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Abstract: We build nearly topological quantum field theories in various dimensions.
We give special attention to the case of eight dimensions for which we first consider
theories depending only on Yang—Mills fields. Two classes of gauge functions exist
which correspond to the choices of two different holonomy groupSax8), namely

SU(4) andSpin(7). The choice ofSU(4) gives a quantum field theory for a Calabi—

Yau fourfold. The expectation values for the observables are formally holomorphic
Donaldson invariants. The choice 8pin(7) defines another eight dimensional theory

for a Joyce manifold which could be of relevancelifr and F-theories. Relations

to the eight dimensional supersymmetric Yang—Mills theory are presented. Then, by
dimensional reduction, we obtain other theories, in particular a four dimensional one
whose gauge conditions are identical to the non-abelian Seiberg—Witten equations. The
latter are thus related to pure Yang—Mills self-duality equations in 8 dimensions as well
as to the N=1, D=10 super Yang—Mills theory. We also exhibit a theory that couples 3-
form gauge fields to the second Chern class in eight dimensions, and interesting theories
in other dimensions.

1. Introduction

Topological quantum field theory (TQFT), or more specifically, cohomological quantum
field theory has been extensively studied in two, three and four dimensions. (See e.g.
[1, 2] and references therein.) In this article we show that theories which are almost
topological also exist in dimensions higher than four. We call them BRSTQFT'’s instead
of TQFT’s. We give special attention to the case of Yang—Mills fields in eight dimensions.
A BRSTQFT relies on a Lagrangian which contains as many bosons as fermions,
interconnected by a BRST symmetry. The Lagrangian density is locally a sum of d-
closed and BRST-exact terms. Starting from classical “topological” invariants, the most
crucial point in the construction of the BRSTQFT is the determination of gauge fixing
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conditions, enforced in a BRST invariant way. In the weak coupling expansion, one
interprets the theory as exploring through path integrations all quantum fluctuations
around the solutions to the gauge conditions. This provides, eventually, an intuitive
way to study the moduli problem associated with the choice of gauge fixing conditions,
by computing Green functions defined from the BRST cohomology. Generally, one
must distinguish between the ordinary gauge fixing conditions for the ordinary gauge
degrees of freedom of forms and the gauge covariant ones which occur when one gauge-
fixes a “topological” invariant (i.e, constant on a Pontryagin sector of gauge fields).
A BRSTQFT can often be untwisted into a Poireaupersymmetric theory; we give
more examples in this paper. BRSTQFT's are microscopic theories, in the sense that in
principle they provide the fundamental fields to study (almost) topological properties.
We ask: are their infrared limits describable by effective theories, following the ideas of
Seiberg and Witten?

In four dimensions Donaldson [3] used the moduli space of anti-self-dual fields to
describe invariants of four manifolds. Witten [4] interpreted these invariants as observ-
ables in a topological quantum field theory, twist€d 2 supersymmetric Yang—Mills.
Baulieu and Singer [5] noted that this TQFT could be obtained from a topological action
by the BRST formalism with covariant gauge functions which probe the moduli space of
anti-self-dual fields. In this paper, we apply this formalism to higher dimensional cases
of self duality; M-theory, F-theory, and low energy limits of string theory have increased
the interest in QFTs in dimension greater than four.

Over a decade ago, Corrigan et al [6] classified the cases in which the self-duality
equation for Yang—Mills fields in four dimensions could be generalized to higher dimen-
sions. See also Ward [7]. Solutions to these equations are higher dimensional instantons
[8, 9]. The generalizations in eight dimensions depend on having the holonomy group
reduced fromSO(8) to Spin(7) or SU(4). See Salamon [10] for background on special
holonomy groups.

The third author (IMS) learned about self-duality in eight dimensions for Einstein
manifolds and fields associated to the spin bundle from Eric Weinstein in 1990. Weinstein
constructed special instantons, computed the dimensions of the corresponding moduli
space, and noted the importancesgin(7) andSU(4). For this, and more, see [11].

The geometry for manifolds with holonon8pin(7) can be found in Joyce [12]. For
holonomySU (4), the holomorphic extension of Donaldson Theory is being developed by
Donaldson, Joyce, Lewis, and Thomas at Oxford. Their program for extending results
in two, three and four dimensions from the real to the complex case is sketched in
Donaldson and Thomas [13].

In the first part of this paper we describe two eight dimensional Yang—Mills quantum
field theories that reflect the eight dimensional self duality equations found in [6]; we use
the geometry developed by the above-mentioned authors to construct the quantum field
theory. These theories cannot be called topological for they depend on some geometrical
structure of the manifold/g. For want of a better term, we have called them BRST
qguantum field theories (BRSTQFT), because they are constructed by starting with a
topological action and using the BRST formalism with covariant gauge functions that
again probe the moduli space of these new anti-self-dual fields.

When the holonomy group Spin(7) C SO(8), we call (Mg, g) a Joyce manifold.
Section 2.1.1 gives the geometry needed to construct the BRSTQFT of 2.1.2, which
is in turn described geometrically in 2.1.3. Section 2.2 gives a parallel discussion of
the holomorphic case, i.e., when the holonomy grouslig4). We compare the two
cases in Sect. 2.3. We point out in Sect. 2.4 that the J-case is a twistdD, N =1
supersymmetric Yang—Mills theory (SSYM) dimensionally reducedte 8. Since
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supersymmetries for a curved manifold require covariant constant spinors, there is one
remaining supersymmetry; we explain its relation to the topological BRST symmetry.

Having defined pure Yang—Mills BRSTQFT in eight dimensions, we introduce a
different theory in Sect. 3 which couples an uncharged 3-form gaugeBiglo the
Yang—Mills field A. We propose as covariant gauge conditions of the coupled systems,
the pair of equations

Fpo=xQ AN Fy,
Tr (Fa A Fa)s + dBs +#dBs = 0, (1.1)

whereQ is a background closed 4-form. One must be careful Hegés not an ordinary
3-form andd B3 is not its differential. Rathei3; is locally defined, up to an exact 3-form
so thatd Bz stands for a closed 4-form. (See the discussion in Sect. 3).

Section 4 discusses other dimensions. Whén is a Calabi—Yau 6-fold, one can
define BRSTQFT's and we do so. We reduce our 8D theories to 6D and 4D in sections
4.2 and 4.3, respectively. The H case reduction can be obtained directly on a Calabi—Yau
3-fold by a modification of the methods in Sect. 2.2.

The reduction to 4D is particularly interesting. On the one hand we get a twisted
N = 4 SSYM of Vafa and Witten [16]. In fact, the H, J cases and the cas¥/of
holonomyG, theory, reduced to 4D, give the three twists\6£4 SSYM. On the other
hand we also get the nonabelian Seiberg—Witten theory. Thus there is a relationship
betweenN =4 SSYM and nonabelian SW theories. The latter theory is obtained from
the eight dimensional J theory, with its octonionic structure; the former is obtained from
the N =1, D =10 SSYM theory, by ordinary dimensional reduction. The direct link
between theD = 10 SSYM theory and the J theory is that tNe= 1, D =10 SSYM
theory gives by dimensional reduction the=1, D=8 SSYM which can be identified
with the J theory by a simplest twist, specific to eight dimensions, which interchanges
vectors and spinors (Sect. 2.4).

2. Pure Yang—Mills 8 Dimensional Case

The four dimensional Yang—Mills TQFT can be obtained by the BRST formalism. Start-
ing withp; = 8—71rzTr F A F, one gauge-fixes its invariances with three covariant gauge
conditions and one Feynman-Landau gauge condition that probe the moduli space of
self-dual curvature fields [5]. These gauge conditions are enforced in a BRST invariant
way, by using the 4 gauge freedom of local general infinitesimal variations of the connec-

tion A,,. Put mathematically, we get an elliptic complex0A° - A -4 A2 — 0,
tensored with a Lie algebi@.

In this section we extend this scheme to 8 dimensions when the holonomy group in
SO(8) is eitherSU (4) (the case of a Calabi—Yau 4-fold) 8pin(7) (the case of a Joyce
manifold). The 4-D self duality equations must be generalized to

1
AR = ST Fy, (2.1)

where) is a constant (an eigenvalue) dfief’?? is a totally antisymmetric tensor which

is generally not invariant under genets (D) transformations. Rather it is invariant
under a subgroup FO(D). Corrigan et al [6] classified the possible choice§'6f*”

up to eight dimensions, where two solutidfiisire singled out. Indeed, for these cases,
the space of 2-forma.? decomposes into a direct sum and one can thus replace the
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self-duality condition in four dimensions by the condition that the curvature fields lie
in an appropriate summand. The elliptic complex above has an 8-D counterpart: 0

A0 % AT %, P(A2) — 0. Moreover, in each case, there is a closed 4-frand
one can replacg; by
iQ/\Tr (FAF). (2.2)
82

Since [, 2 ATr (F' A F) is independent of the gauge fieldand since the new elliptic
complex implies that the number of gauge covariant gauge functions plus Feynman-
Landau type gauge condition is eight, one can use the BRST formalism to introduce
new (ghosts and ghosts of ghosts) fields and an invariant action. The theory is not
topological, because it depends on the reduction of the holonomy group. In the case of
the SU(4) reduction, one predicts that the expectation value of the observables depends
on the holomorphic structure of, but not on the choice of the Calabi—Yau metrics.
We call these theories BRSTQFT’s. We will say the BRSTQFT is of type 3fon(7)
and of type H forSU(4). We will analyze each case. They differ in a subtle way from
the point of view of BRST quantization. In the type H case one has 6 independent
real covariant gauge conditions which can be seen as three complex 4-D self-duality
conditions. We can complete them bga@mplexsupress gauge condition which counts
for the two missing gauge conditions allowed by the eight freedom in deforming the
Yang—Mills field. In the type J case one has seven independent real equations which we
can complete by the usual (real) Landau gauge condition. In the former case one has
thus a complexification of all ingredients of the 4-D case. In the latter case all fields
are real, and the situation is quite like the 4-D case, with the change of the quaternionic
structure of the self duality equations in four dimensions into an octonionic one in eight
dimensions.

