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Abstract: We build nearly topological quantum field theories in various dimensions.
We give special attention to the case of eight dimensions for which we first consider
theories depending only on Yang–Mills fields. Two classes of gauge functions exist
which correspond to the choices of two different holonomy groups inSO(8), namely
SU (4) andSpin(7). The choice ofSU (4) gives a quantum field theory for a Calabi–
Yau fourfold. The expectation values for the observables are formally holomorphic
Donaldson invariants. The choice ofSpin(7) defines another eight dimensional theory
for a Joyce manifold which could be of relevance inM - andF -theories. Relations
to the eight dimensional supersymmetric Yang–Mills theory are presented. Then, by
dimensional reduction, we obtain other theories, in particular a four dimensional one
whose gauge conditions are identical to the non-abelian Seiberg–Witten equations. The
latter are thus related to pure Yang–Mills self-duality equations in 8 dimensions as well
as to the N=1, D=10 super Yang–Mills theory. We also exhibit a theory that couples 3-
form gauge fields to the second Chern class in eight dimensions, and interesting theories
in other dimensions.

1. Introduction

Topological quantum field theory (TQFT), or more specifically, cohomological quantum
field theory has been extensively studied in two, three and four dimensions. (See e.g.
[1, 2] and references therein.) In this article we show that theories which are almost
topological also exist in dimensions higher than four. We call them BRSTQFT’s instead
of TQFT’s. We give special attention to the case of Yang–Mills fields in eight dimensions.

A BRSTQFT relies on a Lagrangian which contains as many bosons as fermions,
interconnected by a BRST symmetry. The Lagrangian density is locally a sum of d-
closed and BRST-exact terms. Starting from classical “topological” invariants, the most
crucial point in the construction of the BRSTQFT is the determination of gauge fixing
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conditions, enforced in a BRST invariant way. In the weak coupling expansion, one
interprets the theory as exploring through path integrations all quantum fluctuations
around the solutions to the gauge conditions. This provides, eventually, an intuitive
way to study the moduli problem associated with the choice of gauge fixing conditions,
by computing Green functions defined from the BRST cohomology. Generally, one
must distinguish between the ordinary gauge fixing conditions for the ordinary gauge
degrees of freedom of forms and the gauge covariant ones which occur when one gauge-
fixes a “topological” invariant (i.e, constant on a Pontryagin sector of gauge fields).
A BRSTQFT can often be untwisted into a Poincaré supersymmetric theory; we give
more examples in this paper. BRSTQFT’s are microscopic theories, in the sense that in
principle they provide the fundamental fields to study (almost) topological properties.
We ask: are their infrared limits describable by effective theories, following the ideas of
Seiberg and Witten?

In four dimensions Donaldson [3] used the moduli space of anti-self-dual fields to
describe invariants of four manifolds. Witten [4] interpreted these invariants as observ-
ables in a topological quantum field theory, twistedN =2 supersymmetric Yang–Mills.
Baulieu and Singer [5] noted that this TQFT could be obtained from a topological action
by the BRST formalism with covariant gauge functions which probe the moduli space of
anti-self-dual fields. In this paper, we apply this formalism to higher dimensional cases
of self duality; M-theory, F-theory, and low energy limits of string theory have increased
the interest in QFTs in dimension greater than four.

Over a decade ago, Corrigan et al [6] classified the cases in which the self-duality
equation for Yang–Mills fields in four dimensions could be generalized to higher dimen-
sions. See also Ward [7]. Solutions to these equations are higher dimensional instantons
[8, 9]. The generalizations in eight dimensions depend on having the holonomy group
reduced fromSO(8) toSpin(7) orSU (4). See Salamon [10] for background on special
holonomy groups.

The third author (IMS) learned about self-duality in eight dimensions for Einstein
manifolds and fields associated to the spin bundle from Eric Weinstein in 1990. Weinstein
constructed special instantons, computed the dimensions of the corresponding moduli
space, and noted the importance ofSpin(7) andSU (4). For this, and more, see [11].

The geometry for manifolds with holonomySpin(7) can be found in Joyce [12]. For
holonomySU (4), the holomorphic extension of Donaldson Theory is being developed by
Donaldson, Joyce, Lewis, and Thomas at Oxford. Their program for extending results
in two, three and four dimensions from the real to the complex case is sketched in
Donaldson and Thomas [13].

In the first part of this paper we describe two eight dimensional Yang–Mills quantum
field theories that reflect the eight dimensional self duality equations found in [6]; we use
the geometry developed by the above-mentioned authors to construct the quantum field
theory. These theories cannot be called topological for they depend on some geometrical
structure of the manifoldM8. For want of a better term, we have called them BRST
quantum field theories (BRSTQFT), because they are constructed by starting with a
topological action and using the BRST formalism with covariant gauge functions that
again probe the moduli space of these new anti-self-dual fields.

When the holonomy group isSpin(7) ⊂ SO(8), we call (M8, g) a Joyce manifold.
Section 2.1.1 gives the geometry needed to construct the BRSTQFT of 2.1.2, which
is in turn described geometrically in 2.1.3. Section 2.2 gives a parallel discussion of
the holomorphic case, i.e., when the holonomy groups isSU (4). We compare the two
cases in Sect. 2.3. We point out in Sect. 2.4 that the J-case is a twist ofD = 10,N = 1
supersymmetric Yang–Mills theory (SSYM) dimensionally reduced toD = 8. Since
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supersymmetries for a curved manifold require covariant constant spinors, there is one
remaining supersymmetry; we explain its relation to the topological BRST symmetry.

Having defined pure Yang–Mills BRSTQFT in eight dimensions, we introduce a
different theory in Sect. 3 which couples an uncharged 3-form gauge fieldB3 to the
Yang–Mills fieldA. We propose as covariant gauge conditions of the coupled systems,
the pair of equations

FA = ∗� ∧ FA,

Tr (FA ∧ FA)+ + dB3 + ∗dB3 = 0, (1.1)

where� is a background closed 4-form. One must be careful here;B3 is not an ordinary
3-form anddB3 is not its differential. Rather,B3 is locally defined, up to an exact 3-form
so thatdB3 stands for a closed 4-form. (See the discussion in Sect. 3).

Section 4 discusses other dimensions. WhenM12 is a Calabi–Yau 6-fold, one can
define BRSTQFT’s and we do so. We reduce our 8D theories to 6D and 4D in sections
4.2 and 4.3, respectively. The H case reduction can be obtained directly on a Calabi–Yau
3-fold by a modification of the methods in Sect. 2.2.

The reduction to 4D is particularly interesting. On the one hand we get a twisted
N = 4 SSYM of Vafa and Witten [16]. In fact, the H, J cases and the case ofM7,
holonomyG2 theory, reduced to 4D, give the three twists ofN =4 SSYM. On the other
hand we also get the nonabelian Seiberg–Witten theory. Thus there is a relationship
betweenN = 4 SSYM and nonabelian SW theories. The latter theory is obtained from
the eight dimensional J theory, with its octonionic structure; the former is obtained from
theN = 1, D = 10 SSYM theory, by ordinary dimensional reduction. The direct link
between theD = 10 SSYM theory and the J theory is that theN = 1, D = 10 SSYM
theory gives by dimensional reduction theN = 1, D= 8 SSYM which can be identified
with the J theory by a simplest twist, specific to eight dimensions, which interchanges
vectors and spinors (Sect. 2.4).

2. Pure Yang–Mills 8 Dimensional Case

The four dimensional Yang–Mills TQFT can be obtained by the BRST formalism. Start-
ing with p1 = 1

8π2 Tr F ∧ F , one gauge-fixes its invariances with three covariant gauge
conditions and one Feynman-Landau gauge condition that probe the moduli space of
self-dual curvature fields [5]. These gauge conditions are enforced in a BRST invariant
way, by using the 4 gauge freedom of local general infinitesimal variations of the connec-

tionAµ. Put mathematically, we get an elliptic complex 0→ 30 d−→ 31 d−→ 32
+ → 0,

tensored with a Lie algebraG.
In this section we extend this scheme to 8 dimensions when the holonomy group in

SO(8) is eitherSU (4) (the case of a Calabi–Yau 4-fold) orSpin(7) (the case of a Joyce
manifold). The 4-D self duality equations must be generalized to

λFµν =
1
2
TµνρσFρσ, (2.1)

whereλ is a constant (an eigenvalue) andTµνρσ is a totally antisymmetric tensor which
is generally not invariant under generalSO(D) transformations. Rather it is invariant
under a subgroup ofSO(D). Corrigan et al [6] classified the possible choices ofTµνρσ

up to eight dimensions, where two solutionsT are singled out. Indeed, for these cases,
the space of 2-forms32 decomposes into a direct sum and one can thus replace the
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self-duality condition in four dimensions by the condition that the curvature fields lie
in an appropriate summand. The elliptic complex above has an 8-D counterpart: 0→
30 d−→ 31 d−→ P+(32) → 0. Moreover, in each case, there is a closed 4-form� and
one can replacep1 by

1
8π2

� ∧ Tr (F ∧ F ). (2.2)

Since
∫

X
� ∧ Tr (F ∧ F ) is independent of the gauge fieldA and since the new elliptic

complex implies that the number of gauge covariant gauge functions plus Feynman-
Landau type gauge condition is eight, one can use the BRST formalism to introduce
new (ghosts and ghosts of ghosts) fields and an invariant action. The theory is not
topological, because it depends on the reduction of the holonomy group. In the case of
theSU (4) reduction, one predicts that the expectation value of the observables depends
on the holomorphic structure ofX, but not on the choice of the Calabi–Yau metrics.
We call these theories BRSTQFT’s. We will say the BRSTQFT is of type J forSpin(7)
and of type H forSU (4). We will analyze each case. They differ in a subtle way from
the point of view of BRST quantization. In the type H case one has 6 independent
real covariant gauge conditions which can be seen as three complex 4-D self-duality
conditions. We can complete them by acomplexsupress gauge condition which counts
for the two missing gauge conditions allowed by the eight freedom in deforming the
Yang–Mills field. In the type J case one has seven independent real equations which we
can complete by the usual (real) Landau gauge condition. In the former case one has
thus a complexification of all ingredients of the 4-D case. In the latter case all fields
are real, and the situation is quite like the 4-D case, with the change of the quaternionic
structure of the self duality equations in four dimensions into an octonionic one in eight
dimensions.

