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Abstract: The restricted dual of a quantized enveloping algebra can be viewed as the
algebra of functions on a quantum group. According to Woronowicz, there is a general
notion of bicovariant differential calculus on such an algebra. We give a classification
theorem of these calculi. The proof uses the notion (due to Reshetikhin and Semenov-
Tian-Shansky) of a factorizable quasi-triangular Hopf algebra and relies on results of
Joseph and Letzter. On the way, we also give a new formula for Rosso’s bilinear form.

Introduction

Let G be a semi-simple connected simply-connected complex Lie ggitspe algebra,
U,g the quantized enveloping algebra @f U,g is a Hopf algebra. The associated
guantum group is an object of non-commutative geometry. According to a point of view
due to Woronowicz and developed by Faddeev, Reshetikhin and Takhtadzhyan [F-R—T],
one may view the restricted (Hopf) dual(§)* "**as the algebral ,G of functions on this
guantum group. In this way, the Peter—Weyl theorem becomes a definition: the rational
representations of the quantum group are the finite-dimensional representatigms of U

In order to study the differential geometry of quantum groups, Woronowicz [Wo]
defined the notion of bicovariant differential calculus. As in the classical case, one needs
only to define the differential of functions at the unity point of the quantum group. If
e A,G — C(g) is the augmentation map, this amounts to take the residual class of
functions belonging to ker modulo a right idealR C kere. In the classical case, one
takesR = (kere)?. As for quantum groups, it is more important to preserve the group
structure than the infinitesimal structure, and one is led to select iRemdsabove by the
requirement of a certain invariance condition. In this article, we solve the classification
problem for these idealR, and we give a picture of what they look like.

We now compare our results with previous ones. Rosso [Ro3] showed how to use the
quasi-triangular structure of Jd in order to construct left covariant differential calculi
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on the quantum group. Modifying this construction,&ufJu] used theR-matrix in

the natural representation of,i) (and in the dual of it) so as to construct bicovariant
differential calculi: he obtained particular cases (when M is the natisrabdule or

its dual) of our Theorem 2. (In this spirit, see also [F—P].) As regards classification
results, Schiiadgen and Sdller have classified the ideal as above, but only when

g is of classical type, and under restrictive assumptiongomost of the results in
[S-S1, S-S2] are particular cases of our Theorem 1. For instance, the classification
given in Theorem 2.1 of [S—S1] corresponds (in the wording of our theorem) to the
idealsR constructed (up to a twisting character: 2X/2Q — C*, as explained in

Sect. 3.3) from the naturalJgl,,-module or its dual.

Let us explain our proof and the contents of our article. Our proof relies on the
quasi-triangular structure of Jgd. Since the formalism of2-matrices may be justified
only for finite dimensional Hopf algebras, we will employ the dual notion of a co-quasi-
triangular (c.g.t.) Hopf algebra (see [L-T]): the algebtaG is c.q.t. We use then a
bilinear form onA,G, introduced by Reshetikhin and Semenov-Tian-Shansky. As U
is a factorizable quasi-triangular Hopf algebra (in the terminology of [R—S]), this pairing
is non-degenerate and gives a linear injectidyG — U,g C (A,G)*. The image of
R under this map is nearly the annihilator of ggdmodule. It is then easier to discuss
whatR may be. The definitions and the proofs of these assertions are given in Sects. 1
and 2. In Sect. 3, we present a contruction of bicovariant differential calculi valid for any
factorizable c.q.t. Hopf algebra. Finally we link, in the caselgG, these constructions
with our classification result.

Notations.

e Let A be ak-algebra. If M is an A-module, its annihilator is denoted by aih
If m € Mandm* € M* (the k-dual of M), we denote byy(m,m*) the matrix
coefficient (A— k,a — (m*,a - m)).

e ForaHopfalgebraH, we will use Sweedler’s notation for coprodti¢i) = > a1y®
a(z)) and for coaction on comodules. The sum sign will generally be omitted. We will
denote the augmentation and the antipode of H byd S respectively.

e Let H be a Hopf algebra, and*#f° be the restricted (Hopf) dual of H. A finite-
dimensional left H-module M (with a basis:) and the dual basisi(}) of M*) can
be viewed as a right H**-comodule with structure majg : (M — M @ H*"®S m —

> mi @ Ou(m, my)).

1. Co-Quasi-Triangular Hopf Algebras

1.1. Some definitiond.et H be a Hopf algebra over a field A right crossed bimodule
over H (inthe sense of Yetter [Ye]) isavector space M, which is also a right H-module,
aright H-comodule (with structure mag : (M — M ®@H, m — 3 m) ®@my)), both
structures being compatibléz(m - a) = > my) - ap) ® Slap)mwae) (for m € M,
a € H). When M and N are right crossed bimodules over HRNN becomes a right
crossed bimodule for the actiom(® n) - a = m - ag) ® n - a) and the coaction
or(m @ n) = (m) ® n) @ Myn().

There are two easy examples: we can endow H with the struciwrés= ab and
0r:(H—=H®H,a— a2 ® S(w)ag). Alternatively, we can put on H the structures
a - b= Sb))abp (right adjoint action) andr : (H - H® H, a — a@) ® a().
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WhenT is a bicovariant bimodule (see [Wo]), the spateof left coinvariants is
a right crossed bimodule over H. Conversely, any right crossed bimodule over H is the
space of left coinvariants of a bicovariant bimodule.

Finally (H still being a Hopf algebra), we endow the tensor product coalgebra
H*"s @ H with the product { ® a)(g ® b) = (g@), a3)(9a1), Sla)) (91 f @ a@b)-
We obtain a bialgebra, called Drinfdis double of H and denoted b#(H). (Here
H*'®S s the standard dual of H, the coproduct is not brought into its opposite.) When
M is a right crossed bimodule over H, it is a rigfit(H)-module for the actions:
m-(f®1)=(f,may)me,m-1®a)=m-a.

1.2. Definition of a co-quasi-triangular Hopf algebraVe give the definition of c.q.t.
Hopf algebras, by now usual (see [L—T] for historical notes):

Definition 1. A co-quasi-triangular Hopf algebra is a pa{t4, v), whereA is a Hopf
algebraandy : A — A*"Sis a coalgebra morphism and an algebra antimorphism such
that we have the Yang—Baxter equation (or rather the Baxter commutation relations):
awb{va@), b)) = (vaw, bay)bea forall a,b € A.

