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Abstract: We study the existence of D-brane bound states at threshold in Type Il string
theories. In a number of situations, we can reduce the question of existence to quadra-
ture, and the study of a particular limit of the propagator for the system of D-branes.
This involves a derivation of an index theorem for a family of non-Fredholm opera-
tors. In support of the conjectured relation between compactified eleven-dimensional
supergravity and Type IlA string theory, we show that a bound state exists for two co-
incident zero-branes. This result also provides support for the conjectured description
of M-theory as a matrix model. In addition, we provide further evidence that there are
no BPS bound states for two and three-branes twice wrapped on Calabi—Yau vanishing
cycles.

1. Introduction

Remarkable progress by Polchinskiin describing the solitons of Type Il string theory has
provided the means by which many conjectured dualities involving string theories and
M-theory can be stringently tested [1]. The low-energy dynamics of coincident D-branes
has been described by Witten [2], who reduced the question of finding BPS bound states
to one of studying the vacuum structure of various supersymmetric Yang-Mills theories.
In simple cases, the BPS mass formula forbids the decay of a charged particle saturating
the mass bound; hence, ensuring stability. However, there are a number of situations in
which a particle is required that is only marginally stable against decay. Showing the
existence of such particles, with energies at the decay threshold, is the goal of this paper.
A similiar problem arose for finit&§U(2) N=2 Yang-Mills theory, studied in [3] and

[4], where certain dyon bound states at threshold were shown to exist. The situations we
shall presently study are significantly more difficult because the Hamiltonians are not
as well behaved, and gauge invariance provides an added complexity.

* A preliminary version of this paper was circulated informally in November, 1996.
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Let us briefly recall the low-energy dynamics of coincident Diriciplddranes, de-
scribed in [2]. The world volume theory is the dimensional reduction of ten-dimensional
N=1 Yang-Mills to thep + 1-dimensional world volume of the brane. For a single brane,
the gauge theory is abelian, and the dynamics therefore trivial in the infraredv For
coincident branes, the gauge symmetry is enhancét20) rather thari/(1)". After
factoring out al/(1) corresponding to the center of mass motion, the existence of a
bound state requires that the remainisg (V) p + 1-dimensional Yang-Mills theory
possess a normalizable supersymmetric vacuum. The bosonic potential for this model
generally has flat directions, and so we encounter the problem of bound states at thresh-
old. If a bound state is required by a conjectured duality, there is a consistency check,
described by Sen [5], that can sometimes be performed. In favorable cases, one might
be able to further compactify one direction of the superstring theory. If a bound state
exists prior to compactification, it should give rise to BPS states in the further com-
pactified theory which, for appropriate choices of momentum along the circle, are no
longer marginally bound. The existence of these states can then be analyzed with more
conventional techniques. Of course, for this consistency check, there have to be enough
remaining uncompactified directions so that problems with infra-red divergences do not
arise. More generally, however, the question of bound states at threshold must be ad-
dressed. Note that a normalizable state for a theory in a compact space generally does
not remain normalizable when the volume is taken to infinity. The spectrum can and
often does change discontinously, and showing the existence of the bound state in the
non-compact situation requires a separate analysis.

In a similar spirit, we can arrive at descriptions of the effective dynamipswvaines
multiply-wrapped on supersymmetric cycles of a compactification space. In the case
of p-branes wrapped gm-cycles, the resulting description of the low-energy dynamics
is some flavor of quantum mechanics, although not generally just a supersymmetric
gauge theory. Our aim in this paper is to address the fundamental issue — the existence
of flat directions in the potential — which arises in studying binding in these situations.
This analysis generalizes the discussion in [6], where we argued for the existence of
a marginal bound state of a zero-brane and a four-brane, to the case where the gauge
group is non-abelian. We shall see that there are very subtle issues that arise as a result
of this complication.

The most exciting reason for studying this question is, however, the remarkable
conjecture that M-theory may be described in terms of zero-brane dynamics in the limit
where the number of branes goes to infinity [7]. This conjecture is, in part, founded on
previous work studying the relation between supermembranes, aid theco limit
of type lIA zero-brane quantum mechanics [8,9]. In order for the M(atrix) model to
have a chance at describing M theory, we need to be able to find states in the quantum
mechanics which correspond to the gravitons of eleven-dimensional supergravity. The
bound state that we shall find is precisely one of these particles. In the process of showing
that such a bound state exists, we will provide a detailed study of the behavior of the
propagator for the two zero-brane system when the zero-branes are far apart. There are a
number of complications that make this analysis quite subtle. During the lengthy course
of our investigation (which pre-dates the M(atrix) model), a number of germane papers
have appeared. Among these papers have been interesting discussions of zero-brane
scattering in various approximations [10,11], and more recently, an exciting extension
of the original matrix model conjecture to the case of fidit¢12]. There has also been
an explicit argument showing that there are no normalizable ground states in a particular
simplified matrix model [13], a heuristic attempt to argue for the existence of zero-brane
bound states [14], and a recent paper which has some overlap with our results [15].
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Inthe following section, we consider the casg of 0. We describe a seven parameter
family of theories, which are the primary focus of this discussion. This family of theories
is derived fundamentally from the quantum mechanics describing the zero-brane in type
[IA string theory by adding mass deformations. These parameters allow us to ‘flow
down’ from ten dimensions to models that correspond to the reduction of N=1 Yang-
Mills in lower dimensions by taking various mass terms to infinity. We discuss general
features of these models, including the various physical scenarios in which they arise.
Our approachto the question of counting bound states is described in section three. There,
we argue that thé&? index for this class of supersymmetric quantum mechanical Yang-
Mills theories is actually computable. This involves a discussioh’dhdex theory for
non-Fredholm operators, which is an area of mathematics that is relatively unexplored.
In section four, we study the question of two-patrticle binding in these models, and we
derive a formula for the principal contribution to the index. The final section is a study
of the two-particle propagator in the limit where the two particles are far apart. With
this analysis, we can compute a subtle additional contribution to the index. The way
in which this contribution arises involves some rather surprising cancellations. In the
class of models that we investigate, we find that only the case which corresponds to the
reduction of supersymmetric Yang-Mills from ten dimensions can have a unique bound
state. This answers, in large part, the question of why the [&rdjeit of the reduced
ten-dimensional Yang-Mills theory should be distinguished from the IAfdenit of
reductions of lower-dimensional Yang-Mills theories.

2. Quantum Mechanical Gauge Theory

2.1. General Commentd.et us begin by considering models that arise from reducing
supersymmetric d+1-dimension8l/(N) Yang-Mills to quantum mechanics; see, for
instance, [16] for the first discussion of quantum mechanical gauge theories, or perhaps
[17]. Whether the Yang-Mills theory contains additional matter multiplets does not
significantly change the following discussion; so, for simplicity, we shall assume no
additional matter. On reducing the connectigpn we obtain scalar coordinateswhere

i = 1 ...,d which take values in the adjoint representation of the gauge group. We
introduce canonical momenta obeying,

[2%4, Pl = i0 450",

where the subscript is a gauge index. With the generatdré for the adjoint repre-
sentation normalized so that THT'2) = N§45, the Hamiltonian for the system takes
the general form,
1 o

H= ﬁTr(prl) +V(x)+ Hp. (2.2)
The bosonic potentid/(z) is polynomial inz, and generally has flat directions. The
term Hg is quadratic in the fermions and linearan Specific examples will be studied
in the following subsection. Thd, equation of motion gives a set of constrairs,,
which must vanish on physical states by Gauss’ law. The constraints obey the algebra,

[Ca,CB] =ifapcCe, (2.2)

where f4pc are the structure constants. The constraints further obey the commuta-
tion relations {4, H] = [C4, Q] = 0, where(@ is a supersymmetry generator. The
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supersymmetry algebra closes on the Hamiltonian if the constraints are set to zero. An
N-particle BPS bound state corresponds to a normalizable, gauge-invariant ground state
for this supersymmetric system.

Without detailed computation, what might we infer about the structure of the ground
state? Away from the flat points, the wave function for the ground state will decay
exponentially. The only interesting asymptotic behavior is expected near points where
the potential is small. A preliminary comment about the structure of the flat directions is
in order: for gauge groupU (NN), there arel, = (d — 1)(N — 1) + (N? — 1) commuting
directions around a flat point, adg = (d — 1)(N? — N) non-commuting directions. Let
us consider the structure of the potential in the neighborhood of a flat point. As we shall
subsequently describe in detail, the potential can be approximat&d fby—%r2|v|2,
wherewv parametrizes the transverse directions, aigla radial coordinate for the flat
directions. The Hamiltonian is then essentially a set of bosonic and fermionic harmonic
oscillators for the transverse directions, and a free Laplacian along the flat directions. The
frequency for oscillation along the massive directions depends ®his observation
provides one way of seeing that there are no scattering states in the spectrum of the
bosonic Hamiltonian for these models, as discussed in [18]. Somewhat surprisingly, the
spectrum of the bosonic models only contains discrete states. To construct a scattering
state along the flat direction, one would want to put the transverse harmonic oscillators
into their ground states; however, the zero point energy of the oscillators increases with
essentially forbidding finite energy scattering states. The same argument does not apply
to the supersymmetric case, since the ground state energy for the additional fermions
now cancels the zero point energy from the bosons, as required by supersymmetry. If
this were not the case, the subtleties in counting zero-brane bound states would not exist!

