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Abstract: We show that, in the region where monopoles are well separated, theL2-
metric on the moduli space ofn-monopoles is exponentially close to theTn-invariant
hyperk̈ahler metric proposed by Gibbons and Manton. The proof is based on a description
of the Gibbons–Manton metric as a metric on a certain moduli space of solutions to
Nahm’s equations, and on twistor methods. In particular, we show how the twistor
description of monopole metrics determines the asymptotic metric.

The construction of the Gibbons–Manton metric in terms of Nahm’s equations yields
a class of interesting (pseudo)-hyperkähler metrics. For example we show, for each
semisimple Lie groupG and a maximal torusT ≤ G, the existence of aG × T -
invariant (pseudo)-hyperkähler manifold whose hyperkähler quotients byT are precisely
Kronheimer’s hyperk̈ahler metrics onGC/T C. A similar result holds for Kronheimer’s
ALE-spaces.

The moduli spaceMn of (framed) staticSU (2)-monopoles of chargen, i.e. solutions to
Bogomolny equationsdA8 = ∗F , carries a natural hyperkähler metric [1]. The geodesic
motion in this metric is a good approximation to the dynamics of low energy monopoles
[26, 33]. For the chargen = 2 the metric has been determined explicitly by Atiyah and
Hitchin [1], and it follows from their explicit formula that when the two monopoles
are well separated, the metric becomes (exponentially fast) the Euclidean Taub-NUT
metric with a negative mass parameter. It was also shown by N. Manton [27] that this
asymptotic metric can be determined by treating well-separated monopoles as dyons.
The equations of motion for a pair of dyons inR3 are found to be equivalent to the
equations for geodesic motion on Taub-NUT space.

For an arbitrary chargen, it was shown in [3] that, when the individual monopoles
are well-separated, theL2-metric is close (as the inverse of the separation distance) to the
flat Euclidean metric. Gibbons and Manton [14] have then calculated the Lagrangian for
the motion ofn dyons inR3 and shown that it is equivalent to the Lagrangian for geodesic
motion in a hyperk̈ahler metric on a torus bundle over the configuration spaceC̃n(R3).
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This metric isTn-invariant and has a simple algebraic form. Gibbons and Manton have
conjectured, by analogy with then = 2 case, that the exactn-monopole metric differs
from their metric by an exponentially small amount as the separation gets large. We shall
prove this conjecture here.

Our strategy is as follows. We construct a certain moduli spaceM̃n of solutions
to Nahm’s equations which carries aTn-invariant hyperk̈ahler metric. Using twistor
methods we identify this metric as the Gibbons–Manton metric. Finally, we show that
the metrics onM̃n andMn are exponentially close. This proof adapts equally well to the
asymptotic behaviour ofSU (N )-monopole metrics with maximal symmetry breaking,
as will be shown elsewhere.

The asymptotic picture can be explained in the twistor setting. We recall that a
monopole is determined (up to framing) by a curveS – the spectral curve – inTCP 1,
which satisfies certain conditions [16]. One of these is triviality of the line bundleL−2

overS, and a nonzero section of this bundle is the other ingredient needed to determine the
metric [19, 1]. Asymptotically we have now the following situation. When the individual
monopoles become well separated the spectral curve of then-monopole degenerates
(exponentially fast) into the union of spectral curvesSi of individual monopoles, while
the section ofL−2 becomes (also exponentially fast)n meromorphic sections ofL−2

over the individualSi. The zeros and poles of these sections occur only at the intersection
points of the curvesSi. This information (and the topology of the asymptotic region of
Mn) is, as we show in the last section, sufficient to conclude that the asymptotic metric
is the Gibbons–Manton metric.

The construction of the moduli space of solutions to Nahm’s equations which gives
the Gibbons–Manton metric admits various generalizations. Some of them are described
in Sect. 4. Let us recall that Kronheimer [23] has shown existence of hyperkähler struc-
turesM (τ1, τ2, τ3) onGC/T C, whereG is a compact semisimple Lie group andT ≤ G
is a maximal torus. These structures are parameterized by the cohomology classes
τ1, τ2, τ3 ∈ Lie(T ) of the three K̈ahler forms. We show (in Sect. 4) that there is a
(pseudo)-hyperk̈ahler manifoldMG with a tri-Hamiltonian action ofT such that, if
µ : MG → Lie(T ) ⊗ R3 is the hyperk̈ahler moment map, then the hyperkähler quo-
tient µ−1(τ1, τ2, τ3)/T of MG by T is precisely Kronheimer’sM (τ1, τ2, τ3). A similar
construction can be done for Kronheimer’s ALE-spaces.

The article is organized as follows. In Sects. 1 and 2 we recall the definitions of the
Gibbons–Manton and monopole metrics. In Sect. 3 we introduce the moduli spaceM̃n of
solutions to Nahm’s equations and give heuristic arguments why the metric onM̃n should
be exponentially close to the monopole metric. In Sect. 4, as a preliminary step to study
M̃n we introduce yet another moduli space of solutions to Nahm’s equations, somewhat
simpler thanM̃n. In that section we also discuss the relation with Kronheimer’s metrics
mentioned above. In Sect. 5 we identifỹMn as a differential, complex, and finally
complex-symplectic manifold. In Sect. 6 we calculate the twistor space ofM̃n and
identify its hyperk̈ahler metric as the Gibbons–Manton metric. In Sect. 7 we finally
show that the monopole metric and the metric onM̃n are exponentially close. The short
Sect. 8 shows how one can read off the Gibbons–Manton metric, as the asymptotic form
of the monopole metric, from the twistor description of the latter.

1. The Gibbons–Manton metric

The Gibbons–Manton metric [14] is an example of 4n-dimensional (pseudo)-hyperkähler
metric admitting a tri-Hamiltonian (hence isometric) action of then-dimensional torus
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Tn. Such metrics have particularly nice properties and were studied by several authors
[25, 18, 32]. The Gibbons–Manton metric was described as a hyperkähler quotient of
a flat quaternionic vector space by Gibbons and Rychenkova in [15]. We recall here
this description, which we slightly modify to better suit our purposes. We start with flat
hyperk̈ahler metricsg1 andg2 onM1 =

(
S1 ×R3

)n
andM2 = Hn(n−1)/2. We consider a

pseudo-hyperk̈ahler metric on the product manifoldM = M1×M2 given byg = g1−g2.
The complex structures onH are given by the right multiplication by quaternionsi, j, k.
The metricg1 is invariant under the obvious action (by translations) ofTn = (S1)n and
the metricg2 is invariant under the left diagonal action ofTn(n−1)/2. We consider a
homomorphismφ : Tn(n−1)/2 → Tn given by

(tij)i<j 7→
 n∏

j=i+1

tij

i−1∏
j=1

t−1
ji


i=1,... ,n

.

This defines an action ofTn(n−1)/2 onM = M1×M2 by t·(m1, m2) = (φ(t)·m1, t·m2).
Gibbons and Rychenkova have shown that the hyperkähler quotient of (M, g) by this
action ofTn(n−1)/2 is the Gibbons–Manton metric.

We remark that, if we choose coordinates (ti, xi) onM1, ti ∈ S1 andxi ∈ R3, and
quaternionic coordinatesqij , i < j, onHn(n−1)/2, then the moment map equations are:

1
2
qijiq̄ij = xi − xj . (1.1)

As long asxi 6= xj for i 6= j, the torusTn(n−1)/2 acts freely on the zero-set of the moment
map. The quotient of this set byTn(n−1)/2 is a smooth hyperk̈ahler manifold which we
denote byMGM . The action ofTn onM1 induces a free tri-Hamiltonian action onMGM

for which the moment map is just (x1, . . . , xn). This makesMGM into aTn-bundle over
the configuration spacẽCn(R3) of n distinct points inR3. We shall now determine this
bundle. We recall that a basis ofH2

(
C̃n(R3), Z

)
is given by thek(k − 1)/2 2-spheres,

S2
ij = {xk ∈ R3; |xi − xj | = const, xk = const if k 6= i, j}, (1.2)

wherei < j. We have

Proposition 1.1. The hyperk̈ahler moment map for the action ofTn makesMGM into
a Tn-bundle overC̃n(R3) determined by the element(s1, . . . , sn) of H2

(
C̃n(R3), Zn

)
given by

sk(S2
ij) =


−1 if k = i

1 if k = j

0 otherwise.

Proof. From the formula (1.1) it follows that restricting the bundle to a fixedS2
ij is

equivalent to considering the casen = 2. In other wordssk(S2
ij) = 0 if k 6= i, j

and we have to consider only one quaternionic coordinateqij . The zero-set of the
moment map is1

2qijiq̄ij = xi − xj and the circleS1 by which we quotient acts by
t · (qij , (ti, xi), (tj , xj)

)
=
(
tqij , (tti, xi), (t−1tj , xj)

)
. The quotient can be obtained by

settingti = 1 and the induced action of theith generatorsi of Tn is then given by left
multiplication bys−1

i onqij . Since the mapqij → 1
2qijiq̄ij with the left action ofS1 on

{qij ∈ H; |qij | = 1} is the Hopf bundle, it follows thatsi(S2
ij) = −1. A similar argument

shows thatsj(S2
ij) = 1. �
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In particular, (t, x) = (ti, xi) form local coordinates onMGM . The metric tensor can
be then written in the form [32]:

g = 8dx · dx + 8−1(dt + A)2,

where the matrix8 and the 1-formA depend only on thexi and satisfy certain linear
PDE’s. In particular,8 determines the metric. For the Gibbons–Manton metric

48ij =

{
1 −∑k 6=i

1
‖xi−xk‖ if i = j

1
‖xi−xj‖ if i 6= j.