The action we consider will be the BRST invariant gauge fixing of the topological
invariant

S0 =
1
2

∫
M8

� ∧ Tr (F ∧ F ), (2.3)

where� is a fixed closed four form adapted to each case. Depending on the case, we
will have six or seven covariant gauge fixing conditions of the type of Eq. (2.1), that we
will denote as8i = 0, 1 ≤ i ≤ 6 or 7. That we get an action containing a Yang–Mills
part relies on the identity

a
∑

i

Tr (8i8i) · (vol) = −S0 + Tr (F ∧ ∗F ), (2.4)

wherea is a positive real number (one has different decompositions in the J and H
cases). (vol) stands for the volume form. The last term is the action density for the
Yang–Mills theory. Hence a solution to8i = 0 gives a stationary point of the eight
dimensional Yang–Mills theory. For this reason, the equations1

2T
µνρσFρσ = λFµν ,

deserve to be called the instanton equation. Notice that one has the correspondence
�µνρσ = εµνρσαβγδT

αβγδ. By adding toS0 a BRST exact term which generates among
other terms

∑
i(8i8i), we will thus replace the “topological” invariant� ∧ Tr (F ∧F )

by the standard Yang–Mills Lagrangian Tr (F ∧ ∗F ) plus ghost terms, which constitute
the action of the BRSTQFT theory. As explained earlier, the term BRSTQFT seems to us
more appropriate than the term TQFT for the resulting theory. Obviously, the remaining
gauge invariances must be gauge fixed, which will be done in the same spirit, as in [5].
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2.1. Type J case: Joyce Manifold.

2.1.1. Geometrical setup.Recently it has been proposed that the 7 dimensional and
the 8 dimensional Joyce manifolds provide a compactification to four dimensions of
M -theory andF -theory, respectively [17, 18, 19]. We consider here the 8 dimensional
case and call a Joyce manifold an eight dimensional manifold withSpin(7) holonomy
[12] 1. ThenSpin(7) acting on34(M8), the space of 4-forms, leaves invariant a self-
dual 4-form� 6= 0. Further,� is covariantly constant and hence closed. The space of
2-forms32(M8) splits into32

21 ⊕ 32
+ with dim R32

+ = 7. One can see this by noting
that32 ' so(8) and that32

21 ' Lie algebra ofSpin(7) ⊂ so(8). The splitting can also
be obtained as follows: letT be the operator on32 given byτ → ∗(� ∧ τ ). ThenT is
self adjoint with eigenvalues +1 and−3, when� is scaled. Its eigenspaces are32

21 and
32

+, respectively. The ordinary anti-self-dual Yang–Mills fields in four dimensions are
now to be replaced by (P+FA) = 0, whereP+ is the projection of32 onto32

+. We next
discuss the linearization of this equation.

LetS+
M andS−

M (that is,8s and8c in another notation) denote the chiral and antichiral
real (Majorana) spinors forM8 (M8 is simply connected and has a unique spin structure).
Then the representation ofSpin(7) onS+

M is the direct sumR ⊕ V (that is,8s = 1⊕ 7).
Let ζ be a covariantly constant spinor field of norm 1 giving the splitting ofS+

M . The
representation ofSpin(7) onS−

M is irreducible. SinceSM ⊗SM is isomorphic to forms,
tensoring byζ identifies spinors with forms. For example,32(S+

M ) ' 32(M8); so
32(S+

M ) = 32(R ⊕ V) = V ∧ V + ζ ⊗ V gives the splitting into32
21 ⊕ 32

+. Further
ζ ⊗ S−

M can be identified with31(M8), that is,8v. We conclude that the sequence

0 → 30 d−→ 31 P+d−→32
+ → 0 is an elliptic sequence and (P+d + d∗) : 31 → 32

+ ⊕ 30

is the Dirac operator6∂ : S−
M → S+

M , after the identification of spinors with forms due
to ζ.

If P is a principal bundle overM8 with a compact gauge groupG, we can couple

forms to its Lie algebraG by a vector potentialA. We have the sequence 0→ 30⊗G DA−→
31 ⊗ GP+DA−→ 32

+ ⊗ G → 0 which is elliptic whenP+D
2
A = 0, i.e. whenP+FA = 0. (Here

we have identified the Lie algebraG with the adjoint Lie algebra bundle overM8.) In
general,P+DA +D∗

A =6DA : 31 ⊗ G → 32
+ ⊗ G + 30 ⊗ G is elliptic. The index of the

operator is the virtual dimension of the moduli spaceMJ of solutions to the nonlinear
equationP+FA = 0, modulo gauge transformations.

To make contact with the next section, let us remark thatP+FA = 0 determines, in
the case of a pure Yang–Mills BRSTQFT, the relevant gauge covariant gauge conditions
shown in Eq. (2.1), whileD∗

A is the operator related to the Landau-Feynman gauge
condition of ordinary gauge degrees of freedom.

More precisely, the BRSTQFT that will be determined shortly is the gauge fixing by
BRST techniques ofS0[A] =

∫
M8

� ∧ Tr (F ∧F ). The latter is independent ofA, since

it is 8π2� ∪ p1(P ) which only depends on the topological charge ofA.
The way one gets the Yang–Mills action from the gauge fixing of an invariant is the

consequence of the following. Ifω is an element of32, letω− andω+ be its components
on32

21 and32
+. Then‖ω‖2=‖ω+ ‖2 + ‖ω− ‖2, 〈ω+, ω−〉 = 0, while

1 There is another class of Joyce manifolds in seven dimensions [20]. Its holonomy is the exceptional group
G2. Both classes of Joyce manifolds have been studied in superconformal field theory [21, 22].
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� ∧ F ∧ F = � ∧ (F+ + F−) ∧ (F+ + F−)

= � ∧ F+ ∧ F+ + � ∧ F− ∧ F− + � ∧ F− ∧ F+ + � ∧ F+ ∧ F−
= −3 ∗ F+ ∧ F+ + ∗F− ∧ F− + ∗F− ∧ F+ − 3 ∗ F+ ∧ F−. (2.5)

Thus ∫
M8

Tr (� ∧ F ∧ F ) =‖F− ‖2 −3 ‖F+ ‖2, (2.6)

and

‖FA ‖2=
∫

M8

Tr (� ∧ FA ∧ FA) + 4 ‖F+ ‖2 . (2.7)

� ∧ � orientsM8 and is the volume element. Given the topologial sector, we choose�

so that
∫

M8
Tr (� ∧ FA ∧ FA) ≥ 0. ThenF+ = 0 minimizes the action‖FA ‖2.

To write the BRSTQFT action in physicist’s notation, we have to be more explicit.
In terms of an orthonormal basis, the self-dual four form is

� = e1 ∧ e2 ∧ e5 ∧ e6 + e1 ∧ e2 ∧ e7 ∧ e8 + e3 ∧ e4 ∧ e5 ∧ e6

+e3 ∧ e4 ∧ e7 ∧ e8 + e1 ∧ e3 ∧ e5 ∧ e7 − e1 ∧ e3 ∧ e6 ∧ e8

−e2 ∧ e4 ∧ e5 ∧ e7 + e2 ∧ e4 ∧ e6 ∧ e8 − e1 ∧ e4 ∧ e5 ∧ e8 (2.8)

−e1 ∧ e4 ∧ e6 ∧ e7 − e2 ∧ e3 ∧ e5 ∧ e8 − e2 ∧ e3 ∧ e6 ∧ e7

+e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8,

whereei (i = 1, . . . , 8) are vielbein fields.
The operatorT defined above can be written as the followingSpin(7) invariant

fourth rank antisymmetric tensor

Tµνρσ = ζT γµνρσζ, (2.9)

whereγµνρσ is the totally antisymmetric product ofγ matrices for theSO(8) spinor
representation;

γµνρσ =
1
4!
γ[µγνγργσ] , (2.10)

andζ is the covariantly constant spinor introduced above to identify spinors with forms.
This gives another component representation of the four form�. To repeat the first
paragraph of this section in terms of the fourth rank tensorTµνρσ, we define an analogue
of the instanton equation on the Joyce manifold [6];

Fµν =
1
2
TµνρσFρσ, i.e. F ∈ 32

+. (2.11)

The curvature 2-formFµν in 8 dimensions has 28 components, whoseSpin(7) decom-
position is28 = 7 ⊕ 21. (This is made explicit by the eigenspace decomposition of the
action of 1

2T
µνρσ in Eq. (2.1) with the eigenvaluesλ = −3 andλ = 1.)

Equation (2.11) can be written as seven independent equations, showing that the
curvature has no components in the former subspace which is 7-dimensional

F8i = cijkFjk, 1 ≤ i, j, k ≤ 7, (2.12)
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Equation (2.12) makes the octonionic structure explicit. Indeed, thecijk are the structure
constants for octonions2 and the eight dimensional tensorsTµνρσ can be written as3

T8ijk = cijk, 1 ≤ i, j, k ≤ 7

Tlijk =
1
24
εlijkabccabc, 1 ≤ i, j, k, l ≤ 7. (2.13)

Notice that by construction, theTµνρσ are self-dual objects in 8 dimensions. Computed
explicitly, Eq. (2.11) is

81 ≡ F12 + F34 + F56 + F78 = 0,

82 ≡ F13 + F42 + F57 + F86 = 0,

83 ≡ F14 + F23 + F76 + F85 = 0,

84 ≡ F15 + F62 + F73 + F48 = 0, (2.14)

85 ≡ F16 + F25 + F38 + F47 = 0,

86 ≡ F17 + F82 + F35 + F64 = 0,

87 ≡ F18 + F27 + F63 + F54 = 0.

In this form, the gauge functions are ready to be used to define the BRSTQFT action.
It is known (see [8, 9, 14] ) that at least one instanton solution exists for the 8

dimensional equationFµν = 1
2T

µνρσFρσ.
4,5 Finally, Eqs. (2.5)-(2.7) imply

4
7∑

i=1

Tr (8i8i) · (vol) = −� ∧ Tr (F ∧ F ) + Tr (F ∧ ∗F ). (2.15)

2.1.2. Action and observables.In the following all the fields are Lie algebra valued
and we will suppress the Lie algebra indices. We use the standard notation (ψµ, φ) for
topological ghost. We also introduce the Faddeev–Popov ghostc to define a completely
nilpotent BRST transformation. The topological BRST transformation for the gauge
field and the ghost fields is

sAµ = ψµ +Dµc, sψµ = −Dµφ− [c, ψµ],

sc = φ− 1
2

[c, c], sφ = −[c, φ]. (2.16)

We need as many pairs of the anti-ghost and the auxiliary fields (χi, Hi) as topological
gauge functions, with the following BRST transformation law;

sχi = Hi − [c, χi], sHi = [φ, χi] − [c,Hi]. (2.17)

One has 1≤ i ≤ 7. The gauge fixed action at the first stage is

2 If we decompose the octonions into its one dimensional real part and 7 dimensional imaginary part,R7,
then∗7(�|R7) is a 3-formα which determines Cayley multiplication onR7 by α(z, y, z) =< x, y, z > .

3 In the four dimensional case one has similar equations, with the indicesi, j, k running from 1 to 3. Then
the coefficientscijk are the structure constants for quaternions. The holomorphic H case that we will shortly
analyze is thus a theory with a complexified quaternionic structure.

