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Abstract: We show that, in the region where monopoles are well separated,’the
metric on the moduli space afmonopoles is exponentially close to thé&-invariant
hyperkahler metric proposed by Gibbons and Manton. The proofis based on a description
of the Gibbons—Manton metric as a metric on a certain moduli space of solutions to
Nahm’s equations, and on twistor methods. In particular, we show how the twistor
description of monopole metrics determines the asymptotic metric.

The construction of the Gibbons—Manton metric in terms of Nahm's equations yields
a class of interesting (pseudo)-hypéhnler metrics. For example we show, for each
semisimple Lie grougz and a maximal toru§” < G, the existence of & x T-
invariant (pseudo)-hypeéhler manifold whose hypegékler quotients by are precisely
Kronheimer's hyperihler metrics or® /7. A similar result holds for Kronheimer’s
ALE-spaces.

The moduli spacé/,, of (framed) staticSU (2)-monopoles of charge, i.e. solutions to
Bogomolny equationg, ® = xF', carries a natural hypegkler metric [1]. The geodesic
motion in this metric is a good approximation to the dynamics of low energy monopoles
[26, 33]. For the charge = 2 the metric has been determined explicitly by Atiyah and
Hitchin [1], and it follows from their explicit formula that when the two monopoles
are well separated, the metric becomes (exponentially fast) the Euclidean Taub-NUT
metric with a negative mass parameter. It was also shown by N. Manton [27] that this
asymptotic metric can be determined by treating well-separated monopoles as dyons.
The equations of motion for a pair of dyonsIk? are found to be equivalent to the
equations for geodesic motion on Taub-NUT space.

For an arbitrary charge, it was shown in [3] that, when the individual monopoles
are well-separated, tHe?-metric is close (as the inverse of the separation distance) to the
flat Euclidean metric. Gibbons and Manton [14] have then calculated the Lagrangian for
the motion of: dyons inR® and shown that itis equivalent to the Lagrangian forgeodesic
motion in a hyper&hler metric on a torus bundle over the configuration sgag®?).
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This metric isT™-invariant and has a simple algebraic form. Gibbons and Manton have
conjectured, by analogy with the = 2 case, that the exaatmonopole metric differs

from their metric by an exponentially small amount as the separation gets large. We shall
prove this conjecture here. .

Our strategy is as follows. We construct a certain moduli spgegeof solutions
to Nahm’s equations which carriesTd -invariant hyperihler metric. Using twistor
methods we identify this metric as the Gibbons—Manton metric. Finally, we show that
the metrics onV/,, andM,, are exponentially close. This proof adapts equally well to the
asymptotic behaviour o U (N)-monopole metrics with maximal symmetry breaking,
as will be shown elsewhere.

The asymptotic picture can be explained in the twistor setting. We recall that a
monopole is determined (up to framing) by a cusre- the spectral curve — il C P?,
which satisfies certain conditions [16]. One of these is triviality of the line buhdfe
overS, and anonzero section of this bundle is the other ingredient needed to determine the
metric [19, 1]. Asymptotically we have now the following situation. When the individual
monopoles become well separated the spectral curve af-thenopole degenerates
(exponentially fast) into the union of spectral cung&of individual monopoles, while
the section ofl. ~2 becomes (also exponentially fastyneromorphic sections of 2
over the individuals;. The zeros and poles of these sections occur only at the intersection
points of the curves;. This information (and the topology of the asymptotic region of
M) is, as we show in the last section, sufficient to conclude that the asymptotic metric
is the Gibbons—Manton metric.

The construction of the moduli space of solutions to Nahm’s equations which gives
the Gibbons—Manton metric admits various generalizations. Some of them are described
in Sect. 4. Let us recall that Kronheimer [23] has shown existence of hgplerkstruc-
turesM (11, 72, 73) on G /TC, whereG is a compact semisimple Lie group afick G
is a maximal torus. These structures are parameterized by the cohomology classes
71,72, 73 € Lie(T) of the three Kahler forms. We show (in Sect. 4) that there is a
(pseudo)-hypeikhler manifoldM with a tri-Hamiltonian action ofl” such that, if
u: Mg — Lie(T) ® R is the hyperkhler moment map, then the hyparker quo-
tient u~2(71, 2, 73) /T of Mg by T is precisely Kronheimer's/ (ry, 72, 73). A similar
construction can be done for Kronheimer's ALE-spaces.

The article is organized as follows. In Sects. 1 and 2 we recall the definitions of the
Gibbons—Manton and monopole metrics. In Sect. 3 we introduce the modulisfaoie
solutionsto Nahm'’s equations and give heuristic arguments why the metfyig should
be exponentially close to the monopole metric. In Sect. 4, as a preliminary step to study
M,, we introduce yet another moduli space of solutions to Nahm’s equations, somewhat
simpler than}/,, . In that section we also discuss the relation with Kronheimer’s metrics
mentioned above. In Sect. 5 we identiy,, as a differential, complex, and finally
complex-symplectic manifold. In Sect. 6 we calculate the twistor spack/,pfand
identify its hyperkahler metric as the Gibbons—Manton metric. In Sect. 7 we finally
show that the monopole metric and the metricldp are exponentially close. The short
Sect. 8 shows how one can read off the Gibbons—Manton metric, as the asymptotic form
of the monopole metric, from the twistor description of the latter.

1. The Gibbons—Manton metric

The Gibbons—Manton metric[14]is an example efdimensional (pseudo)-hypeikler
metric admitting a tri-Hamiltonian (hence isometric) action of thdimensional torus



Monopoles and the Gibbons—Manton Metric 299

T™. Such metrics have particularly nice properties and were studied by several authors
[25, 18, 32]. The Gibbons—Manton metric was described as a hgplerkquotient of

a flat quaternionic vector space by Gibbons and Rychenkova in [15]. We recall here
this description, which we slightly modify to better suit our purposes. We start with flat
hyperkahler metricg, andg, on M = (St x R®)" andM, = H""~/2, We consider a
pseudo-hypeihler metric on the product manifold = My x M, given byg = g1 — g».

The complex structures dfi are given by the right multiplication by quaterniong, k.

The metricg; is invariant under the obvious action (by translations)8f= (S*)” and

the metricg, is invariant under the left diagonal action *~/2, We consider a
homomorphismp : 77(*=1/2 _, T given by

n i—1
(tij)icj — H tij Htﬁl

=i+l =1 =1m

This defines an action @ —Y/2on M = My x My byt-(ma, mo) = (¢(t)-m1, t-my).
Gibbons and Rychenkova have shown that the hygidek quotient of §/, ¢g) by this
action of 7("~1)/2 js the Gibbons—Manton metric.

We remark that, if we choose coordinates X;) on M, t; € St andx; € R3, and
quaternionic coordinates;, i < j, onH""~1/2, then the moment map equations are:

1 _
59ijij = X; — Xj. (1.1)
Aslong asx; 7 x; fori # j, the torus ™" ~1/2 acts freely on the zero-set of the moment

map. The quotient of this set By"~1/2 s a smooth hypeéhler manifold which we
denote byM,,. The action ofl"™ on M; induces a free tri-Hamiltonian action dd,,
for which the moment mapis justy; . .. ,X,). This makes\/,,, into aZ"-bundle over
the configuration spaag,,(R®) of n distinct points inR*. We shall now determine this
bundle. We recall that a basis 8% (C,,(R?), Z) is given by thek(k — 1)/2 2-spheres,

SZ = {x, € R |x; — x;| = const x, =constif k%i,j}, (1.2)
wherei < j. We have

Proposition 1.1. The hyper&hler moment map for the action 8" makesM,,,, into
aT"-bundle overC, (R3) determined by the elemefs, . . . , s,,) of H?(C,,(R3), Z")
given by
-1 ifk=1
sk(95) =<1 ifk=j
0 otherwise.

Proof. From the formula (1.1) it follows that restricting the bundle to a fi)tﬁgi is
equivalent to considering the case= 2. In other WOFdSSk(SiZj) =0ifk Z4,j
and we have to consider only one quaternionic coordiggteThe zero-set of the
moment map i%qij@j = x; — X; and the circleS* by which we quotient acts by
t- (gij, (ti, %), (t,%;)) = (tqiz, (tti, %:), (75, %;)). The quotient can be obtained by
settingt; = 1 and the induced action of thi& generators; of 7™ is then given by left
multiplication bys;l ong;;. Since the map,; — %qij@j with the left action ofS* on
{4i; € H;|gi;| = 1} is the Hopf bundle, it follows that;(S7;) = —1. A similar argument
shows that;(5%)=1. [
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In particular, {,X) = (t;, x;) form local coordinates oi/,,,. The metric tensor can
be then written in the form [32]:

g = ®dX - dX + & Y(dt + A)?,

where the matrixp and the 1-formA depend only on th&; and satisfy certain linear
PDE'’s. In particular® determines the metric. For the Gibbons—Manton metric

1 P
40, = 1_lzk;/im ?fz_]
W |fl7]_

2. Nahm’s Equations and Monopole Metrics

We shall recall in this section the description of th&metric on the moduli space
of chargen SU(2)-monopoles in terms of Nahm’s equations. A proof that the Nahm
transform [30, 16] between the two moduli spaces is an isometry was given by Nakajima
in [31].