The action we consider will be the BRST invariant gauge fixing of the topological
invariant 1

So = = QATrH(FAF), (2.3)
Mg

where is a fixed closed four form adapted to each case. Depending on the case, we
will have six or seven covariant gauge fixing conditions of the type of Eq. (2.1), that we
will denote asd; =0, 1 < i < 6 or 7. That we get an action containing a Yang—Mills
part relies on the identity

a) Tr(®:®;): (vol) = —So+ Tr(F AxF), (2.4)

whereaq is a positive real number (one has different decompositions in the J and H
cases). {ol) stands for the volume form. The last term is the action density for the
Yang—Mills theory. Hence a solution t; = 0 gives a stationary point of the eight
dimensional Yang—Mills theory. For this reason, the equat%jﬂé”P”F,m = \[HY,
deserve to be called the instanton equation. Notice that one has the correspondence
Quupo = eWp,,w%TWV‘s. By adding toSp a BRST exact term which generates among
other termsy _,(®; ®;), we will thus replace the “topological” invariagt A Tr (F' A F')

by the standard Yang—Mills Lagrangian T { «F) plus ghost terms, which constitute

the action of the BRSTQFT theory. As explained earlier, the term BRSTQFT seems to us
more appropriate than the term TQFT for the resulting theory. Obviously, the remaining
gauge invariances must be gauge fixed, which will be done in the same spirit, as in [5].
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2.1. Type J case: Joyce Manifold.

2.1.1. Geometrical setupRecently it has been proposed that the 7 dimensional and
the 8 dimensional Joyce manifolds provide a compactification to four dimensions of
M-theory andF'-theory, respectively [17, 18, 19]. We consider here the 8 dimensional
case and call a Joyce manifold an eight dimensional manifold gith(7) holonomy

[12] *. ThenSpin(7) acting onA*(Mg), the space of 4-forms, leaves invariant a self-
dual 4-form2 # 0. Further is covariantly constant and hence closed. The space of
2-forms A%(Mg) splits into A3, & AZ with dim g A2 = 7. One can see this by noting
that A? ~ so(8) and thatA3; ~ Lie algebra ofSpin(7) C so(8). The splitting can also

be obtained as follows: I&f be the operator on? given byr — %(Q A 7). ThenT is

self adjoint with eigenvalues +1 and3, when< is scaled. Its eigenspaces arg and

A2, respectively. The ordinary anti-self-dual Yang—Mills fields in four dimensions are
now to be replaced byR, F4) = 0, whereP; is the projection ofA? onto A2. We next
discuss the linearization of this equation.

LetS}, andS;, (thatis,8sand8; in another notation) denote the chiral and antichiral
real (Majorana) spinors fav/g (Mg is simply connected and has a unigue spin structure).
Then the representation Spin(7) onS;, is the direct sunR @ V (thatis,8s = 1@ 7).

Let ¢ be a covariantly constant spinor field of norm 1 giving the splittingHf. The
representation dpin(7) on.S,, is irreducible. Sinc&; ® Sy is isomorphic to forms,
tensoring by(¢ identifies spinors with forms. For exampIA,Z(S&) ~ A%(Mg); so
A%(Si)) = A2(R@ V) =V AV +( ®V gives the splitting intaA3; & AZ%. Further

¢ ® Sy, can be identified withA1(Mp), that is,8,. We conclude that the sequence

0— A -4 A4 A2, 0is an elliptic sequence an@(d + d*) : A* — A2 @ A°
is the Dirac operatop) : S,, — S}/, after the identification of spinors with forms due
to (.

If P is a principal bundle ovellg with a compact gauge group, we can couple

formstoits Lie algebrg by a vector potentiall. We have the sequenced A°®G Da,

Ate ¢PP4A2 9 G — 0 whichis elliptic whenP, D2 = 0, i.e. whenP, F4 = 0. (Here

we have identified the Lie algebgawith the adjoint Lie algebra bundle ovérg.) In
general,P.D4 + D% =P, : A*® G — A2 ® G+ A°® G is elliptic. The index of the
operator is the virtual dimension of the moduli spde; of solutions to the nonlinear
equationP: F4 = 0, modulo gauge transformations.

To make contact with the next section, let us remark fAdt, = O determines, in
the case of a pure Yang—Mills BRSTQFT, the relevant gauge covariant gauge conditions
shown in Eq. (2.1), whileD? is the operator related to the Landau-Feynman gauge
condition of ordinary gauge degrees of freedom.

More precisely, the BRSTQFT that will be determined shortly is the gauge fixing by
BRST techniques ofp[A] = st QATr(F A F). The latter is independent df, since

it is 872Q U p1(P) which only depends on the topological chargedof

The way one gets the Yang—Mills action from the gauge fixing of an invariant is the
consequence of the following.dfis an element oA?, letw_ andw: be its components
on A3, andAZ. Then||w||?=| ws ||2 + || w_ ||?, (w+,w_) =0, while

1 There is another class of Joyce manifolds in seven dimensions [20]. Its holonomy is the exceptional group
G». Both classes of Joyce manifolds have been studied in superconformal field theory [21, 22].
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QAFAF=QAF.+F_)A(Fs+F.)
QAR AR +QAF_ ANF_ +QAF_AF +QAF AF_

=3« Fs NFy++«F_ANF_+xF_ANF, —3xFy NF_. (2.5)
Thus
/ Tr (QAFAF)=||F_|?2 =3 || F: |, (2.6)
Mg
and
| Fal®= /M Tr (QAFsANFa)+4 | F|?. (2.7)
1

Q A Q orientsMg and is the volume element. Given the topologial sector, we ch@Qose
so thatf,, Tr (2 A Fa A Fa) > 0. ThenF. = 0 minimizes the actiofj Fa ||*.

To write the BRSTQFT action in physicist's notation, we have to be more explicit.
In terms of an orthonormal basis, the self-dual four form is

Q=eiNeaxNesANegter Nea ANer ANegt+ezAesgNesA eg
+tez3NegsNerNegter NesNesANer —ep ANeg/\eg/\eg
—ex Neg/NesNertexNeg/Neg/\Neg—er Neg/N\eseg (28)
—e1NegNeg/Ner—exNegNesNeg—ex NezN\esg /ey
+e1 ANex ANez Negt+esN\esg/\er/es,

wheree; (i = 1,...,8) are vielbein fields.
The operatorT” defined above can be written as the followifgin(7) invariant
fourth rank antisymmetric tensor

THYPo = CT’V}LV[)U(, (29)

where~#r? is the totally antisymmetric product of matrices for theSO(8) spinor
representation;

vpo 1 L.V g
yrT = gy, (2.10)

and( is the covariantly constant spinor introduced above to identify spinors with forms.
This gives another component representation of the four farrifo repeat the first
paragraph of this section in terms of the fourth rank tefi3%¥, we define an analogue

of the instanton equation on the Joyce manifold [6];

1 :
FHv o= ET‘“’""FW, ie. Fe A2 (2.12)

The curvature 2-forn¥,,, in 8 dimensions has 28 components, wh8gén(7) decom-
position is28 = 7 ¢ 21. (This is made explicit by the eigenspace decomposition of the
action of%T””P" in Eq. (2.1) with the eigenvaluegs= —3 and\ = 1.)

Equation (2.11) can be written as seven independent equations, showing that the
curvature has no components in the former subspace which is 7-dimensional

Fg =cijrtyr, 1<4,5,k <7, (2.12)
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Equation (2.12) makes the octonionic structure explicit. Indeed; jhare the structure
constants for octonioRsind the eight dimensional tensdFs, ., can be written a3

Toiji = cije,  1<4,5,k <7

1 ...
le‘jk = ﬁd”kabccabcv 1 S iaj7 kal S 7. (213)

Notice that by construction, tHE,, . are self-dual objects in 8 dimensions. Computed
explicitly, Eq. (2.11) is

&y = Fip+ Fag+ Fsg+ Frg =0,
Gy = Fiz+ Fyp+ Fs7+ Fge =0,
O3 = Fig+ Foz+ Fre+ Fgs =0,
by = Fis+ Fao+ Fra+ Fyg =0, (2.14)
®5 = Fig+ Fos+ Fag+ Fy7 =0,
®g = Fi7+ Fgp+ I35+ Fpg = 0,
&7 = Fig+ Fo7+ Fez+ F54=0.

