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Abstract: A potential flow formulation of the hydrodynamic equations with the quan-
tum Bohm potential for the particle density and the current density is given. The equations
are selfconsistently coupled to Poisson’s equation for the electric potential. The station-
ary model consists of nonlinear elliptic equations of degenerate type with a quadratic
growth of the gradient. Physically motivated Dirichlet boundary conditions are pre-
scribed. The existence of solutions is proved under the assumption that the electric en-
ergy is small compared to the thermal energy. The proof is based on Leray-Schauder’s
fixed point theorem and a truncation method. The main difficulty is to find a uniform
lower bound for the density. For sufficiently large electric energy, there exists a general-
ized solution (of a simplified system), where the density vanishes at some point. Finally,
uniqueness of the solution is shown for a sufficiently large scaled Planck constant.

1. Introduction

The evolution of a fluid or gas is governed by the hydrodynamic equations [20]

∂n

∂t
+ divJ = 0, (1.1)

∂J

∂t
+ div

(
J ⊗ J

n
+ P

)
− nF = W. (1.2)

The first equation expresses the conservation of mass wheren is the particle density
andJ the particle current density. The second equation expresses the conservation of
momentum whereP = (Pij) denotes the pressure tensor,F the sum of the external
forces, andW the momentum relaxation term. Theith component of div (J ⊗ J/n +P )
is given by
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d∑
j=1

∂

∂xj

(
JiJj

n
+ Pij

)
,

whered ≥ 1 is the space dimension.
We consider an isothermal or isentropic quantum fluid of charged particles. In par-

ticular, the pressure tensor is assumed to be of the formP =
(
δijr(n)

)
, whereδij is

the Kronecker symbol. The pressure functionr is given by the particle density, i.e.
r(n) = Ton in the isothermal case andr(n) = Ton

β in the isentropic case, whereβ > 1
andTo is a (scaled) temperature constant. In the isothermal case, the fluid temperature
T is equal toTo; in the isentropic case we getT = Ton

β−1. We assume that the external
force is the gradient of the sum of the electric potentialV , the external potentialVext,
and the quantum Bohm potential

Q = δ2 1√
n

1
√
n,

δ > 0 being the scaled Planck constant. The external potential models (interior) quantum
wells. Equations (1.1)–(1.2) are coupled to Poisson’s equation for the electric potential,

λ21V = n− C(x). (1.3)

Here,λ denotes the scaled Debye length, andC(x) models fixed background ions.
Finally, the relaxation term is given byW = −αJ , whereα > 0 is the inverse of the
scaled relaxation time. With these assumptions the quantum hydrodynamic equations
can be formulated as

∂n

∂t
+ divJ = 0, (1.4)

∂J

∂t
+ div

(
J ⊗ J

n

)
+ ∇r(n) − n∇(V + Vext) − δ2n∇

(
1

√
n√
n

)
= −αJ.

(1.5)

The primary application of the quantum hydrodynamic equations to date has been
in analyzing the flow of electrons in quantum semiconductor devices, like resonant
tunneling diodes [10]. Very similar model equations have been used in other areas of
physics, e.g. in superfluidity [22] and in superconductivity [6].

The quantum Euler–Poisson system (1.3)–(1.5) has been justified in [1, 10, 12, 13,
14]. It can be derived from a moment expansion of the Wigner-Boltzmann equations
[10] or from a mixed state Schrödinger–Poisson system [12]. In particular, the single
state Schr̈odinger-Poisson system

iε
∂ψ

∂t
= −ε2

2
1ψ + (V + Vext)ψ, λ21V = |ψ|2 − C(x)

is equivalent (for appropriate “smooth” solutions) to the irrotational zero temperature
flow equations

∂n

∂t
+ divJ = 0,

∂J

∂t
+ div

(
J ⊗ J

n

)
− n∇(V + Vext) − ε2

2
n∇

(
1

√
n√
n

)
= 0
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and Poisson’s equation (1.3) (see [21, 14]). These equations are known as Madelung’s
fluid equations [22]. The expression “irrotational” means that the current density can
be written asJ = n∇S, whereS is called a phase or quantum Fermi potential. The
equivalence of the two models follows from the definitionsn = |ψ|2,ψ =

√
n exp(iS/ε)

andJ = n∇S. We note that for finite relaxation timesα > 0, there is no equivalence to
a Schr̈odinger-Poisson system, even not in the mixed state.

