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Abstract: The restricted dual of a quantized enveloping algebra can be viewed as the
algebra of functions on a quantum group. According to Woronowicz, there is a general
notion of bicovariant differential calculus on such an algebra. We give a classification
theorem of these calculi. The proof uses the notion (due to Reshetikhin and Semenov-
Tian-Shansky) of a factorizable quasi-triangular Hopf algebra and relies on results of
Joseph and Letzter. On the way, we also give a new formula for Rosso’s bilinear form.

Introduction

Let G be a semi-simple connected simply-connected complex Lie group,g its Lie algebra,
Uqg the quantized enveloping algebra ofg. Uqg is a Hopf algebra. The associated
quantum group is an object of non-commutative geometry. According to a point of view
due to Woronowicz and developed by Faddeev, Reshetikhin and Takhtadzhyan [F–R–T],
one may view the restricted (Hopf) dual (Uqg)∗ resas the algebraAqG of functions on this
quantum group. In this way, the Peter–Weyl theorem becomes a definition: the rational
representations of the quantum group are the finite-dimensional representations of Uqg.

In order to study the differential geometry of quantum groups, Woronowicz [Wo]
defined the notion of bicovariant differential calculus. As in the classical case, one needs
only to define the differential of functions at the unity point of the quantum group. If
ε : AqG → C(q) is the augmentation map, this amounts to take the residual class of
functions belonging to kerε modulo a right idealR ⊆ kerε. In the classical case, one
takesR = (kerε)2. As for quantum groups, it is more important to preserve the group
structure than the infinitesimal structure, and one is led to select idealsR as above by the
requirement of a certain invariance condition. In this article, we solve the classification
problem for these idealsR, and we give a picture of what they look like.

We now compare our results with previous ones. Rosso [Ro3] showed how to use the
quasi-triangular structure of Uqg in order to construct left covariant differential calculi



72 P. Baumann, F. Schmitt

on the quantum group. Modifying this construction, Jurčo [Ju] used theR-matrix in
the natural representation of Uqg (and in the dual of it) so as to construct bicovariant
differential calculi: he obtained particular cases (when M is the naturalg-module or
its dual) of our Theorem 2. (In this spirit, see also [F–P].) As regards classification
results, Schm̈udgen and Scḧuler have classified the idealsR as above, but only when
g is of classical type, and under restrictive assumptions onR. Most of the results in
[S–S1, S–S2] are particular cases of our Theorem 1. For instance, the classification
given in Theorem 2.1 of [S–S1] corresponds (in the wording of our theorem) to the
idealsR constructed (up to a twisting characterχ : 2X/2Q → C×, as explained in
Sect. 3.3) from the natural Uqsln-module or its dual.

Let us explain our proof and the contents of our article. Our proof relies on the
quasi-triangular structure of Uqg. Since the formalism ofR-matrices may be justified
only for finite dimensional Hopf algebras, we will employ the dual notion of a co-quasi-
triangular (c.q.t.) Hopf algebra (see [L–T]): the algebraAqG is c.q.t. We use then a
bilinear form onAqG, introduced by Reshetikhin and Semenov-Tian-Shansky. As Uqg
is a factorizable quasi-triangular Hopf algebra (in the terminology of [R–S]), this pairing
is non-degenerate and gives a linear injectionAqG ↪→ Uqg ⊆ (AqG)∗. The image of
R under this map is nearly the annihilator of a Uqg-module. It is then easier to discuss
whatR may be. The definitions and the proofs of these assertions are given in Sects. 1
and 2. In Sect. 3, we present a contruction of bicovariant differential calculi valid for any
factorizable c.q.t. Hopf algebra. Finally we link, in the case ofAqG, these constructions
with our classification result.

Notations.

• Let A be ak-algebra. If M is an A-module, its annihilator is denoted by annA M.
If m ∈ M and m∗ ∈ M∗ (the k-dual of M), we denote byθM(m, m∗) the matrix
coefficient (A→ k, a 7→ 〈m∗, a · m〉).

• For a Hopf algebra H, we will use Sweedler’s notation for coproduct (1(a) =
∑

a(1)⊗
a(2)) and for coaction on comodules. The sum sign will generally be omitted. We will
denote the augmentation and the antipode of H byε and S respectively.

• Let H be a Hopf algebra, and H∗ res be the restricted (Hopf) dual of H. A finite-
dimensional left H-module M (with a basis (mi) and the dual basis (m∗

i ) of M∗) can
be viewed as a right H∗ res-comodule with structure mapδR : (M → M ⊗ H∗ res, m 7→∑

mi ⊗ θM(m, m∗
i ) ).

1. Co-Quasi-Triangular Hopf Algebras

1.1. Some definitions.Let H be a Hopf algebra over a fieldk. A right crossed bimodule
over H (in the sense of Yetter [Ye]) is ak-vector space M, which is also a right H-module,
a right H-comodule (with structure mapδR : (M → M ⊗H, m 7→ ∑

m(0) ⊗m(1))), both
structures being compatible:δR(m · a) =

∑
m(0) · a(2) ⊗ S(a(1))m(1)a(3) (for m ∈ M,

a ∈ H). When M and N are right crossed bimodules over H, M⊗ N becomes a right
crossed bimodule for the action (m ⊗ n) · a = m · a(1) ⊗ n · a(2) and the coaction
δR(m ⊗ n) = (m(0) ⊗ n(0)) ⊗ m(1)n(1).

There are two easy examples: we can endow H with the structures:a · b = ab and
δR : (H → H ⊗ H, a 7→ a(2) ⊗ S(a(1))a(3)). Alternatively, we can put on H the structures
a · b = S(b(1))ab(2) (right adjoint action) andδR : (H → H ⊗ H, a 7→ a(1) ⊗ a(2)).
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When0 is a bicovariant bimodule (see [Wo]), the space0L of left coinvariants is
a right crossed bimodule over H. Conversely, any right crossed bimodule over H is the
space of left coinvariants of a bicovariant bimodule.

Finally (H still being a Hopf algebra), we endow the tensor product coalgebra
H∗ res ⊗ H with the product (f ⊗ a)(g ⊗ b) = 〈g(3), a(3)〉〈g(1), S(a(1))〉(g(2)f ⊗ a(2)b).
We obtain a bialgebra, called Drinfel′d’s double of H and denoted byD(H). (Here
H∗ res is the standard dual of H, the coproduct is not brought into its opposite.) When
M is a right crossed bimodule over H, it is a rightD(H)-module for the actions:
m · (f ⊗ 1) = 〈f, m(1)〉m(0), m · (1 ⊗ a) = m · a.

1.2. Definition of a co-quasi-triangular Hopf algebra.We give the definition of c.q.t.
Hopf algebras, by now usual (see [L–T] for historical notes):

Definition 1. A co-quasi-triangular Hopf algebra is a pair(A, γ), whereA is a Hopf
algebra andγ : A → A∗ res is a coalgebra morphism and an algebra antimorphism such
that we have the Yang–Baxter equation (or rather the Baxter commutation relations):
a(1)b(1)〈γa(2), b(2)〉 = 〈γa(1), b(1)〉b(2)a(2) for all a, b ∈ A.