In this form, the gauge functions are ready to be used to define the BRSTQFT action.
It is known (see [8, 9, 14] ) that at least one instanton solution exists for the 8
dimensional equatiof™” = 3T+"77 F,, 4% Finally, Egs. (2.5)-(2.7) imply

7
43 Tr(0;®;) - (vol) = —QATI (F A F)+Tr (F A«F). (2.15)
=1

2.1.2. Action and observabledn the following all the fields are Lie algebra valued
and we will suppress the Lie algebra indices. We use the standard notatiop) for
topological ghost. We also introduce the Faddeev—Popov gtiosiefine a completely
nilpotent BRST transformation. The topological BRST transformation for the gauge
field and the ghost fields is

sA, =Y, +Dyc, sy,

_Du¢ —[e, 1/Ju]a
se=6-3led, 56 = o] (2.16)

We need as many pairs of the anti-ghost and the auxiliary figld44;) as topological
gauge functions, with the following BRST transformation law;

SXi = H’L - [Cv X7]7 5H7 = [d)a X?] - [Cv H7] (217)
One has K i < 7. The gauge fixed action at the first stage is

2 |f we decompose the octonions into its one dimensional real part and 7 dimensional imaginaR/ part,
thenx7(£2| z7) is a 3-forma which determines Cayley multiplication ' by afz,y, 2) =< z,y,2 > .

3 In the four dimensional case one has similar equations, with the indiggls running from 1 to 3. Then
the coefficients:; ;;, are the structure constants for quaternions. The holomorphic H case that we will shortly
analyze is thus a theory with a complexified quaternionic structure.

41t is also known that a solution exists in seven dimensions if one replees7) by G (see [15]).

5 An interesting problem is to find conditions on a curved compact Joyce manifglo that such
instantons exist.
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1 1 1
Sy = f/ QATIH(FAF) +s[/ d®x\/g Tr (Xiq’z"inHi)}
2 Ms 2 Mg 2

1
=Z [ QATI(FAF)
2 Mg

1 1 1
+5 d®x\/g Tr (Hiq>i + S HH; — xi(DY)i + 50[x:, Xi])a (2.18)
2 o, 2 2

where (Dv); is the FP ghost independent partsd#;. Eliminating the auxiliary fields
H; by Eq. (2.15), one recovers the standard Yang—Mills kinetic term

1 1
S1 = / Ba\/gTr [ =2 F"E,, — xi(DV)i + = lxi, xi] ) - (2.19)
Mg 4 2

Notice that the fermion terms break t%¢)(8) global invariance down t6r», for
which the octonion structure coefficient in Eq. (2.12) is an invariant tensor. The gauge
fixing and Faddeev—Popov ghost dependence have not been considered yet: the first
stage action has still a gauge symmetry in the ordinary sense. To fix it completely we
take two more conditions

D=0, 0-A=0. (2.20)

(The meaning of the scalar product is the usual one,/2.g¥ = D, ¥*.) Introducing
additional fields ¢, n) and ¢, B) with the BRST transformation law,

34;277*[6,5], sn = [¢7»¢?]*[Ca77]»
sc=DB— [0701 sB = [(rbva - [Cv B]a (221)

we write the complete action as
A =Sl+s[/ dsz\/ﬁTr(ggD~w+c_8~A+;c_B)}
Mg
— 8 1 v 1
- d°x gTr ——F" FMV*X’i(Dw)i'F*Qb[Xiin]
M 4 2
+nD-¢+$D.D¢—¢-[<;?,¢]+Ba-A+%BZ+Ea.Dc
- 1,
—cO - +0-Ale,c] — 2(]5[0,5_[} (2.22)
A natural set of topological observables is derived from the topological invariants

}/ QATIH(FAF), /Tr(F/\F/\F/\F). (2.23)
2 J g Mg

The method of the descent equation implies a ladder of topological invariants and, for
example, gives the following descendants:
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17
0(°>:7/ QAT (FAF),
2 Mg

OW= [ QATr(p AF),

/,
1
@ = < _
o /%Q/\Tr(zw/\w oA F), (2.24)
O®=— [ QATr (A ¢),
/,

1
@-1
o 2A4QATr(¢A¢).

The descendar®®® with ghost numbet is an integral over an (8 k) cycleye_g).

2.1.3. Geometric interpretationThe virtual dimension of the moduli spacdet; of
solutions toP, F4 = 0is—index @®Ig,i.e.,theindexo®Ig: S~ ®G — ST®G.
Its value is

— / A(Ms) ch(G), (2.25)
Mg

computable in terms of the relevant characteristic classes. We will discuss the vanishing
theorem needed to make the virtual dimension equal to the actual dimension elsewhere.
We can interpret Sect. 2.1.1 geometrically analogous to Sect. 5 in [5]. The BRST
equations in this section are the analogues of (7) in [5], and are the structure equations
for the universal connection o#t/G x Mg with structure groug-. The curvature 2-form
JF for this universal connection equalg + i + 72, whereF}_. is ani-formintheA/G
direction (ghost number) and a{2)-form in the Mg direction. Note thafs at (4, z) is
Fa(z) andF} assignsto € T(A/G, A)andv € T(Ms,v) the valuer(v) € G, sinceris
a 1-form onMs. Further,7Z onty, 7, € T(M 5, A) is G(b% (2)) whereG = (D% D 4)~*
onA°® G andb.,(f) = [, flfor f € A°®G; by, is the adjoint ob, . We restrictF to
M ; x Mgand considet, = B—}FZTr (FAF)ad-formonM ; x Mg. Its expansion contains
8—;2Tr (FL A FL), which has ghost number 2. This 4-form assignsite, € T(M 5, A)
anduvg, vy € T(Mg, a:) the Va|U6871r2(TI' (7’1(111)7'2(1}2)) —Tr (Tl(’Uz)Tz(Ul)). Let 7'17\7’2
denote this 2-form od/g.
Let c’j_k be the component af, which is of degree&: in the M ; direction and of
degree 4- k in the Mg direction. Thenf% Q Ak, gives ak-form on M ;, whenyy is

a (8— k)-cycle onMsg, k = 0,1,2,3 or 4. These are the observabe®) in Eq. (2.24).
Taking products of the form& and integrating them ovek1 ; gives the expectation
values of the products of observabl®¥e are not addressing the central problem of
integrating a form over the non compact spat€;. We can specialize to 6-cycles, or
equivalently to 2-forms to get a closer analogy to Donaldson invariantsziff?(Mg),

let 3, be the 2-form onM ; given by X, (m1, 72) = fMB Q A TAT A 0. We get an-
symmetric multi-linear function o 2(Ms) given by @, ..., 0,) — fMJ To A A

%, ifdim M ; = 2r. Of course the issue here is to make these invariants well-defined
and to see how they depend on the space of Joyce manifolds modulo diffeomorphisms
for a fixed M.
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2.2. Type H: Calabi—Yau Complex 4-manifold.

2.2.1. Geometrical setuBuppose now that the holonomy group fdfy, ¢) with metric

g is SU(4). SoMjg is a complex manifold and we can assume thi a Calabi-Yau
metric with a Kahler 2-formw. We choose a holomorphic covariantly constant (4,0)-
form € which trivializes the canonical bundl€. We normalize so thatQ A Q is the
volume element oM. We also choose the trivial K for the spin structure oi/g.

We know that complex spinors can be identified with forifig; © C =~ A% o
and the Dirac operator with + 90*. Real Majorana spinor§y; C Sy ® C are the
fixed points of a conjugatiohon S, ® C. We can identifyb with a conjugate lineax
operator as follows. For any Calabi—Yau,,, definex : A%? — A®"~P by (o, 8) =

sz Q Aa A =3, where now2 € A™P. (If one denotes by, the usual map on

complex manifoldsA?? — A"~ %"7P thenx; ~ = Q A % on A%%.) Whenn = 4,
one can show that conjugatldnequals €1)7% on A%9. Consequently, the operator
&+ P9 A%t — A%+ A9?is the Dirac operatorfronS’M — St,. HereA%? is the

+ eigenspace of, P. is the projection ofA®? on A%?; we have identifiech >* with

25 (A% + A%3) and A% with 152 (A%0 + A%%). The sequenca -2, A1 Fid —2A%?is
elliptic and is the linearization of the equatihF'4, = 0, modulo gauge transformations.

Suppose nowk, p) is a complex Hermitian vector bundle ovifg with metric p of
dimc = N. If AisaconnectionfoF, we have its covariant differentié} 4 : C*°(E) —
C*(E®AY)sothatD = 94 +d, withd, : C®(E) — C®(E®A%Y). Bymtroducmg
local complex coordinates, 94(R") = (9y + (AL)zR7)dz", I,J = 1,...,N. So
(Al)zdz" is a (0,1)-form onmMg with N x N matrix coefficients.

The 1-form connectiom with values inGL(N, C) does not split naturally into
A%t + A0 unlessE is holomorphic. A splitting can be obtained by a choice of almost
complex structure on the principal bundle. See Bartolomeis and Tian [24]. In any case,
the curvature’y can be decomposed & = F5° + Fy'+ FY% with F$? = 93,

For each) operatorC>°(E) — C*(E ® AO b, there exists a unigue connectidn
such that (i)A preserves the hermitian metyicof £ and (i) (D)% = 9. Hence, the
spaced p of 0 operators can be identified with the connections of the principal bundle
associated with, which preserve the Hermitian metric. The group of complex gauge
transformationdd acts on the spacdp, because ifh € H, thenh~19h is also ad
operator.

Let G be gI(V, C). Then the sequenca® ® g—>A° 1w =A% @ G is still
elliptic on the symbol level. We say, is holomorphic anti-self-dual 1P+F§2 =0,in
which case the sequence is elliptic. Its index is the indgk®fl; : S, ®G — S}, ®G.