4 It is also known that a solution exists in seven dimensions if one replacesSpin(7) byG2 (see [15]).
5 An interesting problem is to find conditions on a curved compact Joyce manifoldM8 so that such

instantons exist.
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S1 =
1
2

∫
M8

� ∧ Tr (F ∧ F ) + s

[
1
2

∫
M8

d8x
√
g Tr (χi8i +

1
2
χiHi)

]
=

1
2

∫
M8

� ∧ Tr (F ∧ F )

+
1
2

∫
M8

d8x
√
g Tr

(
Hi8i +

1
2
HiHi − χi(Dψ)i +

1
2
φ[χi, χi]

)
, (2.18)

where (Dψ)i is the FP ghost independent part ofs8i. Eliminating the auxiliary fields
Hi by Eq. (2.15), one recovers the standard Yang–Mills kinetic term

S1 =
∫

M8

d8x
√
g Tr

(
−1

4
FµνFµν − χi(Dψ)i +

1
2
φ[χi, χi]

)
. (2.19)

Notice that the fermion terms break theSO(8) global invariance down toG2, for
which the octonion structure coefficient in Eq. (2.12) is an invariant tensor. The gauge
fixing and Faddeev–Popov ghost dependence have not been considered yet: the first
stage action has still a gauge symmetry in the ordinary sense. To fix it completely we
take two more conditions

D · ψ = 0, ∂ ·A = 0. (2.20)

(The meaning of the scalar product is the usual one, e.g.D · 9 = Dµ9µ.) Introducing
additional fields (̄φ, η) and (c̄, B) with the BRST transformation law,

sφ̄ = η − [c, φ̄], sη = [φ, φ̄] − [c, η],

sc̄ = B − [c, c̄], sB = [φ, c̄] − [c, B], (2.21)

we write the complete action as

S2 = S1 + s

[∫
M8

d8x
√
g Tr (φ̄D · ψ + c̄∂ ·A +

1
2
c̄B)

]
=

∫
M8

d8x
√
g Tr

[
−1

4
FµνFµν − χi(Dψ)i +

1
2
φ[χi, χi]

+ηD · ψ + φ̄D ·Dφ− ψ · [φ̄, ψ] + B∂ ·A +
1
2
B2 + c̄∂ ·Dc

−c̄∂ · ψ + ∂ ·A[c, c̄] − 1
2
φ[c̄, c̄]

]
. (2.22)

A natural set of topological observables is derived from the topological invariants

1
2

∫
M8

� ∧ Tr (F ∧ F ),
∫

M8

Tr (F ∧ F ∧ F ∧ F ). (2.23)

The method of the descent equation implies a ladder of topological invariants and, for
example, gives the following descendants:
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O(0) =
1
2

∫
M8

� ∧ Tr (F ∧ F ),

O(1) =
∫

γ7

� ∧ Tr (ψ ∧ F ),

O(2) =
∫

γ6

� ∧ Tr (
1
2
ψ ∧ ψ − φ ∧ F ), (2.24)

O(3) = −
∫

γ5

� ∧ Tr (ψ ∧ φ),

O(4) =
1
2

∫
γ4

� ∧ Tr (φ ∧ φ).

The descendantO(k) with ghost numberk is an integral over an (8− k) cycleγ(8−k).

2.1.3. Geometric interpretation.The virtual dimension of the moduli spaceMJ of
solutions toP+FA = 0 is−index 6∂⊗ IG , i.e., the index of6∂⊗ IG : S− ⊗G → S+ ⊗G.
Its value is

−
∫

M8

Â(M8) ch(G), (2.25)

computable in terms of the relevant characteristic classes. We will discuss the vanishing
theorem needed to make the virtual dimension equal to the actual dimension elsewhere.

We can interpret Sect. 2.1.1 geometrically analogous to Sect. 5 in [5]. The BRST
equations in this section are the analogues of (7) in [5], and are the structure equations
for the universal connection onA/G×M8 with structure groupG. The curvature 2-form
F for this universal connection equalsF0

2 +F1
1 +F2

0 , whereF i
2−i is ani-form in theA/G

direction (ghost number) and a (2− i)-form in theM8 direction. Note thatF0
2 at (A, x) is

FA(x) andF1
1 assigns toτ ∈ T (A/G, A) andv ∈ T (M8, v) the valueτ (v) ∈ G, sinceτ is

a 1-form onM8. Further,F2
0 onτ1, τ2 ∈ T (MJ , A) isG(b∗τ1

(τ2)) whereG = (D∗
ADA)−1

on30 ⊗G andbτ1(f ) = [τ1, f ] for f ∈ 30 ⊗G; b∗τ1
is the adjoint ofbτ1. We restrictF to

MJ ×M8 and considerc2 = 1
8π2 Tr (F∧F ) a 4-form onMJ ×M8. Its expansion contains

1
8π2 Tr (F1

1 ∧F1
1 ), which has ghost number 2. This 4-form assigns toτ1, τ2 ∈ T (MJ , A)

andv1, v2 ∈ T (M8, x) the value 1
8π2 (Tr (τ1(v1)τ2(v2)) − Tr (τ1(v2)τ2(v1)). Let τ1∧̃τ2

denote this 2-form onM8.
Let ck4−k be the component ofc2 which is of degreek in theMJ direction and of

degree 4−k in theM8 direction. Then
∫

γk
�∧ ck4−k gives ak-form onMJ , whenγk is

a (8− k)-cycle onM8, k = 0, 1, 2, 3 or 4. These are the observablesO(k) in Eq. (2.24).
Taking products of the formsO and integrating them overMJ gives the expectation
values of the products of observables.We are not addressing the central problem of
integrating a form over the non compact spaceMJ . We can specialize to 6-cycles, or
equivalently to 2-forms to get a closer analogy to Donaldson invariants: ifσ ∈ H2(M8),
let 6σ be the 2-form onMJ given by6σ(τ1, τ2) =

∫
M8

� ∧ τ1∧̃τ2 ∧ σ. We get anr-

symmetric multi-linear function onH2(M8) given by (σ1, . . . , σr) → ∫
MJ

6σ1 ∧ . . .∧
6σr , if dim MJ = 2r. Of course the issue here is to make these invariants well-defined
and to see how they depend on the space of Joyce manifolds modulo diffeomorphisms
for a fixedM8.
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2.2. Type H: Calabi–Yau Complex 4-manifold.

2.2.1. Geometrical setup.Suppose now that the holonomy group for (M8, g) with metric
g is SU (4). SoM8 is a complex manifold and we can assume thatg is a Calabi–Yau
metric with a K̈ahler 2-formω. We choose a holomorphic covariantly constant (4,0)-
form � which trivializes the canonical bundleK. We normalize� so that� ∧ � is the
volume element ofM8. We also choose the trivial

√
K for the spin structure onM8.

We know that complex spinors can be identified with forms:S±
M ⊗ C ' 30, even

odd

and the Dirac operator with̄∂ + ∂̄∗. Real Majorana spinorsSM ⊂ SM ⊗ C are the
fixed points of a conjugationb onSM ⊗ C. We can identifyb with a conjugate linear∗
operator as follows. For any Calabi–YauM2n, define∗ : 30,p → 30,n−p by 〈α, β〉 =∫

M2n
� ∧ α ∧ ∗β, where now� ∈ 3n,0. (If one denotes by∗1 the usual map on

complex manifolds:3p,q → 3n−q,n−p, then∗1
− = � ∧ ∗ on 30,q.) Whenn = 4,

one can show that conjugationb equals (−1)q∗ on 30,q. Consequently, the operator
∂̄∗ +P+∂̄ : 30,1 → 30,0 + 30,2

+ is the Dirac operator fromS−
M → S+

M . Here3
0,2
± is the

± eigenspace of∗, P± is the projection of30,2 on 3
0,2
± ; we have identified30,1 with

1−∗
2 (30,1 + 30,3) and30,0 with 1+∗

2 (30,0 + 30,4). The sequence30 ∂̄−→30,1 P+∂̄−→30,2
+ is

elliptic and is the linearization of the equationP+FA = 0, modulo gauge transformations.
Suppose now (E, ρ) is a complex Hermitian vector bundle overM8 with metricρ of

dimC = N . If A is a connection forE, we have its covariant differentialDA : C∞(E) →
C∞(E⊗31) so thatDA = ∂A+∂̄A with ∂̄A : C∞(E) → C∞(E⊗30,1). By introducing
local complex coordinateszµ, ∂̄A(ßI ) = (∂µ̄ + (AI

J )µ̄ßJ )dz̄µ, I, J = 1, . . . , N . So
(AI

J )µ̄dz̄µ is a (0,1)-form onM8 with N ×N matrix coefficients.
The 1-form connectionA with values inGL(N,C) does not split naturally into

30,1 + 31,0 unlessE is holomorphic. A splitting can be obtained by a choice of almost
complex structure on the principal bundle. See Bartolomeis and Tian [24]. In any case,
the curvatureFA can be decomposed asFA = F 2,0

A + F 1,1
A + F 0,2

A with F 0,2
A = ∂̄2

A.
For each∂̄ operator:C∞(E) → C∞(E ⊗ 30,1), there exists a unique connectionA

such that (i)A preserves the hermitian metricρ of E and (ii) (DA)0,1 = ∂̄. Hence, the
spaceAP of ∂̄ operators can be identified with the connections of the principal bundleP
associated withE, which preserve the Hermitian metric. The group of complex gauge
transformationsH acts on the spaceAP , because ifh ∈ H, thenh−1∂̄h is also a∂̄
operator.

Let G be gl(N,C). Then the sequence30 ⊗ G ∂̄A−→30,1 ⊗ GP+∂̄A−→30,2
+ ⊗ G is still

elliptic on the symbol level. We saȳ∂A is holomorphic anti-self-dual ifP+F
0,2
A = 0, in

which case the sequence is elliptic. Its index is the index of6∂⊗IG : S−
M ⊗G → S+

M ⊗G.
Again, the BRSTQFT will be obtained by gauge fixingS0 =

∫
M8

�∧Tr (F 0,2
A ∧F 0,2

A ).

S0 is independent ofA, becauseS0 = 8π2� ∪ p1(E), since� ∈ 34,0. WhenS0 6= 0, we
can normalize� further byeiθ, so thatS0 is real and positive.