2. Nahm’s Equations and Monopole Metrics

We shall recall in this section the description of theL2-metric on the moduli space
of chargen SU (2)-monopoles in terms of Nahm’s equations. A proof that the Nahm
transform [30, 16] between the two moduli spaces is an isometry was given by Nakajima
in [31].

One starts with the spaceA of quadruples (T0, T1, T2, T3) of smoothu(n)-valued
functions on (−1, 1) such thatT1, T2, T3 have simple poles at±1 with residues12ρ(σi), i =
1, 2, 3, whereρ : su(2) → u(n) is the standard irreduciblen-dimensional representation
of su(2) andσi are the Pauli matrices. Equipped with theL2-norm (given by a biinvariant
inner product onu(n)),A becomes a flat quaternionic affine space. There is an isometric
and triholomorphic action of the gauge groupG of U (n)-valued functionsg : [−1, 1] →
U (n) which are 1 at±1:

T0 7→ Ad(g)T0 − ġg−1,

Ti 7→ Ad(g)Ti , i = 1, 2, 3. (2.1)

The zero-set of the hyperkähler moment map for this action is then described by
Nahm’s equations[30]:

Ṫi + [T0, Ti] +
1
2

∑
j,k=1,2,3

εijk[Tj , Tk] = 0 , i = 1, 2, 3. (2.2)

The quotient of the space of solutions byG is a smooth hyperk̈ahler manifoldMn of
dimension 4n. By the above mentioned result of Nakajima,Mn is the moduli space
of (framed) chargen SU (2)-monopoles. With respect to any complex structureMn is
biholomorphic to the space of based rational maps of degreen onCP 1 [13].

If we replaceU (n) bySU (n) (resp. byPSU (n)) in the above description, we obtain
the moduli space of strongly centered (resp. centered)SU (2)-monopoles of chargen.

Remark 2.1.A similar construction can be done for any compact Lie groupG. We
requireρ : su(2) → g to be a Lie algebra homomorphism whose image lies in the
regular part ofg. We obtain a smooth hyperkähler manifold of dimension 4 rankG
which can be identified with a totally geodesic submanifold of a certain moduli space of
SU (N )-monopoles (with a minimal symmetry breaking). Alternatively, as a complex
manifold, it is a desingularization of

(
hC × T C) /W , whereT C is a maximal torus in

GC, hC its Lie algebra, andW the corresponding Weyl group [6].
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The tangent space toMn can be described as the space of solutions to the linearized
Nahm’s equations and satisfying the condition of being orthogonal (in theL2-metric)
to vectors arising from infinitesimal gauge transformations. In other words the tangent
space toMn at a solution (T0, T1, T2, T3) can be identified with the set of solutions
(t0, t1, t2, t3) to the following system of linear equations:

ṫ0 + [T0, t0] + [T1, t1] + [T2, t2] + [T3, t3] = 0,
ṫ1 + [T0, t1] − [T1, t0] + [T2, t3] − [T3, t2] = 0,
ṫ2 + [T0, t2] − [T1, t3] − [T2, t0] + [T3, t1] = 0,
ṫ3 + [T0, t3] + [T1, t2] − [T2, t1] − [T3, t0] = 0.

(2.3)

The metric is defined by

‖(t0, t1, t2, t3)‖2 =
1
2

∫ 1

−1

3∑
0

‖ti‖2. (2.4)

The three anti-commuting complex structures can be seen by writing a tangent vector
ast0 + it1 + jt2 + kt3.

3. The Asymptotic Moduli Space

We shall now construct a one-parameter family of moduli spacesM̃n(c), c ∈ R, of
solutions to Nahm’s equations carrying (pseudo-)hyperkähler metrics. We shall see later
on that these metrics are the Gibbons–Manton metric with different mass parameters.

We consider the subspace�1 of exponentially fast decaying functions inC1[0, ∞],
i.e.:

�1 =

{
f : [0, ∞] → u(n); ∃η>0 sup

t

(
eηt‖f (t)‖ + eηt‖df/dt‖) < +∞

}
. (3.1)

As in the previous section,ρ : su(2) → u(n) is the standard irreduciblen-dimensional
representation ofsu(2) (in particular,ρ(σ1) is a diagonal matrix). We denote byh the
(Cartan) subalgebra ofu(n) consisting of diagonal matrices.

Let Ãn be the space ofC1-functions (T0, T1, T2, T3) defined on (0, +∞] and satis-
fying (cf. [23]):

(i) T1, T2, T3 have simple poles at 0 with resTi = 1
2ρ(σi);

(ii) Ti(+∞) ∈ h for i = 0, . . . , 3;
(iii) ( T1(+∞), T2(+∞), T3(+∞)) is a regular triple, i.e. its centralizer ish;
(iv) (Ti(t) − Ti(+∞)) ∈ �1 for i = 0, 1, 2, 3.

Next we shall define the relevant gauge group. The Lie algebra of our gauge group
G(c) is the space ofC2-pathsρ : [0, +∞) → u(n) such that

(i) ρ(0) = 0 and ˙ρ has a limit inh at +∞;
(ii) ( ρ̇ − ρ̇(+∞)) ∈ �1, and [τ, ρ] ∈ �1 for any regular elementτ ∈ h;
(iii) cρ̇(+∞) + limt→+∞(ρ(t) − tρ̇(+∞)) = 0.
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It is the Lie algebra of the Lie group

G(c) = {g : [0, +∞) →U (n); g(0) = 1, s(g) := lim ġg−1 ∈ h, (τ − Ad(g)τ ) ∈ �1,

(ġg−1 − s(g)) ∈ �1, exp(cs(g)) lim (g(t) exp(−ts(g))) = 1} .

Remark.The last condition in the definition ofG(c) means thatg(t) is asymptotic to
exp(ht − ch) for some diagonalh.

We introduce a family of metrics oñAn. Let (t0, t1, t2, t3) be a tangent vector to the
spaceÃn at a point (T0, T1, T2, T3). The functionsti are now regular at 0,i = 0, . . . , 3.
We put

‖(t0, t1, t2, t3)‖2
c = c

3∑
0

‖ti(+∞)‖2 +
∫ +∞

0

3∑
0

(‖ti(s)‖2 − ‖ti(+∞)‖2
)
ds. (3.2)

We observe that the groupG(c) acting by (2.1) preserves the metric‖·‖c and the three
complex structure of the flat hyperkähler manifoldÃn. We defineM̃n(c) as the (formal)
hyperk̈ahler quotient ofÃn by G(c) (with respect to the metric‖ · ‖c). The zero set of
the moment map is given by (2.2) (here condition (iii) in the definition of Lie(G(c)) is
essential) and sõMn(c) is defined as the moduli space of solutions to Nahm’s equations:

M̃n(c) =
{

solutions to (2.2) inÃn

}
/G(c).

Remark.If c > 0, then the metric (3.2) oñMn(c) will be seen to be positive definite if
(T1(+∞), T2(+∞), T3(+∞)) is sufficiently far from the walls of Weyl chambers. On the
other hand, ifc < 0, then the metric will be shown to be everywhere negative definite.
Therefore, forc < 0 we should really replace‖ · ‖c with its negative; it is, however more
convenient to consider the metrics‖ · ‖c.

We observe that sending a solutionTi to the solutionrTi(rt) for anyr > 0 induces
a homothety of factorr betweenM̃n(c) andM̃n(rc).

Before we begin the detailed study of̃Mn(c), let us explain why we expect this
metric to be exponentially close to the monopole metric. It is known [4] that the
solutions to Nahm’s equations on (0, 2) corresponding to a well-separated monopole
are exponentially close to being constant away from the boundary points (i.e. on any
[ε, 2 − ε]). The same is true for solutions on the half line (0, +∞): as long as the triple
(T1(+∞), T2(+∞), T3(+∞)) is regular, the solutions are exponentially close to being
constant away from 0 [23] (it is helpful to notice that the space of regular triples is the
same as the spacẽCn

(
R3
)

of distinct points inR3). Our strategy is to take two solutions,
on half-lines (0, ∞) and (−∞, 2) with the same values at±∞, cut them off att = 1
and use this non-smooth solution on (0, 2) (with correct boundary behaviour) to obtain
an exact solution to the monopole Nahm data. The exact solution will differ from the
approximate one by an exponentially small amount. Furthermore the part of the half-line
solutions which we have cut off is exponentially close to being constant and, forc = 1,
contributes an exponentially small amount to the metric‖ · ‖c (all estimates are uniform
and can be differentiated). This can be seen from the fact that we can rewrite (3.2) as

‖(t0, t1, t2, t3)‖2
c =
∫ c

0

3∑
0

‖ti(s)‖2 +
∫ +∞

c

3∑
0

(‖ti(s)‖2 − ‖ti(+∞)‖2
)
ds. (3.3)

The first term, together with the corresponding term for the solution on (−∞, 2), is
exponentially close to the monopole metric (forc = 1).
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4. Moduli Space of Regular Semisimple Adjoint Orbits

In order to obtain information about̃Mn(c) we need to consider first another moduli
space of solutions to Nahm’s equations, defined analogously, except that we require
the solutions to be smooth att = 0. This space, which can be defined for an arbitrary
compact Lie groupG, is of some interest as all hyperkähler structures onGC/T C (here
T C is a maximal torus) due to Kronheimer [23] can be obtained from it as hyperkähler
quotients (see Theorem 4.3 below). A reader who is primarily interested in monopoles
should think ofG asU (n).

Let us first recall how Kronheimer constructs hyperkähler metrics onGC/T C. Let
h be the Lie algebra ofT C and let (τ1, τ2, τ3) ∈ h3 be a regular triple, i.e. one whose
centralizer ish. For a fixedη > 0, consider the Banach space

�
η
1 =

{
f : [0, ∞] → g; sup

t

(
eηt‖f (t)‖ + eηt‖df/dt‖) < +∞

}
with the norm‖f‖ = supt

(
eηt‖f (t)‖ + eηt‖df/dt‖). DefineAη(τ1, τ2, τ3) as the space

of C1-functions (T0, T1, T2, T3) : (0, +∞] → g which satisfy:

{T0(t), (Ti(t) − τi) ; i = 1, 2, 3} ⊂ �
η
1 .

