

akl
rsb

rs
ij , i, j, k, l = 1, · · · , n.

Let ψ = Tr be the trace functional onMn (soφ = 1
nψ is the uniqueAut(Mn)-

invariant state onMn). TheC∗-algebraMn has the following presentation:

B = C∗{eij | eijekl = δjkeil, e
∗
ij = eji,

n∑
r=1

err = 1, i, j, k, l = 1, · · · , n}.
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Theorem 4.1. LetA be theC∗-algebra with generatorsakl
ij and the following defining

relations (4.1)–(4.5):

n∑
v=1

akv
ij a

vl
rs = δjra

kl
is , i, j, k, l, r, s = 1, · · · , n, (4.1)

n∑
v=1

asr
lv a

ji
vk = δjra

si
lk, i, j, k, l, r, s = 1, · · · , n, (4.2)

akl
ij

∗
= alk

ji , i, j, k, l = 1, · · · , n, (4.3)
n∑

r=1

akl
rr = δkl, k, l = 1, · · · , n, (4.4)

n∑
r=1

arr
kl = δkl, k, l = 1, · · · , n. (4.5)

Then

(1) A is a compact quantum group of Kac type;
(2) The formulas

α(eij) =
n∑

k,l=1

ekl ⊗ akl
ij , i, j = 1, · · · , n

defines a quantum transformation group(A,α) of (Mn, ψ). It is the quantum au-
tomorphism group of(Mn, ψ) in the category of compact quantum transformation
groups (hence also in the category of compact quantum groups of Kac type) of
(Mn, ψ), and it contains the ordinary automorphism groupAut(Mn) = SU (n).

We will denote the quantum group above byAaut(Mn).

Proof. (1) It is easy to check that the matrixu = (akl
ij ) as well as its conjugate ¯u = (akl

ij
∗
)

are both unitary matrices, and that the formulas

8(akl
ij ) =

n∑
r,s=1

akl
rs ⊗ ars

ij , i, j, k, l = 1, · · · , n

gives a well-defined map fromA toA⊗A (this is the coproduct). HenceA is a quantum
subgroup ofAu(m) (with m = n2), so it is of Kac type (cf. [19, 20, 18]).

(2) Let (Ã, α̃) be any quantum transformation group ofMn. Being a basis for the vector
spaceMn, theeij ’s uniquely determine the action ˜α:

α̃(eij) =
n∑

k,l=1

ekl ⊗ ãkl
ij , i, j = 1, · · · , n.

The condition that ˜α is a homomorphism together with the equations

eijekl = δjkeil, i, j, k, l = 1, · · · , n
shows that the ˜akl

ij ’s satisfy (4.1). The condition that ˜α preserves the *-operation together
with the equations
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e∗
ij = eji, i, j = 1, · · · , n

shows that the ˜akl
ij ’s satisfy (4.3). The condition that ˜α preserves the units together with

the identity ∑
r

err = 1

shows that the ˜akl
ij ’s satisfy (4.4). The condition that ˜α leaves the traceψ invariant shows

that theãkl
ij ’s satisfy (4.5).

To show that the ˜akl
ij ’s satisfy (4.2), first it is an easy check that

ũ∗ũ = I⊗2
n ,

whereũ = (ãkl
ij )ni,j,k,l=1. By condition (3) of Definition 2.1, the ˜akl

ij ’s are inÃ. Hence by
Proposition 3.2 of [30], we see that ˜u is a non-degenerate smooth representation of the
quantum groupÃ. In particular,ũ is also right invertible,

ũũ∗ = I⊗2
n ,

which means that
n∑

i,j=1

ãkl
ij ã

sr
ji = δkrδls, k, l, r, s = 1, · · · , n.

From these relations and the relations (4.1), (4.3)-(4.5), we deduce that both matrices ˜u
andũt are unitary. This shows that the quantum groupA1 generated by the coefficients
ãkl

ij is a compact quantum group of Kac type. That is, the antipode ˜κ is a bounded
*-antihomomorphism when restricted toA1. Put

v = (bkl
ij ) = (κ̃(ãkl

ij )) = (ãji
lk).

Then in the opposite algebraA1
op (which has the same elements asA1 with multiplica-

tion reserved), thebkl
ij ’s satisfy the relations (4.1), which means that the ˜akl

ij ’s satisfy the
relations (4.2) in the algebrãA.