In this paper we study the steady-state equations

div J = 0, (1.6)

div

(
J ⊗ J

n

)
+ ∇r(n) − n∇(V + Vext) − δ2n∇

(
1

√
n√
n

)
= −αJ,

(1.7)

λ21V = n− C (1.8)

in a bounded domain� ⊂ Rd (d ≥ 1) occupied by the fluid. The main assumption is
that we consider a potential flow, i.e. we assume that the particle current can be written
as

J = n∇S
with the quantum Fermi potentialS (see above). This means that the velocityJ/n = ∇S
is assumed to be irrotational. It is physically reasonable to assume thatn > 0 holds in
the device. Since div (J ⊗ J/n) = 1

2n∇|∇S|2 we can rewrite (1.7) as

n∇
(

1
2
|∇S|2 + Toh(n) − V − Vext − δ2 1

√
n√
n

)
= −αn∇S, (1.9)

where

h(n) =
1
To

∫ n

1

r′(s)
s
ds (1.10)

is the enthalpy function. In the isothermal case,h(n) = log(n) holds; for isentropic states,
we haveh(n) = (β/(β − 1))(nβ−1 − 1) for β > 1. Notice that the electric potential
and the quantum Fermi potential are fixed only up to additional constants. Sincen > 0,
Eq. (1.9) implies

1
2
|∇S|2 + Toh(n) − V − Vext − δ2 1

√
n√
n

+ αS = 0.

The integration constant can be assumed to be zero by choosing a reference point for
the electric potential. For the analysis it is convenient to usew =

√
n as a variable. Then

(1.6), (1.8), and (1.9) can be written as

δ21w = w( 1
2 |∇S|2 + Toh(w2) − V − Vext + αS), (1.11)

div (w2∇S) = 0, (1.12)

λ21V = w2 − C in �. (1.13)

Physically relevant boundary conditions forw, S, andV will be specified later.
The fluid models (1.6)–(1.8) or (1.11)–(1.13) have been studied in some special sit-

uations. For vanishing convective and quantum terms the problem (1.6)–(1.8) is known
as the isentropic drift-diffusion model used for semiconductor devices [17, 18, 24]. The
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quantum drift-diffusion model (zero convective term,δ > 0) has been investigated in
[2]. The classical potential flow hydrodynamic equations (δ = 0) are analyzed in, e.g.
[5, 7, 9]. In the paper [29] the existence for the one-dimensional stationary quantum
hydrodynamic equations (1.6)–(1.8) with non-standard boundary conditions is investi-
gated. The steady-state system (1.11)–(1.13) in several space dimensions is studied here
mathematically for the first time.

In the analysis of (1.11)–(1.13), two main difficulties arise. The elliptic equation
(1.12) is, a priori, of degenerate type with a non-standard (since non-local) degeneracy.
We will show, however, that the solutionw is strictly positive and therefore, (1.12)
becomes strictly elliptic. Every solution (w, S, V ) of (1.11)–(1.13) with positivew is a
solution of the problem (1.6)–(1.8) withn = w2, J = n∇S.

Another difficulty arises due to the term|∇S|2 on the right hand side of (1.11),
stemming from the convective term in (1.6). This difficulty also appears in the thermistor
problem (see [4, 27]). However, we have to apply different techniques than used in the
thermistor problem.

To derive the boundary conditions we make physically relevant hypotheses. The
boundary data are assumed to be the superposition of the thermal equilibrium functions
(neq, Seq, Veq) and the applied potentialU (x):

n = neq, S = Seq +U, V = Veq +U on∂�.

The thermal equilibrium state is defined byJ = 0 or, equivalently,S = const. (asn > 0).
By fixing the reference point forS (andSeq) we can suppose thatSeq = 0. We assume
further that the total space chargeC−neq vanishes at the boundary and that no quantum
effects occur on∂�, i.e. 1

√
neq/

√
neq = 0. Finally,Vext = 0 on∂�, sinceVext is

introduced to model interior quantum wells. We get from (1.11)

0 =
1
2
|∇Seq|2 + Toh(neq) − Veq + αSeq

or, sinceSeq = 0,
Veq = Toh(neq) on∂�.

Therefore we get the Dirichlet boundary conditions

w = wo, S = So, V = Vo on∂� (1.14)

with

wo =
√
C, So = U, Vo = Toh(C) +U. (1.15)

It is the aim of this paper to show the existence and uniqueness of solutions to
(1.11)–(1.14). More precisely, we prove in Sect. 2 that there exists a solution (w, S, V )
to (1.11)–(1.14) with∇S ∈ L∞(�) under the assumption that the temperature constant
To is large enough (isothermal and isentropic case) or that the boundary Fermi potential
So is small enough in some norm (isothermal case). This means that the electric energy
which is connected with the applied potentialU (and hence withSo) has to be much
smaller than the thermal energy, in some sense. For the proof we first replace Eq. (1.12)
by div (max(m,w)2∇S) = 0 (m > 0) which is uniformly elliptic. By means of Leray-
Schauder’s fixed point theorem, the existence of a solution to the truncated problem will
be shown. For this solution the densityw turns out to be strictly positive. So we get
a solution to the original problem (1.11)–(1.14) by choosing the truncation parameter
m > 0 smaller than the lower bound ofw.
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We need the smallness assumption on the data in the proof of the positivity ofw. We
do not know if the existence of solutions can be proved without this assumption. In the
stationary thermistor problem which is formally related to the quantum hydrodynamic
model, it is well known that there exist solutions only if the applied potential is “small”
enough (for the precise conditions see [27]). Furthermore, in the one-dimensional case
it is possible to show the non-existence of solutions for “large” applied voltages [3, 4].
We recall that the thermistor problem reads

div (k(w)∇w) = −σ(w)|∇S|2,
div(σ(w)∇S) = 0,

wherew andS have here the meaning of the temperature and electric potential, respec-
tively.

