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Abstract: We determine the quantum automorphism groups of finite spaces. These are
compact matrix quantum groups in the sense of Woronowicz.

1. Introduction

At Les Houches Summer School on Quantum Symmetries in 1995, Alain Connes posed
the following problemWhat is the quantum automorphism group of a spadefe the

notion of a space is taken in the sense of noncommutative geometry [4], hence it can be
either commutative or noncommutative.

To put this problem in a proper context, let us recall that the notion of a group arises
most naturally as symmetries of various kinds of spaces. As a matter of fact, this is how
the notion of a group was discovered historically. However, the notion of a quantum
group was discovered from several different points of view [10, 11, 8, 28, 29, 30, 31, 9],
the most important of which is to view quantum groups as deformations of ordinary
Lie groups or Lie algebras, instead of viewing them as quantum symmetry objects of
noncommutative spaces. In [13], an important first step was made by Manin in this
latter direction, where quantum groups are described as quantum symmetry objects of
guadratic algebras.

In this paper, we solve the problem above for finite spaces (viz. finite dimensional
C*-algebras). Thatis, we explicitly determine the quantum automorphism groups of such
spaces. These spaces do not carry the additional geometric (Riemannian) structures in
the sense of [4, 5]. The quantum automorphism groups for the latter geometric finite
spaces can be termed quantum isometry groups. At the end of his book [4], Connes
poses the problem of finding a finite quantum symmetry group for the finite geometric
space used in his formulation of the Standard Model in particle physics. This problem
is clearly related to the problem above he posed at Les Houches Summer School. We
expect that the results in our paper will be useful for this problem. As a matter of fact,
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the quantum symmetry group for the finite geometric space of [4] should be a quantum
subgroup of an appropriate quantum automorphism group described in this paper. The
main difficulty is to find thenatural quantum finite subgroup of the latter that deserves

to be called the quantum isometry group.

This paper can be viewed as a continuation of the work of Manin [13] in the sense that
the quantum groups we consider here are also quantum symmetry objects. However, it
differs from the work of Manin in three main aspects. First, the noncommutative spaces
on which Manin considers symmetries are quadratic algebras and are infinite; while
the spaces on which we consider symmetries are not quadratic and are finite. Second,
Manin’s quantum groups are generated by infinitely many multiplicative matrices and
admits many actions on the spaces in question, one action for each multiplicative matrix
(for the notion of multiplicative matrices, see Manin [13]); while our guantum groups are
generated by a single multiplicative matrix and they act on the spaces in quegtios in
natural manner. Finally, Manin’s quantum groups do not give rise to natural structures
of C*-algebras in general (see [18]); while our quantum groups, besides having a purely
algebraic formulation, are compact matrix quantum groups in the sense of Woronowicz
[30]. Consequently we need to invoke some basic results of Woronowicz [30]. Loosely
speaking, Manin’s quantum groups are noncompact quantum groups. But to the best
knowledge of the author, it is not known as to how one can make this precise in the
strict sense of Woronowicz [32]. On the other hand, it is natural to expect that quantum
automorphism groups of finite spaces are compact quantum groups without knowing
their explicit descriptions in this paper.

The ideas in our earlier papers [19, 20, 18] on universal quantum groups play an
important role in this paper. Note that finite spaces are just finite dimensiohal
algebras, no deformation is involved. Moreover, as in [19, 20, 18], the quantum groups
considered in this paper airgrinsic objects, not as deformations of groups, so they are
different from the quantum groups obtained by the traditional method of deformations
of Lie groups (cf. [8, 9, 29, 31, 12, 16, 23]).

We summarize the contents of this paper. In Sect. 2, we recall some basic notions
concerning actions of quantum groups and define the notion of a quantum automor-
phism group of a space. The most natural way to define a quantum automorphism group
is by categorical method, viz, to define it as a universal object in a certain category of
guantum transformation groups. Sections. 3, 4, 5 are devoted to explicit determination of
guantum automorphism groups for several categories of quantum transformation groups
of the spaces(,,, M, (C), and®}L, M,, (C), respectively. Though the main idea in the
construction of quantum automorphism groups is the same for each of the spgces
M, (C) and®}:, M, (C), the two special cases,, and)M,, offers interesting phenom-
ena in their own right. Hence we deal with them separately and begin by considering the
simplest cas&,,. In Sect. 6, using the results of Sects. 3, 4, 5, we prove that a finite space
has a quantum automorphism group in the categosilofompact quantum transfor-
mation groups if and only if the finite spaceXs,, and that a measured finite space (i.e.

a finite space endowed with a positive functional) always has a quantum automorphism
group.