From the above consideration we see that (A,α) is a quantum transformation group
ofMn, and that there is a unique morphismπ of quantum groups from̃A toA such that

π(akl
ij ) = ãkl

ij , i, j, k, l = 1, · · · , n.
It is routine to check thatπ is the unique morphismπ of quantum transformation groups
from (Ã, α̃) to (A,α).

From the relations (4.1)–(4.5), one can show that each matrix (χ(akl
ij )) (χ ∈

X(Aaut(Mn))) defines an automorphism ofMn by the formulas in Theorem 4.1 (2). This
means that the maximal subgroupX(Aaut(Mn)) is naturally embedded inAut(Mn).
Conversely, it is clear thatAut(Mn) can be embedded as a subgroup of the maximal
subgroupX(Aaut(Mn)) of Aaut(Mn). �

Remark.Consider the quantum group (Au(n), (aij)) (cf. [20, 18]). Putãkl
ij = akia

∗
lj .

Then the ˜akl
ij ’s satisfies the relations (4.1)–(4.5). From this we see that the ˜akl

ij ’s de-
termines a quantum subgroup ofAaut(Mn). Hence the Woronowicz HopfC∗-algebra
Aaut(Mn) is noncommutative and noncocommutative. How big is the subalgebra of
Au(n) generated by the ˜akl

ij ? An answer to this question will shed light on the structure
of theC∗-algebraAaut(Mn).
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Proposition 4.2. LetQ > 0 be a positive matrix inMn(C) ⊗ Mn(C). LetA be the
C∗-algebra with generatorsakl

ij and defining relations given by (4.1), (4.3), (4.4), along
with the following set of relations:

u∗QuQ−1 = I⊗2
n = QuQ−1u∗, (4.6)

whereu = (akl
ij ). ThenA is a compact quantum group that acts faithfully onMn in the

following manner,

α(eij) =
n∑

k,l=1

ekl ⊗ akl
ij , i, j = 1, · · · , n,

and its maximal subgroup is isomorphic to a subgroup ofAut(Mn) ∼= SU (n). Any
faithful compact quantum transformation group ofMn is a quantum subgroup of(A,α)
for some positiveQ.

Proof. First we show thatA is a compact quantum group. Letv = Q1/2uQ−1/2. Then
(4.6) is equivalent to

v∗v = I⊗2
n = vv∗.

Hence theC∗-algebraA is well defined. The set of relations in (4.6) shows thatu is
invertible. We claim thatut is also invertible. For simplicity of notation in the following
computation, letQ̃ = (q̃kl

ij ) = Q−1. Then (4.6) becomes

n∑
k,l,r,s,x,y=1

alk
ij q

kl
rsa

rs
xy q̃

xy
ef = δij

ef =
n∑

k,l,r,s,x,y=1

qij
kla

kl
rsq̃

rs
xya

yx
fe ,

wherei, j, e, f = 1, · · · , n. PutP = (pkl
ij ) andP̃ = (p̃kl

ij ), where

pkl
ij = qlk

ij , p̃kl
ij = qkl

ji , i, j, k, l = 1, · · · , n.

ThenP−1 = P̃ , and the relations (4.6) becomes

utPuP−1 = I⊗2
n = PuP−1ut.

This proves our claim.
Now it is easy to check thatA is a compact matrix quantum group with coproduct

8 given by the same formulas as in the proof of Theorem 4.1(1).
Let (Ã, α̃) be a faithful quantum transformation group ofMn. We saw in the proof

of Theorem 4.1 that there are elements ˜akl
ij (i, j, k, l = 1, · · · , n) in theC∗-algebraÃ

that satisfy the relations (4.1), (4.3) and (4.4). The condition in Definition 2.1 (2) means
that

ε(ãkl
ij ) = δkl

ij , i, j, k, l = 1, · · · , n.
By condition (3) of Definition 2.1, the ˜aij ’s are inÃ. Hence by Proposition 3.2 of [30],
this implies that ˜u = (ãkl

ij ) is a non-degenerate smooth representation of the quantum
groupA. From the proof of Theorem 5.2 of [30], with

Q = (id⊗ h̃)(ũ∗ũ),

we haveQ > 0 andũ satisfies (4.6). The assumption that (Ã, α̃) is faithful implies that
Ã is generated by the elements ˜akl

ij (i, j = 1, · · · , n). This shows that (A,α) is a well
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defined faithful quantum transformation group ofMn and that the compact quantum
transformation group (̃A, α̃) is a quantum subgroup of (A,α).