Thatγ is a coalgebra morphism and an algebra antimorphism gives us that for all
a, b ∈ A, 〈γa, b〉 = 〈γS(a), S(b)〉. We callδ : A → A∗ the map such that〈δa, b〉 =
〈γb, S(a)〉, for all a, b ∈ A. Hence we have〈γa, b〉 = 〈δb, S(a)〉. We verify easily thatδ
takes its values inA∗ res and that (A, δ) is a c.q.t. Hopf algebra.

If U is a Hopf algebra quasi-triangular for anR-matrix R12, then U∗ res becomes a
c.q.t. Hopf algebra for the mapγ given by: fora, b ∈ U∗ res, 〈γ(a), b〉 = 〈b ⊗ a, R12〉,
and then〈δ(a), b〉 = 〈b ⊗ a, R−1

21 〉. This follows from Drinfel′d’s classical axioms. For
instance, let H be a finite-dimensional Hopf algebra, and U =D(H): the dual vector
space H⊗H∗ of U is the underlying space of the restricted dual of U. If (ei) is a basis for
H, the canonicalR-matrix is

∑
(e∗

i ⊗ 1)⊗ (1⊗ ei) ∈ U ⊗ U. It corresponds to the maps
γ : (H ⊗ H∗ → U, a⊗ f 7→ ε(a)f ⊗ 1) andδ : (H ⊗ H∗ → U, b⊗ g 7→ g(1)ε⊗ S−1(b))
(the antipode of a finite-dimensional Hopf algebra being invertible).

The category of left modules over a quasi-triangular Hopf algebra is braided. The
translation in the present formalism is given by the following proposition:

Proposition 1. Let (A, γ) be a c.q.t. Hopf algebra. IfM is a right A-comodule, it
becomes a right crossed bimodule overA when endowed with the right module structure
given by: form ∈ M and a ∈ A, m · a = 〈γa, m(1)〉m(0). This extra structure is
compatible with tensor products of comodules and crossed bimodules.

Proof. Let δR : (M → M ⊗ A, m 7→ m(0) ⊗ m(1)) the structure map for M. Then we
have:

m(0) · a(2) ⊗ S(a(1))m(1)a(3) = m(0) ⊗ 〈γa(2), m(1)〉S(a(1))m(2)a(3)

= m(0) ⊗ S(a(1))a(2)m(1)〈γa(3), m(2)〉
= m(0) ⊗ m(1)〈γa, m(2)〉
= δR(m · a).

The compatibility with tensor products is a consequence ofγ being a coalgebra homo-
morphism. �

We also note that the antipode of a c.q.t. Hopf algebra is always invertible, the square
of its transpose being an inner automorphism of the algebraA∗ (see [Dr2]).
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Finally, when (A, γ) is a c.q.t. Hopf algebra, we have the mapsγ andδ, and Radford
[Ra] has shown that (imγ)(im δ) = (im δ)(im γ) is a sub-Hopf-algebra ofA∗ res. This was
shown in the early [R–S]: there is a Hopf algebra structure (with invertible antipode) on
the tensor product coalgebraA⊗A such that the map (A⊗A → A∗ res, a⊗b 7→ γb ·δa)
is a coalgebra morphism and an algebra antimorphism.

Example.In the F.R.T. construction [F–R–T], one considers matricesL+ andL−, whose
elements lie in imγ and imδ respectively. Then Faddeev, Reshetikhin and Takhtadzhyan
defined Uqg to be the algebra (imγ)(im δ).

1.3. The mapsI and J. We fix in this subsection a c.q.t. Hopf algebra (A, γ) over the
field k, and noteδ the associated map. We define two maps I : (A → A∗ res, a 7→
γ(a(1)) Sδ(a(2))) and J : (A → A∗ res, a 7→ Sδ(a(1)) γ(a(2))). Equivalently, we may
consider the pairing of two elementsa, b ∈ A: 〈I(a), b〉 = 〈J(b), a〉. (WhenA is the dual
of a quasi-triangular Hopf algebra, this pairing is〈a⊗ b, R21R12〉.) We have I = S◦J◦S
and J = S◦ I ◦ S.

We will now state an important property of the map I.A∗ res is a leftA∗ res⊗ A∗ res-
module for the law (x ⊗ y) · z = xz S(y). A is a right crossed bimodule overA for the
structures:a ·b = ab andδR : (A → A⊗A, a 7→ a(2)⊗S(a(1))a(3)), soA is a rightD(A)-
module. Let5 : (D(A) ≡ A∗ res⊗A → A∗ res⊗A∗ res, x⊗b 7→ γ(b(1))x(1)⊗δ(b(2))x(2)).

Proposition 2. In the set-up above,5 is an algebra antimorphism. Ifξ ∈ D(A) and
a ∈ A, thenI(a · ξ) = 5(ξ) · I(a).

Proof. That5 is an antimorphism is already in [R–S]. Then, as a consequence of the
Yang–Baxter equation, we may write, forx ∈ A∗ res anda ∈ A, that Sγ(a(1))〈x, a(2)〉 =
〈x(2), a(1)〉x(1)Sγ(a(2))S(x(3)). Then we compute, forξ = x ⊗ b ∈ D(A):

I(a · ξ) = 〈x, S(a(1))a(3)〉 I(a(2)b)

= γ(b(1)) 〈x, S(a(1))a(4)〉 γ(a(2)) Sδ(a(3)) Sδ(b(2))

= γ(b(1)) 〈x(1), S(a(1))〉 SγS(a(2)) 〈x(2), a(4)〉 Sδ(a(3)) Sδ(b(2))

= γ(b(1)) 〈x(2), S(a(2))〉x(1)SγS(a(1))S(x(3))〈x(5), a(3)〉x(4)Sδ(a(4))S(x(6))Sδ(b(2))

= γ(b(1)) 〈x(2), S(a(2))〉 x(1) SγS(a(1)) 〈x(3), a(3)〉 Sδ(a(4)) S(x(4)) Sδ(b(2))

= γ(b(1)) x(1) γ(a(1)) Sδ(a(2)) S(x(2)) Sδ(b(2))

= 5(ξ) · I(a). �
We single out the particular caseb = 1:

Proposition 3. We considerA andA∗ res as leftA∗ res-modules for the adjoint action:
if x, y ∈ A∗ res anda ∈ A, x · a = 〈x, S(a(1))a(3)〉a(2) andx · y = x(1)y S(x(2)). Then
I : A → A∗ res is a morphism ofA∗ res-modules.

Finally, we give the definition, originally due to Reshetikhin and Semenov-Tian-
Shansky [R–S]:

Definition 2. One says that(A, γ) is factorizable if the pairing(A × A → k, (a, b) 7→
〈I(a), b〉) is non-degenerate.

Thus (A, γ) is factorizable iff the maps I and J are injective. It is possible to show that
(A, γ) is factorizable iff (A, δ) is so.

1.4. A related construction.First, let U be a Hopf algebra. It is a left U-module for the
adjoint action:x · y = x(1)y S(x(2)). We let F̀ (U) be the sum of all finite-dimensional
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U-submodules of U. It is known [J–L1] that F`(U) is a subalgebra of U, a left coideal
in U, and a U-submodule for the left adjoint action. The multiplication in U defines a
morphism of left U-modules F̀(U) ⊗ F`(U) → F`(U). We can then do the semi-direct
product F̀(U) ⊗ U: we obtain an algebra U⊗ U denoting the ordinary tensor product
algebra, there is an algebra morphism (F`(U) ⊗ U → U ⊗ U, x ⊗ y 7→ xy(1) ⊗ y(2)). We
can make the same constructions on the right: we obtain an algebraFr(U). If the antipode
of U is invertible, the algebra morphism (U⊗Fr(U) → U⊗U, x⊗y 7→ x(1)⊗x(2)y) has
the same image as the previous one. Hence this image contains F`(U)⊗Fr(U) ⊆ U⊗U.