A convention on terminology: In the following, we will use interchangeably both
the term compact quantum groups and the term Woronowicz H6pdlgebras. The
meaning should be clear from the context (cf. [19, 20, 23, 18]).

Notation. For every natural numbet, and every *-algebral, M,,(A) denotes the *-
algebra ofn x n matrix with entries inA. We also usé\/,, to denoteM,,(C), whereC
is the algebra of complex numbers. For every matrix (a;;) € M,(A), u* denotes
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the transpose of; u = (a};) denotes the conjugate matrix of u* = u’ denotes the
adjoint matrix ofu (this defines the ordinary *-operation ai, (A)). The symbolX (A)
denotes the set of all unital *-homomorphism frehto C. Finally, X,, = {z1, - ,2,}
is the finite space with letters.

2. The Notion of Quantum Automorphism Groups

Part of the problem of Connes mentioned in the introduction is to make precise the notion
of a quantum automorphism group, which we address in this section. First recall that the
usual automorphism grouput(X) of a spaceX consists of the set of all transformations
on X that preserve the structure &f. A quantum group is not a set of transformations
in general. Thus a naive imitation of the above definitiotdaf(X) for quantum au-
tomorphisms will not work. However, we recapture the definitioat(X) from the
following universal property ofiut(.X) in the category of transformation groupsXf
If G is any group acting oX, then there is a unique morphism of transformation groups
from G to Aut(X). This motivates our Definition 2.3 of quantum automorphism groups
below.

The automorphism groups of finite spaces are compact Lie groupsie.gX,,) =
Sn, the symmetric group on letters, andAut(M,,) = SU(n)). For this reason, it is
natural to expect that the quantum automorphism groups of such spaces are compact
guantum groups, viz., Woronowicz Hopf -algebras. We will consider only such quan-
tum groups in this paper. For basic notions on compact quantum groups, we refer the
reader to [30, 19, 20]. Note that for every compact quantum group, there corresponds a
full Woronowicz HopfC*-algebra and a reduced Woronowicz Hapf-algebra [1, 22].
We will assume that all the Woronowicz Hopf*-algebras in this paper are full, as
morphisms behave well only with such algebras (see the discussions in IIl.7 of [22]).
Let A be a compact quantum group. Ledbe the unit of this quantum group (or counit
of the full Woronowicz HopfC*-algebra). Let4 denote the canonical dense Hopf *-
subalgebra ofA consisting of coefficients of finite dimensional representations of the
guantum groupA.

Definition 2.1. [cf. [1, 3, 14]] A left action of a compact quantum group on aC*-
algebraB is a unital *-homomorphism from B to B ® A such that

(1) ((dp ® ®)a = (o ® id ), Whered is the coproduct om;

(2) (idp ® €)a = idp;

(3) There is a dense *-subalgebfaof B, such thatx restricts to a right coaction of
the Hopf *-algebra4 on B.

We also calA, «) aleft quantum transformation group of B. Let({l, @) be another
left quantum transformation group &. We define anorphism from (A, &) to (4, ) to

be a morphismr of quantum groups from to A (which is the same thing as a morphism
of Woronowicz Hopf*-algebras fromA to A, see [20]), such that

&= (idg ® m)a.
It is easy to see that left quantum transformation group®8dbrm a category with

the morphisms defined above. We call it tagegory of left quantum transformation
groups of B.
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Our definition of an action of a quantum group above appears to be different from
the one in [14], but it is equivalent to the latter. More precisely, conditions (2) and (3)
above are equivalent to the following density requirement, which is used in [1, 3, 14]
for the definition of an action:

(I ® A)a(B) is norm dense inB ® A,

but they are more natural and convenient for our purposes. It is not clear whether the
injectivity condition ona imposed in [1, 3] is implied by the three conditions in the
definition above. Our definition coincides with the notion of actions of groups on spaces
when the quantum groug is a group and3 is an ordinary space (simply by reversing

the arrows).

The above definition is commonly called thight coactionof a unital HopfC*-
algebra. Note that for the Hof*-algebrad = C(G) of continuous functions over a
compact groug-, the notion of right coaction of corresponds to the notion of left action
of G on aC*-algebraB. For this reason, when we are dealing with a compact quantum
group A, we call a right coaction of the underlying Woronowicz Hdjsf-algebra ofA
a left action of the quantum grouptl. In the following, we will omit the wordeft for
actions of quantum transformation groups. This should not cause confusion.