Define alsoGη by replacing�1 with �
η
1 in the definition ofG given in the previous

section. Kronheimer shows then that for small enoughη,

M (τ1, τ2, τ3) = {solutions to (2.2) inAη(τ1, τ2, τ3)} /Gη,

equipped with theL2 metric is a smooth hyperkähler manifold, diffeomorphic toGC/T C.
Futhermore, if (τ2, τ3) is regular, thenM (τ1, τ2, τ3) is biholomorphic, with respect to the
complex structureI, to the complex adjoint orbit ofτ2 + iτ3.

We observe that the union of allM (τ1, τ2, τ3) has a natural topology and it is, in
fact, a smooth manifold. We shall show now that there is aT -bundle over this union
which carries a (pseudo)-hyperkähler metric. We define the spaceAG by omitting the
condition (i) in the definition ofÃn in the previous section. Instead we require that
theTi are smooth att = 0 for i = 0, 1, 2, 3. We defineMG(c), c ∈ R, as the (formal)
hyperk̈ahler quotient ofAG by G(c) with respect to the metric (3.2). We have:

Proposition 4.1. MG(c) equipped with the metric (3.2) is a smooth hyperkähler mani-
fold. The tangent space at a solution(T0, T1, T2, T3) is described by Eqs. (2.3).

We remark that the metric 3.2 may be degenerate at some points. However the hyper-
complex structure is defined everywhere.

Proof. DefineMη
G(c) by replacing� with �η in the definition ofMG(c). By the expo-

nential decay property of solutions to Nahm’s equations ([23], Lemma 3.4), a neighbour-
hood of a particular element inMG(c) is canonically identified with its neighbourhood
in Mη

G(c) for small enoughη. Therefore we can use the transversality arguments of
[23], Lemma 3.8 and Proposition 3.9 (with a slight modification due to condition (iii)
in the definition of Lie(G(c))) to deduce the smoothness. The fact that the metric is hy-
perk̈ahler is, formally, the consequence of the fact thatMG(c) is a hyperk̈ahler quotient.
One can, in fact, check directly that the three Kähler forms are closed. We shall also,
later on, identify the complex structures and the complex symplectic forms proving their
closedness. �
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We observe now that the action onAG of gauge transformations which are asymptotic
to exp(−th+λh), h ∈ h, λ ∈ R, induce a free isometric action ofT = exp(h) onMG(c).
In fact this action is tri-Hamiltonian and a simple calculation shows

Proposition 4.2. The hyperk̈ahler moment mapµ = (µ1, µ2, µ3) for the action ofT on
MG(c) is given byµi(T0, T1, T2, T3) = Ti(+∞) for i = 1, 2, 3.

As an immediate corollary we have:

Theorem 4.3. Let (τ1, τ2, τ3) be a regular triple in h3. The hyperk̈ahler quotient
µ−1(τ1, τ2, τ3)/T of MG(c) by the torusT is isometric to Kronheimer’sM (τ1, τ2, τ3).

We have also a tri-Hamiltonian action ofG on MG(c) given by the gauge transforma-
tions with arbitrary values att = 0. The hyperk̈ahler moment map for this action is
(T1(0), T2(0), T3(0)).

We have two other group actions onMG(c). There is a free isometric and triholo-
morphic action of the Weyl groupW = N (T )/T given by the gauge transformations
which become constant (and inW ) exponentially fast.

Finally there is a free isometricSU (2)-action which rotates the complex structures.
As a consequence it has a globally defined Kähler potential for each K̈ahler form (cf.
[18]). The potential forω2 (or ω3) is given by the moment map for the action of a circle
in SU (2) which preservesI. This is easily seen to be

KJ = c
3∑

i=2

‖Ti(+∞)‖2 +
∫ +∞

0

3∑
i=2

(
‖Ti(s)‖2 − ‖Ti(+∞)‖2

)
ds.

Remark 4.4.There is a similar (pseudo)-hyperkähler manifold with a torus action such
that the hyperk̈ahler quotients by this torus are isometric to Kronheimer’s ALE-metrics
on the minimal resolution of a given Kleinian singularityC2/0 [24]. This manifold is
defined asMG except that theTi have poles att = 0 with the residues defined by a
subregular homomorphismsu(2) → g (cf. [6, 5]).

Remark 4.5.One can observe thatMG(0) is a cone metric (with theR>0-action given
by Ti(t) 7→ rTi(rt)) and in fact, it is anH∗-bundle over a pseudo-quaternion-Kähler
manifold (cf. [34]).

Remark 4.6.It is instructive to consider the K̈ahler analogue ofMG(c). The Kähler
metrics onG/T (cf. [2]) can be described (cf. [7]) as the naturalL2-metrics on the
moduli space of solutions tȯT1 = [T1, T0] with T0(t), (T1(t) − τ ) ∈ �1 for a fixed
regular elementτ of h (this gives the K̈ahler form whose cohomology class isτ ). We
can now do a construction similar to that ofMG(c) to obtain moduli spaceŝMG(c) with
a (G × T )-invariant pseudo-K̈ahler metric whose K̈ahler quotients byT are precisely
the Kähler metrics onG/T . In this case it is easy to compute both the topology and the
complex structure ofM̂G(c): M̂G(c) is diffeomorphic toG × {regular elements ofh},
and the complex structure at (1, h) is given byI(v + w, p) = (I0v − p, w), wherev ⊥ h,
w, p ∈ h andI0 is the complex structure onG/T .

5. M̃n(c) as a Manifold

We now return to the spacẽMn(c) defined in Sect. 3. Our first task is to show that this
space is smooth. We shall show thatM̃n(c) is a smooth hyperk̈ahler quotient of the
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product of the spaceMU (n)(c − 1) considered in the previous section and of another
moduli space of solutions to Nahm’s equations. This latter space, denoted byNn, is
given byu(n)-valued solutions to Nahm’s equations defined on (0, 1] smooth att =
1 and with the same poles as̃Mn(c) at t = 0. The gauge group consists of gauge
transformations which are identity att = 0, 1. Equipped with the metric (2.4) this is a
smooth hyperk̈ahler manifold [6, 11]. It admits a tri-Hamiltonian action ofU (n) given
by gauge transformations with arbitrary values att = 1. In addition, we consider the
spaceMU (n)(c−1) defined in the previous section. We identify it this time with the space
of solutions on [1, +∞] via the mapTi(t) 7→ Ti(t+1) (so that the gauge transformations
behave now, near +∞, as elements ofG(c)).

It is easy to observe that the spacẽMn(c) is the hyperk̈ahler quotient ofNn ×
MU (n)(c− 1) by the diagonal action ofU (n) (cf. [6]; the moment map equations simply
match the functionsT1, T2, T3 at t = 1; after that, quotienting byG means that the
remaining gauge transformations are smooth att = 1). Using this description of̃Mn(c)
we can finally show

Proposition 5.1. M̃n(c) equipped with the metric (3.2) is a smooth hyperkähler man-
ifold. The tangent space at a solution(T0, T1, T2, T3) is described by the Eqs. (2.3).

Proof. Since the metric (3.2) may be degenerate, we still have to show that the moment
map equations onNn × MU (n)(c − 1) are everywhere transversal. Consider a particular
point in MU (n)(c − 1) which we represent by a solutionm = (T0, T1, T2, T3) with
T0(+∞) = 0 andTi(+∞) = τi, i = 1, 2, 3. Letµ be the hyperk̈ahler moment map for the
action ofG onNn × MU (n). We observe that the image ofdµ|m contains the image of
dµ′

|m , µ′ being the hyperk̈ahler moment map for the action ofG onNn × M (τ1, τ2, τ3)
(Kronheimer’s definition ofM (τ1, τ2, τ3) was recalled in the previous section). The
metric onNn ×M (τ1, τ2, τ3) is non-degenerate and, asG acts freely,dµ′

|m is surjective.

Thusdµ is surjective at each point inNn × MU (n)(c − 1) andM̃n(c) is smooth. �

We observe that, as in the case ofMU (n)(c), M̃n(c) has isometric actions of the
torusTn (defined as the diagonal subgroup ofU (n)), of the symmetric groupSn, and
of SU (2). In particular, the hyperk̈ahler moment map for the action ofTn is still given
by the values ofT1, T2, T3 at infinity (cf. Proposition 4.2).

We can describe the topology of̃Mn(c):

Proposition 5.2. M̃n(c) is a principalTn-bundle over the configuration spaceC̃n(R3)
of n distinct points inR3.

We postpone identifying this bundle until the next section (Proposition 6.3).