To verify Eq. (2.4) in the H case, we reduceG tou(N ), using the metricρ. If ω ∈ 30,2

has componentsω± in 3
0,2
± , then‖ω‖2=‖ω+ ‖2 + ‖ω− ‖2. And

0 ≤ S0 = Tr
∫

M8

� ∧ (F 0,2
A+ + F 0,2

A−) ∧ (F 0,2
A+ + F 0,2

A−)

= − ‖F 0,2
A+ ‖2 + ‖F 0,2

A− ‖2 +iIm 〈F 0,2
A+ , F

0,2
A−〉

= − ‖F 0,2
A+ ‖2 + ‖F 0,2

A− ‖2 . (2.26)
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Hence

‖F 0,2
A ‖2= 2 ‖F 0,2

A+ ‖2 +S0. (2.27)

So the holomorphic anti-self-dual gauge condition minimizes the action‖F 0,2
A ‖2 in the

topological sector withS0 fixed.
The (4, 0) form� can be simply expressed in local coordinates as

� = dz1 ∧ dz2 ∧ dz3 ∧ dz4. (2.28)

and
F (0,2) = dz̄µ̄dz̄ν̄Fµ̄ν̄ , (2.29)

where
Fµ̄ν̄ = ∂µ̄Aν̄ − ∂ν̄Aµ̄ + [Aµ̄, Aν̄ ]. (2.30)

also
Dµ̄ = ∂µ̄ + [Aµ̄, ]. (2.31)

One has the part of the Bianchi identity

D[µ̄Fν̄ρ̄] = 0. (2.32)

The 3 complex gauge covariant gauge conditions, which count for 6 real conditions
on the 8 independent real components contained inAµ̄ are

cFµ̄1µ̄2 + εµ̄1µ̄2µ̄3µ̄4Fµ̄3µ̄4 = 0. (2.33)

The two other gauge conditions are given by the following complex equation

∂µ̄
cAµ̄ +

1
2

[Aµ̄,
cAν̄ ] = 0. (2.34)

If we compute the real and imaginary parts of this condition, they give respectively
the Landau gauge condition adn the first of the seven conditions in (2.11). A similar
decomposition of (2.33) gives the six other equations in (2.11).

We have now the topological ghost9µ̄ with 4 independent complex components,
and we have the ghost gauge condition

Dc
µ̄9µ̄ = 0. (2.35)

(Here and below, we use the left upper symbolc for complex conjugation.) A consequence
of the use of complex gauge transformations is that a complex Faddeev–Popov ghost
c must be introduced, with complex ghost of ghostφ. Up to the complexification of
all fields, we have thus exactly the same field content as the original 4 dimensional
Yang–Mills TQFT. This leads us to the BRST algebra that we will shortly display.

2.2.2. Action and observables.From the previous arguments, we must write the BRST
algebra in a notation where all fields arecomplexfields and replace the formula of the J
case by

sAµ̄ = ψµ̄ +Dµ̄c, sψµ̄ = −Dµ̄φ− [c, ψµ̄],

sc = φ− 1
2

[c, c], sφ = −[c, φ]. (2.36)
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In the antighost sector, we have a complex self dual two-form with 3 independant com-
plex componentsχµ̄ν̄ and

sχµ̄ν̄ = Hµ̄ν̄ − [c, χµ̄ν̄ ], sHµ̄ν̄ = [φ, χµ̄ν̄ ] − [c,Hµ̄ν̄ ]. (2.37)

We have also the complexified analogues of the antighosts of the four dimensional
Yang–Mills TQFT, with the same transformation laws as in (2.21). Because of com-
plexification, there are in the H case more ghosts than as in the J case. Thus, part of the
gauge fixing will consists in setting equal to zero the imaginary parts of the scalar ghosts
c, φ, φ̄, η.

To impose these conditions, and the 3+1 complex gauge conditions Eqs. (2.33) and
(2.34), we define

Z =
∫

[DAµ̄][DcAµ̄][D9µ̄][Dc9µ̄][Dκµ̄ν̄ ][Dcκµ̄ν̄ ][DHµ̄ν̄ ][DcHµ̄ν̄ ]

[Dη][Dcη][Dφ][Dcφ][Dφ̄][Dcφ̄][Dc][Dcc][Dc̄][Dcc̄][DB][DcB] expSH ,

(2.38)

SH =
∫

[� ∧ Tr F (0,2) ∧ F (0,2)]∫
d4zd4z̄ s

[
Tr

(
κµ̄ν̄(cFµ̄ν̄ + εµ̄ν̄ρ̄σ̄Fρ̄σ̄ +

1
2

c

Hµ̄ν̄) + cκµ̄ν̄(Fµ̄ν̄ + εµ̄ν̄ρ̄σ̄
cFρ̄σ̄ +

1
2
Hµ̄ν̄)

+ φ̄Dc
µ̄9µ̄ +c φ̄cDµ̄9µ̄ + Im φ̄ Im c

+ c̄(∂µ̄
cAµ̄ +

1
2

[Aµ̄,
cAµ̄] +

1
2

cB) +c c̄(c∂µ̄Aµ̄ +
1
2

[cAµ̄, Aµ̄] +
1
2
B)

)]
.(2.39)

If we develop thes-exact terms and eliminate the auxiliary fieldsH andB we get
a supersymmetric action starting with Tr (F ∧ ∗F ), because1

4 ‖ FA ‖2= ‖ F 0,2
A ‖2 +

1
4 ‖〈F, ω〉‖2 + topological terms, and a Feynman–Landau gauge fixing term|∂ ·A|2. The
action of the H case is similar to that of the J case after eliminationof the imaginary parts
of c, φ, φ̄, η by mean of the equations of motion coming froms(Im φ̄ Im c). Moreover,
if one separate fields in their real and imaginary parts, one finds a mapping between
the ghosts of the H and J case (for instance the six antighosts contained in the complex
self dual two-formκµ̄ν̄ and the imaginary part of the antighosts ¯c of the H cases can be
identified as the seven ghostsκi of the J case). Actually, up to this mapping, the actions
of the H and J cases are almost identical.

The definition of observables follows from the cocycles obtained by the descent
equations, as sketched in the previous section. Their meaning is now discussed.

2.2.3. Geometric interpretation.Let M̃ denote [A ∈ AP ] with F 0,2
+ = 0. It is invariant

underH (which acts onG in 32
+ ⊗ G, but not on32

+.) Let MH = M̃/H. The 3
complex covariant gauge conditions,30,2

+ = 0, probe the moduli spaceMH . We

remarked earlier that 0→ 30 ⊗G ∂̄A−→30,1 ⊗GP+∂̄A−→30,2
+ ⊗G is an elliptic complex with

∂̄∗
A+P+∂̄A : 30,1⊗G → 30⊗G+30,2

+ ⊗G; the elliptic operator6∂A : S−⊗G → S+⊗G.
Thecomplexgauge condition is̄∂∗τ = 0 for τ ∈ 30,1 ⊗ G.

As before, we get a hermitian vector bundlẽE overMH × M8 with connection.
One can computec2 of Ẽ in terms of its curvatureFH . One has the mapT ofH0,∗(M8)

into forms onMH by µ
T−→ ∫

M8
� ∧ Tr (FH ∧ FH ) ∧ µ.
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Formally this gives a multilinear map ofH0,∗(M8) → C by µ1, . . . , µr →∫
MH

T (µ1) ∧ . . .∧ T (µr). These would be the expectation values of the observables of
the BRSTQFT.

As in Sect. 2.1.3. part ofc2 is 1
8π2 Tr ((FH )1

1 ∧ (FH )1
1) with (FH )1

1(τ, v) = τ (v) ∈
u(N ). If σ ∈ H0,2(M8) letTσ be the 2-form onMH given by

∫
M8

� ∧ Tr (τ1 ∧ τ2) ∧ σ,
whereτi, i = 1, 2, are (0,1) forms onM8 with values inu(N ). The formal holomorphic
Donaldson polynomial is the symmetricr-multilinear function onH0,2(M8) given by
σ1, . . . , σr → ∫

MH
Tσ1 ∧ . . . ∧ Tσr

, when dimMH = 2r. (Note that ifH0,2(M8) 6= 0,
thenM8 is hyperK̈ahler because elements ofH0,∗ are covariantly constant.)

It will be very interesting to see when formal integration overMH is justified, and
when these invariants depend only on the complex structure ofM8, not on the Calabi–
Yau metricg, nor the hermitian metricρ. C. Lewis [12] is investigating the conditions
under whichMH is the set of stable holomorphic vector bundles.

Since the elliptic operator here is6∂ again, the virtual dimension ofMH is

−
∫

M8

Â(M8) ch (G). (2.40)

2.3. Comparison of H and J cases.Under suitable conditions ((E, ρ) a stable6 vector
bundle, for example), one expects that the orbit space ofAP under the group of complex
gauge transformations, will be the same as the sympletic quotient,AP ‖ GU , where
GU are the gauge transformations onP reduced to the compact groupU (N ). Since
[A; 〈F 1,1

A , ω〉m = 0, m ∈ M8] is the zeros of the moment map,AP /GU is the orbit
space of this set underGU .

We replace the conditionP+(F 0,2
A ) = 0 withF 0,2

A ∈ 30,2
+ ⊗gl(N,C) by the conditions

P+(F 0,2
A ) = 0 and〈F 1,1

A , ω〉 = 0, where nowF 0,2
A ∈ 30,2 ⊗ u(N ) and〈F 1,1

A , ω〉 ∈ u(N ).
One should get the same moduli space of solutions.

In the linearization, the sequencegl(N,C)
∂̄A−→30,1⊗gl(N,C)

P+∂̄A−→30,2
+ ⊗gl(N,C) →

0 is replaced byu(N ) → 30,1 ⊗ u(N )
P+∂̄A⊕iω∂−→ 30,2

+ ⊗ u(N ) ⊕ u(N ) → 0, where
iω∂ : τ ∈ 30,1 ⊗ u(N ) → 〈∂τ, ω〉m ∈ u(N ). The operatoriω∂ is the lineariza-
tion of the 0-momentum condition〈F 1,1

A , ω〉m = 0; it is also the imaginary part of
∂̄∗

A : 30,1 ⊗ gl(N,C) → gl(N,C). Thus, with the reduction ofSpin(7) holonomy to
Spin(6) = SU (4) holonomy, the 7 dimensional32

+ in the J-case decomposes into the 6
dimensional32

+ of the H-case plusR.

