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Abstract: We study the existence of D-brane bound states at threshold in Type II string
theories. In a number of situations, we can reduce the question of existence to quadra-
ture, and the study of a particular limit of the propagator for the system of D-branes.
This involves a derivation of an index theorem for a family of non-Fredholm opera-
tors. In support of the conjectured relation between compactified eleven-dimensional
supergravity and Type IIA string theory, we show that a bound state exists for two co-
incident zero-branes. This result also provides support for the conjectured description
of M-theory as a matrix model. In addition, we provide further evidence that there are
no BPS bound states for two and three-branes twice wrapped on Calabi–Yau vanishing
cycles.

1. Introduction

Remarkable progress by Polchinski in describing the solitons of Type II string theory has
provided the means by which many conjectured dualities involving string theories and
M-theory can be stringently tested [1]. The low-energy dynamics of coincident D-branes
has been described by Witten [2], who reduced the question of finding BPS bound states
to one of studying the vacuum structure of various supersymmetric Yang-Mills theories.
In simple cases, the BPS mass formula forbids the decay of a charged particle saturating
the mass bound; hence, ensuring stability. However, there are a number of situations in
which a particle is required that is only marginally stable against decay. Showing the
existence of such particles, with energies at the decay threshold, is the goal of this paper.
A similiar problem arose for finiteSU (2) N=2 Yang-Mills theory, studied in [3] and
[4], where certain dyon bound states at threshold were shown to exist. The situations we
shall presently study are significantly more difficult because the Hamiltonians are not
as well behaved, and gauge invariance provides an added complexity.

? A preliminary version of this paper was circulated informally in November, 1996.
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Let us briefly recall the low-energy dynamics of coincident Dirichletp-branes, de-
scribed in [2]. The world volume theory is the dimensional reduction of ten-dimensional
N=1 Yang-Mills to thep+ 1-dimensional world volume of the brane. For a single brane,
the gauge theory is abelian, and the dynamics therefore trivial in the infrared. ForN
coincident branes, the gauge symmetry is enhanced toU (N ) rather thanU (1)N . After
factoring out aU (1) corresponding to the center of mass motion, the existence of a
bound state requires that the remainingSU (N ) p + 1-dimensional Yang-Mills theory
possess a normalizable supersymmetric vacuum. The bosonic potential for this model
generally has flat directions, and so we encounter the problem of bound states at thresh-
old. If a bound state is required by a conjectured duality, there is a consistency check,
described by Sen [5], that can sometimes be performed. In favorable cases, one might
be able to further compactify one direction of the superstring theory. If a bound state
exists prior to compactification, it should give rise to BPS states in the further com-
pactified theory which, for appropriate choices of momentum along the circle, are no
longer marginally bound. The existence of these states can then be analyzed with more
conventional techniques. Of course, for this consistency check, there have to be enough
remaining uncompactified directions so that problems with infra-red divergences do not
arise. More generally, however, the question of bound states at threshold must be ad-
dressed. Note that a normalizable state for a theory in a compact space generally does
not remain normalizable when the volume is taken to infinity. The spectrum can and
often does change discontinously, and showing the existence of the bound state in the
non-compact situation requires a separate analysis.

In a similar spirit, we can arrive at descriptions of the effective dynamics ofp-branes
multiply-wrapped on supersymmetric cycles of a compactification space. In the case
of p-branes wrapped onp-cycles, the resulting description of the low-energy dynamics
is some flavor of quantum mechanics, although not generally just a supersymmetric
gauge theory. Our aim in this paper is to address the fundamental issue – the existence
of flat directions in the potential – which arises in studying binding in these situations.
This analysis generalizes the discussion in [6], where we argued for the existence of
a marginal bound state of a zero-brane and a four-brane, to the case where the gauge
group is non-abelian. We shall see that there are very subtle issues that arise as a result
of this complication.

The most exciting reason for studying this question is, however, the remarkable
conjecture that M-theory may be described in terms of zero-brane dynamics in the limit
where the number of branes goes to infinity [7]. This conjecture is, in part, founded on
previous work studying the relation between supermembranes, and theN → ∞ limit
of type IIA zero-brane quantum mechanics [8,9]. In order for the M(atrix) model to
have a chance at describing M theory, we need to be able to find states in the quantum
mechanics which correspond to the gravitons of eleven-dimensional supergravity. The
bound state that we shall find is precisely one of these particles. In the process of showing
that such a bound state exists, we will provide a detailed study of the behavior of the
propagator for the two zero-brane system when the zero-branes are far apart. There are a
number of complications that make this analysis quite subtle. During the lengthy course
of our investigation (which pre-dates the M(atrix) model), a number of germane papers
have appeared. Among these papers have been interesting discussions of zero-brane
scattering in various approximations [10,11], and more recently, an exciting extension
of the original matrix model conjecture to the case of finiteN [12]. There has also been
an explicit argument showing that there are no normalizable ground states in a particular
simplified matrix model [13], a heuristic attempt to argue for the existence of zero-brane
bound states [14], and a recent paper which has some overlap with our results [15].
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In the following section, we consider the case ofp = 0. We describe a seven parameter
family of theories, which are the primary focus of this discussion. This family of theories
is derived fundamentally from the quantum mechanics describing the zero-brane in type
IIA string theory by adding mass deformations. These parameters allow us to ‘flow
down’ from ten dimensions to models that correspond to the reduction of N=1 Yang-
Mills in lower dimensions by taking various mass terms to infinity. We discuss general
features of these models, including the various physical scenarios in which they arise.
Our approach to the question of counting bound states is described in section three. There,
we argue that theL2 index for this class of supersymmetric quantum mechanical Yang-
Mills theories is actually computable. This involves a discussion ofL2 index theory for
non-Fredholm operators, which is an area of mathematics that is relatively unexplored.
In section four, we study the question of two-particle binding in these models, and we
derive a formula for the principal contribution to the index. The final section is a study
of the two-particle propagator in the limit where the two particles are far apart. With
this analysis, we can compute a subtle additional contribution to the index. The way
in which this contribution arises involves some rather surprising cancellations. In the
class of models that we investigate, we find that only the case which corresponds to the
reduction of supersymmetric Yang-Mills from ten dimensions can have a unique bound
state. This answers, in large part, the question of why the largeN limit of the reduced
ten-dimensional Yang-Mills theory should be distinguished from the largeN limit of
reductions of lower-dimensional Yang-Mills theories.

2. Quantum Mechanical Gauge Theory

2.1. General Comments.Let us begin by considering models that arise from reducing
supersymmetric d+1-dimensionalSU (N ) Yang-Mills to quantum mechanics; see, for
instance, [16] for the first discussion of quantum mechanical gauge theories, or perhaps
[17]. Whether the Yang-Mills theory contains additional matter multiplets does not
significantly change the following discussion; so, for simplicity, we shall assume no
additional matter. On reducing the connectionAµ, we obtain scalar coordinatesxi where
i = 1, ..., d which take values in the adjoint representation of the gauge group. We
introduce canonical momenta obeying,

[xiA, p
j
B ] = iδABδ

ij ,

where the subscriptA is a gauge index. With the generatorsTA for the adjoint repre-
sentation normalized so that Tr(TATB) = NδAB , the Hamiltonian for the system takes
the general form,

H =
1

2N
Tr(pipi) + V (x) +HF . (2.1)

The bosonic potentialV (x) is polynomial inx, and generally has flat directions. The
termHF is quadratic in the fermions and linear inx. Specific examples will be studied
in the following subsection. TheA0 equation of motion gives a set of constraints,CA,
which must vanish on physical states by Gauss’ law. The constraints obey the algebra,

[CA, CB ] = ifABCCC , (2.2)

wherefABC are the structure constants. The constraints further obey the commuta-
tion relations [CA, H] = [CA, Q] = 0, whereQ is a supersymmetry generator. The
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supersymmetry algebra closes on the Hamiltonian if the constraints are set to zero. An
N -particle BPS bound state corresponds to a normalizable, gauge-invariant ground state
for this supersymmetric system.

Without detailed computation, what might we infer about the structure of the ground
state? Away from the flat points, the wave function for the ground state will decay
exponentially. The only interesting asymptotic behavior is expected near points where
the potential is small. A preliminary comment about the structure of the flat directions is
in order: for gauge groupSU (N ), there aredc = (d− 1)(N − 1) + (N2 − 1) commuting
directions around a flat point, andda = (d−1)(N2 −N ) non-commuting directions. Let
us consider the structure of the potential in the neighborhood of a flat point. As we shall
subsequently describe in detail, the potential can be approximated byV ∼ − 1

2r
2|v|2,

wherev parametrizes the transverse directions, andr is a radial coordinate for the flat
directions. The Hamiltonian is then essentially a set of bosonic and fermionic harmonic
oscillators for the transverse directions, and a free Laplacian along the flat directions. The
frequency for oscillation along the massive directions depends onr. This observation
provides one way of seeing that there are no scattering states in the spectrum of the
bosonic Hamiltonian for these models, as discussed in [18]. Somewhat surprisingly, the
spectrum of the bosonic models only contains discrete states. To construct a scattering
state along the flat direction, one would want to put the transverse harmonic oscillators
into their ground states; however, the zero point energy of the oscillators increases withr,
essentially forbidding finite energy scattering states. The same argument does not apply
to the supersymmetric case, since the ground state energy for the additional fermions
now cancels the zero point energy from the bosons, as required by supersymmetry. If
this were not the case, the subtleties in counting zero-brane bound states would not exist!

In a first approximation for larger, any zero-energy wavefunction,ψ(x), roughly
takes a product form corresponding to placing the transverse oscillators into the ground
state,ψ(x) ∼ g(r, θ)e−r|v|2/2, whereθ are angular variables for the flat directions. The
leading dependence ofg(r, θ) onr is believed to be power law decay for larger. Acting
with the Hamiltonian for the massive directions on this wavefunction yields zero, since
the zero point energies of the bosons and fermions cancel. We can now explain the key
difficulty in studying the approximate asymptotic wavefunction: can the decay exponent
be accurately estimated?