Again, the BRSTQFT will be obtained by gauge fixisig= [, QATr (FR?AFR?).
Sp is independent ofl, becausesy = 872Q U pi(E), sinceQ € A*°. WhenS, 7 0, we

can normalize2 further bye™, so thatS, is real and positive.
To verify Eq. (2.4) in the H case, we redugeo u(V), using the metrig. If w € A%2

has components.. in A%?, then||w [|2=||w+ ||2 + || w_||2. And

Py 5A

0§So=Tr/ QA(FRZ+FR2) N (FRZ+FY?)
Mg

_ 0,2 0,2 . 0,2 10,2
= — | Far |12+ (| Fo2 |12 +ilm (Fyf, F2)

= — | FR2P+ | FS2 % (2.26)
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Hence

| FS? (2= 2 || FRZ|[? +So. (2.27)

So the holomorphic anti-self-dual gauge condition minimizes the aﬁtlbf{’lz |?in the
topological sector wittby fixed.
The (4 0) form 2 can be simply expressed in local coordinates as

Q=dzt Adz? Nd2B2 A d2A (2.28)
and o
FO2 = 421 dzY Frp, (2.29)
where
Fay = 0gAy — 07Az + [Ap, Azl (2.30)
also
Dy = 817 + [Aﬁv ]. (2.32)

One has the part of the Bianchi identity
Dk = 0. (2.32)

The 3 complex gauge covariant gauge conditions, which count for 6 real conditions
on the 8 independent real components containetlimre

Frvip + €mpmiisiiaF fiais = 0- (2.33)

The two other gauge conditions are given by the following complex equation
1
817614,; + E[Aﬁ, €A1 =0. (2.34)

If we compute the real and imaginary parts of this condition, they give respectively
the Landau gauge condition adn the first of the seven conditions in (2.11). A similar
decomposition of (2.33) gives the six other equations in (2.11).

We have now the topological gho$t; with 4 independent complex components,
and we have the ghost gauge condition

Dew; =0. (2.35)

(Here and below, we use the left upper synfiot complex conjugation.) A consequence

of the use of complex gauge transformations is that a complex Faddeev—Popov ghost
¢ must be introduced, with complex ghost of ghgstUp to the complexification of

all fields, we have thus exactly the same field content as the original 4 dimensional
Yang—Mills TQFT. This leads us to the BRST algebra that we will shortly display.

2.2.2. Action and observablefrom the previous arguments, we must write the BRST
algebra in a notation where all fields amx@mplexields and replace the formula of the J
case hy

sAg=vyg+Dgc, s = —Dpd—[c, ¢zl
se=g—led, 6= —ledl (2.36)
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In the antighost sector, we have a complex self dual two-form with 3 independant com-
plex componentg;; and

sxar = Hpy — e, xiawl,  sHpy =6, xaw) — [¢, Hi). (2.37)

We have also the complexified analogues of the antighosts of the four dimensional
Yang—Mills TQFT, with the same transformation laws as in (2.21). Because of com-
plexification, there are in the H case more ghosts than as in the J case. Thus, part of the
gauge fixing will consists in setting equal to zero the imaginary parts of the scalar ghosts

C} ¢7 ¢7 77'
To impose these conditions, and the 3+1 complex gauge conditions Egs. (2.33) and
(2.34), we define

Z = / [DAZIID°AZ][DW ][ DW][ Dk [ Dk gz [ DHz [ D H s
[D][Dn][ DI D 4] D[ D GI[De][D°c][DA[DEA[DBIDB]  expSi,
(2.38)
Sy = / [Q A Tr FO2 A FO2)]

_ 1¢ 1
/d42d4z S |:TI’ (HMV(CFW, + eljgﬁFp?,— + é Hﬁ;) + CF;,;;(FQ; + elj,jp?,—cFﬁ + E

+ d?Df;\I/g +© q;CDg\IJl: +ImoIme

H,;;

1 1 1 1
+C_(8,chﬁ + é[AlL CA,I] + ECB) +¢ c_(ca,;A,; + E[CAII’ Aﬁ] + ZB)):| (239)

If we develop thes-exact terms and eliminate the auxiliary fielHsand B we get
a supersymmetric action starting with TF (\ F), because; || Fia ||?= || Fg’z 1% +
3 [[{F,w) || +topological terms, and a Feynman—Landau gauge fixingfiér/>. The
action of the H case is similar to that of the J case after eliminationof the imaginary parts
of ¢, ¢, ¢, n by mean of the equations of motion coming fre(@m ¢ I'm c). Moreover,
if one separate fields in their real and imaginary parts, one finds a mapping between
the ghosts of the H and J case (for instance the six antighosts contained in the complex
self dual two-formxz;z and the imaginary part of the antighostsf the H cases can be
identified as the seven ghostsof the J case). Actually, up to this mapping, the actions
of the H and J cases are almost identical.

The definition of observables follows from the cocycles obtained by the descent
equations, as sketched in the previous section. Their meaning is now discussed.

2.2.3. Geometric interpretatiori_etﬂ denote A € Ap] with F>? = 0. Itis invariant
underH (which acts onG in A2 ® G, but not onA2.) Let My = M/H. The 3
complex covariant gauge condiﬁtionsA?*2 = 0, probe the moduli spacéty. We

remarked earlier that 8 A°® G224 A% @ G224 A92 % G is an elliptic complex with
4 +P.04 : A6 — A°@G+A%?®G; the elliptic operatof, : S~ ®G — S*®G.
Thecomplexgauge condition i®*7 = 0 forr € A% ® G.

As before, we get a hermitian vector bundieover M ; x Mg with connection.
One can compute, of E interms of its curvaturé . One has the map of H%*(Ms)

into forms oMy by ji— [, @ ATr (F7 A FH) A p.
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Formally this gives a multilinear map off®*(Mg) — C by pug,...,u —
fMH T(u1) A ... ANT(ur). These would be the expectation values of the observables of
the BRSTQFT.

As in Sect. 2.1.3. part of, is g, Tr (F)} A (FH)}) with (FH)}(r,v) = 7(v) €
u(N). If o € H%%(Ms) letT,, be the 2-form onM  given by [, QATr (A 72) Ao,
wherer;, 1 = 1, 2, are (0,1) forms of/g with values inu(V). The formal holomorphic
Donaldson polynomial is the symmetriemultilinear function onf%2(Mg) given by
O1yen. O — fMH T,, A... AT, ,whendimMy = 2r. (Note that if H%?(Mg) 7 O,
thenMjg is hyperKahler because elementsEf* are covariantly constant.)

It will be very interesting to see when formal integration oy is justified, and
when these invariants depend only on the complex structulégphot on the Calabi—
Yau metricg, nor the hermitian metrip. C. Lewis [12] is investigating the conditions
under whichM g is the set of stable holomorphic vector bundles.

Since the elliptic operator here #again, the virtual dimension 0¥1 is

— / A(Mg) ch ©). (2.40)
Mg

2.3. Comparison of H and J caseslnder suitable conditions f{, p) a stablé vector
bundle, for example), one expects that the orbit spacérofinder the group of complex
gauge transformations, will be the same as the sympletic quotignt| G, where
Gy are the gauge transformations éhreduced to the compact grodp(/NV). Since
[A; (FyYw)m = 0, m € Mg] is the zeros of the moment mag,» /Gy is the orbit
space of this set undéj .

We replace the conditioR(Fg’Z) = Owith Fg’z e A%?®gl(N, C) by the conditions
P+(F2’2) =0 and(F},’l, w) = 0, where nov\l‘?g’2 € A®? @ u(N) and(Fj’l, w) € u(N).
One should get the same moduli space of solutions.

PO

Inthe linearization, the sequengié N, C)-24 A%agl(N, C) =24 A% gl(N, C) —

0 is replaced byu(N) — A% @ w(N)*2AZ«I\02 o 1(N) @ w(N) — 0, where
w0 T € A% @ u(N) — (O7,w)m € u(N). The operator,,d is the lineariza-
tion of the 0-momentum conditithj’l,w)m = 0; it is also the imaginary part of
9%+ A%t @ gl(N,C) — gl(N, C). Thus, with the reduction afpin(7) holonomy to
Spin(6) = SU(4) holonomy, the 7 dimensional? in the J-case decomposes into the 6
dimensionalA? of the H-case pluR.

2.4. Link to twisted supersymmetr\We note that the field content of our Yang—Mills
BRSTQFT action in 8 dimensions is similar to that of four dimensional topological
Yang-Mills theory. Since four dimensional topological Yang—Mills theory is a twisted
version of D=4, N =2 super Yang—Mills theory and is related by dimensional reduction
to the minimal six dimensional supersymmetric Yang—Mills theory, it is natural to expect
a similar connection in eight dimensions. This is indeed so; we explain the type J case,
although the fieldsd ¢, B) which were employed to impose the Lorentz condition
0*A, = 0, are neglected. The gauge supermultiplet in eight dimensions consists of
one gauge field i, (the vector representation), one chiral spino8inone anti-chiral
spinor in8. and two scalars [25]. The reduction of the holonomy grougon(7)

6 For physicists, one might defin&( p) to be stable if it is holomorphic, Einstein-Hermitian, By w
is a constant multiple of the identity, whel is the curvature of i, p) relative to its unique-connection.



162 L. Baulieu, H. Kanno, I. M. Singer

defines decomposition of the chiral spinB¢;= 1 & 7. Now it is natural to identify4,,
andt,, in our topological theory a8, and8;, respectively. Furthermorg; andr just
correspond to the chiral spin8¢ according to the above decomposition. Finallgnd

¢ give the remaining two scalars. This exhausts all the dynamical fields in our action
of eight dimensional topological Yang—Mills theory. Though we do not work out the
transformation law explicitly, we believe this is a sufficiently convincing argument for the
factthat the J case is tlie=8 SSYM dimensionally reduced from=10, N=1 SSYM.