2.4. Link to twisted supersymmetry.We note that the field content of our Yang–Mills
BRSTQFT action in 8 dimensions is similar to that of four dimensional topological
Yang–Mills theory. Since four dimensional topological Yang–Mills theory is a twisted
version ofD=4, N =2 super Yang–Mills theory and is related by dimensional reduction
to the minimal six dimensional supersymmetric Yang–Mills theory, it is natural to expect
a similar connection in eight dimensions. This is indeed so; we explain the type J case,
although the fields (c, c̄, B) which were employed to impose the Lorentz condition
∂µAµ = 0, are neglected. The gauge supermultiplet in eight dimensions consists of
one gauge field in8v (the vector representation), one chiral spinor in8s, one anti-chiral
spinor in 8c and two scalars [25]. The reduction of the holonomy group toSpin(7)

6 For physicists, one might define (E, ρ) to be stable if it is holomorphic, Einstein-Hermitian, i.e.,Fρ · ω
is a constant multiple of the identity, whereFρ is the curvature of (E, ρ) relative to its uniqueρ-connection.
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defines decomposition of the chiral spinor;8s = 1 ⊕ 7. Now it is natural to identifyAµ

andψµ in our topological theory as8v and8c, respectively. Furthermoreχi andη just
correspond to the chiral spinor8s according to the above decomposition. Finallyφ and
φ̄ give the remaining two scalars. This exhausts all the dynamical fields in our action
of eight dimensional topological Yang–Mills theory. Though we do not work out the
transformation law explicitly, we believe this is a sufficiently convincing argument for the
fact that the J case is theD=8 SSYM dimensionally reduced fromD=10, N =1 SSYM.
The connection between a general supersymmetry transformation and topological BRST
transformations is the following: whenM8 is flat, the reduction fromD = 10 isN = 2
real supersymmetry orN = 1 complex supersymmetry. For curved manifolds, the only
surviving supersymmetries are those depending on covariant constant spinors. In theJ
case the nilpotent topological BRST symmetry generator is a combination of the real
and imaginary parts of the one surviving complex generator of supersymmetry.

As said just above, this supersymmetric Yang–Mills theory in eight dimensions is
obtained by dimensional reduction from theD=10,N =1 super Yang–Mills theory. This
suggests a relationship with superstring theory. It has been argued that the effective world
volume theory of the D-brane is the dimensional reduction of the ten dimensional super
Yang–Mills theory [26]. Thus the BRSTQFT constructed in this section may arise as an
effective action of 7-brane theory. In fact Joyce manifolds are discussed in connection
with supersymmetric cycles in [27, 28]. Recently in [29], a six dimensional topological
field theory of ADHM sigma model is obtained as a world volume theory of D-5 branes.
The world volume theory of D-branes could provide a variety of higher dimensional
BRSTQFT’s.

3. Coupling of the 8D Theory to a 3-Form

For the pure Yang–Mills theory, we have seen that the construction of a BRSTQFT
implies a consistent breaking of theSO(D) invariance. This turns out to be quite natural,
when closed but not exact forms exist, like the Kähler 2-form on K̈ahler manifolds or
the holomorphic (n, 0)-form on Calabi–Yau manifolds.

This idea extends to consider BRSTQFT’s involving sets of possibly interacting
p-form gauge fields with (p + 1)-form curvaturesGp+1 = dBp + ..., satisfying relevant
Bianchi identities. Our point of view is that one must define a system of equations,
eventually interpreted in BRSTQFT as gauge conditions, which does not overconstrain
the fields. If tensorsTµ1,...,µ2p+2 of rank 2p+2; (2p+2 ≤ D) exist which are invariant under
maximal subgroups ofSO(D), we can consider BRSTQFT based on gauge functions
of the following type, whereλ is a parameter:

Tµ1,...,µ2p+2Gµp+2,...,µ2p+2 = λGµ1,...,µp+1. (3.1)

Such equations must be understood in a matricial form, since they generally involve
several formsBp, with different values ofp. To ensure that the problem is well defined,
a first requirement is that Eq. (3.1) has solutions inGp+1 for λ different from zero. This
algebraic question is in principle straightforward to solve by group theory arguments,
although we expect that geometrical arguments should also justify them. Moreover, we
must also consider thatGp+1 is the curvature of ap-form gauge fieldBp. Thus, other
gauge functions must be introduced, to gauge fix the ordinary gauge freedom ofBp which
leave invariant its curvatureGp+1. This gives a second requirement, since from the point
of view of the quantization, the total number of gauge conditions, the topological ones
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and the ordinary ones, must be exactly equal to the number of independent components
in the gauge fieldBp.

To be more precise, the number of ordinary gauge freedom of ap-form gauge field in
D dimensions isCp−1

D−1: (this amounts to the fact thatBp is truly defined up to a (p− 1)-
form, which is itself defined up to a (p − 2)-form, and so on.) We should therefore
only retain invariant tensorsT such that the number of components ofBp equates the
rank of the system of linear equations inG presented in Eq. (3.1) plus the number of
ordinary gauge freedom inBp. Obviously, when there are several fields in Eq. (3.1), the
counting of independent conditions can become quite subtle, since one must generally
combine several equations like Eq. (3.1). For instance, we will display in the next section
BRSTQFT theories in dimensionsD < 8. Their derivation will appear as rather simple,
because they all descend by dimensional reduction from the pure Yang–Mills BRSTQFT
based on the set of 6 or 7 independent self-duality gauge covariant equations in eight
dimensions found in Sect. 2. Without this insight, their derivation would be less obvious.

We now turn to the introduction of a 3-form gauge field in 8 dimensions. In evenD =
2k dimensions, Eq. (3.1) has a generic solution for an uncharged (k−1)-form gauge field
Bk−1: assuming the existence of a curvatureGk forBk−1, we can consider the obvious
generalization of self-duality equations,Gk = ∗Gk. The number of these conditions
is Ck

D−1. On the other hand, the number of ordinary gauge freedom of a (k − 1)-
form gauge field isCk−2

D−1 = Ck−2
D − Ck−3

D + Ck−4
D − . . . ± C0

D. Thus imposing the
ordinary gauge fixing conditions for the (k−1)-form gauge field plus the gauge covariant
ones,Gk = ∗Gk, gives a number ofCk−1

D = Ck−2
D−1 + Ck

D−1 equations, which is equal
to the number of arbitrary local deformations of theCk−1

D independent components of
the (k− 1)-form gauge field. We will see that it is possible to generalize the self duality
equation satisfied by a (k−1)-form gauge field. Moreover, the counting remains correct
in the case it has a charge. As an example, in the 8-dimensional theory, a 3-form gauge
field has 56 components, with 21 ordinary gauge freedom, while the number of self dual
equations involving the 4-form curvature of the 3-form is 35, and one has 56=21+35.

We thus propose as topological gauge conditions for the coupled system made of
the Yang–Mills fieldA and the 3-form gauge fieldB3 the followingcoupledequations:

λFµν = TµνρσFρσ,

dB3 + ∗(dB3) + αTr (F ∧ F )+ = 0. (3.2)

α is a real number, possibly quantized, and Tr (F ∧ F )+ denotes the self dual part of
Tr (F ∧ F ) 7. AlthoughB3 is real valued, it interacts with the Yang–Mills connection
A, whenα 6= 0. An octonionic instanton solves the first equation, as shown in [14] and
by Eqs. (25), (30), (31) of [15] in the case ofM8 = S7 ×R. For this solution, the 4-form
Tr (F ∧ F ) is not self dual.

Given these facts, we are led to define a BRSTQFT in 8 dimensions based on the
gauge conditions (3.2), in which a 3-form gauge field is coupled to a Yang–Mills field.
The ghost spectrum for the ordinary gauge invariance of the fieldB3 generalizes that
of the Yang–Mills field, with the following unification between the ghostB1

2 and the
ghosts of ghostsB2

1 andB3
0:

B̂3 = B3 +B1
2 +B2

1 +B3
0. (3.3)

(From now on upper indices mean ghost number and lower indices ordinary form degree.)

7 Equation (3.2) suggests that the 3-form could be involved in an anomaly compensating mechanism. See
sec. 3.1 where we show that Eqs. (3.1 ) impliesdB3 = 0 if M is compact.
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The BRST symmetry of the topological Yang–Mills symmetry considered in the
previous section satisfies

Â = A + c, (3.4)

F̂ = (s + d)Â +
1
2

[Â, Â] = F 0
2 + 91

1 + φ2
0, (3.5)

with the notation91
1 = 9µdx

µ andφ2
0 = φ.

The gauge symmetry of the 3-formB3 involves a 2-form infinitesimal parameter
associated toB1

2. We can distinguish however different topological sectors forB3, which
cannot be connected only by these infinitesimal gauge transformations. As an example,
B3 andB′

3 can belong to such different sectors, if

B′
3 = B3 + Tr (A ∧ dA +

2
3
A ∧A ∧A). (3.6)

We thus define the curvature ofB3 as

G(A)
4 = dB3 + Tr (F (A) ∧ F (A)), (3.7)

where the index (A) means the dependence upon the Yang– Mills fieldA. Notice that it
is not globally possible to eliminate theA dependence ofG(A)

4 by a field redefinition of
B3 involving the Chern–Simons 3-form.

The topological BRST symmetry of the 3-form gauge field system is defined from

Ĝ4 = (s + d)B̂3 + Tr (F̂ (A) ∧ F̂ (A)) = G4 + G1
3 + G2

2 + G3
1 + G4

0, (3.8)

that is

(s + d) (B3 +B1
2 +B2

1 +B3
0) + Tr

(
(F 0

2 + 91
1 + φ2

0) ∧ (F 0
2 + 91

1 + φ2
0)

)
=

dB3 + Tr (F ∧ F ) + G1
3 + G2

2 + G3
1 + G4

0. (3.9)

The fieldsGg
4−g, g = 1, 2, 3, 4 are the topological ghosts ofB3. By expansion in ghost

number, Eqs. (3.5) and (3.9) define a BRST operations which, eventually, determines
the equivariant cohomology of arbitrary deformations of the Yang–Mills field modulo
ordinary gauge transformations and of the 3-form gauge field, modulo the infinitesimal
gauge transformations,δB3 = dε2, ε2 ∼ ε2 + dε1, ε1 ∼ ε1 + dε.

There is a natural topological invariant candidate for the classical part of a BRSTQFT
action,

Itop =
∫ (

G(A)
4 ∧G(A)

4 + � ∧ Tr (F (A) ∧ F (A))
)
. (3.10)

Its gauge fixing is a generalization of what we do in the pure Yang–Mills case. The
main point is to find the gauge function in the topological sector. The existence of the
octonionic instanton, together with an associated moduli space (yet to be explored),
indicates that Eq. (3.2) is a good choice8.

To enforce the gauge function Eq. (3.2), one must introduce a self-dual 4-form
antighostκµνρσ, and consider the following BRST exact action:

8 Notice that one could also consider a 7-dimensional theory, which is formally related to the BRSTQFT
in 8 dimensions as the 3-dimensional Chern–Simons theory is related to the 4-dimensional Yang–Mills TQFT
action.
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S3 =
∫
d8x s

(
κµνρσ(∂[µBνρσ] + εµνρσαβγδ∂[αBβγδ] + Tr F[µνFρσ] )

)
. (3.11)

The remaining conditions are for the usual gauge invariances of forms, whether they
are classical or ghost fields. One can choose the following gauge fixing conditions for
the longitudinal parts of all ghosts and ghosts of ghostsGg

4−g,

∂µG1
3µνρ = a11

νρ,

∂µG2
2µν = b12

ν ,

∂µG3
1µ = c13. (3.12)

One must also conventionally gauge fix the longitudinal components ofB3µνρ, of the
ghostsB1

2µν andB2
1µ, and of the antighosts. The presence in the r.h.s. of Eq. (3.12) of

the cocycles1g
3−g stemming from the ghost decomposition of TrF̂ ∧ F̂ = Tr (F + 9 +

φ) ∧ (F + 9 +φ) is an interesting possibility. It can lead to mass effects in TQFT, when
the ghost of ghostφ takes a given mean value, depending on the choice of the vacuum
in the moduli space, which can be adjusted by suitable choices of the parametersa, b, c.

