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Abstract: A potential flow formulation of the hydrodynamic equations with the quan-
tum Bohm potential for the particle density and the current density is given. The equations
are selfconsistently coupled to Poisson’s equation for the electric potential. The station-
ary model consists of nonlinear elliptic equations of degenerate type with a quadratic
growth of the gradient. Physically motivated Dirichlet boundary conditions are pre-
scribed. The existence of solutions is proved under the assumption that the electric en-
ergy is small compared to the thermal energy. The proof is based on Leray-Schauder’s
fixed point theorem and a truncation method. The main difficulty is to find a uniform
lower bound for the density. For sufficiently large electric energy, there exists a general-
ized solution (of a simplified system), where the density vanishes at some point. Finally,
uniqueness of the solution is shown for a sufficiently large scaled Planck constant.

1. Introduction

The evolution of a fluid or gas is governed by the hydrodynamic equations [20]

on .

e +divJ =0, (1.2)
8J+div(J®J+P>nF=W. (1.2)
ot n

The first equation expresses the conservation of mass whisr¢he particle density
andJ the particle current density. The second equation expresses the conservation of
momentum where”® = (P;;) denotes the pressure tensbrthe sum of the external
forces, andV the momentum relaxation term. TH& component of div{ ® .J/n + P)

is given by
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whered > 1 is the space dimension.

We consider an isothermal or isentropic quantum fluid of charged particles. In par-
ticular, the pressure tensor is assumed to be of the #rm (5;;r(n)), whered,; is
the Kronecker symbol. The pressure functiofis given by the particle density, i.e.
r(n) = T,n in the isothermal case angn) = T,n” in the isentropic case, whefe> 1
andT, is a (scaled) temperature constant. In the isothermal case, the fluid temperature
T is equal tdT},; in the isentropic case we ¢gét= T,n°~1. We assume that the external
force is the gradient of the sum of the electric poteritiathe external potentidl. .,
and the quantum Bohm potential

Qzﬁé%AWi

0 > 0beingthe scaled Planck constant. The external potential models (interior) quantum
wells. Equations (1.1)—(1.2) are coupled to Poisson’s equation for the electric potential,

NAV =n — C(x). (1.3)

Here, A denotes the scaled Debye length, aritk) models fixed background ions.
Finally, the relaxation term is given by = —a.J, wherea > 0 is the inverse of the
scaled relaxation time. With these assumptions the quantum hydrodynamic equations
can be formulated as

on .
e +divJ =0, (1.4)
07, div (M) +Vr(n) — nV(V + Viur) — 820V (Aﬁ> = —aJ.

The primary application of the quantum hydrodynamic equations to date has been
in analyzing the flow of electrons in quantum semiconductor devices, like resonant
tunneling diodes [10]. Very similar model equations have been used in other areas of
physics, e.g. in superfluidity [22] and in superconductivity [6].

The quantum Euler—Poisson system (1.3)—(1.5) has been justified in [1, 10, 12, 13,
14]. It can be derived from a moment expansion of the Wigner-Boltzmann equations
[10] or from a mixed state Scbhdinger—Poisson system [12]. In particular, the single
state Schivdinger-Poisson system

2
T A P UN I M ye'e)

“ ot

is equivalent (for appropriate “smooth” solutions) to the irrotational zero temperature
flow equations

an

5 +divJ =0,

o] . (J®J 2 _ (AR
8t+dlv<n)—nV(V+VeIt)—2nV<\/ﬁ>—O
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and Poisson’s equation (1.3) (see [21, 14]). These equations are known as Madelung’s
fluid equations [22]. The expression “irrotational” means that the current density can
be written as/ = nV.S, whereS is called a phase or quantum Fermi potential. The
equivalence of the two models follows from the definitians |+/|2, ¢ = \/n exp(.S/<)
andJ = nV.S. We note that for finite relaxation times> 0, there is no equivalence to
a Schbdinger-Poisson system, even not in the mixed state.