In the simulation of semiconductor tunneling devices where a variant of the presented
quantum fluid model has been used, numerical results indicate that the density can be
extremely small compared to, e.g., the boundary density, for values of the applied voltage
U far from the thermal equilibrium (e.g.nmin = 10−4,n|∂� = 1; see [10]). It is not clear
if there is a lower bound for the density for allU and if yes, how it can be controlled.
The positivity property ofw is connected to the regularity forS. Indeed, we show that
w is strictly positive if and only if the gradient ofS is bounded (Sect. 3). For ultra-small
devices, Eqs. (1.11)–(1.14) can be replaced asymptotically by a simplified system [19].
We show that there exists a solution of this (one-dimensional) system, where the density
vanishes at some point. However, the solution is discontinuous and therefore, it is only
defined in a generalized sense (see Sect. 3).

There exists at most one solution to (1.11)–(1.14) if the scaled Planck constantδ is
sufficiently large (Sect. 4). Forδ = 0, there exist situations where the problem has more
than one solution [11].

2. Existence of Solutions

In this section we prove the existence of solutions to (1.11)–(1.14) with general Dirichlet
boundary data. The following assumptions are needed:

(A1) � ⊂ Rd (d ≥ 1) is a bounded domain with boundary∂� ∈ C1,1.
(A2) h ∈ C0(0,∞) is a non-decreasing function satisfying

lim
x→∞h(x) = +∞, lim

x→0+
xh(x2) < +∞.

(A3) wo ∈ W 2,p(�) for p > d/2, inf∂� wo > 0; So ∈ C1,γ(�) with γ = 2 − d/p;
Vo ∈ H1(�) ∩ L∞(�); C, Vext ∈ L∞(�).

The constantsα, δ, λ, andTo are assumed to be positive. We call a functionh ∈
C0(0,∞) satisfying (A2) isothermalif h(0+) = −∞ and isentropic if h(0+) < 0.
The enthalpy functionh(s) = log(s) is isothermal. Furthermore, the enthalpyh(s) =
(β/(β − 1))(sβ−1 − 1) is isentropic.

The main results of this section are the following theorems:
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Theorem 2.1. Let (A1)–(A3) hold and leth be isothermal. Then there existsε > 0 such
that if

‖So‖C1,γ (�) ≤ ε or To ≥ 1/ε,

then there exists a solution(w, S, V ) of (1.11)–(1.14) satisfying, for somew > 0,

w ∈ W 2,p(�), S ∈ C1,γ(�), V ∈ H1(�) ∩ L∞(�), (2.1)

w(x) ≥ w > 0 in �. (2.2)

Theorem 2.2. Let (A1)–(A3) hold and leth be isentropic. Then there existsε > 0
such that ifTo ≥ 1/ε then there exists a solution(w, S, V ) of (1.11)–(1.14) satisfying
(2.1)–(2.2).

Notice that we are assuming boundary data which are independent of the parameter
To. The case of the boundary functions (1.15) can also be treated, see Remark 2.5.

First we prove that there exists a solution of a truncated system. For this, define
sK = max (0,min (s,K)) and tm(s) = max (m, s) for s ∈ R and 0 < m ≤ K.
Throughout this section (A1)–(A3) are assumed to hold. Consider

δ21w = wK( 1
2 |∇S|2 + Toh(w2

K) − V − Vext + αS), (2.3)

div (tm(wK)2∇S) = 0, (2.4)

λ21V = wKw − C in �, (2.5)

w = wo, S = So, V = Vo on∂�. (2.6)

The proof of existence of solutions to this truncated system is based on the following a
priori estimates.

Lemma 2.3. Let (w, S, V ) be a weak solution to (2.3)–(2.6). Then there exist constants
w, S, S, V , V , andc1(m) such that

0 ≤ w(x) ≤ w, −S ≤ S(x) ≤ S, −V ≤ V (x) ≤ V in �, (2.7)

‖w‖2,p,� ≤ c1(m). (2.8)

Here,‖·‖2,p,� denotes the norm of the Sobolev spaceW 2,p(�). The precise dependence
of the above bounds on the data is needed in the uniqueness proof in Sect. 4 and is stated
here for future reference:

S = − inf
∂�
So, S = sup

∂�

So, (2.9)

V = sup
∂�

Vo + c(�, d, λ)‖C‖0,∞,�, (2.10)

w = max
(‖wo‖0,∞,∂�, w1(V , S, To, h)

)
, (2.11)

V = − inf
∂�
Vo + c(�, d, λ)

(‖C‖0,∞,� +w2
)
, (2.12)

wherec(�, d, λ) > 0 andw1 = w1(V , S, To, h) > 0 is such thath(w2
1) ≥ (V +

‖Vext‖0,∞,� + αS)/To.
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Proof. First step.L∞ estimates forw, S, and V . First observe that, usingw− =
min (0, w) ∈ H1

0(�) as test function in (2.3), it follows

w(x) ≥ 0 a.e. in�. (2.13)

The maximum principle gives the bounds

−S = inf
∂�
So ≤ S(x) ≤ sup

∂�

So = S in �. (2.14)

Next we show thatV is uniformly bounded inL∞(�). Let Uo = sup∂� Vo, U ≥ Uo,
and take (V − U )+ = max (0, V − U ) as a test function in (2.5). Then

λ2
∫

�

|∇(V − U )+|2 = −
∫
wKw(V − U )+ +

∫
C(V − U )+ (2.15)

≤
∫
C(V − U )+

≤ c‖(V − U )+‖1,2,�(meas (V > U ))1/2.