The connection between a general supersymmetry transformation and topological BRST
transformations is the following: whellg is flat, the reduction fronD =10 isN =2

real supersymmetry aV =1 complex supersymmetry. For curved manifolds, the only
surviving supersymmetries are those depending on covariant constant spinors/ In the
case the nilpotent topological BRST symmetry generator is a combination of the real
and imaginary parts of the one surviving complex generator of supersymmetry.

As said just above, this supersymmetric Yang—Mills theory in eight dimensions is
obtained by dimensional reduction from the=10, N =1 super Yang—Mills theory. This
suggests a relationship with superstring theory. It has been argued that the effective world
volume theory of the D-brane is the dimensional reduction of the ten dimensional super
Yang-Mills theory [26]. Thus the BRSTQFT constructed in this section may arise as an
effective action of 7-brane theory. In fact Joyce manifolds are discussed in connection
with supersymmetric cycles in [27, 28]. Recently in [29], a six dimensional topological
field theory of ADHM sigma model is obtained as a world volume theory of D-5 branes.
The world volume theory of D-branes could provide a variety of higher dimensional
BRSTQFT's.

3. Coupling of the 8D Theory to a 3-Form

For the pure Yang—Mills theory, we have seen that the construction of a BRSTQFT
implies a consistent breaking of tl§€)( D) invariance. This turns out to be quite natural,
when closed but not exact forms exist, like thatter 2-form on Khler manifolds or

the holomorphic, 0)-form on Calabi—Yau manifolds.

This idea extends to consider BRSTQFT'’s involving sets of possibly interacting
p-form gauge fields withy(+ 1)-form curvatures,+1 = dB, + ..., satisfying relevant
Bianchi identities. Our point of view is that one must define a system of equations,
eventually interpreted in BRSTQFT as gauge conditions, which does not overconstrain
thefields. Iftensorg'#1-#2r+2 of rank 2p+2; (2p+2 < D) existwhich are invariantunder
maximal subgroups afO(D), we can consider BRSTQFT based on gauge functions
of the following type, where\ is a parameter:

TP H2p+2 () = \GHL-bBpi1 (31)

Hp+2;--e 5 H2p+2
Such equations must be understood in a matricial form, since they generally involve
several forms3,,, with different values op. To ensure that the problem is well defined,
afirst requirement is that Eq. (3.1) has solution&in, for A different from zero. This
algebraic question is in principle straightforward to solve by group theory arguments,
although we expect that geometrical arguments should also justify them. Moreover, we
must also consider that,.1 is the curvature of a-form gauge fieldB,. Thus, other
gauge functions must be introduced, to gauge fix the ordinary gauge freedgywbfch

leave invariant its curvatui@,.,. This gives a second requirement, since from the point
of view of the quantization, the total number of gauge conditions, the topological ones
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and the ordinary ones, must be exactly equal to the number of independent components
in the gauge field3,.
To be more precise, the number of ordinary gauge freedom-é6em gauge field in
D dimensions i@%‘_ll: (this amounts to the fact that, is truly defined up to ax(— 1)-
form, which is itself defined up to @ (— 2)-form, and so on.) We should therefore
only retain invariant tensorg such that the number of componentsig)f equates the
rank of the system of linear equationsGhpresented in Eq. (3.1) plus the number of
ordinary gauge freedom iB,,. Obviously, when there are several fields in Eq. (3.1), the
counting of independent conditions can become quite subtle, since one must generally
combine several equations like Eq. (3.1). For instance, we will display in the next section
BRSTQFT theories in dimensiori3 < 8. Their derivation will appear as rather simple,
because they all descend by dimensional reduction from the pure Yang—Mills BRSTQFT
based on the set of 6 or 7 independent self-duality gauge covariant equations in eight
dimensions found in Sect. 2. Without this insight, their derivation would be less obvious.
We now turn to the introduction of a 3-form gauge field in 8 dimensions. In &ven
2k dimensions, Eqg. (3.1) has a generic solution for an uncharged }-form gauge field
Bj._1: assuming the existence of a curvatttgfor By, _;, we can consider the obvious
generalization of self-duality equation§y, = xGj. The number of these conditions
is C% _,. On the other hand, the number of ordinary gauge freedom of a {)-
form gauge field i} 3 = Cp 2 — Cp 3+ CE* — ... £ C9. Thus imposing the
ordinary gauge fixing conditions for the 1)-form gauge field plus the gauge covariant
ones,G}, = #Gy, gives a number of’5~* = €572 + C%_, equations, which is equal
to the number of arbitrary local deformations of 1§ independent components of
the (¢ — 1)-form gauge field. We will see that it is possible to generalize the self duality
equation satisfied by & (- 1)-form gauge field. Moreover, the counting remains correct
in the case it has a charge. As an example, in the 8-dimensional theory, a 3-form gauge
field has 56 components, with 21 ordinary gauge freedom, while the number of self dual
equations involving the 4-form curvature of the 3-form is 35, and one has 56=21+35.
We thus propose as topological gauge conditions for the coupled system made of
the Yang—Mills field4 and the 3-form gauge fielB; the followingcoupledequations:

)\F}w = T‘/u/pﬂdea
dBs + +(dBs) + aTr (F A F), = 0. (3.2)

« is a real number, possibly quantized, and FrA F). denotes the self dual part of
Tr (F A F) 7. Although Bz is real valued, it interacts with the Yang—Mills connection
A, whena # 0. An octonionic instanton solves the first equation, as shown in [14] and
by Egs. (25), (30), (31) of [15] in the case bfg = S” x R. For this solution, the 4-form

Tr (F' A F) is not self dual.

Given these facts, we are led to define a BRSTQFT in 8 dimensions based on the
gauge conditions (3.2), in which a 3-form gauge field is coupled to a Yang—Mills field.
The ghost spectrum for the ordinary gauge invariance of the figlgeneralizes that
of the Yang—Mills field, with the following unification between the ghést and the
ghosts of ghost®? and B3:

B3= B3+ B+ B2+ BS. (3.3)
(From now on upperindices mean ghost number and lower indices ordinary form degree.)

7 Equation (3.2) suggests that the 3-form could be involved in an anomaly compensating mechanism. See
sec. 3.1 where we show that Egs. (3.1 ) impliéss = 0 if M is compact.
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The BRST symmetry of the topological Yang—Mills symmetry considered in the
previous section satisfies

A=A+, (3.4)
P=(s+d)A+J[A A= F§+wi+d} (35)

with the notationd; = W, dz* and¢@3 = ¢.

The gauge symmetry of the 3-forf; involves a 2-form infinitesimal parameter
associated t&3. We can distinguish however different topological sectorg¥gmwhich
cannot be connected only by these infinitesimal gauge transformations. As an example,
Bs and Bj can belong to such different sectors, if

BQ:B3+Tr(AAdA+§A/\A/\A). (3.6)

We thus define the curvature 8% as
GV = dBs + Tr (FYW A FW), (3.7)

where the index4) means the dependence upon the Yang— Mills fieltlotice that it
is not globally possible to eliminate thedependence at" by a field redefinition of
Bjs involving the Chern—Simons 3-form.
The topological BRST symmetry of the 3-form gauge field system is defined from

Ga=(s+d)Ba+Tr (FWAFW) =G+ GL+ G2+ G5 + G5, (3.8)
that is

(s+d) (Bs+ By + B2+ B3+ Tr ((F9+ VI +¢3) A (F9+ Wi +¢3)) =
dB3+Tr(FAF)+Gi+G5+G3+Gj. (3.9)

The fieldsgf{_g, g = 1,2, 3,4 are the topological ghosts &f;. By expansion in ghost
number, Egs. (3.5) and (3.9) define a BRST operatiarhich, eventually, determines
the equivariant cohomology of arbitrary deformations of the Yang—Mills field modulo
ordinary gauge transformations and of the 3-form gauge field, modulo the infinitesimal
gauge transformationg Bz = dep, € ~ €2 + dey, €1 ~ €1 + de.

There is a natural topological invariant candidate for the classical part of aBRSTQFT
action,

Loy = / (649 A GO+ @ A Tr (O 5 FUAY). (3.10)

Its gauge fixing is a generalization of what we do in the pure Yang—Mills case. The
main point is to find the gauge function in the topological sector. The existence of the
octonionic instanton, together with an associated moduli space (yet to be explored),
indicates that Eq. (3.2) is a good chofte

To enforce the gauge function Eq. (3.2), one must introduce a self-dual 4-form
antighosts,,,, ., and consider the following BRST exact action:

8 Notice that one could also consider a 7-dimensional theory, which is formally related to the BRSTQFT
in 8 dimensions as the 3-dimensional Chern—Simons theory is related to the 4-dimensional Yang—Mills TQFT
action.
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Ss= / 4 5 (K77 (0 Bupo) + €79 010 Bans) + Tt Fiu Foop)) - (3.11)

The remaining conditions are for the usual gauge invariances of forms, whether they
are classical or ghost fields. One can choose the following gauge fixing conditions for
the longitudinal parts of all ghosts and ghosts of ghg§ts ,

"G,y = AL,
auggp,u = bAEa
"Gy, = cA®. (3.12)

One must also conventionally gauge fix the longitudinal componenif,, of the
ghostsBj,,,, and B, and of the antighosts. The presence in the r.h.s. of Eq. (3.12) of
the cocycles\] _ stemming from the ghost decomposition of A F = Tr (F+v+
o) A (F' + W+ ¢) Is an interesting possibility. It can lead to mass effects in TQFT, when
the ghost of ghosp takes a given mean value, depending on the choice of the vacuum
in the moduli space, which can be adjusted by suitable choices of the paraméters
Allthese gauge conditions can be enforced ina BRST invariant way, as explained e.g.
in [30]. The final result is an action of the following type (including the pure Yang—Mills
part discussed in the previous sections)

S = /(auBl,pga“B””" +Tr F*YE,, +0,By o Tr FI'FP?
+supersymmetric terms) (3.13)

The observables are defined from alll for(iag_g occurring in the ghost expansion
of the 8-form A
Og = G4 N Gy. (314)

Whether these supersymmetric terms, made of ghost interactions, are linked to@&oincar
supersymmetry is an interesting question.