All these gauge conditions can be enforced in a BRST invariant way, as explained e.g.
in [30]. The final result is an action of the following type (including the pure Yang–Mills
part discussed in the previous sections)

S =
∫

(∂µBνρσ∂
µBνρσ + Tr FµνFµν + ∂µBνρσTr FµνF ρσ

+supersymmetric terms). (3.13)

The observables are defined from all formsÔg
8−g occurring in the ghost expansion

of the 8-form
Ô8 = Ĝ4 ∧ Ĝ4. (3.14)

Whether these supersymmetric terms, made of ghost interactions, are linked to Poincaré
supersymmetry is an interesting question.

3.1. Mathematical Interpretation.Fix an element ofH4(M8,Z) and leth4 denote its
harmonic representative. Let ß denote the affine space of all closed 4-forms which
represent this cohomology class. Then ß =h4 + d33; strictly speaking ß =h4 +
d(33/closed 3-forms) =h4 +dδ34. In any case a tangent vector to ß can be represented
asdB3 with B3 a 3-form.

There are other ways of describing ß. An element of ß can be represented as a
collection of 3-forms{Bu}, for a collection of coordinate neighborhoodsU covering
M8, satisfyingBu − Bv = dwu,v on u ∩ v. Thus{dBu} gives a well-defined closed
form onM8; to be an element of ß, this 4-form must be cohomologous toh4. In the
earlier part of this section,dB3 means this element of ß whenB3 is defined locally as
B3,u; or if B3 is an ordinary three form,dB3 is reallyh4 + dB3.

9

Next consider the elliptic complex 0→ 30 → 31 → 32 → · · · → 34
+ → 0, where

34
± are the±1 eigenspaces of the ordinary∗ operator onM8. Remember that in the

J-case we also had 0→ 30 → 31 → 32
+ → 0 with 32 = 32

− ⊕ 32
+ of dimensions

21 and 7, respectively. Consider then 0→ 32
−

d−→ 33 d−→ 34
+ → 0. We leave the

9 The theory of gerbes [31] gives a sheaf theoretic description for exhibiting integral cohomology classes,
extending the notion of curvature field as an integral 2-cocycle.
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reader to check that it is elliptic. (It does not suffice that the dimensions are 21, 56 and

35, respectively.) The linearization of the problem below involves 0→ 30 ⊗ G DA−→
31 ⊗ G DA−→ 32

+ ⊗ G → 0 for connections, and 0→ 32
−

d−→ 33 d−→ 34
+ → 0 for

3-forms.
An analogue of the anti-self-dual equations for the pair (A,G) with a connectionA

andG ∈ ß is

(a) FA = ∗ � ∧ FA, (i.e. P+FA = 0)

(b) (1 +∗)G = −αTr (FA ∧ FA)+. (3.15)

This equation is a mathematical interpretation of (3.2). Note that if a solutionA,G =
h4 + dB3 exists for (3.15), then Tr (FA ∧ FA) is self-dual and hence harmonic. Hence
(1 + ∗)(h4 + dB3) is harmonic. Since (1 +∗)h4 is harmonic, so is (1 +∗)dB3. Hence
dB3 = 0, andG = h4. Note also that the sector ß, i.e. the element chosen inH4(M8,R)
must have its self-dual part, a multiple of the self-dual elementp1(P ).

If we linearize (3.15), we get forτ ∈ T (G) and B3 ∈ T (ß), the equations
P (2)

+ (DAτ ) = 0 andP (4)
+ dB3 = 0, whereP j

+ is the projection of3j → 3j
+ (j = 2, 4).

We then have a pair of elliptic systems above, with gauge fixing functionsD∗
Aτ = 0 and

d∗B3 = 0, respectively. The covariant gauge functions are given by (3.15).
The candidate for the topological actionS0(A,G) is

∫
M8
G ∧G + � ∧ Tr (F ∧ F ).

Since we now have the covariant gauge functions to probe the moduli space of solutions
to (3.15) and we have the gauge fixing functions, we can apply the BRST formalism.
We first expressS0 in terms of the norms. From (2.7),

‖FA ‖2=
∫

M8

� ∧ Tr (FA ∧ FA) + 4 ‖ (FA)+ ‖2 . (3.16)

Also with G = G+ + G−, G± ∈ 34
±, we have

∫
M8
G ∧ G =‖G+ ‖2 − ‖G− ‖2. Thus

one obtains‖ FA ‖2 + ‖G ‖2= S0 + 4 ‖ (FA)+ ‖2 +2 ‖G+ ‖2. We know that‖ FA ‖2

is minimized whenF+ = 0, and that‖ G ‖2 is minimized whenG = h. So we get a
minimum when (3.15) is satisfied and it equalsS0 + 16π4α2

∫
M8
p2

1 = S1
0.

In the pure YM case, the natural space wasAP /G ×M8 or its subspaceMJ ×M8.
Rather than 3-forms onM8, we need 3-forms onMJ × M8 which we write asB̂3 =
B0

3 + B1
2 + B2

1 + B3
0 (Eq.(3.3), above) with the upper index as the degree in theMJ

direction (ghost number) and the lower index in theM8 direction. As befores denotes
dMJ

so that (s + d)B̂3 = (dMJ
+ dM8)B̂3 = dMJ

(B̂3) + dM8(B̂3) is a 4-form with terms
in the

(
a
b

)
directions.

4. BRSTQFT’s for Other Dimensions Than 8

From many points of view the caseD = 8 is exceptional. It is of interest, however,
to also build BRSTQFT’s in other dimensions, by using the BRST quantization of d-
closed Lagrangians with gauge functions as in Eq. (3.1). In this section, we first focus
on theories withD < 8, that we directly obtain by various dimensional reductions in
flat space of the J and H theories; we then comment on the casesD = 12 andD = 10 .
We will not address the question of observables; their determination is clear from the
descent equations which can be derived in all possible cases from the knowledge of the
BRST symmetry.
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4.1. Dimensional reduction of the Yang–Mills 8D BRSTQFT.InD=8, for the J-case, we
have seen that there exists a set of seven self-duality equations, on which we have based
our BRSTQFT. These equations were complemented with a Landau gauge condition
to get a system of 8 independent equations for the 8 components ofAµ. These seven
equations can be written as

8i(Fµν(xµ)) = 0, 1 ≤ i ≤ 7, 1 ≤ µ, ν ≤ 8. [ (2.14)] (4.1)

Just as one obtains a BRSTQFT action based on Bogomolny equations in 3 dimen-
sions [32], we can define a BRSTQFT in seven dimensions, by standard dimensional
reduction on the eighth coordinate; that is, by putting in the above seven equations
x8 = 0, ∂8 = 0 and replacingA8 by a scalar fieldϕ(xj) andFi8 by Diϕ(xj). We can
then gauge fix the longitudinal part ofAi, with an equation of the following type:

∂iAi = [v, ϕ], (4.2)

which allows for the case of a massive gauge fieldA. (Here and in what follows, the
constantv defines a direction in the Lie algebra for the Yang–Mills symmetry.) The
gauge fixed action will be∫

M7

d7x
(|Fij |2 + |Diϕ|2 + |∂iAi − [v, ϕ] |2 + supersymmetric terms

)
. (4.3)

This process can be iterated. We can go down from dimension 8 to 8− n, by sup-
pressing the dependence onn of the coordinatesxµ. InD < 8 dimensions we will have a
gauge field withD = 8−n components and a set ofn scalar fieldsϕp,p = 1, . . . , nwhich
should be considered as Higgs fields. Obviously, the dimensional reduction applies as
well to the various ghosts, and the fieldsϕp fall into topological BRST multiplets, which,
depending on the case, can possibly be interpreted as twisted Poincaré supermultiplets.
Moreover, as we will see whenD = n = 4, there is an interesting option to assign the
fieldsϕp as elements of other representations, e.g. spinorial ones, ofSO(D).

One can also consider the dimensional reduction in the H-case. One can break the
symmetry between the coordinatesy, z, t, w and their complex conjugates by replacing
some of the fields, e.g. ImAw̄, by scalar fields.

In all cases, the final theories rely on 8 independent gauge conditions for all fields: 7
for the topological gauge ones plus 1 for the ordinary gauge condition, if one starts from
the J case; or 6 for the 3 complex topological gauge conditions plus 2 for the ordinary
complex gauge condition, if one starts from the H case.

4.1.1. The case D=6.Since the caseD = 6 is of great interest in superstring theory, let
us display what we get, starting from the H case,

εīj̄k̄Fj̄k̄ = Dīϕ, (4.4)

∂īAī = [v, ϕ]. (4.5)

This set of gauge functions represents 4 complex equations, for eight degrees of freedom
represented by the complex fieldsAī andϕ.

If we start from the J case, we have

8i(Fµν(xµ), Dµϕ
a(xµ)) = 0, 1 ≤ a ≤ 2, 1 ≤ µ, ν ≤ 6, (4.6)

possibly complemented by
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∂µAµ = Ma,bϕ
aϕb +Na,bv

aϕb. (4.7)

Notice that a 2-form gauge fields, subjected to the topological invariancesB2 =
92 + . . . can be introduced, still in 6 dimensions, with the topological self-dual gauge
condition

dB2 + ∗(dB2) + αTr (AdA +
2
3
AAA)+ = 0. (4.8)

This possibility is similar to the introduction of a 3-form inD = 8.
We can directly build a BRSTQFT in 6 dimensions. First we consider a pure Yang–

Mills case, taking the topological gauge fixing condition of the type

λFµν =
1
2
TµνρσF

ρσ. (4.9)

The fourth rank tensorTµνρσ is assumed to be invariant under some maximal subgroup
of SO(6). According to Corrigan et al [6], onlySO(4) × SO(2) andU (3) allow such
an invariant tensor. The first choice corresponds to the case where the 6D manifold is a
direct product of a 4D manifold and 2D Riemann surface;M6 = M4 × 62. The second
subgroup is the holonomy group of 6 dimensional Kähler manifolds. In this case we can
write down the invariant tensor as the Hodge dual of a Kähler formω,

Tµνρσ = (∗ ω)µνρσ. (4.10)

The possible eigenvaluesλ of (4.9) with the tensor (4.10) are 1,−1 and−2. The
eigenspaces of these eigenvalues give the decomposition of the 15 dimensional rep-
resentation ofSO(6) under its subgroupSU (3)×U (1); 15 = 8⊕ (3⊕ 3̄) ⊕ 1.10 Taking
λ = 1 defines the 8 dimensional subspace given by the following seven linear conditions
onFµν , where we use complex indicesa, b = 1, 2, 3:

Fab = Fāb̄ = 0, (4.11)

ωab̄Fab̄ = 0. (4.12)

(The last Eq. (4.12) is, e.g.,F11̄+F22̄+F33̄ = 0.) The first condition (4.11) means that the
connection is holomorphic. These equations are known as the Donaldson-Uhlenbeck-
Yau (DUY) equation for the moduli space of stable holomorphic vector bundles on a
Kähler manifold. It also appears in the Calabi–Yau compactification of the heterotic
strings. The DUY equation implies the standard second order equation of motion for the
Yang–Mills field11. In fact, this follows from the following identity in the action density
level;

−1
4

Tr F ∧ ∗F + ω ∧ Tr (F ∧ F )

= Tr

[
−3

2
gaāgbb̄FabFāb̄ + (gab̄Fab̄)

2

]
, (4.13)

where we have introduced the metricgab̄ for the Kähler formω. This identity [24]
is crucial in constructing a BRST Yang– Mills theory whose classical action is the
topological densityω ∧ Tr (F ∧ F ).