One starts with the spacé of quadruplesTo, 71, T2, T3) of smoothu(n)-valued
functionson {1, 1) suchthaf, T», 73 have simple poles at1 with residue%p(ai), 1=
1,2, 3, wherep : su(2) — u(n) is the standard irreducible-dimensional representation
of su(2) ando; are the Pauli matrices. Equipped with thienorm (given by a biinvariant
inner product ony(n)), .4 becomes a flat quaternionic affine space. There is an isometric
and triholomorphic action of the gauge graépf U(n)-valued functiong : [-1,1] —
U(n) which are 1 att1:

To — Ad(9)To — g9~ 1,
T; — Ad(9)T; , i=1,2,3. (2.1)

The zero-set of the hypeikler moment map for this action is then described by
Nahm’s equationf30]:

. 1
Ti+[To, T+ 5 Y enlD; Til=0, i=123 2:2)
J,k=1,2,3

The quotient of the space of solutions §yis a smooth hypeghler manifoldM,, of
dimension 4. By the above mentioned result of Nakajind,, is the moduli space
of (framed) charge: SU(2)-monopoles. With respect to any complex structufg is
biholomorphic to the space of based rational maps of degaeC P* [13].

If we replacel/ (n) by SU(n) (resp. byPSU (n)) in the above description, we obtain
the moduli space of strongly centered (resp. centesédR)-monopoles of charge.

Remark 2.1.A similar construction can be done for any compact Lie gréiupwe
requirep : su(2) — g to be a Lie algebra homomorphism whose image lies in the
regular part ofg. We obtain a smooth hypeikler manifold of dimension 4 rank
which can be identified with a totally geodesic submanifold of a certain moduli space of
SU(N)-monopoles (with a minimal symmetry breaking). Alternatively, as a complex
manifold, it is a desingularization dh® x TC) /W, whereT® is a maximal torus in

G©, pC its Lie algebra, andi’ the corresponding Weyl group [6].
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The tangent space td,, can be described as the space of solutions to the linearized
Nahm’s equations and satisfying the condition of being orthogonal (id.tametric)
to vectors arising from infinitesimal gauge transformations. In other words the tangent
space tolM,, at a solution 1y, 71,7, T3) can be identified with the set of solutions
(to, t1, t2, t3) to the following system of linear equations:

to+[To, to] + [T4, ta] + [T2, t2] + [T, t3] = O,
t1+ [To, t1] — [T1, to] + [12,t3] — [T3,t2] = O,

2.3
ta + [T, t2] — [T1,t3] — [12,t0] +[13,t1] = O, (2:3)
ta +[To, t3] + [T, t2] — [T2,t1] — [T3,t0] = O.
The metric is defined by
1 3
ltortsotzntl=5 [ SR @4
-15

The three anti-commuting complex structures can be seen by writing a tangent vector
astg + ity + jto + kts.

3. The Asymptotic Moduli Space

We shall now construct a one-parameter family of moduli spadetc), ¢ € R, of
solutions to Nahm'’s equations carrying (pseudo-)hygkeldr metrics. We shall see later

on that these metrics are the Gibbons—Manton metric with different mass parameters.
We consider the subspagg of exponentially fast decaying functions@t[0, oo],

ie.

Q= {f + [0, 0] — u(n); 3y>0 Sgp(e"tllf(ﬁ)Il +e||df /at])) < +OO} S CHY

As in the previous sectiom, : s1(2) — u(n) is the standard irreducible-dimensional
representation ofu(2) (in particular,p(o1) is a diagonal matrix). We denote Ihythe
(Cartan) subalgebra of{n) consisting of diagonal matrices.

Let A, be the space af'*-functions ([, T3, T», T3) defined on (0+oc] and satis-
fying (cf. [23]):

(i) T1,T»,Tshave simple poles at 0 with r&% = p(c;);

(i) Ti(+oo)ehfori=0,...,3;

(iii) (T1(+00), To(+o0), T5(+00)) is a regular triple, i.e. its centralizer s
(iv) (Ti(@t) — Ti(+o0)) € @, fori=0,1,2,3.

Next we shall define the relevant gauge group. The Lie algebra of our gauge group
G(c) is the space of2-pathsp : [0, +00) — u(n) such that

(i) p(0) = 0andp'has a limit inh at +oo;
(i) (p—p(+x)) € Q1, and [, p] € 24 for any regular element € b;
(iii) cp(+00) +1iMy—so0(p(t) — tp(+00)) = 0.
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It is the Lie algebra of the Lie group

G(c) = {g: [0,+00) = U(n); 9(0) = 1, s(g) :=lim gg~* € b, (v — Ad(g)7) € 2,
(997" = s(9)) € 1, exples(9)lim (g(t) exp(-ts(g))) = 1} .

Remark.The last condition in the definition @(c) means thay(t) is asymptotic to
exp(t — ch) for some diagonah.

We introduce a family of metrics ad,,. Let (to, t1, t2, t3) be a tangent vector to the
spaceA,, at a point (o, 71, T», T3). The functiong; are now regular at@,=0,... , 3.
We put

+o0 3

3
I(to. . t2, 1P = ¢ 3 ltaCHo0) P + /0 S ()12 = [t (+o<)[2) ds. (3:2)
0 0

We observe that the grogf{c) acting by (2.1) preserves the metfid|. and the three
complex structure of the flat hypeakler manifoldA,,. We definel,, (c) as the (formal)
hyperlkahler quotient of4,, by G(c) (with respect to the metrig - ||.). The zero set of
the moment map is given by (2.2) (here condition (jii) in the definition of &{e)) is
essential) and sbf,, (c) is defined as the moduli space of solutions to Nahm'’s equations:

M,(c) = {solutions to (2.2) inA, } /G(c).

Remark.If ¢ > 0, then the metric (3.2) oft,,(c) will be seen to be positive definite if
(T1(+00), To(+00), T3(+0)) is sufficiently far from the walls of Weyl chambers. On the
other hand, it < 0, then the metric will be shown to be everywhere negative definite.
Therefore, for: < 0 we should really repladg: || with its negative; it is, however more
convenient to consider the metrigs ||...

We observe that sending a solutidnto the solutionT;(rt) for anyr > 0 induces
a homothety of factor betweenlM,,(c) and M, (rc).

Before we begin the detailed study Mn(C), let us explain why we expect this
metric to be exponentially close to the monopole metric. It is known [4] that the
solutions to Nahm'’s equations on, @) corresponding to a well-separated monopole
are exponentially close to being constant away from the boundary points (i.e. on any
[e,2 — €]). The same is true for solutions on the half ling{8c): as long as the triple
(T1(+00), To(+00), T3(+c0)) is regular, the solutions are exponentially close to being
constant away from 0 [23] (it is helpful to notice that the space of regular triples is the
same as the spacg, (R®) of distinct points ifR3). Our strategy is to take two solutions,
on half-lines (Qoo) and (—oo, 2) with the same values atoo, cut them off att = 1
and use this non-smooth solution on 2P (with correct boundary behaviour) to obtain
an exact solution to the monopole Nahm data. The exact solution will differ from the
approximate one by an exponentially small amount. Furthermore the part of the half-line
solutions which we have cut off is exponentially close to being constant and=fdr,
contributes an exponentially small amount to the mérid|. (all estimates are uniform
and can be differentiated). This can be seen from the fact that we can rewrite (3.2) as

+00 3

c 3
I(to, t1, t2, t)|2 = / > ISl + / ST (1£(s)I12 — [[ti(+00)[?) ds. (3.3)
0 9 ¢ 0

The first term, together with the corresponding term for the solution-ex(2), is
exponentially close to the monopole metric (for 1).
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4. Moduli Space of Regular Semisimple Adjoint Orbits

In order to obtain information about/,,(c) we need to consider first another moduli
space of solutions to Nahm’s equations, defined analogously, except that we require
the solutions to be smooth at= 0. This space, which can be defined for an arbitrary
compact Lie grou, is of some interest as all hypékler structures o6'C /T (here
TC is a maximal torus) due to Kronheimer [23] can be obtained from it as hiihrk
guotients (see Theorem 4.3 below). A reader who is primarily interested in monopoles
should think ofG asU (n).