3.1. Mathematical InterpretationFix an element ofZ4(Mg, Z) and leth, denote its
harmonic representative. Let [3 denote the affine space of all closed 4-forms which
represent this cohomology class. Then B 7m + dA3; strictly speaking B =h4 +
d(A3/closed 3-forms) #h4+ddA%. In any case a tangent vector to R can be represented
asdBj with B3 a 3-form.

There are other ways of describing 3. An element of 3 can be represented as a
collection of 3-forms{B,, }, for a collection of coordinate neighborhootiscovering
Mes, satisfyingB,, — B, = dw,, onu Nwv. Thus{dB,} gives a well-defined closed
form on Mg; to be an element of 3, this 4-form must be cohomologous,tdn the
earlier part of this section]B3 means this element of 3 whe#y is defined locally as
Bs ,,; or if Bz is an ordinary three form{Bj is really i, + dB3.2

Next consider the elliptic complex© A° — A — A% — ... — A% — 0, where
A‘:‘IE are thex1 eigenspaces of the ordinaryoperator onMg. Remember that in the
J-case we also had @ A° — A — A? — 0 with A? = A2 & A? of dimensions

d

21 and 7, respectively. Consider then-© A2 —% A3 -4 A% — 0. We leave the

9 The theory of gerbes [31] gives a sheaf theoretic description for exhibiting integral cohomology classes,
extending the notion of curvature field as an integral 2-cocycle.
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reader to check that it is elliptic. (It does not suffice that the dimensions are 21, 56 and
35, respectively.) The linearization of the problem below involves-0A° ® G Da,
At® G P4 A2 9 G — 0 for connections, and 0> A2 % A% %L A% 0 for
3-forms.

An analogue of the anti-self-dual equations for the pair®) with a connectiord
andG € RBis

(@) Fiu = *QAFa, (i.e P.Fy=0)
(0) (L+x)G = —aTr (Fa A Fa)s. (3.15)

This equation is a mathematical interpretation of (3.2). Note that if a soluti@n =
h4 + dBs exists for (3.15), then Tri{4 A F4) is self-dual and hence harmonic. Hence
(1 + *)(h4 + dBs) is harmonic. Since (1 *)h4 is harmonic, so is (1 *)dBs. Hence
dBz = 0, andG = h4. Note also that the sector B, i.e. the element choséff{i/g, R)
must have its self-dual part, a multiple of the self-dual elenpef®).
If we linearize (3.15), we get for € T(G) and B; € T(R), the equations
P@ (D7) = 0 andPPdB; = 0, whereP; is the projection ofA7 — Al (j = 2,4).
We then have a pair of elliptic systems above, with gauge fixing funcfitins = 0 and
d* Bz = 0, respectively. The covariant gauge functions are given by (3.15).
The candidate for the topological actiég(A, G) is st GANG+QATr(FAF).
Since we now have the covariant gauge functions to probe the moduli space of solutions
to (3.15) and we have the gauge fixing functions, we can apply the BRST formalism.
We first express in terms of the norms. From (2.7),

| Fall®= /M QATI(FaAFaA)+4||(Fa)+|?. (3.16)
18

Also with G = G+ + G, Gy € AL, we have[,, G AG =[|G+|?> — || G_ | Thus
one obtaing| Fu |2 + || G ||2= So + 4 || (Fa)+ ||> +2 || G+« ||2. We know that| F ||?
is minimized whenF, = 0, and that| G ||? is minimized when¢ = h. So we get a
minimum when (3.15) is satisfied and it equélls+ 16m*a® [}, pf = Sg.

In the pure YM case, the natural space whs/G x Mg or its subspacét ; x Ms.
Rather than 3-forms oig, we need 3-forms oM ; x Mg which we write as§3 =
B + B} + B? + B3 (Eq.(3.3), above) with the upper index as the degree inkthe
direction (ghost number) and the lower index in thig direction. As befores denotes
dam, sothat 6 +d)§3 =(dm, +dM8)]§3 = dMJ(§3) +dMS(§3) is a 4-form with terms
in the () directions.

4. BRSTQFT's for Other Dimensions Than 8

From many points of view the cade = 8 is exceptional. It is of interest, however,

to also build BRSTQFT's in other dimensions, by using the BRST quantization of d-
closed Lagrangians with gauge functions as in Eqg. (3.1). In this section, we first focus
on theories withD < 8, that we directly obtain by various dimensional reductions in
flat space of the J and H theories; we then comment on the ¢asd® andD =10 .

We will not address the question of observables; their determination is clear from the
descent equations which can be derived in all possible cases from the knowledge of the
BRST symmetry.
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4.1. Dimensional reduction of the Yang—Mills 8D BRSTQIRID =8, for the J-case, we

have seen that there exists a set of seven self-duality equations, on which we have based
our BRSTQFT. These equations were complemented with a Landau gauge condition
to get a system of 8 independent equations for the 8 components.dfhese seven
equations can be written as

®;(F(2") =0, 1<i<7, 1<pv<8 [(2.14)] (4.1)

Just as one obtains a BRSTQFT action based on Bogomolny equations in 3 dimen-
sions [32], we can define a BRSTQFT in seven dimensions, by standard dimensional
reduction on the eighth coordinate; that is, by putting in the above seven equations
28 = 0, 0g = 0 and replacingds by a scalar fieldp(z7) and Fjg by D;p(27). We can
then gauge fix the longitudinal part df;, with an equation of the following type:

a’LA’L = [’U, QDL (42)

which allows for the case of a massive gauge fiéldHere and in what follows, the
constantv defines a direction in the Lie algebra for the Yang—Mills symmetry.) The
gauge fixed action will be

/ A"z (|Fy; + | Dipl? +|0;A; — [v,¢] |* + supersymmetric terms ~ (4.3)
M;

This process can be iterated. We can go down from dimension 8-ta,8y sup-
pressing the dependencemnf the coordinates”. In D < 8 dimensions we will have a
gauge field withD = 8—n components and a setotcalar fields?,p = 1,. .., nwhich
should be considered as Higgs fields. Obviously, the dimensional reduction applies as
well to the various ghosts, and the fielgfsfall into topological BRST multiplets, which,
depending on the case, can possibly be interpreted as twisted Fosugarmultiplets.
Moreover, as we will see whebP = n = 4, there is an interesting option to assign the
fields P as elements of other representations, e.g. spinorial on&%)@b).

One can also consider the dimensional reduction in the H-case. One can break the
symmetry between the coordinatgs, t, w and their complex conjugates by replacing
some of the fields, e.g. Iz, by scalar fields.

In all cases, the final theories rely on 8 independent gauge conditions for all fields: 7
for the topological gauge ones plus 1 for the ordinary gauge condition, if one starts from
the J case; or 6 for the 3 complex topological gauge conditions plus 2 for the ordinary
complex gauge condition, if one starts from the H case.

4.1.1. The case D=6Since the cas® = 6 is of great interest in superstring theory, let
us display what we get, starting from the H case,

GEEFJT,; = Djyp, (4.4)
07A7 = [v, ¢]. (4.5)

This set of gauge functions represents 4 complex equations, for eight degrees of freedom
represented by the complex fields and.
If we start from the J case, we have

q)i(FiliV(xH)v D/twa(xu)) = 07 1 S a S 27 1 S ,lL, v S 65 (46)

possibly complemented by
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OuAy = Mapp® " + Nopv®. (4.7)

Notice that a 2-form gauge fields, subjected to the topological invariaBge=
W, + ... can be introduced, still in 6 dimensions, with the topological self-dual gauge
condition

2
dBy +#(dBp) +aTr (AdA + ZAAA). = 0. (4.8)

This possibility is similar to the introduction of a 3-form in = 8.