In this paper we study the steady-state equations

divJ = 0’ (16)
div <W) +Vr(n) — nV(V + Vi) — 620V ( A\/ﬁ> o

i vn (1.7)
)\ZAV =n—-C (18)

in a bounded domai® c R? (d > 1) occupied by the fluid. The main assumption is
that we consider a potential flow, i.e. we assume that the particle current can be written
as

J=nVS

with the quantum Fermi potentiél(see above). This means that the velodity. = V.S
is assumed to be irrotational. It is physically reasonable to assume tha holds in
the device. Since div{® J/n) = 3nV|VS|? we can rewrite (1.7) as

1 A
nV (|VS|2 +T,h(n) — V — Vopy — 62 ﬁ) = —anVs§, (1.9)
2 vn
where
n /
hn) = ~ / ) 4 (1.10)
TO 1 S

is the enthalpy function. In the isothermal cas@,) = log(n) holds; forisentropic states,
we haveh(n) = (8/(3 — 1))(n®~1 — 1) for 3 > 1. Notice that the electric potential
and the quantum Fermi potential are fixed only up to additional constants./sind®
Eg. (1.9) implies

1 Ay/n
SIVSP 4+ Toh() —~ V Ve — 52¢§ +aS=0,
The integration constant can be assumed to be zero by choosing a reference point for

the electric potential. For the analysis it is convenient towse,/n as a variable. Then
(1.6), (1.8), and (1.9) can be written as

82 Aw = w(3|VS|2+ Toh(w?) — V — Vegy + a5), (1.11)
div (w?VS) = 0, (1.12)
NAV=uw?-C inQ. (1.13)

Physically relevant boundary conditions fior .S, andV will be specified later.

The fluid models (1.6)—(1.8) or (1.11)—(1.13) have been studied in some special sit-
uations. For vanishing convective and quantum terms the problem (1.6)—(1.8) is known
as the isentropic drift-diffusion model used for semiconductor devices [17, 18, 24]. The
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guantum drift-diffusion model (zero convective terén;> 0) has been investigated in

[2]. The classical potential flow hydrodynamic equatiofis=(0) are analyzed in, e.g.

[5, 7, 9]. In the paper [29] the existence for the one-dimensional stationary quantum
hydrodynamic equations (1.6)—(1.8) with non-standard boundary conditions is investi-
gated. The steady-state system (1.11)—(1.13) in several space dimensions is studied here
mathematically for the first time.

In the analysis of (1.11)—(1.13), two main difficulties arise. The elliptic equation
(1.12) is, a priori, of degenerate type with a non-standard (since non-local) degeneracy.
We will show, however, that the solution is strictly positive and therefore, (1.12)
becomes strictly elliptic. Every solutiom(.S, V') of (1.11)—(1.13) with positivev is a
solution of the problem (1.6)—(1.8) with = w?, J = nVS.

Another difficulty arises due to the terfiv.S|? on the right hand side of (1.11),
stemming from the convective termin (1.6). This difficulty also appears in the thermistor
problem (see [4, 27]). However, we have to apply different techniques than used in the
thermistor problem.

To derive the boundary conditions we make physically relevant hypotheses. The
boundary data are assumed to be the superposition of the thermal equilibrium functions
(neq, Seq, Veq) and the applied potentiél (x):

N=Neg, S=84+U, V=V,+U onoQ.

The thermal equilibrium state is defined Jby= 0 or, equivalentlyS = const. (as > 0).

By fixing the reference point fa¥' (andS.,) we can suppose that., = 0. We assume
further that the total space charge- n., vanishes at the boundary and that no quantum
effects occur oroQ, i.e. A\/an/\/an = 0. Finally, V,,; = 0 on 0%, sinceV,,, is
introduced to model interior quantum wells. We get from (1.11)

1
0= §|vseq|2 + Toh(neq) — Veq + OéSeq

or, sinceS., =0,
Veqg = Toh(neq) onox.

Therefore we get the Dirichlet boundary conditions

w=w,, S=85, V=V, on o (1.14)
with

w,=VC, S,=U, V,=T,h(C)+U. (1.15)

It is the aim of this paper to show the existence and unigueness of solutions to
(1.11)—(1.14). More precisely, we prove in Sect. 2 that there exists a solutjdf) ()
to (1.11)—(1.14) wittv S € L°°(2) under the assumption that the temperature constant
T, is large enough (isothermal and isentropic case) or that the boundary Fermi potential
S, is small enough in some norm (isothermal case). This means that the electric energy
which is connected with the applied potential(and hence witht,) has to be much
smaller than the thermal energy, in some sense. For the proof we first replace Eq. (1.12)
by div (max(n, w)?V.S) = 0 (m > 0) which is uniformly elliptic. By means of Leray-
Schauder’s fixed point theorem, the existence of a solution to the truncated problem will
be shown. For this solution the densityturns out to be strictly positive. So we get
a solution to the original problem (1.11)—(1.14) by choosing the truncation parameter
m > 0 smaller than the lower bound of