Here and in the following,c, ci denote positive constants only depending on the given
data. Letr > 2 be such that the embeddingH1(�) ↪→ Lr(�) is continuous. It is well
known that forW > U ,

(meas (V > W ))1/r(W − U ) ≤ c(�)‖(V − U )+‖1,2,�

holds [25, Ch. 4]. Therefore we get from (2.15), forW > U ≥ Uo,

meas (V > W ) ≤ c

(W − U )r
(meas (V > U ))r/2.

Sincer/2 > 1, we can apply Stampacchia’s Lemma (see [26, Ch. 2.3] or [25, Ch. 4])
to get

V (x) ≤ V
def
= Uo + c(�, d, λ)‖C‖0,∞,�, (2.16)

wherec(�, d, λ) > 0.
Before we can find a lower bound forV , we prove thatw is bounded from above

(independently ofK). For this setV ext = ‖Vext‖0,∞,�, letw ≥ ‖wo‖0,∞,∂� andK > w
and use (w − w)+ as a test function in (2.3):

δ2
∫

�

|∇(w − w)+|2 = −1
2

∫
wK(w − w)+|∇S|2

−
∫
wK(w − w)+To(h(w2) − h(w2))

+
∫
wK(w − w)+(V + Vext − Toh(w2) − αS)

≤
∫
wK(w − w)+(V + V ext − Toh(w2) + αS),

using (A2), (2.14) and (2.16). Sinceh(s) → ∞ ass → ∞, there existsw ≥ ‖wo‖0,∞,∂�

such thath(w2) ≥ (V + V ext + αS)/To. This implies
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w(x) ≤ w a.e. in�. (2.17)

Now use (−V − U )+ with U ≥ Uo = − inf ∂� Vo as test function in (2.5) to get

λ2
∫

�

|∇(−V − U )+|2 ≤
∫

(wKw − C)(−V − U )+

≤ c

∫
(−V − U )+,

wherec > 0 depends onC andw. Using Stampacchia’s method as above allows to
conclude that

V (x) ≥ −V def
= −Uo − c(�, d, λ)(‖C‖0,∞,� +w2).

Second step.H1 estimate forw. Usew − wo as test function in (2.3) to obtain

δ2
∫

�

|∇w|2 = δ2
∫

∇w · ∇wo − 1
2

∫
wKw|∇S|2 +

1
2

∫
wKwo|∇S|2 (2.18)

− To

∫
wK(w − wo)h(w2

K) +
∫
wKwV −

∫
wKwoV

+
∫
wK(w − wo)Vext − α

∫
wK(w − wo)S.

With the test functionsV −Vo andS−So in (2.5), (2.4) respectively, we get on the one
hand∫

�

wKwV = −λ2
∫

|∇V |2 + λ2
∫

∇V · ∇Vo +
∫
VowKw +

∫
C(V − Vo)

≤ −λ2

2

∫
|∇V |2 + λ2

∫
|∇Vo|2 + c

∫
wKw + c,

using Young’s and Poincaré’s inequalities; on the other hand, we have forK > w,

m

∫
�

wK |∇S|2 ≤
∫
tm(wK)2|∇S|2 ≤

∫
tm(wK)2|∇So|2

≤ w2
∫

|∇So|2.

Therefore we can estimate (2.18) as follows:

δ2

2

∫
�

|∇w|2 ≤ δ2

2

∫
|∇wo|2 +

w2

m
c(wo, So) − To

∫
wKwh(w2

K)

+ c
∫

|wKh(w2
K)| − λ2

4

∫
|∇V |2 + c(λ)

∫
w2

K

+ c
∫
wKw + c

≤ c(m,w).

Third step.W 2,p estimate forw. The following elliptic estimate holds [15, Thm. 8.33
and 8.34]:
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‖S‖C1,ε(�) ≤ c2‖So‖C1,ε(�) for all 0< ε ≤ γ, (2.19)

wherec2 > 0 depends on�, d, m, and theC0,ε(�) norm of tm(wK)2. It can be seen
from the proof of this estimate that

c2 = c3(�, d)c4(m)‖tm(wK)2‖C0,ε(�).

