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Abstract: The method of squared eigenfunction potentials (SEP) is developed system-
atically to describe and gain new information about the Kadomtsev–Petviashvili (KP)
hierarchy and its reductions. Interrelation to theτ -function method is discussed in de-
tail. The principal result, which forms the basis of our SEP method, is the proof that any
eigenfunction of the general KP hierarchy can be represented as a spectral integral over
the Baker–Akhiezer (BA) wave function with a spectral density expressed in terms of
SEP. In fact, the spectral representations of the (adjoint) BA functions can, in turn, be
considered as defining equations for the KP hierarchy. The SEP method is subsequently
used to show how the reduction of the full KP hierarchy to the constrained KP (cKPr,m )
hierarchies can be given entirely in terms of linear constraint equations on the pertinent
τ -functions. The concept of SEP turns out to be crucial in providing a description of
cKPr,m hierarchies in the language of the universal Sato Grassmannian and finding the
non-isospectral Virasoro symmetry generators acting on the underlyingτ -functions. The
SEP method is used to write downgeneralized binaryDarboux-B̈acklund transforma-
tions for constrained KP hierarchies whose orbits are shown to correspond to a new Toda
model on asquarelattice. As a result, we obtain a series of new determinant solutions
for theτ -functions generalizing the known Wronskian (multi-soliton) solutions. Finally,
applications to random matrix models in condensed matter physics are briefly discussed.

1. Introduction

The primary object of this paper is the Kadomtsev–Petviashvili (KP) integrable hierar-
chy (for comprehensive reviews, seee.g.[1, 2]) and its nontrivial reductions generalizing
the familiarr-reduction to theSL(r) Korteweg-de Vries (KdV) hierarchy. The KP hier-
archy is an infinite-dimensional system which admits different alternative formulations
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and exhibits many types of symmetries. Here we are interested in a formulation based
on the notion ofsquared eigenfunction potentialand the spectral representations of the
underlying eigenfunctions it gives rise to. Because of its connection to vertex operators,
many aspects of this theory are algebraic in nature. This allows us to discuss in a sys-
tematic manner various symmetries of the hierarchy and applications to a large class of
soliton systems obtained from it via symmetry reduction.

The KP hierarchy arises as a set of compatibility conditions for the linear spectral
problem involving the pseudo-differential Lax operatorL and the Baker–Akhiezer (BA)
wave functionψBA(t, λ). In recent years, the study of integrable systems of KP type has
undergone rapid growth due to the applications of the tau-function technique invented
by the Kyoto School [3, 4, 5]. The underlying principle of this method is to represent
the relevant soliton potentials and Hamiltonian densities in terms of isospectral flows
(with evolution parameters (t) ≡ (t1 ≡ x, t2, . . .)) of one single functionτ (t) in such
a way that∂2 ln τ (t)/∂t1∂tn becomes equal to the coefficient in front ofD−1 in the
pseudo-differential operator expansion ofLn.

In terms of theτ -function, viewed as a function of the infinitely many KP “time”-
variables(t1 ≡ x, t2, . . .), the whole KP hierarchy is contained in Hirota’s fundamen-
tal bilinear identity [5] instead of the infinite system of non-linear partial differential
equations derived from the Sato-Wilson Lax operator approach. Theτ -function ap-
proach bridges the way to several physical applications in view of its direct connec-
tion to physical objects, such as correlation and partition functions. Moreover, it al-
lows a coherent treatment of multi-soliton solutions. These solutions of the nonlinear
differential equations are generated by the action of the Miwa-Jimbo vertex opera-
tor X̂ (λ, µ) [4] (cf. Eq. (3.1) below) on theτ -function. This vertex operator gener-
ates an infinitesimal B̈acklund transformation of the KP hierarchy. The family of all
vertex operators constitutes a Lie algebra isomorphic toGL(∞). The transformation
τ (t) → (exp(aX̂ (λ, µ)))τ (t) sends a solution of the KP hierarchy into another solution.
In this way, the action of the infinite-dimensional Lie algebraGL(∞) on the solution
space of the KP equation is made explicit via the Bäcklund transformation of “adding
one soliton".

This powerful formal machinery embeds many other concrete and useful structures
relevant for physical models. Recently a special class of solutions encountered in the
matrix models of discrete two-dimensional gravity was realized via the imposition of
the Virasoro type of constraints on the underlyingτ -function [6, 7] (see also [8]).