A Quantum Euler—Poisson System 467

We need the smallness assumption on the data in the proof of the positiuvity/\¢d
do not know if the existence of solutions can be proved without this assumption. In the
stationary thermistor problem which is formally related to the quantum hydrodynamic
model, it is well known that there exist solutions only if the applied potential is “small”
enough (for the precise conditions see [27]). Furthermore, in the one-dimensional case
it is possible to show the non-existence of solutions for “large” applied voltages [3, 4].
We recall that the thermistor problem reads

div (k(w)Vw) = —o(w)|VS|?,
div(o(w)VS) = 0,

wherew andS have here the meaning of the temperature and electric potential, respec-
tively.

Inthe simulation of semiconductor tunneling devices where a variant of the presented
guantum fluid model has been used, numerical results indicate that the density can be
extremely small compared to, e.g., the boundary density, for values of the applied voltage
U far from the thermal equilibrium (€.@.,.;» = 10~%,n|sq = 1; see [10]). Itis not clear
if there is a lower bound for the density for &ll and if yes, how it can be controlled.

The positivity property ofv is connected to the regularity féf. Indeed, we show that

w is strictly positive if and only if the gradient ¢&f is bounded (Sect. 3). For ultra-small
devices, Egs. (1.11)—(1.14) can be replaced asymptotically by a simplified system [19].
We show that there exists a solution of this (one-dimensional) system, where the density
vanishes at some point. However, the solution is discontinuous and therefore, it is only
defined in a generalized sense (see Sect. 3).

There exists at most one solution to (1.11)—(1.14) if the scaled Planck cotissant
sufficiently large (Sect. 4). Far= 0, there exist situations where the problem has more
than one solution [11].

2. Existence of Solutions

In this section we prove the existence of solutions to (1.11)—(1.14) with general Dirichlet
boundary data. The following assumptions are needed:

(A1) @ c R?(d > 1) is a bounded domain with boundady2 ¢ C2.
(A2) h € C°0, o) is a non-decreasing function satisfying

lim h(z) =400, lim zh(z?) < +oo.
T—00 x—0+

(A3) w, € W2P(Q) for p > d/2, infaqw, > 0; S, € CL(Q) with v = 2 — d/p;
V, € HY(Q) N L®(Q); C, Vous € L¥().

The constantsy, 6, A, andT, are assumed to be positive. We call a functiore
C%(0, o) satisfying (A2)isothermalif h(0+) = —oo andisentropicif h(0+) < O.
The enthalpy functiorh(s) = log(s) is isothermal. Furthermore, the enthalpfs) =
(3/(8 — 1))(s”~1 — 1) is isentropic.

The main results of this section are the following theorems:
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Theorem 2.1. Let (A1)—(A3) hold and I€t be isothermal. Then there exists> 0 such
that if

”SOHCLW(@) <e or T, = 1/57

then there exists a solutiqw, S, V) of (1.11)—(1.14) satisfying, for some> O,

we W?P(Q), SeCY(Q), VeHYQ)NLXR), (2.1)
w(x) >w>0 inQ. (2.2)

Theorem 2.2. Let (A1)—-(A3) hold and lek be isentropic. Then there exists> 0
such that ifT, > 1/e then there exists a solutidmw, S, V) of (1.11)—(1.14) satisfying
(2.1)—(2.2).

Notice that we are assuming boundary data which are independent of the parameter
T,. The case of the boundary functions (1.15) can also be treated, see Remark 2.5.

First we prove that there exists a solution of a truncated system. For this, define
sg = max(Qmin (s, K)) andt,,(s) = max(n,s) fors € Rand 0 < m < K.
Throughout this section (A1)-(A3) are assumed to hold. Consider

8 Aw = wr (3IVS2+ Toh(wh) = V — Vegr + aS), (2.3)
div (tm (wk )?V.S) = 0, (2.4)
NAV =wgw—C  inQ, (2.5)
w=w,, S=8, V=V, onoQ. (2.6)

The proof of existence of solutions to this truncated system is based on the following a
priori estimates.