Let χ ∈ X(A). From the defining relations forA, we see that (χ(akl,ij)) defines an
ordinary transformation forMn via the formulas in Theorem 4.2. Hence the maximal
subgroupX(A) is embedded inAut(Mn). �

Note. We will denote the quantum group above byAQ
aut(Mn). If Q = I⊗2

n , then it is
easy to see that the square of the coinverse (i.e. antipode) map is the identity map. From
this one can show that this quantum group reduces to the quantum groupAaut(Mn) in
Theorem 4.1.

5. Quantum Automorphism Group of Finite Space
⊕m

k=1 Mnk
(C)

Notation. Let u = (akl
rs,xy) andv = (bkl

rs,xy) be two matrices with entries from a *-
algebra, where

k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m.
Defineuv to be the matrix whose entries are given by

(uv)kl
rs,xy =

m∑
p=1

np∑
i,j=1

akl
ij,xpb

ij
rs,py.

Using the same method as above, we now study the quantum automorphism group
of the finite spaceB =

⊕m
k=1Mnk

, wherenk is a positive integer. TheC∗-algebraB
has the following presentation:

B = C∗{ekl,i | ekl,iers,j = δijδlreks, e
∗
kl,i = elk,i,

m∑
q=1

nq∑
p=1

epp,q = 1,

k, l = 1, · · · , ni, r, s = 1, · · · , nj , i, j = 1, · · · ,m}.
Letψ be the positive functional onB defined by

ψ(ekl,i) = Tr(ekl,i) = δkl, k, l = 1, · · · , ni, i = 1, · · · ,m.
The defining relations for the quantum group of (B,ψ) are obtained as a combination
of the relations of the quantum automorphism groupsAaut(Xn) andAaut(Mn).

Theorem 5.1. LetA be theC∗-algebra with generatorsakl
rs,xy

k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m,
and the following defining relations (5.1)–(5.5):

nx∑
v=1

akv
ij,xya

vl
rs,xz = δjrδyza

kl
is,xy, (5.1)

i, j = 1, · · · , ny, r, s = 1, · · · , nz, k, l = 1, · · · , nx, x, y, z = 1, · · · ,m,
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nx∑
v=1

asr
lv,yxa

ji
vk,zx = δjrδyza

si
lk,yx, (5.2)

i, j = 1, · · · , nz, r, s = 1, · · · , ny, k, l = 1, · · · , nx, x, y, z = 1, · · · ,m,

akl
ij,yz

∗
= alk

ji,yz, (5.3)

i, j = 1, · · · , nz, k, l = 1, · · · , ny, y, z = 1, · · · ,m,

m∑
z=1

nz∑
r=1

akl
rr,yz = δkl, k, l = 1, · · · , ny, y = 1, · · · ,m, (5.4)

m∑
y=1

ny∑
r=1

arr
kl,yz = δkl, k, l = 1, · · · , nz, z = 1, · · · ,m. (5.5)

Then

(1) A is a compact quantum group of Kac type;
(2) The formulas

α(ers,j) =
m∑
i=1

ni∑
k,l

ekl,i ⊗ akl
rs,ij , r, s = 1, · · · , nj , j = 1, · · · ,m

define a quantum transformation group(A,α) of (B,ψ). This is the quantum au-
tomorphism group of(B,ψ) in the category of compact quantum transformation
groups (hence also in the category of compact quantum groups of Kac type) of
(B,ψ), and it contains the ordinary automorphism groupAut(B).

We will denote the quantum group above byAaut(B).

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.1. The
coproduct is given by

8(akl
ij,xy) =

m∑
p=1

np∑
r,s=1

akl
rs,xp ⊗ ars

ij,py, k, l = 1, · · · , nx, x, y = 1, · · · ,m. �

Note that whennk = 1 for all k, then the quantum groupAaut(B) reduces to the
quantum groupAaut(Xn) in Theorem 3.1, and whenm = 1,Aaut(B) reduces to the
quantum groupAaut(Mn) in Theorem 4.1.

LetQ = (qkl
rs,xy) > 0 (k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m) be a

positive matrix with complex entries. Defineδkl
rs,xy to be 1 ifk = r, l = s, x = y and 0

otherwise, and letI be the matrix with entriesδkl
rs,xy, where

k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m.
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Proposition 5.2. LetQ and I be as above. LetA be theC∗-algebra with generators
akl

rs,xy,
k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m,

and defining relations (5.1), (5.3), (5.4), along with the following set of relations:

u∗QuQ−1 = I = QuQ−1u∗, (5.6)

whereu = (akl
rs,xy). ThenA is a compact quantum group that acts faithfully onB in the

following manner,

α(ers,j) =
m∑
i=1

ni∑
k,l

ekl,i ⊗ akl
rs,ij , r, s = 1, · · · , nj , j = 1, · · · ,m.