Proof. The spaceC̃n(R3) is the space of regular triples in the subalgebra of diagonal
matrices and the moment mapµ for the action ofTn gives us a projectionM̃n(c) →
C̃n(R3). Let us consider a fixed regular triple (τ1, τ2, τ3) and all elements of̃Mn(c) with
Ti(+∞) = τi, i = 1, 2, 3, i.e.µ−1(τ1, τ2, τ3). For each such solution we can makeT0
identically 0 by some gauge transformationg with g(0) = 1. This is defined uniquely up
to the action ofG × Tn and so the set ofTn-orbits projecting viaµ to (τ1, τ2, τ3) can be
identified with the set of solutions to Nahm’s equations withT0 ≡ 0, T1, T2, T3 having
the appropriate residues att = 0 and being conjugate toτ1, τ2, τ3 at infinity. By the
considerations at the beginning of this section this space is the hyperkähler quotient of
Nn×M (τ1, τ2, τ3) byU (n). The arguments of [6] show that the corresponding complex-
symplectic quotient can be identified with the intersection of a regular semisimple adjoint
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orbit ofGL(n, C) with the slice to the regular nilpotent orbit. This intersection is a single
point. Finally, in order to identify in this case the hyperkähler quotient with the complex-
symplectic one we can adapt the argument in the proof of Proposition 2.20 in [20].�

Our next task is to describe the complex structure ofM̃n(c) (because of the action of
SU (2) all complex structures are equivalent). As usual (cf. [13]), if we choose a complex
structure, sayI, we can introduce complex coordinates on the moduli space of solutions
to Nahm’s equations by writingα = T0 + iT1 andβ = T2 + iT3. The Nahm equations
can be then written as one complex and one real equation:

dβ

dt
= [β, α], (5.1)

d

dt
(α + α∗) = [α∗, α] + [β∗, β]. (5.2)

By the remark made at the beginning of this section,M̃n(c) is the hyperk̈ahler quotient
of the product manifoldNn ×MU (n)(c−1). We shall show that as a complex symplectic
manifoldM̃n(c) is the complex-symplectic quotient ofNn ×MU (n)(c−1). Let us recall
the complex structure ofNn [13, 19, 6, 12]. Lete1, . . . , en denote the standard basis of
Cn. There is a unique solutionw1 of the equation

dw

dt
= −αw (5.3)

with

lim
t→0

(
t−(n−1)/2w1(t) − e1

)
= 0. (5.4)

Settingwi(t) = βi−1(t)w1(t), we obtain a solution to (5.3) with

lim
t→0

(
ti−(n+1)/2wi(t) − ei

)
= 0.

The complex gauge transformationg(t) with g−1 = (w1, . . . , wn) makesα identically
zero and sendsβ(t) to the constant matrix

B(β1, . . . , βn) =


0 . . . 0 (−1)n+1Sn

1
... (−1)nSn−1

...
...

...
0 . . . 1 S1

 . (5.5)

Hereβi denote the (constant) eigenvalues ofβ(t) andSi is theith elementary symmetric
polynomial in{β1, . . . , βn}.

The mapping (α, β) → (g(1), B) gives a biholomorphism between (Nn, I) and
Gl(n, C) × Cn [6].

We describe the complex structure ofM̃n(c) as follows:

Proposition 5.3. There exists aTn-equivariant biholomorphism betweeñMn(c) and
an open subset of(∐

n

{[g, b] ∈ Gl(n, C) ×N (d + n); gbg−1 is of the form (5.5)}
)/

∼,
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whereddenotes diagonal matrices, the union is over unipotent algebrasn (with respect to
d) andN = expn. Furthermore, the relation∼ is given as follows:[g, d+n] ∼ [g′, d′+n′]
if and only ifn ∈ n, n′ ∈ n′, and eithern′ ⊂ n and there exists anm ∈ N such that
gm−1 = g′, Ad(m)(d + n) = d′ + n′ or vice versa (i.e.n ⊂ n′ etc.).

Remark.It will follow from the description of the twistor space that this biholomorphism
is actually onto. Proving this right now would require showing that theTn-action on
M̃n(c) extends to the global action of

(
C∗)n. This, in turn, requires showing existence

of solutions to a mixed Dirichlet-Robin problem on the half-line - something that seems
quite tricky.

Proof. Fix a unipotent algebran and consider the set of all solutions (α, β) = (T0 +
iT1, T2 + iT3) on [1, +∞) such that the intersection of the sum of positive eigenvalues of
ad(iT1(+∞)) with C(β(+∞)) is contained inn. Let M (n; c − 1) be the corresponding
subset ofMU (n)(c). We observe that, since (T1(+∞), T2(+∞), T3(+∞)) is a regular triple,
the projection ofT1(+∞) ontodC ∩ C(β(+∞)) is a regular element, and son contains
the unipotent radical of a Borel subalgebra ofC(β(+∞)) for any element ofM (n; c−1).
Using gauge freedom, we always makeT0(+∞) = 0 and, by Proposition 4.1 of Biquard
[8], such a representative is of the formg

(
α(+∞), β(+∞) + Ad(exp{−α(+∞)t})n

)
,

wheren ∈ n andg is a boundedGl(n, C)-valued gauge transformation. The transfor-
mationg is defined modulo exp{−α(+∞)t}g0 exp{α(+∞)t} with g0 ∈ P = exp(d +n).
Since T0(+∞) = 0 and T0 is decaying exponentially fast,g has a limit (in T C)
at +∞. If we replaceg(t) by g′(t) = g(t)g(+∞)−1 exp{−α(+∞)t + cα(+∞)}, then
(α, β) = g′(0, β(+∞) + n′) for an n′ ∈ n. The transformationg′, which satisfies (at
infinity) the boundary condition of an element ofG(c − 1)C, is now defined modulo
constant gauge transformations inN . Moreoverg′(1) is independent ofG(c−1) and we
obtain a mapφ : M (n) → Gl(n, C)×N (d+n) by sending (α, β) to (g′(1), β(+∞) +n′).
Considering the infinitesimal version of this construction shows thatφ is holomorphic.

Sinceφ is U (n)-equivariant, it is (locally)Gl(n, C)-equivariant. We can adapt the
argument of Proposition 2.20 in [19] to show thatM̃n(c) is the complex-symplectic
quotient ofNn × MU (n)(c − 1) by (local action of)Gl(n, C). Let us restrict attention
to Nn × M (n). The complex symplectic moment map at the point (g, B) of Nn is
−g−1Bg (hereg ∈ Gl(n, C) andB is of the form (5.5)) and the complex symplectic
moment map at the point corresponding to [g′, βd + n] is g′(βd + n)g′−1 (hereβd is
diagonal andn ∈ n). The moment map equation for the diagonal action ofGl(n, C)
is g−1Bg = g′(βd + n)g′−1. If we now quotient byGl(n, C), i.e. sendg to identity,
we shall end up with the set of [g′, b] ∈ Gl(n, C) ×N (d + n) such thatg′bg′−1 = B
(B is determined by the diagonal part ofb). This identifies the charts described in this
proposition. By going through the procedure we can conclude that the charts for different
n are matched as claimed.

So far we have shown that there is a holomorphic mapφ fromM̃n(c) to the manifold
M described in the statement. We still have to show thatφ is 1-1. By construction our
map isTn-equivariant, and so

(
C∗)n-equivariant (where the action is defined). Since

the
(
C∗)n-action onM is free, it is free onM̃n(c). Furthermore the

(
C∗)n-action on

M leaves invariant sets of the formM ∩ (Gl(n, C) ×N (d + n)
)
, d ∈ d. Each such set

is a single orbit of
(
C∗)n and soφ is 1-1. �

The above description of̃Mn(c) is rather complicated. We remark that the open
dense subset whereβ(+∞) is regular corresponds ton = 0, i.e. to

{(βd, g); βd = diag(β1, . . . , βn), βi 6= βj if i 6= j, gβdg
−1 = B(β1, . . . , βn)}.
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We shall denote the corresponding subset ofM̃n(c) by M̃ reg
n (c). We observe that an

elementg of Gl(n, C) which sends diag(β1, . . . , βn) to B(β1, . . . , βn) is of the form

g = V (β1, . . . , βn)−1 diag(u1, . . . , un), (5.6)

whereui 6= 0 andV (β1, . . . , βn) is the Vandermonde matrix, i.e.Vij = (βi)j−1. We can
calculate the complex symplectic formω = ω2 + iω3 onM̃ reg

n (c):

Proposition 5.4. The complex symplectic formω on M̃ reg
n (c) is given, in coordinates

βi, ui, i = 1, . . . , n, by

n∑
i=1

dui

ui
∧ dβi −

∑
i<j

dβi ∧ dβj

βi − βj
. (5.7)

Proof. First, we calculateω on the subset ofMU (n)(c − 1), whereβ(+∞) is regular.
This subset is biholomorphic toGl(n, C) × {regular elements ofhC} and according to
the proof of Proposition 5.3, an element (α, β) of this set corresponding to (g, βd) ∈
Gl(n, C)×hcan be written as (α, β) = (−ġ(t)g−1, g(t)βdg(t)−1), whereg(t) is a complex
gauge transformation withg(0) = g. Therefore a tangent vector (a(t), b(t)) at (α, β) can
be written as

(a, b) =
(−gρ̇g−1, g

(
bd + [ρ, βd]

)
g−1
)
, (5.8)

whereρ is dual tog−1dg and bd is dual todβd. The complex symplectic form on
MU (n)(c − 1) is given by

ω = (c − 1) tr
(
dα(+∞) ∧ dβ(+∞)

)
+
∫ +∞

0
tr
(
dα ∧ dβ − dα(+∞) ∧ dβ(+∞)

)
.

For two tangent vectors (a, b) and (â, b̂), corresponding, via (5.8), to (ρ, bd) and (ρ̂, b̂d)
we obtain

ω = − tr
(
bdρ̂ − ρb̂d − [ρ, ρ̂]βd

)
,

whereρ = ρ(0), ρ̂ = ρ̂(0). To calculate the symplectic form oñM reg
n (c) it remains to

substitute (5.6) forg. Let us writeu for diag(u1, . . . , un). Thenρ becomes dual to
u−1du − u−1dV V −1u. Let us writeν for the tangent vector dual tou−1du andϒ for
the tangent vector dual todV V −1. Sinceν is diagonal and theith row ofϒ is of the form
bis (here we writebd = diag(b1, . . . , bn)), for a covectors, we can writeω as

ω = − tr
(
bdν̂ − νb̂d − [ϒ, ϒ̂]βd

)
.

It remains to calculate tr[ϒ, ϒ̂]βd. Let us writeWij for the (i, j)th entry ofV −1, i.e.