A remarkable feature of the KP hierarchy is the existence of the so called additional
non-isospectral symmetries which, within the Lax operator formalism, are generated
by Orlov-Schulman pseudo-differential operators [9]. The latter are defined as purely
pseudo-differential parts of products of powers of the Lax operatorL and its “conjugate”
M-operator (cf. Eqs. (5.1),(5.2) below) and their respective flows form the infinite-
dimensional Lie algebraW1+∞1. In an important recent development Adler, Shiota, and
van Moerbeke [14, 15] (see also [16, 17]) obtained a formula for the KP hierarchy which
relates the action of the vertex operatorX̂ (λ, µ) on theτ -function to Orlov-Schulman
non-isospectral additional symmetry flows on the BA wave function. The coefficients
in the spectral expansion of̂X (λ, µ) act as vector fields on the space ofτ -functions

1 W1+∞ algebra was originally introduced in physics literature [11] as a nontrivial “largeN ” limit of
the associative, butnon-Lie, conformal WN algebra [12]. It turns out to be isomorphic to the (centrally
extended) algebra of differential operators on the circle [13],i.e., the Lie algebra generated byzk(∂/∂z)n for
k ∈ Z , n ≥ 0. Let us also recall that the “semiclassical” limit (contraction)w1+∞ of W1+∞ is the algebra
of area-preserving diffeomorphisms on the cylinder [11].
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generatingW1+∞ algebra as well. Hence, the above result relates theW1+∞ algebra
acting onτ (t) to the centerlessW1+∞ algebra of non-isospectral symmetry flows acting
on the BA functionψBA(t, λ).

There exists an alternative to theτ -function method characterization of the KP
hierarchy evolution equations in terms of (adjoint) eigenfunctions,i.e., functions whose
KP multi-time flows are governed by an infinite set of purely differential operators
{Bk}∞

k=1 (cf. Def.2.1 below). The latter, by virtue of compatibility of the multi-time
flows, have to satisfy the so called “zero-curvature” Zakharov–Shabat equations (cf.
Eq. 3.44 below). One can then show [18] that allBk are obtained as purely differential
projections ofkth powers of a single pseudo-differential operatorL, thus leading to the
standard Lax formulation of the KP hierarchy.

Overcoming the formal obstacle of having to define a function via an inverse deriva-
tive ∂−1

x Oevel succeeded in [19] to associate a well-defined (up to a constant) function
– the squared eigenfunction potential (SEP), to a pair of arbitrary eigenfunction and
adjoint eigenfunction such that thex-derivative of SEP coincides with the product of
the latter eigenfunctions. Consequently, a systematic formalism emerged in [19] for the
study of symmetries generated within the KP hierarchy via SEP [20]. In a particular ex-
ample, when both eigenfunctions defining the SEP are BA functions, the SEP becomes
a generating function for the above mentioned additional non-isospectral symmetries of
the KP hierarchy [9, 10, 14, 15, 16, 17].

In the SEP framework, the product of any pair of eigenfunction and adjoint eigen-
function, being ax-derivative of SEP, can be viewed as a conserved density within the
hierarchy. The transition to the important class of constrained KP hierarchiescKPr,m

2,
which are Hamiltonian reductions of the general KP hierarchy and whose Lax operators
are given in Eq. (2.20) below, can be effectuated by imposing equality between a linear
combination ofm (m ≥ 1) conserved densities of the above mentioned type and the
rth (r ≥ 1) fundamental Hamiltonian density of the KP hierarchy. In such a case, the
symmetry generated by SEP (called “ghost” flow) is identified with therth isospectral
flow of the original KP hierarchy.

The principal merit of our work is to reformulate the eigenfunction formalism of the
KP hierarchy in a new form called thesquared eigenfunction potential (SEP) method,
namely, to employ SEP as a basic building block in defining the KP hierarchy. The main
ingredient of the SEP method is the proof of existence of spectral representation for any
eigenfunction involving SEP as an integration kernel (spectral density). A link is then
provided between the two alternative formulations of the KP hierarchy: one based on the
τ -function and another one based on the SEP method. Furthermore, we apply the SEP
method to solve various issues in integrable models of KP type and their applications in
physics, among them, deriving new determinant solutions for theτ -function containing
the familiar Wronskian (multi-soliton) solutions as simple particular cases, as well as
identifying them as possible novel types of joint distribution functions in random matrix
models of condensed matter physics.

The plan of the paper is as follows. After reviewing the background material in
Sect. 2, we first prove in Sect. 3 that any eigenfunction of the general KP hierarchy
can be represented as a spectral integral over the BA wave function with a spectral

2 ThecKPr,m integrable hierarchies appeared in different disguises from various parallel developments:
(a) symmetry reductions [23, 19, 24] of the fullKP hierarchy; (b) abelianization,i.e., free-field realizations,
in terms of finite number of fields, of both compatible first and secondKP Hamiltonian structures [25, 26];
(c) a method of extracting continuum integrable hierarchies from the generalized Toda-like lattice hierarchies
[27] underlying (multi-)matrix models; (d) purely algebraic approach in terms of the zero-curvature equations
for the affine Kac-Moody algebras with non-standard gradations [28].
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density expressed in terms of SEP. When (at least one) of the eigenfunctions is a BA
functions, we obtain a closed expression for the SEP. When both of the eigenfunctions are
BA functions, the resulting SEP’s are connected straightforwardly to the bilocal vertex
operatorX̂ (λ, µ) acting on theτ -function. This association leads to a simple alternative
proof for the Adler, Shiota, and van Moerbeke result [14, 15, 16, 17] mentioned above.

A further important observation in Sect. 3 is that the spectral representation equa-
tions for the (adjoint) BA functions themselves can be considered as defining equations
for the KP hierarchy. In other words, our formalism of spectral representations of KP
eigenfunctions can be viewed as an equivalent alternative characterization of the KP
hierarchy parallel to Hirota’s bilinear identity or Fay’s trisecant identity [14].