We note that this issue is critical, and cannot be resolved by simple approximations of
the asymptotic behavior. For instance, even in this approximation, the functiong(r, θ) is
not simply the solution of a free Laplacian for thedc-dimensional space of flat directions
since the Laplacian, which for the radial coordinate is given by,

1r = − 1
rdc−1

∂

∂r
rdc−1 ∂

∂r
, (2.3)

also acts on the harmonic oscillator component of the wavefunction. Actually, it is
unlikely that the decay exponent can be accurately estimated without at least including
the first excited mode for the massive direction into the approximation. We should also
note that showing that the decay is fast enough to ensure normalizability is only a first
step toward showing that a bound state exists. The structure of the wavefunction would
need to be studied at smallr where the non-abelian degrees of freedom are important.
Currently, the only practical approach is to develop an appropriate index theory for
the problem. As a final comment, note that the power law behavior of the asymptotic
ground state wavefunction is a consequence of the lack of a mass gap in the spectrum.
The supersymmetric theory contains a continuum of states which descend to zero energy,
thanks to the existence of the flat direction [8].
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2.2. A family of models.We now turn to the models of primary interest to us. Let us
recall that strongly coupled Type IIA string theory in ten dimensions has a conjectured
dual description as weakly coupled eleven-dimensional supergravity compactified on
anS1 [19,20]. To match the Kaluza-Klein spectrum of the compactified supergravity
theory, Type IIA string theory requires electrically charged particle states. The Dirichlet
zero-branes, which carry RR charge, seem to be the only candidates. Since there is a
single Kaluza-Klein mode for each choice of momentum along the circle direction, we
desire a single D-brane bound state for eachN . Proving this conjecture was our original
motivation for studying these theories.

Actually, Sen has argued in [5] that if a unique bound state exists in the quantum
mechanics describingN zero-branes, then the spectrum of ultra-short multiplets in the
toroidally compactified type II string agrees with the spectrum predicted by U-duality.
The world-volume theory for the D-particle is given by the dimensional reduction of N=1
9 + 1-dimensional Yang-Mills to quantum mechanics. A Majorana-Weyl spinor in 9 + 1
dimensions has 16 real components, which means that the resulting quantum mechanical
theory has N=16 supersymmetry. Letγiαβ be a real representation of theSO(9) Clifford
algebra withi = 1, ..., 9 andα = 1, ..., 16. These Clifford matrices satisfy{

γi, γj
}

= 2δij .

After reduction, the Hamiltonian for this system takes the form,

H =
1

2N
Tr(pipi) − 1

4N

∑
ij

Tr([xi, xj ]2) − 1
2N

Tr(ψγi[xi, ψ]), (2.4)

where the real fermionsψAα obey:

{ψAα, ψBβ} = δABδαβ . (2.5)

The Hilbert space is then composed of spinors on which the quantized fermions act as
elements of a Clifford algebra. The spinor wavefunctions contain an extremely large
number of components, even for smallN , which makes an explicit construction of the
zero energy bound state wavefunction at best difficult.1 The supersymmetry algebra
takes the form,

{Qα, Qβ} = 2δαβH + 2γiαβx
i
ACA, (2.6)

where,

Qα =
1
N
γiαβTr(ψβp

i) − i

4N
Tr([γi, γj ]ψ[xi, xj ])α,

while the constraint,

C = −i[xi, pi] − 1
2

[ψα, ψα],

or explicitly,

CA = fABC(xiBp
i
C − i

2
ψBαψCα). (2.7)

The constraint takes exactly the form assumed in the previous discussion. It is natural
to call this a nine-dimensional model, although it is quantum mechanics, since there
are nine bosonic variables in the adjoint ofSU (N ), and the model is the reduction of a

1 However, the existence of the niceSpin(9) flavor symmetry might bring an explicit construction of
the ground state wavefunction within the realm of possibility. We leave the attempt to construct the explicit
solution to braver souls.
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ten-dimensional theory. The flavor symmetry is clearlySpin(9). Note that there is a nice
correlation between fermion number and flavor representation that is worth mentioning
at this point. The correlation essentially follows from spin-statistics in ten dimensions:
fermionic states in the Hilbert space transform under spinor representations of the flavor
group, while bosonic states appear in representations ofSO(9). If the ground state is
unique, it must therefore be bosonic. There are similar relations for the other models
that we shall soon discuss.

Let us consider what sort of deformations are possible in this theory. We would like
to add mass terms to compactify some of the bosonic variables and effectively reduce
the dimension, but we will also require that the supersymmetry algebra maintain its nice
structure. In particular, we shall not consider deformations which introduce additional
terms into the right hand side of the supersymmetry algebra (2.6), which are linear in
momenta. The mass deformations that we shall describe correspond, in special cases,
to breaking N=4 Yang-Mills in four-dimensions to N=2 or N=1 by giving masses to
various chiral fields in the adjoint representation, and reducing the corresponding model
to quantum mechanics.

To describe the allowed deformations, choose a real supersymmetry generator,Q =
Qα. The generator can be split into terms involving momenta, and terms independent
of momenta. Those depending on momenta can be expressed, schematically, asλiAp

i
A,

whereλi is a real fermion, andi runs from 1 to 9. This leaves us with seven real
fermions,ωjA in the adjoint of the gauge group, unpaired with a momentum operator,
but each appearing inQ paired with an operator,f jA, quadratic in the coordinates. The
supersymmetry generator is then roughly,

Q ∼ λiAp
i
A + ωjAf

j
A + . . . .

The seven fermions,ωj , then represent our deformation degrees of freedom. We can
add any reasonable operator tof j , independent of the momenta, and not generate a
new term linear in momenta in the expression for{Q,Q}. There are many interesting
possible deformations that preserve at least one supersymmetry. Some deformations can
give quite exotic classical minima of the resulting bosonic potential. This is a topic that
merits further investigation. As a special prosaic case, we could add the perturbation
mxi to one of thef j , which would lift some of the flat directions. This is the family of
deformations to which we shall restrict our discussion. More explicitly, consider a term
f j which squares to give the term in the potential,|f j |2. Adding the termmxi to f j

changes the potential to|f j +mxi|2. Takingm → ∞ then effectively decouplesxi from
the model. In this way, we generate a seven parameter family of models which depend
on the values of the allowed masses for seven of the coordinates. Note that taking all
masses to infinity leaves us with a two-dimensional model, and further compactification
is not possible without introducing additional terms linear in the momenta into the
supersymmetry algebra.

There are two cases of particular interest: the three and five-dimensional models.
These models correspond to the reduction of N=1 Yang-Mills from four and six di-
mensions, respectively. For completeness and to fix annoying normalizations, we shall
describe the Hamiltonian and supersymmetry algebra for both models explicitly.

In the three-dimensional case, the Hamiltonian is given by,

H =
1

2N
Tr(pipi) − 1

4N

∑
ij

Tr([xi, xj ]2) +
1
N

Tr(ψσi[xi, ψ]), (2.8)
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where the indexi = 1, 2, 3. Theσi are the Pauli matrices, and the complex fermionsψ
obey the anti-commutation relations:{

ψAα, ψBβ
}

= δABδαβ ,

whereα = 1, 2. The supersymmetry generators are now complex, but still take a form
similar to the previous example,

Qα = σiαβψAβp
i
A − 1

4
fABC [σi, σj ]αβψAβx

i
Bx

j
C ,

while the constraints are given by,

CA = fABC(xiBp
i
C − iψBαψCα). (2.9)

The supersymmetry algebra is now,

{Qα, Qβ} = 0,{
Qα, Qβ

}
= 0,{

Qα, Qβ
}

= 2δαβH − 2σiαβx
i
ACA.

(2.10)

The most glaring difference between this model and the nine-dimensional zero-brane
case is that the Hilbert space is now a Fock space with a canonical vacuum. This model
is quite special because the Pauli matrices form a Lie algebra, and so the complex
supercharge can be expressed as [16],

Qa = σiαβψβ(piA − i

2
fABCε

ijkxjBx
k
C).

After introducing a potential,W = 1
6fABCε

ijkxiAx
j
Bx

k
C , we can conjugate the super-

charge in the following way:

eWQae
−W = σiαβψβp

i
A.

The study of the ground state wavefunctions then takes on a cohomological flavor since
the supercharge acts roughly as the operator,

Q ∼ d + dW∧,
on the wavefunctions, which we can view as differential forms. We expect that, in this
case, there should then be an explicit proof from studying the spectrum directly that
shows there are no zero-energyL2 wavefunctions for this model.

The five-dimensional case is governed by the Hamiltonian:

H =
1

2N
Tr(pipi) − 1

4N

∑
ij

Tr([xi, xj ]2) +
1
N

Tr(ψγi[xi, ψ]). (2.11)

The indexi now runs from 1 to 5, and the matricesγ are elements of theSO(5) Clifford
algebra. Again, the fermions are complex, and obey the relations,{

ψAα, ψBβ
}

= δABδαβ ,

whereα = 1, . . . , 4. The constraint has a form identical to the previous case (2.9), and
the supersymmetry algebra is given by:
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{Qα, Qβ} = 0,{
Qα, Qβ

}
= 0,{

Qα, Qβ
}

= 2δαβH − 2γiαβx
i
ACA.

(2.12)

2.3. Wrapped D-branes.Some of the models described in the previous section have
already been realized from wrapped D-brane configurations. Let us begin by considering
type IIB string theory, and the case of three-branes wrapped on a collapsing three-cycle.
In his study of singularities near conifold points of Calabi–Yau manifolds, Strominger
required only a single massless BPS state wrapped on the vanishing cycle [21]. That
there should be no bound states has been argued from a somewhat different approach in
[22]. The geometry of interest isR× S3, where theS3 shrinks to zero size. Clearly, the
effective theory onR×S3 is not N=4 Yang–Mills; such a theory would make little sense.
Rather the world-volume theory of a D-brane on a curved space should be described
by a topologically twisted theory [23,22]. As the size of the sphere shrinks, only the
light degrees of freedom are relevant. The question, in this situation, then concerns the
existence of a ground state in the theory obtained from the dimensional reduction of
four-dimensional N=1 Yang–Mills, as first mentioned in [2].

We can also check the situation for type IIA, where we perform the same analysis
for the case of two-branes wrapped on a vanishing two-cycle. The situation is exactly
analogous to the case described above. The geometry is nowR×S2, where theS2 shrinks
to zero size. The only difference involves the number of supersymmetries. The effective
theory is now the reduction of N=1 Yang-Mills from six dimensions. Both models were
explicitly described in the previous subsection. It seems plausible that other D-brane
configurations will realize many, if not all, of the remaining models which we have
discussed.