Wij = (−1)n−iSn−i(β1, . . . , β̂j , . . . , βn)
/∏

k 6=j

(βj − βk), (5.9)

Sk being thekth elementary symmetric polynomial (S0 = 1). We calculate the (i, i)th

entry of [ϒ, ϒ̂] as

∑
j

(bib̂j − b̂ibj)

(∑
k

(k − 1)βk−2
i Wkj

)(∑
k

(k − 1)βk−2
j Wki

)
.
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This means that

tr[ϒ, ϒ̂]βd =
∑
i<j

(bib̂j−b̂ibj)(βi−βj)

(∑
k

(k − 1)βk−2
i Wkj

)(∑
k

(k − 1)βk−2
j Wki

)
.

Formula (5.7) will be proven if we can show (fori 6= j) the following identity:(∑
k

(k − 1)βk−2
i Wkj

)(∑
k

(k − 1)βk−2
j Wki

)
=

−1
(βi − βj)2

. (5.10)

According to (5.9) we have

∑
k

(k − 1)βk−2
i Wkj =

∑
k(k − 1)βk−2

i (−1)n−kSn−k(β1, . . . , β̂j , . . . , βn)∏
s6=j(βj − βs)

.
(5.11)

We compute the numerator of this expression. We setp = n − 1 and (a1, . . . , ap) =
(β1, . . . , β̂j , . . . , βn). Then the numerator can be written as

p∑
s=0

(p − s)(−1)sap−1−s
i Ss(a1, . . . , ap) =

d

dt

(
p∑

s=0

(−1)sSst
p−s

)
t=ai

.

Since
∑

Sst
s =
∏

(1 +ast), we can rewrite the expression under the derivative as

p∑
s=0

(−1)sSst
p−s =

p∏
s=0

(t − as).

Taking the derivative and substitutingai for t, finally gives

p∑
s=0

(p − s)(−1)sap−1−s
i =

∏
s6=i

(ai − as).

Going back to (5.11), we have

∑
k

(k − 1)βk−2
i Wkj =

∏
s6=i,j(βi − βs)∏
s6=j(βj − βs)

,

from which (5.10) follows. �

Remark 5.5.Setting

pi = ui

/∏
j>i

(βi − βj),

the formula (5.7) can be rewritten as

ω =
n∑

i=1

dpi

pi
∧ dβi.
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6. The Twistor Space and the Metric onM̃n(c)

We shall now identify the twistor spaceZ(c) of M̃n(c). As a first step, we observe,
after Hitchin et al. [18], that the hyperkähler moment mapµ for theTn-action defines
a moment map, also denoted byµ, for the complex-symplectic form along the fibers
Z(c) → CP 1. Thisµ is a map fromZ(c) to O(2)⊗ Cn. We shall first identify the open
subsetZ reg(c) of Z(c) defined as the set

Z reg(c) = µ−1 (O(2) ⊗ Cn − O(2) ⊗ 1) , (6.1)

where1 is the generalized diagonal inCn. In terms of the coordinates (β1, . . . , βn) and
(u1, . . . , un) given by (5.6),Z reg(c) has the following description:

Proposition 6.1. Z reg(c) is obtained by taking two copies ofC × (Cn − 1) × (C∗)n

with coordinates(ζ, βi, ui) and(ζ̃, β̃i, ũi), i = 1, . . . , n, and identifying overζ 6= 0 by

ζ̃ = ζ−1,
β̃i = ζ−2βi,
ũi = ζ−(n−1) exp{−cβi/ζ}ui.

The real structure is given by

ζ 7→ −1/ζ̄,
βi 7→ −β̄i/ζ̄2,

ui 7→ ū−1
i

(
1/ζ̄
)n−1∏

j 6=i(β̄i − β̄j)ecβ̄i/ζ̄ .

Finally, the complex symplectic form along the fibers is given by (5.7).

Proof. For any hyperk̈ahler moduli space of solutions to Nahm’s equations one can
trivialize the twistor space by choosing an affine coordinateζ onCP 1 and then putting
η = β + (α + α∗)ζ − β∗ζ2, u = α − β∗ζ for ζ 6= ∞, andη̃ = β/ζ2 + (α + α∗)/ζ − β∗,
ũ = −α∗ − β/ζ for ζ 6= 0. Then, overζ 6= 0, ∞, we have ˜η = η/ζ2, ũ = u − η/ζ.
Moreover, the real structure isζ 7→ −1/ζ̄, η 7→ −η∗/ζ̄2, u 7→ −u∗ + η∗/ζ̄ (cf. [12, 9]).

We now have to go through the procedure in the proof of Proposition 5.3 to describe
Z reg in coordinates (ζ, βi, ui) and (̃ζ, β̃i, ũi). First we describe the twistor space ofNn

in coordinates (g, B) and (g̃, B̃) defined right after (5.5) (cf. [12]). Going through the
procedure assigning (g, B) to (α, β), we see that̃B = B

(
β1/ζ−2, . . . , βn/ζ−2

)
. On the

other handg is given byg = g(1), whereg(t) is a complex gauge transformation such
that d

dtg
−1 = −ug−1. This means thatg(t) makesu identically zero. We observe that

exp{−Bt/ζ}g(t) makes ˜u identically zero and ˜η into B/ζ2. The initial value for the
solutiong−1 depends onζ and so we can write ˜g(t) = U exp{−Bt/ζ}g(t) for some
constant matrixU . If we are to get the form (5.5), we must haveU = U ′d(ζ), where

d(ζ) = diag
(
ζ−(n−1), ζ−(n−3), . . . , ζn−1

)
. (6.2)

In additionU ′ commutes withB
(
β1/ζ−2, . . . , βn/ζ−2

)
. Moreover, the initial value for

the equationd
dtg

−1 = −αg−1 depends only on the residues ofu, η, ũ, η̃ and therefore
U ′ does not depend onB. Since the initial values belong toSU (n), we also haveU ′ ∈
SU (n). It follows thatU ′ belongs to the center ofSU (n). This is only an ambiguity in
the choice of trivialization and it does not affect the twistor space. Similar considerations
show that the real structure sendsB(β1, . . . , βn) to B

(−β̄1/ζ̄−2, . . . , −β̄n/ζ̄−2
)

andg

to r(ζ) exp{B∗/ζ̄} (g∗)−1, where
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rij(ζ) =

{
0 if i + j 6= n

(−1)j−1ζ̄n+1−2j if i + j = n
.

This time the remaining ambiguity is given by a real element in the center ofSU (n),
i.e.−1 if n is even.

We now go through a similar procedure for the subset ofMU (n)(c − 1), where
β(+∞) is regular. We have assigned in the proof of Proposition 5.3 to each element of
this set a pair (g, β(+∞). We already know howβ(+∞) changes (as it is given by the
complex moment map for a torus action). The proof of Proposition 5.3 shows that the
other coordinates,g on {ζ 6= ∞} and g̃ on {ζ 6= 0}, are related by ˜g = g exp{−(c −
1)β(+∞)/ζ}. The real structure sendsg to (g∗)−1 exp{(c − 1)β(+∞)∗/ζ̄}.

Finally we have to go to the complex-symplectic quotient as in the proof of Propo-
sition 5.3. We end up with (g, βd) and (g̃, β̃d), whereβd = diag(β1, . . . , βn) and
gβdg

−1 = B(β1, . . . , βn) (and similarily for (g̃, β̃d)). We see thatβi and β̃i are re-
lated as stated and ˜g = d(ζ) exp{−B/ζ}g exp{−(c − 1)βd/ζ}. Since exp{−B/ζ}g =
g exp{−βd/ζ}, g̃ = d(ζ)g exp{−cβd/ζ}. If we now go to the coordinatesui, ũi de-
fined by (5.6), we see that they change as required, since the (i, j)th entry of V −1 is
given by (5.9) and theβi change as prescribed (i.e. as sections ofO(2)). A similar ar-
gument shows that the real structure is, up to a sign, the one described in the statement

(it is enough to compare the last row inr(ζ)
(
V −1 diag{ui}

)∗−1
diag{ecβ̄i/ζ̄} and in

V −1
(−β̄1/ζ̄−2, . . . , −β̄n/ζ̄−2

)
diag{u′

i}). We shall see shortly (Proposition 6.2) that
the negative of the real structure described in the statement does not admit any sections
(a section would be equivalent to a complex number with imaginary modulus). The
formula for the complex symplectic structure is a direct consequence of Proposition 5.4.
�

We now wish to find the full twistor space and the metric onM̃n(c) and this means
finding a family of real sections. We know their projections toO(2)⊗Cn: they are given
by(β + (α + α∗)ζ − β∗) (+∞) (cf. [18]) and are parameterized byn distinct points inR3

with coordinates (xi, Rezi, Im zi), i = 1, . . . , n, wherexi =
√−1T1(+∞), zi = β(+∞).

In other words we haven curvesSi = {(ζ, η); η = zi + 2xiζ − z̄iζ
2} in TCP 1 (hereη is

the fiber coordinate). According to Proposition 6.1 theui coordinate of a real section of
Z(c) changes as a non-zero section of the bundleLc(k − 1) (with the transition function
ζk−1ecη/ζ from ∞ to 0) overSi. This is true only away from the intersection points of
the curvesSi and we have to understand what happens to the section at these points.
Two curvesSi = {(ζ, η); η = zi + 2xiζ − z̄iζ

2} andSj = {(ζ, η); η = zj + 2xjζ − z̄jζ
2}

intersect in a pair of distinct pointsaij andaji, where

aij =
(xi − xj) + rij

z̄i − z̄j
, rij =

√
(xi − xj)2 + |zi − zj |2. (6.3)

We have:

Proposition 6.2. The real sections of the twistor spaceZ(c) of M̃n(c) are given, over
ζ 6= ∞, by

(
β1(ζ), . . . , βn(ζ), u1(ζ), . . . , un(ζ)

)
, where

βi(ζ) = zi + 2xiζ − z̄iζ
2,

ui(ζ) = Ai

∏
j 6=i

(ζ − aji)e
c(xi−z̄iζ),
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where(xi, zi), i = 1, . . . , n, are distinct points inR × C andAi are complex numbers
satisfying

AiĀi =
∏
j 6=i

(
xi − xj + rij

)
.