In a first approximation for large, any zero-energy wavefunctiom(z), roughly
takes a product form corresponding to placing the transverse oscillators into the ground

state(z) ~ g(r, 0)e~"1""/2, whered are angular variables for the flat directions. The
leading dependence 9fr, #) onr is believed to be power law decay for largeActing
with the Hamiltonian for the massive directions on this wavefunction yields zero, since
the zero point energies of the bosons and fermions cancel. We can now explain the key
difficulty in studying the approximate asymptotic wavefunction: can the decay exponent
be accurately estimated?

We note that this issue is critical, and cannot be resolved by simple approximations of
the asymptotic behavior. For instance, even in this approximation, the fur€tiaf) is
not simply the solution of a free Laplacian for ihedimensional space of flat directions
since the Laplacian, which for the radial coordinate is given by,

— 1 2 dcflg
rde=1 9p or’

also acts on the harmonic oscillator component of the wavefunction. Actually, it is
unlikely that the decay exponent can be accurately estimated without at least including
the first excited mode for the massive direction into the approximation. We should also
note that showing that the decay is fast enough to ensure normalizability is only a first
step toward showing that a bound state exists. The structure of the wavefunction would
need to be studied at smallwhere the non-abelian degrees of freedom are important.
Currently, the only practical approach is to develop an appropriate index theory for
the problem. As a final comment, note that the power law behavior of the asymptotic
ground state wavefunction is a consequence of the lack of a mass gap in the spectrum.
The supersymmetric theory contains a continuum of states which descend to zero energy,
thanks to the existence of the flat direction [8].

A, =

(2.3)
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2.2. A family of modelsWe now turn to the models of primary interest to us. Let us
recall that strongly coupled Type IIA string theory in ten dimensions has a conjectured
dual description as weakly coupled eleven-dimensional supergravity compactified on
an S1 [19,20]. To match the Kaluza-Klein spectrum of the compactified supergravity
theory, Type IIA string theory requires electrically charged particle states. The Dirichlet
zero-branes, which carry RR charge, seem to be the only candidates. Since there is a
single Kaluza-Klein mode for each choice of momentum along the circle direction, we
desire a single D-brane bound state for eAchiProving this conjecture was our original
motivation for studying these theories.

Actually, Sen has argued in [5] that if a unique bound state exists in the quantum
mechanics describingy zero-branes, then the spectrum of ultra-short multiplets in the
toroidally compactified type Il string agrees with the spectrum predicted by U-duality.
The world-volume theory for the D-particle is given by the dimensional reduction of N=1
9 + 1-dimensional Yang-Mills to quantum mechanics. A Majorana-Weyl spinorin 9 +1
dimensions has 16 real components, which means that the resulting quantum mechanical
theory has N=16 supersymmetry. LA;% be a real representation of t§€©(9) Clifford
algebra withi =1, ...,9 anda =1, ..., 16. These Clifford matrices satisfy

{+'sy7} = 25"
After reduction, the Hamiltonian for this system takes the form,

H= T - STt ) - ST T D), (24)

where the real fermiong 4., obey:

{Y40,¥Bs} = 64B0as- (2.5)

The Hilbert space is then composed of spinors on which the quantized fermions act as
elements of a Clifford algebra. The spinor wavefunctions contain an extremely large
number of components, even for smal| which makes an explicit construction of the
zero energy bound state wavefunction at best diffitdihe supersymmetry algebra
takes the form, o

{Qa, Qp} = 20°7H + 2 52, C, (2.6)

where,

Qu = s TrWep) = 75 T A1l 2],

while the constraint,
O = —ila ]~ Gt v,
or explicitly, _
Ca = fapo(zppe — %d}Bawca)- (2.7)

The constraint takes exactly the form assumed in the previous discussion. It is natural
to call this a nine-dimensional model, although it is quantum mechanics, since there
are nine bosonic variables in the adjointsif (IV), and the model is the reduction of a

1 However, the existence of the ni&pin(9) flavor symmetry might bring an explicit construction of
the ground state wavefunction within the realm of possibility. We leave the attempt to construct the explicit
solution to braver souls.
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ten-dimensional theory. The flavor symmetry is cle&ipin(9). Note that there is a nice
correlation between fermion number and flavor representation that is worth mentioning
at this point. The correlation essentially follows from spin-statistics in ten dimensions:
fermionic states in the Hilbert space transform under spinor representations of the flavor
group, while bosonic states appear in representatiod&gD). If the ground state is
unique, it must therefore be bosonic. There are similar relations for the other models
that we shall soon discuss.

Let us consider what sort of deformations are possible in this theory. We would like
to add mass terms to compactify some of the bosonic variables and effectively reduce
the dimension, but we will also require that the supersymmetry algebra maintain its nice
structure. In particular, we shall not consider deformations which introduce additional
terms into the right hand side of the supersymmetry algebra (2.6), which are linear in
momenta. The mass deformations that we shall describe correspond, in special cases,
to breaking N=4 Yang-Mills in four-dimensions to N=2 or N=1 by giving masses to
various chiral fields in the adjoint representation, and reducing the corresponding model
to quantum mechanics.

To describe the allowed deformations, choose a real supersymmetry gengrator,
Q.. The generator can be split into terms involving momenta, and terms independent
of momenta. Those depending on momenta can be expressed, schematioaly, as
where \* is a real fermion, and runs from 1 to 9. This leaves us with seven real
fermions,w’, in the adjoint of the gauge group, unpaired with a momentum operator,

but each appearing i@ paired with an operatoﬂ,, quadratic in the coordinates. The
supersymmetry generator is then roughly,

Q ~ ANypy +wh fh+. ...

The seven fermions,’, then represent our deformation degrees of freedom. We can
add any reasonable operator f6, independent of the momenta, and not generate a
new term linear in momenta in the expression{@, Q}. There are many interesting
possible deformations that preserve at least one supersymmetry. Some deformations can
give quite exotic classical minima of the resulting bosonic potential. This is a topic that
merits further investigation. As a special prosaic case, we could add the perturbation
maz* to one of thef’, which would lift some of the flat directions. This is the family of
deformations to which we shall restrict our discussion. More explicitly, consider a term
f7 which squares to give the term in the potentjg¥,|2. Adding the termmaz® to f7
changes the potential t¢’ +mz? |2. Takingm — oo then effectively decouples’ from

the model. In this way, we generate a seven parameter family of models which depend
on the values of the allowed masses for seven of the coordinates. Note that taking all
masses to infinity leaves us with a two-dimensional model, and further compactification
is not possible without introducing additional terms linear in the momenta into the
supersymmetry algebra.

There are two cases of particular interest: the three and five-dimensional models.
These models correspond to the reduction of N=1 Yang-Mills from four and six di-
mensions, respectively. For completeness and to fix annoying normalizations, we shall
describe the Hamiltonian and supersymmetry algebra for both models explicitly.

In the three-dimensional case, the Hamiltonian is given by,

H= %Tr(pipi) - % ZJ Tr([a",27]%) + %Tr@oi[x% Y, (2.8)
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where the index = 1,2, 3. Theo! are the Pauli matrices, and the complex fermigns
obey the anti-commutation relations:

{vaa:¥ps} = 0aB0as,

wherea = 1, 2. The supersymmetry generators are now complex, but still take a form
similar to the previous example,

_ g - .y
ro = 0&31#,45])%4 - ZfABC[O',La Oj]aﬁwAﬁxle]C’

while the constraints are given by,

Ca = fapo(@hpe — i pathca)- (2.9)
The supersymmetry algebra is now,
{Qa.Qp} =0,
{Q..Qs} =0, (2.10)

{@a, Qﬁ} = 25@,6H — 20’3[31'640,4.

The most glaring difference between this model and the nine-dimensional zero-brane
case is that the Hilbert space is how a Fock space with a canonical vacuum. This model
is quite special because the Pauli matrices form a Lie algebra, and so the complex
supercharge can be expressed as [16],

Qa = U;ﬁw,@(pfq - éfABCEUkﬁC%gx]é)

After introducing a potentialli” = L fapoetal a2k, we can conjugate the super-
charge in the following way:

" Que™ = ol gspi-

The study of the ground state wavefunctions then takes on a cohomological flavor since
the supercharge acts roughly as the operator,

Q~d+dWA,

on the wavefunctions, which we can view as differential forms. We expect that, in this
case, there should then be an explicit proof from studying the spectrum directly that
shows there are no zero-enerffywavefunctions for this model.

The five-dimensional case is governed by the Hamiltonian:

H= %Tr(pipi) _ % %:Tr([xi’ 271?) + %Tr(@vi[a:i,w]). (2.11)

The indexi now runs from 1 to 5, and the matricesire elements of th€O(5) Clifford
algebra. Again, the fermions are complex, and obey the relations,

{¥aa:¥ps} = 0aB0ap,

wherea = 1,... ,4. The constraint has a form identical to the previous case (2.9), and
the supersymmetry algebra is given by:
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{Qav Qﬁ} = 0,
{Qa,@p} =0 (212)
(@, Qs} = 2605 H — 29}, 52, Cis.

2.3. Wrapped D-branesSome of the models described in the previous section have
already been realized from wrapped D-brane configurations. Let us begin by considering
type 1B string theory, and the case of three-branes wrapped on a collapsing three-cycle.
In his study of singularities near conifold points of Calabi—Yau manifolds, Strominger
required only a single massless BPS state wrapped on the vanishing cycle [21]. That
there should be no bound states has been argued from a somewhat different approach in
[22]. The geometry of interest B x S, where theS® shrinks to zero size. Clearly, the
effective theory ori x 5% is not N=4 Yang-Mills; such a theory would make little sense.
Rather the world-volume theory of a D-brane on a curved space should be described
by a topologically twisted theory [23,22]. As the size of the sphere shrinks, only the
light degrees of freedom are relevant. The question, in this situation, then concerns the
existence of a ground state in the theory obtained from the dimensional reduction of
four-dimensional N=1 Yang-Mills, as first mentioned in [2].