We take now a c.q.t. Hopf algebra (A, γ), withδ, I and J as in the preceding subsection.
Let U = (imγ)(im δ) be the minimal sub-Hopf-algebra ofA∗ res in which γ andδ take
their values. We consider onA andA∗ res theA∗ res-module structures of Proposition 3.
By restriction,A andA∗ res are U-modules, and I :A → A∗ res is a morphism of U-
modules. We can see that I takes its values in U, which is a U-submodule ofA∗ res.
Further,A is the sum of its finite-dimensional U-submodules, hence im I⊆ F`(U).

Proposition 4. Let (A, γ) be a c.q.t. factorizable Hopf algebra, andI be the associated
map. LetU be the sub-Hopf-algebra(im γ)(im δ) ⊆ A∗ res. We suppose thatim I = F`(U).
ThenI induces a bijection between:

• the set of right idealsR of A, which are subcomodules for the right coactionδR :
(A → A ⊗ A, a 7→ a(2) ⊗ S(a(1))a(3)).

• the set of two-sided idealsI of F`(U), which areU-submodules for the adjoint action.

This bijection preserves dimensions, codimensions, and the inclusion ordering in both
sets.

Proof. By assumption, I :A → F`(U) is a U-module isomorphism. We adopt the
notations of Proposition 2.A is aD(A)-module, and U⊗A is (the underlying space of)
a sub-Hopf-algebra ofD(A), so we will viewA as a right U⊗A-module: 1⊗A acts on
A by right multiplication, Uop ⊗ 1 acts onA by the left adjoint action. The injectivity
of I implies that im J⊆ U separates the points ofA: hence the sub-U⊗ A-modules of
A are the right ideals which are subcomodules for the right coactionδR.

On the other hand, we let E be the image of the morphism (F`(U)⊗U → U⊗U, x⊗
y 7→ xy(1)⊗y(2)). U is a U⊗U-module, so is an E-module, and F`(U) is a sub-E-module
of U. E contains F̀(U) ⊗ Fr(U), with S(Fr(U)) = F`(U). Therefore, the sub-E-modules
of F`(U) are the two-sided idealsI which are U-submodules for the adjoint action.

Now the proposition is a consequence of Proposition 2: writing5 as the composition
(F`(U)⊗A∗ res → A∗ res⊗A∗ res, x⊗y 7→ xy(1)⊗y(2))◦(A∗ res⊗A → F`(U)⊗A∗ res, x⊗
a 7→ I(a(1)) ⊗ δ(a(2))x), and using the assumption im I = F`(U), we can see that E is the
image of U⊗ A through5. �

2. The Case of the Quantum Coordinate Algebra

2.1. Notations.In this section, we study the preceding constructions in the case where
A is the algebraAqG of regular functions on a quantum group.

Let g be a finite-dimensional semi-simple split Lie algebra,h a splitting Cartan
subalgebra,{α1, . . . , α`} ⊆ h∗ a basis for the root system,{α∨

1 , . . . , α∨
` } ⊆ h the

inverse roots, P⊆ h∗ and Q⊆ h∗ the weight and the root lattices. The choice of an
invariant (under Weyl group action) scalar product (·|·) allows us to identifyh andh∗,
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with αi = diα
∨
i , di = (αi|αi)

2 . We choose the normalization of (·|·) so that (λ | µ) ∈ Z
wheneverλ andµ belong to P. We denote byρ half the sum of the positive roots, by P+
the set of dominant weights, and byw0 the longest element in the Weyl group.

We now choose the following version of Uqg: this is aC(q)-algebra (q is generic)
generated byEi, Fi andKλ (λ ∈ P). The relations are the usual ones among which:
KλEi = q(λ|αi)EiKλ, KλFi = q−(λ|αi)FiKλ, EiFj − FjEi = δij

Kαi
−K−αi

qdi −q−di
. The

coproduct is given by:1Kλ = Kλ⊗Kλ, 1Ei = Ei⊗1+Kαi ⊗Ei, 1Fi = 1⊗Fi +Fi⊗
K−αi . We note S the antipode of Uqg. If one chooses a dominant weightλ and a character
χ : P/2Q → C×, one knows how to construct a simple finite-dimensional Uqg-module,
in which there is a highest weight vectormλ such thatKµ ·mλ = χ(µ mod 2Q)q(µ|λ)mλ.
We note Lχ(λ) such a Uqg-module ; whenχ is the trivial character, we simply write
L(λ), and then Lχ(λ) = L(λ) ⊗ Lχ(0).

The matrix coefficients of the representation L(λ) span a linear subspace C(λ) of
the restricted dual of Uqg, and we letAqG =

⊕
λ∈P+

C(λ). This is a Hopf subalgebra of
(Uqg)∗ res. The elements ofAqG separate the points of Uqg [J–L1], so that there is an
inclusion of Uqg into the dual ofAqG, actually into the restricted dual ofAqG. We note
S the antipode ofAqG, which is the restriction toAqG of the transpose of the antipode
of Uqg.

There is anR-matrix for Uqg [Dr1, Ta, Ga]. We choose theR-matrix with the
structure

∑
(diagonal part)(monomial inF ) ⊗ (monomial inE). If a andb belong to

AqG, the number〈R12, b ⊗ a〉 ∈ C(q) is well-defined (thanks to the weight graduation
of Uqg and of any finite-dimensional Uqg-module), and we can defineγ, δ : AqG →
(AqG)∗ such that〈R12, b⊗a〉 = 〈γ(a), b〉 = 〈δ(b), S(a)〉. (AqG, γ) and (AqG, δ) are c.q.t.
Hopf algebras, im(γ) and im(δ) are the sub-Hopf-algebras U−U0 and U0U+ of Uqg ⊆
(AqG)∗ res respectively, and Uqg is the sub-Hopf-algebra (imγ)(im δ) = (im δ)(im γ) of
(AqG)∗ res.

2.2. Factorizability ofAqG. Let (AqG, γ) be the c.q.t. algebra presented above, andδ
be the associated map. For all the section, we endowAqG and Uqg with the left adjoint
action of Uqg, as in Sect. 1.4: in particular, the map I :AqG → F`(Uqg) is a morphism of
left Uqg-modules. Joseph and Letzter [J–L1, J–L2] have studied the structure of F`(Uqg),
and we need the following results:

• If λ ∈ P+,K−2λ generates a finite dimensional Uqg-submodule of Uqg, and F̀(Uqg) =⊕
λ∈P+

(Uqg · K−2λ).
• Each block Uqg ·K−2λ contains a unique one-dimensional Uqg-submodule; it defines

a unique (up to scalars) elementzλ of the center of Uqg.
• F`(Uqg) ⊆ (AqG)∗ separates the points ofAqG.

The next assertion has been stated in [R–S]:

Proposition 5. (AqG, γ) is a factorizable c.q.t. Hopf algebra, andim I = F`(Uqg).