Our results in the constrainedcKPr,m hierarchy case are as follows. In Sect. 4, using
the SEP framework we obtain an equivalent description (parallel to the one within the
Lax pseudo-differential operator approach) ofcKPr,m hierarchies entirely in terms of
τ -functions only. Namely, we first derive a linear equation for theτ -function (Eq. (4.9)
below), involving the bilocal vertex operator̂X (λ, µ) and a set of spectral densities,
which uniquely constrains theτ -function to belong to thecKPr,m hierarchy. Further-
more, we provide in Sect. 4 an alternative description ofcKPr,m hierarchies in the
language of the universal Sato Grassmannian.

One of the advantages of the SEP approach lies in the fact that it allows for a coherent
treatment of the non-isospectral symmetries for KP-type hierarchies. We use this feature
in Sect. 5 to demonstrate how the combination of the familiar Orlov-Schulman non-
isospectral symmetry flows, operating in the full unconstrained KP hierarchy, together
with certain appropriately chosen additional SEP-generated “ghost” symmetry flows
[29, 8] gives rise to the correct non-isospectral Virasoro symmetry generators acting on
the space ofcKPr,m τ -functions3.

The SEP method is applied further in Sect. 6 to formulategeneralized multi-step
binary Darboux-B̈acklund (DB) transformation rules of (constrained) KP hierarchies
(one-step binary DB transformations with SEP have been introduced previously in
ref.[30]). Based on these transformation rules and using the fundamental Fay identi-
ties, we derive a series of new determinant solutions for theτ -functions generalizing
the known Wronskian (multi-soliton) solutions. The binary DB orbits define a discrete
symmetry structure forcKPr,m hierarchies corresponding to a square lattice. We exhibit
the equivalence of these binary DB orbits with a generalized Toda model on asquare
lattice.

Our formalism offers applications to the study of random matrix models in con-
densed matter physics, which we briefly discuss in Sect. 7, where we also present some
discussion of the results and an outlook.

2. Background on General and Constrained KP Hierarchies

The calculus of the pseudo-differential operators (see e.g. [3, 2]) is one of the principal
approaches to describe the KP hierarchy of integrable nonlinear evolution equations. In
what follows the operatorD is such that[D , f ] = ∂f = ∂f/∂x and the generalized
Leibniz rule holds:

Dnf =
∞∑
j=0

(
n

j

)
(∂jf )Dn−j , n ∈ Z. (2.1)

3 The standard Orlov-Schulman non-isospectral symmetry flows donot preserve the constrained form
(2.20) ofcKPr,m hierarchy.
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In order to avoid confusion we shall employ the following notations: for any
(pseudo-) differential operatorA and a functionf , the symbolA(f ) will indicate appli-
cation (action) ofA onf , whereas the symbolAf will denote just the operator product
of A with the zero-order (multiplication) operatorf .

In this approach the main object is the pseudo-differentialLaxoperator:

L = Dr +
r−2∑
j=0

vjD
j +

∞∑
i=1

uiD
−i. (2.2)

The Lax equations of motion:

∂L

∂tn
= [Ln/r

+ , L] , n = 1, 2, . . . (2.3)

describe isospectral deformations ofL. In (2.3) and in what follows the subscripts
(±) of any pseudo-differential operatorA =

∑
j ajD

j denote its purely differential
part (A+ =

∑
j≥0 ajD

j) or its purely pseudo-differential part (A− =
∑

j≥1 a−jD
−j),

respectively. Further, (t) ≡ (t1 ≡ x, t2, . . .) collectively denotes the infinite set of
evolution parameters (KP “multi-time”) from (2.3).

The Lax operator (2.2) can be represented equivalently in terms of the so called
dressingoperatorW :

W = 1 +
∞∑
n=1

wnD
−n; L = WDr W−1 (2.4)

whereupon the Lax Eqs. (2.3) become equivalent to the so-called Wilson-Sato equations:

∂W

∂tn
= Ln/r

+ W −WDn = −Ln/r
− W. (2.5)

A further important object is the Baker–Akhiezer (BA) “wave” function defined via:

ψBA(t, λ) = W
(
eξ(t,λ)

)
= w(t, λ)eξ(t,λ); w(t, λ) = 1 +

∞∑
i=1

wi(t)λ
−i, (2.6)

where

ξ(t, λ) ≡
∞∑
n=1

tnλ
n; t1 = x (2.7)

Accordingly, there is also an adjoint BA function:

ψ∗
BA(t, λ) = W ∗−1

(
e−ξ(t,λ)

)
= w∗(t, λ)e−ξ(t,λ); w∗(t, λ) = 1+

∞∑
i=1

w∗
i (t)λ−i. (2.8)

The (adjoint) BA functions obey the following linear system:

L
(
ψBA(t, λ)

)
= λrψBA(t, λ),

∂

∂tn
ψBA(t, λ) = Ln/r

+

(
ψBA(t, λ)

)
, (2.9)

L∗(ψ∗
BA(t, λ)

)
= λrψ∗

BA(t, λ),
∂

∂tn
ψ∗

BA(t, λ) = − (L∗)n/r

+

(
ψ∗

BA(t, λ)
)
.
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Note that Eqs. (2.3) for the KP hierarchy flows can be regarded as compatibility condi-
tions for the system (2.9).