We can also check the situation for type IIA, where we perform the same analysis
for the case of two-branes wrapped on a vanishing two-cycle. The situation is exactly
analogous to the case described above. The geometry iR radd, where thes? shrinks
to zero size. The only difference involves the number of supersymmetries. The effective
theory is now the reduction of N=1 Yang-Mills from six dimensions. Both models were
explicitly described in the previous subsection. It seems plausible that other D-brane
configurations will realize many, if not all, of the remaining models which we have
discussed.

2.4. Gauge invarianceThere is a rather nice feature of some of the computations that
we shall describe that deserves a separate comment. Whether it provides a hint at how
to formulate covariantly M-theory as a matrix model we leave to the judgement of the
readef The gauge-fields in a quantum mechanical gauge theory are non-dynamical.
They serve only to enforce the constraint that all states in the Hilbert space be gauge-
invariant. How do we enforce such a constraint in the operator formulation? For very
high temperatures, the partition function,

Z(3) = / detre PH(z, z) (2.13)

can be well-approximated by perturbation theory. The notation that we will use through-
out the paper may be unfamiliar, and so deserves a comment: we will often consider
traces of some operator, séy which we will denote as,

tr O(z, y),

2 When this section was originally written, the preceding comment seemed most appropriate. Subsequently,
there has been an interesting proposal for a non-perturbative definition of the type IIB string, given in [24].
The high temperature limit of the partition function that we describe in this section reduces precisely to the
model in that proposal. The relation between M(atrix) theory and the proposal in [24] seems to be in the spirit
of a “T-duality” in the time direction.
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where by {, y) we mean the usual propagation of a particle from pgitd point x.
In an explicit basis of eigenfunctions,, (x), with eigenvalue\,, for O, this expression
takes the familiar form,

D At (@) (),

wheren may index a continuous parameter.

However, in computing the partition function (2.13), itis inconvenient to try to trace
over the gauge invariant spectrum of the Hamiltonian, i.e. statég > satisfying
Caly(z) >= 0. Our first task is then to implement the projection onto gauge invari-
ant states explicitly, so we can trace over the full, unconstrained spectrum. The gauge
constraints(' 4, split into two sets oSU (V) generators: one generates rotations of the
«*, which we shall denot€®, while the other(/, generates rotations of the fermions.

Let us denote the operator generating a finite gauge transfornditioon the fermions
by I(g(¢t)) where we shall drop the explicit dependencetoiio project onto gauge
invariant states, we insert:

Z(B) = / dt/ datretaCa e =BH (g 1),
SU(N)

:/ dt/ dxtr TI(g) e PH (g, ),
SU(N)

where the measure for tl#§/ (V) integration is chosen so thﬂU(N) dt = 1. The trace

is now over the full Hilbert space, including gauge-variant states.
For small3, we can now construct a reasonable approximation for the propagator,

1 _le—y® _
W@ % e ﬁve BHEp +... s (215)

(2.14)

e Mz, y) =

wherel = d(N? — 1) is the dimension of the space of scalars. We shall describe this
approximation in somewhat more detail in the following section. The fermion projection

operator can be expressedlag(t)) = e“ACf\, which yields the expression,

1 |z—gax|? . f
Z(3) = dt [ detr ————e 25 e PV PHrgitaCiy 4.
D= [ / P OV ¢—PHr

As 3 — 0, we see that the contribution from group elements away from the identity
element is strongly suppressed. Indeed, we can then replagd + ii - C?, and the
exponential term involving becomes,

—it-Gba|?
e 28

The termit’- C*z is more transparent when written ésTr[t, x*]?, but this is precisely

the form of a term in the potential enerdy, Indeed, in this limit, the gauge parameters
combine exactly with the remaining coordinates to give a trace whist{g + 1) sym-
metric, rather tharO(d) symmetric. Even the fermion projection operator combines
naturally with H to give a complete symmetry betweghandt, in the computation

of this trace. We shall put this symmetry to good use in subsequent computations. Note
that for the case of zero-branes in type IIA, the partition function appears to arise from
a manifestlySO(10) invariant Hamiltonian, without any hint of gauge constraints.
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3. Counting Ground States

3.1. Defining the index.ldeally, to count the number of normalizable ground states
for these models, we would like to compute the low temperature limit of the partition
function,

/dx lim tre ?8(z, 2).
[3%00

Except for very simple systems, that computation is beyond reach. As usual, we are then
interested in counting the number bf ground states weighted by-()"", whereF is
the fermion number. Therefore, we wish to compute the index,

Ind = [ dz lim tr(-=1)Fe PH
[ fim -1 ), -

=np—nr,

where the trace is over the gauge invariant spectrum of the Hamiltonian. Let us first
note that the index is perfectly well-defined. The only way that the index (3.1) could
not be counting the net number of ground states is if the Hamiltonian had an extremely
pathological low-energy spectrum, i.e. if the density of states diverged badly-a<.

That is certainly not the case for the models we are studying.

Whether the index is computable is another question entirely. The purpose of this
section is to argue that our approach to computing the index actually counts the number
of ground states. Before discussing the issues that arise in the non-Fredholm cases, let us
discuss in some detail the situation where there is a gap in the spectrum. First, when the
spectrum is actually discrete, the twisted partition functiof-isdependent. In these
cases, we can compute the index in the-» 0 limit, which reduces to a perturbative
computation. Thed — 0 limit is what we will call the principal contribution to the
index. Even in the case where the spectrum is discrete, the principal contribution, which
is often computed as an integral over the coordinatesan be shifted to a boundary
term. To see this, note that we should first perform all our analysis on @#halivhere
|z] < R, and then take a limik — oco. We can then write,

Ind = lim / de lim tr(=1)Fe PH(z,z),
|z|<R

R—o0 B—o0

R—o0 (3,—0

= lim Iim/ dx{tr(—l)Fe*ﬂoH(z,x)+/mdﬁ%tr(—1)Fe*ﬁH(x,x)}.
|z|<R Bo

Now, computingd; of tr (—1)e=#H brings downH, which we can replace b§?.
When we try to runy) around the trace,

tr (—1)7 Q%P = —tr Q(—-1)F QePH

0
_tre;(—1)F' Qe PH,
o’
we find that thes variation vanishes up to a total divergence. In this express;%%,
is the derivative term in the superchardg, If we definee,, to be the fermion in the
normal direction to the boundary, then the index can be written as a sum of two terms,

Ind = lim [im { tr(fl)Fe*ﬁ°H+}/ / dptr e, (—1)F Qe ).
R—00 5,—0 |z|<R 2 lz|=R J B,
(3.2)

= —tr (—1)" Q% 1 —
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Atfirst sight, keeping track of these various limits may seem like a technicality; however,
that is not the case. So, rather than continue a general discussion, let us revisit an old
friend to see how these manipulations work concretely. A number of the diffculties that
arise in the D-particle cases will become clearer.

3.2. The harmonic oscillator revisitetet us consider a single supersymmetric harmonic
oscillator, which has a unique ground state, and a discrete spectrum. The supercharge is
given by,

Q = Y1p + Yo,
wherey? = 3 = 1 and{«1, ¢} = 0. The Hamiltonian is one-half the square of the
supercharge,

1
H=2Q?
5@

= %(Z)z + 2% — iPrip).

Now to evaluate the principal term, we can consider the first termin (3.2), we which can
write as,
/R d 1 tr i1 =52 (@ —iva) 4
*————=r1y19ze ey
—R VvV 27Tﬁo

where (-1)F" = iy, in this case, and squares to the identity. The omitted terms are
suppressed by powers@fEvaluating the trace on the fermions, or in the equivalent path-
integral language, integrating out the fermion zero modes, gives a leading contribution

In ﬁ()a
ﬁoe_ﬁowz/z’

R 1
/—R da V 277—60

Rv/Bo/2 1 2
/ dor——=e " .
—R+\/Bo/2 ﬁ

If we take 3, to zero faster thaR =2, this term vanishes, while if we take, to zero
more slowly, we obtain the expected answer of one. Whether or not we get a contribution
from this term depends on how we choose to tdkéo zero. When this term does not
contribute, the second term in (3.2) contributes, and the principal contribution is shifted
to a boundary term as we shall see. In this model, the principal contribution is the only
contribution to the index.

The boundary term gets two equal contributions fr&nand — R in this case, and
so can be written,

which gives,

o0
5 [ s i inQe

Bo o=R
As R becomes large, the potential teem”" damps the kernek="#, for large 3.
We therefore do not need non-perturbative information about the kernel to evaluate this
contributian — a smal|3 approximation suffices. Whenever there is a mass gap, we have
this nice damping, which is the reason that the index is usually computable.

In this case, evaluating the trace on fermions gives,

o 1 2
dz———eP7"/2 ,
L,

e =R

o
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and on rescaling, we obtain:

o0 1
df ——e .
/ﬁORZ/z V3

Now we see that this term can contributgifis taken to zero sufficiently quickly with

R. Of course, the.? index is one regardless of how fast or slowly we choose to take
0, to zero. In the case of a model with potenfialhomogeneous in with degreek,

a similar argument can be applied. In that case, if we take zero slower tha—*

then the principal contribution is localized to the first term of (3.2), while if takéo
zero faster tharR—*, the second term contributes. In the following section, we shall
evaluate the principal contribution for the two D-particle case by lettingo to zero
more slowly thankR—4. This seems computationally simpler than trying to localize the
contribution to the boundary.