Proof. Let λ ∈ P+, L(λ) the standard Uqg-module,mλ a highest weight vector,mw0λ a
lowest weight vector, (mi) a basis for L(λ) composed of weight vectors, (m∗

i ) the dual
basis. We have:

• The matrix elementθL(λ)(mw0λ, m∗
w0λ

) is the linear form on Uqg given by (in the
triangular decomposition U+ ⊗ U0 ⊗ U− of Uqg): EKµF 7→ ε(E)q(w0λ|µ)ε(F ).

• On this element,γ takes the valueKw0λ andδ the valueK−w0λ.
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• The image byγ (respectivelyδ) of the matrix elementθL(λ)(mi, m
∗
w0λ

) (respectively
θL(λ)(mw0λ, m∗

i )) is zero ifi 6= w0λ.

So we have:

I(θL(λ)(mw0λ, m∗
w0λ)) = γ((θL(λ)(mw0λ, m∗

w0λ))(1)) S(δ((θL(λ)(mw0λ, m∗
w0λ))(2)))

=
∑

γ(θL(λ)(mi, m
∗
w0λ

)) S(δ(θL(λ)(mw0λ, m∗
i )))

= γ(θL(λ)(mw0λ, m∗
w0λ)) S(δ(θL(λ)(mw0λ, m∗

w0λ)))

= K2w0λ.

Hence im I is a Uqg-submodule of F̀(Uqg) which contains all theK2w0λ (λ ∈ P+),
so im I = F̀ (Uqg). We now want to show that J is injective. Ifb ∈ ker J, then for
all a ∈ AqG, 〈I(a), b〉 = 〈J(b), a〉 = 0, sob is null when viewed as a linear form on
im I = F`(Uqg). Thenb = 0, because F̀(Uqg) separates the points ofAqG. Finally,
owing to the formula J = S◦ I ◦ S and to the invertibility of S, I is also injective. This
concludes the proof of the proposition. �

There is another way to present this result. Rosso [Ro1] introduced a bilinear
non-degenerate ad-invariant form on Uqg, that Caldero [Ca] writes (Uqg × Uqg →
C(q1/2), (x, y) 7→ 〈ζ(x), S−1(y)〉), whereζ : Uqg → (Uqg)∗. Rosso’s non-degeneracy
result is thatζ is injective; Caldero’s theorem states thatζ maps F̀(Uqg) ontoAqG ⊆
(Uqg)∗ res. The triangular behaviour of Rosso’s form gives us thatζ(K2w0λ) =
θL(λ)(mw0λ, m∗

w0λ
). The ad-invariance of Rosso’s form can be translated forζ: when

we restrictζ to F̀ (Uqg) andAqG, ζ is a morphism of Uqg-modules for the adjoint
structures. Now I◦ ζ : F`(Uqg) → F`(Uqg) andζ ◦ I : AqG → AqG are morphisms of
Uqg-modules and fix the respective generatorsK2w0λ andθL(λ)(mw0λ, m∗

w0λ
) of these

modules. (The fact thatθL(λ)(mw0λ, m∗
w0λ

) generates the Uqg-submodule C(λ) of AqG
is equivalent to the fact thatm∗

w0λ
⊗ mw0λ generates the Uqg-module L(λ)∗ ⊗ L(λ).)

So we conclude thatζ and I are mutually inverse isomorphisms, and that I is a bijection
between C(λ) and Uqg · K2w0λ. The analysis also shows the amusing side-result:

Proposition 6. If x ∈ F`(Uqg), y ∈ Uqg, then the Rosso form on(x, y) is given by
〈I−1(x), S−1(y)〉, whereI : (AqG → F`(Uqg), a 7→ 〈a ⊗ idUqg, R21R12〉) is related to
the universalR-matrix andS is the antipode ofUqg.

Remarks. 1. It is also possible to give an heuristic proof of this result, using the canon-
ical R-matrix for Drinfel′d’s double and using Rosso’s formula for his form [Ro2].

2. In the preceding discussion, we were lying a bit. Caldero’s mapζ does not give
exactly Rosso’s bilinear form, but our formula connecting I and Rosso’s form is
correct as stated. In our notations, Caldero’s mapζ is the inverse of the map (AqG →
F`(Uqg), a 7→ δ(a(1)) Sγ(a(2))).

Later, we will need to know the relations between the central elementszλ defined
above. To this aim, we recall Drinfel′d’s construction of the center of Uqg [Dr2]. Let
λ ∈ P+ andt ∈ AqG be the quantum trace in L(λ): for x ∈ Uqg, 〈t, x〉 = TrL(λ)(K2ρ x).
t is an invariant element for the adjoint action of Uqg in AqG, so I(t) is central, and
belongs to Uqg · K2w0λ. We choose the normalization ofz−w0λ by lettingz−w0λ = I(t).
We then have a Mackey-like theorem (which is implicit in [Dr2] and in the thesis of
Caldero, Chap. II, 1.2):

Proposition 7. Let cν
λµ be the fusion coefficients forg: L(λ) ⊗ L(µ) ' ⊕

ν cν
λµL(ν).

Thenzλzµ =
∑

ν cν
λµzν .
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Proof. Let µ ∈ P+. We compute J(θL(µ)(mµ, m∗
µ)) = K2µ (with the help of the formulas

J = S◦ I ◦ S and S(θL(µ)(mµ, m∗
µ)) = θL(−w0µ)(m−µ, m∗

−µ)). Now letλ ∈ P+ and lett
be the quantum trace in L(λ). Let 9 be the Harish-Chandra morphism from the center
of Uqg to U0 [Ro1]. We want to compute9(z−w0λ) on µ + ρ. (Evaluation onµ + ρ

means the algebra homomorphism (U0 → C(q), Kλ 7→ q(λ|µ+ρ)).) The result will be
the image ofz−w0λ by the central character of L(µ). So it is 〈I(t), θL(µ)(mµ, m∗

µ)〉 =
〈JθL(µ)(mµ, m∗

µ), t〉 = 〈K2µ, t〉 = TrL(λ)(K2µK2ρ) = TrL(λ)(K2(µ+ρ)). Thus9(z−w0λ)
equals the sum ofK2ν for ν in the set of weights (with multiplicities) of L(λ). We then
use the fact that9 is an injective algebra homomorphism. �

We denote byG the Grothendieck ring of the category of finite-dimensional
Uqg-modules whose components are modules L(λ), without any twisting character
χ : P/2Q → C×. Let Z(Uqg) be the center of Uqg, andZ[P] the group algebra of P (with
the standardZ-basis denoted by (eν)ν∈P). The map (G → AqG, [M] 7→ TrM(K2ρ )) is
a ring homomorphism. Ifa, b ∈ AqG are such that I(a) belongs to the center of Uqg, then
I(ab) = I(a) I(b). As a consequence, the map

(G → Z(Uqg), [M] 7→ I(TrM(K2ρ ))
)

is
a ring homomorphism. This shows again the statement in Proposition 7, and we can
paraphrase the above proof by saying that the following diagram is commutative:

G AqG Z(Uqg)

Z[P] U0
? ?

-

-

-I

ch 9

Here ch :G → Z[P] is the ring homomorphism which maps a module to its formal
character, and the bottom arrow is the map (Z[P] → U0, eν 7→ K2ν).

2.3. A technical result on the representation ring.We have just introduced a Grothendieck
ring G: by the classical results of Lusztig and Rosso,G is naturally isomorphic to the
representation ring ofg. The elements [L(λ)] (λ ∈ P+) form aZ-basis ofG and aQ-basis
of G ⊗Z Q.