Definition 2.2. Let(A, a) be a quantum transformation group Bf An elemenb of B
is said to befixed under « (or invariant under «) if

a®)=b® 1,.
Thefixed point algebra A« of the actionn is
{beB|ab®d)=b® 14}.

The quantum transformation grogd, «) is said to beergodicif A* = CI. A (contin-
uous) functionalp on B is said to banvariant under « if

(¢ ®ida)a(b) = ¢(b)La

forall b € B. For agiven functionad on B, we define theategory of quantum trans-
formation groups of the pair (B, ¢) to be the category with objects that leave invariant
the functionalg. This is a subcategory of the category of all quantum transformation
groups.

Besides the two categories of quantum transformation groups mentioned above, we also
have the category of quantum transformation groups of Kac typ8 fevhich is a full
subcategory of the category of quantum transformation groups of

Definition 2.3. LetC be a category of quantum transformation group#ofThequan-
tum automorphism group of B in C is a universal final object in the categofy That
is, if (4, @) is an object in this category, then there is a unique morphisoh quantum
transformation groups frorfA, &) to (4, «).

Let ¢ be a continuous functional on the algebBa We defingquantum automor-
phism group of the pair (B, ¢) to be the universal object in the category of quantum
transformation groups of the pa{B, ¢) (cf. Definition 2.1).
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From categorical abstract nonsense, the quantum automorphism gr@ifirok
given category) is unique (up to isomorphism) if it exists. We emphasize in particular
that the notion of a quantum automorphism group depends on the category of quantum
transformation groups dB, not only onB. As a matter of fact, for a finite spaéeother
than X,,, we will show in Theorem 6.1 that the quantum automorphism group does
not exist for the category of all quantum transformation groups. In the subcategory of
guantum transformation groups Bfwith objects consisting of compact transformation
groups, the universal object is precisely the ordinary automorphism gteu{3), as
mentioned in the beginning of this section.

We will also use the following notion, which generalizes the usual notion of a faithful
group action.

Definition 2.4. Let (A, o) be a quantum transformation group &f. We say that the
actiona is faithful if there is no proper Woronowicz Hopf*-subalgebrad; of A such
that« is an action of4; on B.

If (A, «) is a quantum automorphism group in some category of quantum transfor-
mation groups o3, then the actiow is faithful. We leave the verification of this to the
reader as an exercise.

3. Quantum Automorphism Group of Finite Space X,,

By the Gelfand—Naimark theorem, we can identky, = {z1,--- , z,} with the C*-
algebraB = C(X,,) of continuous functions oX,,. The algebraB has the following
presentation,

n
B:C*{€i|€$:€¢:€r, Zer:]_, i=1,--- ,n}.
r=1

The ordinary automorphism grouput(X,,) = Aut(B) of X, is the symmetric group
S, onn symbols. We can put the grouf, in the framework of Woronowicz as follows.
As a transformation grous,, can be thought of as the collection of all permutation
matrices

aii1 a1z - -- Aln
g=| i
Gnl Ap2 *** QApn
Wheng varies inS,,, thea;;’s (¢, = 1, - - , n) are functions on the grou, satisfying
the following relations:
a?j=aij=a§j, ,j=1---,n, (3.1)
n
Y aij=1 i=1--,n, (3.2)
J=1
n
Y aij=1, i=1--,n. (3.3)
i=1

It is easy to see that the commutati/é-algebra generated by the above commutation
relations is the Woronowicz Hopf*-algebraC(S,,). In other words, the grouf,, is
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completely determined by these relations. The following theorem shows that we have
obtained much more: If we remove the condition thattfy&s commute with each other,
these relations define the quantum automorphism grouf,of

Theorem 3.1. Let A be theC*-algebra with generators;; (i, j = 1, - - - ,n) and defin-
ing relations (3.1)—(3.3). Then

(1) Ais acompact quantum group of Kac type;
(2) The formulas

a(ej)zzei(@a’ija j:]-a"'7n
=1
defines a quantum transformation graufp «) of B. Itis the quantum automorphism
group of B in the category of all compact quantum transformation groups (hence
also in the category of compact quantum groups of Kac typ#), @ind it contains
the ordinary automorphism grouput(X,) = S, (in fact, {(x(as;)) | x € X(A4)}
is precisely the set of permutation matrices).

Because of (2) above, we will denote the quantum group abowé, by X,,). We
will call it the quantum permutation group onn symbols.