3.3. Reducing the principal term to quadratur€o evaluate the principal contribution,

we have to construct a reasonable approximatiartd? . We will not need to alter the
usual perturbative construction of the partition function because of the flat points of the
potential,V. We start by writing,

1 1
—pH = = [ 8= d
‘ 2m'/f H—2""

wherev is a contour enclosing the spectrum of H. Let us consider the generic situation
away from the flat points. We can approximaté { z)~! by a perturbation series,

1 : eth-(z—y) Hp
H—z(x’y)_/(k2/2+V—z)(l_(k2/2+V_z)+"')’ (3.3)

where the first correction, proportional #é, is shown, and subsequent terms are
constructed iteratively in powers of{/2 +V — z)~1. The corresponding propagator
takes the form,

"
Wé’_ ‘ 2;‘ €7ﬂV87BHF +... , (34)
e

e M (,y) =

wherel = d(N? — 1) is the dimension of the space of scalars. This approximation
is reasonable for smafl. The omitted terms which correct this approximation appear
with a higher power of§2/2 +V — 2)71, in (3.3), and consequently give rise to terms
suppressed by powers gfin (3.4). This approximation then suffices for evaluating the
firsttermin (3.2), where we choose to takéo zero more slowly thaR—4. Substituting

the leading approximation for the propagator gives,

lim Iim/ / dttr (=1)F e PHT1(g) (g2, z)
R—00 =0 /14 1<R JSUN)

—it-Gba|?

. . 1 ol
= lim lim / / ditr (1) ———— e~ 25 e Ve BHretalu v
R—00 =0 J 121 <r Jsu) (2r3)V/2

where we have approximated the group elemertby- C® forreasons explainedinthe
previous section. This amounts to localizing the integral over the gauge group to a small
neighborhood of the idenyit- a slight twist on the usual localization to the minima of
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the potential. As usual, the inclusion of )" forces us to absorb fermion zero modes.
In our trace, {£1)F is realized as the volume form for the Clifford algebra (2.5). There
are two sources for fermions: the first is fram®#, while the second source is the
fermion projection operatoa“ACfx, inserted into the trace. After writing the fermion
term,z’tACj; — BHp, asy M+ for some matrixM, the trace over the Clifford factors
gives the Pfaffian of\/, which is a polynomial inc and¢. On rescaling the integral, we
obtain,

1 -2 b2
/ dt / da &y /ze*IM 2*/2e=V @) pE(M), (3.5)

where the integration region fois nowR™"~1, while for z, the region ifR¥~"~1). As

will be clear from the subsequent explicit computation, the Pfaffian is of definite sign
whend is odd, and the integral is thus non-vanishing. However, it is far from clear that
this term yields an integer, and indeed, it generally is not integral. Therefore, there had
better be a non-vanishing correction term.

We stress again that it is very natural to considen equal footing with the coordi-
natesr’. Let us denote by 2°, and define/® to beil, wherel is the identity matrix. The
coordinates:’, now form an (V2 — 1) x (d+ 1) matrix. In this notation, the matrix takes
the formM = —(i/2)fapcx’y~*, and the integral admits &0O(d + 1) symmetry which
we shall use in section four to compute explicit values for this term in the two-particle
case.

3.4. The non-Fredholm casaVhen the Hamiltonian under consideration has contin-
uous spectrum, the twisted partition function is generghgependent. The heuristic
reason for thes-dependence is that the density of states for the bosonic and fermionic
scattering states can differ. Supersymmetry pairs bosonic and fermionic modes, but does
not necessarily preserve the spectral density. In these cases, the principal contribution
to the index is not necessarily integer, and there must be an additional contribution from
the second term in (3.2). In the case where there is a mass gap, this contribution can be
perturbatively evaluated. What happens in the case where there is no mass gap?

Let us choose a real superchar@ewhich squares to the Hamiltonian up to a gauge
transformation. For this discussion, we will set the gauge constraints to@ésdahen
a self-adjoint elliptic first-order operator, which anti-commutes withumvolution,
(—1)F. Let us defingl. as the restriction of) to the +1 eigenspace of-()F, i.e. the
bosonic states. It may be helpful to think@fas a matrix,

0 Q:
(6. %)

whereQ; = @Q_ is the restriction of) to fermionic states. The computation that we need
to perform is the calculation of the? index of Q.. This operator, though elliptic, is not
Fredholm. Recall that a Fredholm operator, by definition, has a finite-dimensional kernel
and cokernel. The fact that the continuous spectrufifi f ) contains scattering states
with arbitrarily small energies implies that the imagéxfis not closed, and the cokernel
is infinite-dimensional, and distinct from the kernekf . Hence, we take thg? index
of Q. to be the dimension of Ke€},) N L? minus the dimension of Ke€) N L2, which
is not, in this case, the dimension of the kernel minus the dimension of the cokernel of
Q-

Let us consider how to compute this index. Suppose that there exists a Green’s
function, G, for Q?; i.e. a self-adjoint singular integral operaiGrwhich annihilates
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the kernel ofQ? and acts as@?)~* on the orthogonal complement of the kernel. By
definition, G obeys,

Q*’G=1-P,
whereP denotes the orthogonal projection onto the kerné€)afSo, P then annihilates
all states which are not zero-energy. We recall that by singular integral operator we mean
an operator which is obtained by integrating against a matrix-valued ketel),
which has a well-understood singularity along the diaganal y. For example, the
inverse of the Laplacian in three dimensions is the familiar keragk; — y| 1. Let us
denote the restriction af to the +1 eigenspace of-()"" by G, where:

G, =G +(-1)F)/2.

Let P, denote the orthogonal projection onto thé kernel of Q4. ThenQQG: =
(I — P)(I + (-1 /2 =1+ (-1))/2 — P;, and similarly, using the fact th&} anti-
commutes with { 1) and commutes witli, we haveQG.Q = (I — (-1)F)/2— P_.
Therefore, the index af). can be expressed as,

INdQ+ =trP, —trP_
=tr[(7 + (-1)")/2 - QQG.] - tr[(I = (-1)")/2 - QG.Q)
=tr((-1)" - [Q, QG4
=tr((-1)" +[Q, (-1)"QG/2)).

Of course, the difficulty is that we cannot constragexplicitly — even the claim
thatG is represented by a singular integral operator requires some justification, which
we will give shortly. This difficulty can be summarized in the following way: given a
set of eigenstates; ., with eigenvaluel’ under@?, the inverse is formally,

@)= > E Wpal@)eay),

Ea,E>0

where the sum may be over continuous indices. When the continuous spectrum is not
bounded away from zero, it is not clear that the resulting sum converges to a function
in any reasonable sense, sir@és an unbounded operator @1 wavefunctions in this

case. However, if the scattering states do not pile up at low-energies, then it should be
intuitively reasonable that is still nice, as, for example, in the free-particle case. We
will see this later by realizing as a limit of bounded singular integral operat&fs.
Physically, this limiting procedure is equivalent to adding a mass term to the propagator,
and taking the limit where the mass vanishes. The problem we are decribing is acommon
one in any theory with massless particles. So, let us proceed along the usual path by
constructing an explicit approximatidi’ to G for which we can compute the trace,

tr(~1)" +[Q, (-7 QW/2).

We must then verify that for a carefully constructédthis trace is the same as the one
computing the index of)..
Our approximation will have the property that,

Q*W =1-E,

for some compact error terrd given by integrating against a matrix-valued kernel,
e(x, y). We also want(z, y) to decay polynomially in|¢| + |y|) to a sufficiently high
power which we need to determine, and study in greater detail later.
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Let us describe what data is needed in order to insure that

r(-1)" +[Q, (-1)"QwW/2))

computes the index. This is equivalent to the vanishing &3 ,([-1)" Q(G — W) /2],
which is the difference between t{0)" + [Q, (—1)" QG /2]), which computes the
index, and tr(¢1)F + [Q, (—1)FQW/2]), which we hope computes the index.

For any integern, the operatoiV can be constructed so that the kernel@or W
hasm continuous derivatives. Letr be the characteristic function of a bdll of
radiusR. The characteristic function is defined to be one on the ball and zero elsewhere.
We will throw x r into the various traces to serve as a cut-off on the infra-red physics.
By a similar argument to the one used in Sect. 3.1, we may use the divergence theorem
to transform tg z[Q, (—1)"Q(G — W)/2] into an integral over the boundary &x.
Therefore, if we can show that-(1)" Q(G — W)(z, x) is decaying sufficiently rapidly
at large|z| = R, we deduce that tz[Q, (1) Q(G — W) /2] converges to zero, and
the index can be computed by replacifidy our approximationiV'.

To prove thatQ(G — W) decays sufficiently quickly, we will need to use an argu-
ment that may be unfamiliar to the reader which establishes a correspondence between
asymptotic estimates f@)? and decay rates for solutiogsto Q% = F, whereF sat-
isfies some growth constraint. In order to orient the reader, let us first examine what the
argument says in a much simpler case. Consider the differential equation in one variable
r, on (Q 00),

2
2\ o _
—W‘*w)f—g,

wherew is some constant. For this equation, a weak form of our general argument below
says that ife*"g € L?, for somea € (—1,1), then we may conclude that*" f is
normalizable, iff satisfies the growth constraiat®" f ¢ L?, for someb < 1. The
condition on the growth of is clearly necessary to rule out the addition of the non-
normalizable="" to any solution. In this simple case, we can prove this result by a direct
integration. We will use the following analogous result, which is established in much
greater generality in [25].