That~ is a coalgebra morphism and an algebra antimorphism gives us that for all
a,b € A, (ya,b) = (yS(a),S0)). We callé : A — A* the map such thatda,b) =
(b, S(a)), for all a,b € A. Hence we havéya, b) = (0b, S(a)). We verify easily that
takes its values ill*"®sand that (4, ¢) is a c.q.t. Hopf algebra.

If U is a Hopf algebra quasi-triangular for d@xmatrix R1,, then U 'S becomes a
c.q.t. Hopf algebra for the map given by: fora,b € U*'S, (v(a),b) = (b ® a, R12),
and then(§(a), b) = (b ® a, R,,"). This follows from Drinfeld’s classical axioms. For
instance, let H be a finite-dimensional Hopf algebra, and @@#H): the dual vector
space Hy H* of U is the underlying space of the restricted dual of Uejj (s a basis for
H, the canonicaR-matrixis) (e ® 1)® (1®e¢;) € U® U. It corresponds to the maps
y:HOH* - U,a@ f—e(@)f®l)ands : HoH* — U,b® g — g(1)e @ S1(b))
(the antipode of a finite-dimensional Hopf algebra being invertible).

The category of left modules over a quasi-triangular Hopf algebra is braided. The
translation in the present formalism is given by the following proposition:

Proposition 1. Let (A4,~) be a c.q.t. Hopf algebra. IM is a right A-comodule, it
becomes aright crossed bimodule ovewhen endowed with the right module structure
given by: form € M anda € A, m - a = (ya,m@u))mq). This extra structure is
compatible with tensor products of comodules and crossed bimodules.

Proof. Letég : (M — M ® A, m — mg) ® myy) the structure map for M. Then we
have:

m() - a@) ® Slaw)mwae) = me) ® (vaE), M) Saw)me)as)
= myo) ® Sla@)ayma)(vae), me)
= m(o) ® my{ya, m)
= or(m - a).

The compatibility with tensor products is a consequence loding a coalgebra homo-
morphism. O

We also note that the antipode of a c.q.t. Hopf algebra is always invertible, the square
of its transpose being an inner automorphism of the algdbrésee [Dr2]).



74 P. Baumann, F. Schmitt

Finally, when (4, ) is a c.q.t. Hopf algebra, we have the mgpnds, and Radford
[Ra] has shown that (im)(im 6) = (im §)(im ~) is a sub-Hopf-algebra od* 'S, This was
shown in the early [R-S]: there is a Hopf algebra structure (with invertible antipode) on
the tensor product coalgehs® A such that the map{® A4 — A*™S a®b — ~b-da)
is a coalgebra morphism and an algebra antimorphism.

Example.In the F.R.T. construction [F-R—T], one considers matriceandL —, whose
elements lie inimy and imd respectively. Then Faddeev, Reshetikhin and Takhtadzhyan
defined U,g to be the algebra (im)(im 6).

1.3. The maps$ and J. We fix in this subsection a c.q.t. Hopf algebr4, (/) over the
field k, and noted the associated map. We define two maps U: & A*™5a —
v(a@) So(ap)) and J : A — A*™S a — Si(aw) Y(aw)). Equivalently, we may
consider the pairing of two elementsb € A: (I(a), b) = (J(b), a). (WhenA is the dual
of a quasi-triangular Hopf algebra, this pairingdas® b, R»1R12).) We have | = $Jo S
andJ=S1o0S.

We will now state an important property of the mapdr: "Sis a left A* S A* e
module for the law £ ® y) - z = 2z S(y). A is a right crossed bimodule ovet for the
structuresa-b = abanddr : (A — AR A, a — a2 ® S(aw)a), SOA s arightD(A)-
module. LefT : (D(A) = A*™*@ A — A*50 A* ™S 2 @b — Y(bwy)r 1) @0(b2)z2)-
Proposition 2. In the set-up abovd] is an algebra antimorphism. € D(A) and
a € A, thenl(a - &) =T1(¢) - I(a).

Proof. ThatIT is an antimorphism is already in [R-S]. Then, as a consequence of the
Yang—Baxter equation, we may write, fore A*"**anda € A, that Sy(a))(z, a)) =
(z(2), aq)) x1)SY(a@)Sr (). Then we compute, fof = = ® b € D(A):
I(a - &) = (z, Sla)a) (ae)b)
=7(bw) (z, Slaw)aw) v(a@) Sé(a) SI(be)
=7(b) (@), Slw)) S1S0@) (T(2); ) SH(as) SI(bz)
=7(bw) (r@), Sa@))r@)SrSaw)SE@E) (T s), as) S (aw)Se)So(bw2)
=7(bw) (r@), Slae)) v SYSaw) (@), ag) SH(aw) Sa)) S(bw)
=7(bw) T v(a@) SH(aw) Sw) SH(bw2)
=TI() I(a). O
We single out the particular cases 1:
Proposition 3. We considetd and.A* "= as left.A* "*>=modules for the adjoint action:

if z,y € A" anda € A, z - a = (z,S(aw)aE)ae andz -y = zqyy S(e). Then
. A— A*™is a morphism ofd* "*S-modules.

Finally, we give the definition, originally due to Reshetikhin and Semenov-Tian-
Shansky [R-S]:
Definition 2. One says thafA, v) is factorizable if the pairind A x A — k, (a,b) —
(I(a), b)) is non-degenerate.

Thus (4, ~) is factorizable iff the maps | and J are injective. It is possible to show that
(A,~) is factorizable iff (4, §) is so.

1.4. A related constructionFirst, let U be a Hopf algebra. It is a left U-module for the
adjoint action:z - y = zwyy S(x). We let R(U) be the sum of all finite-dimensional
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U-submodules of U. It is known [J-L1] that ) is a subalgebra of U, a left coideal

in U, and a U-submodule for the left adjoint action. The multiplication in U defines a
morphism of left U-modules §U) ® F,(U) — F,(U). We can then do the semi-direct
product R(U) ® U: we obtain an algebra & U denoting the ordinary tensor product
algebra, there is an algebra morphism((hP ® U — U@ U,z ® y — zyq) ® y2). We

can make the same constructions on the right: we obtain an alggla If the antipode

of Uisinvertible, the algebra morphism @JF,.(U) — U U, zQy — x1)Q@z@)y) has

the same image as the previous one. Hence this image contéilsH-,.(U) C U® U.