2.4. Gauge invariance.There is a rather nice feature of some of the computations that
we shall describe that deserves a separate comment. Whether it provides a hint at how
to formulate covariantly M-theory as a matrix model we leave to the judgement of the
reader.2 The gauge-fields in a quantum mechanical gauge theory are non-dynamical.
They serve only to enforce the constraint that all states in the Hilbert space be gauge-
invariant. How do we enforce such a constraint in the operator formulation? For very
high temperatures, the partition function,

Z(β) =
∫
dx tr e−βH (x, x) (2.13)

can be well-approximated by perturbation theory. The notation that we will use through-
out the paper may be unfamiliar, and so deserves a comment: we will often consider
traces of some operator, sayO, which we will denote as,

tr O(x, y),

2 When this section was originally written, the preceding comment seemed most appropriate. Subsequently,
there has been an interesting proposal for a non-perturbative definition of the type IIB string, given in [24].
The high temperature limit of the partition function that we describe in this section reduces precisely to the
model in that proposal. The relation between M(atrix) theory and the proposal in [24] seems to be in the spirit
of a “T-duality” in the time direction.



D-Brane Bound States Redux 683

where by (x, y) we mean the usual propagation of a particle from pointy to pointx.
In an explicit basis of eigenfunctions,ψn(x), with eigenvalueλn for O, this expression
takes the familiar form, ∑

n

λnψn(x)ψn(y),

wheren may index a continuous parameter.
However, in computing the partition function (2.13), it is inconvenient to try to trace

over the gauge invariant spectrum of the Hamiltonian, i.e. states|ψ(x) > satisfying
CA|ψ(x) >= 0. Our first task is then to implement the projection onto gauge invari-
ant states explicitly, so we can trace over the full, unconstrained spectrum. The gauge
constraints,CA, split into two sets ofSU (N ) generators: one generates rotations of the
xi, which we shall denoteCb, while the other,Cf , generates rotations of the fermions.
Let us denote the operator generating a finite gauge transformationg(t) on the fermions
by 5(g(t)) where we shall drop the explicit dependence ont. To project onto gauge
invariant states, we insert:

Z(β) =
∫
SU (N )

dt

∫
dx tr eitACA e−βH (x, x),

=
∫
SU (N )

dt

∫
dx tr 5(g) e−βH (gx, x),

(2.14)

where the measure for theSU (N ) integration is chosen so that
∫
SU (N ) dt = 1. The trace

is now over the full Hilbert space, including gauge-variant states.
For smallβ, we can now construct a reasonable approximation for the propagator,

e−βH (x, y) =
1

(2πβ)l/2
e− |x−y|2

2β e−βV e−βHF + . . . , (2.15)

wherel = d(N2 − 1) is the dimension of the space of scalars. We shall describe this
approximation in somewhat more detail in the following section. The fermion projection
operator can be expressed as5(g(t)) = eitAC

f
A , which yields the expression,

Z(β) =
∫
SU (N )

dt

∫
dx tr

1
(2πβ)l/2

e− |x−gx|2

2β e−βV e−βHF eitAC
f
A + · · ·.

As β → 0, we see that the contribution from group elements away from the identity
element is strongly suppressed. Indeed, we can then replaceg by I + i~t · ~Cb, and the
exponential term involvingg becomes,

e
−|i~t· ~Cbx|2

2β .

The termi~t · ~Cbx is more transparent when written as1
N Tr[t, xi]2, but this is precisely

the form of a term in the potential energy,V . Indeed, in this limit, the gauge parameters
combine exactly with the remaining coordinates to give a trace which isSO(d+ 1) sym-
metric, rather thanSO(d) symmetric. Even the fermion projection operator combines
naturally withHF to give a complete symmetry betweenxi andt, in the computation
of this trace. We shall put this symmetry to good use in subsequent computations. Note
that for the case of zero-branes in type IIA, the partition function appears to arise from
a manifestlySO(10) invariant Hamiltonian, without any hint of gauge constraints.
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3. Counting Ground States

3.1. Defining the index.Ideally, to count the number of normalizable ground states
for these models, we would like to compute the low temperature limit of the partition
function, ∫

dx lim
β→∞

tr e−βH (x, x).

Except for very simple systems, that computation is beyond reach. As usual, we are then
interested in counting the number ofL2 ground states weighted by (−1)F , whereF is
the fermion number. Therefore, we wish to compute the index,

Ind =
∫
dx lim

β→∞
tr (−1)F e−βH (x, x),

= nB − nF ,

(3.1)

where the trace is over the gauge invariant spectrum of the Hamiltonian. Let us first
note that the index is perfectly well-defined. The only way that the index (3.1) could
not be counting the net number of ground states is if the Hamiltonian had an extremely
pathological low-energy spectrum, i.e. if the density of states diverged badly asE → 0.
That is certainly not the case for the models we are studying.

Whether the index is computable is another question entirely. The purpose of this
section is to argue that our approach to computing the index actually counts the number
of ground states. Before discussing the issues that arise in the non-Fredholm cases, let us
discuss in some detail the situation where there is a gap in the spectrum. First, when the
spectrum is actually discrete, the twisted partition function isβ-independent. In these
cases, we can compute the index in theβ → 0 limit, which reduces to a perturbative
computation. Theβ → 0 limit is what we will call the principal contribution to the
index. Even in the case where the spectrum is discrete, the principal contribution, which
is often computed as an integral over the coordinates,x, can be shifted to a boundary
term. To see this, note that we should first perform all our analysis on a ballBR, where
|x| < R, and then take a limitR → ∞. We can then write,

Ind = lim
R→∞

∫
|x|<R

dx lim
β→∞

tr (−1)F e−βH (x, x),

= lim
R→∞

lim
βo→0

∫
|x|<R

dx{tr (−1)F e−βoH (x, x) +
∫ ∞

βo

dβ
∂

∂β
tr (−1)F e−βH (x, x)}.

Now, computing∂β of tr (−1)F e−βH brings downH, which we can replace byQ2.
When we try to runQ around the trace,

tr (−1)FQ2e−βH = −trQ(−1)FQe−βH

= −tr (−1)FQ2e−βH − ∂

∂xi
tr ei(−1)FQe−βH ,

we find that theβ variation vanishes up to a total divergence. In this expression,ei
∂
∂xi ,

is the derivative term in the supercharge,Q. If we defineen to be the fermion in the
normal direction to the boundary, then the index can be written as a sum of two terms,

Ind = lim
R→∞

lim
βo→0

{
∫

|x|<R
tr (−1)F e−βoH +

1
2

∫
|x|=R

∫ ∞

βo

dβ tr en(−1)FQe−βH}.
(3.2)
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At first sight, keeping track of these various limits may seem like a technicality; however,
that is not the case. So, rather than continue a general discussion, let us revisit an old
friend to see how these manipulations work concretely. A number of the diffculties that
arise in the D-particle cases will become clearer.

3.2. The harmonic oscillator revisited.Let us consider a single supersymmetric harmonic
oscillator, which has a unique ground state, and a discrete spectrum. The supercharge is
given by,

Q = ψ1p + ψ2x,

whereψ2
1 = ψ2

2 = 1 and{ψ1, ψ2} = 0. The Hamiltonian is one-half the square of the
supercharge,

H =
1
2
Q2

=
1
2

(p2 + x2 − iψ1ψ2).

Now to evaluate the principal term, we can consider the first term in (3.2), we which can
write as, ∫ R

−R
dx

1√
2πβo

tr iψ1ψ2e
− βo

2 (x2−iψ1ψ2) + . . . ,

where (−1)F = iψ1ψ2 in this case, and squares to the identity. The omitted terms are
suppressed by powers ofβ. Evaluating the trace on the fermions, or in the equivalent path-
integral language, integrating out the fermion zero modes, gives a leading contribution
in βo, ∫ R

−R
dx

1√
2πβo

βoe
−βox

2/2,

which gives, ∫ R
√
βo/2

−R
√
βo/2

dx
1√
π
e−x2

.

If we takeβo to zero faster thanR−2, this term vanishes, while if we takeβo to zero
more slowly, we obtain the expected answer of one. Whether or not we get a contribution
from this term depends on how we choose to takeβo to zero. When this term does not
contribute, the second term in (3.2) contributes, and the principal contribution is shifted
to a boundary term as we shall see. In this model, the principal contribution is the only
contribution to the index.

The boundary term gets two equal contributions fromR and−R in this case, and
so can be written,

1
2

∫ ∞

βo

dβ tr (−iψ1)(iψ1ψ2)Qe−βH
∣∣∣
x=R

.

As R becomes large, the potential terme−βV damps the kernel,e−βH , for largeβ.
We therefore do not need non-perturbative information about the kernel to evaluate this
contribution – a smallβ approximation suffices. Whenever there is a mass gap, we have
this nice damping, which is the reason that the index is usually computable.

In this case, evaluating the trace on fermions gives,∫ ∞

βo

dβ x
1√
2πβ

e−βx2/2
∣∣∣
x=R

,
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and on rescaling, we obtain: ∫ ∞

βoR2/2
dβ

1√
πβ

e−β .

Now we see that this term can contribute ifβo is taken to zero sufficiently quickly with
R. Of course, theL2 index is one regardless of how fast or slowly we choose to take
βo to zero. In the case of a model with potentialV homogeneous inx with degreek,
a similar argument can be applied. In that case, if we takeβo to zero slower thanR−k
then the principal contribution is localized to the first term of (3.2), while if takeβo to
zero faster thanR−k, the second term contributes. In the following section, we shall
evaluate the principal contribution for the two D-particle case by lettingβo go to zero
more slowly thanR−4. This seems computationally simpler than trying to localize the
contribution to the boundary.