Suppose that for some positive constargnd some compact séf, we have an
estimate of the following form:

IQFII = llef /7%,

for all wavefunctions,f, which vanish outsidé. With these assumptions,(°F = e,
with r°e € L2, and if F satisfies the growth constraint théf°—* be normalizable for
some positives, then

7.071

2
WFEL7

for all positivee. Also,
,rC

In(r)e

for all positivee. In the familiar case where we hawénstead ofc/r, we would obtain
exponential decay as in the one-dimensional example. The reason we have a weaker
decay rate in this example is that the decay is roughly no worsecthtaywherey is a
function with|d|? less than the asymptotic lower bound &f, which isc?/r? in this

case, andv? in the one-dimensional example.

QF € L2,
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For purposes of illustration, let us sketch a proof of these growth estimates. For any
functionu supported in the complement of K, integration by parts yields

0= (Q°F,u*F) = [|QuF|* — [[[Q, u] F||*.
The assumed estimate implies that,

lewF/r|? > [I[Q, ul F|%

From this formal inequality, we can deduce the normalizabilityudf' /r whencu /r >
I[Q, u]|. More accurately, we can deduce the integrabilityéfif /72— |[Q, u]|?) F2. Let
us define a cutoff functiop which is identically one outside a large b&ll containing
K in its interior, and vanishing i'. Then takingu to ber</In(r)¢ times the cutoff
function p gives formally,

ler*=2F/ Iy ol < 16 e — ¢/ NG + 7°6')/ InGrY FII2

Collecting terms, we obtain:
[ e 2@ = mEFR Gl < e [ (PP
K/

for some constanty, which depends oA’ andc. A limiting argument, approximating
r by a sequence of bounded functions can be used to obtain from this formal inequality
the boundedness of the left side, whéh is bounded on compact sets.

We will need the following variant of this inequality. Suppose that

~ ? (2d-1)0
2__9 9.
@ Or? ror
wherew is now a positive operator withy > ¢?/r2. Suppose tha©2F = 0 in the
complement of a compact sé&f. For somek to be determined, consider the point
wherer* F is maximum. By the maximum principle, we have at the maximium that,
F' = —kF/r and ¢*F)" < 0, where:

(P F)" =h(k — Dr*=2F + 2%y 4y h P
>k(k — Lr*2F — 2% % 2F — (2d — 1)r**F + 7k 22F
=(2d — k — 2 +c2/k)kr*2F.

If we choose O< k& < 2(d — 1), we may deduce that if the maximum exists it must occur
in K. If Fr®is bounded for any positive, we may deduce thatr* is in fact bounded
by its values orK for all k with & < 2d+c?/k — 2. In our applications;? will usually be
the first or second eigenvalue of the standard spherical Laplacian, which igd 6-dn(
We recall that the standard Laplace operatorsdn' has eigenvalues;(d + k — 2),
with k = 0,1,2,..., where the multiplicity of each eigenvalue §;*472¢==21 n
the first case, we see that we gét?2 decay; in the second we see that faatt least 3,
we get faster thar®—2? decay. These estimates extend easily to the case QhErE e,
wheree satisfies the condition thate is bounded. We will apply this to the case when
@Q? = Q3% +Q3, the hamiltonian in the first and second variables Andlill be a kernel
constructed from the difference between the Green’s functiontind his argument
formalizes the observation that the product of two elements of the kerrdélsifould
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decay twice as fast as a single element of the kernel,Gard W looks like such a
product.
We will show that,

Q*=A.+ U/Tzv

acting on wavefunctions supported outside a large compact setr lietbe distance

along the flat directionA,. is the radial part of the Euclidean Laplacian in the flat
directions, and the operataris semi-positive with first eigenvalue greater than the first

or second eigenvalue of the spherical Laplacian. We can then apply the above argument
to deduce tha€ — W decays liker?=2¢, We can improve this estimate by observing
that we get the second eigenvalue when the operator is restricted to wavefunctions with
odd parity, and the first eigenvalue for the restriction to even parity wavefunctions. Split
(G — W) into its even and odd components. The odd componentof (1) decays

faster than-1~? by the preceding discussion, and it is easy to see that applyiogly
improves the decay rate. To see this, use the inequalit@fét = 0,

[wQF] < 2|[[Q, w]F|l,

and choosev appropriately. For the even component®df- W, we have that its image
under( is odd; therefore, we again have the improved decay rate determined by the
second eigenvalue of the sphere. This estimate requires¥hal{’)r* be bounded for
some positiver and thatz be given as a singular integral operator. The last condition is
needed to ensure thaf (— W) is a smooth function. We will not prove these results in
detail but will merely sketch how they follow from the same sequence of ideas we have
introduced. One considers first insteadfand W corresponding operators,, and

W.,, whereG,, is (Q? + w)~! restricted to the orthogonal complement of the kernel of
Q?, etc. Itis easy to get the desired initi#lboundedness fat.,, — Q,, for eachw > 0.

One then can get the desired growth bound; i.e. we show that the max is controlled by
an estimate on the compact set. We then allot® tend to zero to get the desired result
for G — W =lim,_o(G, — Wy). This type of argument can also be used to show that
G is a singular integral operator.

This then establishes the desired decay estimate given one: a construchion of
which leads to sufficiently small; that is e(z,y)| < (|z| + |y))~?"%, and two: a
demonstration of the claimed asymptotic lower bound@r Under these two condi-
tions, tr(-1)F +[Q, (—1)F QW/2]) computes the index. We now turn to the evaluation
of [Q, (—1)F'QW/2], which we need to boil the problem down to a concrete computa-
tion.

It will be convenient to arrange the constructioiBfso that on a large compact set,
say a ballBg, its contribution to the index can be computed by the standard principal
term computation described in the previous subsection. On the complement of this set
we will need to use special coordinates to find a nice expressidiv farhis requires us
to define an approximatioA to QG rather than the approximatidi to G, but since,
off a compact setd will clearly be of the formQW, this will not affect our preceding
discussion. The use of two separate construction8fan different regions may seem,
perhaps, a bit unnatural when dealing with Euclidean space. It is forced on us, in part,
by the need to obtain very good control of the error téfras|z| tends toxo. This rules
out the use of the local computation useddip and described previously. Moreover, the
special coordinates we use in the complement of the compact set, like polar coordinates,
become singular at the origin. Therefore, we will need to use two sets of cutoff functions
to patch the two approximate inverses together.
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Let p,, j(x) be a sequence of cutoff functions which approg¢h(z), and sep,, =
pn1. Let W’ be our approximate Green’s function near which we will construct in

section five. The operatquﬁO dg Qe*ﬁQz(x, y) is the standard kernel that we will use
in Br. We can create a global approximationQé: by defining:

Bo )
Alz,y) = Pn(T/)/O 3 Qe (@, y)pn.2(y) + (1 — pu(@)QW' (2, y)(L — pn.1/2(1))-

The cutoff functions on the left of each operator are inserted to average the two operators.
The cutoff functions on the right, however, are inserted so that the operators are localized
to the domains where they are well-defined, and satisfy the desired estimates. The right
cutoffs are of course chosen to be identically one on the support of the left cutoffs;
otherwise, they would destroy the averaging effected by the left cutoffs. This is the
reason for the second index pn

Then to evaluate 1) A, Q], we write:

Bo )
[(-1)7A,Q] :[Qapn](—l)F/O dB3Qe " pr2 —[Q, pul(—1)F QW' (1 = pp.1/2)

— (1) = e p o+ (L= p) (1) (I = E)L — prao)
(L= p)(FQIQ WL — praj) * .-

Bo )
=[Q. pu] /0 46 Qe % Q. pa)(~1)F QW
— () = ppe LY+ (1= p) (1) (~E)
+ (L - p)(=DFQIQ, W+ ...,

where the omitted terms are terms that trace to zero. We will condfrtiéh section
five so that the trace of (4 p,,)(— 1) (= E) + (1 — p,.)(— 1) Q[Q, W] will tend to zero
asn tends toco. Thus subtracting off the-{(1)"' I term we are left to compute,

Bo ) ,
Q. pu] /0 d8QeY — [Q. pul(— 1) QW' + (~1)F pe .

The last termis the principal term which is given by evaluating the integral (3.5). Taking
the limit asn tends toco, the two commutator terms converge to the boundary traces,

o )
/ (tr en/ d3 Qe P —tr en(—l)FQW'> .
|z|=R 0

Choosingsy to go to zero more slowly thaR—4, the integral,

Bo R
/ tre, / dB Qe P,
|z|=R 0

decomposes into two pieces. One is associated with a small neighborhood of the flat
regions, which consist, say, of all points of distance at most one from a flat point. The
other contribution is associated with the complementary region, i.e. almost all of the
sphere of radiu. It is not difficult to show that the contribution from the flat region is
squeezed to zero &stends toxo. The contribution from the complementary region is not
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vanishing. Using similar arguments to those presented earlier in this section, itis possible
to show without extensive computation that this term exactly cancels the principal term.
Standard constructions giveld’ whose contribution from the complementary region

oftre, (—1)" QW also exactly cancels the contributionMFR tre, foﬁ" dB Qe=PY,
Therefore, the total contribution of this boundary integral to the index comes from,

—}/ tre,(—1)FQW’, (3.6)
2 Nr(R)

whereNg(R) is a small neighborhood of the flat points on the boundary of the space,
which is a sphere of radiu’. We will show in section five that this integral converges to
—1/4in the two-particle case. In summary, the additional contribution to the index from
the boundary is computed by evaluating (3.6), which is localized to the flat directions.
The sum of (3.6) and the usual principal term from (3.5) must then be integer.