Lemma 2.3. Let(w, S, V) be a weak solution to (2.3)—(2.6). Then there exist constants

w, S, S, V,V,andei(m) such that

2p.0 < c1(m). (2.8)

[w

Here,| - ||2.,. denotes the norm of the Sobolev sp#iéé?(2). The precise dependence
of the above bounds on the data is needed in the uniqueness proofin Sect. 4 and is stated
here for future reference:

S=—infS,, S=supS,, (2.9)
oQ Yol
V = supl, + (2, d, V]| Cllo. 0 (2.10)
oQ
w = maX(||wo||O,oo,BQ7 ’LU]_(V, §7 Toa h))a (211)
K: *Igg V0+C(Q,d, )\)(”CHOOOQ +@2)7 (212)

wherec(Q,d,\) > 0 andw; = wi(V,S,T,,h) > 0 is such thath(w?) > (V +
|Vewtllo,00,0 + S) /T



A Quantum Euler—Poisson System 469
Proof. First step.L>° estimates forw, S, and V. First observe that, using~ =
min (0, w) € H(S) as test function in (2.3), it follows
w(x) >0 a.e.inQ. (2.13)
The maximum principle gives the bounds
~-S=inf S, < S(z) <supS,=S  inQ. (2.14)
oQ 20

Next we show that” is uniformly bounded inL>°(2). Let U, = sugyo Vo, U > U,,
andtakeV — U)* =max (QV — U) as a test function in (2.5). Then

V/Rmﬁ%WF:—/wmmﬁ%W+/CW—UY (2.15)
Q

< /C(V—U)+
< c|(V = U)*||l12.0(meas¥ > U))Y2

Here and in the followingg, ¢; denote positive constants only depending on the given
data. Letr > 2 be such that the embeddif(Q) — L"(R) is continuous. It is well
known that forlV > U,

(measy > W)Y (W —U) < «Q)II(V — U)" |12
holds [25, Ch. 4]. Therefore we get from (2.15), ot > U > U,,

¢ ___(measy > U))"/2.

measy > W) < w—0y

Sincer /2 > 1, we can apply Stampacchia’s Lemma (see [26, Ch. 2.3] or [25, Ch. 4])
to get
V() <V E U, +c(2,d, V)| Cllo.co.ar (2.16)
wherec(2,d, \) > 0.
Before we can find a lower bound féf, we prove thatv is bounded from above
(independently o). For this SeV ...+ = || Veut|0.00,2, 1610 > [|w, [|0,00,00 aNAK > W
and use® — w)" as a test function in (2.3):

ﬁAWWfWT

f% / wic(w —w) |V 5P
- / wic(w — ) Ty (h(w?) — h(w?)

+ / wic(w — DY (V + Viwt — Tyh(@?) — aS)

IA

/ wic(w — B (V + Vs — Toh(@?) +aS),

using (A2), (2.14) and (2.16). Sinégs) — oo ass — oo, there exists > ||wo]|o,0.90
such that(@?) > (V + Vet + aS)/T,. This implies
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w(r) <w a.e. inQ. (2.17)
Now use (V — U)* with U > U, = —infq V,, as test function in (2.5) to get

z2 /Q V-V D)2 < / (wiw — C)(—V — UY*

< c/(foU)ﬂ

wherec > 0 depends o andw. Using Stampacchia’s method as above allows to
conclude that

V(@) > -V E U, — (@, d, N(|Clo.o.c + T2).

Second stepi* estimate forw. Usew — w, as test function in (2.3) to obtain
62/9 |Vwl|? = 62/Vw -Vw, — % /wKw|VS|2 + % /wKwO|VS|2 (2.18)
— To/wK(w — wo)h(wk) + /wKwV — /wKon
+ [t = w)Veur [ wictw - w,)s.
With the test function¥” — V, andS — S, in (2.5), (2.4) respectively, we get on the one
hand
42/ IVV|?+ )2 / vV .-VV, + / Vowgw + /C(V -V,)

/wKwV
Q
/\2
—?/\VV|2+/\2/\VV0|2+c/wKw+c,

using Young’s and Poincals inequalities; on the other hand, we havefor> w,

IN

m / wi|VS[? < / bn(wi 2|V SP < / (Wi )|V S, 2
Q
< @2/|VSO|2.
Therefore we can estimate (2.18) as follows:
. < — _
5 /Q|Vw| <5 /|Vwo\ + mc(wo,So) To/wKwh(wK)

ve [lucn@i) % [19vE e [of

+c/wKw+c

< ¢(m, w).