Proof. (1) It is easy to check that there is a well-defined homomorphisfrom A to
A ® A with the property

®(aij)zzaik®akj7 ia.j:17"'an'
k=1
Using (3.1)—(3.3), it is also easy to check that (a;;) is an orthogonal matrix. Hence
(A, w) is a quantum subgroup of,(n), so it is of Kac type (cf. [19, 20, 18]).
To prove (2), note that the generatdes }7-, form a basis of the vector spaék so
an actiona”of any quantum groupi on B is uniquely determined by its effect on the

e; S:
n
&(e])zze'L@aU? j:1,~-~,n.
=1
The condition thatyis a *-homomorphism together with the equations
e?:ei:e’f< i:l7...’n

79

shows that thes;;’s satisfy the relations (3.1). The condition thats a unital homo-
morphism together with the equation

i e; =1
=1

shows that the;;’s satisfy (3.2). Let™= (a;;). Then we have
an* = I,.

The condition in Definition 2.1 (2) means that

e(alj):62]7 Z'mj:la"'an'
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By condition (3) of Definition 2.1, the,;’s are inA. Hence by Proposition 3.2 of [30], it
f9||ows thatu = (d,;) is a non- degenerate smooth representation of the quantum group
A. In particular,uis also left invertible,

w'u=1I,.

This implies that the:;;'s satisfy the relations (3.3). From these we see tHat{) is a
universal quantum transforrpatlon groupiefthere is a unique morphismof quantum
transformation groups from4( @) to (A4, «) such that

W(Gij):aij7 iajzla"'vn'
It is clear that the maximal subgroup of the quantum grdup S,,, that is, the set
{(x(ai;)) | x € X(A)} is precisely the set of permutation matrices. [J

Remarks. (1) For each pait, j, IetA,;j be the groug”*-algebraC*(Z /2Z) with gener-
atorp;;, p” pij = pi; (i,5 =1,--- ,n). Then theC™- aIgebraA is isomorphic to the
following quotientC*- algebra of the free product of the;;'s:

(*zg 1A1])/ < ZPT] - 1 szsv { ] - 1 n>.
s=1

(2) Let ¢ be the uniques,,-invariant probability measure oK,,. Then it is easy to see
that¢ is a fixed functional under the action of the quantum grdyp;(X,,) defined in
Theorem 3.1. Hencd,,.(X,,) is also the quantum automorphism group for the pair

(X, ).
(3) LetQ > O be a positiven x n matrix. Let A%,,(X,) be theC*-algebra with

generatorsy;; (4,5 = 1,--- ,n) and the defining relations given by (3.1)—(3.2) along
with the following set of relations:
u'QuQ~t = I, = QuQ !, (3.4)

whereu = (a;;). Then it not hard to verify that/(aQut(Xn)ﬂ) is a compact quantum
transformation subgroup of the one defined in Theorem 3.1 (heneg;taalso satisfy

the relations (3.3)), here is as in Theorem 3.1. Note also f@ = I,,, Af;?ut(X") =
Aaut(Xn)'

4. Quantum Automorphism Group of Finite Space M, (C)

Notation. Let u = (af});'; ;=1 @andv = (b}})}; . ;= With entries from a *-algebra.
Defineuw to be the matrlx whose entries are glven by

n
kl — E kl . —
(uv)ij - a’rsb1;7 Z7J7kal - 1a , .
r,s=1

Let ¢ = Tr be the trace functional of/,, (so¢ = %1/1 is the uniqueAut(M,,)-
invariant state ord/,,). TheC*-algebra),, has the following presentation:

n
- * —_— L — - . . -
B =C"{eij | eijers = djrea, ej; = eji, g err =1, 4,5,k 1=1--- ,n}.
r=1
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Theorem 4.1. Let A be theC*-algebra with generatora and the following defining
relations (4.1)—(4.5):

Zak”a“l =8;alt, i g,k rs=1-- n, (4.1)
Zal@ Qe ~ 6]7alka i7ja k,l,T’,S:l7"' PR (42)
ffj* alf, i ki=1--n, (4.3)
Za’:fizak,, k=1,---,n, (4.4)
> ajp =0w, ki1=1--,n. (4.5)

Then

(1) Ais acompact quantum group of Kac type;
(2) The formulas

01(6”)— E ekl®az_]7 i?j:17"' ,
k,l=1

defines a quantum transformation gro(, ) of (M,,, ). It is the quantum au-
tomorphism group ofM,,, ¥) in the category of compact quantum transformation
groups (hence also in the category of compact quantum groups of Kac type) of
(M,,, ), and it contains the ordinary automorphism grodpt(M,,) = SU(n).