Remark.Given Proposition 5.2, this finally shows that the biholomorphism of Proposi-
tion 5.3 is onto.

Proof. Consider a real sections of Z(c) (corresponding to a solution (T0, T1, T2, T3))
which projects to a given real section (β1(ζ), . . . , βn(ζ)) of O(2) ⊗ Cn. For a generic
section the intersection points of theβs are all distinct. We consider the pointaji at
which βi intersectsβj and let us assume that no otherβs intersect there. We recall
that

√−1T1(ζ) = 1
2(α + α∗) − β∗ζ and, hence,

√−1T1(ζ)(+∞)ss = xs − z̄sζ. This
means that

√−1T1(aji)(+∞)jj <
√−1T1(aji)(+∞)ii, and so, with respect to the com-

plex structure corresponding toaji ∈ CP 1, the solution (T0, T1, T2, T3) belongs to the
chart described in Proposition 5.3 withn generated by the matrix with the only non-
zero entry having coordinates (i, j). Let us writes as (βi(ζ), ui(ζ)), i = 1, . . . , n, in a
neighbourhood ofaji, ζ 6= aji (notice that the procedure of Proposition 6.1 does assign
well-defined complex numbersu1(ζ), . . . , un(ζ) to eachζ 6= aji). According to the
proof of Proposition 5.3 there is an elementm(ζ) ∈ N = expn such that the following
expression

V
(
β1(ζ), . . . , βn(ζ)

)−1
diag

(
u1(ζ), . . . , un(ζ)

)
m(ζ)

has an invertible limit atζ = aji.

Let Wkl(ζ) denote the (k, l)th entry ofV
(
β1(ζ), . . . , βn(ζ)

)−1
and letp(ζ) denote

the only non-zero non-diagonal entry of diag
(
u1(ζ), . . . , un(ζ)

)
m(ζ) (p(ζ) is the (i, j)th

entry). We then have thatWkjuj + Wkip andWkiui have a finite limit atζ = aji, for all
k = 1, . . . , n. From the formula (5.9) a finite limit forWniui implies thatui(aji) = 0,
while the nonvanishing of the last row ofV −1 diag(us)m means thataji is a single
zero ofui. If more than two sectionsβs(ζ) meet ataji the considerations are similar but
involve largern. We can conclude theaji contribute preciselyn−1 zeros ofui (counting
multiplicities) and, given Proposition 6.1, this proves the formula forui(ζ) as soon as we
show thatui has no other zeros, or, equivalently, no poles. To prove this latter statement
it is enough to show thatuj does not have a pole ataji. We go back to the situation when
n is one-dimensional, and where we concluded thatWkjuj + Wkip has a finite limit at
ζ = aji for all k = 1, . . . , n. We can writeWnjuj +Wnip as (fuj +gp)/(βi −βj) where
f andg have finite limits atζ = aji. We then have

Wn−1,juj + Wn−1,ip = −
fuj

(∑
s6=j

βs

)
+ gp

(∑
s6=i

βs

) 1
βi − βj

,

which can be rewritten as

−fuj − (∑
s6=i

βs

)fuj + gp

βi − βj
.

Since the second term has a finite limit, so doesfuj and henceuj . Again, if more than
two sectionsβs(ζ) meet ataji the considerations are similar but involve largern. Thus
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we have shown the second formula of the statement. The last formula follows from the
reality condition and the fact thataji = −1/āij (this calculation also eliminates the±1
ambiguity in the choice of the real structure in the proof of 6.1).�

We can finally identifyM̃n(c) as aTn-bundle over the configuration spaceC̃n(R3)
of n distinct pointsxi in R3.

Proposition 6.3. M̃n(c) is equivalent to theTn-bundle described in Proposition 1.1.

Proof. From the last formula in Proposition 6.2 it follows thatAi 6= 0 if, for all j 6= i,
zi 6= zj or xi > xj . On the other hand, if we put

AI = Ai

∏
j∈I

aji,

for any subsetI of {j; j 6= i}, then we have

AIĀI =
∏
j 6=i
j 6∈I

(
xi − xj + rij

)∏
j∈I

(
xj − xi + rij

)
.

Let us choose setsI1, . . . , In such thatIi ⊂ {j; j 6= i} andj ∈ Ii ⇔ i 6∈ Ij . De-
fine U (I1, . . . , In) as the complement of the subset{(xi, zi)i=1,...,n; Ic

i = {j; zi =
zj and xi < xj}} (Ic

i denotes the complement ofIi in {j; j 6= i}). The sets
U (I1, . . . , In) cover C̃n(R3) and over each of them the bundlẽMn(c) is trivialized
by coordinates

(
xi, zi, AIi

/|AIi
|). To determine the bundle, choosei < j. The bundle

restricted toS2
ij is given by the transition function fromU (I1, . . . , In), wherej 6∈ I(i)

to U (I ′
1, . . . , I ′

n), whereI ′
i = Ii ∪ {j}, I ′

j = Ij − {i}, I ′
k = Ik for k 6= i, j. Letφk be the

transition function for thekth generator ofTn, i.e. the transition function fromAIk
/|AIk

|
to AI′

k
/|AI′

k
|. We see thatφk = 1 if k 6= i, j, andφi = aji/|aji|, φj = |aji|/aji. There-

fore φi = (zj − zi)/|zj − zi| andφj = φ−1
i . It remains to identify the circle bundle

over the spherex2 + |z|2 = const given by the transition functionz/|z| from the re-
gion U0 = {z 6= 0 or x > 0} to the reonU1 = {z 6= 0 or x < 0}. Let us write
the unit 3-sphere as{(u, v) ∈ C2; |u|2 + |v|2 = 1}. The Hopf bundle is given theS1

actiont · (u, v) = (tu, t−1v) and the projectionS3 → S2 by the mapx = |u|2 − |v|2,
z = 2uv. OverU0 this bundle is trivialized by (x, z, u/|u|) and overU1 by (x, z, |v|/v).
The transition function is|z|/z. Thus [φi] = −1 ∈ H1(S2

ij , S
1). �

We can now calculate the metric oñMn(c). By the remark at the end of Sect. 3, it
is enough to know the metric forc = −1, 0, 1, as the others are obtained by homothety.
We shall calculate the metric forc = 1. The metric forc = −1 is the everywhere
negative definite version of the Gibbons–Manton metric (this can be seen from thec = 1
calculation) and the one forc = 0 the and negative-definite cone over a 3-Sasakian
manifold.

Theorem 6.4. M̃n(1) is isomorphic, as a hyperkähler manifold, to the Gibbons–Manton
manifoldMGM defined in Sect. 1.

Proof. We know from the previous proposition that the two spaces are diffeomorphic.
We shall show that the twistor description ofM̃n(1) and of the Gibbons–Manton metric
coincide. We recall from Sect. 1 that the latter is a hyperkähler quotient ofM = M1 ×
M2 by a torus, whereM1 =

(
S1 × R3

)n
andM2 = Hn(n−1)/2. With respect to any
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complex structureM1 =
(
C∗)n ×Cn andM2 = Cn(n−1)/2 ×Cn(n−1)/2. Let us write the

corresponding complex coordinates as (pi, βi), i = 1, . . . , n, on M1 and as (vij , wij),
i < j, on M2. The complex-symplectic forms corresponding to metricsg1 andg2 are
given by

n∑
i=1

dpi

pi
∧ dβi, (6.4)∑

i<j

dvij ∧ dwij . (6.5)

The real sections of the twistor spaceZ1 of M1 are written, overζ 6= ∞, as

βi(ζ) = zi + 2xiζ − z̄iζ
2, pi(ζ) = Bie

xi−z̄iζ , (6.6)

whereBiB̄i = 1. The real sections of the twistor spaceZ2 of M2 are (cf. [2], chapter
13.F):

vij(ζ) = Cij(ζ − aij), wij(ζ) = Dij(ζ − aji), (6.7)

whereaij , aji are roots ofvijwij = zij + 2xijζ − z̄ijζ
2 for some (xij , zij) ∈ R×C, i.e.

aij =
xij +

√
x2

ij + |zij |2
z̄ij

, aji =
xij −

√
x2

ij + |zij |2
z̄ij

and
CijC̄ij = −xij +

√
x2

ij + |zij |2, DijD̄ij = xij +
√

x2
ij + |zij |2.

Here the particular choice of sections is forced either by the fact the metric is positive
definite or by requiring that theS1-actiont · (vij , wij) = (tvij , t

−1wij) determines the
Hopf bundle over the 2-spherex2

ij + |zij |2 = 1 (this calculation was done in the proof
of Proposition 6.3). To obtain the twistor description of the Gibbons–Manton metric
we have to perform the complex-symplectic quotient construction along the fibers of
Z1 ⊕ Z2 with respect to the difference of the forms (6.4) and (6.5). As in Sect. 1, the
moment map equations arevijwij = βi −βj and so theaij , aji are given by (6.3). Since
we already know that the manifolds are diffeomorphic, it is sufficient to determine the
metric on an open dense subset, e.g. on the set where allvij are non-zero. Quotienting

this set by
(
C∗)n(n−1)/2

is equivalent to sending allvij to 1. This is achieved by acting

by the element (vij)−1 of
(
C∗)n(n−1)/2

. By the description of the torus action given in
Sect. 1, this sendspi(ζ) to

Bi

∏
j<i Cji(ζ − aji)∏
j>i Cij(ζ − aij)

exi−z̄iζ = Ei

∏
j<i(ζ − aji)∏
j>i(ζ − aij)

exi−z̄iζ , (6.8)

where

EiĒi =

∏
j<i(xi − xj + rij)∏
j>i(xj − xi + rij)

. (6.9)

These and theβi give the real sections for the Gibbons–Manton metric and the symplectic
form is (6.4). We now compare this with the description ofZ(1) given in Proposition
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6.2. According to Remark 5.5 we should setpi = ui

/∏
j>i(βi − βj) in order to have

the same symplectic form. We obtain

pi(ζ) =
Ai∏

j>i(z̄j − z̄i)

∏
j<i(ζ − aji)∏
j>i(ζ − aij)

exi−z̄iζ .