4. Two-Particle Binding

4.1. Symmetries and pfaffiariBhe simplest case to consideNs= 2; already, however,

the integral (3.5) is thirty-dimensional for type IIA zero-branes! We shall have to use
the various symmetries available to us to simplify the computation of the principal term.
Recall that the coordinates, now form a 3x (d + 1) matrix. The integral (3.5) is
invariant under the symmetry, — gxh, whereg is an element o50O(3) acting on the

left while h is an element o50(d + 1) acting from the right orx. Note that the left
action is a gauge transformation.

By using these symmetries, we shall rotatiato a special form,

by 0 0--- 0
0b, 0 -~ 0], (4.1)
00 b3 0 ---0

and reduce our integral to one over only three variables.
In these special coordinates, the potential (including the gauge parameters) takes the
special form,

~ 1
v:—éﬁ@+ﬁ@+@@y

We shall now evaluate P¥() by evaluating the determinant 8f. For the moment, let
us return to general coordinates whéte= —(i/2)fapcx’z7". FOr convenience, let us
denotez’;v* by x 4. The matrix then takes the form,

i 0 r3 —I2
M == —X3 0 T1
T2 —XT1 0

By row manipulations, or equivalently, by studying the eigenvalue equation, we find that
the determinant can be expressed as,

1 _ _ _
det(M) = 8= det(rxoxs) det(l— z1z, lxgml lxzmg 1)7
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wherer ;* = (x4 —2i2%1) /|2 4. After rotatingz into our convenient set of coordinates
(4.1), we can compute this determinant, and on taking the square root obtain,

1
PH(M) = m(blbzbs)dfl-

We can immediately see that whenis odd, the Pfaffian is an even function of the
variables in both special and general coordinates, and the corresponding integral (3.5)
is non-vanishing.

The lastingredient that we require to compute the integral (3.5) is the measure for our
simplified coordinates (4.1). We shall obtain the measure by gauge-fixing the integral
(3.5) using the Faddeev-Popov approach. Let us take be,

b, 00 0
0v, 0 --- 0].
00 % 0---0

We shall insert one into the integral (3.5) in the form,

/db’dgdh 3(x' — gxh)f(b),

where we have to determinfb). For someyy andhg, xo = gorho takes the form (4.1).

The integrals oveg andh then reduce to integrals in a small neighborhoog,aindh,,

with the exception of th&O(d — 2) subgroup ofSO(d + 1) that leaves the form (4.1)
invariant. If 7" is a generator for the leffO(3) action, andR a generator of the right
SO(d + 1) action which does not leave (4.1) invariant, then we can replace integration
overg, h by,

n(d) vol(SO(d — 2)) / db'dTdR6(x' — x, — Tzo — Rxo) f(B).

The remaining integrals are straightforward, and we find that,

— d—2(1,2 2\ (1,2 2\ (1,2 2
10 = oo —zy eI - 190E - 190 — 1)l
The integrals ovel are constrained such thiat> b, > b3. The symmetry facton(d) is
4 ford > 2, butis 2 ford = 2 because the left and right symmetry groups are then both
SO(3). The value of the symmetry factor can also be checked by computing a Gaussian
integral in thed-dimensional model, and comparing the result to the answer obtained
using the measure for these special coordinates.

Finally, inserting one in this form into the integral (3.5), and integrating aver h
gives ford > 2,

1 1 2 YolSO(d + D)vol(SO(3)
vol(SO(3)) (2r)3d/2 / 4vol(SO(d — 2))

(b1baba)™~2|(bF — b3)(bF — b3)

1 L
(b5 — b§)|m(blbzbs)d eV

The first factor of Yvol(SO(3)) comes from the normalization of the integration over
the gauge group, where we recall that we chose the normalization sgm%tdt =1
prior to rescaling.
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4.2. Computing the principal contributioNow there is a nice change of variables that
will allow us to evaluate this integral. Set = babs/v/2, y2 = bibs/v/2,y3 = bibs/V/2,
and the integral becomes,

: ) 11 i
/ db (b1b2ba)*~2|(b — b3)(b] — b3)(b5 — b%)|wm(b1bzbs)d eV

_ 1 1 1 L 2,.2.2
- / Ay (o)1 0F — AR — 130 — 135 sy e T

el 11 n(d—1vol(SO(d - 3)
roa TC 2221 73472 yol(SO(d)vol(SO(3))
1 1 g(d—1)vol(SO(d — 3))

2 22@-1) vol(SO(d)vol(SO@))

Lastly, we must multiply the result by the value offtyfrom the trace over the fermions,
which gives an extra factoP® 1. The net result is the formula:

1—o n(d—1)vol(SO(d + 1))vol(SO(d — 3))
n(d) vol(SO(d — 2))vol(SO(d))vol(SO(3))’
for the principal contribution,P, for d odd, where we recall that vidO(n)) =

n+l

vol(S™~1) - vol(S?), and thatvolg™) = 27 “z" /T'(%42). Letus conclude this discussion
by listing the explicit values in the following table:

p=2 (4.2)

Table 1. The principal contribution to the index

Dimension  Principal contribution

3 1/4
5 1/4
9 5/4

5. The Propagator for Well-Separated Branes

5.1. Some general comment¥Ve have determined in the previous section that the

principal contribution to the index is fractional. Since the index must be integer, there is
a missing contribution. The manner in which this contribution arises is quite surprising,
and involves a bizarre conspiracy of cancellations. Let us outline the procedure we will
follow before presenting a detailed discussion. We will construct an approximation to
the propagator for the two zero-branes when they are far apart. The approximation will
be sufficiently good in the sense that any corrections will not contribute to the boundary
term (3.6). At long distances, the only states that make a sizable contribution to the
propagator are those localized along the flat directions of the potential. The simplest
approximate description of the physics governing the light degrees of freedom is in
terms of free particle propagation along the flat directions. This is immediately modified

when we try to “integrate” out the massive modes. Let us label coordinates fdy, the
massive directions by. Then for example, the action 8f, which is part of the Laplacian
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(2.3), on the wavefunction for the flat direction is modified because of its action on the
harmonic oscillator ground state,

85 (ﬁ)da,/4 e_r‘y|2/2 - (ﬁ)da/‘l e—r\y|2/2 (83 + |:(;a - |y|2:| Or
™ g .
(oo —8) _day o it
162 & A )

Each of the terms appearing on the right is of ordér’1and so none can a priori be
neglected. In a similar way, the rest of the terms in the Hamiltonian modify the long
distance behavior. This includes th¢y*) terms in the potential which we recall is of the
form,V ~ r2|y|2/2 +O(y*). Since we need to include tiig(y*) terms, this approxima-

tion is not one-loop in the usual sense. We will need to sum up all the corrections to free
propagation, which are of ordey'd?, and surprisingly, they all cancel. The remaining
index computation then involves free particle propagation on the moduli space which is
R(@-=2) /7. From this computation, we will recover the needed corrections to the index.

The construction that we shall describe is to be contrasted with the kind of effective
action for the light modes that has been obtained using large-distance low-velocity
expansions [7,11]. After integrating out the massive modes in a one-loop approximation,
the leading correction to the effective Lagrangian at larggea term of order v*/r’
for the case of the nine-dimensional model. The connection between that approach, and
the computations that we shall describe does not seem transparent. It seems possible
that exploring the connection in detail will give insight, and dare we hope a proof, of the
desired non-renormalization theorem for fifeterm. Computing the leading corrections
to the three and five-dimensional models also seems an interesting question. Since the
amount of supersymmetry is reduced, we might suspect that there is a correction to the
metric on the moduli space. However, in constructing the propagator using this approach,
we do not find any fundamental difference between the three cases.

Let us start by discussing the form of the various operators that we need to study
in special coordinates. Without rotating to a convenient set of coordinates, it will be
very difficult to say anything about the structure of the partition function. We can rotate
our coordinatesy, into a convenient basis by using a combination of gauge and flavor
symmetries. So, we can choose a basis,

T =kAq,
with k& € SO(3), ¢ € SO(d) and A the following 3x d matrix,

A= Oyg-n yg . (5.1)
0 4

We have set\] = r, and lety denote the remaining 2 (d — 1) matrix, with A% = v,
fori, A > 1. The reason for this choice is that the flat directions are now at the locus,
y = 0. Note that the choice d@f andg is not unique here. So the mapping,

m(k, A, q) — kAq,

projects SO(3) x R?~1 x SO(d) onto our space of matrices, but is clearly not
one-to-one. The fibers of the mam, are non-trivial. Any function that depends on



D-Brane Bound States Redux 697

x can then be lifted to a function in the product space, which is constant under those
transformations of, A, ¢ that leaver invariant. Most of our computations will focus

on the neighborhoodyr, of a flat point given byy|? < 1, andr tending toco. This is

the region that contributes to (3.6).

We need to write the Hamiltonian in terms of these new coordinates, which include
thed+1 angular variables parametrizing the2-dimensional flat directions. The kinetic
terms in the Hamiltonian can be determined by computing the Laplacian for the metric
associated to this coordinate choice. Let us recall that given a mgttiee Laplacian
is given by:

A=t ( \glg”> Ty,

VIl

where|g| is detf), and theT; are a basis of vector-fields for some coordinate system.
First, we need to make a choice of basis of vector-fields. For the coordinates, (5.1), it
is natural to have{ 2., ﬁ}2<i<d,3>1 as part of the basis. We nedd+ 1 additional

JB -

vector-fields. From the le§O(3), we can choose the two vector-fieldX,, X3} which
are associated to the twf0(3) generators,

010 001
-100|,] 00O
000 -100

respectively. Similarly, we can add thie— 1 vector-fields{V;},-1, associated to the
right SO(d) generatorsz(j). The matrixz(j) is ad x d anti-symmetric matrix with
only one positive entry;(j)1; = 1. Our total basis is then composed of the subset of
tangent vectors to the product spasé)(3) x R??~ x SO(d), given by{X,, X3} U
{£, %}295(&&1 U{Vj}i>1.