Furthermore, we have the elliptic estimate

‖w‖2,p,� ≤ c5
(‖wo‖2,p,� + ‖w( 1

2 |∇S|2 + h(w2
K) − V − Vext + αS)‖0,p,�

)
,

wherec5 > 0 depends on�,d andδ [15, 9.15 and 9.17]. Hence, using (2.19) forε = γ/2,

δ2‖w‖2,p,� ≤ c(1 +‖S‖2
1,2p,�) ≤ c(1 +‖S‖2

C1,γ/2(�)
)

≤ c(1 +‖w2‖2
C0,γ/2(�)

) ≤ c(1 +w2‖w‖2
C0,γ/2(�)

)

≤ c(1 +‖w‖C0,γ (�))

≤ δ2

2
‖w‖2,p,� + c(δ,m).

In the last step we have used the interpolation inequality

‖w‖C0,γ (�) ≤ ε‖w‖2,p,� + c(ε)‖w‖0,∞,�,

which follows from the facts that the embeddingW 2,p(�) ↪→ C0,γ(�) is compact
(sincep > d/2) and the embeddingC0,γ(�) ↪→ L∞(�) is continuous [28, p. 365].
The constantc(δ,m) in the above estimate depends on�, d, δ,m,w, andV . We obtain
finally

‖w‖2,p,� ≤ 2c(δ,m)/δ2 = c1(m).

Lemma 2.4. There exists a solution(w, S, V ) of

δ21w = w( 1
2 |∇S|2 + Toh(w2) − V − Vext + αS), (2.20)

div (tm(w)2∇S) = 0, (2.21)

λ21V = w2 − C in �, (2.22)

w = wo, S = So, V = Vo on∂�, (2.23)

such thatw ∈ W 2,p(�), S ∈ C1,γ(�), V ∈ H1(�) ∩ L∞(�), andw(x) ≥ 0 in �.

Proof. We use a fixed point argument. Letu ∈ C0,γ(�). LetV ∈ H1(�) be the unique
solution of

λ21V = uKu− C in �, V = Vo on∂�,

and letS ∈ H1(�) be the unique solution of

div (tm(uK)2∇S) = 0 in �, S = So on∂�.

As in the proof of Lemma 2.3, we see thatV ∈ L∞(�). Sincetm(uK)2 is Hölder
continuous of orderγ, we getS ∈ C1,γ(�) [15, Thm. 8.34]. Finally, letw ∈ H1(�) be
the unique solution of
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δ21w = σuK( 1
2 |∇S|2 + Toh(u2

K) − V − Vext + αS) in �,

w = σwo on∂�,

withσ ∈ [0, 1]. The right-hand side of this elliptic problem lying inL∞(�), we conclude
w ∈ W 2,p(�) and, sincep > d/2, w ∈ C0,γ(�). Thus the fixed point operatorT :
C0,γ(�) × [0, 1] → C0,γ(�), (u, σ) 7→ w, is well defined. It holdsT (u, 0) = 0 for
u ∈ C0,γ(�). Estimates similarly as in the proof of Lemma 2.3 give the bound

‖w‖2,p,� ≤ c

for all w ∈ C0,γ(�) satisfyingT (w, σ) = w, wherec > 0 is independent ofw andσ.
Standard arguments show thatT is continuous and compact, noting the compactness
of the embeddingW 2,p(�) ↪→ C0,γ(�). We can apply Leray-Schauder’s fixed point
theorem to get a solution (w, S, V ) of (2.3)–(2.6). ChoosingK > w (see (2.7)), this
tripel is also a solution of (2.20)–(2.23).

Proof of Theorems 2.1 and 2.2.We rewrite the elliptic estimate (2.19) forε = γ:

‖S‖C1,γ (�) ≤ c3(�, d)c4(m)‖tm(w)2‖C0,γ (�)‖So‖C1,γ (�).

It holdsc4(m) → ∞ asm → 0+. Now,

‖tm(w)2‖C0,γ (�) ≤ c(w)‖w‖C0,γ (�) ≤ c(w)‖w‖2,p,� ≤ c5.

From the proof of Lemma 2.3 it can be seen thatc5 = c6(w)c7(m) with c6(w) → ∞ as
w → ∞ andc7(m) → ∞ asm → 0+. The boundw depends onTo such thatw → ∞
asTo → 0+ (see (2.11)). Thus we can write

‖S‖2
C1,γ (�)

≤ c0

f (To)g(m)
‖So‖2

C1,γ (�)
, (2.24)

wheref andg are positive continuous non-decreasing functions in [0,∞) such that
f (To) → 0 asTo → 0+, f (To) > 0 asTo → ∞, andg(m) → 0 asm → 0+. The
constantc0 > 0 does not depend onSo, To, orm.

Let 0 < m < inf ∂� wo and take (w − m)− = min(0, w − m) as test functions in
(2.20). Then, using (A2), (2.24), and (2.7),

δ2
∫

�

|∇(w −m)−|2 = −
∫
w(w −m)−To(h(w2) − h(m2))

−
∫
w(w −m)−(

1
2
|∇S|2 + Toh(m2) − V − Vext + αS)

≤
∫
w(−(w −m)−)

( c0

f (To)g(m)
‖So‖2

C1,γ (�)

+ Toh(m2) + V + V ext + αS
)
,

whereV ext = ‖Vext‖0,∞,�. The constantc8(To)
def
= V +V ext+αS depends onTo through

V such thatc8(To) can be taken to be non-increasing asTo increases (see (2.11)–(2.12)).
Then
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δ2
∫

�

|∇(w −m)−|2 ≤
(
I1 +

To

g(m)
I2

) ∫
w(−(w −m)−), (2.25)

where

I1 =
1
2
Toh(m2) + c8(To),

I2 =
c0

Tof (To)
‖So‖2

C1,γ (�)
+

1
2
g(m)h(m2).