Any faithful compact quantum transformation group ofB is a quantum subgroup of
(A,α) for some positiveQ.

Proof. The proof follows the lines of Theorem 4.2. �

We will denote the quantum group above byAQ
aut(B), or simply byAQ

aut. When
Q = I⊗2

n , thenAQ
aut(B) is justAaut(B). Note that fornk ’s distinct, the automorphism

groupAut(⊕m
k=1Mnk

) is isomorphic to the group×m
k=1Aut(Mnk

). A natural problem
related to this is

Problem 5.3.For nk ’s distinct, the quantum automorphism groupAaut(⊕m
k=1Mnk

) is
isomorphic to the quantum group⊗m

k=1Aaut(Mnk
) (cf. [21]).

For each fixed 1≤ k0 ≤ m, Aaut(Mk0) as defined in the last section is a quantum
subgroup ofAaut(B). (This is seen as follows. Let ˜akl

rs,xy = δxk0δyk0a
kl
rs, where the

akl
rs’s are generators ofAaut(Mnk0

). Then the ˜akl
rs,xy ’s satisfy the defining relations for

Aaut(B).) Note also that ifnk = n for all k, thenAaut(Xm) is a quantum subgroup of
Aaut(B). (This is seen as follows. Let ˜akl

rs,xy = δkrδlsaxy, where theaxy ’s are generators
ofAaut(Xm). Then the ˜akl

rs,xy ’s satisfy the defining relations forAaut(B).) In view of the
fact that the ordinary automorphism groupAut(⊕m

1 Mn) is isomorphic to the semi-direct
productSU (n) o Sm, it would be interesting to solve the following problem.

Problem 5.4.Is it possible to expressAaut(⊕m
1 Mn) in terms of Aaut(Mn) and

Aaut(Xm) as a certain semi-direct product that generalizes [21]?

6. The Main Result

Summarizing the previous sections, we can now state the main result of this paper.

Theorem 6.1. LetB be a finite space of the form⊕m
k=1Mnk

.

(1) Quantum automorphism group ofB exists in the category of (left) quantum trans-
formation groups if and only ifB is the finite spaceXm.

(2) The quantum automorphism group for(B,ψ) exists and is defined as in Theorem 5.1
(see also Theorem 3.1, Theorem 4.1).
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Proof. (1) If B isXm, we saw in Theorem 3.1 thatAaut(Xm) is the quantum automor-
phism group ofXm in the category of all quantum transformation groups.

Now assume thatB 6= C(Xm), and assume that the quantum automorphism group
of B exists in the category of all quantum transformation groups. Call it (A0, α0). As in
Theorem 5.1 and Theorem 5.2,α0 is determined by its effect on the basisers,j of B,

α0(ers,j) =
m∑
i=1

ni∑
k,l

ekl,i ⊗ ãkl
rs,ij , r, s = 1, · · · , nj , j = 1, · · · ,m.

Since (A0, α0) is the quantum automorphism group ofB, the actionα0 is faithful (cf.
Definition 2.4). This implies that the ˜akl

rs,ij ’s generates theC∗-algebraA0. As in Theo-
rem 5.2 (see also Theorem 4.2), there is a positiveQ0, such that the ˜akl

rs,xy ’s satisfy the
relations (5.1), (5.3), (5.4), along with the following set of relations:

ũ∗Q0ũQ
−1
0 = I = Q0ũQ

−1
0 ũ∗, (6.1)

whereũ = (ãkl
rs,xy). By the universal property of (A0, α0), we conclude thatA0 = AQ0

aut

(see also the last statement in Theorem 5.2). For every positiveQ, the unique morphism
from (AQ

aut, α) to (A0, α0) sends the generators ˜akl
rs,xy of AQ0

aut to the corresponding

generatorsakl
rs,xy of AQ

aut (again because of faithfulness of the quantum transforma-

tion groupAQ
aut and the universality ofAQ0

aut). Hence the generatorsakl
rs,xy also sat-

isfy the relations (6.1). This is impossible because we can chooseQ so thatAQ
aut

andAQ0
aut have differentclassical pointsin the vector spacewith coordinatesakl

rs,xy

(k, l = 1, · · · , nx, r, s = 1, · · · , ny, x, y = 1, · · · ,m).