We take nowac.q.t. Hopfalgebrd (v), with §, | and J asin the preceding subsection.
Let U = (im~)(im §) be the minimal sub-Hopf-algebra gf 'S in whichy and¢ take
their values. We consider o and.A* "sthe 4*"*>-module structures of Proposition 3.
By restriction, A and.A* " are U-modules, and | 4 — A*"is a morphism of U-
modules. We can see that | takes its values in U, which is a U-submodulé "8t
Further,A is the sum of its finite-dimensional U-submodules, hence A, (U).

Proposition 4. Let(.A, ) be a c.q.t. factorizable Hopf algebra, ahfie the associated
map. LetJ be the sub-Hopf-algebi@m ~)(im ¢) C .A*"S. We suppose thah | = F,(U).
Thenl induces a bijection between:

o the set of right idealsk of A, which are subcomodules for the right coactid :
(A—A® A a— ap) ® Slaw)ag).
¢ the set of two-sided idealsof F,(U), which areU-submodules for the adjoint action.

This bijection preserves dimensions, codimensions, and the inclusion ordering in both
sets.

Proof. By assumption, | : A — F,(U) is a U-module isomorphism. We adopt the
notations of Proposition 24 is aD(A4)-module, and W A is (the underlying space of)
a sub-Hopf-algebra dp(A), so we will view A as a right Up .A-module: 1 A acts on
A by right multiplication, UP ® 1 acts onA by the left adjoint action. The injectivity
of I implies that im JC U separates the points gf. hence the sub-& .A-modules of
A are the right ideals which are subcomodules for the right coagtion
On the other hand, we let E be the image of the morphistfiyfo U — U U,z ®
y — zY1) Qye). Uis a U U-module, sois an E-module, andB) is a sub-E-module
of U. E contains {U) ® F,.(U), with S{F,.(U)) = F,(U). Therefore, the sub-E-modules
of Fy(U) are the two-sided ideals which are U-submodules for the adjoint action.
Now the proposition is a consequence of Proposition 2: writlrags the composition
(F[(U)@A* res A* res®A* res7 x®y —s $y(1)®y(2))O(A* res®A — FZ(U)@.A* res’ )
a — I(a) ® 6(az)z), and using the assumption im | (&), we can see that E is the
image of U® A throughIT. O

2. The Case of the Quantum Coordinate Algebra

2.1. Notations.In this section, we study the preceding constructions in the case where
Ais the algebrad,G of regular functions on a quantum group.

Let g be a finite-dimensional semi-simple split Lie algebjaa splitting Cartan
subalgebra{a, ... ,a;} € bh* a basis for the root systenfery,... ./} C b the
inverse roots, PC h* and Q C h* the weight and the root lattices. The choice of an
invariant (under Weyl group action) scalar produ¢) @llows us to identifyh andb*,
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with o; = d;a), d; = (0“‘2‘” We choose the normalization of-{ so that @ | i) € Z
whenever\ andu belong to P. We denote hyhalf the sum of the positive roots, by P
the set of dominant weights, and by the longest element in the Weyl group.

We now choose the following version of,gt this is aC(g)-algebra § is generic)

generated by;, F; and K (A € P). The relations are the usual ones among which:
K

K\E; = (ME Ky, K\F;, = ¢ W EK,, E;F; — F,E; = 5j% The
coproductisgivenbyAK) = Kx® K\, AE; = E;®1+K,,QFE;, AF; = 1 F;+F;®
K_,,.Wenote Sthe antipode ofg. If one chooses a dommantwe@t‘ﬁnd acharacter
X: P/2Q — C*, one knows how to construct a simple finite-dimensiongl-thodule,
inwhich there is a highest weight vecten, such that,-m = x(u mod 2Qy*Mm.
We note L () such a Ug-module ; wheny is the trivial character, we simply write
L(A), and then L (A) = L(A\) ® L, (0).

The matrix coefficients of the representatiom\).épan a linear subspace g (of
the restricted dual of Ly, and we let4,G = P, cp, C(V). This is a Hopf subalgebra of
(U,g)" " The elements ofd,G separate the points of g [J-L1], so that there is an
inclusion of U, g into the dual of4,G, actually into the restricted dual gf,G. We note
S the antipode ofd,G, which is the restriction to{,G of the transpose of the antipode
of Ugg.

There is anRk-matrix for U,g [Drl, Ta, Ga]. We choose th&-matrix with the
structure _(diagonal part)(monomial i#") @ (monomial inE). If « andb belong to
A,G, the numbefR12,b ® a) € C(g) is well-defined (thanks to the weight graduation
of U,g and of any finite-dimensional J¢g-module), and we can defingd : A,G —
(A,G)* suchthatR12, b®a) = (y(a),b) = (3(b), S()). (A,G,~) and (4,G, d) are c.q.t.
Hopf algebras, imy{) and im¢) are the sub-Hopf-algebras W° and LPU* of Ugg C
(A,G)*"**respectively, and Lk is the sub-Hopf-algebra (im)(im &) = (im §)(im ~) of
(AqG)* res_

2.2. Factorizability of4,G. Let (4,G, v) be the c.q.t. algebra presented above,&nd
be the associated map. For all the section, we endg@® and U,g with the left adjoint
action of U,g, asin Sect. 1.4: in particular, the mapi;G — F,(U,g) is a morphism of
left U,g-modules. Joseph and Letzter [J-L1, J-L2] have studied the structu@Q b,
and we need the following results:

o If A € Py, K_5) generates afinite dimensionalgJsubmodule of Yg, and R(U,g) =

D, (Ugg - K_23).

e Eachblock Ug- K_»y contains a unique one-dimensionalgssubmodule; it defines
a unique (up to scalars) elementof the center of g.

o Fy(Uyg) C (A,G)" separates the points &f,G.

The next assertion has been stated in [R-S]:

Proposition 5. (A,G, ~) is a factorizable c.q.t. Hopf algebra, arnmh | = F,(U,g).