3.3. Reducing the principal term to quadrature.To evaluate the principal contribution,
we have to construct a reasonable approximation toe−βH . We will not need to alter the
usual perturbative construction of the partition function because of the flat points of the
potential,V . We start by writing,

e−βH =
1

2πi

∫
γ

e−βz 1
H − z

dz,

whereγ is a contour enclosing the spectrum of H. Let us consider the generic situation
away from the flat points. We can approximate (H − z)−1 by a perturbation series,

1
H − z

(x, y) =
∫

eik·(x−y)

(k2/2 +V − z)
(1 − HF

(k2/2 +V − z)
+ . . . ), (3.3)

where the first correction, proportional toHF , is shown, and subsequent terms are
constructed iteratively in powers of (k2/2 + V − z)−1. The corresponding propagator
takes the form,

e−βH (x, y) =
1

(2πβ)l/2
e− |x−y|2

2β e−βV e−βHF + . . . , (3.4)

where l = d(N2 − 1) is the dimension of the space of scalars. This approximation
is reasonable for smallβ. The omitted terms which correct this approximation appear
with a higher power of (k2/2 +V − z)−1, in (3.3), and consequently give rise to terms
suppressed by powers ofβ in (3.4). This approximation then suffices for evaluating the
first term in (3.2), where we choose to takeβ to zero more slowly thanR−4. Substituting
the leading approximation for the propagator gives,

lim
R→∞

lim
β→0

∫
|x|<R

∫
SU (N )

dt tr (−1)F e−βH5(g) (gx, x)

= lim
R→∞

lim
β→0

∫
|x|<R

∫
SU (N )

dt tr (−1)F
1

(2πβ)l/2
e

−|i~t· ~Cbx|2

2β e−βV e−βHF eitAC
f
A + . . . ,

where we have approximated the group element byI+i~t· ~Cb, for reasons explained in the
previous section. This amounts to localizing the integral over the gauge group to a small
neighborhood of the identity – a slight twist on the usual localization to the minima of
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the potential. As usual, the inclusion of (−1)F forces us to absorb fermion zero modes.
In our trace, (−1)F is realized as the volume form for the Clifford algebra (2.5). There
are two sources for fermions: the first is frome−βHF , while the second source is the
fermion projection operator,eitAC

f
A , inserted into the trace. After writing the fermion

term,itAC
f
A − βHF , asψMψ for some matrixM , the trace over the Clifford factors

gives the Pfaffian ofM , which is a polynomial inx andt. On rescaling the integral, we
obtain, ∫

dt

∫
dx

1
(2π)l/2

e−|i~t·~Cbx|2/2e−V (x) Pf(M ), (3.5)

where the integration region fort is nowRN2−1, while forx, the region isRd(N2−1). As
will be clear from the subsequent explicit computation, the Pfaffian is of definite sign
whend is odd, and the integral is thus non-vanishing. However, it is far from clear that
this term yields an integer, and indeed, it generally is not integral. Therefore, there had
better be a non-vanishing correction term.

We stress again that it is very natural to considert on equal footing with the coordi-
natesxi. Let us denotet byx0, and defineγ0 to beiI, whereI is the identity matrix. The
coordinatesxiA now form an (N2 −1)× (d+ 1) matrix. In this notation, the matrix takes
the formM = −(i/2)fABCxiBγ

i, and the integral admits anSO(d+1) symmetry which
we shall use in section four to compute explicit values for this term in the two-particle
case.

3.4. The non-Fredholm case.When the Hamiltonian under consideration has contin-
uous spectrum, the twisted partition function is generallyβ-dependent. The heuristic
reason for theβ-dependence is that the density of states for the bosonic and fermionic
scattering states can differ. Supersymmetry pairs bosonic and fermionic modes, but does
not necessarily preserve the spectral density. In these cases, the principal contribution
to the index is not necessarily integer, and there must be an additional contribution from
the second term in (3.2). In the case where there is a mass gap, this contribution can be
perturbatively evaluated. What happens in the case where there is no mass gap?

Let us choose a real supercharge,Q, which squares to the Hamiltonian up to a gauge
transformation. For this discussion, we will set the gauge constraints to zero.Q is then
a self-adjoint elliptic first-order operator, which anti-commutes with ourZ2 involution,
(−1)F . Let us defineQ+ as the restriction ofQ to the +1 eigenspace of (−1)F , i.e. the
bosonic states. It may be helpful to think ofQ as a matrix,(

0 Q∗
+

Q+ 0

)
,

whereQ∗
+ = Q− is the restriction ofQ to fermionic states. The computation that we need

to perform is the calculation of theL2 index ofQ+. This operator, though elliptic, is not
Fredholm. Recall that a Fredholm operator, by definition, has a finite-dimensional kernel
and cokernel. The fact that the continuous spectrum ofH = Q2 contains scattering states
with arbitrarily small energies implies that the image ofQ+ is not closed, and the cokernel
is infinite-dimensional, and distinct from the kernel ofQ−. Hence, we take theL2 index
ofQ+ to be the dimension of Ker(Q+)∩L2 minus the dimension of Ker(Q∗

+)∩L2, which
is not, in this case, the dimension of the kernel minus the dimension of the cokernel of
Q+.

Let us consider how to compute this index. Suppose that there exists a Green’s
function,G, for Q2; i.e. a self-adjoint singular integral operatorG which annihilates
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the kernel ofQ2 and acts as (Q2)−1 on the orthogonal complement of the kernel. By
definition,G obeys,

Q2G = I − P,

whereP denotes the orthogonal projection onto the kernel ofQ2. So,P then annihilates
all states which are not zero-energy. We recall that by singular integral operator we mean
an operator which is obtained by integrating against a matrix-valued kernel,g(x, y),
which has a well-understood singularity along the diagonalx = y. For example, the
inverse of the Laplacian in three dimensions is the familiar kernel,∼ |x− y|−1. Let us
denote the restriction ofG to the +1 eigenspace of (−1)F byG+, where:

G+ = G(I + (−1)F )/2.

Let P± denote the orthogonal projection onto theL2 kernel ofQ±. ThenQQG+ =
(I − P )(I + (−1)F )/2 = (I + (−1)F )/2 − P+, and similarly, using the fact thatQ anti-
commutes with (−1)F and commutes withG, we haveQG+Q = (I − (−1)F )/2− P−.
Therefore, the index ofQ+ can be expressed as,

IndQ+ = trP+ − trP−
= tr[(I + (−1)F )/2 −QQG+] − tr[(I − (−1)F )/2 −QG+Q]

= tr((−1)F − [Q,QG+])

= tr((−1)F + [Q, (−1)FQG/2]).

Of course, the difficulty is that we cannot constructG explicitly – even the claim
thatG is represented by a singular integral operator requires some justification, which
we will give shortly. This difficulty can be summarized in the following way: given a
set of eigenstates,ψEα, with eigenvalueE underQ2, the inverse is formally,

(Q2)−1 =
∑

Eα,E>0

E−1ψEα(x)ψEα(y),

where the sum may be over continuous indices. When the continuous spectrum is not
bounded away from zero, it is not clear that the resulting sum converges to a function
in any reasonable sense, sinceG is an unbounded operator onL2 wavefunctions in this
case. However, if the scattering states do not pile up at low-energies, then it should be
intuitively reasonable thatG is still nice, as, for example, in the free-particle case. We
will see this later by realizingG as a limit of bounded singular integral operatorsGw.
Physically, this limiting procedure is equivalent to adding a mass term to the propagator,
and taking the limit where the mass vanishes. The problem we are decribing is a common
one in any theory with massless particles. So, let us proceed along the usual path by
constructing an explicit approximationW toG for which we can compute the trace,

tr((−1)F + [Q, (−1)FQW/2]).

We must then verify that for a carefully constructedW this trace is the same as the one
computing the index ofQ+.

Our approximation will have the property that,

Q2W = I − E,

for some compact error termE given by integrating against a matrix-valued kernel,
e(x, y). We also wante(x, y) to decay polynomially in (|x| + |y|) to a sufficiently high
power which we need to determine, and study in greater detail later.
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Let us describe what data is needed in order to insure that

tr((−1)F + [Q, (−1)FQW/2])

computes the index. This is equivalent to the vanishing of tr[Q, (−1)FQ(G − W )/2],
which is the difference between tr((−1)F + [Q, (−1)FQG/2]), which computes the
index, and tr((−1)F + [Q, (−1)FQW/2]), which we hope computes the index.

For any integerm, the operatorW can be constructed so that the kernel forG−W
hasm continuous derivatives. LetχR be the characteristic function of a ballBR of
radiusR. The characteristic function is defined to be one on the ball and zero elsewhere.
We will throw χR into the various traces to serve as a cut-off on the infra-red physics.
By a similar argument to the one used in Sect. 3.1, we may use the divergence theorem
to transform trχR[Q, (−1)FQ(G − W )/2] into an integral over the boundary ofBR.
Therefore, if we can show that (−1)FQ(G −W )(x, x) is decaying sufficiently rapidly
at large|x| = R, we deduce that trχR[Q, (−1)FQ(G − W )/2] converges to zero, and
the index can be computed by replacingG by our approximation,W .

To prove thatQ(G −W ) decays sufficiently quickly, we will need to use an argu-
ment that may be unfamiliar to the reader which establishes a correspondence between
asymptotic estimates forQ2 and decay rates for solutionsψ toQ2ψ = F , whereF sat-
isfies some growth constraint. In order to orient the reader, let us first examine what the
argument says in a much simpler case. Consider the differential equation in one variable
r, on (0,∞),

(− d2

dr2
+w2)f = g,

wherew is some constant. For this equation, a weak form of our general argument below
says that ifeawrg ∈ L2, for somea ∈ (−1, 1), then we may conclude thateawrf is
normalizable, iff satisfies the growth constrainte−bwrf ∈ L2, for someb < 1. The
condition on the growth off is clearly necessary to rule out the addition of the non-
normalizableerw to any solution. In this simple case, we can prove this result by a direct
integration. We will use the following analogous result, which is established in much
greater generality in [25].

Suppose that for some positive constantc and some compact setK, we have an
estimate of the following form:

‖Qf‖2 ≥ ‖cf/r‖2,

for all wavefunctions,f , which vanish outsideK. With these assumptions, ifQ2F = e,
with rce ∈ L2, and ifF satisfies the growth constraint thatF/rc−s be normalizable for
some positives, then

rc−1

ln(r)1+ε
F ∈ L2,

for all positiveε. Also,
rc

ln(r)ε
QF ∈ L2,

for all positiveε. In the familiar case where we havec instead ofc/r, we would obtain
exponential decay as in the one-dimensional example. The reason we have a weaker
decay rate in this example is that the decay is roughly no worse thane−ψ, whereψ is a
function with|dψ|2 less than the asymptotic lower bound forQ2, which isc2/r2 in this
case, andw2 in the one-dimensional example.
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For purposes of illustration, let us sketch a proof of these growth estimates. For any
functionu supported in the complement of K, integration by parts yields

0 = (Q2F, u2F ) = ‖QuF‖2 − ‖[Q, u]F‖2.

The assumed estimate implies that,

‖cuF/r‖2 ≥ ‖[Q, u]F‖2.