Proposition 8. Letλ ∈ P+. Then the ideal ofR⊗Z Q generated by the elements[L(λ +
$)] ($ ∈ P+) is the whole algebraG ⊗Z Q.

The proof of this proposition can be skipped without any drawback. Before we give it,
we have to state an elementary lemma:

Lemma. Let (µ(1), . . . , µ(k)) ∈ (C`)k be such that their image in
(
C/Z

)`
are all

different, and let(P (1), . . . , P (k)) ∈ (C[X1, . . . , X`])k. If
∑

m P (m)(n1, . . . , n`)
exp(2πi

∑
j njµ

(m)
j ) = 0 holds for all (n1, . . . , n`) ∈ N`, then the polynomialsP (1),

. . . , P (k) are all equal to zero.

For ` = 1, this lemma states linear independence of elementary solutions of a linear
difference equation. The general proof is by induction on`.

Proof of Proposition 8.In this proof, we are in a classical context and we do not identify
h andh∗. Let R ⊆ h∗ and R∨ ⊆ h be the direct and inverse root systems, (α 7→ α∨) the
canonical bijection between R and R∨, and Q(R∨) ⊆ h the root lattice. P = P(R)⊆ h∗
is still the weight lattice; we denote by{α∨

1 , . . . , α∨
` } the set of inverse simple roots,
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and by{$1, . . . , $`} the set of fundamental weights. R∨ and R defineQ-structures on
h andh∗, and we can definehR andhC. The Weyl group W operates onh andh∗, and
the affine Weyl group Wa = W n Q(R∨) operates onh. Let Z[P] be theZ-algebra of
the group P,Z[P]W be the set of elements which are invariant under Weyl group action,
ch : (G ∼→Z[P]W) be the ring isomorphism “formal character”. Finally, we denote by
ε(w) = ±1 the determinant of an elementw of the Weyl group.

For µ ∈ hC, let evµ : (Z[P] → C) be the ring morphism which sends a basic
elementeν (ν ∈ P) to exp(2πi〈µ, ν〉), where exp is the complex exponential. This
extends to an algebra morphism evµ : (C[P] → C). If ν ∈ P+, let fν be the map(
hC → C, µ 7→ evµ(ch L(ν))

)
. We first assert that given any (x1, . . . , x`) ∈ C`, there

existsµ ∈ hC such that for alli ∈ {1, . . . , `}, f$i
(µ) = xi. We view C[P] as the

coordinate ring of the affine variety (C×)`, and we view an elementµ =
∑

µiα
∨
i

(µi ∈ C) as the point (e2πiµ1, . . . , e2πiµ` ) ∈ (C×)`. By the Nullstellensatz, it is sufficient
to prove that the elements (ch L($i) − xie

0) (i = 1, . . . , `) generate a proper ideal in
C[P]. This is already true inC[P]W by [Bo], Ch. VI, § 3, Th́eor̀eme 1. The case of
C[P] is given by a standard trick: let\ : (C[P] → C[P]W) be the projection onto the
trivial homogeneous component inC[P] for the action of W;\ is a morphism ofC[P]W-
modules, and thus a relation

∑
Qi · (ch L($i) −xie

0) = 1 inC[P] would give a relation∑
Q\

i · (ch L($i) − xie
0) = 1 in C[P]W, which is impossible.

We now want to prove a formula for the characterfν(µ) = evµ(ch L(ν)). We first
remark thatfν is invariant under the action of the affine Weyl group Wa in hC. If the real
part Re(µ) of µ lies in an open alcove ofhR, our formula will just be Weyl’s character
formula:

fν(µ) =

∑
w∈W ε(w) exp(2πi〈wµ, ν + ρ〉)∑

w∈W ε(w) exp(2πi〈wµ, ρ〉) .

Writing the denominator as a product over the positive roots:

exp(2πi〈µ, ρ〉) ∏
α∈R,α≥0 (1 − exp(−2πi〈µ, α〉)),

we can see that it is a non-zero complex number. In the general case, we let T ={α ∈ R |
Re(〈µ, α〉) ∈ Z}: this is a closed symmetric subset of R ([Bo], Ch. VI, § 1, Définition 4),
thus T is a root system in the vector space V1 ⊆ h∗

R that it spans ([Bo], Ch. VI, § 1,
Proposition 23). The stabilizer ofµ in Wa is generated by the reflections across the affine
hyperplanes in which Re(µ) lies ([Bo], Ch. V, § 3, Proposition 2), thus W1 := {w ∈
W | µ − wµ ∈ Q(R∨)} is precisely the subgroup generated by reflections alongα∨
(α ∈ T), and its restriction to V1 is the Weyl group of T. Letσ be half the sum of the
inverse positive roots of T:σ = 1

2

∑
α∈T,α≥0 α∨. In restriction to V1, σ is the sum of

the fundamental weights of the root system T∨ of V∗
1. Let h be a small real parameter:

Re(µ) + hσ then lies in an open alcove ofhR and we can compute (with a little abuse):

fν(µ)= lim
h→0

fν(µ + hσ)

= lim
h→0

∑
w∈W/W1

∑
w1∈W1

ε(ww1) exp(2πi〈wµ, ν + ρ〉) exp(2πih〈w1σ, w−1(ν + ρ)〉)∑
w∈W/W1

∑
w1∈W1

ε(ww1) exp(2πi〈wµ, ρ〉) exp(2πih〈w1σ, w−1ρ〉) .

In the sums, we fixw ∈ W/W1 and compute the sums onw1: in the numerator for
instance, we have an alternating sum of exp(2πih〈w1σ, w−1(ν + ρ)〉), wherew−1(ν +
ρ) ∈ P(R) has to be projected on V1, as in [Bo], Ch. VI, § 1, Proposition 28. The
formula (valid in the group algebra of the weight lattice of T∨):

∑
w1∈W1

ε(w1)ew1σ =

eσ
∏

α∈T,α≥0(1 − e−α∨
) then gives:
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fν(µ) =

∑
w∈W/W1

ε(w) exp(2πi〈wµ, ν + ρ〉) ∏
α∈T,α≥0〈α∨, w−1(ν + ρ)〉∑

w∈W/W1
ε(w) exp(2πi〈wµ, ρ〉) ∏

α∈T,α≥0〈α∨, w−1ρ〉 .

As ν + ρ andρ are regular, neither of the products occurring here can be zero. (We will
see soon that the denominator cannot be zero.)

We now prove that the ideal ofG⊗ZC generated by the elements [L(λ+$)] ($ ∈ P+)
is the whole algebraG⊗Z C. We consider again [Bo], Ch. VI, § 3, Théor̀eme 1: this time,
the isomorphismϕ : C[X1, . . . , X`] → C[P]W is given byϕ(Xi) = ch L($i ). Compos-
ing with the isomorphism ch :G → Z[P]W, we can see thatG⊗Z C is a polynomial alge-
bra overC. We suppose by the way of contradiction that the elements [L(λ+$)] ($ ∈ P+)
all belong to some maximal ideal ofG ⊗Z C. Then, by the Nullstellensatz, there exists
a point (x1, . . . , x`) ∈ C` such that for all$ ∈ P+, ϕ−1(ch L(λ + $))(x1, . . . , x`) = 0.
We can findµ ∈ hC such thatf$i

(µ) = xi (i = 1, . . . , `): thenfλ+$(µ) = 0 for all
$ ∈ P+. We next use the formula:

fλ+$(µ) (denominator)

=
∑

w∈W/W1

ε(w) exp(2πi〈wµ, λ + $ + ρ〉)
∏

α∈T,α≥0

〈α∨, w−1(λ + $ + ρ)〉,

and write$ =
∑

ni$i, where (ni) ∈ N` are any integers. Thewµ (w ∈ W/W1) are all
distinct modulo Q(R∨), and the expressions

∏
α∈T,α≥0〈α∨, w−1(λ + $ + ρ)〉 are non-

zero polynomials in (n1, . . . , n`) (they never vanish indeed). Then the above lemma
states that the right-hand side cannot vanish for all (ni) ∈ N`. This proves first that the
denominator is not null, and second thatfλ+

∑
ni$i

(µ) cannot vanish for all (ni) ∈ N`.