(2) This is proved in the previous sections. �

Concluding Remarks.(1) In this paper, we only described the quantum automorphism
group of (B,ψ) for the special choice of functionalψ, because this quantum automor-
phism group is closest to the ordinary automorphism groupAut(B) ofB, and it contains
the latter. One can also use the same method to describe quantum automorphism groups
of B endowed with other functionals or a collection of functionals.

(2) For each 1≤ k ≤ n, consider the delta measureχk onXn corresponding to the point
xk. Then the quantum automorphism group of (Xn, χk) is isomorphic to thequantum
permutation groupof the spaceXn−1, just as in the case of ordinary permutation groups.

(3) If we remove condition (3) in Definition 2.1, then we obtain the notion of an action
of a quantum semi-group on aC∗-algebra. The relations (5.1), (5.3), (5.4) definethe
universal quantum semi-groupE(B) acting onB, even thoughB is not a quadratic
algebra in the sense of Manin [13]. From the main theorem of this paper, the Hopf
envelopeH(B) of this quantum semi-group in the sense of Manin cannot be a compact
quantum group (see also the last section of [18]).

After this paper was submitted for publication, we received the papers [6, 7], where
a finite quantum group symmetryA(F ) for M3 is described, following the work of
Connes [5]. The finite quantum groupA(F ) in these papers is not a finite quantum
group in the sense of [30] (because it does not have a compatibleC∗ norm), so it cannot
be a quantum subgroup of the COMPACT quantum symmetry groupsAaut(M3) and
AQ

aut(M3) in our paper; but it is a quantum subgroup of the Hopf envelopeH(B) of the
quantum semi-groupE(B) mentioned in the last paragraph.
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Our paper gives solutions to the “intricate problem” mentioned in the end of Sect. 2
of the paper [7]: find the biggest quantum group acting onM3. This “intricate problem”
has two solutions: the first, Theorem 6.1, solves the problem in the category of compact
quantum groups; the second, the remarks in the last two paragraphs, solves the problem
in the category of all quantum groups–Hopf algebras that need not haveC∗-norms.

(4) In [13], the quantum groupSUq(2) is described as the quantum automorphism group
of the quantum plane (i.e. the deformed plane). In view of the fact that the automorphism
groupAut(M2) isSU (2), one might be able to describeSUq(2) as a quantum automor-
phism group of the non-deformed spaceM2 endowed with a collection of functionals.

Appendix

In [18], we introduced a compact matrix quantum groupAo(Q) for each non-singular
matrixQ. It has the following presentation:

ū = u,

uut = Im = utu,

utQuQ−1 = Im = QuQ−1ut,

whereu = (aij).
As a matter of fact, it is more appropriate to use the notationAo(Q) (and we will

do so from now on) for the compact matrix quantum group with the following sets of
relations (whereQ is positive):

ū = u,

utQuQ−1 = Im = QuQ−1ut.

(Let v = Q1/2uQ−1/2. Thenv is a unitary matrix. Hence theC∗-algebraA exists. From
this it is easy to see thatAo(Q) is a compact matrix quantum group.) This quantum group
has all the properties listed in [18] for the oldAo(Q). The oldAo(Q) is the intersection
of the quantum groupsAo(n) and the newAo(Q) defined above. Moreover, ifQ is a real
matrix, the newAo(Q) is a compact quantum group of Kac type.

Finally, we note that the quantum group denoted byAo(F ) in [2] is the same as the
quantum groupBu(Q) in [24, 26] withQ = F ∗, so it is different from the quantum
groupAo(Q) above unlessF is the trivial matrixIn.

Acknowledgement.The author wishes to thank Alain Connes for several helpful discussions and for his
interest in this work. He is also indebted to Marc Rieffel for his support, which enabled the author to finish
writing up this paper. He thanks T. Hodges, G. Nagy, A. Sheu, S.L. Woronowicz for their comments during the
AMS summer research conference on Quantization in July, 1996, on which the author reported preliminary
results of this paper. The main results of this paper were obtained while the author was a visiting member at
the IHES during the year July, 1995-Aug, 1996. He is grateful for the financial support of the IHES during
this period. He would like to thank the Director Professor J.-P. Bourguignon and the staff of the IHES for their
hospitality. The author also wishes to thank the Department of Mathematics at UC-Berkeley for its support
and hospitality while the author held an NSF Postdoctoral Fellowship there during the final stage of this paper.



210 S. Wang

References

1. Baaj, S. and Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés deC∗-algèbres.
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