From this formal inequality, we can deduce the normalizability ofcuF/r whencu/r >
|[Q, u]|. More accurately, we can deduce the integrability of (c2u2/r2−|[Q, u]|2)F 2. Let
us define a cutoff functionρ which is identically one outside a large ballK ′ containing
K in its interior, and vanishing inK. Then takingu to berc/ ln(r)ε times the cutoff
functionρ gives formally,

‖crc−1F/ ln(r)ερ‖2 ≤ ‖(rc−1(c− ε/ ln(r))ρ + rcρ′)/ ln(r)εF‖2.

Collecting terms, we obtain:∫
rc−2(2cε− ε2/ ln(r))|F |2/ ln(r)1+ερ‖2 ≤ cK′

∫
K′

|F |2,

for some constantcK′ , which depends onK ′ andc. A limiting argument, approximating
r by a sequence of bounded functions can be used to obtain from this formal inequality
the boundedness of the left side, when|F | is bounded on compact sets.

We will need the following variant of this inequality. Suppose that

Q̃2 = − ∂2

∂r2
− (2d− 1)

r

∂

∂r
+w,

wherew is now a positive operator withw ≥ c2/r2. Suppose that̃Q2F = 0 in the
complement of a compact setK. For somek to be determined, consider the point
whererkF is maximum. By the maximum principle, we have at the maximium that,
F ′ = −kF/r and (rkF )′′ ≤ 0, where:

(rkF )′′ =k(k − 1)rk−2F + 2krk−1F ′ + rkF ′′

≥k(k − 1)rk−2F − 2k2rk−2F − (2d− 1)rk−1F ′ + rk−2c2F

=(2d− k − 2 + c2/k)krk−2F.

If we choose 0< k < 2(d−1), we may deduce that if the maximum exists it must occur
in K. If Fra is bounded for any positivea, we may deduce thatFrk is in fact bounded
by its values onK for all k with k < 2d+c2/k−2. In our applications,c2 will usually be
the first or second eigenvalue of the standard spherical Laplacian, which is 0 or (d− 1).
We recall that the standard Laplace operator onSd−1 has eigenvalues,k(d + k − 2),
with k = 0, 1, 2, . . . , where the multiplicity of each eigenvalue is,(2k+d−2)(k+d−3)!

k!(d−k)! . In

the first case, we see that we getrd−2 decay; in the second we see that ford at least 3,
we get faster thanr2−2d decay. These estimates extend easily to the case whenQ̃2F = e,
wheree satisfies the condition thatr2de is bounded. We will apply this to the case when
Q̃2 = Q2

x +Q2
y, the hamiltonian in the first and second variables andF will be a kernel

constructed from the difference between the Green’s function andW . This argument
formalizes the observation that the product of two elements of the kernel ofH should
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decay twice as fast as a single element of the kernel, andG − W looks like such a
product.

We will show that,

Q2 = 1r + u/r2,

acting on wavefunctions supported outside a large compact set; herer is the distance
along the flat direction,1r is the radial part of the Euclidean Laplacian in the flat
directions, and the operatoru is semi-positive with first eigenvalue greater than the first
or second eigenvalue of the spherical Laplacian. We can then apply the above argument
to deduce thatG − W decays liker2−2d. We can improve this estimate by observing
that we get the second eigenvalue when the operator is restricted to wavefunctions with
odd parity, and the first eigenvalue for the restriction to even parity wavefunctions. Split
(G − W ) into its even and odd components. The odd component of (G − W ) decays
faster thanr1−d by the preceding discussion, and it is easy to see that applyingQ only
improves the decay rate. To see this, use the inequality forQ2F = 0,

‖wQF‖ ≤ 2‖[Q,w]F‖,

and choosew appropriately. For the even component ofG−W , we have that its image
underQ is odd; therefore, we again have the improved decay rate determined by the
second eigenvalue of the sphere. This estimate requires that (G−W )ra be bounded for
some positivea and thatG be given as a singular integral operator. The last condition is
needed to ensure that (G−W ) is a smooth function. We will not prove these results in
detail but will merely sketch how they follow from the same sequence of ideas we have
introduced. One considers first instead ofG andW corresponding operatorsGw and
Ww, whereGw is (Q2 +w)−1 restricted to the orthogonal complement of the kernel of
Q2, etc. It is easy to get the desired initialra boundedness forGw−Qw for eachw > 0.
One then can get the desired growth bound; i.e. we show that the max is controlled by
an estimate on the compact set. We then alloww to tend to zero to get the desired result
for G−W = limw→0(Gw −Ww). This type of argument can also be used to show that
G is a singular integral operator.

This then establishes the desired decay estimate given one: a construction ofW
which leads to sufficiently smallE; that is |e(x, y)| ≤ (|x| + |y|)−d−1, and two: a
demonstration of the claimed asymptotic lower bound forQ2. Under these two condi-
tions, tr((−1)F + [Q, (−1)FQW/2]) computes the index. We now turn to the evaluation
of [Q, (−1)FQW/2], which we need to boil the problem down to a concrete computa-
tion.

It will be convenient to arrange the construction ofW so that on a large compact set,
say a ballBR, its contribution to the index can be computed by the standard principal
term computation described in the previous subsection. On the complement of this set
we will need to use special coordinates to find a nice expression forW . This requires us
to define an approximationA toQG rather than the approximationW toG, but since,
off a compact set,A will clearly be of the formQW , this will not affect our preceding
discussion. The use of two separate constructions forW in different regions may seem,
perhaps, a bit unnatural when dealing with Euclidean space. It is forced on us, in part,
by the need to obtain very good control of the error termE as|x| tends to∞. This rules
out the use of the local computation used inBR and described previously. Moreover, the
special coordinates we use in the complement of the compact set, like polar coordinates,
become singular at the origin. Therefore, we will need to use two sets of cutoff functions
to patch the two approximate inverses together.



692 S. Sethi, M. Stern

Let ρn,j(x) be a sequence of cutoff functions which approachχjR(x), and setρn =
ρn,1. LetW ′ be our approximate Green’s function near∞, which we will construct in

section five. The operator
∫ β0

0 dβ Qe−βQ2
(x, y) is the standard kernel that we will use

in BR. We can create a global approximation toQG by defining:

A(x, y) = ρn(x)
∫ β0

0
dβ Qe−βQ2

(x, y)ρn,2(y) + (1− ρn(x))QW ′(x, y)(1 − ρn,1/2(y)).

The cutoff functions on the left of each operator are inserted to average the two operators.
The cutoff functions on the right, however, are inserted so that the operators are localized
to the domains where they are well-defined, and satisfy the desired estimates. The right
cutoffs are of course chosen to be identically one on the support of the left cutoffs;
otherwise, they would destroy the averaging effected by the left cutoffs. This is the
reason for the second index onρ.

Then to evaluate [(−1)FA,Q], we write:

[(−1)FA,Q] =[Q, ρn](−1)F
∫ β0

0
dβ Qe−βQ2

ρn,2 − [Q, ρn](−1)FQW ′(1 − ρn,1/2)

− ρn(−1)F (I − e−β0Q
2

)ρn,2 + (1− ρn)(−1)F (I − E)(1 − ρn,1/2)

+ (1− ρn)(−1)FQ[Q,W ′](1 − ρn,1/2) + . . . ,

=[Q, ρn]
∫ β0

0
dβ Qe−βQ2 − [Q, ρn](−1)FQW ′

− (−1)F (I − ρne
−β0Q

2

) + (1− ρn)(−1)F (−E)

+ (1− ρn)(−1)FQ[Q,W ′] + . . . ,

where the omitted terms are terms that trace to zero. We will constructW ′ in section
five so that the trace of (1−ρn)(−1)F (−E) + (1−ρn)(−1)FQ[Q,W ′] will tend to zero
asn tends to∞. Thus subtracting off the (−1)F I term we are left to compute,

tr[Q, ρn]
∫ β0

0
dβ Qe−βQ2 − [Q, ρn](−1)FQW ′ + (−1)F ρne

−β0Q
2

.

The last term is the principal term which is given by evaluating the integral (3.5). Taking
the limit asn tends to∞, the two commutator terms converge to the boundary traces,∫

|x|=R

(
tr en

∫ β0

0
dβ Qe−βQ2 − tr en(−1)FQW ′

)
.

Choosingβ0 to go to zero more slowly thanR−4, the integral,∫
|x|=R

tr en

∫ β0

0
dβ Qe−βQ2

,

decomposes into two pieces. One is associated with a small neighborhood of the flat
regions, which consist, say, of all points of distance at most one from a flat point. The
other contribution is associated with the complementary region, i.e. almost all of the
sphere of radiusR. It is not difficult to show that the contribution from the flat region is
squeezed to zero asR tends to∞. The contribution from the complementary region is not
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vanishing. Using similar arguments to those presented earlier in this section, it is possible
to show without extensive computation that this term exactly cancels the principal term.
Standard constructions give aW ′ whose contribution from the complementary region
of tr en(−1)FQW ′ also exactly cancels the contribution of

∫
|x|=R tr en

∫ β0

0 dβ Qe−βQ2
.

Therefore, the total contribution of this boundary integral to the index comes from,

−1
2

∫
NF (R)

tr en(−1)FQW ′, (3.6)

whereNF (R) is a small neighborhood of the flat points on the boundary of the space,
which is a sphere of radiusR. We will show in section five that this integral converges to
−1/4 in the two-particle case. In summary, the additional contribution to the index from
the boundary is computed by evaluating (3.6), which is localized to the flat directions.
The sum of (3.6) and the usual principal term from (3.5) must then be integer.

4. Two-Particle Binding

4.1. Symmetries and pfaffians.The simplest case to consider isN = 2; already, however,
the integral (3.5) is thirty-dimensional for type IIA zero-branes! We shall have to use
the various symmetries available to us to simplify the computation of the principal term.
Recall that the coordinatesxiA now form a 3× (d + 1) matrix. The integral (3.5) is
invariant under the symmetry,x → gxh, whereg is an element ofSO(3) acting on the
left while h is an element ofSO(d + 1) acting from the right onx. Note that the left
action is a gauge transformation.

By using these symmetries, we shall rotatex into a special form,b1 0 0· · · 0
0 b2 0 · · · 0
0 0 b3 0 · · · 0

 , (4.1)

and reduce our integral to one over only three variables.
In these special coordinates, the potential (including the gauge parameters) takes the

special form,

Ṽ = −1
2

(b2
1b

2
2 + b2

1b
2
3 + b2

2b
2
3).