We need to determine the metrig, for this coordinate choice. The set of vector-
fields,{%, &} are orthonormal and orthogonal to the rest of the basis. The rest of the

basis have inner products,

(X5, X3) = 1263+ (yy") e,

(Vi Vie) = 1280+ (")
and,

(X5, Vi) = 2ry;.

These inner products can be determined by pushing forward the vector-fieldsmunder
and computing the resulting norms. Now the metric can be written as a direct sum of two
metrics,g = ¢’ ® ¢”, whereg” is the identity matrix for the coordinates corresponding
to (r,y). The interesting part of the metric is the part for the angular variables. So, let
us write,¢’ = 721 + K, whereK is determined from the above inner products. Then

(¢)=1/r>— K/r*+ ..., where the omitted terms are suppressed by more powers
of . To compute the Laplacian, we need:

logdet() = logdetg’) = trlog(2I) + trlog(I + K /r?)
= 2(d + 1) log() + tr(K /r?) — tr(K?/2r*) + . ..
=2(d + 1) log() — 2y|?/r*+...,
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where omitted terms are again of lower order. Finally, this allows us to write down an
expression for the Hamiltonian in these special coordinatées at,(g),

P d+1 0 2yl 0 1 ) )
o= = R g RO T
j>1 j>1 (52)
r¥y[? + Z (Wouh — vaud)? + kanASgs Y4+,
i>5>1

whereA, is the Laplacian in the variables. We have writtef{ ask:AMAjlquYj,
whereY] = i’yiﬁfABCwBa’L/)Cﬁ, in the nine-dimensional model, and analogous expres-
sions for the other cases. The omitted terms are all of abgiy+3) or smaller.

5.2. Inverting the Hamiltonian.To invert the Hamiltonian, let us focus first on the
harmonic oscillator terméi,,, = A, +r2|y|2, with eigenvalues 2— 1 +n)r, wheren a
non-negative integer. If there were no cancelling fermion term, this oscillator term would
immediately guarantee a potential linearly increasing wijtand therefore, a discrete
spectrum. In order to see the cancelling fermion term, we Wfite= rY,. + H., where

Y, = ka1q1;Y3, and H consists simply of all those terms iz without aA} =r
factor. It is an easy task to show that the eigenvalueg,.afange from—2(d — 1) to
2(d—1). In particular, when we consider wavefunctions for which the transverse bosons
and fermions are simultaneously in their ground states, all terms of oxharcel, and

we are left with only terms of order/2? to worry about in the Hamiltonian. On any
state with excited oscillators, we see tiahas lowest eigenvalue of order

Our construction of?” will use the nice factorization of the wavefunctions in terms
of their behavior in the massive directions, and their behavior along the flat directions.
We can think ofHf as a block Z 2 matrix, with respect to this decomposition, where the
H31 piece corresponds to the termshhwhich take the ground state for the oscillators
back to itself. The piecél,, contains terms i which send the state with one excited
massive boson to itself, and the off-diagonal terms act in a similar way. As a first guess,
one might try (and we did) to construidt as a perturbation of some nice approximation,
Wi, to H;' @ H,,'. Because of the large eigenvalue of the first excited statg,pf Y.,
almost any construction should give a gddgizl. Inverting H11 is more problematic but
not excessively so.

In a standard perturbative approach, we considé&y; = I — E;. Here, E; will
include, for example, such terms Hs,WW;. As a next step, sé¥’, = W, + W1 Eq, with
error &, = —Ef. One could iterate this construction to constrét= W,, for some
largen, if the errors were getting significantly smaller each time. For example if each
E). had a kerneky,(z, ') which was bounded byr(x) + r(z")) %, this would lead us
to the desiredV after some number of iterations. With this in mind, it becomes clear
what terms must be included in our initial approximatidn,. Because any approximate
H;* will have upper bound of size?, we see that we cannot discard any term of size
bigger than or equal t&(1/r?) in H which either acts on the ground state, or maps an
excited state to the ground state. For these terms lead to errors which are not decreasing
under iteration. Actually, this is an overstatement. If a tdsnmaps us, for example,
from the lowest state into a higher state we see that the error will enfégAB H,; .
Becausei%[z‘zl is bounded above by-(z) + r(z’)) "2, this term will be decreasing in
if, for example,B is O(1/r?). With these remarks to guide us, we must now return to
analyzeH, treating as lower order only terms which &¢L/r3) if they map the ground
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state into itself, or ar@(1/r?) if they mix the ground state with excited states. These
lower order terms cannot be neglected altogether, but they simply enter as higher terms
in our iterative construction df’.

The gauge constraints provide some further simplication in our computations. First
we can ‘move’ to the identity elemeit= 1 in our product space§O(3) x R??~1 x
SO(d) with coordinatesk, A, ¢), by a gauge rotation. From now on, we will restrict our
discussion to thé = 1 subspace. Further, setting two of the gauge constraints to zero
allows us to replace differentiation by;, which generates gauge transformations on the
bosons, by multiplication by the fermion bilinear which generates gauge transformations
on the fermions. For example, in the nine-dimensional case, the fermion bilinear is given
by Q; = —%wlsz/}js. There are similar expressions for the other cases. The remaining
gauge constraint; of the three constraints in (2.2), generatés(a) subgroup which
acts ony. With these considerations in hand, let us turn to the task of getting rid of the
massive modes, and obtaining an effective Hamiltonian on the flat directions which we
can invert to compute (3.6).

5.3. Constructing the effective Hamiltoniahet us begin by computing the total con-
tribution of terms that map the ground state to itself. Each of these terms will give
rise to an interaction in the effective Hamiltonian of the formj/r?, for somem, in

a manner described in the beginning of this section. The ground state is of the form
s(q)r@=V/2¢=1vI*/2 wheres(q), the fermion ground state, is actually a section of a
bundle determined by the lowest eigenvalue of the fermion fBrpsinces(q) must

satisfy the equation:
{Ye(@) +2(d — 1)}s(q) = 0.

Therefore, the ground state depends non-trivially on the right angular coordinatés,
will examine the structure of the fermion ground state in some detail, shortly. Note that
the ground state is invariant under the remairiii{@) subgroup of the gauge group. As
a first approximation, a general state that we need to consider is a product of the ground
state with a wavefunctionf(r, ¢), along the flat directions. Let us record the various
m? /r? contributions to the effective Hamiltonian which actsfonvherem?, m® andm®
denote the values of the contributions for the three, five and nine-dimensional models,
respectively. First, by definition, the terf,, + rY,. vanishes on the ground state.

It is convenient to rewrite anda% in terms of standard annihilation and creation
operators: '

1
= ——(a+al),
Y \/Z( )

ay V2
where [, a'] = 1. Now we can evaluate the contribution of the derivative term& in
acting on the bosonic ground state,

0) = (ﬁ)(dfl)/z

s

o—rlvi22

The term in (5.2) with one radial derivative gives,

_ 2
o010 = 0l (5 - ) o
=0.



700 S. Sethi, M. Stern

The term with two radial derivatives then gives,
1[,d-1,d-3
2 |
_1-d

T

(0[o7[0) = )~ 21227 + 2 0lllul0)

Let us label this contributiony,., thenm? = 1/4, m® = 1/2, andm? = 1. After noting

that we can replace th&? terms in (5.2) by the action of the fermion bilinea€?,

which are just matrices, we see that there are two remaining derivative terms in the
Hamiltonian. The first is th@a% term and it is relatively easy to analyze,

0
O7-10) = ~5(0leal0)
= (1-d).

Let us call this contributionyn,,, wherem? = 1 — d. The sign of this term is critical
since it is the only term that maps the ground state to the ground state, and gives a large
negative contribution to the net.

The last derivative term comes from the actionl¢f on the ground state, where
theV; generate certain flavor rotations. Tfxeependent fermion oscillator ground state
is the only part of the full ground state wavefunction that can give a non-vanishing
contribution in this case. So, let us now describe the ground state of the fermions in
some detail. The real massive fermiofigy,, V34 }, Wherea runs from 1 ton = 4,8
and 16 for the three, five and nine-dimensional cases, can be arranged into annihilation
and creation operators:

1
b(x = ﬁ(whx + iw3a)7

1 .
— (V20 — 134).
\/2(1/& Y3a)
The operator$, b’ obey the anti-commutation relatiofy,,, bg} = d.3. Can we con-
struct a fermion state in the kernel Bf + 2(d — 1)? For the moment, let us pigk= 1.
In this casey,. = ZiWiszwgg, and we can picky! to be the diagonal element of the
Clifford algebra:

b,

10

0-1
With this choice,Y,. = ZZZQ (bgba — bjb/zmbn/%a). Let us choose a fermionic
ground statd0) » which satisfies),, |0) p = bjl/2+a|0>p =0fora=1,...,n/2. This

vacuum is then in the kernel &f. + 2(d — 1) at the pointy = 1. We should point out
that, when restricted to the (- 1)-sphere which is the SO(d) orbit of a flat point, the
ground state takes values in a flat vector bundle, which is therefore trivial. This means
that there is a globally defined fermion ground state wavefunction.

To understand the fermion ground state for arbitteapd, in particular, to understand
the action ofi/? on the ground state, we shall study the equivalent problem of its action
on the operator which acts as projection onto the kern#&].af 2(d — 1). This operator
is given by,
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_ 1 1
P(g) = i jér dzm, (5.3)

using a contourT", which we will take to be a small loop enclosirgl(d — 1). This
construction ofP(q) is readily seen to be correct by diagonalizitigq), and computing
the corresponding contour integral.