Proof. Let A € Py, L(A) the standard L4-module,m a highest weight vector,,,» a
lowest weight vector, ;) a basis for L{) composed of weight vectorsy() the dual
basis. We have:

e The matrix elementy () (1w, My, ,) is the linear form on g given by (in the
triangular decomposition U U° @ U~ of U,g): EK, F — (E)qoNWe(F).
e On this elementy takes the valué<,,,» andé the valueK _ .
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e The image byy (respectively) of the matrix element () (m;, my, ) (respectively
GL(/\)(mwoM m;‘)) is zero ifi 7/ WoA.

So we have:

1L (Meawor Mign)) = YOL) (Meawor, M) () SOOLx) (Mavors M) @)
= 2Oy (ma, my, 1)) SOOL) (17wen, M)
= (O (Meawon, Mag)) SOOL) (Mo, M)
= Kowon-

Hence im| is a {g-submodule of {U,g) which contains all thei{,,,, (A € Py),
so iml = R(U,g). We now want to show that J is injective. if € ker J, then for
all a € A,G, (I(a),b) = (JB),a) = 0, sob is null when viewed as a linear form on
iml = Fy(U,g). Thenb = 0, because KU,g) separates the points of,G. Finally,
owing to the formula J = 81 o S and to the invertibility of S, | is also injective. This
concludes the proof of the proposition. [

There is another way to present this result. Rosso [Ro1] introduced a bilinear
non-degenerate ad-invariant form ongd,) that Caldero [Ca] writes (L4 x Usg —
C(g"?), (x,y) — (¢(x), S X(y))), where¢ : U,g — (U,g)*. Rosso’s non-degeneracy
result is that is injective; Caldero’s theorem states tganaps F(U,g) onto 4,G C
(Uyg)" " The triangular behaviour of Rosso's form gives us tQék2,,)
QL(A)(mwOMmeOA). The ad-invariance of Rosso’s form can be translated favhen
we restrict¢ to F,(U,g) and A,G, ¢ is a morphism of Yg-modules for the adjoint
structures. Now b ¢ : F,(U,g) — Fe(Ugg) and( ol : A4,G — A,G are morphisms of
U,g-modules and fix the respective generatBg,,» anddy ) (mao, m;j}oA) of these
modules. (The fact tha ) (1., M}, \) generates the fg-submodule CX) of A,G
is equivalent to the fact that;, , ® mu,, generates the Jg-module LQ)* ® L(}).)

So we conclude thatand | are mutually inverse isomorphisms, and that | is a bijection
between Ck) and U,g - K2,,». The analysis also shows the amusing side-result:

Proposition 6. If 2 € F(Uyg), v € Ugg, then the Rosso form o, y) is given by
(I7Yx), S (y)), wherel : (A,G — Fy(Uy0),a — (a @ idy, g4, R21R12)) is related to
the universalR-matrix andS s the antipode ob,g.

Remarks. 1. Itis also possible to give an heuristic proof of this result, using the canon-
ical R-matrix for Drinfel'd’s double and using Rosso’s formula for his form [Ro2].

2. In the preceding discussion, we were lying a bit. Caldero’s thdpes not give
exactly Rosso’s bilinear form, but our formula connecting | and Rosso’s form is
correct as stated. In our notations, Caldero’s qisthe inverse of the map4,G —

Fe(Ug9), a — d(aq@) Sy(aw))-

Later, we will need to know the relations between the central elemgndefined
above. To this aim, we recall Drinfel's construction of the center of |g [Dr2]. Let
A € P, andt € A,G be the quantum trace inA): for x € Uyg, (t, z) = Tryn (K2, z).
t is an invariant element for the adjoint action ofdJin A,G, so I¢) is central, and
belongs to Yg - K2.,x. We choose the normalization of ., by lettingz_.,,» = I(t).
We then have a Mackey-like theorem (which is implicit in [Dr2] and in the thesis of
Caldero, Chap. I, 1.2):

Proposition 7. Letcf,, be the fusion coefficients far L(\) ® L(p) ~ D, ¢, L(v).
Thenzyz, =3, Cx 2w
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Proof. Letu € P.. We compute 3 (,,)(m,., m},)) = Kz, (with the help of the formulas

J =SoloSand S, (mu, m},)) = OL(—weu)(m—u, m=,)). Now letA € P, and lett

be the quantum trace in AJ. Let ¥ be the Harish-Chandra morphism from the center
of U,g to U° [Ro1]. We want to computa(z_.,,») on i + p. (Evaluation onu + p
means the algebra homomorphisn? (& C(q), Kx — ¢WY#*).) The result will be
the image ofz_,,» by the central character of L. So it is (I(), 0L (m,, m})) =
(B (m, myy),t) = (Kou,t) = Trioy(K2uK2p) = Trioy(H2(uep)- Thus W(z_uw,n)
equals the sum oK, for v in the set of weights (with multiplicities) of LX). We then
use the fact thav is an injective algebra homomorphism. O

We denote byG the Grothendieck ring of the category of finite-dimensional
U,g-modules whose components are modules)] (vithout any twisting character
x : P/2Q — C*. Let Z(Uyg) be the center of Ly, andZ[P] the group algebra of P (with
the standaré@-basis denoted by(),cp). The map§ — A,G,[M] — Tru(Kz,—))is
aring homomorphism. i, b € A,G are such that#) belongs to the center of/d, then
I(ab) = I(a) I(b). As a consequence, the mép — Z(U,g), [M] — I(Tru(K2,—))) is
a ring homomorphism. This shows again the statement in Proposition 7, and we can
paraphrase the above proof by saying that the following diagram is commutative:

|
g - AG = Z(Uqg)

ch v

Z[P] ~ U°

Here ch :G — Z[P] is the ring homomorphism which maps a module to its formal
character, and the bottom arrow is the mafR| — U°, e” — K»,).

2.3. Atechnical result on the representation ride have justintroduced a Grothendieck
ring G: by the classical results of Lusztig and Rosg§ads naturally isomorphic to the
representation ring gf. The elements [LY)] (A € P,) form aZ-basis ofg and aQ-basis

of G ®z Q.

Proposition 8. Let\ € P.. Then the ideal 0R ®7 Q generated by the elemertg A +
w)] (w € P.) is the whole algebr& @7 Q.