We shall now evaluate Pf(M ) by evaluating the determinant ofM . For the moment, let
us return to general coordinates whereM = −(i/2)fABCxiBγ

i. For convenience, let us
denotexiAγ

i by xA. The matrix then takes the form,

M =
i

2

 0 x3 −x2
−x3 0 x1
x2 −x1 0

 .

By row manipulations, or equivalently, by studying the eigenvalue equation, we find that
the determinant can be expressed as,

det(M ) =
1

23(d−1)
det(x1x2x3) det(1− x1x

−1
2 x3x

−1
1 x2x

−1
3 ),
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wherex−1
A = (xA−2ix0

AI)/|xA|2. After rotatingx into our convenient set of coordinates
(4.1), we can compute this determinant, and on taking the square root obtain,

Pf(M ) =
1

22(d−1)
(b1b2b3)d−1.

We can immediately see that whend is odd, the Pfaffian is an even function of the
variables in both special and general coordinates, and the corresponding integral (3.5)
is non-vanishing.

The last ingredient that we require to compute the integral (3.5) is the measure for our
simplified coordinates (4.1). We shall obtain the measure by gauge-fixing the integral
(3.5) using the Faddeev-Popov approach. Let us takex′ to be,b′1 0 0· · · 0

0 b′2 0 · · · 0
0 0 b′3 0 · · · 0

 .

We shall insert one into the integral (3.5) in the form,∫
db′dgdh δ(x′ − gxh)f (b),

where we have to determinef (b). For someg0 andh0, x0 = g0xh0 takes the form (4.1).
The integrals overg andh then reduce to integrals in a small neighborhood ofgo andho,
with the exception of theSO(d − 2) subgroup ofSO(d + 1) that leaves the form (4.1)
invariant. IfT is a generator for the leftSO(3) action, andR a generator of the right
SO(d + 1) action which does not leave (4.1) invariant, then we can replace integration
overg, h by,

η(d) vol(SO(d− 2))
∫
db′dTdR δ(x′ − xo − Txo −Rxo)f (b).

The remaining integrals are straightforward, and we find that,

f (b) =
1

η(d) vol(SO(d− 2))
(b1b2b3)d−2|(b2

1 − b2
2)(b2

1 − b2
3)(b2

2 − b2
3)|.

The integrals overb are constrained such thatb1 > b2 > b3. The symmetry factorη(d) is
4 for d > 2, but is 2 ford = 2 because the left and right symmetry groups are then both
SO(3). The value of the symmetry factor can also be checked by computing a Gaussian
integral in thed-dimensional model, and comparing the result to the answer obtained
using the measure for these special coordinates.

Finally, inserting one in this form into the integral (3.5), and integrating overx, g, h
gives ford > 2,

1
vol(SO(3))

1
(2π)3d/2

∫
db

vol(SO(d + 1))vol(SO(3))
4 vol(SO(d− 2))

(b1b2b3)d−2|(b2
1 − b2

2)(b2
1 − b2

3)×

(b2
2 − b2

3)| 1
22(d−1)

(b1b2b3)d−1eṼ .

The first factor of 1/vol(SO(3)) comes from the normalization of the integration over
the gauge group, where we recall that we chose the normalization so that

∫
SU (2) dt = 1

prior to rescaling.
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4.2. Computing the principal contribution.Now there is a nice change of variables that
will allow us to evaluate this integral. Set:y1 = b2b3/

√
2, y2 = b1b3/

√
2, y3 = b1b3/

√
2,

and the integral becomes,∫
db (b1b2b3)d−2|(b2

1 − b2
2)(b2

1 − b2
3)(b2

2 − b2
3)| 1

(2π)3d/2

1
22(d−1)

(b1b2b3)d−1eṼ

=
∫
dy(y1y2y3)d−3|(y2

1 − y2
2)(y2

1 − y2
3)(y2

2 − y2
3)|1

2
1

22(d−1)

1
π3d/2

e−y2
1+y2

2+y2
3

=
∫

R3d

dxe−|x|2 1
2

1
22(d−1)

1
π3d/2

η(d− 1) vol(SO(d− 3))
vol(SO(d))vol(SO(3))

=
1
2

1
22(d−1)

η(d− 1) vol(SO(d− 3))
vol(SO(d))vol(SO(3))

.

Lastly, we must multiply the result by the value of tr(I) from the trace over the fermions,
which gives an extra factor 23(d−1). The net result is the formula:

P = 2d−2 η(d− 1) vol(SO(d + 1))vol(SO(d− 3))
η(d) vol(SO(d− 2))vol(SO(d))vol(SO(3))

, (4.2)

for the principal contribution,P , for d odd, where we recall that vol(SO(n)) =
vol(Sn−1) · · · vol(S1), and that vol(Sn) = 2π

n+1
2 /0(n+1

2 ). Let us conclude this discussion
by listing the explicit values in the following table:

Table 1.The principal contribution to the index

Dimension Principal contribution

3 1/4

5 1/4

9 5/4

5. The Propagator for Well-Separated Branes

5.1. Some general comments.We have determined in the previous section that the
principal contribution to the index is fractional. Since the index must be integer, there is
a missing contribution. The manner in which this contribution arises is quite surprising,
and involves a bizarre conspiracy of cancellations. Let us outline the procedure we will
follow before presenting a detailed discussion. We will construct an approximation to
the propagator for the two zero-branes when they are far apart. The approximation will
be sufficiently good in the sense that any corrections will not contribute to the boundary
term (3.6). At long distances, the only states that make a sizable contribution to the
propagator are those localized along the flat directions of the potential. The simplest
approximate description of the physics governing the light degrees of freedom is in
terms of free particle propagation along the flat directions. This is immediately modified
when we try to “integrate” out the massive modes. Let us label coordinates for theda
massive directions byy. Then for example, the action of∂2

r , which is part of the Laplacian
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(2.3), on the wavefunction for the flat direction is modified because of its action on the
harmonic oscillator ground state,

∂2
r

( r
π

)da/4
e−r|y|2/2 =

( r
π

)da/4
e−r|y|2/2

(
∂2
r +

[
da
2r

− |y|2
]
∂r

+
da(da − 4)

16r2
− da

4r
|y|2 +

|y|4
4

)
.

Each of the terms appearing on the right is of order 1/r2, and so none can a priori be
neglected. In a similar way, the rest of the terms in the Hamiltonian modify the long
distance behavior. This includes theO(y4) terms in the potential which we recall is of the
form,V ∼ r2|y|2/2 +O(y4). Since we need to include theO(y4) terms, this approxima-
tion is not one-loop in the usual sense. We will need to sum up all the corrections to free
propagation, which are of order 1/r2, and surprisingly, they all cancel. The remaining
index computation then involves free particle propagation on the moduli space which is
R(dc−2)/Z2. From this computation, we will recover the needed corrections to the index.

The construction that we shall describe is to be contrasted with the kind of effective
action for the light modes that has been obtained using large-distance low-velocity
expansions [7,11]. After integrating out the massive modes in a one-loop approximation,
the leading correction to the effective Lagrangian at larger is a term of order∼ v4/r7

for the case of the nine-dimensional model. The connection between that approach, and
the computations that we shall describe does not seem transparent. It seems possible
that exploring the connection in detail will give insight, and dare we hope a proof, of the
desired non-renormalization theorem for theF 4 term. Computing the leading corrections
to the three and five-dimensional models also seems an interesting question. Since the
amount of supersymmetry is reduced, we might suspect that there is a correction to the
metric on the moduli space. However, in constructing the propagator using this approach,
we do not find any fundamental difference between the three cases.

Let us start by discussing the form of the various operators that we need to study
in special coordinates. Without rotating to a convenient set of coordinates, it will be
very difficult to say anything about the structure of the partition function. We can rotate
our coordinates,x, into a convenient basis by using a combination of gauge and flavor
symmetries. So, we can choose a basis,

x = k3q,

with k ∈ SO(3), q ∈ SO(d) and3 the following 3× d matrix,

3 =


r 0 · · · 0

0 y2
2 · · · yd2

0 y2
3 · · · yd3

 . (5.1)

We have set31
1 = r, and lety denote the remaining 2× (d− 1) matrix, with3i

A = yiA,
for i, A > 1. The reason for this choice is that the flat directions are now at the locus,
y = 0. Note that the choice ofk andq is not unique here. So the mapping,

m(k,3, q) → k3q,

projectsSO(3) × R2d−1 × SO(d) onto our space of matrices,x, but is clearly not
one-to-one. The fibers of the map,m, are non-trivial. Any function that depends on
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x can then be lifted to a function in the product space, which is constant under those
transformations ofk,3, q that leavex invariant. Most of our computations will focus
on the neighborhood,NF , of a flat point given by|y|2 < 1, andr tending to∞. This is
the region that contributes to (3.6).

We need to write the Hamiltonian in terms of these new coordinates, which include
thed+1 angular variables parametrizing thed+2-dimensional flat directions. The kinetic
terms in the Hamiltonian can be determined by computing the Laplacian for the metric
associated to this coordinate choice. Let us recall that given a metric,g, the Laplacian
is given by:

1 = − 1√|g| Ti
(√

|g|gij
)
Tj ,

where|g| is det(g), and theTi are a basis of vector-fields for some coordinate system.
First, we need to make a choice of basis of vector-fields. For the coordinates, (5.1), it
is natural to have{ ∂

∂r ,
∂
∂yi

B

}2≤i≤d,B>1 as part of the basis. We needd + 1 additional

vector-fields. From the leftSO(3), we can choose the two vector-fields,{X2, X3} which
are associated to the twoSO(3) generators,

0 1 0

−1 0 0

0 0 0

 ,


0 0 1

0 0 0

−1 0 0


respectively. Similarly, we can add thed − 1 vector-fields{Vj}j>1, associated to the
right SO(d) generators,z(j). The matrixz(j) is a d × d anti-symmetric matrix with
only one positive entry,z(j)1j = 1. Our total basis is then composed of the subset of
tangent vectors to the product space,SO(3) × R2d−1 × SO(d), given by{X2, X3} ∪
{ ∂
∂r ,

∂
∂yi

B

}2≤i≤d,B>1 ∪ {Vj}j>1.

We need to determine the metric,g, for this coordinate choice. The set of vector-
fields,{ ∂

∂r ,
∂
∂yi

B

} are orthonormal and orthogonal to the rest of the basis. The rest of the

basis have inner products,

(Xj , Xk) = r2δjk + (yyt)jk,

(Vj , Vk) = r2δjk + (yty)jk,

and,
(Xj , Vk) = 2ryjk.