We will denote the quantum group above Ay,,;(M,,).

Proof. (1) Itis easy to check that the matrix= () as well as its conjugate = (af!”
are both unitary matrices, and that the formulas

n
q)(akl _Za ®a;rjs7 i7j7kvl:17"'7n

r,s=1
gives a well-defined map from to A ® A (this is the coproduct). Hencéis a quantum
subgroup of4,,(m) (with m = n?), so it is of Kac type (cf. [19, 20, 18]).

(2) Let (4, &) be any quantum transformation group/df,. Being a basis for the vector
spaceM,, thee;;’s uniquely determine the actiam ~

n
&(eu):zekl®afja ia.j:lv"'an'
k=1
The condition thatyis a homomorphism together with the equations
eijek’l:éjkeila i?jakalzla"'

,n

shows thatthe’“’s satisfy (4.1). The condition thatpreserves the *-operation together
with the equatlons
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* L.
eij_eji) 7’7]_17"' y 1

shows that thafj- 's satisfy (4.3). The condition that preserves the units together with
the identity
et

shows that tha’“’s satisfy (4.4). The condition that|&aves the trace invariant shows
that thea?!’s satlsfy (4.5).
To show that thez’“l's satisfy (4.2), first it is an easy check that

i = IS?,
whereu = (a k=1 BY condition (3) of Definition 2.1, thekj’s are inA. Hence by
Proposition 3 2 of [30], we see thati$ a non-degenerate smooth representation of the
quantum groupd. In particular’is also right invertible,

~evx L T®2
uu* =177,

which means that

n

Z 1] ]z—(skr(sls, k,l,?",s:l7...’n.

i,7=1

From these relations and the relations (4.1), (4.3)-(4.5), we deduce that both matrices ~
and«! are unitary. This shows that the quantum grolipgenerated by the coefficients
af; is a compact quantum group of Kac type. That is, the antipode & bounded
*-antihomomorphism when restricted 1. Put

= () = (R(@t)) = @),

Then in the opposite algebri °” (which has the same elementsswith multiplica-
tion reserved), thé//’s satisfy the relations (4.1), which means thatdhs satisfy the

relations (4.2) in the algebta.
From the above consideration we see thhtd) is a quantum transformation group
of M,,, and that there is a unique morphisnof quantum groups from to A such that

~kl T —
ﬂ—(a’i _alj’ Z,],k,l—17"',ﬂ.

Itis routine to check that is the unique morphism of quantum transformation groups
from (4, &) to (4, ).

From the relations (4.1)—(4.5), one can show that each matiu;{) (x €
X (Aqut(M,,))) defines an automorphism df,, by the formulas in Theorem 4.1 (2). This
means that the maximal subgrof{A,.:(M,)) is naturally embedded idwut(M,,).
Conversely, it is clear thatlut(M,,) can be embedded as a subgroup of the maximal
SUbgroupX(Aaut(Mn)) of Aaut(Mn)' U

Remark. Consider the quantum groupl{(n), (a:;)) (cf. [20, 18]). Puta}} = ax;a;;.

Then thea *jl’s satisfies the relations (4.1)—(4.5). From this we see that.fhe de-
termines a quantum subgroup 4f..;(M,,). Hence the Woronowicz Hopf'*-algebra
Agq(My,) is noncommutative and noncocommutative. How big is the subalgebra of
A, (n) generated by theff? An answer to this question will shed light on the structure
of theC*-algebrad,..(M,,).
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Proposition 4.2. Let Q > 0 be a positive matrix inV/,,(C) ® M,,(C). Let A be the
C*-algebra with generators?} and defining relations given by (4.1), (4.3), (4.4), along
with the following set of relations:

wQuQ ™t = I7% = QuQ M, (4.6)

whereu = (af}). ThenA is a compact quantum group that acts faithfully bfy, in the
following manner,

n
— § kl S
O4(62’]’) - €Ll ®aija 1,7 = 17 , 1,
k,l=1

and its maximal subgroup is isomorphic to a subgroupdaf(M,,) = SU(n). Any
faithful compact quantum transformation groupidf, is a quantum subgroup ¢#, o)
for some positive).