The proof of this proposition can be skipped without any drawback. Before we give it,
we have to state an elementary lemma:

Lemma. Let (u®, ..., ™)) € (C** be such that their image ir@<(3/z)Z are all
different, and let(P®Y, ..., P®)) € (C[Xq,..., XDk If Y, P™(ng, ... ng)
exp(2ri Y- n,u4™) = 0 holds for all (ny, ... ,ns) € N, then the polynomial$®,
..., P® are all equal to zero.

For ¢ = 1, this lemma states linear independence of elementary solutions of a linear
difference equation. The general proof is by inductior/on

Proof of Proposition 8ln this proof, we are in a classical context and we do not identify
h andh*. LetRC h* and R’ C b be the direct and inverse root systems;§ «") the
canonical bijection between R and’Rand Q(R’) C § the root lattice. P = P(RE h*

is still the weight lattice; we denote by, ... ,a;'} the set of inverse simple roots,
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and by{w;, ... , @} the set of fundamental weights’Rind R definéQ-structures on

h andh*, and we can defingg andhc. The Weyl group W operates dnandh*, and

the affine Weyl group W = W x Q(RY) operates offy. Let Z[P] be theZ-algebra of

the group PZ[P]" be the set of elements which are invariant under Weyl group action,
ch : G=Z[P]W) be the ring isomorphism “formal character”. Finally, we denote by
¢(w) = +1 the determinant of an elementof the Weyl group.

For . € be, let ey, : (Z[P] — C) be the ring morphism which sends a basic
elemente” (v € P) to exp(Zi(u,v)), where exp is the complex exponential. This
extends to an algebra morphism,ev (C[P] — C). If v € P, let f, be the map
(h(c — C, u— ev,(ch L(z/))). We first assert that given anys( . .. ,z,) € C¢, there
existspu € bhe such that for ali € {1,...,¢}, fo,(u) = ;. We viewC[P] as the
coordinate ring of the affine varietyC¢)¢, and we view an element = 3" ;o
(1; € C)asthe point¢® 1, ..., e?™#¢) ¢ (C*)*. By the Nullstellensatz, it is sufficient
to prove that the elements (chdzf) — 2;¢%) (i = 1,... ,¢) generate a proper ideal in
C[P]. This is already true irC[P]"W by [Bo], Ch. VI, § 3, Tteoeme 1. The case of
C[P] is given by a standard trick: lgt: (C[P] — C[P]W) be the projection onto the
trivial homogeneous component@jP] for the action of W} is a morphism oC[P]"-
modules, and thus a relation Q; - (ch L(zw;) — 2;¢°%) = 1in C[P] would give a relation
S Q% - (chL(w;) — 2:¢%) = 1in C[P]W, which is impossible.

We now want to prove a formula for the characfg(u) = ev,(ch L(v)). We first
remark thatf, is invariant under the action of the affine Weyl group W h¢. If the real
part Ref:) of 1 lies in an open alcove dfr, our formula will just be Weyl's character
formula:

100 = > wew E(w) exp2ri{wp, v + p))
TS e @) expritun, p)

Writing the denominator as a product over the positive roots:

exp(2ri(p, p)) Tlaerazo (1 — €XpE=2mi(n, ))),

we can see that it is a non-zero complex number. In the general case, we{et € R |
Re(u, ) € Z}: thisis a closed symmetric subset of R ([Bo], Ch. VI, § &fibition 4),
thus T is a root system in the vector space ¥ by, that it spans ([Bo], Ch. VI, § 1,
Proposition 23). The stabilizer pfin W, is generated by the reflections across the affine
hyperplanes in which Rgj lies ([Bo], Ch. V, § 3, Proposition 2), thus W= {w €

W | p—wp € Q(RY)} is precisely the subgroup generated by reflections alohg

(o € T), and its restriction to Yis the Weyl group of T. Letr be half the sum of the
inverse positive roots of To = %Zaenwo V. In restriction to \f, o is the sum of
the fundamental weights of the root syste df V;. Let h be a small real parameter:
Re(:) + ho then lies in an open alcove gk and we can compute (with a little abuse):

1u)= lim f,(u+ ho)

~ lim ZweW/WlZwlew1 e(wws) exp(2riwp, v + p)) exp(2rih(wio, w™ (v + p)))
B0 3w s Domeews E(wwn) EXp(2ri{wy, p)) exp(2rih{wio, w=1p)
In the sums, we fixo € W/w, and compute the sums am: in the numerator for
instance, we have an alternating sum of exp(2wo, w=(v + p))), wherew (v +

p) € P(R) has to be projected on;Vas in [Bo], Ch. VI, § 1, Proposition 28. The
formula (valid in the group algebra of the weight lattice of)T> e(wy)e™r? =

e [loet.aso(l— e~") then gives:

w1 EW1
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ZwEW/Wl 6(’LU) eXp(Z'rz(w,u, vt p>) HaET,aZO<av’ w_l(y + p)>
Z“’EW/Wl E(w) eXp(2m’<wM, P>) HaeT,aZO<av7 w*1p>

As v + p andp are regular, neither of the products occurring here can be zero. (We will
see soon that the denominator cannot be zero.)

We now prove that the ideal ¢fz C generated by the elements fl{w)] (w € P,)
is the whole algebré © C. We consider again [Bo], Ch. VI, § 3, €breme 1: this time,
the isomorphisnp : C[X1,. .. , X;] — C[P]W is given byy(X;) = ch L(z;). Compos-
ing with the isomorphism chG — Z[P]V, we can see th&®, C is a polynomial alge-
bra overC. We suppose by the way of contradiction that the elementst{tz()] (co € P.)
all belong to some maximal ideal ¢f®y; C. Then, by the Nullstellensatz, there exists
apoint @1, ... ,z,) € C’ such that for alkw € Ps, o~(chL(\ + @))(z1, . .. , z¢) = 0.
We can findu € b such thatf,, (1) = z; (i = 1,...,¢): then frio(p) = O for all
w € P:. We next use the formula:

Jo(p) =

Fr+w(12) (denominator)

= Y e(w)exp@rifwp, A+ +p) [ (@, wt A+ @ +p)),
weW /Wy a€eT,a>0

and writecw = 3" n,;;, where @;) € N’ are any integers. Theu (w € W/w;,) are all
distinct modulo Q(R), and the expressior .1 ,~o{a”, w™Y\ + @ + p)) are non-
zero polynomials insy, ... ,n,) (they never vanish indeed). Then the above lemma
states that the right-hand side cannot vanish forg)l € N¢. This proves first that the
denominator is not null, and second t[f;q;z n,, (#) cannot vanish for alli;) € N¢.