All we have to do is to compare the norm ofAi

/∏
j>i(z̄j − z̄i) with the norm ofEi.

We have, from Proposition 6.2 and Eq. (6.9),

AiĀi∏
j>i |zj − zi|2 =

∏
j 6=i(xi − xj + rij)∏

j>i |zj − zi|2 =
∏
j<i

(xi − xj + rij)
∏
j>i

(xi − xj + rij)
|zj − zi|2

=

∏
j<i(xi − xj + rij)∏
j>i(xj − xi + rij)

= EiĒi,

which proves the theorem. �

We shall finish the section with a remark that Propositions 6.2 and 6.3 can be gen-
eralized to define hyperkähler metrics on a class ofTn-bundles overC̃n(R3). We have:

Theorem 6.5. LetP be aTn-bundle overC̃n

(
R3
)

determined by an element(s1. . . . ,

sn) of H2
(
C̃n(R3), Zn

)
satisfyingsk(S2

ij) = 0 if k 6= i, j andsi(S2
ij) = −sj(S2

ij). Then
P carries a family of (pseudo)-hyperkähler metrics such that the real sections of the
twistor space are given, overζ 6= ∞, by (β1(ζ), . . . , βn(ζ), u1(ζ), . . . , un(ζ)), where

βi(ζ) = zi + 2xiζ − z̄iζ
2,

ui(ζ) = Ai

∏
j 6=i

(ζ − aji)
sij ec(xi−z̄iζ),

wherec is a real constant,(xi, zi), i = 1, . . . , n, are distinct points inR × C, sij =
|si(S2

ij)|, andAi are complex numbers satisfying

AiĀi =
∏
j 6=i

(
xi − xj + rij

)sij
.

This description determines a hypercomplex structure onP . A (pseudo)-hyperk̈ahler
metric can be then calculated using any complex-symplectic form along the fibers,
given as a section of32T ∗

F ⊗ O(2), e.g. the form (5.7). These metrics will correspond
to the motion ofn dyons inR3 interacting in different ways (cf. [14]).

Remark.The calculation of the metric given above shows that the Taub-NUT metric
(cf. [2]) has two very different descriptions in terms of Nahm’s equations: 1) it is the
metric on the totally geodesic submanifold̃M0

2 (−1) of M̃2(−1) defined by considering
su(2)-valued solutions to Nahm’s equations andSU (2)-valued gauge transformations;
2) it is the metric on the moduli space ofSU (3)-monopoles of charge (1, 1) [10, 29].



316 R. Bielawski

7. Asymptotic Comparison of the Metrics

We shall now show that the Gibbons–Manton metric and the monopole metric are asymp-
totically exponentially close. The asymptotic region, where the individual monopoles
are separated, of the monopole spaceMn is diffeomorphic toP/Sn, whereP is a t orus
bundle over the configuration spaceC̃n(R3) andSn the symmetric group. The bundle
P is not, however, the bundle of Proposition 6.3. Rather, as we shall see shortly, it is
the quotient of that bundle by a

(
Z2
)n

-subgroup ofTn. In other words it is the bundle
determined by ans ∈ H2

(
C̃n(R3), Zn

)
with all sk being twice those in Proposition 6.3.

We shall compare the metric onMn with the metric on the hyperkähler quotient of
M̃n(1) × M̃n(1) by the diagonalTn-action. We do this in order to have solutions to
Nahm’s equations with poles at both ends of the interval [−1, 1]. For anyc, c′, let us
write M̃n(c, c′) for the hyperk̈ahler quotient ofM̃n(c) × M̃n(c′) by the diagonal action
of Tn. The action ofTn given byt ·(m, m′) = (tm, m′) induces a tri-Hamiltonian action
of Tn onM̃n(c, c′) which makesM̃n(c, c′) into aTn-bundle overC̃n(R3). We have

Lemma 7.1. M̃n(c, c′) is isomorphic, as a hyperkähler manifold, toM̃n(c+c′)
/(

Z2
)n

,
where

(
Z2
)n

= {t ∈ Tn; t2 = 1}.

Proof. Letµ, µ′ be the moment maps for the action ofTn onM̃n(c), M̃n(c′) respectively.
The moment map for the diagonalTn-action on the product isµ+µ′. If we go back to the
proof of Proposition 6.3 and use the same notation, we can see that the zero-set of this
moment map is a (Tn ×Tn)-bundle overC̃n(R3) which restricted to eachS2

ij is given by

transition functions (φ1, . . . , φn, φ−1
1 , . . . , φ−1

n ) (the point being thatU (I ′
1, . . . , I ′

n) =
−U (I1, . . . , In)). Hence, if we quotient byTn, by sending the secondTn to 1 over each
U (I1, . . . , In), we end up with aTn-bundle for which the transition functions areφ2

k,
k = 1, . . . , n. This proves the differential-geometric part of the statement. To obtain the
isometry we repeat this argument for the twistor space ofM̃n(c) × M̃n(c′), performing
the complex-symplectic quotient along the fibers as in the proof of Theorem 6.4.�

From now on, we shall consider̃Mn(1, 1) with half (compare formula (2.4)) of
the metric given by the above lemma. In other words, locally the metric is still the
Gibbons–Manton metric. We can identifỹMn(1, 1) with the moduli space of pairs(
(T0, T1, T2, T3), (T ′

0, T
′
1, T

′
2, T

′
3)
)

of solutions to Nahm’s equations, defined respec-
tively on [−1, ∞] and on [−∞, 1], such thatTi(+∞) = T ′

i (−∞) for i = 0, 1, 2, 3,
and the residues ofTi at −1 and ofT ′

i at +1, i = 1, 2, 3, define the standardn-
dimensional irreducible representation ofsu(2). The group of gauge transformations
G(1, 1) is now defined as pairs (g, g′) such thatg(t + 1), g′(−t + 1) ∈ G(c) for some
c and s = limt→+∞ ġg−1 = limt→−∞ ġ′g′−1. The tangent space consists of pairs(
(t0, t1, t2, t3), (t′0, t

′
1, t

′
2, t

′
3)
)

defined on [−1, ∞] and on [−∞, 1], respectively, with
ti(+∞) = t′i(−∞) and satisfying Eqs. (2.3). The metric oñMn(1, 1) can be written as

1
2

3∑
0

‖ti(+∞)‖2 +
1
2

∫ +∞

−1

3∑
0

(‖ti(s)‖2 − ‖ti(+∞)‖2
)
ds +

1
2

3∑
0

‖t′i(−∞)‖2 +
1
2

∫ 1

−∞

3∑
0

(‖t′i(s)‖2 − ‖t′i(−∞)‖2
)
ds.

We can rewrite this as
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1
2

∫ +∞

0

3∑
0

(‖ti(s)‖2 − ‖ti(+∞)‖2
)
ds +

1
2

∫ 0

−∞

3∑
0

(‖t′i(s)‖2 − ‖ti(+∞)‖2
)
ds

+
1
2

∫ 0

−1

3∑
0

‖ti(s)‖2ds +
1
2

∫ 1

0

3∑
0

‖t′i(s)‖2ds. (7.1)

Let us fix a complex structure, sayI and write as in Sect. 5,α for T0 +iT1, β for T2 +iT3.
We write an element ofM̃n(1, 1) as a pair

(
(α−, β−), (α+, β+)

)
. We shall writeβi for

the (i, i)th entry ofβ−(+∞) = β+(−∞) and denote byM̃ reg
n (1, 1) the subset ofM̃n(1, 1)

where allβi are distinct. Similarly, we writeM reg
n for the subset of (α, β) in (Mn, I)

where the eigenvalues ofβ are distinct. We shall prove:

Theorem 7.2. There exists a biholomorphismφ fromM̃ reg
n (1, 1)/Sn to M reg

n such that

|φ∗g − g′| = O(e−cR), (7.2)

whereg, g′ denote the monopole and Gibbons–Manton metric respectively,c = c(n) is
a constant, andR is the separation distance of particles inCn(R3), i.e.

R = min{|xi − xj |; i 6= j}. (7.3)

The same estimate holds for the Riemannian curvature tensor.

Since such a biholomorphism will be defined for any complex structure and the union
of M̃ reg

n (1, 1) for different complex structures is all of̃Mn(1, 1), we conclude that the
monopole and the Gibbons–Manton metrics are exponentially close in the asymptotic
region of the monopole moduli space.

The remainder of the section is devoted to proving this theorem. We need the fol-
lowing lemma:

Lemma 7.3. Let C > 0. The spaceM̃ reg
n (1) is biholomorphic to the quotient of the

space of solutions(α, β) to Eq. (5.1) which have the correct boundary behaviour at
t = 0 and are constant (hence diagonal) fort ≥ C by the group of complex gauge
transformationsg : [0, +∞) → Gl(n, C) with g(0) = 1andg(t) = exp(ht−h) for some
diagonalh for t ≥ C.