Proof. First we show thatd is a compact quantum group. Let QY?u@Q~%2. Then
(4.6) is equivalent to

v = I9? = po*.
Hence theC*-algebraA is well defined. The set of relations in (4.6) shows thas
invertible. We claim that! is also invertible. For simplicity of notation in the following
computation, let) = (¢;/) = @~*. Then (4.6) becomes

n n
lk kl rs~ry _ ¢tj — ij _kl~rs yx
Z aijqrsa‘zngf - 6ef - Z lea’l“squafe7
k,l,r,s,@,y=1 k,l,r,s,@,y=1

wherei, j,e, f = 1,--+ ,n. PutP = (/) and P = (5%), where
Py =4y, By =d, G4 kI=1
ThenP~! = P, and the relations (4.6) becomes
u!PuP~t=1%? = pupP~tu!.

This proves our claim.

Now it is easy to check that is a compact matrix quantum group with coproduct
® given by the same formulas as in the proof of Theorem 4.1(1).

Let (A, &) be a faithful quantum transformation group/af,. We saw in the proof
of Theorem 4.1 that there are elemeat$ (i, j, k,1 = 1,--- ,n) in the C*-algebrad
that satisfy the relations (4.1), (4.3) and (4.4). The condition in Definition 2.1 (2) means
that

g(&f’]l)zéfjl’ i?jakjal:la"' , 1.

By condition (3) of Definition 2.1, the,;'s are in.4. Hence by Proposition 3.2 of [30],
this implies that™= (&fj) is a non-degenerate smooth representation of the quantum
group.A. From the proof of Theorem 5.2 of [30], with

Q = (id @ h)(@*7),

we have( > 0 andu satisfies (4.6). The assumption th&l; @) is faithful implies that
A is generated by the elememt% 1,5 =1,--- ,n). This shows thatA, «) is a well
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defined faithful quantum transformation group/af, and that the compact quantum
transformation group4, &) is a quantum subgroup ofi( «).

Let x € X(A). From the defining relations fot, we see thaty(ax.,i;)) defines an
ordinary transformation fo,, via the formulas in Theorem 4.2. Hence the maximal
subgroupX (A) is embedded iMut(M,,). O

(M) If Q = I9?, then it is

easy to see that the square of the coinverse (i.e. antipode) map is the identity map. From
this one can show that this quantum group reduces to the quantum drw(d/,,) in
Theorem 4.1.

Note. We will denote the quantum group above hﬁ?

5. Quantum Automorphism Group of Finite Space@;~; M., (C)

Notation. Let u = (ay’ ,,) andv = (bF. ,,) be two matrices with entries from a *-
algebra, where

k7l:17...7nw7 7"78:1’...7ny7 x’y:17...7m_

Defineuwv to be the matrix whose entries are given by

m  Mp

kKl _ Kl 7ij
W)y = D D @iy

p=11i,5=1

Using the same method as above, we now study the quantum automorphism group
of the finite spaceB = @), M, , wheren,, is a positive integer. Th€"*-algebraB
has the following presentation:

m Ngq

B =C"{eri| ekiiers,j = 0ij0irers, GZl,i = Clk,is ZZ epp,q = 1,
=1 p=1
k,i=21---,n; r,s=L1---,n; 4,5=1--- ,m}
Let ¢ be the positive functional oB defined by
Yleki) =Tr(exti) = Ok, kyl=1---,m; i=1--- ,m.

The defining relations for the quantum group &f, (/) are obtained as a combination
of the relations of the quantum automorphism grodps;(X,,) and A .. (M,,).

Theorem 5.1. Let A be theC*-algebra with generatora}’
kvl:17"' s Mgy T,S:].,"' y Ny xay:17"' , M,
and the following defining relations (5.1)—(5.5):

Ny

kv vl — kl
Z aijaxyaf‘s,xz - 5jT5y2ais,zyv (51)
v=1

251:17"'577*1/7 T7S:17"'7nza k7l:17"'anl’7 337972217"',771,
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s
Zal’u yx vk 2T (;Jréyzalk,yxv (52)
i7j:17"',nz7 T,S:17-.-7ny7 k,l:]_’-..7nm’ x)y72217...’m’
kIl * _ lk (5 3)
Aijyz = Ajiyzs .

ivjzla"'vnzv kvl:]-v"'vnyv y,z:1,'~,m,

S>> al =0, k=1 0y, y=1-,m, (5.4)
z=1 r=1
Zzazl,yzzékh k=1 n, z=1---,m. (5.5)
y=1 r=1

Then

(1) Ais acompact quantum group of Kac type;
(2) The formulas

m  n;

— E § kl — . _
a(ers,j)_ ekl,i®ars7ij7 T7S_la"' sy, )= 17 ,m
=1 k,l

define a quantum transformation groQg, «) of (B, ). This is the quantum au-
tomorphism group of B, v) in the category of compact quantum transformation
groups (hence also in the category of compact quantum groups of Kac type) of
(B, ), and it contains the ordinary automorphism grodpit(B).