These inner products can be determined by pushing forward the vector-fields underm,
and computing the resulting norms. Now the metric can be written as a direct sum of two
metrics,g = g′ ⊕ g′′, whereg′′ is the identity matrix for the coordinates corresponding
to (r, y). The interesting part of the metric is the part for the angular variables. So, let
us write,g′ = r2I + K, whereK is determined from the above inner products. Then
(g′)−1 = I/r2 −K/r4 + . . . , where the omitted terms are suppressed by more powers
of r. To compute the Laplacian, we need:

logdet(g) = logdet(g′) = trlog(r2I) + trlog(I +K/r2)

= 2(d + 1) log(r) + tr(K/r2) − tr(K2/2r4) + . . .

= 2(d + 1) log(r) − 2|y|2/r2 + . . . ,
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where omitted terms are again of lower order. Finally, this allows us to write down an
expression for the Hamiltonian in these special coordinates at (k,3, q),

2H = − ∂2

∂r2
− (d + 1)

r

∂

∂r
+ 1y +

2yjB
r2

∂

∂yjB
− 1
r2

(
∑
j>1

X2
j +
∑
j>1

V 2
j )+

r2|y|2 +
∑
i>j>1

(yi2y
j
3 − yi3y

j
2)2 + kAM3s

MqsjY
j
A + . . . ,

(5.2)

where1y is the Laplacian in they variables. We have writtenHF askAM3s
MqsjY

j
A,

whereY jA = iγjαβfABCψBαψCβ , in the nine-dimensional model, and analogous expres-
sions for the other cases. The omitted terms are all of orderO(1/r3) or smaller.

5.2. Inverting the Hamiltonian.To invert the Hamiltonian, let us focus first on the
harmonic oscillator term,Hm = 1y + r2|y|2, with eigenvalues 2(d− 1 +n)r, wheren a
non-negative integer. If there were no cancelling fermion term, this oscillator term would
immediately guarantee a potential linearly increasing withr, and therefore, a discrete
spectrum. In order to see the cancelling fermion term, we writeHF = rYr +H ′

F , where
Yr = kA1q1jY

j
A, andH ′

F consists simply of all those terms inHF without a31
1 = r

factor. It is an easy task to show that the eigenvalues ofYr range from−2(d − 1) to
2(d−1). In particular, when we consider wavefunctions for which the transverse bosons
and fermions are simultaneously in their ground states, all terms of orderr cancel, and
we are left with only terms of order 1/r2 to worry about in the Hamiltonian. On any
state with excited oscillators, we see thatH has lowest eigenvalue of orderr.

Our construction ofW will use the nice factorization of the wavefunctions in terms
of their behavior in the massive directions, and their behavior along the flat directions.
We can think ofH as a block 2×2 matrix, with respect to this decomposition, where the
H11 piece corresponds to the terms inH which take the ground state for the oscillators
back to itself. The pieceH22 contains terms inH which send the state with one excited
massive boson to itself, and the off-diagonal terms act in a similar way. As a first guess,
one might try (and we did) to constructW as a perturbation of some nice approximation,
W1, toH−1

11 ⊕H−1
22 . Because of the large eigenvalue of the first excited state ofHm+rYr,

almost any construction should give a goodH−1
22 . InvertingH11 is more problematic but

not excessively so.
In a standard perturbative approach, we considerHW1 = I − E1. Here,E1 will

include, for example, such terms asH12W1. As a next step, setW2 = W1 +W1E1, with
errorE2 = −E2

1. One could iterate this construction to constructW = Wn for some
largen, if the errors were getting significantly smaller each time. For example if each
Ek had a kernelek(x, x′) which was bounded by (r(x) + r(x′))−k, this would lead us
to the desiredW after some number of iterations. With this in mind, it becomes clear
what terms must be included in our initial approximation,W1. Because any approximate
H−1

11 will have upper bound of sizer2, we see that we cannot discard any term of size
bigger than or equal toO(1/r2) in H which either acts on the ground state, or maps an
excited state to the ground state. For these terms lead to errors which are not decreasing
under iteration. Actually, this is an overstatement. If a termB maps us, for example,
from the lowest state into a higher state we see that the error will enter asH−1

22 BH
−1
11 .

BecauseH−1
22 is bounded above by (r(x) + r(x′))−1, this term will be decreasing inr

if, for example,B is O(1/r2). With these remarks to guide us, we must now return to
analyzeH, treating as lower order only terms which areO(1/r3) if they map the ground
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state into itself, or areO(1/r2) if they mix the ground state with excited states. These
lower order terms cannot be neglected altogether, but they simply enter as higher terms
in our iterative construction ofW .

The gauge constraints provide some further simplication in our computations. First
we can ‘move’ to the identity elementk = 1 in our product space,SO(3) × R2d−1 ×
SO(d) with coordinates (k,3, q), by a gauge rotation. From now on, we will restrict our
discussion to thek = 1 subspace. Further, setting two of the gauge constraints to zero
allows us to replace differentiation byXj , which generates gauge transformations on the
bosons, by multiplication by the fermion bilinear which generates gauge transformations
on the fermions. For example, in the nine-dimensional case, the fermion bilinear is given
byQj := − 1

2ψ1sψjs. There are similar expressions for the other cases. The remaining
gauge constraint,C1 of the three constraints in (2.2), generates aU (1) subgroup which
acts ony. With these considerations in hand, let us turn to the task of getting rid of the
massive modes, and obtaining an effective Hamiltonian on the flat directions which we
can invert to compute (3.6).

5.3. Constructing the effective Hamiltonian.Let us begin by computing the total con-
tribution of terms that map the ground state to itself. Each of these terms will give
rise to an interaction in the effective Hamiltonian of the form,m/r2, for somem, in
a manner described in the beginning of this section. The ground state is of the form
s(q)r(d−1)/2e−r|y|2/2, wheres(q), the fermion ground state, is actually a section of a
bundle determined by the lowest eigenvalue of the fermion termYr, sinces(q) must
satisfy the equation:

{Yr(q) + 2(d− 1)}s(q) = 0.

Therefore, the ground state depends non-trivially on the right angular coordinates,q. We
will examine the structure of the fermion ground state in some detail, shortly. Note that
the ground state is invariant under the remainingU (1) subgroup of the gauge group. As
a first approximation, a general state that we need to consider is a product of the ground
state with a wavefunction,f (r, q), along the flat directions. Let us record the various
mi/r2 contributions to the effective Hamiltonian which acts onf , wherem3,m5 andm9

denote the values of the contributions for the three, five and nine-dimensional models,
respectively. First, by definition, the termHm + rYr vanishes on the ground state.

It is convenient to rewritey and ∂
∂y in terms of standard annihilation and creation

operators:

y =
1√
2r

(a + a†),

∂

∂y
=

√
r

2
(a− a†),

where [a, a†] = 1. Now we can evaluate the contribution of the derivative terms inH
acting on the bosonic ground state,

|0〉 =
( r
π

)(d−1)/2
e−r|y|2/2.

The term in (5.2) with one radial derivative gives,

〈0|∂r|0〉 = 〈0|
(
d− 1

2r
− y2

2

)
|0〉

= 0.
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The term with two radial derivatives then gives,

〈0|∂2
r |0〉 =

1
r2

[
(
d− 1

2
)(
d− 3

2
) − 2(

d− 1
2

)2

]
+

1
4
〈0||y|2|y|2|0〉

=
1 − d

4r2
.

Let us label this contribution,mr, thenm3
r = 1/4,m5

r = 1/2, andm9
r = 1. After noting

that we can replace theX2
i terms in (5.2) by the action of the fermion bilinears,Q2

i ,
which are just matrices, we see that there are two remaining derivative terms in the
Hamiltonian. The first is they ∂

∂y term and it is relatively easy to analyze,

〈0|y ∂
∂y

|0〉 = −1
2
〈0|aa†|0〉

= (1− d).

Let us call this contribution,my, wheremd
y = 1 − d. The sign of this term is critical

since it is the only term that maps the ground state to the ground state, and gives a large
negative contribution to the netm.

The last derivative term comes from the action ofV 2
i on the ground state, where

theVi generate certain flavor rotations. Theq-dependent fermion oscillator ground state
is the only part of the full ground state wavefunction that can give a non-vanishing
contribution in this case. So, let us now describe the ground state of the fermions in
some detail. The real massive fermions,{ψ2α, ψ3α}, whereα runs from 1 ton = 4, 8
and 16 for the three, five and nine-dimensional cases, can be arranged into annihilation
and creation operators:

bα =
1√
2

(ψ2α + iψ3α),

b†α =
1√
2

(ψ2α − iψ3α).

The operatorsb, b† obey the anti-commutation relation,{bα, b†β} = δαβ . Can we con-
struct a fermion state in the kernel ofYr + 2(d− 1)? For the moment, let us pickq = 1.
In this case,Yr = 2iγ1

αβψ2αψ3β , and we can pickγ1 to be the diagonal element of the
Clifford algebra: 1 0

0 −1

 .

With this choice,Yr = 2
∑n/2
α=1

(
b†αbα − b†n/2+αbn/2+α

)
. Let us choose a fermionic

ground state|0〉F which satisfies,bα|0〉F = b†n/2+α|0〉F = 0 for α = 1, . . . , n/2. This
vacuum is then in the kernel ofYr + 2(d − 1) at the pointq = 1. We should point out
that, when restricted to the (d − 1)-sphere which is the SO(d) orbit of a flat point, the
ground state takes values in a flat vector bundle, which is therefore trivial. This means
that there is a globally defined fermion ground state wavefunction.

To understand the fermion ground state for arbitraryq and, in particular, to understand
the action ofV 2

i on the ground state, we shall study the equivalent problem of its action
on the operator which acts as projection onto the kernel ofYr + 2(d− 1). This operator
is given by,
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P (q) =
1

2πi

∮
0

dz
1

z − Yr(q)
, (5.3)

using a contour,0, which we will take to be a small loop enclosing−2(d − 1). This
construction ofP (q) is readily seen to be correct by diagonalizingYr(q), and computing
the corresponding contour integral.