There exists another equivalent and powerful approach to the KP hierarchy based
on one single function of all evolution parameters – the so called tau-functionτ (t) [3] .
It is an alternative to using the Lax operator and the calculus of the pseudo-differential
operators. Theτ -function is related to the BA functions (2.6)–(2.9) via:

ψBA(t, λ) =
τ
(
t− [λ−1]

)
τ (t)

eξ(t,λ) = eξ(t,λ)
∞∑
n=0

pn (−[∂]) τ (t)
τ (t)

λ−n, (2.10)

ψ∗
BA(t, λ) =

τ
(
t + [λ−1]

)
τ (t)

e−ξ(t,λ) = e−ξ(t,λ)
∞∑
n=0

pn ([∂]) τ (t)
τ (t)

λ−n, (2.11)

where

[λ−1] ≡
(
λ−1,

1
2
λ−2,

1
3
λ−3, . . .

)
; [∂] ≡

(
∂

∂t1
,

1
2
∂

∂t2
,

1
3
∂

∂t3
, . . .

)
, (2.12)

and the Schur polynomialspn(t) are defined through

e

∑
l≥1

λltl =
∞∑
n=0

λn pn(t1, t2, . . .). (2.13)

Taking into account (2.10) and (2.6), the expansion for the dressing operator (2.4) be-
comes:

W =
∞∑
n=0

pn (−[∂]) τ (t)
τ (t)

D−n, i.e. w1(t) = ResW = −∂x ln τ (t). (2.14)

The (adjoint) BA functions enter the fundamental Hirota bilinear identity:∫
dλψBA(t, λ)ψ∗

BA(t′, λ) = 0, (2.15)

which generates the entire KP hierarchy. Here and in what follows integrals over spectral
parameters are understood as:

∫
dλ ≡ ∮0

dλ
2iπ = Resλ=0.

Let us also recall that the KP hierarchy possesses an infinite set of commuting
integrals of motion w.r.t. the compatible first and second fundamental Poisson-bracket
structures whose densitieshl−1 = 1

l ResLl/r are expressed in terms of theτ -function
(2.10) as

∂x
∂

∂tl
ln τ (t) = ResLl/r. (2.16)

Below we shall be particularly interested in reductions of the full (unconstrained)
KP hierarchy (2.2). In this respect, it turns out that a crucial rôle is played by the notions
of (adjoint) eigenfunctionsof KP hierarchy.

Definition 2.1. The function8 (9) is called an(adjoint) eigenfunction of the Lax
operatorL satisfying Sato’s flow equation (2.3) if its flows are given by the expressions:

∂8

∂tk
= Lk/r

+

(
8
)

;
∂9

∂tk
= − (L∗)k/r

+

(
9
)

(2.17)

for the infinitely many timestk.
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Of course, according to (2.9) the (adjoint) BA functions are particular examples of (ad-
joint) eigenfunctions which, however, satisfy in addition also the corresponding spectral
equations.

In what follows a very important rôle will be played by the notion of the so called
squared eigenfunction potential(SEP). As shown by Oevel [19], for an arbitrary pair of
(adjoint) eigenfunctions8(t),9(t) there exists the functionS (8(t),9(t)), called SEP,
which possesses the following characteristics:

∂

∂tn
S (8(t),9(t)) = Res

(
D−19(Ln/r)+8D

−1
)
. (2.18)

The argument in [19], proving the existence ofS (8(t),9(t)), was built on compatibility
between isospectral flows as defined in Eq. (2.18) and (2.17).

In particular, forn = 1, Eq. (2.18) implies that the space derivative (recall∂x ≡
∂/∂t1) of S (8(t),9(t)) is equal to the product of the underlying eigenfunctions:

∂xS (8(t),9(t)) = 8(t) 9(t). (2.19)

Remark.Equation (2.18) determinesS (8(t),9(t)) up to a shift by a trivial constant.

From Eqs. (2.18)–(2.19) one sees that8(t) 9(t) is a conserved density of the KP hier-
archy. This fact has a special significance for the reduction of the general KP hierarchy
to the constrainedcKPr,m models (see below).

Definition 2.2. The constrained KP hierarchy (denoted ascKPr,m) is given by a Lax
operator of the following special form:

L ≡ Lr,m = Dr +
r−2∑
l=0

ulD
l +

m∑
a=1

8aD
−19a. (2.20)

One can easily check that the functions8a,9a, entering the purely pseudo-differential
part ofLr,m (2.20), are (adjoint) eigenfunctions ofLr,m according to Def.2.1.