Let us first recall how Kronheimer constructs hygiler metrics orG®/TC. Let
h be the Lie algebra of © and let ¢, 2, 73) € h® be a regular triple, i.e. one whose
centralizer isy. For a fixedny > 0, consider the Banach space

Q] = {f [0, 0] — gisup(e™ L F(0)] + e df fat]) < *OO}

with the norm|| f|| = sup (e"*|| f(t)|| + e"*||df /dt|). Define.A"(r1, 2, 73) as the space
of C-functions (o, T1, 1, T3) : (0, +o0] — g which satisfy:

{To@), (T3(t) — m);i=1,2,3} C Q.

Define alsog” by replacing®; with Q7 in the definition ofG given in the previous
section. Kronheimer shows then that for small enoygh

M (11,12, m3) = {solutions to (2.2) inA"(r1, 12, 73)} /G",

equipped with thé.2 metric is a smooth hypegkler manifold, diffeomorphic t6'¢ /T°C.
Futhermore, if t2, 73) is regular, then\ (11, 72, 73) is biholomorphic, with respect to the
complex structurd, to the complex adjoint orbit of, + i73.

We observe that the union of allf (71, 7, 73) has a natural topology and it is, in
fact, a smooth manifold. We shall show now that there ®B-bundle over this union
which carries a (pseudo)-hypétiler metric. We define the spagk; by omitting the
condition (i) in the definition of4,, in the previous section. Instead we require that
theT; are smooth at = 0 fori = 0,1, 2, 3. We defineM(c), ¢ € R, as the (formal)
hyperlahler quotient ofds by G(c) with respect to the metric (3.2). We have:

Proposition 4.1. M(c) equipped with the metric (3.2) is a smooth hyggédrller mani-
fold. The tangent space at a soluti@fy, 71, 1>, T3) is described by Egs. (2.3).

We remark that the metric 3.2 may be degenerate at some points. However the hyper-
complex structure is defined everywhere.

Proof. DefineM/.(c) by replacing with Q" in the definition ofM(c). By the expo-
nential decay property of solutions to Nahm’s equations ([23], Lemma 3.4), a neighbour-
hood of a particular element il (c) is canonically identified with its neighbourhood

in M/ (c) for small enoughy. Therefore we can use the transversality arguments of
[23], Lemma 3.8 and Proposition 3.9 (with a slight modification due to condition (iii)
in the definition of Lie@(c))) to deduce the smoothness. The fact that the metric is hy-
perkahler is, formally, the consequence of the fact thaf(c) is a hyperi&hler quotient.

One can, in fact, check directly that the threéter forms are closed. We shall also,
later on, identify the complex structures and the complex symplectic forms proving their
closedness. [O
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We observe now that the action dig; of gauge transformations which are asymptotic
toexpth+Ah), h € b, A € R, induce a free isometric action 6f= exp§) on Ms(c).
In fact this action is tri-Hamiltonian and a simple calculation shows

Proposition 4.2. The hyperihler moment map = (u1, u2, 13) for the action ofl” on
Me(c) is given by, (To, T1, T2, T3) = T;(+o00) fori = 1,2, 3.

As an immediate corollary we have:

Theorem 4.3. Let (11, 72, 73) be a regular triple inh3. The hyperhler quotient
(1, 72, 73)/T of Mc(c) by the torusT is isometric to Kronheimer'a/ (ry, 72, 73).

We have also a tri-Hamiltonian action 6fon M(c) given by the gauge transforma-
tions with arbitrary values at = 0. The hyperkhler moment map for this action is
(T1(0), T2(0), 75(0)).

We have two other group actions @i (c). There is a free isometric and triholo-
morphic action of the Weyl group’ = N(T")/T given by the gauge transformations
which become constant (andifi) exponentially fast.

Finally there is a free isometri€U (2)-action which rotates the complex structures.
As a consequence it has a globally definezhler potential for each &hler form (cf.
[18]). The potential fotw, (0r ws3) is given by the moment map for the action of a circle
in SU(2) which preserveg. This is easily seen to be

+00 3

K,-cZnT(m)uz / > (T = 7o) s

Remark 4.4.There is a similar (pseudo)-hypétkier manifold with a torus action such
that the hyperlthler quotients by this torus are isometric to Kronheimer’'s ALE-metrics
on the minimal resolution of a given Kleinian singulari®/T" [24]. This manifold is
defined asM except that the’; have poles at = 0 with the residues defined by a
subregular homomorphissu(2) — g (cf. [6, 5]).

Remark 4.5.0ne can observe that/(0) is a cone metric (with thR- o-action given
by T;(t) — rT;(rt)) and in fact, it is ariH*-bundle over a pseudo-quaternioider
manifold (cf. [34]).

Remark 4.6.It is instructive to consider the &ler analogue of\/;(c). The Kahler
metrics onG /T (cf. [2]) can be described (cf. [7]) as the natuf&-metrics on the
moduli space of solutions té; = [T, To] with To(t), (T1(t) — 7) € 2 for a fixed
regular element of § (this gives the Khler form whose cohomology classris We

can now do a construction similar to that/af;(c) to obtain moduli spaceh?[G(c) with

a (G x T)-invariant pseudo-Ehler metric whose Khler quotients byl" are precisely
the Kahler metrics ori7/T'. In this case it is easy to compute both the topology and the
complex structure ojﬁfg(c): MG(C) is diffeomorphic toG x {regular elements dj},

and the complex structure at, (1) is given byl (v +w, p) = (Iov — p, w), wherev L b,

w, p € h andlp is the complex structure of /T

5. M, (c) as a Manifold

We now return to the spad@n(c) defined in Sect. 3. Our first task is to show that this
space is smooth. We shall show tht,(c) is a smooth hypegéhler quotient of the
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product of the spacé/y ) (c — 1) considered in the previous section and of another
moduli space of solutions to Nahm'’s equations. This latter space, denotag by
given byu(n)-valued solutions_to Nahm’s equations defined onl{Gsmooth att =
1 and with the same poles dd,,(c) att = 0. The gauge group consists of gauge
transformations which are identity &= 0, 1. Equipped with the metric (2.4) this is a
smooth hyperlhler manifold [6, 11]. It admits a tri-Hamiltonian action@{n) given
by gauge transformations with arbitrary valueg at 1. In addition, we consider the
spacelly)(c—1) defined in the previous section. We identify it this time with the space
of solutions on [1+00] via the maprl;(¢) — T;(t +1) (so that the gauge transformations
behave now, nearoe, as elements af(c)).

It is easy to observe that the spatg,(c) is the hyper&hler quotient ofN,, x
My my(c — 1) by the diagonal action @f (n) (cf. [6]; the moment map equations simply
match the functiondh, 7>, 75 att = 1, after that, quotienting by means that the
remaining gauge transformations are smooth=atl). Using this description afZ,,(c)
we can finally show

Proposition 5.1. M,,(c) equipped with the metric (3.2) is a smooth hyjagrler man-
ifold. The tangent space at a solutidify, 71, 7>, T3) is described by the Egs. (2.3).

Proof. Since the metric (3.2) may be degenerate, we still have to show that the moment
map equations orV,, x My (c — 1) are everywhere transversal. Consider a particular
point in My p)(c — 1) which we represent by a solution = (1y, 11, 1%, 13) with
To(+o0) = 0 andT;(+00) = 74, ¢ = 1, 2, 3. Letu be the hyper&thler moment map for the
action of G on IV,, x My (). We observe that the i image @f;,, contains the image of
dujm, 1/ being the hyper&hler moment map for the action 6fon N,, x M (71, 72, 73)
(Kronheimer’s definition ofM (1, 72, 73) was recalled in the previous section). The
metric onN,, x M (71, 2, 73) IS non-degenerate and, @sacts freelydufm is surjective.

Thusdy is surjective at each point iV,, x My ny(c — 1) andAZ,,(c) is smooth. O

We observe that, as in the caseMi;,)(c), M,(c) has isometric actions of the
torusT™ (defined as the diagonal subgrouplofn)), of the symmetric groug,,, and
of SU(2). In particular, the hypedhler moment map for the action 6f is still given
by the values of’y, T, T3 at infinity (cf. Proposition 4.2).

We can describe the topology &f,,(c):

Proposition 5.2. M,,(c) is a principal7™-bundle over the configuration spaég, (R3)
of n distinct points inR3.

We postpone identifying this bundle until the next section (Proposition 6.3).