First case:Let h be isothermal. For arbitraryTo > 0, letw ∈ (0, inf ∂� wo) be such
thath(w2) ≤ −2c8(To)/To (using (A2)). This implies, form = w, that I1 ≤ 0. Set
A = − 1

2g(w)h(w2) > 0 andε2 = ATof (To)/c0. Then, form = w and‖So‖C1,γ (�) ≤ ε,
we obtain

I2 ≤ c0

Tof (To)
ε2 −A ≤ 0.

Taking into account (2.25) we conclude thatw ≥ w in �.
For arbitrarySo, takem = w ∈ (0, inf ∂� wo) such thath(w2) ≤ −2c8(1) and letA

be defined as above. ChooseT1 ≥ 1 such thatT1f (T1) ≥ c0‖So‖2
C1,γ (�)

/A. Then we

have for allTo ≥ T1, sinceT 7→ c8(T )/T is non-increasing,

h(w2) ≤ −2c8(1) ≤ −2c8(To)/To,

and henceI1 ≤ 0. Since the functionT 7→ Tf (T ) is increasing, we obtain

c0

Tof (To)
‖So‖2

C1,γ (�)
≤ c0

T1f (T1)
‖So‖2

C1,γ (�)
≤ A,

by definition ofT1. This impliesI2 ≤ 0 andw ≥ w in �.

Second case:Leth be isentropic. Letw ∈ (0, inf ∂� wo) be such thath(w2) < 0, and let
T2 ≥ 1 be such thatT2 ≥ −2c8(1)/h(w2) > 0 andT2f (T2) ≥ c0‖So‖2

C1,γ (�)
/A, where

A is defined as in the first case. Takingm = w andTo ≥ T2, we getI1 ≤ 0 andI2 ≤ 0.
We conclude the proof by taking the truncation parameterm = w in (2.21).

Remark 2.5.We have assumed that the boundary functionswo,So, andVo do not depend
on the parameters, e.g.To. However, if we takeVo = Toh(C) + U (x) (see (1.15)), the
above arguments also apply. Indeed, letCo > 0 be such thath(Co) = 0 and choose
a scaling of the variables and functions such that inf∂� C ≥ C0 (this does not affect
To). Then, for isothermal or isentropic functions,h(inf ∂� C) ≥ 0. This impliesV =
−To inf ∂� h(C) + U ≤ U , and the constantc8(To) can be taken non-increasing asTo

increases. Note that nowV also depends onTo, but in such a way that the property
w → ∞ asTo → 0+ remains valid.

Remark 2.6.Using a relaxation scaling as in [23], i.e. defining the rescaled variables
n̂ = n, Ŝ = αS = S/τ , V̂ = V , whereτ = 1/α is the scaled relaxation time, we get
from (1.11)–(1.12) the equations

δ21ŵ = ŵ(
τ2

2
|∇Ŝ|2 + Toh(ŵ2) − V̂ − Vext + Ŝ),

div(ŵ2∇Ŝ) = 0.



474 A. Jüngel

One may expect that the diffusive termToh(ŵ2) dominates the convective term
(τ2/2)|∇Ŝ|2 for sufficiently smallτ > 0, which would give the existence of solu-
tions by the presented method, for fixedTo. However, we also have to transform the
boundary functionŜo = So/τ = U/τ , and it is easy to see that then the convective
term is not necessarily “small” for small relaxation times. Choosing different boundary
conditions, namelySo = U/α, the above rescaling giveŝSo = U , and the estimates of
the presented proofs lead to an existence result for sufficiently smallτ > 0 (see [8]).

Remark 2.7.It would be very interesting to study the small dispersion limitδ → 0 and
the relaxation time limitτ → 0. However, theW 2,p(�) norm ofw and therefore, the
lower boundw depend onδ such thatw → 0 asδ → 0. Moreover, it seems difficult to
identify the limits of the nonlinear functions. Concerning the relaxation time limit, it can
be seen thatc8(To) → ∞ asτ → 0 (see the proof of Theorems 2.1 and 2.2), and hence,
w → 0 asτ → 0. Taking the boundary conditions discussed in Remark 2.6, we expect,
however, that the limitτ → 0 can be performed (see [8]). For the small dispersion limit
in thermal equilibrium states, we refer to [11]. The relaxation time limitτ → 0 of the
hydrodynamic equations (i.e.δ = 0 in (1.7)) is performed in [23].

3. Positivity and Non-Positivity Properties

We show in this section that the existence of a uniform lower bound for the densityw
is related to the regularity of the gradient ofS. Furthermore, we construct a generalized
one-dimensional solution of a simplified problem, where the densityw vanishes at some
point. For this solution, the Fermi potentialS is discontinuous.