The purely pseudo-differential part of arbitrary power of thecKPr,m Lax operator
(2.20) has the following explicit form [31]:

(
Lk
)
− =

m∑
a=1

k−1∑
j=0

Lk−j−1(8a)D−1
(
L∗)j (9a). (2.21)

Formula (2.21) can easily be derived from the simple technical identity involving a
product of two pseudo-differential operators of the formfiD

−1gi , i = 1, 2:

f1D
−1g1f2D

−1g2 = f1S(f2, g1)D−1g2 − f1D
−1S(f2, g1)g2, (2.22)

wherefi, gi are pairs of (adjoint) eigenfunctions of some KP Lax operator, withS(·, ·)
being the corresponding SEP.

Note, that in agreement with Eq. (2.22) the expressionL(8a) in (2.21) withL as in
(2.20) explicitly reads:L(8a) = L+(8a) +

∑m
b=1 8bS (8a,9b). This definition extends

naturally to higher powers ofLacting on8a as well as higher powers ofL∗ acting on9a.
Moreover, one can easily show thatLl (8a) andL∗k (9a) are (adjoint) eigenfunctions
of L (2.20) as well.

For three pseudo-differential operatorsXi ≡ fiD
−1gi , i = 1, 2, 3 the associativity

law (X1X2)X3 = X1 (X2X3) implies the following technical lemma:
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Lemma 2.1. The squared eigenfunction potentialS(·, ·) satisfies:

S(f, g)S(h, k) = S (h, kS(f, g)) + S (fS(h, k), g) (2.23)

for (adjoint) eigenfunctionsf, g, h, k.

3. Spectral Representation of KP Eigenfunctions

Consider the bilocal vertex operator [4]:

X̂ (λ, µ) ≡ 1
λ

: eθ̂(λ) : : e−θ̂(µ) :=
1
λ
eξ(t+[λ−1],µ)−ξ(t,λ) e

∑∞
1

1
l (λ−l−µ−l) ∂

∂tl

= − 1
µ
eξ(t,µ)−ξ(t−[µ−1],λ) e

∑∞
1

1
l (λ−l−µ−l) ∂

∂tl + δ(λ, µ), (3.1)

where

θ̂(λ) ≡ −
∞∑
l=1

λltl +
∞∑
l=1

1
l
λ−l ∂

∂tl
. (3.2)

ξ (t, λ) is as in (2.7), the columns :. . . : indicate Wick normal ordering w.r.t. the cre-
ation/annihilation “modes”tl and ∂

∂tl
, respectively, and the delta-function is defined

as

δ(λ, µ) =
1
λ

1
1 − µ

λ

+
1
µ

1

1 − λ
µ

. (3.3)

An equivalent representation for̂X (λ, µ), using Wick theorem, reads

X̂ (λ, µ) =
1

λ− µ
: eθ̂(λ)−θ̂(µ) :

=
1

λ− µ
eξ(t,µ)−ξ(t,λ) e

∑∞
1

1
l (λ−l−µ−l) ∂

∂tl for |µ| ≤ |λ|. (3.4)

The vertex operator̂X (λ, µ) can be expanded as follows:

X̂ (λ, µ) =
1

λ− µ

∞∑
l=0

(µ− λ)l

l!

∞∑
s=−∞

λ−s−l−1 1
l + 1

Ŵ (l+1)
s , (3.5)

where the operatorŝW (l)
s spanW1+∞ algebra.

From the standard representation for the (adjoint) Baker–Akhiezer wave function
(2.10),(2.11) in terms of theτ -function we deduce the identity:

X̂ (λ, µ) τ (t)
τ (t)

=
1
λ
ψ∗

BA(t, λ)ψBA

(
t + [λ−1], µ

)
(3.6)

= − 1
µ
ψBA (t, µ) ψ∗

BA

(
t− [µ−1], λ

)
+ δ(λ, µ). (3.7)

Now, recall the Fay identity [14] forτ -functions:

(s0 − s1)(s2 − s3)τ (t + [s0] + [s1])τ (t + [s2] + [s3]) + cyclic(1, 2, 3) = 0 (3.8)
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which, in fact, is equivalent to Hirota bilinear identity (2.15). In what follows, we shall
often make use of a particular form of (3.8) upon settings0 = 0, dividing bys1s2s3 and
shifting the KP times (t) → (t− [s2] − [s3]):(

s−1
2 − s−1

3

)
τ (t + [s1] − [s2] − [s3]) τ (t)

+
(
s−1

1 − s−1
2

)
τ (t− [s2]) τ (t + [s1] − [s3])

+
(
s−1

3 − s−1
1

)
τ (t− [s3]) τ (t + [s1] − [s2]) = 0. (3.9)

Especially, making identifications1 = µ−1, s2 = z−1 ands3 = λ−1 in (3.9) and using
(2.10)–(2.11), we arrive at the following useful lemma:

Lemma 3.1. The truncated Fay identity (3.9) is equivalent to the following bilinear
identity for (adjoint) BA functions:

1
λ

1̂z

(
ψBA(t, λ)ψ∗

BA(t− [λ−1], µ)
)

= −1
z
ψBA(t, λ)ψ∗

BA(t− [z−1], µ), (3.10)

where1̂z is the shift-difference operator acting on functions depending on the variables
t = (t1, t2, ...) as follows:

1̂z ≡ e
∑∞

1
1
l z−l∂/∂tl − 1, 1̂zf (t) = f

(
t− [z−1]

)− f (t). (3.11)

The Fay identity (3.8) is also known in its differential version:

∂x

(
τ
(
t + [λ−1] − [µ−1]

)
τ (t)

)
=

= (λ− µ)

(
τ
(
t + [λ−1] − [µ−1]

)
τ (t)

− τ
(
t + [λ−1]

)
τ (t)

τ
(
t− [µ−1]

)
τ (t)

)
. (3.12)

Using (3.4) and multiplying both sides of (3.12) by exp{−ξ (t, λ) + ξ (t, µ)} we can
rewrite it as

∂x

(
X̂ (λ, µ) τ (t)

τ (t)

)
= −ψ∗

BA(t, λ)ψBA (t, µ) (3.13)

or, equivalently, using (3.6) and (3.7):

∂x

(
− 1
λ
ψ∗

BA(t, λ)ψBA

(
t + [λ−1], µ

))
= ψ∗

BA(t, λ)ψBA (t, µ) ,

∂x

(
1
µ
ψBA (t, µ) ψ∗

BA

(
t− [µ−1], λ

))
= ψ∗

BA(t, λ)ψBA (t, µ) . (3.14)

Let 8,9 be a pair of an eigenfunction and an adjoint eigenfunction of the general
KP hierarchy. Our main statement in this section is:
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Proposition 3.1. Any (adjoint) eigenfunction of the general KP hierarchy possesses a
spectral representation of the form:

8(t) =
∫
dλϕ(λ)ψBA(t, λ); 9(t) =

∫
dλϕ∗(λ)ψ∗

BA(t, λ) (3.15)

with spectral densities given by

ϕ(λ) =
1
λ
ψ∗

BA

(
t′, λ

)
8
(
t′ + [λ−1]

)
; ϕ∗(λ) =

1
λ
ψBA

(
t′, λ

)
9
(
t′ − [λ−1]

)
,

(3.16)
where the multi-timet′ =

(
t′1, t

′
2, . . .

)
is taken at some arbitrary fixed value. In other

words:

8(t) =
∫
dλψBA(t, λ)

1
λ
ψ∗

BA

(
t′, λ

)
8
(
t′ + [λ−1]

)
, (3.17)

9(t) =
∫
dλψ∗

BA(t, λ)
1
λ
ψBA

(
t′, λ

)
9
(
t′ − [λ−1]

)
(3.18)

are valid for arbitrary KP (adjoint) eigenfunctions8,9 and for an arbitrary fixed
multi-timet′. Furthermore, the r.h.s. of (3.17) and (3.18) do not depend ont′.

We will proceed proving the above proposition in two steps. First, let us assume that
the (adjoint-)eigenfunctions indeed possess a spectral representation of the form (3.15)
with some spectral densitiesϕ(∗)(λ) . In such a case the statement of the proposition is
contained in a much simpler lemma:

Lemma 3.2. For (adjoint) eigenfunctions possessing the spectral representation (3.15)
their respective spectral densities are given by (3.16). Consequently, in this case
Eqs. (3.17) and (3.18) are valid too.

Proof. Using the spectral representation (3.15) for8
(
t′ + [λ−1]

)
and substituting it

into the right hand side of (3.17), we get:∫
dλ

∫
dµϕ(µ)ψBA(t, λ)

1
λ
ψ∗

BA

(
t′, λ

)
ψBA

(
t′ + [λ−1], µ

)
. (3.19)

Recalling (3.7) we can rewrite (3.19) as:∫
dλ

∫
dµϕ(µ)ψBA(t, λ)

(−1
µ
ψBA

(
t′, µ

)
ψ∗

BA

(
t′ − [µ−1], λ

)
+ δ (λ, µ)

)
=
∫
dλϕ(λ)ψBA(t, λ) = 8(t). (3.20)

where use was made of the fundamental Hirota bilinear identity (2.15). Thet′-
independence of the r.h.s. of (3.17) and (3.18) will be demonstrated explicitly in the
course of the proof of Prop.3.1 given below.�

We are now ready to take a final step of the proof of Prop.3.1 and extend the result
of Lemma (3.2) to arbitrary KP (adjoint-)eigenfunctionswithout assuming existence
of a spectral representation (3.15). To this end we need to recall the notion of SEP
(2.18)–(2.19).

Let S
(
8(t), ψ∗

BA(t, λ)
)

be the SEP associated with a pair of eigenfunctions8(t)
andψ∗

BA(t, λ), i.e. ∂xS
(
8(t), ψ∗

BA(t, λ)
)

= 8(t)ψ∗
BA(t, λ). Before proceeding let us
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note the following simple property ofS
(
8(t), ψ∗

BA(t, λ)
)
, namely, it is an “oscillatory”

type of function w.r.t.λ of the form:

S
(
8(t), ψ∗

BA(t, λ)
)

= e−ξ(t,λ)
∞∑
j=1

sj(t)λ−j = e−ξ(t,λ)
[−8(t)λ−1 +O(λ−2)