Third step.W?? estimate forw. The following elliptic estimate holds [15, Thm. 8.33
and 8.34]:
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1Sl cre@) < c2llSoll e forall0 < e <, (2.19)

wherec, > 0 depends o, d, m, and theC®<(2) norm oft,, (wx)?. It can be seen
from the proof of this estimate that

c2 = ca(Q, d)ca(m)|[tm (Wi )| co.- @)
Furthermore, we have the elliptic estimate
lwlizp.e < es(llwollzpg + [w(GIVSP+h(wk) =V = Veur + aS)op.0),
wherecs > 0 depends ofe, d andd [15, 9.15 and 9.17]. Hence, using (2.19)4o¢ /2,
Plwlzpe < @ +[IS|22,0) < AL+ [1S]21 )
S C(l + HwZHéO,'\//Z(ﬁ)) S C(l +E2HU)||200‘,Y/2(§))
< 1+ wllon )
52
< S lwlapa +c(5,m).
In the last step we have used the interpolation inequality
[w]lcon@ < €llwllzp.e +c@)lw]oso.a;
which follows from the facts that the embeddimjzp(sz) — (%7(Q) is compact
(sincep > d/2) and the embedding®(Q) — L>(R) is continuous [28, p. 365].
The constant(d, m) in the above estimate depends®@nd, §, m, w, andV . We obtain

finally
Jwll2.p.0 < 2¢(8,m)/6% = c1(m).

Lemma 2.4. There exists a solutiofw, S, V') of

8 Aw = w(E|VSP + T,h(w?) = V — Vg + aS), (2.20)
div (£ (w)?V S) = 0, (2.21)
NAV =w?—C  inQ, (2.22)
w=w, S=5, V=V, ondg, (2.23)

such thatw € W??(Q), S € CY(Q), V € HY(Q) N L=(R), andw(z) > 0in Q.

Proof. We use a fixed point argument. Letc C%7(Q). LetV € H() be the unique
solution of
MAV =ugu—C inQ, V=V, ondQ,

and letS € H(R) be the unique solution of
div (tm(uk)?VS) =0 ing, S=S, onds.

As in the proof of Lemma 2.3, we see thidt ¢ L°>°(<2). Sincet,, (uk)? is Holder
continuous of ordef;, we getS € C7(Q) [15, Thm. 8.34]. Finally, letv € H*(RQ2) be
the unique solution of
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§2Aw = oug (3|VSPP+ T,h(u%) — V — Vg +aS)  inQ,
w=ow, O0nJL,

with o € [0, 1]. The right-hand side of this elliptic problem lyingiit°(£2), we conclude
w € W2P(Q) and, sincep > d/2, w € C%7(Q). Thus the fixed point operatdr :

C%(Q) x [0,1] — C%(Q), (u,0) — w, is well defined. It holds/'(u,0) = 0 for
u € C%7(Q). Estimates similarly as in the proof of Lemma 2.3 give the bound

[wlzpe < ¢

for all w € C%(Q) satisfyingT'(w, o) = w, wherec > 0 is independent ofy ando.
Standard arguments show thatis continuous and compact, noting the compactness
of the embeddingV2?(Q) — C°%7(). We can apply Leray-Schauder’s fixed point
theorem to get a solutionu( S, V) of (2.3)—(2.6). Choosind{ > w (see (2.7)), this
tripel is also a solution of (2.20)—(2.23).

Proof of Theorems 2.1 and 2.2Me rewrite the elliptic estimate (2.19) fer= ~:
HS”CL’Y(§) < 03(97d)c4(m)|‘tm(w)2”cow(§)HSOH(jl,w(ﬁ)-

It holds cy(m) — oo asm — 0+. Now,
Htm(w)zncow(ﬁ) < c@)||wll o gy < c@)|wlzpe < cs.