We have reached a contradiction.
To go down to the case ofG ⊗Z Q is then easy: we have shown that we can express in

G ⊗Z C the unity as a finite sum 1 =
∑

xi[L(τi )][L( νi )], whereτi ∈ P+, νi ∈ λ + P+ and
xi ∈ C. As the structure constants ofG ⊗Z C are integer-valued, this system, viewed as
linear equations in (xi), has a solution inC, so has a solution inQ. �

2.4. Classification of some ideals ofF`(Uqg). In order to achieve our classification of
idealsR ⊆ AqG in the next section, we must study the idealsI ⊆ F`(Uqg) which are
stable by the adjoint action of Uqg. The analysis requires the use of the subalgebra V of
Uqg generated by F̀(Uqg) and by the elementsK2λ (λ ∈ P+).

Joseph and Letzter [J–L1] have shown that V is the subalgebra generated by the
elementsEi, FiKαi

andK2λ (λ ∈ P). As it is such a “big” subalgebra of Uqg, its
representation theory is similar to that of Uqg. We will describe it in the next subsection,
but in the following proof, we need to know that the annihilator of a finite-dimensional
V-module is homogeneous with respect to the Q-graduation of V.

Proposition 9. The following two properties for a subspaceI ⊆ F`(Uqg) are equiva-
lent:

(1) I is the annihilator inF`(Uqg) of a finite-dimensionalV-module;

(2) I is a finite-codimensional two-sided ideal ofF`(Uqg) and a Uqg-submodule of
F`(Uqg) for the left adjoint action.

Proof. We first show that (1)⇒ (2). If M is a finite-dimensional V-module, its anni-
hilator in V is a finite-codimensional two-sided ideal of V, and is homogeneous w.r.t.
the Q-graduation of V. It is then easy to see that annV M is a Uqg-submodule of V for
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the left adjoint action. The annihilatorI = (annV M) ∩ F`(Uqg) of M in F`(Uqg) thus
satisfies the property (2).

Conversely, letI ⊆ F`(Uqg), satisfying the property (2). We consider the left regular
F`(Uqg)-module M =F`(Uqg)/I. I is its annihilator, so it is sufficient to show that M
extends to a V-module. We thus want to show that the elementsK−2λ ∈ F`(Uqg)
(λ ∈ P+) map to invertible operators in End(M).

1) M is a finite-dimensional algebra, and is also a left Uqg-module (for the adjoint
action). The multiplication in M defines a morphism of left Uqg-modules: M⊗M →
M. Thus the Q-graduation of M (defined by the structure of Uqg-module) is an algebra
grading.

2) We fixλ ∈ P+. We can write M = M0⊕M∞ (asC(q)-vector space), whereK−2λ acts
nilpotently on M0 and inversibly on M∞ (Fitting’s decomposition). M0 and M∞ are
stable by the commutant ofK−2λ in End(M), so are right ideals of M. Ifx ∈ F`(Uqg)
is homogeneous w.r.t. the Q-graduation of F`(Uqg), x commutes (up to a non-zero
scalar) withK−2λ, so M0 and M∞ are stable by left multiplication byx. Thus M0
and M∞ are also left ideals of M.

3) We now show that M0 and M∞ are Uqg-submodules of M.
(a) Let{e1, . . . , ek}be the set of central idempotents in M. The elementsKµ (µ ∈ P)

of Uqg act on M (by the adjoint action) as algebra automorphisms, so permute
the elements of the set{e1, . . . , ek}. Hence for eachµ, there exists an integer
n ≥ 1 such thatKnµ fixes eachei. Since M is, as a Uqg-module, a direct sum
of modules L(ν) (without any twisting characterχ), and sinceq is generic, we
conclude thate1, . . . , ek are fixed by the adjoint action of the elementsKµ.

(b) Let e be a central idempotent in M.e is of weight zero. We consider theq-
exponential expq(adEi) =

∑
n≥0 q−din(n−1)/2 adEn

i

[n]i! (i ∈ {1, . . . , `} fixed).
Then expq(adEi) is a well defined operator in M. The formula1(En

i ) =∑n
k=0

[
n
k

]
i
qdi(n−k)kEn−k

i Kk
αi

⊗ Ek
i enables us to see that expq(adEi)(e) is

an idempotent which we writee + x. Then 2ex + x2 = x, x(1 − 2e) = x2,
x = x(1 − 2e)2 = x3. The weights of the Q-homogeneous components ofx
belong to{nαi | n ≥ 1}; so the weights of the Q-homogeneous components
of x3 belong to{nαi | n ≥ 3}, and the homogeneous component ofx of
weightαi is null. We obtain that (adEi)(e) = 0. Similarly, (adFi)(e) = 0 for all
i ∈ {1, . . . , `}.

(c) M0 and M∞ are ideals in M generated by central idempotentse0 ande∞ respec-
tively. (a) and (b) show thate0 ande∞ define the trivial Uqg-module. Hence for
x ∈ M0 andu ∈ Uqg, u ·x = u · (xe0) = (u(1) ·x)(u(2) · e0) = (u(1) ·x)ε(u(2))e0 =
(u · x)e0 ∈ M0. The same holds for M∞.

4) We first consider the caseg = sl2. We choose naturallyλ = $ the fundamental
weight, and write M0 = L0/I and M∞ = L∞/I. The points 2) and 3) show thatL0
andL∞ are two-sided ideals and left Uqg-submodules of F̀(Uqg). By definition of
the Fitting decomposition, there exists an integern ≥ 0 such thatK−2n$ ∈ L∞.
Hence for all integersm ≥ n, we haveK−2m$ ∈ L∞, and thuszm$ ∈ L∞. Let
n0 ≥ 0 be the smallest integer such that for allm ≥ n0, zm$ ∈ L∞. Proposition 7
and the Clebsch–Gordan theorem show that ifn ≥ 1, z(n+1)$ + z(n−1)$ = z$zn$.
Thusn0 has to be equal to zero. So 1 =z0 ∈ L∞, M∞ = M, andK−2$ acts inversibly
on M.