Here we should clarify that we are really interested in the actioR@) >, V2
the remainder i€)(1/r?) and does not take the groundstate to itself. These terms will
therefore be of interest only as perturbative corrections. The opd?éfph , V;? should
act as a scalari, on an appropriately chosen basis of the ground state. Our task is to
compute the scalar. Now?(q) is given by conjugating the projection operatorat 1
with a nonconstant orthogonal matrix, whose columns give a basis of the ground state. We
can write this asP(q) = O(q)P(1)O(g)". Then}_, V;? acting onP(g) has terms where
O(q) or O(q)! are twice-differentiated and terms where each is differentiated once. It is
easy to show that this last term is annihilatedryy), and hence is not germane to this
calculation. If the remaining term is a multiple Bfg), then the multiple will be #4,, as
both O(g) and its conjugate should contribute a factor of 2when differentiated. We
preface the computation by commenting on how to compute the derivatiid @f It
is enough to computg;qy;. By a change of coordinates, we then only need to compute,
Viq1;(1). This is given by:

d ,
Vigy; = £(q€tv”)1j o (gVi)1y-

t=
Evaluating ay = 1 gives,

Vigy; (1) = (Vi)y; = di;.
Now we compute:

2 1 1 1
2P(q) = 7/ Y Yy dz+
2VPO=) on | v v v

1 1 ) 1
= 2, :
Yo | v e

whereY; is an eigenfunction of the Laplacign, V;2. Hence the second integrand is a
simple double pole and therefore integrates to zero. In order to compute the remaining
term, it is enough to make a change of coordinates equivalent to takind. Then

it is easy to see thdf;(Y,) takes the-2(d — 1) eigenspace of,. to the 4— 2(d — 1)
eigenspace. This gives,

2 1 1 1 _
PO 50 / R O M A M A
| 2 1 L !
Iy e Ty (e (e T v

where diag(;Y,)? = P(q)(ViY,)?V(q). Integrating gives- >, diag(V;Y,.)?/8.
We can compute this gt= 1 where, V;Y;) = ngﬁwzaww, and),(V;Y;)?/8 =
—4! 30200357, 31200 3 /8. The terms which survive(q) are,

— 4! 520357l g V20 P38/ 8 — MVh 12038V ba V28 a0 /8 = VasTas/ A
= 4(d— 1),
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So, we finally get thatn3 = 1/2, m? = 2 andm;) = 8.

With the derivative terms out of the way, we can consider the two remaining operators
in the Hamiltonian that map the ground state to the ground state. The firstG¥#Rp
term in the potential. This gives,

(01> (wav5 — vay3)?10) = (012 ) _(y5u3)[0)

1>j i>7

1
= 5(d-1)d-2)

Calling this contributionyny, we havem?, = 1/4,m3, = 3/2, andmy, = 7. The last
contribution comes from the kinetic term for the two gauge rotation generafers(s.
Setting the gauge constraints to zero, we can replace the angular Laplégjduy, the
operator quartic in fermions:

Z (¢1aw20¢)2 + (w1a¢3oz)2'

a=1

The only terms that map the ground state to the ground state are those proportional to the
identity. A quick calculation gives the numerical valug2. Calling this contribution,
my, we note thatn® = 1, m5 = 2 andm® = 4.

If we were to stop at this point, anc{Just consider these diagonal contributions to the
effective Hamiltonian, a quick check would show that thernés non-vanishing. There
would therefore be a non-trivial/t? interaction in the effective theory. Fortunately,
we are not quite finished. First, we can shift the coefficient of@dhéerm in (5.2),
and generate a ne@(1/r?) term by redefining our wavefunctions. The reason this is
useful is that on choosing an appropriate coefficientfgmwe can combine the radial
derivatives with thé/; angular derivatives to obtain a Laplacian for flat space, together
with some ¥r? interaction. This way, we only need to deal with Euclidean coordinates,
rather than the messier angular coordinates. We want to shift the coefficient@f the
term fromd + 1 tod — 1, so we will end up with a free particle Hamiltonian on the
d-dimensional moduli space, together with interactions. To do so, we note that:

(#e o) =- (@ e D2 0
T T T
- (04 27+ e - 157)
1 d—1 d—1
:T<a§ R )n

where we now redefine our wavefunction&y, q) = %f(r, q). This gives us a new

contribution tom, saym, = 452,

So far, we have found tha‘f acts on the ground state and first excited state in the
following way,

1 d /2 bt
5Ag+mg/re b

b )

H =

Here,mr = m.+my+my +mq+m, +m, is the total effective interaction that we have
found so far, where:3. = 1, m3. = 4 andm?. = 16. Lower order terms ifif1; have been
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omitted. Let us turn to the form df which may change the effective interaction. For
example, the terms inacting on the ground state of orde¢—*/2) cannot be neglected.
Our initial choice ofl1; is then not diagonal to the requisite order in the basis that we
have been using. Doéxontain terms of the right order?

It is not hard to check that the only terms that map the ground state to the first
excited state, which are of the requisite order are those involidpg This follows
from noting thatH}. is proportional tay which is,~ a'/,/r acting on the ground state.
Now we see that we can significantly lower our energy if we define a new ground state
|0y = (I — %)8@)\0}. The factor of 2 is chosen because acting witlon a state raises
its eigenvalue undef,,, +Y;. by 2r. So,H|0)' = (3A4+mé./r? —btb/2r)s(g)|0) plus
lower order terms. The final contributionte from b'b is computed in the same way as
the other contributions, and we find thaf = —m$.

Wonderfully, theO(1/72) terms sum to zero! From these considerations, we see that
we are reduced to a free-particle calculation. Our choice for an approxiniatioto
Hﬂl is then particularly simple: we can just take the free-particle propagator,

dk eik-(z—m/)

W= [ ——
=] @nd k2

5.4. Evaluating the boundary contributioNow that we reached the pointwhere we have

a nice simple form fo#¥1;, we note that the remainder of the perturbation construction
is standard. We will not belabor the reader with the details of this expansion, but just
provide some relevant comments. As we observed before, any reasonable construction
yields a good approximaté,,*, with a nice error bound. The constructioni&f, which

is perturbative in 1r, then follows the outline that we have described earlier in this
section. The contribution of tH&;; term is non-vanishing, but it is clear after extensive,
arduous but standard computations, which involve checking powetgitdt any trace
involving the rest o/ will bring in more powers of-—* than appear in th&/;; term.
These terms will therefore not contribute to the boundary term (3.6), in the limit where
r—o0. We can now restrict ourselves to the free-particle Green’s funcian, The
remaining calculation is simple. We have a free particle propagatingg@,. The

Z, identification comes from the Weyl group action on the Cartan of the gauge group
SU(2). Let us taker as coordinates fdR“. TheZ, action acts as parity, sending- — .

It also sends the free fermiong,,, wherea = 1,... ,2(d — 1), to minus themselves.
The Hilbert space of gauge-invariant wavefunctions is given by:

{fo(@), f1(2) Y10, f2(2)1015; - - - }-
Each function,f;,, has parity £1)*. All we need to do is compute the boundary term,
1

1 / tren(~1)F QWi
2 Np(r)

for this system. This becomes an integral over the boundary df thieensional moduli
space:

1
- */ tre, (—1)" QW1
2 Sd—l(,,.)

_ 1
—voI(SN2(d — 2) Jgaigy
=—-1/4.

1

|Z‘ — .13/|d_2 r'=—x

tre,(—1)"'Q
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To close this computation, let us note that the lower bound on the asymptotic behavior
of H is given by its lowest value on the modified lowest wavefunctions, where the
modification involved the off-diagonal term. The lower bound is therefore the same
as the bound fon 4, up to terms of orde©(1/r3). As discussed in section three, this
easily leads to the claimed asymptotic lower boundHor

To summarize: we have found a formula for the index that counts the net number
of L? ground states in certain quantum mechanical systems, where the potential has
flat directions. This involved a study @ index theory for a family of non-Fredholm
operators, which allowed us to show that the prescription we presented actually computes
the index. For the case of two-particle binding, we have shown that there is a bound state
for coincident zero-branes in type IIA string theory. We have also found further evidence
that there are no bound states for two-branes twice wrapped 6f, amd three-branes
twice wrapped on a®. Note that these models are only special points in the space of
theories obtained by deforming the zero-brane quantum mechanics.

The actual computation split into two parts. Computing the principal term involved
evaluating the integral (3.5). It would be interesting, and quite non-trivial, to compute
this integral for higher rank gauge groups. Even better would be a method for avoiding
this integration altogether. The second part of the computation required a study of the
propagator for the two particles when they are far apart. Surprisingly, after summing a
variety of corrections, this computation reduced to one involving a free particle moving
on the moduli space. Undoubtedly, there is a fundamental reason for this simplification,
and finding it may also shed light on whether thi& term in the effective zero-brane
Hamiltonian is protected from corrections. It seems likely that there will be an analogous
reduction to a free particle calcuation for other gauge groups. As a further comment,
note that if we had studied a system with gauge grg@p) and some charged matter,
there would have been no boundary correction, as in the case involving H-monopoles
[6].

The sort of decay estimates that we described can probably be used to get a handle
on the structure of the ground state wavefunction. What is needed is an upper bound
on how fast the wavefunction can decay along the flat directions. They may also lead
to a vanishing theorem showing that all ground states in these systems must have a
definite fermion number. The index would no longer be just an index, but would then
count the total number of ground states. This would allow us to conclude that the zero-
brane bound state is unique. Finally, systems involving marginal binding of branes with
different dimensions can now be analyzed in much the same way.
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