From the BRST point of view, one must introduce scalar fields to get a correct
balance between the gauge fixing conditions and the field degrees of freedom and to

10 The usual splitting of32 ⊗ C into 31,1 ⊕ 32,0 ⊕ 30,2 with 31,1 decomposed intoλω ⊕ ω⊥, where
ω is the K̈ahler form.

11 This is a general property of the system (4.9).
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recover Eq. (4.4). Given a hermitian connectionA for the hermitian vector bundle (E, ρ),
Eq. (4.4) saysF 0,2

A = (∂̄A)∗ϕ̃ = ∗−1
1 ∂A ∗1 ϕ̃, i.e.,∗1F

0,2
A = ∂A(∗1, ϕ̃) ∈ 31,3 ⊗ G. (See

Sect. 2.2.1 for the definition of the operation∗1.) WhenM is a Calabi–Yau 3 fold, let
ϕ = ∗ϕ̃ ∈ 30 ⊗ G and we get∗F 0,2

A = ∂̄Aϕ. Linearization gives the usual elliptic

operator, the holomorphic of

(
curl grad
div 0

)
:(

∂̄A ∂̄∗
A

∂̄∗
A 0

)
:

(
30,1 ⊗ G
30,3 ⊗ G

)
−→

(
30,2 ⊗ G
30,0 ⊗ G

)
. (4.14)

Of course what one wants is not (4.4) butF 0,2
A = 0, Eq. (4.11), the condition that

makesE a holomorphic bundle. However, as a consequence of the Bianchi identity,
∂̄AF

0,2
A = 0 and hence (4.4) implies̄∂A∂̄

∗
Aϕ̃ = 0, which also implies̄∂∗

Aϕ̃ = 0, when
M is compact without boundary. Thus (4.4) implies (4.11); moreover, whenM is a
Calabi–Yau 3-fold andE is stable,∂̄∗

Aϕ̃ = 0, (equivalent,̄∂Aϕ = 0) only happens when
ϕ is a constant multiple ofI in u(N ). In that sense, the right-hand side of Eq. (4.5) is 0,
giving the gauge fixing condition̄∂ ∗ τ = 0, τ ∈ 30,1 ⊗ G.

Equation (4.12) is the equation〈F, ω〉m = 0 (see Sect. 2.3). As stated there, the
orbit space under complex gauge transformations should be the same as the symplectic
quotient, the orbit space under unitary gauge transformations of the 0-momentum set,
i.e., the condition〈F, ω〉m = 0. Equation (4.13) is a special case of Proposition 3.1 in
[24], which we have used previously in Sect. 2.2.2.

The DUY equation can also be obtained from the 6 dimensional supersymmetric
Yang–Mills theory on a Calabi–Yau manifold. The supersymmetry transformation laws
of the (N = 1) vector multiplet (AM ,9) in 6 dimensions are

δAM = iΞ0M9 − i90MΞ,

δ9 = − i

2
6MNΞF

MN , (4.15)

where0M are the gamma matrices and6MN = 1
4[0M ,0N ] is the spin representation.

On the Calabi–Yau manifold the holonomy group is further reduced toSU (3), which
gives a covariantly constant (complex) spinorζ. In fact this is the very reason why the
Calabi–Yau manifold is favorable in the compactification of superstrings to 4 dimensions.
We will identify the supersymmetry transformation withΞ = ζ as a topological BRST
transformation. With this choice of parameter, SUSY transformations are decomposed
according to the representations ofSU (3). The decomposition ofSO(6) vector is6 =
3 ⊕ 3̄ and the chiral spinor decomposes as4 = 3 ⊕ 1. Thus we obtain the following
topological BRST transformation law:

sAµ = ψµ, sAµ̄ = 0,

sχ = gµµ̄Fµµ̄, sψµ = 0,

sψ[µ̄ν̄] = Fµ̄ν̄ , sρ = 0. (4.16)

We should explain how we have “twisted”spinors into ghosts and anti-ghosts. In terms
of the covariantly constant spinorζ which satisfies̄ζ0µ = 0, we can make the twist as
follows;

χ = ζ̄9, ψ̄µ̄ = ζ̄0µ̄9,

ψ[µ̄ν̄] = ζ̄0µ̄0ν̄9, ρ̄ = εµ̄ν̄σ̄ ζ̄0µ̄0ν̄0σ̄9, (4.17)
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where (ψ̄µ̄, ρ̄) are complex conjugates of (ψµ, ρ). This is an example of the identification
of spinors with forms, explained in Sect. 2.1.1. Looking at the BRST transformations
of the anti-ghosts, we recover the DUY equations (4.11, 4.12).

4.1.2. Reduction to a 4-D BRSTQFT; Seiberg–Witten equations.We now turn to the
reduction toD = 4, which is of special interest, particularly the theory obtained by
dimensional reduction of the J theory fromD = 8 toD = 4. We will get a BRSTQFT
with gauge conditions identical to the non-Abelian Seiberg–Witten equations, which in
turn is also related to theN =4, D=4 supersymmetric theory.

The main observation is that, in the J case the set of seven equations (2.14) can be
separated into 3 plus 4 equations. If we groupA5, A6, A7, A8 into the 4 component field
ϕα,α = 1, 2, 3, 4, the latter can be interpreted in 4 dimensions as a commuting complex
Weyl spinor andAµ = A1, A2, A3, A4 as a 4 dimensional vector. The set of the first 3
equations in Eq. (2.14) can now be interpreted as the condition that the self-dual part
in 4-D of the curvature ofAµ is equal to a bilinear inϕα; then, the remaining four
equations can be written as Dirac type equations. To be more precise, with the relevant
definition of the 4× 4 matrices0µ and6µν , the dimensional reduction down toD = 4
of Eq. (2.14) gives

Fµν + εµνρσF
ρσ +t ϕ6µνϕ = 0,

D(A)
µ 0µϕ = 0. (4.18)

The consistency of the dimensional reduction from Eq. (2.14) to Eq. (4.18), and the
correctness of theSO(4) tensorial properties of all fields, are ensured by the existence
of relevant elliptic operators in 8 and 4 dimensions.

The remarkable feature is that the above equations are the non-abelian version of
Seiberg–Witten equations. In other words, we have observed that the spinors and vectors
of the non-abelian S–W theory get unified in the Yang–Mills field of the J theory.

The generation of a Higgs potential, to break down the symmetry, with a remaining
U (1) is in principle possible, by the relevant modifications in the gauge functions, which
provide a Higgs potential, function ofϕ. This is however a subtle issue that we will
address elsewhere.

The form of the action after dimensional reduction is just the sum of the bosonic
part of the Seiberg–Witten action, plus ghost terms. Its derivation is standard from the
knowledge of the gauge function, as a BRST exact term, which enforces the gauge
functions.

The link to supersymmetry in 4 dimensions is as follows. The BRSTQFT based on
Spin(7) is a twisted version of theD = 8, N = 1 theory where the spinor is a complex
field counting for 16 = 8+8 independent real components, and one has a complex scalar
field in the supersymmetry multiplet. This theory is itself obtained as the dimensional
reduction of theD = 10, N = 1 super Yang–Mills theory, where the spinor has 16
independent real components. Thus we predict that the theory we get by dimensional
reduction to 4 dimensions of BRSTQFT in 8 dimensions is related to twisted versions
of theD=4, N =4 super Yang–Mills theory. For instance, there are 6 scalar fields in the
bosonic sector of the theory as presented in the work of Vafa and Witten [16], (see their
Eq.(2.1)). In our derivation, these 6 scalar fields are combinations of 4 of the components
of the 8-D Yang–Mills field and of the commuting ghost and antighostφ andφ̄ of the J
theory.
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There are actually three ways of twisting theN = 4 SSYM in four dimensions,
defined by howSO(4) ' SU (2) × SU (2) is embedded in theR symmetry group12

SU (4) [16]. They are (i) (2, 1) ⊕ (1, 2) , (ii) (1, 2) ⊕ (1, 2) and (iii) (1, 2) ⊕ (1, 1) ⊕
(1, 1), where we have indicated how the defining representation ofSU (4) decomposes
underSU (2) × SU (2). Taking into account the argument in Sect. 6 of [27], we can see
that the cases (i) and (iii) arise from the reduction of type H and J cases, respectively.
The remaining case (ii), which is the twist employed by Vafa-Witten [16], is obtained
from the 7 dimensional Joyce manifold withG2 holonomy. On the other hand, we get
the non-abelian Seiberg–Witten theory with an adjoint hypermultiplet in the case (iii),
which gives the relationship betweenN = 4 SSYM and non-abelian Seiberg–Witten
equation.

We thus conclude that very interesting twists connect the fields of the pure Yang–
Mills 8-D BRSTQFT, (obtained by gauge fixing the invariant�∧Tr (F ∧F )), the fields
which are involved in the four dimensional Seiberg–Witten equations, and the fields of
theD=4, N =4 super-Yang–Mills theory.

We note that if one starts from the H case gauge functions, the result of compactifying
down to 4 dimensions is just a complexified version of a two dimensional Yang–Mills
TQFT, coupled to two scalar fields; it could also be deduced from the dimensional
reduction of the 3-dimensional BRSTQFT based on the Bogomolny equations.