From the proof of Lemma 2.3 it can be seen tat cg(w)c7(m) with cg(w) — oo as
w — oo andcy(m) — oo asm — 0+. The boundos depends off, such thats — oo
asT, — 0+ (see (2.11)). Thus we can write

2 co 2
HS||CL'Y(§) < m“soﬂcm@a (2.24)
where f and g are positive continuous non-decreasing functions i) such that
f(1,) — 0asT, — 0+, f(T,) > 0 asT, — oo, andg(m) — 0 asm — 0+. The
constantg > 0 does not depend aof),, T, or m.
Let 0 < m < infyq w, and take ¢ — m)~ = min(0, w — m) as test functions in
(2.20). Then, using (A2), (2.24), and (2.7),

52 / V(w—m)~ > = — / w(w — m)~Ty(h(w?) — h(m?))
Q
— [t = ) GIVSP + Tobter?) =V = Vi +a:5)

_ €0
< /w(—(w—m) )(m”soﬂzcm(ﬁ)

+ Toh(mz) +V+ Ve:z:t + ag) s

whereV ..t = || Veut||o,00.2- The constants(7,) e V+V .. +aS depends off, through

V such thatg(T,) can be taken to be non-increasinglgsncreases (see (2.11)—(2.12)).
Then



A Quantum Euler—Poisson System 473

52/9 IV(w—m)~|* < <11 + g?;;) 12) /w(—(w —m)7), (2.25)

where

h:%an5+%aa

1
Ir= 150l2:. @) * Z9(m(m?).

Tf(T)

First case:Let h be isothermal. For arbitrary,, > 0, letw € (0, infyq w,) be such
that h(w?) < —2cg(T,)/T, (using (A2)). This implies, form = w, thatl; < 0. Set
A= —1g(w)h(w?) > 0 ande? = AT, f(T,)/co. Then, form = w and||Sol| 1@ < €
we obtain

I — A<

< Ty A0
Taking into account (2.25) we conclude that> w in Q.

For arbitrarysS,, takem = w € (0, inf 9q w,) such that(w?) < —2cg(1) and letd

be defined as above. ChodBg > 1 such thafly f(T1) > col| S /|2,  ~./A. Then we

have for allT, > T3, sinceT — cg(T")/T is non-increasing,

(@)

h(w?) < —2¢g(1) < —2¢8(T)/ T,

and hencd; < 0. Since the functiol” — T f(T') is increasing, we obtain

by definition of 71. This impliesl; < 0 andw > w in Q.

Second casd:et h be isentropic. Letw € (0, inf 5o w,) be such thah(wz) < 0,and let

T, > 1 be such thal, > —2cg(1)/h(w?) > 0 andT>f(T%) > col|S, ||CM(Q)/A where

A is defined as in the first case. Taking= w andT, > 15, we getl; < 0 andl, < 0.
We conclude the proof by taking the truncation parameter w in (2.21).

Remark 2.5.We have assumed that the boundary functionss,,, andV, do not depend
on the parameters, e.g,. However, if we takd/, = T,h(C) + U(z) (see (1.15)), the
above arguments also apply. Indeed,dgt > 0 be such thak(C,) = 0 and choose
a scaling of the variables and functions such thagdr® > Cj (this does not affect
T,). Then, for isothermal or isentropic functiorig(infsqg C) > 0. This impliesV =
—T,infaq h(C)+ U < U, and the constanig(7,) can be taken non-increasing s
increases. Note that noW also depends off,, but in such a way that the property
w — oo asT, — 0+ remains valid.

Remark 2.6.Using a relaxation scaling as in [23], i.e. defining the rescaled variables
n=n,S=aS=95/r,V =V, wherer = 1/a is the scaled relaxation time, we get
from (1.11)—(1.12) the equations
2 ~ ~ ~
PAD = w(%|v5|2 + T (2 =V — Vi + 5),
div(d?VS) =



474 A. Jungel

One may expect that the diffusive terffi,h(:0°) dominates the convective term
(72/2)|V 52 for sufficiently smallz > 0, which would give the existence of solu-
tions by the presented method, for fix@g. However, we also have to transform the
boundary function@o = S,/ = U/7, and it is easy to see that then the convective
term is not necessarily “small” for small relaxation times. Choosing different boundary
conditions, namelys, = U/«, the above rescaling giv&, = U, and the estimates of
the presented proofs lead to an existence result for sufficiently smald (see [8]).