We can directly build a BRSTQFT in 6 dimensions. First we consider a pure Yang—
Mills case, taking the topological gauge fixing condition of the type

AF, = %T,WPUF”". (4.9)

The fourth rank tensdf,, ., is assumed to be invariant under some maximal subgroup
of SO(6). According to Corrigan et al [6], onlgO(4) x SO(2) andU (3) allow such
an invariant tensor. The first choice corresponds to the case where the 6D manifold is a
direct product of a 4D manifold and 2D Riemann surfatk;= M, x X,. The second
subgroup is the holonomy group of 6 dimensionahker manifolds. In this case we can
write down the invariant tensor as the Hodge dual ofsdlér formw,

Tyvpoe = (¥ Wpvpo- (4.10)

The possible eigenvalues of (4.9) with the tensor (4.10) are, 41 and —2. The
eigenspaces of these eigenvalues give the decomposition of the 15 dimensional rep-
resentation o5O(6) under its subgrougU(3) x U(1); 15=8® (3® 3) @ 1.1° Taking

A = 1 defines the 8 dimensional subspace given by the following seven linear conditions

on F,,,,, where we use complex indicesb = 1,2, 3:
F, = F7 =0, (4.11)
w®F > =0. (4.12)

(The lastEq. (4.12) is, e.gFy7+ Foz + F33 = 0.) The first condition (4.11) means that the
connection is holomorphic. These equations are known as the Donaldson-Uhlenbeck-
Yau (DUY) equation for the moduli space of stable holomorphic vector bundles on a
Kahler manifold. It also appears in the Calabi—Yau compactification of the heterotic
strings. The DUY equation implies the standard second order equation of motion for the
Yang-Mills field'. In fact, this follows from the following identity in the action density
level;

1
—ZTrF/\*F+w/\Tr(F/\F)
3 - —
=Tr | =59 0" FuFay + (9" Fui)? (4.13)

where we have introduced the metijg, for the Kahler formw. This identity [24]
is crucial in constructing a BRST Yang— Mills theory whose classical action is the
topological density A Tr (F' A F).

From the BRST point of view, one must introduce scalar fields to get a correct
balance between the gauge fixing conditions and the field degrees of freedom and to

10 The usual splitting oA? @ Cinto AY* @ A%° @ A%2 with AY! decomposed intdw @ w, where
w is the Kahler form.
11 This is a general property of the system (4.9).
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recover Eq. (4.4). Given a hermitian connectibfor the hermitian vector bundléf, p),
Eq. (4.4) sayd"}? = (94)* @ = #1204 %1 &, i.e., %1 F3? = Oa(*1,?) € AY¥ @ G. (See
Sect. 2.2.1 for the definition of the operatien) When/ is a Calabi—Yau 3 fold, let
¢ = +¢ € A°® G and we getF}* = 4. Linearization gives the usual elliptic

operator, the holomorphic (écdu“r/' g(r)ad) :

A 04\ . (A ®¢ A% @G
(aj;o >'(A°’3®Q) —)<A°’°®Q ' (14

Of course what one wants is not (4.4) but® = 0, Eq. (4.11), the condition that
makesE a holomorphic bundle. However, as a consequence of the Bianchi identity,
94F%% = 0 and hence (4.4) implie3,9% & = 0, which also implie);,& = 0, when
M is compact without boundary. Thus (4.4) implies (4.11); moreover, wheis a
Calabi—Yau 3-fold and? is stable 9% ¢ = 0, (equivalentp 4 = 0) only happens when
@ is a constant multiple of in w(V). In that sense, the right-hand side of Eq. (4.5) is O,
giving the gauge fixing conditiof « 7 = 0, 7 € A®' ® G.

Equation (4.12) is the equatiofF,w),,, = O (see Sect. 2.3). As stated there, the
orbit space under complex gauge transformations should be the same as the symplectic
quotient, the orbit space under unitary gauge transformations of the 0-momentum set,
i.e., the conditionF, w),, = 0. Equation (4.13) is a special case of Proposition 3.1 in
[24], which we have used previously in Sect. 2.2.2.

The DUY equation can also be obtained from the 6 dimensional supersymmetric
Yang—Mills theory on a Calabi—Yau manifold. The supersymmetry transformation laws
of the (V = 1) vector multiplet d,,, ¥) in 6 dimensions are

5AM = z‘?FM\II — Z'EFME,

ow = 7%ZA,{NEFMN, (415)
whereTl",; are the gamma matrices aBd,y = %[I“M, I'y] is the spin representation.
On the Calabi-Yau manifold the holonomy group is further reduce®llf¢3), which
gives a covariantly constant (complex) spigotn fact this is the very reason why the
Calabi—Yau manifold is favorable in the compactification of superstrings to 4 dimensions.
We will identify the supersymmetry transformation with= ¢ as a topological BRST
transformation. With this choice of parameter, SUSY transformations are decomposed
according to the representations$i(3). The decomposition o§O(6) vector is6 =
3 @ 3 and the chiral spinor decomposesdas 3 ¢ 1. Thus we obtain the following
topological BRST transformation law:

sA, =, sAp=0,
SX = gMLFuﬂa Swu = 07
st = Fap, sp= 0. (4.16)
We should explain how we have “twisted”spinors into ghosts and anti-ghosts. In terms
of the covariantly constant spingrwhich satisfiegI",, = 0, we can make the twist as
follows;
X =C¥, dp=qrpw,
w[ﬁﬂ = (F,;F,;ll/, p= G'IWUCFJI—‘JF[;\I—Q (4.17)
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where @;, p) are complex conjugates afy,, p). This is an example of the identification
of spinors with forms, explained in Sect. 2.1.1. Looking at the BRST transformations
of the anti-ghosts, we recover the DUY equations (4.11, 4.12).

4.1.2. Reduction to a 4-D BRSTQFT; Seiberg—Witten equatid¥is.now turn to the
reduction toD = 4, which is of special interest, particularly the theory obtained by
dimensional reduction of the J theory frabh=8 to D = 4. We will get a BRSTQFT
with gauge conditions identical to the non-Abelian Seiberg—Witten equations, which in
turn is also related to th& =4, D =4 supersymmetric theory.

The main observation is that, in the J case the set of seven equations (2.14) can be
separated into 3 plus 4 equations. If we grolgy Ag, A7, Ag into the 4 component field
»*, a =12 3 4, the latter can be interpreted in 4 dimensions as a commuting complex
Weyl spinor and4,, = A1, Ay, As, A4 as a 4 dimensional vector. The set of the first 3
equations in Eq. (2.14) can now be interpreted as the condition that the self-dual part
in 4-D of the curvature of4,, is equal to a bilinear ip®; then, the remaining four
equations can be written as Dirac type equations. To be more precise, with the relevant
definition of the 4x 4 matriced",, andX,,,,, the dimensional reduction down o = 4
of Eq. (2.14) gives

Fuv+ €upe FP7 + 0%, =0,
DIrHy = 0. (4.18)

The consistency of the dimensional reduction from Eq. (2.14) to Eq. (4.18), and the
correctness of th8O(4) tensorial properties of all fields, are ensured by the existence
of relevant elliptic operators in 8 and 4 dimensions.

The remarkable feature is that the above equations are the non-abelian version of
Seiberg—Witten equations. In other words, we have observed that the spinors and vectors
of the non-abelian S—W theory get unified in the Yang—Mills field of the J theory.

The generation of a Higgs potential, to break down the symmetry, with a remaining
U(2) is in principle possible, by the relevant modifications in the gauge functions, which
provide a Higgs potential, function @f. This is however a subtle issue that we will
address elsewhere.

The form of the action after dimensional reduction is just the sum of the bosonic
part of the Seiberg—Witten action, plus ghost terms. Its derivation is standard from the
knowledge of the gauge function, as a BRST exact term, which enforces the gauge
functions.

The link to supersymmetry in 4 dimensions is as follows. The BRSTQFT based on
Spin(7) is a twisted version of th® =8, N =1 theory where the spinor is a complex
field counting for 16 = 8+ 8 independent real components, and one has a complex scalar
field in the supersymmetry multiplet. This theory is itself obtained as the dimensional
reduction of theD = 10, N = 1 super Yang—Mills theory, where the spinor has 16
independent real components. Thus we predict that the theory we get by dimensional
reduction to 4 dimensions of BRSTQFT in 8 dimensions is related to twisted versions
of the D=4, N =4 super Yang—Mills theory. For instance, there are 6 scalar fields in the
bosonic sector of the theory as presented in the work of Vafa and Witten [16], (see their
Eq.(2.1)). In our derivation, these 6 scalar fields are combinations of 4 of the components
of the 8-D Yang—Mills field and of the commuting ghost and antiglkioashd¢ of the J
theory.
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There are actually three ways of twisting the= 4 SSYM in four dimensions,
defined by howSO(4) ~ SU(2) x SU(2) is embedded in th& symmetry grouf’
SU(4) [16]. They are ()2, 1) & (1, 2), (i) (1, 2) & (1, 2) and (iii) (1, 2) ® (1, 1) &

(1, 1), where we have indicated how the defining representatigilg#) decomposes
underSU(2) x SU(2). Taking into account the argument in Sect. 6 of [27], we can see
that the cases (i) and (iii) arise from the reduction of type H and J cases, respectively.
The remaining case (ii), which is the twist employed by Vafa-Witten [16], is obtained
from the 7 dimensional Joyce manifold wiff, holonomy. On the other hand, we get
the non-abelian Seiberg—Witten theory with an adjoint hypermultiplet in the case (jii),
which gives the relationship betweéni = 4 SSYM and non-abelian Seiberg—Witten
equation.

We thus conclude that very interesting twists connect the fields of the pure Yang—
Mills 8-D BRSTQFT, (obtained by gauge fixing the invariaht Tr (F' A F)), the fields
which are involved in the four dimensional Seiberg—Witten equations, and the fields of
the D=4, N =4 super-Yang—Mills theory.

We note that if one starts from the H case gauge functions, the result of compactifying
down to 4 dimensions is just a complexified version of a two dimensional Yang—Mills
TQFT, coupled to two scalar fields; it could also be deduced from the dimensional
reduction of the 3-dimensional BRSTQFT based on the Bogomolny equations.