Let (A1)–(A3) hold and leth be isothermal or isentropic.

Proposition 3.1. Let (w, S, V ) ∈ (H1(�) ∩ L∞(�))3 be a weak solution to (1.11)–
(1.14) withS ∈ W 1,∞(�). Then there existsm > 0 such that

w(x) ≥ m > 0 in �.

Proof. First leth be isentropic. Then the function

f = 1
2 |∇S|2 + Toh(w2) − V − Vext + αS

is bounded in�. Sincew ≥ 0, we can apply Harnack’s inequality [15, p. 199] to

δ21w = wf

to conclude that for all subsetsω ⊂⊂ �,

sup
ω
w ≤ c(ω) inf

ω
w. (3.1)

Now suppose thatw vanishes in some non-empty setωo ⊂⊂ �. Let ωn ⊂⊂ � be a
sequence of sets withωo ⊂ ωn andωn → � asn → ∞ in the set theoretic sense. Then
(3.1) givesw = 0 in ωn and, in the limitn → ∞, w = 0 in �. This contradicts the
positivity ofwo on∂�.

If h is isothermal, we proceed as in [2]. Considerωo = {w = 0} ⊂ �. Since
wf ∈ L∞(�), w is continuous, henceωo is relatively closed in�. Suppose thatωo is
nonvoid and choosexo ∈ ωo. Thenwf ≤ 0 in a ballB(xo) ⊂ � and1w ≤ 0 inB(xo).
As the functionw assumes its nonnegative infimum 0 inB(xo), it follows thatw = 0 in



A Quantum Euler–Poisson System 475

B(xo). Thusωo is relatively open in�. This impliesωo = � orωo = ∅. By the positivity
of wo, we conclude thatw > 0 in �.

The existence of a uniform lower boundm > 0 forw now follows from the continuity
of w in �.

Corollary 3.2. Let (w, S, V ) be a weak solution to (1.11)–(1.14). Then

w(x) ≥ m > 0 a.e. in� if and only if S ∈ W 1,∞(�).

Now we consider the following simplified system in� = (0, 1) ⊂ R:

δ2wxx = 1
2w(Sx)2 in �, w(0) = 1, w(1) = 1, (3.2)

Jx = (w2Sx)x = 0 in �, S(0) = 0, S(1) =Uo, (3.3)

It can be seen that Eqs. (1.11)–(1.12) reduce to (3.2)–(3.3) for very small domains (after
an appropriate asymptotic limit; see [19]). We only considerUo ∈ [0,

√
2δπ]. To solve

(3.2)–(3.3) we have to distinguish the casesUo <
√

2δπ andUo =
√

2δπ.
We say that (w, S) ∈ H1(�) × L∞(�) is a generalized solutionto (3.2)–(3.3)

with S(1) = Uo if there exists a sequence of weak solutions (wε, Sε) ∈ (H1(�))2 of
(3.2)–(3.3) withS(1) =Uε andUε → Uo asε → 0 such that

w = lim
ε→0

wε, S = lim
ε→0

Sε in theL2(�) sense,

and for allφ ∈ H1
0(�) it holds

lim
ε→0

δ2
∫

�

(wε)xφx = − lim
ε→0

1
2

∫
�

wε(Sε)2
xφ,

lim
ε→0

∫
�

w2
ε(Sε)xφx = 0.

Proposition 3.3. (i) Let0 ≤ Uo <
√

2δπ. Then there exists a smooth solution(w, S) ∈(
C2(�)

)2
of (3.2)–(3.3) such that

w(x) ≥ c(Uo) > 0 in �.

(ii) If Uo =
√

2δπ then there exists a generalized solution(w, S) ∈ H1(�) ×L∞(�) of
(3.2)–(3.3) such thatw( 1

2) = 0.

Proof. LetUo =
√

2δπ and letUε <
√

2δπ be a sequence such thatUε → Uo asε → 0.
Setσε = Uε/

√
2δ. A computation shows that

wε(x) =
(
(1 − 2x)2 + 2(1 + cosσε)x(1 − x)

)1/2
,

Sε(x) =
√

2δ arccos
1 − (1 − cosσε)x

wε(x)
, x ∈ [0, 1],

solve (3.2)–(3.3) withSε(1) =Uε. Furthermore,

w2
ε(x)(Sε)x(x) =

√
2δ sinσε (3.4)

and
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wε(x) ≥
√

1
2

(1 + cosσε) > 0 in �.

In the limit ε → 0 we get cosσε → −1 and

wε(x) → w(x) = |1 − 2x| in L2(�),

Sε(x) →
√

2δ H(x) in L2(�) (ε → 0),

whereH(x) = 0 for x ∈ (0, 1/2) andH(x) = π for x ∈ (1/2, 1). Taking into account
(3.4) we obtain for allφ ∈ H1

0(�),

−1
2

∫
�

wε(Sε)2
xφ = δ2

∫
�

(wε)xφx → δ2
∫

�

wxφx = 4δ2φ
(1

2

)
,∫

�

w2
ε(Sε)xφx =

√
2δ sinσε

∫
�

φx → 0 (ε → 0).