Remark 2.7.It would be very interesting to study the small dispersion lifnit- 0 and

the relaxation time limit- — 0. However, thé¥%?(2) norm ofw and therefore, the
lower boundw depend o such thatv — 0 asé — 0. Moreover, it seems difficult to
identify the limits of the nonlinear functions. Concerning the relaxation time limit, it can
be seen thatg(T,) — oc asT™ — 0 (see the proof of Theorems 2.1 and 2.2), and hence,
w — 0 asr — 0. Taking the boundary conditions discussed in Remark 2.6, we expect,
however, that the limit — 0 can be performed (see [8]). For the small dispersion limit
in thermal equilibrium states, we refer to [11]. The relaxation time limit> O of the
hydrodynamic equations (i.6.= 0 in (1.7)) is performed in [23].

3. Positivity and Non-Positivity Properties

We show in this section that the existence of a uniform lower bound for the density
is related to the regularity of the gradient®fFurthermore, we construct a generalized
one-dimensional solution of a simplified problem, where the densitgnishes at some
point. For this solution, the Fermi potentiélis discontinuous.

Let (A1)—(A3) hold and let be isothermal or isentropic.

Proposition 3.1. Let (w, S, V) € (HXQ) N L>(R))% be a weak solution to (1.11)—
(1.14) withS € W1>°(Q). Then there exists: > 0 such that

w(z) >m >0 in Q.
Proof. First leth be isentropic. Then the function
f = §|VS|2 +T0h(w2) —V —Veur + asS
is bounded ir2. Sincew > 0, we can apply Harnack’s inequality [15, p. 199] to
SPAw=wf
to conclude that for all subsetscC €,
supw < ¢(w)inf w. (3.1)

Now suppose thai vanishes in some non-empty s¢f CC Q. Letw, CC Q be a
sequence of sets with, C w,, andw,, — Q asn — oo in the set theoretic sense. Then
(3.1) givesw = 0 in w,, and, in the limitn — oo, w = 0 in . This contradicts the
positivity of w, on 9.

If h is isothermal, we proceed as in [2]. Considey = {w = 0} C Q. Since
wf € L*>°(R), w is continuous, hence, is relatively closed irf2. Suppose that, is

nonvoid and choose, € w,. Thenwf < 0inaballB(z,) C QandAw < 0in B(z,).
As the functionw assumes its nonnegative infimum 0Rz,), it follows thatw = 0 in
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B(z,). Thusw, is relatively open irf2. This impliesw, = € orw, = (). By the positivity
of w,, we conclude thaty > 0in Q.

The existence of a uniform lower bound > 0 forw now follows from the continuity
of win Q.

Corollary 3.2. Let(w, S, V) be a weak solution to (1.11)—(1.14). Then
w(z)>m >0 ae.inQ ifandonlyif S e Wh>(Q).
Now we consider the following simplified systemgnh= (0, 1) C R:
8wy = Fw(S,)? N, w0) =1 w(l)=1 (3.2)
Je = w?S,), =0 ing, S(0)=0 5(1) =U,, (3.3)

It can be seen that Egs. (1.11)—(1.12) reduce to (3.2)—(3.3) for very small domains (after
an appropriate asymptotic limit; see [19]). We only consitgre [0, v/267]. To solve
(3.2)—(3.3) we have to distinguish the caggs< /267 andU, = v/207.

We say that ¢, S) € HY(Q) x L>(Q) is a generalized solutioro (3.2)—(3.3)
with S(1) = U, if there exists a sequence of weak solutions,(S.) € (H*())? of
(3.2)—(3.3) withS(1) = U, andU, — U, ase — 0 such that

w= Iimow& S = IimOSE in the L2(Q) sense
and for allp € H3(R) it holds
1

i 52 T 2

m a2 [ (.o, =~ lim 5 [ w.(szo.

lim / w?(S)pbe = 0.
Proposition 3.3. (i) Let0 < U, < v/207. Thenthere exists a smooth solut{an S) €

(C%(@))? of (3.2)~(3.3) such that

w(z) > c(U,) >0 in Q.

(i) If U, = V267 then there exists a generalized solut{an S) € HY(2) x L>°(2) of
(3.2)~(3.3) such thaw(3) = .

Proof. LetU, = /26w and letU. < /26w be a sequence such tiiat — U, ase — 0.
Seto. = U./+/26. A computation shows that

w(z) = (1 — 22)2 + 2(1 + cosr)a(L — z)) 7,

1—(1—coso.)x

S.(x) = V26 arccos ., xel0,1],
we ()
solve (3.2)—(3.3) withs.(1) = U.. Furthermore,
w2(x)(S:).(z) = V20 sino. (3.4)

and
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we(x) > 1/%(1 +coso.) >0 in Q.