We have reached a contradiction.

To go down to the case 6f®z Q is then easy: we have shown that we can express in
G ®z C the unity as a finite sum 1 ¥ z;[L(7)][L( )], wherer; € P, v; € A+P. and
z; € C. As the structure constants @fx 7, C are integer-valued, this system, viewed as
linear equations ina;), has a solution irC, so has a solution . g

2.4. Classification of some ideals Bf(U,g). In order to achieve our classification of
idealsR C A,G in the next section, we must study the ideals F,(U,g) which are
stable by the adjoint action of)gd. The analysis requires the use of the subalgebra V of
U,g generated by KU, g) and by the element&’>y (A € Ps).

Joseph and Letzter [J-L1] have shown that V is the subalgebra generated by the
elementsE;, F; K., and K>y (A € P). As it is such a “big” subalgebra of g, its
representation theory is similar to that ofd) We will describe it in the next subsection,
but in the following proof, we need to know that the annihilator of a finite-dimensional
V-module is homogeneous with respect to the Q-graduation of V.

Proposition 9. The following two properties for a subspafeC F,(U,g) are equiva-
lent:

(1) Z is the annihilator inF,(U,g) of a finite-dimensionaV-module;

(2) 7 is a finite-codimensional two-sided ideal Bf(U,g) and aU,g-submodule of
F¢(U,g) for the left adjoint action.

Proof. We first show that (1)= (2). If M is a finite-dimensional V-module, its anni-
hilator in V is a finite-codimensional two-sided ideal of V, and is homogeneous w.r.t.
the Q-graduation of V. It is then easy to see thatalnis a U,g-submodule of V for
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the left adjoint action. The annihilatar = (ann, M) N F¢(Ugg) of M in Fy(U,g) thus
satisfies the property (2).

Conversely, lef C F,(U,g), satisfying the property (2). We consider the left regular
F¢(U,g)-module M =F,(U,8)/7. T is its annihilator, so it is sufficient to show that M
extends to a V-module. We thus want to show that the elemknts, ¢ F,(U,g)

(A € Py) map to invertible operators in End(M).

1) M is a finite-dimensional algebra, and is also a lefiginodule (for the adjoint
action). The multiplication in M defines a morphism of leffgdmodules: Mo M —
M. Thus the Q-graduation of M (defined by the structure pf{thodule) is an algebra
grading.

2) We fix\ € P.. We can write M = M® M, (asC(q)-vector space), whet& ) acts
nilpotently on My and inversibly on M, (Fitting’s decomposition). idland M, are
stable by the commutant éf_,, in End(M), so are rightideals of M. lf € F,(U,g)
is homogeneous w.r.t. the Q-graduation @fW;,g), * commutes (up to a non-zero
scalar) withK_5,, so My and M., are stable by left multiplication by. Thus M
and M,, are also left ideals of M.

3) We now show that Mand M,, are U,g-submodules of M.

(@) Let{es, ..., e} bethesetofcentralidempotentsin M. The eleméfig. € P)
of U,g act on M (by the adjoint action) as algebra automorphisms, so permute
the elements of the séty, ... , ex}. Hence for eachy, there exists an integer
n > 1 such thati,,,, fixes eache;. Since M is, as a L-module, a direct sum
of modules L{) (without any twisting charactey), and sincey is generic, we
conclude thaty, ... , e, are fixed by the adjoint action of the elemenis.

(b) Lete be a central idempotent in M. is of weight zero. We consider the
exponential expadk;) = S aoq /2295 (e g1 ) fixed).

nj;!

Then exp(adE;) is a well defined operator[i% M. The formula(E!) =

heo 4], g PP ENFKE @ EF enables us to see that exadE;)(e) is
an idempotent which we write + . Then 2x + 22 = z, 2(1 — 2¢) = 22,
z = z(1 — 2¢)? = 2. The weights of the Q-homogeneous components of
belong to{na; | n > 1}; so the weights of the Q-homogeneous components
of 22 belong to{na; | n > 3}, and the homogeneous componentrobf
weightca; is null. We obtain that (ad’;)(e) = 0. Similarly, (adF;)(e) = 0 for all
1e{l,... ¢}

(c) Mg and M., are ideals in M generated by central idempotep@nde., respec-
tively. (a) and (b) show thaty ande,, define the trivial lJg-module. Hence for
z € Mpandu € Ugg, u-x = u-(zeg) = (uq) - x)(ue) - eo) = (uq) - )e(u@)eo =
(u - x)eg € Mg. The same holds for M.

4) We first consider the cage = sl,. We choose naturallp = w the fundamental
weight, and write Nj = Lo/7 and My, = Lo /Z. The points 2) and 3) show that
andL., are two-sided ideals and leftg-submodules of KU,g). By definition of
the Fitting decomposition, there exists an integer 0 such thatk 5, € L.
Hence for all integersn > n, we haveK_5,,, € L, and thusz,,,., € L. Let
ng > 0 be the smallest integer such that forall> ng, z,, € L. Proposition 7
and the Clebsch—Gordan theorem show that # 1, z(,+1y0 + 2(h—1)= = Zw2nw-
Thusng hasto be equalto zero. So L5 € Lo, Mo =M, andK _,, actsinversibly
on M.
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5) The general case is solved in the same way. We consider the decomposition of the

point 2) and write M = Lo/7 and My, = L /7. Lo and L, are two-sided ideals

and left U,g-submodules of KU, g), and there exists an integer> 0 such that
K_op) € Lo If w € Py, thenK _spa4w) € Lo, and thusz,ze € Loo. Letp be

the Q-algebra morphisn(g ®z Q — Z(Uqg), [M] — I(TrM(sz—))) considered

at the end of Sect. 2.2. Themm}(£.) is an ideal 0iG ®7 Q, which contains all the
elements [LEwon + @)] (@ € Py). Thusp~H(L.) = G ®z Q by Proposition 8,

and so 1 =p([L(0)]) € Lo, M =M, andK _,, acts inversiblyon M. [

Remark. This result is a particular case of Proposition 8.4.13 in [Jo]. Accordingly, its
proof is shorter than the one of Joseph’s theorem, and does not require the knowledge
of the inclusions between Verma modules, nor the use dfé@el-Kirillov dimensions.