Therefore, (w, S) is a generalized solution to (3.2)–(3.3).

4. Uniqueness of Solutions

Uniqueness of solutions follows under the assumption that the scaled Planck constantδ
is large enough. Ifδ = 0, there exists more than one solution of the thermal equilibrium
state (i.e.J = 0; see [11]).

Theorem 4.1. Let (A1)–(A3) hold and lethbe isothermal or isentropic. Then there exists
δo > 0 such that ifδ ≥ δo, there exists at most one solution(w, S, V ) to (1.11)–(1.14)
satisfying (2.1)–(2.2).

Proof. Let (w1, S1, V1) and (w2, S2, V2) be two solutions to (1.11)–(1.14) satisfying
(2.1)–(2.2). Takew1 −w2 as a test function in the difference of the Eqs. (1.11) satisfied
byw1, w2, respectively, to get

δ2
∫

�

|∇(w1 − w2)|2 = −1
2

∫
(w1|∇S1|2 − w2|∇S2|2)(w1 − w2) (4.1)

+
∫

(w1V1 − w2V2)(w1 − w2)

−
∫
To(w1h(w2

1) − w2h(w2
2))(w1 − w2)

− α

∫
(w1S1 − w2S2)(w1 − w2)

+
∫
Vext(w1 − w2)2

= I1 + · · · + I5.

The weak formulation of the difference of (1.12) forS1, S2, respectively, reads∫
w2

1∇(S1 − S2) · ∇φ = −
∫

(w2
1 − w2

2)∇S2 · ∇φ

for all φ ∈ H1
0(�). Takingφ = S1 − S2 we obtain
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w2
∫

�

|∇(S1 − S2)|2 ≤
∫
w2

1|∇(S1 − S2)|2

= −
∫

(w2
1 − w2

2)∇S2 · ∇(S1 − S2)

≤ 2w‖w1 − w2‖0,2‖∇S2‖0,∞‖∇(S1 − S2)‖0,2

which implies

‖∇(S1 − S2)‖0,2 ≤ (2w/w2)‖w1 − w2‖0,2‖∇S2‖0,∞. (4.2)

Now we are able to estimateI1, . . . , I5:

I1 = −1
2

∫
(w1∇(S1 − S2) · ∇(S1 + S2) + (w1 − w2)|∇S2|2)(w1 − w2)

≤ (
(w/w)2 + 1

)‖∇S2‖0,∞(‖∇S1‖0,∞ + ‖∇S2‖0,∞)‖w1 − w2‖2
0,2,

using (4.2). The integralI2 is estimated by using (1.13):

I2 =
1
2

∫
((w1 − w2)2(V1 + V2) + (w2

1 − w2
2)(V1 − V2))

=
1
2

∫
(w1 − w2)2(V1 + V2) − λ2

2

∫
|∇(V1 − V2)|2

≤ V ‖w1 − w2‖2
0,2.

The monotonicity ofh implies

I3 = −To

∫
(w1(h(w2

1) − h(w2
2))(w1 − w2) + (w1 − w2)2h(w2

2))

≤ −Toh(w2)‖w1 − w2‖2
0,2.

Finally, we can estimate the integralI4 employing Poincaŕe’s inequality and (4.2):

I4 = −α
∫

(w1(S1 − S2)(w1 − w2) + (w1 − w2)2S2)

≤ α
(
c(�)(w/w)2‖∇S2‖0,∞ + S

)‖w1 − w2‖2
0,2.

LetK = ‖∇S1‖0,∞ + ‖∇S2‖0,∞. Then we get from (4.1),(
δ2 − 2K2

(w2

w2
+ 1

)
− V − V ext + Toh(w2) − α

(w2

w2
K + S

))
‖w1 − w2‖2

0,2 ≤ 0.
(4.3)

Only K depends onδ (via theW 2,p(�) norm ofw; see the third step of the proof of
Lemma 2.3) such thatK remains bounded asδ → ∞. Therefore there existsδo > 0
such that ifδ ≥ δo, then (4.3) implies

‖w1 − w2‖2
0,2 ≤ 0.

Hencew1 = w2 in �. Finally, we inferS1 = S2 from (4.2) andV1 = V2 from (1.13).
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Remark 4.2.There exists at most one weak solution (w, S, V ) in the class of functions
satisfyingw, V ∈ H1(�) ∩ L∞(�), w(x) ≥ m > 0 in �, and (only)S ∈ W 1,q(�),
whereq = d if d ≥ 3, q > 2 if d = 2 andq = 2 if d = 1, under the assumption that the
scaled Planck constantδ > 0 is large enough. The proof of this result is similar to the
proof in [16].
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8. Gamba, I., Gasser, I., and Jüngel, A.: In preparation. 1998
9. Gamba, I. and Morawetz, C.: A viscous approximation for a 2D steady semiconductor or transonic gas

dynamic flow: Existence theorem for potential flow. Comm. Pure Appl. Math.49, 999–1049 (1996)
10. Gardner, C.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math.54,

409–427 (1994)
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