Proof. The space’,,(R3) is the space of regular triples in the subalgebra of diagonal

matrices and the moment magpfor the action of™ gives us a projectiod/,,(c) —

C,.(R3). Let us consider a fixed regular triple (72, 73) and all elements a#/,, (c) with
Ty(+o0) = 73,1 = 1,2,3, i.e. u~(r1, 7, 73). For each such solution we can make

identically 0 by some gauge transformatipwith ¢(0) = 1. This is defined uniquely up

to the action off x T™ and so the set af"*-orbits projecting viau to (r1, 72, 73) can be

identified with the set of solutions to Nahm’s equations Wigh= 0, T3, 7>, T5 having

the appropriate residues at= 0 and being conjugate tg, 7, 73 at infinity. By the

considerations at the beginning of this section this space is the taigerlquotient of

N, x M (11, 12, 13) byU(n). The arguments of [6] show that the corresponding complex-

symplectic quotient can be identified with the intersection of a regular semisimple adjoint
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orbit of G L(n, C) with the slice to the regular nilpotent orbit. This intersection is a single
point. Finally, in order to identify in this case the hypahker quotient with the complex-
symplectic one we can adapt the argument in the proof of Proposition 2.20 in [20J]

Our next task is to describe the complex structurgfafc) (because of the action of
SU(2) all complex structures are equivalent). As usual (cf. [13]), if we choose a complex
structure, say, we can introduce complex coordinates on the moduli space of solutions
to Nahm’s equations by writing = Tp + ¢73 and§ = 1% + i13. The Nahm equations
can be then written as one complex and one real equation:

a5 _
E - [ﬂva]v (51)
Loty =lo,al +[5", 61 (52)

By the remark made at the beginning of this sectif,(c) is the hyperkhler quotient
of the product manifoldV,, x My ,)(c— 1). We shall show that as a complex symplectic
manifold M, (c) is the complex-symplectic quotient 84, x M ,)(c —1). Let us recall

the complex structure aV,, [13, 19, 6, 12]. Lety, ... , e, denote the standard basis of
C™. There is a unique solution; of the equation
d
d—l: = —aw (5.3)
with
H —(n—1)/2 _ —
lim (t wi(t) el) 0. (5.4)

Settingw; (t) = B~ 1(t)w1(t), we obtain a solution to (5.3) with
H i—(n+l)/2, ) =
lim (t wi(t) ez) 0.

The complex gauge transformatigft) with ¢g=* = (w1, . .. , w,) makesa identically
zero and sends(t) to the constant matrix

0... 0 (~1y"1s,

1. 1S, -

B, py= |1 DS (5.5)
0.1 &

Here; denote the (constant) eigenvaluesi@f) ands; is thei" elementary symmetric
polynomial in{f, ... , 3.}

The mapping ¢, 5) — (g(1), B) gives a biholomorphism betweewvy, I) and
Gl(n,C) x C" [6]. .

We describe the complex structure/df, (c) as follows:

Proposition 5.3. There exists &™-equivariant biholomorphism betweé\ﬂn(c) and
an open subset of

(H{[% b] € Gi(n,C) xy (0 +1n); gbg™! is of the form (5.5})) /N,
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whered denotes diagonal matrices, the unionis over unipotent algebfagth respect to
0)andN = expn. Furthermore, the relatior is given as followsfg, d+n] ~ [¢’, d’'+n']
if and only ifn € n,n’ € n’, and eithem’ C n and there exists am € N such that
gm~1 =g’ Ad(m)(d +n) = d' +n’ or vice versa (i.en C n’ etc.).

Remark. It will follow from the description of the twistor space that this biholomorphism
is actually onto. Proving this right now would require showing that’ffteaction on
M,,(c) extends to the global action @C*) . This, in turn, requires showing existence
of solutions to a mixed Dirichlet-Robin problem on the half-line - something that seems
quite tricky.

Proof. Fix a unipotent algebra and consider the set of all solutions,(3) = (T +
1Ty, To +iT3) on [1, +00) such that the intersection of the sum of positive eigenvalues of
ad@7y(+o0)) with C(B(+00)) is contained im. Let M (n; ¢ — 1) be the corresponding
subset oMy (»)(c). We observe that, Sinc&{(+o00), T>(+00), T5(+00)) is aregular triple,
the projection off’ (+oc) ontod® N C(B(+o0)) is a regular element, and aacontains
the unipotent radical of a Borel subalgebraltf3(+oc)) for any element of/ (n; ¢ —1).
Using gauge freedom, we always makg+oo) = 0 and, by Proposition 4.1 of Biquard
[8], such a representative is of the fomgiia(+o0), B(+00) + Ad(exp{—a(+oo)t})n),
wheren € n andg is a bounded>I(n, C)-valued gauge transformation. The transfor-
mationg is defined modulo exp-a(+oo)t } go exp{a(+oo)t} with go € P = exp@ +n).
Since To(+o0) = 0 andTp is decaying exponentially fasy has a limit (in 7¢)
at +oo. If we replaceg(t) by ¢'(t) = g(t)g(+o0)~texp{—a(+oc)t + ca(+c0)}, then
(o, B) = ¢'(0, B(+c0) + n’) for ann’ € n. The transformatiory’, which satisfies (at
infinity) the boundary condition of an element Gfc — 1), is now defined modulo
constant gauge transformationsNh Moreoverg’(1) is independent af(c — 1) and we
obtainamap : M(n) — Gl(n,C) x 5 (0 +n) by sending 4, 5) to (¢'(1), 3(+o0) +n’).
Considering the infinitesimal version of this construction showsdghatholomorphic.

Since¢ is U(n)-equivariant, it is (locally)Gi(n, C)-equivariant. We can adapt the
argument of Proposition 2.20 in [19] to show thik,(c) is the complex-symplectic
quotient of N,, x M n)(c — 1) by (local action of)GI(n, C). Let us restrict attention
to N, x M(n). The complex symplectic moment map at the pointHX) of N, is
—g~1Bg (hereg € Gl(n,C) and B is of the form (5.5)) and the complex symplectic
moment map at the point corresponding &6, B, + n] is ¢’(B4 + n)g'~* (hereg, is
diagonal anch € n). The moment map equation for the diagonal actiori=éfn, C)
is g~1Bg = ¢'(B4 + n)g’~. If we now quotient byGi(n, C), i.e. sendg to identity,
we shall end up with the set of b] € GI(n,C) x (0 +n) such thaty’bg’~* = B
(B is determined by the diagonal part#f This identifies the charts described in this
proposition. By going through the procedure we can conclude that the charts for different
n are matched as claimed. .

So far we have shown that there is a holomorphic gépm M, (c) to the manifold
M described in the statement. We still have to show thist1-1. By construction our
map isT"-equivariant, and SQ(C ) equwanant (where the action is defined). Since

the (C*)"-action on)M is free, it is free onZ,,(c). Furthermore thgC*)"-action on
M leaves invariant sets of the forid N (Gl(n,C) xy (d +n)), d € d. Each such set
is a single orbit of C*)" and sopis 1-1. O

The above description afZ,(c) is rather complicated. We remark that the open
dense subset whef¥+oo) is regular corresponds to= 0, i.e. to

{(ﬁdag)! ﬁd = diag@b e 7ﬁn)7ﬁi 7/6j if v 7.7’ gﬁdg_l = B(ﬁb cee 7/671)}
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We shall denote the corresponding subsefibf(c) by M¢%c). We observe that an
elementy of Gi(n, C) which sends diagf, ..., 3,) to B(6y, ..., 3,) is of the form

9= V(ﬁl? e 7ﬂn)_1 diag(u17 s ,’Ltn), (56)

whereu; 7 0andV (61, ... , 3,) is the Vandermonde matrix, i.&; = (3;)’*. We can
calculate the complex symplectic form= w; + iws on M, (c):

Proposition 5.4. The complex symplectic formon M, %c) is given, in coordinates
ﬁi,ui,iZ 1, , M, by

" du; ag; A dp;
dg; — _— 5.7
SECIVPR LY 6

i=1 i<j

Proof. First, we calculates on the subset of/,)(c — 1), wheres(+oo) is regular.
This subset is biholomorphic @i(n, C) x {regular elements df®} and according to
the proof of Proposition 5.3, an elemeant, (3) of this set corresponding t@(3,) €
Gl(n,C)xbhcanbewrittenasy, 5) = (—g(t)g 1, g(t)Bag(t) 1), whereg(t) is a complex
gauge transformation witf0) = g. Therefore a tangent vectar((), b(t)) at (o, 5) can
be written as

(a,0) = (—gpg*,9(ba + [p, Bal) g~ *), (5.8)
where p is dual tog—dg and b, is dual tod3,. The complex symplectic form on
Muyy(c — 1) is given by

w=(-1) tr(da(+oo) A dﬁ(+oo)) + / tr (da A df — da(+oo) A dﬁ(+oo)).
0

For two tangent vectors:(b) and (, 13), corresponding, via (5.8), tp(b;) and (, Bd)
we obtain

w = *tr(bdﬁ - de - [p7 ﬁ]ﬁd)a

wherep = p(0), 5 = 5(0). To calculate the symplectic form oW, *%(c) it remains to
substitute (5.6) foly. Let us writew for diags, ... ,u,). Thenp becomes dual to
uwtdu — v~ tdVV ~tu. Let us writev for the tangent vector dual o~ *du andY for
the tangent vector dual t/V ~1. Sincev is diagonal and th&" row of Y is of the form
b;s (here we writeb; = diagfy, . . . , b,)), for a covector, we can writew as

w = —tr(ba? — vbg — [, Y18a).