82 P. Baumann, F. Schmitt

5) The general case is solved in the same way. We consider the decomposition of the
point 2) and write M0 = L0/I and M∞ = L∞/I. L0 andL∞ are two-sided ideals
and left Uqg-submodules of F̀(Uqg), and there exists an integern ≥ 0 such that
K−2nλ ∈ L∞. If $ ∈ P+, thenK−2(nλ+$) ∈ L∞, and thusznλ+$ ∈ L∞. Let ϕ be
the Q-algebra morphism

(G ⊗Z Q → Z(Uqg), [M] 7→ I(TrM(K2ρ ))
)

considered
at the end of Sect. 2.2. Thenϕ−1(L∞) is an ideal ofG ⊗Z Q, which contains all the
elements [L(−w0nλ + $)] ($ ∈ P+). Thusϕ−1(L∞) = G ⊗Z Q by Proposition 8,
and so 1 =ϕ([L(0)]) ∈ L∞, M∞ = M, andK−2λ acts inversibly on M. �

Remark.This result is a particular case of Proposition 8.4.13 in [Jo]. Accordingly, its
proof is shorter than the one of Joseph’s theorem, and does not require the knowledge
of the inclusions between Verma modules, nor the use of Gel′fand–Kirillov dimensions.

2.5. Classification of some right ideals ofAqG. The notationsAqG, Uqg, V have the
same meaning as in Sects. 2.1 and 2.4. The map I : (AqG

∼→ F`(Uqg)) was introduced in
Sect. 1.3.

We now specify the structure of the finite-dimensional V-modules: they are com-
pletely reducible; each Uqg-module Lχ(λ) (with λ ∈ P+, χ : P/2Q → C×) is (by
restriction) a simple V-module; the V-modules Lχ(λ) and Lϕ(µ) are isomorphic iff
λ = µ and the charactersχ, ϕ restrict to the same character2P/2Q → C×. The
simple finite-dimensional V-modules will be denoted by Lχ(λ) with λ ∈ P+ and
χ : 2P/2Q → C× a character. We finally remark (see [J–L1]) that a simple finite-
dimensional V-module is still simple as a F`(Uqg)-module. Consequently, if (Mi) is a
finite family of non-isomorphic finite-dimensional simple V-modules, the natural ring
homomorphism F̀(Uqg) → ⊕

End Mi is surjective.

Theorem 1. 1) Let R be a finite codimensional right ideal ofAqG, which is a sub-
comodule ofAqG w.r.t. the right coactionδR : (AqG → AqG ⊗ AqG, a 7→
a(2) ⊗ S(a(1))a(3)). Then there exists a finite-dimensionalV-moduleM such that
R = I−1(annF`(Uqg) M).

2) If M is a finite-dimensionalV-module, thenI−1(annF`(Uqg) M) is a finite codimen-
sional right ideal ofAqG, stable by the right coactionδR.

3) If M and N are finite dimensionalV-modules, thenI−1(annF`(Uqg) M) =
I−1(annF`(Uqg) N) iff M andN have the same irreducible components.

4) I−1(annF`(Uqg) M) is included in the augmentation ideal ofAqG iff M contains the
trivial V-module.

Proof. 1) and 2) are consequences of Propositions 4 and 9. Let M and N be two finite-
dimensional V-modules having the same annihilator in F`(Uqg). Then annF`(Uqg) M =
annF`(Uqg)(M ⊕ N). Let M1, . . . , Mk (respectively M1, . . . , Mn) be the distinct irre-
ducible components of M (respectively M⊕ N). Then we have:

F`(Uqg)/annF`(Uqg)(M) ' ⊕k
i=1 End Mi

and:
F`(Uqg)/annF`(Uqg)(M ⊕ N) ' ⊕n

i=1 End Mi,

and sok = n: all the irreducible components of N appear in M. 3) follows. 4) can be
proved in a similar way, using the fact that the augmentation ideal ofAqG is the inverse
image by I of the annihilator of the trivial V-module. �
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3. Differential Calculi on Quantum Groups

3.1. Woronowicz’s definition.Let A be a Hopf algebra,0 be a bicovariant bimodule
and d :A → 0 be a linear map. We say that (0, d) is a bicovariant differential calculus
on A if d is a derivation, a morphism of two-sided comodules and if the image of d
generates the leftA-module0. The dimension of the space0L of left coinvariants will
be supposed to be finite.

When (0, d) is a differential calculus overA, we note dL the map (A → 0L , a 7→
S(a(1)) ·d(a(2))). The subspaceR = ker dL ∩kerε is a finite-codimensional right ideal of
A, and a subcomodule for the right coadjoint coactionδR : (a 7→ a(2) ⊗ S(a(1))a(3)). As
shown by Woronowicz, the subspaceR determines (up to isomorphism) the bicovariant
differential calculus (0, d): we call it the ideal associated to (0, d).

Geometrically,A must be viewed as the algebra of functions over a group G,0 is
the space of 1-forms on G,0L is the space of left-G-invariant 1-forms on G, identified
with the cotangent space at the unity point of G, and dL maps a function on G to its
differential at the unity point.

3.2. A construction of bicovariant differential calculi.Let A be a c.q.t. Hopf algebra
over the fieldk, and letγ, δ be the associated maps.

We take a finite-dimensional rightA-comodule M. We note (mi) a basis of M,
(m∗

i ) the dual basis, andRij the elements ofA such thatδR(mi) =
∑

j mj ⊗ Rji.
Then1Rji =

∑
k Rjk ⊗ Rki andε(Rji) = δji (Kronecker’s symbol). Also, M is a

left A∗-module, and theRji (viewed as linear forms onA∗) are the matrix coefficients
θM(mi, m

∗
j ) of this module.

Since (A, γ) is c.q.t., M becomes a right crossed bimodule overA for the action
mi · a =

∑
j 〈γ(a), Rji〉mj (Proposition 1). M∗ is a right comodule overA too, for the

coactionδR(m∗
i ) =

∑
j m∗

j ⊗ S(Rij). Using the fact that (A, δ) is a c.q.t. Hopf algebra,
we may endow M∗ with the structure of a right crossed bimodule overA for the action
m∗

i · a =
∑

j 〈δ(a), S(Rij)〉m∗
j . Then, by making the tensor product, we obtain that

End(M) ' M ⊗ M∗ is a right crossed bimodule.
We denote by0 the bicovariant bimodule associated to this right crossed bimodule

End(M). As a vector space,0 is just the tensor productA ⊗ M ⊗ M∗. On the basic
elements, the structure maps are:

b · (a ⊗ mi ⊗ m∗
j ) = ba ⊗ mi ⊗ m∗

j ,

(a ⊗ mi ⊗ m∗
j ) · b =

∑
k,l ab(1) ⊗ 〈γ(b(2)), Rki〉mk ⊗ 〈δ(b(3)), S(Rj`)〉m∗

` ,

δL(a ⊗ mi ⊗ m∗
j ) = a(1) ⊗ a(2) ⊗ mi ⊗ m∗

j ,

δR(a ⊗ mi ⊗ m∗
j ) =

∑
k,l a(1) ⊗ mk ⊗ m∗

` ⊗ a(2)RkiS(Rj`).

It follows that the canonical elementX =
∑

i 1 ⊗ mi ⊗ m∗
i of 0 is left and right

coinvariant. The linear map d : (A → 0, a 7→ X · a − a · X) is then a derivation and a
morphism of two-sided comodules.

Theorem 2. 1) If (A, γ) is a factorizable c.q.t. Hopf algebra and ifM is a simple finite-
dimensional non-trivialA-comodule, then the above construction gives a bicovariant
differential calculusd : (A → 0 ≡ A ⊗ End(M)).