4.2. Dimensions larger than 8.

4.2.1. Discussion of the case D=12.A BRSTQFT in 12 dimensions might be a candidate
for F -theory. 11-dimensional supergravity, defined on the boundary of a 12 dimensional
manifold, emphasizes the relevance of a 3-form gauge fieldC3, possibly coupled to a
non abelian connection one formA. The most important term

∫
M11

C3 ∧ dC3 ∧ dC3 of
the 11-dimensional supergravity suggests that one should build a TQFT based on the
gauge-fixing of the following invariant13:∫

M12

(
dC3∧dC3∧dC3+dC3∧dC3∧Pinv 4(F )+dC3∧Pinv 8(F )+Pinv 12(F )

)
, (4.19)

wherePinv n(F ) are invariant polynomials of degreen/2 of the curvature ofA, i.e,
characteristic classes. Special geometries like hyper or quaternionic Kähler manifolds
give natural four-forms. They, their duals (which are 8-forms, and are therefore good
candidates to define gauge functions for the curvature of a 3-form in 12 dimensions),
and their powers might be used as well here.

It is natural to try and gauge fix these topological actions to get a BRSTQFT. However,
we did not find gauge fixing functions for a single uncharged 3-form gauge field in 12
dimensions. Rather, we did find one for a singlecharged3-form, and another one for a
theory with twouncharged3-forms. (See below.)

We could introduce a 5-form gauge field, (not relevant for pure 11-dimensional
supergravity), and similar to the 8-dimensional case, consider self-duality conditions
for the 6-form curvature ofC5, with a gauge condition of the type

dC5 + ∗dC5 + Tr (F ∧ F ∧ F )+ = 0. (4.20)

In the present understanding of superstrings, 5-forms are not so natural; so we will not
elaborate further on this case.

12 TheR symmetry is the automorphism of the extended supersymmetry algebra.
13 Here againdC3 meansh + dC3, whereh is the harmonic representative of an element inH4(M12).
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WhenM12 is a Calabi–Yau 6-fold, we can do some things in two different theories.
In the first theory, we couple acharged3-formB to the Yang–Mills field. (B is valued
in the same Lie Algebra asA.) We again use∗ : 30,q → 30,6−q, so that30,3 ⊗ G =
30,3

+ ⊗ G + 3
0,3
− ⊗ G. Again ∂̄AF

0,2 − ∂̄A∂̄A
∗B = 0 implies for compact manifolds that

∂̄A
∗B = 0. The covariant gauge condition is∗F 0,2 = ∂̄AB,B ∈ 30,3

+ ⊗G; equivalently,
F 0,2 = ∂̄∗

AB. So the covariant gauge conditions become the pairF 0,2 = 0 and∂̄AB = 0,
similar to the Calabi–Yau 3-fold case in Sect. 4.1.1. There,F 0,2 = 0 and∂̄∗

Aϕ̃ = 0, with
ϕ̃ ∈ 30,3 ⊗ G. In the present case,B ∈ 30,3

+ ⊗ G.
The moduli space is a vector bundle over the set of holomorphic bundles for a fixed

C∞ (E, ρ). Each such holomorphic structure gives a uniqueA with F 0,2
A = 0. The fiber

overA consists of [B ∈ 30,3
+ ⊗ G ; ∂̄AB = 0].

The sequence 0→ 30,0 ⊗G ∂̄A−→ 30,1 ⊗G ∂̄A−→ 30,2 ⊗G ∂̄A−→ 30,3
+ ⊗G is elliptic at

the symbol level; linearization of the covariant gauge condition together with the usual
gauge fixing is given by the elliptic operator:(

∂̄A ∂̄∗
A

∂̄∗
A 0

)
:

(
30,1 ⊗ G
30,3

+ ⊗ G
)

−→
(

30,2 ⊗ G
30,0 ⊗ G

)
. (4.21)

We take as classical “topological” actionS0[A,B] =
∫

M12
�6∧Tr (∂̄AB∧FA) where

�6 is the (6, 0) covariant constant form ofM12. Since the covariant gauge function is
F 0,2 − ∂̄∗

AB and since〈F 0,2, ∂̄∗
AB〉 =

∫
M12

�6 ∧ Tr (F 0,2 ∧ ∂̄∗
AB), we have‖ F 0,2 −

∂̄∗
AB ‖2=‖F 0,2‖2 + ‖ ∂̄∗

AB ‖2 −〈F 0,2, ∂̄∗
AB〉− 〈∂̄∗

AB,F
0,2〉, that is,‖F 0,2 − ∂̄∗

AB ‖2=‖
F 0,2 ‖2 + ‖ ∂̄∗

AB ‖2 −S0[A,B] − cS0[A,B] . (Remember that̄∂∗
A = ∗∂̄A∗.) We thus

obtain a BRSTQFT whose gauge fixed action will include the term‖F 0,2‖2 + ‖ ∂̄∗
AB ‖2.

Moreover, the condition thatB ∈ 30,3
+ ⊗ G can be imposed in a BRST invariant by

using the ordinary gauge freedom ofB 14.
In the second theory, we introducetwo uncharged2-form gauge fieldsBa

2 and two
(non abelian) Yang–Mills fieldsAa, with a = 1 and 2. We consider the following
topological classical action ∫

M12

εab�6 ∧ dBa
2 ∧ dBb

2. (4.22)

We define the following “holomorphic” gauge conditions, where the complex indices
run from 1 to 6,

c∂[µ̄B
a
ν̄ρ̄] + εab εµ̄ν̄ρ̄ᾱβ̄γ̄∂[ᾱB

b
β̄γ̄] = Tr (Aa

[µ̄∂ν̄A
a
ρ̄] +

2
3
Aa

[µ̄A
a
ν̄A

a
ρ̄] ). (4.23)

The right-hand side of this equation is the Chern–Simons form of rank 3. The similarity
to 8 dimensions is striking, up to the replacement of the even Chern class by the odd
Chern–Simons class. Equation (4.23) implies

∂ρ̄∂[µ̄B
a
ν̄ρ̄] = εab εµ̄ν̄ρ̄ᾱβ̄γ̄Tr F b

ρ̄ᾱF
b
β̄γ̄ . (4.24)

Its solution is the stationary point of the following action:

14 The (0,3)-formB is valued in the same Lie algebra as the Yang–Mills field. It is thus non abelian and its
quantization involves the field anti-field formalism of Batalin and Vilkoviski. We intend to perform elsewhere
this rather technical task, which generalizes that sketched at the end of Sect. 3.0.
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M12

d12x εab(∂[µ̄B
a
ν̄ρ̄]

c∂[µ̄B
b
ν̄ρ̄] + εµ̄ν̄ρ̄ᾱβ̄γ̄

cBa
ν̄ρ̄Tr F b

ρ̄ᾱF
b
βγ̄ + complex conjugate).

(4.25)
Gauge fixing the Lagrangian Eq. (4.22) by the gauge condition Eq. (4.24) provides a
BRST invariant action. Its ghost independent and gauge independent part is identical to
the action Eq. (4.25).

4.2.2. Other possibilities.In 10 dimensions one could build a BRSTQFT based on a
four-form gauge fieldB4 and a pair of two gauge fieldBa

2 , a = 1, 2, which naturally fit
into the type IIB superstring. All these forms are uncharged, but they can develop non
trivial interactions [30]. The curvatures are

G5 = dB4 + εabB
a
2G

b
3, (4.26)

Ga
3 = dBa

2 , (4.27)

with Bianchi identities,dG5 = εabG
a
3G

b
3 anddGa

3 = 0. One can construct from these
fields one closed 11-form

111 = εabG
a
3G

b
3G5, (4.28)

and two 8-forms
1a

8 = G5G
a
3 . (4.29)

The role of the invariant forms is obscure, but their existence could signal generaliza-
tions of the Green–Schwarz type anomaly cancellation mechanism. The covariant gauge
function is

dB4 + ∗dB4 + εabB
a
2dB

b
2 = 0. (4.30)

The mixing of forms of various degrees by the gauge functions generalizes that of the
3-form with the Yang–Mills field in the eight dimensional theory of Sect. 3.

5. Conclusion

We have described some new Yang–Mills quantum field theories in dimensions greater
than four, using self duality. In eight dimensions we found two BRSTQFT’s depending
on holonomySpin(7) (the J-case) or holonomySU (4) (the H-case). In the J-case, BRST
symmetry is what is left of supersymmetry.

The increase in dimension allows us to couple ordinary gauge fields to forms of
higher degree. We have given several examples.

Dimensional reduction generates new theories. One of them is a BRSTQFT whose
gauge conditions are the non-abelian Seiberg–Witten equations.

In four dimensions, given the self duality condition, there are other ways of deriving
the Lagrangian of Witten’s topological Yang–Mills theory besides Witten’s twist of
N =2 SSYM and besides BRST [1, 2, 33]. These methods should work equally well in
deriving our BRSTQFT Lagrangians for the pure Yang–Mills case.

Finally, as we have indicated earlier, the geometries of the moduli spaces we have
probed have not been worked out. Much remains to be done [13]. However, from the
lessons learned in four dimensions, it is tempting to hurdle these obstacles and proceed
to the corresponding Seiberg–Witten abelian theory. Preliminary investigations indicate
that one can compute the Seiberg–Witten invariants, whenM8 is hyperK̈ahler, i.e., when
the holonomy group isSp(2). This case is very similar to the Seiberg–Witten invariants
for M4 when it is K̈ahler [34].
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Note added on July 17, 1997.T.A. Ivanova has called our attention to [14], where
instanton solutions are found. B.S. Acharya and M. Loughlin have called our attention
to their paper [35] where they discuss self duality for Euclidean gravity whend ≤ 8.
B.S. Acharya, M. Loughlin and B. Spence also discuss self duality in [36]. In their paper,
a note added says that their proof of BRST invariance would “seem to conflict” with
our theory not being topological. Indeed the theory isnot topological. They made the
corrections in a revised version.

We expand on our assertion. AssumeM is a compact oriented simply connected
manifold withÂ = 1 and assumeM admits a Joyce metric, i.e, a metric withSpin(7)
holonomy. The space of Joyce metrics modulo diffeomorphisms isotopic to the identity
is of dimension 1 +b4

−(M ) (see Theorem D in [20]). It is conceivable that this manifold
of Joyce metrics is not connected so that one cannot find a path from one Joyce metric
to another with each point of the path a Joyce metric.

The BRST argument for invariance requires a path of Joyce metrics, hence shows
formally that the correlation functions are constant on components of the space of Joyce
metrics. But the argument does not imply constancy of the correlation functions on all
Joyce metrics. This is one reason we chose not to label our J-case QFT a topological
quantum field theory.

On the mathematical side the argument analogous to BRST invariance also works
formally because the correlation functions come from the second Chern class (see 2.1.3).
As we indicated there, to define the analogue of Donaldson invariants (the correlation
function precisely), one needs to integrate over the moduli spaceMJ of self dual con-
nections. To do so, a compactification ofMJ is important (work in progress by D. Joyce
and C. Lewis).

The H-case (Sect. 2.2.3 in particular) is more complicated. Physicists allow a degen-
eration of the complex structure to connect one moduli space with another. We do not
know how the “holomorphic Donaldson invariants” behave under this degeneration.
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