It remains to calculate tif, ] 3,. Let us writelV;; for the ¢, /)™ entry of V-1, i.e.

Wis = (1" SumiB o By B0 ) T = B0, (5.9)

k7

S being thgk‘h elementary symmetric polynomiab{ = 1). We calculate thei (i)™
entry of [T, Y] as

> (bib; — biby) (Z(k - 1)ﬁf—zwkj> (Z(k - 1)6§-2Wki> :
J k k



Monopoles and the Gibbons—Manton Metric 309

This means that

[, Y180 =D (bib; —bib;)(B:— ;) (Z(k - 1)65—2%) (Z(k - 1)@5*%) :

i<j k k

Formula (5.7) will be proven if we can show (for ;) the following identity:

S k=18 | (D (k- 18 W | = _712 (5.10)
k k (ﬂl - /BJ)
According to (5.9) we have

Z(k _ 1)Bk—2Wk] - Zk(k — 1)65*2(_1)”—/&"5'”_19(/61’ s 7Bja s aﬁn)
k

[1.(8; — 55) (5.11)
We compute the numerator of this expression. Wepsetn — 1 and @1, ... ,ap) =
(B1s- -+, B4, .., Bn). Then the numerator can be written as
P . d P
;(p —8)(—1)ya? " *S(at, . .. ,ap) = p (SZS‘(_l)ssstps)t:a

Since) " St* = [[(1 +ast), we can rewrite the expression under the derivative as

zp:(—l)ssstp—s = ﬁ(t —ay).
s=0 s=0

Taking the derivative and substituting for ¢, finally gives

> - 9)(=1)al " = [J(ai — as).
s=0

sFi
Going back to (5.11), we have

Hs?’i,j(ﬂi — Bs)

kE—1 k_ZW =27
zk:( )61 kj Hsyj(ﬁj — ﬁs) 5
from which (5.10) follows. O

Remark 5.5.Setting

pi = Ui/ 11 - 8.

J>1
the formula (5.7) can be rewritten as

w = i iiz N dﬁl
=1
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6. The Twistor Space and the Metric onM,, (c)

We shall now identify the twistor spacg(c) of Mn(c). As a first step, we observe,
after Hitchin et al. [18], that the hypeitkler moment map, for the T™-action defines
a moment map, also denoted pyfor the complex-symplectic form along the fibers
Z(c) — CP*. Thisy is a map fromZ(c) to O(2) ® C". We shall first identify the open
subsetZ™9Y(c) of Z(c) defined as the set

Z"9c) = 11 (0(Q2) ® C" — 0(2) ® A), (6.1)

whereA is the generalized diagonal @i*. In terms of the coordinatesy; .. ., 3,) and
(u1, - .. ,uy) given by (5.6),29Y(c) has the following description:

Proposition 6.1. Z™9(c) is obtained by taking two copies @f x (C™ — A) x (C*)"
with coordinateq(, 5;, u;) and(¢, 5;,4;), ¢ = 1, ..., n, and identifying ovet # 0 by
=¢Y
;= (20,
i = Dexp{—cB; /i
The real structure is given by

¢ =1/C,

Bi = —Bi/¢?, B L

ui =y (1) T8 — B)e?/<.

Finally, the complex symplectic form along the fibers is given by (5.7).

SR

Proof. For any hyperkhler moduli space of solutions to Nahm’s equations one can
trivialize the twistor space by choosing an affine coordiqase CP* and then putting
n=0+(@+a*) — 7% u=a— ¢ for ( 7 oo, andij’= B/¢%+ (a+a*) /¢ — 5%,
@ = —a* — /¢ for ¢ # 0. Then, overl 7 0,00, we haven™= n/¢?, .= u — n/C.
Moreover, the real structure s— —1/¢, n — —n*/¢?, u — —u* +n* /¢ (cf. [12, 9]).

We now have to go through the procedure in the proof of Proposition 5.3 to describe
Z"9in coordinates(, 3;, u;) and (, 8;, ii;). First we describe the twistor space/§f,
in coordinatesq, B) and (j, B) defined right after (5.5) (cf. [12]). Going through the
procedure assigning(B) to («, 8), we see thaB = B(81/¢ 2, ..., 3,/¢?). Onthe
other handy is given byg = ¢g(1), whereg(t) is a complex gauge transformation such
that 4 g=1 = —ug~1. This means thag(t) makesu identically zero. We observe that
exp{—Bt/¢}g(t) makesuidentically zero and; into B/¢2. The initial value for the
solutiong—! depends o and so we can writg(f) = U exp{—Bt/(}g(t) for some
constant matrixU. If we are to get the form (5.5), we must have= U’d((), where

d(¢) = diag(¢~ "V, ¢, Y. (6.2)

In additionU’ commutes withB(51/¢ 2, ..., 3,/¢2). Moreover, the initial value for

the equationjitg‘l = —ag~! depends only on the residuesafy, i, 7j and therefore

U’ does not depend oR. Since the initial values belong ®U(n), we also havé/’ €
SU(n). It follows thatU’ belongs to the center ¢fU(n). This is only an ambiguity in

the choice of trivialization and it does not affect the twistor space. Similar considerations
show that the real structure senBi3,, . . ., 8,) to B(—f1/¢72,..., —B3,/¢~?) andg

to r(¢) exp{ B*/C} (¢*) %, where
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0 if i+
ri;(C) = {(_1)j—l<_n+l—2j ilf i:? ZZ .

This time the remaining ambiguity is given by a real element in the centstgh),
i.e.—1if niseven.

We now go through a similar procedure for the subsef\ff,,)(c — 1), where
B(+o0) is regular. We have assigned in the proof of Proposition 5.3 to each element of
this set a pair(, 8(+o00). We already know how(+oc) changes (as it is given by the
complex moment map for a torus action). The proof of Proposition 5.3 shows that the
other coordinatesy on {¢ 7 oo} andg on {¢ 7 0}, are related by = gexp{—(c —
1)8(+00)/¢}. The real structure senggo (g*)7t exp{(c — 1)B(+c0)*/(}.

Finally we have to go to the complex-symplectic quotient as in the proof of Propo-
sition 5.3. We end up withg( 54) and (, 34), where 3y = diag(@s,... ,3,) and
B9~ = BB, ..., 3, (and similarily for @, 34)). We see thaB; and 3; are re-
lated as stated ang= d(¢) exp{—B/(}gexp{—(c — 1)B4/(}. Since exp—B/(}g =
gexp{—PB4/C}, § = d(Q)gexp{—cB4/(}. If we now go to the coordinates;, i; de-
fined by (5.6), we see that they change as required, since, tii entry of V-1 is
given by (5.9) and the; change as prescribed (i.e. as section®(#)). A similar ar-
gument shows that the real structure is, up to a sign, the one described in the statement
(it is enough to compare the last row #«)(V—ldiag{ui})*_ldiag{ecﬁ'i“} and in
V(=B ... —B,/¢?) diag{u}}). We shall see shortly (Proposition 6.2) that
the negative of the real structure described in the statement does not admit any sections
(a section would be equivalent to a complex number with imaginary modulus). The
formula for the complex symplectic structure is a direct consequence of Proposition 5.4.
O

We now wish to find the full twistor space and the metricdp(c) and this means
finding a family of real sections. We know their projectiongX@)® C™: they are given
by (8 + (a + a*)¢ — 8*) (+00) (cf. [18]) and are parameterized hylistinct points ifR3
with coordinates#;, Rez;, Im z;),i = 1,... ,n,wherer; = /—1T1(+c0), z; = B(+c0).

In other words we have curvesS; = {(¢,7);n = z; + 2x:,¢ — 2;¢?} in TCP?* (heren is

the fiber coordinate). According to Proposition 6.1 theoordinate of a real section of

Z(c) changes as a non-zero section of the buid(& — 1) (with the transition function
¢F=Leen/< from oo to 0) overS;. This is true only away from the intersection points of

the curvesS; and we have to understand what happens to the section at these points.
Two curvesS; = {(¢,7);n = zi+2x;¢ — z;¢?} andS; = {(¢,n);n = 2 + 2x;¢ — 2;¢*}
intersect in a pair of distinct points; anda;;, where

T; — X5) 1y
aij:(l ]) 1]

y  Tij = \/(;Li — £Cj)2 + ‘Zl — Zj 2, (63)

%= %
We have:

Proposition 6.2. The real sections of the twistor spaZéc) of Mn(c) are given, over
< # o0, by (ﬁl(g)a v >ﬁn(<)7 ul(<)7 o ,Un(<)), where

Bi(Q) = zi + 2x:¢ — % ¢%,

u;(€) = A H(C - Clji)ec(g”i—z_i()7
J7i
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where(z;, 2;), i = 1,... ,n, are distinct points iR x C and 4; are complex numbers
satisfying
A A; = [ [ (i =y + 7).
JjF

Remark.Given Proposition 5.2, this finally shows that the biholomorphism of Proposi-
tion 5.3 is onto.