We will denote the quantum group above Ay,,;(B).

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.1. The
coproduct is given by

Np

ijry) ZZ@MW aispys K l=1 0 ng, zy=1-- m. O

p=1r;s=1

Note that whem,, = 1 for all k, then the quantum groug,..;(B) reduces to the
guantum group,..:(X,) in Theorem 3.1, and whem = 1, A,,:(B) reduces to the
guantum groupﬁlaut(Mn) in Theorem 4.1.

Let@ = (qrsry) >0k, l=1-,ng rs=1-- ny, z,y=1l--- ,m)bea
positive matrix with complex entrles Defing! ,, tobe 1ifk =r,l =s,2=yand0
otherwise, and lef be the matrix with entries*. ., where

rs,xy?

kal:la"'anma r,8=1,---,ny, x7y:1a"'7m'
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Proposition 5.2. Let @ and I be as above. Lefl be theC*-algebra with generators
okl
TS, xY’?

kvl:17"' , Mgy T,S:].,"' s Ty xay:17"' , M,

and defining relations (5.1), (5.3), (5.4), along with the following set of relations:

W QuQt =1 = QuQ tu*, (5.6)

whereu = (a*! ,)- ThenA is a compact quantum group that acts faithfully Bnn the

TS,T

following manner,

m ng

- § :E : ki _ _
a(ers,j) = €kl,i @ Qpg 5, T,8= - nj, j=1--,m.
=1kl

Any faithful compact quantum transformation groupm®fis a quantum subgroup of
(A, ) for some positive).

Proof. The proof follows the lines of Theorem 4.2. [

We will denote the quantum group above Ky ,(B), or simply by A% ,. When

aut*

Q =122, thenAaQut(B) is just A,.:(B). Note that forn;'s distinct, the automorphism

group Aut(®jL, My, ) is isomorphic to the group L, Aut(M,, ). A natural problem
related to this is

Problem 5.3.For n;'s distinct, the quantum automorphism grodp,.(®L, My, ) is
isomorphic to the quantum group’; Aq.: (My,) (cf. [21]).

For each fixed K ko < m, Ayut(My,) as defined in the last section is a quantum

subgroup ofA,.(B). (This is seen as follows. Let:l . = d,x,0yk,ars, Where the
aFl’s are generators ol i (Mo, ). Then thea?! s satisfy the defining relations for

Aqut(B).) Note also that ify, = n for all k, thenA,..;(X,,,) is a quantum subgroup of
Agut(B). (Thisis seen asfollows. Le f“/ = 0ir01sagy, Where they,,'s are generators
of Awut(X ). Thenther®! s satisfy the defining relations fof,..(B).) In view of the

fact that the ordinary automorphism gradpt(7* M,,) is isomorphic to the semi-direct
productSU(n) x S,,, it would be interesting to solve the following problem.

Problem 5.4.1s it possible to expressi,,.(®71"M,) in terms of A,,.(M,) and
Aqut(X,,) as a certain semi-direct product that generalizes [21]?

6. The Main Result

Summarizing the previous sections, we can now state the main result of this paper.

Theorem 6.1. Let B be a finite space of the formj2, M,,, .

(1) Quantum automorphism group &f exists in the category of (left) quantum trans-
formation groups if and only iB is the finite spaceX,,.

(2) The guantum automorphism group {@?, 1)) exists and is defined as in Theorem 5.1
(see also Theorem 3.1, Theorem 4.1).
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Proof. (1) If Bis X,,,, we saw in Theorem 3.1 that,,(X,,) is the quantum automor-
phism group ofX,,, in the category of all quantum transformation groups.

Now assume thaB # C(X,,), and assume that the quantum automorphism group
of B exists in the category of all guantum transformation groups. Callgt ). As in
Theorem 5.1 and Theorem 54 is determined by its effect on the basis ; of B,

m  n;

— § § : ~kl — .
040(67-37]‘) - Ckl,i ® ars,ij7 TS = 1) Ny, g = 17 s, M.
=1 k,l

Since (Ao, o) is the quantum automorphism group Bf the actionay is faithful (cf.