In the limite — O we get cos. — —1 and

we(z) — wlx) = |1— 2z in LX),
S.(x) — V26 H(z) inL*Q) (¢ — 0),

whereH(x) = 0 forz € (0,1/2) andH(x) = = for z € (1/2, 1). Taking into account
(3.4) we obtain for al € H3(<),

5 [ wa20=8 [ e — 8 [ o, = a%(5).
[ #S0.0=Vassine. [, ~0 €0
Q Q

Therefore, (v, S) is a generalized solution to (3.2)—(3.3).

4. Unigueness of Solutions

Uniqueness of solutions follows under the assumption that the scaled Planck cénstant
is large enough. 1§ = 0, there exists more than one solution of the thermal equilibrium
state (i.eJ = 0; see [11]).

Theorem 4.1. Let (A1)-(A3) hold and I€t be isothermal or isentropic. Then there exists
0, > 0 such thatifo > 4,, there exists at most one soluti¢m, S, V') to (1.11)—(1.14)
satisfying (2.1)—(2.2).

Proof. Let (w1,51, V1) and (w2, Sz, V2) be two solutions to (1.11)—(1.14) satisfying
(2.1)-(2.2). Takev; — w, as a test function in the difference of the Egs. (1.11) satisfied
by w1, wo, respectively, to get

62/9 |V(w1 — w2)|2 = —% /(w1|v;5'1|2 — wz\VSZ|2)(w1 — ’LU2) (4.1)
+ /(wlvl — waVa)(wy — wy)
- [ Tutwshwd - wah(ud)ws - uz)
-« /(w151 — w252) (w1 — wp)

+/Vext(wl - w2)2
=L +---+1Is.

The weak formulation of the difference of (1.12) {8, S», respectively, reads
/ w2V (Sy — S) - Ve = — / (wf — wd)VS, - Vo

for all ¢ € H}(). Takingg = S1 — S, we obtain
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MZ/Q V(51— S < /wa(Sl — 59)|?
= - /(w% — wh)VS, - V(S1 — Sa)
< 2wlw1 — wallo2l|VS2(lo,00[[V(S1 = 52)|o0,2
which implies
[V(S1— S2)lo2 < (w/w?) || w1 — wa2llo.2]|VS2/l0.00- (4.2)

Now we are able to estimafe, . . . , Is:

1
I = ) /(w1V(Sl — S2) - V(S1 + 92) + (w1 — w2)|VS2*) (w1 — wp)
< ((@/w)* + 1)V S2llo,00 (|| VS1ll0,00 + [V S2ll0,00) |1 — w2][§ 2,

using (4.2). The integral, is estimated by using (1.13):

I

3 [ (1= w203+ V) + (wh — )0 - 1)

1 22
> /(wl —wp)?(V1 + V3) — > V(11 — Vo) ?
< Vwy — wall§ -

The monotonicity ofi implies

I, = -T, /(wl(h(w%) — h(wd)) (w1 — wp) + (w1 — wa)*h(w3))
< —Toh(w?)||wy — wall§ .

Finally, we can estimate the integralemploying Poinca’s inequality and (4.2):

Iy = -« /(w1(51 — Sp)(wy — wp) + (w1 — w2)*Sp)
< o)W/ w)?|V Szllo,c0 +5) w1 — wal[§ 5.

Let K = ||VS1]l0,00 * [|VS2]l0,00- Then we get from (4.1),

MZ

752 752
(52 —2K?(25 41) = V = Vewy + Toh(w?) — a5 K +S)> o — w3 < 0.
w " 43

Only K depends o (via the W2P(Q) norm of w; see the third step of the proof of
Lemma 2.3) such thak’ remains bounded as — oo. Therefore there exists, > 0
such that ifd > §,, then (4.3) implies

[wi — walff 2 < O.

Hencew; = w, in Q. Finally, we inferS; = S, from (4.2) andV; = V, from (1.13).
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Remark 4.2.There exists at most one weak solutian 5, V) in the class of functions
satisfyingw, V € HY(Q) N L>(R), w(z) > m > 0in L, and (only)S € W1(Q),
whereq=dif d > 3,¢q > 2if d =2 andq = 2 if d = 1, under the assumption that the
scaled Planck constant> 0O is large enough. The proof of this result is similar to the
proof in [16].
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