Proof. Consider a real sectionof Z(c) (corresponding to a solutioAy, 71, 1%, 13))
which projects to a given real sectiofy(¢), ... , 5,.(¢)) of O(2) ® C™. For a generic
section the intersection points of tig are all distinct. We consider the poiaj; at
which g, intersectsg; and let us assume that no othgy intersect there. We recall
that v=171(¢) = 3(a + a*) — B*¢ and, hencey/—1T1({)(+00)ss = x5 — 2,(. This
means that/—171(a;;)(+0);; < v/—1T1(a;;)(+o0);i, and so, with respect to the com-
plex structure corresponding tg; € CP?, the solution (o, T1, T», T3) belongs to the
chart described in Proposition 5.3 withgenerated by the matrix with the only non-
zero entry having coordinates (). Let us writes as (3;(¢), u;(()),7=1,... ,n,ina
neighbourhood of;;, ¢ 7 a;; (notice that the procedure of Proposition 6.1 does assign
well-defined complex numbers(¢), . .. , u,(¢) to each{ 7 a;;). According to the
proof of Proposition 5.3 there is an elemenf) € N = expn such that the following
expression

V(B - 8a(Q) " diag(us(Q), - un(Q))m(C)
has an invertible limit a = a;;.

Let W, (¢) denote the X, 1) entry of V (53.(0), . .. ,@n(g))’l and letp(¢) denote
the only non-zero non-diagonal entry of d(azg((), R un(g))m(g) (p(¢) is the ¢, 7)1
entry). We then have th&v,;u; + W;p andW,u; have a finite limit at = a;;, for all
k=1,...,n. From the formula (5.9) a finite limit foW,,;u, implies thatu;(a;;) = 0
while the nonvanishing of the last row & ! diag(us)m means that;; is a single
zero ofu;. If more than two sections, (¢) meet ai;; the considerations are similar but
involve largem. We can conclude the;; contribute precisely — 1 zeros ofu; (counting
multiplicities) and, given Proposition 6.1, this proves the formulaf¢¢) as soon as we
show thatu; has no other zeros, or, equivalently, no poles. To prove this latter statement
it is enough to show that; does not have a pole af;. We go back to the situation when
n is one-dimensional, and where we concluded Watu; + Wy;p has a finite limit at
¢=ajforallk=1,... n. WecanwriteW,;u; + Wypas (fu; +gp)/(3; — ;) where
f andg have finite limits at = a;;. We then have

1
W1 ju; + Worip = — | fu; (O Bs) +ap(d_ Bs) e
57 s7i J
which can be rewritten as
fu top
- (BT
- B;

sH

Since the second term has a finite limit, so dfes and hence:;. Again, if more than
two sections3,(¢) meet atu;; the considerations are similar but involve largeiThus
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we have shown the second formula of the statement. The last formula follows from the
reality condition and the fact that; = —1/a,; (this calculation also eliminates thel
ambiguity in the choice of the real structure in the proof of 6.1). O

We can finally identify),,(c) as al™-bundle over the configuration spaceg (R3)
of n distinct points; in R3.

Proposition 6.3. 1, (c) is equivalent to th@-bundle described in Proposition 1.1.

Proof. From the last formula in Proposition 6.2 it follows tha&t # O if, for all j # 4,
z; 7 zj or x; > x;. On the other hand, if we put

Ar= A [ s,
jer

for any subsef of {j;j # i}, then we have

AfAr = H(l‘t — X +’I“ij) H(l‘j —T; +’I“7;j).
7 jer
J¢I

Let us choose setf, ... , I, such thatl; C {j;j Z i} andj € I, & i ¢ I;. De-
fine U(I4,...,I,) as the complement of the substr;, z;)i=1,.. n; If = {ji2 =
zj andz; < z;}} (If denotes the complement df in {j;j # i}). The sets
U(l,...,1I,) coverC,(R3) and over each of them the bundig,(c) is trivialized
by coordinategz;, z;, As, /| Ay, |). To determine the bundle, choose: j. The bundle
restricted toS“j?j is given by the transition function froi (1, ... , I,,), wherej & I(7)
toU(Iy, ..., 1), wherel; = I; U{j}, I} = I; — {i}, I} = Iy for k 74, j. Let ¢, be the
transition function for thé'™" generator of ™, i.e. the transition function from, /|Ar, |
to AI£/|AI,:| We see tha&)k =1ifk 7i,j, and¢i = aji/\aji|, ¢j = |aji|/aji. There-
fore ¢; = (z; — 2:)/|2; — zi| andg; = ¢; . It remains to identify the circle bundle
over the sphere? + |z|? = const given by the transition functiory|z| from the re-
gionUp = {z # 0 or x > 0} to the reonU; = {z ¥ 0 or x < 0}. Let us write
the unit 3-sphere af(u,v) € C?;|ul? + |v|> = 1}. The Hopf bundle is given th&*
actiont - (u,v) = (tu,t~1v) and the projectior5® — S? by the mapr = |u|? — |v|?,
z = 2uv. OverUj this bundle is trivialized by, z, «/|u|) and ovetU; by (z, z, |v|/v).
The transition function isz|/z. Thus ;] = =1 € HY(S7,5%). O

We can now calculate the metric di,,(c). By the remark at the end of Sect. 3, it
is enough to know the metric far= —1, 0, 1, as the others are obtained by homothety.
We shall calculate the metric far = 1. The metric forc = —1 is the everywhere
negative definite version of the Gibbons—Manton metric (this can be seen fremthe
calculation) and the one far = 0 the and negative-definite cone over a 3-Sasakian
manifold.

Theorem 6.4. J\Zln(l) isisomorphic, as a hypedkler manifold, to the Gibbons—Manton
manifold M,,, defined in Sect. 1.

Proof. We know from the previous proposition that the two spaces are diffeomorphic.
We shall show that the twistor descriptionaf, (1) and of the Gibbons—Manton metric
coincide. We recall from Sect. 1 that the latter is a hypbtér quotient of\/ = M; x

M, by a torus, wherel/; = (S x R®)" and M, = H"(»~1/2, With respect to any
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complex structurd/y = (C*)" x C™ andM, = C""=/2 5 Cn=1)/2 | et us write the
corresponding complex coordinates gs (;), ¢ = 1,... ,n, on My and as ¢;;, w;;),

i < j, on M,. The complex-symplectic forms corresponding to metgicand g, are
given by

n

> Di a5, (6.4)
=1
Vi N\ dWj;. .
dvij A dw;j (6.5)
1<j

The real sections of the twistor spaZe of M; are written, over, # oo, as
Bi(Q) = i + 22,¢ — zi (%, pi(¢) = Bie™ ¢, (6.6)

whereB; B; = 1. The real sections of the twistor spacgof M, are (cf. [2], chapter
13.F):

v35(¢) = Ci;(¢ — aiy), wi;(€) = Dy (¢ — ajs), (6.7)

wherea;;, a;; are roots ob;jw;; = z;; +22;;¢ — z_ijgz for some 5, 2:;) € RxC,i.e.

wij + o + |z i — /2% * |22

ZT“ ) Ajq 2?
9 9

O = —ga 22 |2 D= x4 22 ]2
CijCij = =5 + 1[5, + |25, DijDij = wij + [ x5 + |25 ]%.