Here we should clarify that we are really interested in the action ofP (q)
∑
i V

2
i ;

the remainder isO(1/r2) and does not take the groundstate to itself. These terms will
therefore be of interest only as perturbative corrections. The operatorP (q)

∑
i V

2
i should

act as a scalar 2mq on an appropriately chosen basis of the ground state. Our task is to
compute the scalar. Now,P (q) is given by conjugating the projection operator atq = 1
with a nonconstant orthogonal matrix, whose columns give a basis of the ground state. We
can write this as,P (q) = O(q)P (1)O(q)t. Then

∑
i V

2
i acting onP (q) has terms where

O(q) orO(q)t are twice-differentiated and terms where each is differentiated once. It is
easy to show that this last term is annihilated byP (q), and hence is not germane to this
calculation. If the remaining term is a multiple ofP (q), then the multiple will be 4mq, as
bothO(q) and its conjugate should contribute a factor of 2mq when differentiated. We
preface the computation by commenting on how to compute the derivative ofYr(q). It
is enough to computeViq1j . By a change of coordinates, we then only need to compute,
Viq1j(1). This is given by:

Viq1j =
d

dt
(qetVi )1j

∣∣∣
t=0

= (qVi)1j .

Evaluating atq = 1 gives,
Viq1j(1) = (Vi)1j = δij .

Now we compute:∑
i

V 2
i P (q) =

∑
i

2
2πi

∫
1

z − Yr(q)
ViYr

1
z − Yr(q)

ViYr
1

z − Yr(q)
dz+

∑
i

1
2πi

∫
1

z − Yr(q)
V 2
i Yr

1
z − Yr(q)

dz,

whereYr is an eigenfunction of the Laplacian
∑
i V

2
i . Hence the second integrand is a

simple double pole and therefore integrates to zero. In order to compute the remaining
term, it is enough to make a change of coordinates equivalent to takingq = 1. Then
it is easy to see thatVi(Yr) takes the−2(d − 1) eigenspace ofYr to the 4− 2(d − 1)
eigenspace. This gives,

P (q)
∑
i

2
2πi

∫
1

z − Yr(q)
ViYr

1
z − Yr(q)

ViYr
1

z − Yr(q)
dz =

∑
i

diag(ViYr)
2 2
2πi

∫
1

(z + 2(d− 1))
1

(z + 2(d− 1) − 4)
1

(z + 2(d− 1))
dz,

where diag(ViYr)2 = P (q)(ViYr)2V (q). Integrating gives−∑i diag(ViYr)2/8.
We can compute this atq = 1 where, (ViYr) = 2iγiαβψ2αψ3β , and

∑
i(ViYr)

2/8 =
−4γiαβψ2αψ3βγ

i
α′β′ψ2α′ψ3β′/8. The terms which surviveP (q) are,

−4γiαβψ2αψ3βγ
i
αβψ2αψ3β/8 − 4γiαβψ2αψ3βγ

i
βαψ2βψ3α/8 = γiαβγ

i
αβ/4

= 4(d− 1).
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So, we finally get thatm3
q = 1/2,m5

q = 2 andm9
q = 8.

With the derivative terms out of the way, we can consider the two remaining operators
in the Hamiltonian that map the ground state to the ground state. The first is theO(y4)
term in the potential. This gives,

〈0|
∑
i>j

(yi2y
j
3 − yi3y

j
2)2|0〉 = 〈0|2

∑
i>j

(yi2y
j
3)2|0〉

=
1

4r2
(d− 1)(d− 2).

Calling this contribution,mV , we havem3
V = 1/4,m5

V = 3/2, andm9
V = 7. The last

contribution comes from the kinetic term for the two gauge rotation generators,X2, X3.
Setting the gauge constraints to zero, we can replace the angular Laplacian,X2

i , by the
operator quartic in fermions:

n∑
α=1

(ψ1αψ2α)2 + (ψ1αψ3α)2.

The only terms that map the ground state to the ground state are those proportional to the
identity. A quick calculation gives the numerical value,n/2. Calling this contribution,
mf , we note thatm3

f = 1,m5
f = 2 andm9

f = 4.
If we were to stop at this point, and just consider these diagonal contributions to the

effective Hamiltonian, a quick check would show that the netm is non-vanishing. There
would therefore be a non-trivial 1/r2 interaction in the effective theory. Fortunately,
we are not quite finished. First, we can shift the coefficient of the∂r term in (5.2),
and generate a newO(1/r2) term by redefining our wavefunctions. The reason this is
useful is that on choosing an appropriate coefficient for∂r, we can combine the radial
derivatives with theVi angular derivatives to obtain a Laplacian for flat space, together
with some 1/r2 interaction. This way, we only need to deal with Euclidean coordinates,
rather than the messier angular coordinates. We want to shift the coefficient of the∂r
term fromd + 1 to d − 1, so we will end up with a free particle Hamiltonian on the
d-dimensional moduli space, together with interactions. To do so, we note that:

−
(
∂2
r +

d + 1
r

∂r

)
= −

(
(∂r +

1
r

)2 +
d− 1
r

∂r

)
= −

(
(∂r +

1
r

)2 +
d− 1
r

(∂r +
1
r

) − d− 1
r2

)
= −1

r

(
∂2
r +

d− 1
r

∂r − d− 1
r2

)
r,

where we now redefine our wavefunctions,f (r, q) = 1
r f̃ (r, q). This gives us a new

contribution tom, saymc = d−1
2 .

So far, we have found thatH acts on the ground state and first excited state in the
following way,

H =

 1
21d +md

T /r
2 bt

b H22

 .

Here,mT = mc+mf +mV +mq +my +mr is the total effective interaction that we have
found so far, wherem3

T = 1,m5
T = 4 andm9

T = 16. Lower order terms inH11 have been
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omitted. Let us turn to the form ofb, which may change the effective interaction. For
example, the terms inb acting on the ground state of orderO(r−1/2) cannot be neglected.
Our initial choice ofW1 is then not diagonal to the requisite order in the basis that we
have been using. Doesb contain terms of the right order?

It is not hard to check that the only terms that map the ground state to the first
excited state, which are of the requisite order are those involvingH ′

F . This follows
from noting thatH ′

F is proportional toy which is,∼ a†/
√
r acting on the ground state.

Now we see that we can significantly lower our energy if we define a new ground state
|0〉′ = (I − b

2r )s(q)|0〉. The factor of 2r is chosen because acting withb on a state raises
its eigenvalue underHm +rYr by 2r. So,H|0〉′ = (1

21d +md
T /r

2 − btb/2r)s(q)|0〉 plus
lower order terms. The final contribution tom from btb is computed in the same way as
the other contributions, and we find thatmd

b = −md
T .

Wonderfully, theO(1/r2) terms sum to zero! From these considerations, we see that
we are reduced to a free-particle calculation. Our choice for an approximationW11 to
H−1

11 is then particularly simple: we can just take the free-particle propagator,

W11 =
∫

ddk

(2π)d
eik·(x−x′)

k2
.

5.4. Evaluating the boundary contribution.Now that we reached the point where we have
a nice simple form forW11, we note that the remainder of the perturbation construction
is standard. We will not belabor the reader with the details of this expansion, but just
provide some relevant comments. As we observed before, any reasonable construction
yields a good approximateH−1

22 , with a nice error bound. The construction ofW , which
is perturbative in 1/r, then follows the outline that we have described earlier in this
section. The contribution of theW11 term is non-vanishing, but it is clear after extensive,
arduous but standard computations, which involve checking powers ofr, that any trace
involving the rest ofW will bring in more powers ofr−1 than appear in theW11 term.
These terms will therefore not contribute to the boundary term (3.6), in the limit where
r→∞. We can now restrict ourselves to the free-particle Green’s function,W11. The
remaining calculation is simple. We have a free particle propagating onRd/Z2. The
Z2 identification comes from the Weyl group action on the Cartan of the gauge group
SU (2). Let us takex as coordinates forRd. TheZ2 action acts as parity, sendingx→−x.
It also sends the free fermions,ψ1α, whereα = 1, . . . , 2(d − 1), to minus themselves.
The Hilbert space of gauge-invariant wavefunctions is given by:

{f0(x), f1(x)ψ1α, f2(x)ψ1αψ1β , . . . }.
Each function,fk, has parity (−1)k. All we need to do is compute the boundary term,

−1
2

∫
NF (r)

tren(−1)FQW11,

for this system. This becomes an integral over the boundary of thed-dimensional moduli
space:

− 1
2

∫
Sd−1(r)

tren(−1)FQW11

= − 1
vol(Sd−1)2(d− 2)

∫
Sd−1(r)

tren(−1)FQ
1

|x− x′|d−2

∣∣∣
x′=−x

= −1/4.
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To close this computation, let us note that the lower bound on the asymptotic behavior
of H is given by its lowest value on the modified lowest wavefunctions, where the
modification involved the off-diagonalb term. The lower bound is therefore the same
as the bound for1d, up to terms of orderO(1/r3). As discussed in section three, this
easily leads to the claimed asymptotic lower bound forH.

To summarize: we have found a formula for the index that counts the net number
of L2 ground states in certain quantum mechanical systems, where the potential has
flat directions. This involved a study ofL2 index theory for a family of non-Fredholm
operators, which allowed us to show that the prescription we presented actually computes
the index. For the case of two-particle binding, we have shown that there is a bound state
for coincident zero-branes in type IIA string theory. We have also found further evidence
that there are no bound states for two-branes twice wrapped on anS2, and three-branes
twice wrapped on anS3. Note that these models are only special points in the space of
theories obtained by deforming the zero-brane quantum mechanics.

The actual computation split into two parts. Computing the principal term involved
evaluating the integral (3.5). It would be interesting, and quite non-trivial, to compute
this integral for higher rank gauge groups. Even better would be a method for avoiding
this integration altogether. The second part of the computation required a study of the
propagator for the two particles when they are far apart. Surprisingly, after summing a
variety of corrections, this computation reduced to one involving a free particle moving
on the moduli space. Undoubtedly, there is a fundamental reason for this simplification,
and finding it may also shed light on whether theF 4 term in the effective zero-brane
Hamiltonian is protected from corrections. It seems likely that there will be an analogous
reduction to a free particle calcuation for other gauge groups. As a further comment,
note that if we had studied a system with gauge groupU (1) and some charged matter,
there would have been no boundary correction, as in the case involving H-monopoles
[6].

The sort of decay estimates that we described can probably be used to get a handle
on the structure of the ground state wavefunction. What is needed is an upper bound
on how fast the wavefunction can decay along the flat directions. They may also lead
to a vanishing theorem showing that all ground states in these systems must have a
definite fermion number. The index would no longer be just an index, but would then
count the total number of ground states. This would allow us to conclude that the zero-
brane bound state is unique. Finally, systems involving marginal binding of branes with
different dimensions can now be analyzed in much the same way.
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