Proof. Let (α, β) be an element of̃M reg
n (1) and letαd = α(+∞),βd = β(+∞). According

to the proof of Proposition 5.3, there is a unique complex gauge transformationg defined
on [C/2, +∞) with g(+∞) = 1 such that (α, β) = g(αd, βd). Let ĝ : [C/2, ∞) →
Gl(n, C) be a smooth path with the values and the first derivatives of ˆg andg coinciding
at t = C/2 and withĝ(t) = 1 and fort ≥ C. We obtain a solution ( ˆα, β̂) to the complex
Nahm equation (5.1) by setting

(α̂, β̂)(t) =

{
(α, β)(t) if t < C

ĝ(t)(αd, βd) if t ≥ C.
(7.4)

This is a solution of the type described in the statement of this lemma. The proof of
5.3 shows further that it is onlyg(C/2) exp{(1 − C/2)αd} (and a solution to (5.1) on
[0, C/2]) that determines the element of̃M reg

n (1). Therefore we obtain a well defined
holomorphic map fromM̃ reg

n (1) to the moduli space described in the statement. Let us
define the inverse map. Let ( ˆα, β̂) be an element of the moduli space described in the
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statement. As in [23] we can find a bounded complex gauge transformationg0 such that
g0(α̂, β̂) is an element ofM̃ reg

n (1).
We can assume thatg0 has a limith at +∞ (this follows from the convexity property

of g0 [13], since we can assume thatg0(t) is hermitian for allt). According to Proposition
5.3 or 6.2 the action ofTn on M̃n(1) extends to a global action

(
C∗)n with respect to

the complex structureI (or any other). Let (α, β) be the element ofM̃ reg
n (1) obtained

from g0(α̂, β̂) by the action ofh−1 ∈ (C∗)n. Then (α, β) = g(α̂, β̂) andg ∈ GC(1). This
gives the inverse mapping. �

We can now construct a biholomorphism betweenM̃ reg
n (1, 1)/Sn andM reg

n . From
the above lemma,M̃ reg

n (1, 1) is biholomorphic to the quotient of the space of pairs(
(α−, β−), (α+, β+)

)
defined on [−1, +∞) and on (−∞, 1] respectively such that

(α−, β−)(t + 1) and (α+, β+)(1 − t) are as in the above lemma, (α−, β−)(+∞) =
(α+, β+)(−∞) by the group of pairs (g−, g+) with g−(−1) = g+(1) = 1 and such that
there are diagonalh, p with g−(t) = exp(th − p) for t > −r, g+(t) = exp(th − p) for
t < r (r ∈ (0, 1) is fixed but arbitrary). We define a solution ( ˆα, β̂) to the complex Nahm
equation (5.1) on (−1, 1) by

(α̂, β̂)(t) =

{
(α−, β−)(t) if t < 0
(α+, β+)(t) if t ≥ 0.

(7.5)

The GC-orbit of this solution (see Sect. 2 for the definition ofG) contains a unique
element ofMn [13, 20]. Furthermore, the action of a (g−, g+) translates into the action
of g ∈ GC, whereg(t) = g−(t) for t < 0 andg(t) = g+(t) for t ≥ 0. Therefore we have
a well defined holomorphic mapφr from M̃ reg

n (1, 1) toMn. If we now have an element
(α, β) of M reg

n , we can diagonalizeβ on [−r, r] and makeα diagonal and constant on
[−r, r]. Let (α̃, β̃) be the resulting solution to the complex Nahm equation. We obtain
an element ofM̃ reg

n (1, 1) by setting

(α−, β−)(t) =

{
(α̃, β̃)(t) for t < 0
(α̃, β̃)(0) for t ≥ 0

and similarly for (α+, β+). This defines the inverse toφr up to the ordering of eigenvalues
of β. In other wordsφr induces a biholomorphism betweeñM reg

n (1, 1)/Sn andM reg
n .

Furthermore, for a fixed element
(
(α−, β−), (α+, β+)

)
of M̃ reg

n (1, 1) and two parameters
r, r′, the resulting ( ˆα, β̂) of (7.5) areGC-equivalent and thereforeφr, φr′ induce the same
biholomorphismφ.

Let us now prove the estimate (7.3). Fortunately, much of the analysis has been
already done in [3]. First of all, we recall ([23], Lemma 3.4) that solutions to Nahm’s
equations which have a regular triple as a limit at infinity, approach this limit exponen-
tially fast, of orderO

(
e−cR

)
(that isT1, T2, T3 do and we can always makeT0 to have

such decay by using the gauge freedom). The proofs of Propositions 3.11–3.14 in [3]
show that the same holds for tangent vectors (t0, t1, t2, t3). Let us now see what happens
to a tangent vectorv under the mapφ. The gauge transformations (g, g′) which make the
element

(
(α−, β−), (α+, β+)

)
of M̃ reg

n (1, 1) constant and equal to the common value at
infinity on [−1 +C/2, +∞) and (−∞, 1− C/2] are exponentially close to the identity.
In the next stage of the construction ofφ – formula (7.4) – we have smoothed out the
solutions which can be again done by gauge transformations exponentially close to 1.
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Therefore the resulting tangent vector ˆv is exponentially close to the original one in the
metric (7.1). We have then restricted the solutions (formula (7.5)) to obtain a solution
(α̂, β̂) to the complex Nahm equation on [−1, 1]. Let p denote this operation of restric-
tion. The first line of the formula (7.1) is exponentially small and therefore the norm of
v̂ in (7.1) and the norm ofdp(v̂) in (2.4) are exponentially close. The solution ( ˆα, β̂) will
not satisfy the real Nahm equation, however, we will have

F (α̂, β̂) :=
d

dt

(
α̂ + α̂∗) + [α̂, α̂∗] + [ β̂, β̂∗] = O(e−cR).

Lemma 2.10 in [13] implies now that we can solve the real equation by a complex gauge
transformation bounded asO(e−cR). We can now show that the vectordφ(v) tangent
to Mn (which is obtained fromdp(v̂)) is exponentially close todp(v̂) by following the
analysis of Sect. 3 in [3] step by step, replacing theO(1/R) estimates byO(e−cR). This
proves the estimate (7.3). For the curvature estimates we do the same using the analysis
of Sect. 4 in [3]. This proves Theorem 7.2.

8. Twistor Description of Monopoles and the Gibbons–Manton Metric

We shall show in this section how the twistor description of monopole metrics determines
the asymptotic metric. We recall [13] that the moduli space ofn-monopoles is biholo-
morphic to the space of based rational mapsp(z)/q(z) onCP 1 o f degreen (based means
that degp < degq). On the set, where the rootsβ1, . . . , βn of q(z) are distinct, these
roots and the valuespi = p(βi) of p form local coordinates and the complex-symplectic
form can be written as [1]:

n∑
i=1

dβi ∧ dpi

pi
. (8.1)

The metric is determined by the real sectionsp(z, ζ)/q(z, ζ). Their description is pro-
vided in [19]. The denominatorq(z, ζ) is given by a curveS – the spectral curve of
the monopole – inTCP 1 [16]. This curve satisfies several conditions, one of which is
the triviality of the line bundleL−2 restricted toS, and Hurtubise [19] shows that the
numeratorp(z, ζ) is given by a nonzero section of this bundle. (The valuespi(ζ) are
given by the values of this section at the intersection pointsβi(ζ) of S with TζCP 1.)

What happens when the individual monopoles separate? First of all, the spectral
curve approaches the union of spectral curves of individual monopoles exponentially
fast [4]. These curvesSi are of the formηi = zi + 2xiζ − z̄iζ

2, i = 1, . . . , n, where
(xi, Rezi, Im zi) are locations of 1-monopoles (particles). What happens to the section
of L−2? We make a heuristic assumption (which we know to be true from Sect. 6) that
the section acquires zeros and poles at the intersection points of theSi (more precisely
the only singularities ofpi(ζ) occur at the intersection points ofSi with otherSj). As
we shall see this is sufficient to determine the asymptotic metric.

First of all the real structure on the bundleL−2 is u 7→ ū−1e−2η̄/ζ̄ and therefore
if pi has a zero at one of the points ofSi ∩ Sj , then it has a pole of the same order at
the other, and vice versa. Furthermore, since the metric and hence the real sections are
invariant under the action of the symmetric group, we must have

pi(ζ) = Ai

∏
j 6=i

(
ζ − aij

ζ − aji

)k

e−2(xi−z̄iζ), i = 1, . . . , n,
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whereaij , aji are the two points inSi ∩Sj given by (6.3) andk is an integer. The reality
condition implies that

AiĀi =
∏
j 6=i

ak
jiā

k
ji.

One can now calculate the asymptotic metric, using (8.1). The sign ofk will determine
the signature, while|k| is simply a constant m ultiple. The actual value ofk is determined
by the topology of the asymptotic region ofMn, and comparing with Proposition 6.3
and the remarks at the beginning of Sect. 7 we conclude thatk = 1 (in the coordinates
of Proposition 6.2,pi =

∏
j;j 6=i(βi − βj)/u2

i ).

We remark that the above analysis can be easily done for other compact Lie groups
G. The twistor description of metrics on moduli spaces ofG-monopoles with maximal
symmetry breaking is known from the work of Murray [28] and Hurtubise and Murray
[21, 22] and from this the asymptotic metric can be calculated. We shall do the exact
analysis in the case ofG = SU (N ) in a subsequent paper.
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Note added in proof
The metrics of section 4 (or, at least, their positive-definite counterparts) can be also
obtained as finite-dimensional hyperkähler quotients. This follows from the construction
of Kobak and Swann (Internat. J. Math.7, 193–210 (1996)) of a nilpotentGC-orbit as
a hyperk̈ahler quotient of a vector spaceV by a productU of unitary groups. The
hyperk̈ahler quotientP of V by the semisimple part ofU is a positive-definite analogue
of the spacesMG(c) (i.e. Theorem 4.3 holds forP ). Presumably the spacesMG(c) can
also be obtained this way by changing the signature of the metric onV .
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