Here the particular choice of sections is forced either by the fact the metric is positive
definite or by requiring that th&-actiont - (v;;, w;;) = (tvij,t 1w;;) determines the
Hopf bundle over the 2—sphem§j +z;;/? = 1 (this calculation was done in the proof

of Proposition 6.3). To obtain the twistor description of the Gibbons—Manton metric
we have to perform the complex-symplectic quotient construction along the fibers of
71 ® Z, with respect to the difference of the forms (6.4) and (6.5). As in Sect. 1, the
moment map equations argw;; = 3; — §; and so the;;, a;; are given by (6.3). Since

we already know that the manifolds are diffeomorphic, it is sufficient to determine the
metric on an open dense subset, e.g. on the set wherg alle non-zero. Quotienting

this set by((C*)n(n_l)/2 is equivalent to sending afl;; to 1. This is achieved by acting
by the elementz(;;)~* of ((C*)”("fl)/z. By the description of the torus action given in
Sect. 1, this sends(¢) to

_Hj<i Cji(C - aji)e
! Hj>i Cz](c - aij)

and

v~z = [ I~ “ﬁ)exi—a-c

B =Y )
Hj>i(< - aij)

(6.8)

where

57 = iclwi = +7ij) (6.9)
T sy — @ rig)

These and thg; give the real sections for the Gibbons—Manton metric and the symplectic
form is (6.4). We now compare this with the description#fl) given in Proposition
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6.2. According to Remark 5.5 we should get= u,;/]_[pi(ﬁi — f3;) in order to have
the same symplectic form. We obtain

A; [T;-i(C—ajz)
Hj>i(z_j - Z_z) Hj>i(C - aij)

zi—2;i(

pi(Q) =

All we have to do is to compare the norm Af/ Hj>i(z_j — z;) with the norm ofE;.
We have, from Proposition 6.2 and Eq. (6.9),

AiA; [ (@i — 2 +7i5) 11 (xZ —x; + i)
— = (z; — +7ﬂl])H Me 75w

Hj>i |2 — zif? - Hj>i |z — 2|2 - zz|2

j<i j>i
_<iwi — j+7‘¢j) -
Hj>i(xj — i +1i5) o

which proves the theorem. O

We shall finish the section with a remark that Propositions 6.2 and 6.3 can be gen-
eralized to define hype#ler metrics on a class @*-bundles over’, (R3). We have:

Theorem 6.5. Let P be a7"-bundle overC,, (R®) determined by an elemefy;. . . . |

sp,) Of HZ(C (R3),Z™) satisfyings(S%) = 0if k 7 i, j ands;(S%) = —s;(57). Then

P carries a family of (pseudo)-hypsil iiler metrics such that the real sec'uons of the
twistor space are given, ovérZ oo, by (81(€), - . . , Bn((), ua(Q), . . . , un(¢)), where

Bi(Q) = 2 + 22,¢ — zi (%,

UZ(C) = Az H(C — aji)s'” eC(Ii—z_iC)’
JF

wherec is a real constant(x;, z;), ¢ = 1,... ,n, are distinct points inR x C, s;; =
|sz(S )|, and A, are complex numbers satlsfymg

AA H —xj+7“” 5”.
7

This description determines a hypercomplex structure?oi\ (pseudo)-hyperihler
metric can be then calculated using any complex-symplectic form along the fibers,
given as a section ok*T;: ® O(2), e.g. the form (5.7). These metrics will correspond
to the motion ofz dyons inR? interacting in different ways (cf. [14]).

Remark.The calculation of the metric given above shows that the Taub-NUT metric
(cf. [2]) has two very different descriptions in terms_of Nahm’s equations: 1) it is the
metric on the totally geodesic submanlfdm?( 1) of M,(—1) defined by considering
su(2)-valued solutions to Nahm’s equations a$id (2)-valued gauge transformations;

2) it is the metric on the moduli space 8t/(3)-monopoles of charge (1) [10, 29].
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7. Asymptotic Comparison of the Metrics

We shall now show that the Gibbons—Manton metric and the monopole metric are asymp-
totically exponentially close. The asymptotic region, where the individual monopoles
are separated, of the monopole spaggis diffeomorphic toP/S,,, whereP is at orus
bundle over the configuration spacg (R3) and S, the symmetric group. The bundle

P is not, however, the bundle of Proposition 6.3. Rather, as we shall see shortly, it is
the quotient of that bundle by (%z)"—subgroup off™. In other words it is the bundle

determined by as € H?(C,,(R®), Z") with all s, being twice those in Proposition 6.3.
We shall compare the metric avi,, with the metric on the hype#hler quotient of
M, (1) x Mn(l) by the diagonal-action. We do this in order to have solutions to

Nahm’s equations with poles at both ends of the interval, [L]. For anye, ¢/, let us
write M, (c, ¢') for the hyperhler quotient of\/,,(c) x M,,(c’) by the diagonal action
of I™. The action off ™ given byt - (m, m') = (tm, m') induces a tri-Hamiltonian action
of T™ on M, (c, ¢’) which makes\Z,, (¢, ¢') into aT™-bundle overC,,(R3). We have

Lemma 7.1. M,,(c, ') is isomorphic, as a hypeékler manifold, talZ,,(c+¢') / (Z2)",
where(Zy)" = {t € T"; 2 = 1}.

Proof. Lety, 11/ be the moment maps for the actioriisf on M7, (c), M., (c') respectively.
The moment map for the diagori&f-action on the product ig+ . If we go back to the
proof of Proposition 6.3 and use the same notation, we can see that the zero-set of this
moment map is (™ x T™)-bundle oveC,, (R3) which restricted to eacﬂ is given by

transition functionsds, . .. , ¢,, gbl ,oo 5 0 1) (the point being thaU(Il, I =
—U(l4,...,1I,)). Hence, if we quotient by, by sending the secorid* to 1 over each
U(l,...,I,), we end up with &"-bundle for which the transition functions a¢é,
k=1,...,n. This proves the differential-geometric part of the statement. To obtain the
isometry we repeat this argument for the twistor spacklgfc) x M,,(c'), performing

the complex-symplectic quotient along the fibers as in the proof of Theorem 6.4]

From now on, we shall considéﬁn(l, 1) with half (compare formula (2.4)) of
the metric given by the above lemma. In other words, locally the metric is still the
Gibbons—Manton metric. We can identifif,,(1, 1) with the moduli space of pairs
((To, T1, T2, T5), (T3, Ty, T3, T4)) of solutions to Nahm's equations, defined respec-
tively on [-1,00] and on [-o0, 1], such thatT;(+o0) = T/(—o0) for i = 0,1,2,3,
and the residues df; at —1 and of 7} at +1,: = 1,2,3, define the standard-
dimensional irreducible representationsaf(2). The group of gauge transformations
G(1,1) is now defined as pairg(g’) such thaty(t + 1), ¢'(—t + 1) € G(c) for some
cands = limy_.+ g9t = lim,__. ¢’¢’~1. The tangent space consists of pairs
((to, ta, t2, ta), (th, 11, th, t5)) defined on £1,00] and on [-oo, 1], respectively, with
t;(+o0) = ti(—o0) and satisfying Egs. (2.3). The metric M(l, 1) can be written as

+oo 3

ZZut w5 [ 3 (6P — )| ?) s+
0
1 3
LS o | S e - ooy as
0 > 0

We can rewrite this as
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+00 3
2/ D (6O = stroo)F)ds+ 5 N }:mmmﬁ—mwmmﬂw
= §jw<$wws+f/"§jut@m%m (7.0

Let us fix a complex structure, s&yand write as in Sect. o, for To +iT7, 3 for T +iT3.
We write an element ofiZ,,(1, 1) as a pair((cv—, B-), (a+,ﬁ+)) We shall erteﬂz for
the ¢, i) entry of 3_(+00) = B+(—o0) and denote byiZ;9(1, 1) the subset ofi/, (1, 1)
where all3; are distinct. Similarly, we writé\/,° for the subset ofd, 3) in (M,,, I)
where the eigenvalues gfare distinct. We shall prove:

Theorem 7.2. There exists a biholomorphisgnfrom 1,791, 1)/.5,, to M;9 such that

"9 — g'| = O(e™"), (7.2)

whereg, ¢’ denote the monopole and Gibbons—Manton metric respectively(n) is
a constant, and? is the separation distance of particlesdn, (R®), i.e.

R =min{x; —X;|;i # j}. (7.3)
The same estimate holds for the Riemannian curvature tensor.

Since such a biholomorphism will be defined for any complex structure and the union
of M®%1, 1) for different complex structures is all af,,(1, 1), we conclude that the
monopole and the Gibbons—Manton metrics are exponentially close in the asymptotic
region of the monopole moduli space.

The remainder of the section is devoted to proving this theorem. We need the fol-
lowing lemma:

Lemma 7.3. Let C > 0. The spacel/,;c%1) is biholomorphic to the quotient of the
space of solutionga, 5) to Eq. (5.1) which have the correct boundary behaviour at
t = 0 and are constant (hence diagonal) for> C by the group of complex gauge
transformationgy : [0, +o0) — Gl(n, C) with g(0) = 1andg(t) = exp(t — h) for some
diagonalh fort > C.