2.5. Classification of some right ideals of,G. The notations4,G, U,g, V have the
same meaning as in Sects. 2.1 and 2.4. The mag}G( F,(U,g)) was introduced in
Sect. 1.3.

We now specify the structure of the finite-dimensional V-modules: they are com-
pletely reducible; each }g-module L ()\) (with X € Pi, x : P/2Q — C*) is (by
restriction) a simple V-module; the V-modules (1) and L,(x) are isomorphic iff
A = p and the characterg, ¢ restrict to the same charactéP/2Q — C*. The
simple finite-dimensional V-modules will be denoted by(h) with A € P, and
X : 2P/2Q — C* a character. We finally remark (see [J-L1]) that a simple finite-
dimensional V-module is still simple as a(B,g)-module. Consequently, if (Mis a
finite family of non-isomorphic finite-dimensional simple V-modules, the natural ring
homomorphism RU,g) — @ End M, is surjective.

Theorem 1. 1) LetR be a finite codimensional right ideal of,G, which is a sub-
comodule of4,G w.r.t. the right coactionég : (A4,G — A,G ® A,G,a —
a@y ® S(awy)a). Then there exists a finite-dimensionaimoduleM such that
R =17 ann,u,q M).

2) If M is a finite-dimensionaV/-module, thed ~*(ann,u, 4 M) is a finite codimen-
sional right ideal of4,G, stable by the right coactiofi.

3) If M and N are finite dimensionalV-modules, thenl~*(ann:,u,qgM) =
I~Y(anm:,u, g N) iff M andN have the same irreducible components.

4) 17}(@nn,u,q) M) is included in the augmentation ideal &f,G iff M contains the
trivial V-module.

Proof. 1) and 2) are consequences of Propositions 4 and 9. Let M and N be two finite-
dimensional V-modules having the same annihilator i(Ugg). Then ang,y, M =
anrg,u, (M @© N). Let My, ... M, (respectively M,... ,M,,) be the distinct irre-
ducible components of M (respectively #N). Then we have:

Fe(Uq0)/anre, u, g (M) = @, End M
and:
Fe(Uqgg)/ann:,u, (M @ N) ~ @7, End M;,

and sok = n: all the irreducible components of N appear in M. 3) follows. 4) can be
proved in a similar way, using the fact that the augmentation ided|,&f is the inverse
image by | of the annihilator of the trivial V-module. O
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3. Differential Calculi on Quantum Groups

3.1. Woronowicz’s definitionLet A be a Hopf algebral” be a bicovariant bimodule
and d : A — T be alinear map. We say thdt,(d) is a bicovariant differential calculus
on A if d is a derivation, a morphism of two-sided comodules and if the image of d
generates the lefi-modulel’. The dimension of the spad# of left coinvariants will

be supposed to be finite.

When (7, d) is a differential calculus oved, we note § the map @d — I',a —
S(a()) - d(az)). The subspacR = ker d- Nkere is a finite-codimensional right ideal of
A, and a subcomodule for the right coadjoint coactign (a — ap) ® S(aw)a)). As
shown by Woronowicz, the subspaRedetermines (up to isomorphism) the bicovariant
differential calculusY, d): we call it the ideal associated tb,d).

Geometrically, A must be viewed as the algebra of functions over a group S,
the space of 1-forms on G is the space of left-G-invariant 1-forms on G, identified
with the cotangent space at the unity point of G, ahdhps a function on G to its
differential at the unity point.

3.2. A construction of bicovariant differential calcullLet A be a c.q.t. Hopf algebra
over the fieldk, and lety, ¢ be the associated maps.

We take a finite-dimensional righi-comodule M. We noter(;) a basis of M,
(m]) the dual basis, an®;; the elements of4 such thator(m;) = Zj m; @ Rj;.
ThenAR;; = Y, Rjr ® Ri; ande(Rj;) = d;; (Kronecker’'s symbol). Also, M is a
left A*-module, and the?;; (viewed as linear forms od*) are the matrix coefficients
O (m;, m;‘) of this module.

Since (4, ) is c.q.t., M becomes a right crossed bimodule a¥efor the action
mi-a =3 ;(y(a), Rj;)m; (Proposition 1). M is a right comodule oveA too, for the
coactiondg(m;) = Zj m; @ S(R;;). Using the fact thatd, ¢) is a c.q.t. Hopf algebra,
we may endow M with the structure of a right crossed bimodule ovefor the action
m; - a =, (d(a), S(R;;))m;. Then, by making the tensor product, we obtain that
End(M)~ M ® M* is a right crossed bimodule.

We denote by the bicovariant bimodule associated to this right crossed bimodule
End(M). As a vector spacd; is just the tensor produc ® M @ M*. On the basic
elements, the structure maps are:

b-(a®@m; @mJ) = ba®m; @mj,
(@@m; @mj)-b=3"  aba) @ (v(b@), Rri)mi @ (3(ba), S(Rje))my,
d(a ®@m; ® mj) = a@) ® a@E) ® m; @ mj,
5R(a X m; X mj) = Zk,l a(1) X mg X m}‘ [ a(g)RkiS(Rjg).
It follows that the canonical eleme¥ = >, 1 ® m; ® m; of I is left and right

coinvariant. The linear map d A(— I',a — X - a — a - X) is then a derivation and a
morphism of two-sided comodules.

Theorem 2. 1) If (A, v) is a factorizable c.q.t. Hopf algebra and\f is a simple finite-
dimensional non-trivialJd-comodule, then the above construction gives a bicovariant
differential calculud : (4 — I' = A ® End(M)).

2) Its associated ideal i® = | ~Y(anny-(k © M)), wherek is the trivial A*-module.
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Proof. We first compute for, € A:

d@) = > k., a(a@); Bre) @ mi @ mj — a@y{ag), Oke) @ my @ my
=2 rrawll(a@), Rie — 6ke) @ my @ my,

and so:

d“(a) = X2, (I(a — e(@)), Rye)mi @ mj
=2 1 (I Bke — be), aymu, @ my.