Definition 2.4). This implies that the/* , ;'S generates thé'™™-algebrado. As in Theo-
rem 5.2 (see also Theorem 4.2), there is a posifiyesuch that the*. zy'S Satisfy the

relations (5.1), (5.3), (5.4), along with the following set of relations:
i QoliQy ™ = I = QoliQq ", (6.1)

whered = (a¥ ). By the universal property of4p, ag), we conclude thatly = A%

TS xy aut

(see also the Iast statement in Theorem 5.2). For every po§ltitlee uniqgue morphism

from (A9,,, ) to (Ao, ag) Ssends the generatord’” 2y Of A%, to the corresponding
generators;” oy Of AQ .+ (@again because of faithfulness of the quantum transforma-

tion groupAaut and the universality oﬂaut) Hence the generatorg’ . also sat-

S,TY
isfy the relations (6.1). This is impossible because we can ch§ose thatAaut
and A%°, have differentclassical pointsin the vector spacewith coordinates:”!

aut

rS,rY
(k,1=21,---,ng, ms=L1--- ,ny, z,y=1---,m).

(2) This is proved in the previous sections. [

Concluding Remarkg1) In this paper, we only described the quantum automorphism
group of B, v) for the special choice of functional, because this quantum automor-
phism group is closest to the ordinary automorphism gréuf( B) of B, and it contains

the latter. One can also use the same method to describe quantum automorphism groups
of B endowed with other functionals or a collection of functionals.

(2) For each K k < n, consider the delta measuyg on X,, corresponding to the point
zx. Then the quantum automorphism group &f,( xx) iS isomorphic to thejuantum
permutation groupf the spaceX,,_1, just as in the case of ordinary permutation groups.

(3) If we remove condition (3) in Definition 2.1, then we obtain the notion of an action
of a quantum semi-group on@*-algebra. The relations (5.1), (5.3), (5.4) defthe
universal quantum semi-group(B) acting onB, even thoughB is not a quadratic
algebra in the sense of Manin [13]. From the main theorem of this paper, the Hopf
envelopeH (B) of this quantum semi-group in the sense of Manin cannot be a compact
guantum group (see also the last section of [18]).
After this paper was submitted for publication, we received the papers [6, 7], where

a finite quantum group symmete(F") for Ms is described, following the work of
Connes [5]. The finite quantum growF) in these papers is not a finite quantum
group in the sense of [30] (because it does not have a compéttblerm), so it cannot
be a quantum subgroup of the COMPACT quantum symmetry graupsg(M3) and

aut(Mg) in our paper; but it is a quantum subgroup of the Hopf enveldpB) of the
guantum semi-groufy(B) mentioned in the last paragraph.
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Our paper gives solutions to the “intricate problem” mentioned in the end of Sect. 2
of the paper [7]: find the biggest quantum group actindén This “intricate problem”
has two solutions: the first, Theorem 6.1, solves the problem in the category of compact
guantum groups; the second, the remarks in the last two paragraphs, solves the problem
in the category of all quantum groups—Hopf algebras that need notliamerms.

(4) In [13], the quantum groufU,(2) is described as the quantum automorphism group
of the quantum plane (i.e. the deformed plane). In view of the fact that the automorphism
groupAut(My) is SU(2), one might be able to descrilsé/,(2) as a quantum automor-
phism group of the non-deformed spag endowed with a collection of functionals.

Appendix

In [18], we introduced a compact matrix quantum groy{Q) for each non-singular
matrix @. It has the following presentation:

wul = I, = ulu,

u'QuQ ™t = I, = QuQ ™M,

whereu = (a;;).

As a matter of fact, it is more appropriate to use the notatigf?) (and we will
do so from now on) for the compact matrix quantum group with the following sets of
relations (wheré) is positive):

u = u,

wWQu@ =1, = QuQ .

(Letv = QY?uQ~1/2. Thenv is a unitary matrix. Hence th@*-algebraA exists. From
thisitis easy to see that,(Q) is a compact matrix quantum group.) This quantum group
has all the properties listed in [18] for the ald,(Q)). The oldA,(Q) is the intersection
of the quantum groupg, (n) and the newA,(Q) defined above. Moreover,@ is a real
matrix, the newA,(Q) is a compact quantum group of Kac type.

Finally, we note that the quantum group denoteddyF’) in [2] is the same as the
guantum groupB,(Q) in [24, 26] with Q = F*, so it is different from the quantum
groupA,(Q) above unles$’ is the trivial matrixZ,,.
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