Proof. Let (a, 8) be an element aff;°%(1) and letvy = a(+00), 84 = S(+00). According
to the proof of Proposition 5.3, there is a unique complex gauge transforngat&fmed
on [C/2, +c0) with g(+o0) = 1 such thatd, 8) = g(aq, Ba4). Let g : [C/2,00) —
Gl(n, C) be a smooth path with the values and the first derivativgsanitly coinciding
att = C'/2 and withg{¢) = 1 and fort > C. We obtain a solutiond«,}3) to the complex
Nahm equation (5.1) by setting

(.0 ift<C

(), Ba) Tt >C. (7.4)

(&®m={

This is a solution of the type described in the statement of this lemma. The proof of
5.3 shows further that it is only(C/2) e pg(l C/2)ag} (and a solution to (5.1) on

[0, C/2]) that determines the element df,;°%(1). Therefore we obtain a well defined
holomorphic map frorrM'eg(l) to the moduli space described in the statement. Let us
define the inverse map. Let(3) be an element of the moduli space described in the
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statement. As in [23] we can find a bounded complex gauge transfornggtsoich that
go(&, B) is an element oftZ1e%(1).

We can assume thgg has a limith at +oo (this follows from the convexity property
of go [13], since we can assume thig(t) is hermitian for alk). Accordlng to Proposition
5.3 or 6.2 the action of ™ on 1M,,(1) extends to a global actlo(rfC*) with respect to

the complex structuré (or any other). Let, 3) be the element of7;°%(1) obtained
from go(&, 3) by the action oh~* € (C*)". Then ¢, 8) = g(&, 3) andg € G°(1). This
gives the inverse mapping. O

We can now construct a biholomorphism betweeff%(1, 1)/, and M. From
the above lemmalZ,;c%1, 1) is biholomorphic to the quotient of the space of pairs
((—, B-), (s, B+)) defined on f1,+00) and on (oo, 1] respectively such that
(a—,B)(t + 1) and ¢, 5+)(1 — t) are as in the above lemmay(, 5_)(+o0) =
(ovr, B+)(—o0) by the group of pairsg(, g+) with g_(—1) = g+(1) = 1 and such that
there are diagonal, p with g_(t) = exp¢h — p) fort > —r, g.(t) = exp{h — p) for
t < r(r € (0,1)is fixed but arbitrary). We define a solutiam, () to the complex Nahm
equation (5.1) on{1,1) by

(a_,B)t) ift<O

(o, Be)(®)  if £ > 0. (7.5)

(@, B)(t) = {

The GC-orbit of this solution (see Sect. 2 for the definition @ contains a unique
element ofM,, [13, 20]. Furthermore, the action of a (, g.) translates into the action
of g € G©, whereg(t) = g_(t) fort < 0 andg(t) = g+(t) for t > 0. Therefore we have

a well defined holomorphic mafs. from M1, 1) to M,,. If we now have an element
(v, B) of M;;’9, we can diagonalizg on [-r, 7] and makex diagonal and constant on
[—r,r]. Let (& ﬁ) be the resulting solution to the complex Nahm equation. We obtain
an element o1/, 791, 1) by setting

(@, p)t) fort<O0
_ _)(¢t) = ~

(o= 5-)00) L@@@)mmzo
and similarly for ¢, 8+). This defines the inverse #9. up to the ordering of eigenvalues
of 4. In other wordsp,. induces a biholomorphism betwedd, %1, 1)/S,, and M;®.
Furthermore, for a fixed eleme(fr_, B_), (o, 4+)) of My %(1, 1) and two parameters
r, ', the resulting; 3) of (7.5) aregC-equivalent and thereforg., ¢, induce the same
biholomorphismp.

Let us now prove the estimate (7.3). Fortunately, much of the analysis has been
already done in [3]. First of all, we recall ([23], Lemma 3.4) that solutions to Nahm’s
equations which have a regular triple as a limit at infinity, approach this limit exponen-
tially fast, of orderO (e~<f) (that isT3, T», 75 do and we can always malg to have
such decay by using the gauge freedom). The proofs of Propositions 3.11-3.14 in [3]
show that the same holds for tangent vectéysi(, t2, t3). Let us now see what happens
to a tangent vectar under the map. The gauge transformationg, ') which make the
element((a_, B_), (as, B:)) of M1, 1) constant and equal to the common value at
infinity on [-1 +C/2, +o0) and (oo, 1 — C/2] are exponentially close to the identity.

In the next stage of the construction ®F formula (7.4) — we have smoothed out the
solutions which can be again done by gauge transformations exponentially close to 1.



Monopoles and the Gibbons—Manton Metric 319

Therefore the resulting tangent vectois exponentially close to the original one in the
metric (7.1). We have then restricted the solutions (formula (7.5)) to obtain a solution
(a, B) to the complex Nahm equation or 1, 1]. Let p denote this operation of restric-
tion. The first line of the formula (7.1) is exponentially small and therefore the norm of
vin (7.1) and the norm afp(?d) in (2.4) are exponentially close. The solutian () will

not satisfy the real Nahm equation, however, we will have

F(6.0) = % (a+a%) +[&,a]+[3,571= O ).

Lemma 2.10in [13] implies now that we can solve the real equation by a complex gauge
transformation bounded a@3(e—“*). We can now show that the vectde(v) tangent

to M,, (which is obtained fromip(?)) is exponentially close tdp(?) by following the
analysis of Sect. 3 in [3] step by step, replacingth&/R) estimates by)(e~¢*). This

proves the estimate (7.3). For the curvature estimates we do the same using the analysis
of Sect. 4 in [3]. This proves Theorem 7.2.

8. Twistor Description of Monopoles and the Gibbons—Manton Metric

We shall show in this section how the twistor description of monopole metrics determines
the asymptotic metric. We recall [13] that the moduli space-ofionopoles is biholo-
morphic to the space of based rational ma@s$/q(z) onCP* o f degree: (based means

that deg < degq). On the set, where the roofs, . .. , 3, of ¢(z) are distinct, these
roots and the values = p(3;) of p form local coordinates and the complex-symplectic
form can be written as [1]:

> dpin dpi. (8.1)
i=1 pi

The metric is determined by the real sectigiis, ¢)/q(z, ¢). Their description is pro-
vided in [19]. The denominatay(z, ¢) is given by a curveS — the spectral curve of
the monopole — i"C P! [16]. This curve satisfies several conditions, one of which is
the triviality of the line bundlel.—2 restricted taS, and Hurtubise [19] shows that the
numeratorp(z, ¢) is given by a nonzero section of this bundle. (The valpgs) are
given by the values of this section at the intersection pgip($) of S with T, CPL.)

What happens when the individual monopoles separate? First of all, the spectral
curve approaches the union of spectral curves of individual monopoles exponentially
fast [4]. These curves; are of the formy; = 2 + 22, — z;¢%, i = 1,... ,n, where
(z;,Rez;, Im z;) are locations of 1-monopoles (particles). What happens to the section
of L=2? We make a heuristic assumption (which we know to be true from Sect. 6) that
the section acquires zeros and poles at the intersection points .gf (hrore precisely
the only singularities op;(¢) occur at the intersection points §f with otherS;). As
we shall see this is sufficient to determine the asymptotic metric. _

First of all the real structure on the bundle? is u — ute~27/¢ and therefore
if p; has a zero at one of the points.8fN S;, then it has a pole of the same order at
the other, and vice versa. Furthermore, since the metric and hence the real sections are
invariant under the action of the symmetric group, we must have

k

|I C_al —2(x;—2; :

pz(C):Az (C—GJ € e 7/0’ Z:]-a"'vna
37 I
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whereq;;, a;; are the two points it¥; N.S; given by (6.3) and is an integer. The reality
condition implies that
1= k —k
AzAz = Hajiaji.
7
One can now calculate the asymptotic metric, using (8.1). The sigmiif determine
the signature, whilg| is simply a constant m ultiple. The actual valug:a$ determined

by the topology of the asymptotic region #8f,,, and comparing with Proposition 6.3
and the remarks at the beginning of Sect. 7 we concludekthat (in the coordinates

of Proposition 6.2p; = [1;.,,(3; — 8;)/u?).

We remark that the above analysis can be easily done for other compact Lie groups
G. The twistor description of metrics on moduli spaceg afnonopoles with maximal
symmetry breaking is known from the work of Murray [28] and Hurtubise and Murray
[21, 22] and from this the asymptotic metric can be calculated. We shall do the exact
analysis in the case @f = SU(XN) in a subsequent paper.
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Note added in proof

The metrics of section 4 (or, at least, their positive-definite counterparts) can be also
obtained as finite-dimensional hypétker quotients. This follows from the construction

of Kobak and Swann (Internat. J. Mafh.193-210 (1996)) of a nilpoteii©-orbit as

a hyperléhler quotient of a vector spadé by a productU of unitary groups. The
hyperléhler quotient’ of V' by the semisimple part @f is a positive-definite analogue

of the spaced/¢(c) (i.e. Theorem 4.3 holds faP). Presumably the spac@é;(c) can

also be obtained this way by changing the signature of the metri¢.on
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