4.2. Dimensions larger than 8.

4.2.1. Discussion of the case D=12 BRSTQFT in 12 dimensions might be a candidate

for F-theory. 11-dimensional supergravity, defined on the boundary of a 12 dimensional
manifold, emphasizes the relevance of a 3-form gauge €iglgossibly coupled to a

non abelian connection one form The most important terryﬁM11 C3 A dC3 N dC3 of

the 11-dimensional supergravity suggests that one should build a TQFT based on the
gauge-fixing of the following invariarit:

/ (dCS/\dC3/\dC3+dO3/\dC3/\Pinv 4(F)+dC3A Pipy 8(F)* P 12(F)>7 (4.19)
Mio

where P;,,,, ,(F’) are invariant polynomials of degree/2 of the curvature of4, i.e,
characteristic classes. Special geometries like hyper or quaterni@hieikmanifolds
give natural four-forms. They, their duals (which are 8-forms, and are therefore good
candidates to define gauge functions for the curvature of a 3-form in 12 dimensions),
and their powers might be used as well here.

Itis natural to try and gauge fix these topological actionsto geta BRSTQFT. However,
we did not find gauge fixing functions for a single uncharged 3-form gauge field in 12
dimensions. Rather, we did find one for a singtarged3-form, and another one for a
theory with twouncharged3-forms. (See below.)

We could introduce a 5-form gauge field, (not relevant for pure 11-dimensional
supergravity), and similar to the 8-dimensional case, consider self-duality conditions
for the 6-form curvature of’s, with a gauge condition of the type

dCs ++dCs + Tr (F A F A F), = 0. (4.20)

In the present understanding of superstrings, 5-forms are not so natural; so we will not
elaborate further on this case.

12 The R symmetry is the automorphism of the extended supersymmetry algebra.
13 Here againiC® meansh + dC3, whereh is the harmonic representative of an elementiif( M-).
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When M3, is a Calabi—Yau 6-fold, we can do some things in two different theories.
In the first theory, we couple éharged3-form B to the Yang—Mills field. 8 is valued
in the same Lie Algebra ag.) We again use : A% — A%®7% so thatA®* ® G =
AP @G +A>®G. Againd 1 FO? — 9,94* B = 0 implies for compact manifolds that
d4*B = 0. The covariant gauge conditionis®2 = 9, B, B € A%%® G; equivalently,
F%2 = 9% B. So the covariant gauge conditions become the p&fr= 0 andd, B = 0,
similar to the Calabi—Yau 3-fold case in Sect. 4.1.1. Th&RZ = 0 andd’ ¢ = 0, with
% € A*®* ®G. Inthe present cas® € A%® ® G.

The moduli space is a vector bundle over the set of holomorphic bundles for a fixed
C*° (E, p). Each such holomorphic structure gives a uniguaith Fg’z = 0. The fiber
overA consists of B e A ® G 9,B =0].

The sequence 8> A% @G 24 A%lg g 24 A2 g 24, A%3 g Gis elliptic at
the symbol level; linearization of the covariant gauge condition together with the usual
gauge fixing is given by the elliptic operator:

0403\ . (A% @G A*?*® G
(820 ) . (As’aw) %(AQO@Q . (4.21)

We take as classical “topological” actiob[ A, B] = fMu QeATr(0aBAF4)where
Qg is the (6 0) covariant constant form aff,,. Since the covariant gauge function is
F92 — 9% B and since(F%?,04B) = [, Q¢ A Tr (F%% A 9% B), we have|| FO? —
03 B>=| F22|? + |03 B||? —(F*?,04 B) - (03 B, F*?), thatis,| F*2 - 0 B |*=|
FO2|2+ ||04B|?> —So[A, B] — ®So[A, B] . (Remember thad”, = x94x.) We thus
obtain a BRSTQFT whose gauge fixed action will include the fefrft? ||2 + || 9%, B ||.
Moreover, the condition thaB € A%3 ® G can be imposed in a BRST invariant by
using the ordinary gauge freedomBf*.

In the second theory, we introdut®o uncharge®-form gauge field$3$ and two
(non abelian) Yang—Mills fieldsA®, with ¢« = 1 and 2. We consider the following
topological classical action

/ €avS26 A dBS A dBS. (4.22)
Miz

We define the following “holomorphic” gauge conditions, where the complex indices
run from 1 to 6,

a a 2
=Tr (A[;07A75 + 3
The right-hand side of this equation is the Chern—Simons form of rank 3. The similarity
to 8 dimensions is striking, up to the replacement of the even Chern class by the odd
Chern-Simons class. Equation (4.23) implies

OBy + €b€impany0la B

. AR AZAY). (4.23)

0B = € 57T FoaFl- (4.24)

b€uvpaBy
Its solution is the stationary point of the following action:
14 The (0,3)-formB is valued in the same Lie algebra as the Yang—Mills field. It is thus non abelian and its

guantization involves the field anti-field formalism of Batalin and Vilkoviski. We intend to perform elsewhere
this rather technical task, which generalizes that sketched at the end of Sect. 3.0.
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/ A" €ap(OBin 0 Bh + €imrapy Bes Tt FagFh= + complex conjugate)
Mo

pa
(4.25)
Gauge fixing the Lagrangian Eq. (4.22) by the gauge condition Eq. (4.24) provides a
BRST invariant action. Its ghost independent and gauge independent part is identical to
the action Eq. (4.25).

4.2.2. Other possibilitiesIn 10 dimensions one could build a BRSTQFT based on a
four-form gauge field3,4 and a pair of two gauge fiel®85, a = 1, 2, which naturally fit

into the type 1B superstring. All these forms are uncharged, but they can develop non
trivial interactions [30]. The curvatures are

Gs = dBy + e BSGY, (4.26)
¢ =dBg, (4.27)

with Bianchi identitiesdGs = eangGg anddG§ = 0. One can construct from these
fields one closed 11-form
A11 = €, GEGSGs, (4.28)

and two 8-forms
Ag = GsGS. (4.29)

The role of the invariant forms is obscure, but their existence could signal generaliza-
tions of the Green—Schwarz type anomaly cancellation mechanism. The covariant gauge
function is

dBy + *dBy + e, BSdBS = 0. (4.30)

The mixing of forms of various degrees by the gauge functions generalizes that of the
3-form with the Yang—Mills field in the eight dimensional theory of Sect. 3.

5. Conclusion

We have described some new Yang—Mills quantum field theories in dimensions greater
than four, using self duality. In eight dimensions we found two BRSTQFT's depending
on holonomySpin(7) (the J-case) or holonon$U (4) (the H-case). In the J-case, BRST
symmetry is what is left of supersymmetry.

The increase in dimension allows us to couple ordinary gauge fields to forms of
higher degree. We have given several examples.

Dimensional reduction generates new theories. One of them is a BRSTQFT whose
gauge conditions are the non-abelian Seiberg—Witten equations.

In four dimensions, given the self duality condition, there are other ways of deriving
the Lagrangian of Witten's topological Yang—Mills theory besides Witten’s twist of
N=2 SSYM and besides BRST [1, 2, 33]. These methods should work equally well in
deriving our BRSTQFT Lagrangians for the pure Yang—Mills case.

Finally, as we have indicated earlier, the geometries of the moduli spaces we have
probed have not been worked out. Much remains to be done [13]. However, from the
lessons learned in four dimensions, it is tempting to hurdle these obstacles and proceed
to the corresponding Seiberg—Witten abelian theory. Preliminary investigations indicate
that one can compute the Seiberg—Witten invariants, witigis hyperkahler, i.e., when
the holonomy group i$'p(2). This case is very similar to the Seiberg—Witten invariants
for M4 when it is Kahler [34].
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Note added on July 17, 1997T.A. Ivanova has called our attention to [14], where
instanton solutions are found. B.S. Acharya and M. Loughlin have called our attention
to their paper [35] where they discuss self duality for Euclidean gravity when8.

B.S. Acharya, M. Loughlin and B. Spence also discuss self duality in [36]. In their paper,
a note added says that their proof of BRST invariance would “seem to conflict” with
our theory not being topological. Indeed the theormas topological. They made the
corrections in a revised version.

We expand on our assertion. Assuieis a compact oriented simply connected
manifold with A = 1 and assumé/ admits a Joyce metric, i.e, a metric wistpin(7)
holonomy. The space of Joyce metrics modulo diffeomorphisms isotopic to the identity
is of dimension 1 * (M) (see Theorem D in [20]). It is conceivable that this manifold
of Joyce metrics is not connected so that one cannot find a path from one Joyce metric
to another with each point of the path a Joyce metric.

The BRST argument for invariance requires a path of Joyce metrics, hence shows
formally that the correlation functions are constant on components of the space of Joyce
metrics. But the argument does not imply constancy of the correlation functions on all
Joyce metrics. This is one reason we chose not to label our J-case QFT a topological
guantum field theory.

On the mathematical side the argument analogous to BRST invariance also works
formally because the correlation functions come from the second Chern class (see 2.1.3).
As we indicated there, to define the analogue of Donaldson invariants (the correlation
function precisely), one needs to integrate over the moduli sicef self dual con-
nections. To do so, a compactification\df is important (work in progress by D. Joyce
and C. Lewis).

The H-case (Sect. 2.2.3 in particular) is more complicated. Physicists allow a degen-
eration of the complex structure to connect one moduli space with another. We do not
know how the “holomorphic Donaldson invariants” behave under this degeneration.
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