TheR;; are the matrix coefficientty (m;, m}) ofthe A*-module M, whichisirreducible
and non-trivial. Thus, by the Jacobson density theorem, the (dfm#M) elements
{1, R;;} are linearly independent id. The (dim MY linear forms{J(Rx, — &)} are
then linearly independent id*, and the formula for &a) shows that H maps.A onto
I'" = End(M). 1) is proved. The same formula shows tRais the set of elementsin
the augmentation ideal 04 such that I§) is orthogonal to all the matrix coefficients
Ry of the A*-module M. ThusR = kere N 1~ 1(anng- M) = 1 -Y(anny- (k © M)). We
have shown 2). O

If we consider now a finite family (ly) of non-trivial non-isomorphic finite-
dimensional simple rightl-comodules, we can do the direct sum of such constructions.
If (A,~) is factorizable, then the map d A(— @(A ® End M,)) is a bicovariant
differential calculus. The associated idealid(anny-(k & @ M,)).

3.3. The link with the classification theorerive are now gathering the pieces of our
patchwork. According to the statements in Sect. 3.1, Theorem 1 yields a complete
classification of bicovariant differential calculi of,G. Morally, they are all given by

the construction described in Sect. 3.2.

Proposition 10. LetU,g and A,G be the objects defined in Sect. 2.1. If the root and
the weight lattices foy are equal, all the bicovariant differential calculi ad,G can
be constructed by the method described in Sect. 3.2.

Proof. The results in Sect. 2.5 tell us that an id&lassociated to a bicovariant dif-
ferential calculus on4,G is a subspace f(ann,u, 4 M), where M is a V-module
containing the trivial V-module. Let M. .. , M,, be the distinct non-trivial irreducible
components of M. The assumption ggives us that the Mare modules LX;) (without

any twisting character), and so can be considered as non-trivial non-isomorphic simple
right 4,G-comodules. The construction of Sect. 3.2 for this family of comodules leads
to a bicovariant differential calculus whose associated ideal is the inverse image by |
of the annihilator of thed,G)*-moduleC(¢) & € M;. Itis R, and the proposition is
proved. O

In the remainder of this section, we will discuss what happens when the root and
the weight lattices differ. Up to the end of this article, we consider this case. There exist
non-trivial characterg : 2P/2Q — C*, and for any weight\, we can look at the
idealR = I*l(anrpz(qu)((C(q) ® L, (), and at the associated bicovariant differential
calculus. It cannot be constructed by the method of Theorem 2, sipg s not a
right A,G-comodule. However, one may notice that the main trick in the construction
of Sect. 3.2 consisted in using two differe®tmatrices, namely;, andR;ll. Ri,was
used to endow thel,G-comodule L&) with the structure of a right crossed bimodule
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overA,G, andR,;" turned thed,G-comodule L4)* into a right crossed bimodule over
A,G. The tensor product of these right crossed bimodules then gave the bicovariant
differential calculus associated tdll(anrpg(qu)(C(q) @ L(A))). When one uses the
small freedom allowed in the choice of tiiematrix of U, g (see [Ga]), one can make
similar constructions for the bicovariant differential calculi associated with some of the
ideals I—l(anrpe(qu)(C(q) @ L,(A))). We will not write all the details, but point out that

this is the way followed by Schiidgen and Sdlier for the construction described in
[S-S1], Theorem 2.2.

As an example, we now describe explicitly the bicovariant differential calculus as-
sociated with the ideal™(ann,u,5(C(q) ® L(0))). Let (P/Q)A be the group of
characterg : P/Q — C*. If ( is such a character, it extends to a one-dimensional rep-
resentatiory of A,G by letting((6.(x)(m, m*)) = ((A mod Q)m*,m), and this gives
an inclusion of the grou;ﬁF’/Q)A into the center of f,G)" ™. Since ¢ ® id) o 6g :
A,G — C(¢g) ® A,G is given by & — ((z) ® 1), we can see that the kernel Of
is a one-codimensional two-sided ideal .4fG, stable by the right coactiofk. If ¢
is not trivial, the ideatR = kere N ker( defines a bicovariant differential calculus
on A,G. Puttingy : (2P/2Q — C*, 2\ mod 2Q— ¢(X mod Q)), we can check that
R = I7Yann,u,(C(q) ® L,(0))). This construction gives all the one-dimensional
differential calculi onA,G (generalizing the result of [S-S1], Remark 4 after Theo-
rem 2.2).

Finally, let X be an intermediate lattice between P and Q. The matrix coefficients
of the irreducible representations of, g/whose highest weights belong to X span a
subalgebrad,G, € A,G. These algebrad,G, are factorizable c.q.t. Hopf algebras.
For instanceééquQ is the algebra of functions on the quantum adjoint group &y =
A,G,isthe algebra of functions on the quantum simply-connected group. Our arguments
in Sect. 2.5 show that the indecomposable bicovariant differential calculi, @y are
classified by ideal® = A,G, N I—l(ann:é(qu)(C(q) ® Ly (N)), wherey : 2X/2Q —

C* is a character (extended arbitrarily to a character of the géf/pQ). Thus the
“twisted” bicovariant differential calculi are non-local, their appearance depending of
the choice of X. The bicovariant differential calculi seem localized at the central elements
of Gy, that is to say, at the fixed points ofGinder the adjoint action.
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Note added in proof. P. Polo kindly communicated us the following simple proof of
Proposition 8. By the formal character isomorphigimy Z[P]. LetZ[P]V C Z[P]bethe
subring of W-invariant element&[P] is a module of finite type over the noetherian ring
Z[P]V, hence we can choose a finite generatingeej{<;<,, from the family ¢*), cp.
Take a weighf: such that alj + v; are dominant. Leh =€ P.. Then there exists some
a; € Z[P]W such that=*~* = 3. a;e”*, hence I3, a;e***i. Multiplying this by

e? and making the alternating sum over the Weyl group, one abtains that:

chL(0) =", a;chL(\ + p+13).

This concludes the proof. Thanks are also due to A. Joseph for some useful comments
about this work.
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