2) Its associated ideal isR = I−1(annA∗ (k ⊕ M)), wherek is the trivialA∗-module.
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Proof. We first compute fora ∈ A:

d(a) =
∑

k,l a(1)〈I(a(2)), Rk`〉 ⊗ mk ⊗ m∗
` − a(1)〈a(2), δk`〉 ⊗ mk ⊗ m∗

`

=
∑

k,l a(1)〈I(a(2)), Rk` − δk`〉 ⊗ mk ⊗ m∗
` ,

and so:

dL(a) =
∑

k,l 〈I(a − ε(a)), Rk`〉mk ⊗ m∗
`

=
∑

k,l 〈J(Rk` − δk`), a〉mk ⊗ m∗
` .

TheRji are the matrix coefficientsθM(mi, m
∗
j ) of theA∗-module M, which is irreducible

and non-trivial. Thus, by the Jacobson density theorem, the (dim M)2 + 1 elements
{1, Rji} are linearly independent inA. The (dim M)2 linear forms{J(Rk` − δk`)} are
then linearly independent inA∗, and the formula for dL(a) shows that dL mapsA onto
0L = End(M). 1) is proved. The same formula shows thatR is the set of elementsa in
the augmentation ideal ofA such that I(a) is orthogonal to all the matrix coefficients
Rk` of theA∗-module M. ThusR = kerε ∩ I−1(annA∗ M) = I−1(annA∗ (k ⊕ M)). We
have shown 2). �

If we consider now a finite family (Mi) of non-trivial non-isomorphic finite-
dimensional simple rightA-comodules, we can do the direct sum of such constructions.
If (A, γ) is factorizable, then the map d : (A → ⊕

(A ⊗ End Mi)) is a bicovariant
differential calculus. The associated ideal is I−1(annA∗ (k ⊕ ⊕

Mi)).

3.3. The link with the classification theorem.We are now gathering the pieces of our
patchwork. According to the statements in Sect. 3.1, Theorem 1 yields a complete
classification of bicovariant differential calculi onAqG. Morally, they are all given by
the construction described in Sect. 3.2.

Proposition 10. Let Uqg andAqG be the objects defined in Sect. 2.1. If the root and
the weight lattices forg are equal, all the bicovariant differential calculi onAqG can
be constructed by the method described in Sect. 3.2.

Proof. The results in Sect. 2.5 tell us that an idealR associated to a bicovariant dif-
ferential calculus onAqG is a subspace I−1(annF`(Uqg) M), where M is a V-module
containing the trivial V-module. Let M1, . . . , Mn be the distinct non-trivial irreducible
components of M. The assumption ong gives us that the Mi are modules L(λi) (without
any twisting character), and so can be considered as non-trivial non-isomorphic simple
right AqG-comodules. The construction of Sect. 3.2 for this family of comodules leads
to a bicovariant differential calculus whose associated ideal is the inverse image by I
of the annihilator of the (AqG)∗-moduleC(q) ⊕ ⊕

Mi. It is R, and the proposition is
proved. �

In the remainder of this section, we will discuss what happens when the root and
the weight lattices differ. Up to the end of this article, we consider this case. There exist
non-trivial charactersχ : 2P/2Q → C×, and for any weightλ, we can look at the
idealR = I−1(annF`(Uqg)(C(q) ⊕ Lχ(λ))), and at the associated bicovariant differential
calculus. It cannot be constructed by the method of Theorem 2, since Lχ(λ) is not a
right AqG-comodule. However, one may notice that the main trick in the construction
of Sect. 3.2 consisted in using two differentR-matrices, namelyR12 andR−1

21 . R12 was
used to endow theAqG-comodule L(λ) with the structure of a right crossed bimodule
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overAqG, andR−1
21 turned theAqG-comodule L(λ)∗ into a right crossed bimodule over

AqG. The tensor product of these right crossed bimodules then gave the bicovariant
differential calculus associated to I−1(annF`(Uqg)(C(q) ⊕ L(λ))). When one uses the
small freedom allowed in the choice of theR-matrix of Uqg (see [Ga]), one can make
similar constructions for the bicovariant differential calculi associated with some of the
ideals I−1(annF`(Uqg)(C(q) ⊕ Lχ(λ))). We will not write all the details, but point out that
this is the way followed by Schm̈udgen and Scḧuler for the construction described in
[S–S1], Theorem 2.2.

As an example, we now describe explicitly the bicovariant differential calculus as-
sociated with the ideal I−1(annF`(Uqg)(C(q) ⊕ Lχ(0))). Let

(
P/Q

)∧
be the group of

charactersζ : P/Q → C×. If ζ is such a character, it extends to a one-dimensional rep-
resentation̄ζ of AqG by lettingζ̄(θL(λ)(m, m∗)) = ζ(λ mod Q)〈m∗, m〉, and this gives
an inclusion of the group

(
P/Q

)∧
into the center of (AqG)∗ res. Since (̄ζ ⊗ id) ◦ δR :

AqG → C(q) ⊗ AqG is given by (x 7→ ζ̄(x) ⊗ 1), we can see that the kernel ofζ̄
is a one-codimensional two-sided ideal ofAqG, stable by the right coactionδR. If ζ
is not trivial, the idealR = kerε ∩ ker ζ̄ defines a bicovariant differential calculus
on AqG. Puttingχ :

(
2P/2Q → C×, 2λ mod 2Q 7→ ζ(λ mod Q)

)
, we can check that

R = I−1(annF`(Uqg)(C(q) ⊕ Lχ(0))). This construction gives all the one-dimensional
differential calculi onAqG (generalizing the result of [S–S1], Remark 4 after Theo-
rem 2.2).

Finally, let X be an intermediate lattice between P and Q. The matrix coefficients
of the irreducible representations of Uqg whose highest weights belong to X span a
subalgebraAqGX ⊆ AqG. These algebrasAqGX are factorizable c.q.t. Hopf algebras.
For instance,AqGQ is the algebra of functions on the quantum adjoint group, andAqG ≡
AqGP is the algebra of functions on the quantum simply-connected group. Our arguments
in Sect. 2.5 show that the indecomposable bicovariant differential calculi onAqGX are
classified by idealsR = AqGX ∩ I−1(annF`(Uqg)(C(q) ⊕ Lχ(λ))), whereχ : 2X/2Q →
C× is a character (extended arbitrarily to a character of the group2P/2Q). Thus the
“twisted” bicovariant differential calculi are non-local, their appearance depending of
the choice of X. The bicovariant differential calculi seem localized at the central elements
of GX, that is to say, at the fixed points of GX under the adjoint action.
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la Recherche pour son soutien financier (allocations de recherche). They also warmly and sincerely thank
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Note added in proof.P. Polo kindly communicated us the following simple proof of
Proposition 8. By the formal character isomorphism,G ' Z[P]. LetZ[P]W ⊆ Z[P] be the
subring of W-invariant elements.Z[P] is a module of finite type over the noetherian ring
Z[P]W, hence we can choose a finite generating set (eνi )1≤i≤n from the family (eν)ν∈P.
Take a weightµ such that allµ + νi are dominant. Letλ =∈ P+. Then there exists some
ai ∈ Z[P]W such thate−λ−µ =

∑
i aie

νi , hence 1=
∑

i aie
λ+µ+νi . Multiplying this by

eρ and making the alternating sum over the Weyl group, one abtains that:

ch L(0) =
∑

i ai ch L(λ + µ + νi).

This concludes the proof. Thanks are also due to A. Joseph for some useful comments
about this work.
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