]
(3.21)

sj+1(t) = ∂xsj(t) − 8(t)w∗
j (t) , j = 0, 1, . . . ; s0 ≡ 0 (3.22)

wherew∗
j (t) =

(
τ (t)
)−1

pj([∂])τ (t) are the coefficients in theλ-expansion ofψ∗
BA(t, λ)

(2.11). Indeed, the defining relation (2.18) for the SEP in question:

∂

∂tn
S
(
8(t), ψ∗

BA(t, λ)
)

= Res
(
D−1ψ∗

BA(t, λ)(Ln/r)+8(t)D−1
)

(3.23)

implies the oscillatory form:

e−ξ(t,λ)
∞∑
j=0

sj(t)λ−j (3.24)

of the latter upto an additive constant (recall, that any SEP is defined upto an addition
of a constant). Further, taking into account:

∂xS
(
8(t), ψ∗

BA(t, λ)
)

= 8(t)ψ∗
BA(t, λ) = e−ξ(t,λ)

∞∑
j=0

8(t)w∗
j (t)λ−j (3.25)

and comparing the series in the last equality (3.25) with the∂x derivative of the series
(3.24), one obtains recurrence relations (3.22). Define now:

8̂
(
t, t′
)

= −
∫
dλψBA(t, λ)S

(
8(t′), ψ∗

BA(t′, λ)
)

(3.26)

We first observe that∂8̂
(
t, t′
)
/∂t′n = 0 due to Eqs. (2.18) and (2.15). Hence8̂

(
t, t′
)

=

8̂ (t) does not depend on the multi-timet′. Moreover, it is obvious from the definition
(3.26) that̂8 (t) is an eigenfunction possessing spectral representation of the form (3.15)
and, therefore, satisfying the conditions of Lemma (3.2). Consequently, according to
(3.17), we have:

8̂ (t) =
∫
dλψBA(t, λ)

1
λ
ψ∗

BA

(
t′, λ

)
8̂
(
t′ + [λ−1]

)
. (3.27)

Comparing integrands in Eqs. (3.26) and (3.27) we find:

1
λ
ψ∗

BA(t, λ)8̂
(
t + [λ−1]

)
= −S (8(t), ψ∗

BA(t, λ)
)

+X(t, λ), (3.28)

whereX(t, λ) is a function of the “oscillatory” type (3.24) (taking into account (3.21)–
(3.22)):

X(t, λ) = e−ξ(t,λ)

[
1
λ

(
8̂(t) − 8(t)

)
+O(λ−2

]
. (3.29)

It satisfies:
Res(ψBA(t, λ)X(t′, λ)) = 0 (3.30)

for arbitraryt′. Inserting (3.29) in (3.30) and takingt′ = t we get8̂(t) − 8(t). This
concludes the proof of Prop.3.1.�
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Corollary 3.1. Taking into account Prop.3.1, Eqs. (3.13)–(3.14) imply the following
relations:

S
(
ψBA(t, µ), ψ∗

BA(t, λ)
)

= −X̂ (λ, µ) τ (t)
τ (t)

= − 1
λ
ψBA

(
t + [λ−1], µ

)
ψ∗

BA(t, λ), (3.31)

S
(
ψBA(t, λ), ψ∗

BA(t, µ)
)

= −X̂ (µ, λ) τ (t)
τ (t)

+ δ(µ, λ)

=
1
λ
ψBA(t, λ)ψ∗

BA

(
t− [λ−1], µ

)
,

(3.32)

S
(
8(t), ψ∗

BA(t, λ)
)

= − 1
λ
ψ∗

BA(t, λ)8
(
t + [λ−1]

)
, (3.33)

S (ψBA(t, λ),9(t)) =
1
λ
ψBA(t, λ)9

(
t− [λ−1]

)
, (3.34)

where8,9 are arbitrary (adjoint-)eigenfunctions andS (·, ·) are the corresponding
squared eigenfunction potentials. Moreover, we also have the following double spectral
density representation for the SEPS (8(t),9(t)):

S (8(t),9(t)) = −
∫ ∫

dλ dµϕ∗(λ)ϕ(µ)
1
λ
ψ∗

BA(t, λ)ψBA(t + [λ−1], µ)

= −
∫ ∫

dλ dµϕ∗(λ)ϕ(µ)
X̂ (λ, µ) τ (t)

τ (t)
(3.35)

Taking into account (3.33)–(3.34), the spectral representations (3.17)–(3.18) be-
come:

8(t) = −
∫
dλψBA(t, λ)S

(
8(t′), ψ∗

BA(t′, λ)
)
, (3.36)

9(t) =
∫
dλψ∗

BA(t, λ)S
(
ψBA(t′, λ),9(t′)

)
. (3.37)

Remark.Note that the expressions (3.36)–(3.37) applied for (adjoint) BA functions
yield:

ψBA(t, λ) = −
∫
dµψBA(t, µ)S

(
ψBA(t′, λ), ψ∗

BA(t′, µ)
)
,

ψ∗
BA(t, λ) =

∫
dµψ∗

BA(t, µ)S
(
ψBA(t′, µ), ψ∗

BA(t′, λ)
)
, (3.38)

which shows that the SEPS
(
ψBA(t′, λ), ψ∗

BA(t′, µ)
)

can be identified with the Cauchy
kernel for each fixed KP multi-timet′ (cf. also [21] and references therein, where the
above SEP was previously introduced in the context of the Riemann factorization prob-
lem, as well as [22] for related discussion within the dispersionless KP hierarchy).
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Remark.Going back to the spectral representation Eqs. (3.17)–(3.18), valid for any
eigenfunction of the general KP hierarchy, we observe that they can be rewritten as
evolution equations w.r.t. the KP multi-time of the following form:

8(t) = Û (t, t′)8(t′),

Û (t, t′) ≡
∫
dλψBA(t, λ)

1
λ
ψ∗

BA

(
t′, λ

)
e
∑∞

1
1
l λ−l∂/∂t′

l , (3.39)

9(t) = Û∗(t, t′)9(t′),

Û∗(t, t′) ≡
∫
dλψ∗

BA(t, λ)
1
λ
ψBA

(
t′, λ

)
e−
∑∞

1
1
l λ−l∂/∂t′

l . (3.40)

One can readily verify that:

Û (t, t) = 1l, Û−1(t, t′) = Û (t′, t), Û (t, t′) = Û (t, t′′) Û (t′′, t′), (3.41)
∂

∂tl
Û (t, t′) = Ll/r

+ Û (t, t′),
∂

∂t′l
Û (t, t′) = −L′l/r

+ Û (t, t′). (3.42)

From (3.41)–(3.42) we deduce that the evolution operatorÛ (t, t′) (3.39) can be formally
written as a path-ordered exponential:

Û (t, t′) = P exp

{ ∞∑
l=1

∫ 1

0
ds
dtl
ds
L

l/r
+ (t(s))

}
; tk(0) = t′k, tk(1) = tk, k = 1, 2, . . .

(3.43)
which precisely agrees with the formal solution of the differential evolution Eqs. (2.17)
for the KP eigenfunctions. The r.h.s. of (3.43) is independent of the particular path{tk(s)}
connecting the pointst′ andt in the space of KP multi-times due to the “zero-curvature”
Zakharov–Shabat equations:

∂

∂tk
L

l/r
+ − ∂

∂tl
L

k/r
+ −

[
L

k/r
+ , L

l/r
+

]
= 0. (3.44)

Thus, our SEP method allowed us to find the explicit expression (r.h.s. of the second
Eq. (3.39)) for the formal path-ordered exponential (3.43).

Now, it is worthwhile to observe that we can revert the logic of our procedure above,
i.e., instead of starting with the Hirota bilinear identity (2.15) (or, equivalently, with
the Fay identity (3.8)) as defining the KP hierarchy and deriving from them the spectral
representation formalism (3.17)–(3.18) (or (3.36)–(3.37)) for KP eigenfunctions, we can
take the spectral representation Eqs. (3.36)–(3.37) as the basic equations defining the
KP hierarchy. Namely, we have the following simple:

Proposition 3.2. Consider a pair of functionsψ(t, λ), ψ∗(t, λ) of the multi-time
(t1, t2, . . .) and the spectral parameterλ of the form ψ(∗)(t, λ) = e±ξ(t,λ)∑∞

j=0w
(∗)
j (t)λ−j with w(∗)

0 = 1 and ξ(t, λ) as in (2.7). Let us assume thatψ(∗)(t, λ)
obey the following spectral identities:

ψ(t, λ) = −
∫
dµψ(t, µ)S(t′;λ, µ), ψ∗(t, λ) =

∫
dµψ∗(t, µ)S(t′;µ, λ) (3.45)

for two arbitrary multi-timest and t′, where by definition the functionS(t;λ, µ) is
such that ∂

∂t1
S(t;λ, µ) = ψ(t, λ)ψ∗(t, µ). Then, Eqs. (3.45) are equivalent to the Hirota

bilinear identity (2.15) and, accordingly,ψ(∗)(t, λ) become (adjoint) BA functions of the
associated KP hierarchy.
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To see that Eqs. (3.45) imply the Hirota identity (2.15), it is enough to differentiate both
sides of (3.45) w.r.t.t′1: 0 = ∂ψ(t, λ)/∂t′1 = −ψ(t′, λ)

∫
dµψ(t, µ)ψ∗(t′, µ). The proof

of the inverse statement of the equivalence, namely, that the Hirota bilinear identity
(2.15) imply the spectral representation Eqs. (3.45), is contained in the proof of Prop.3.1
above.

Using (2.10)–(2.11), Eqs. (3.33)-(3.34) can be rewritten as:

τ
(
t + [λ−1]

)
8
(
t + [λ−1]

)
λτ (t)

e−ξ(t,λ) = −S (8(t), ψ∗
BA(t, λ)

)
, (3.46)

τ
(
t− [λ−1]

)
9
(
t− [λ−1]

)
λτ (t)

eξ(t,λ) = S (ψBA(t, λ),9(t)) . (3.47)

Remark.Spectral representations for eigenfunctions (3.36)–(3.37) as well as identities
(3.46)–(3.47) were obtained in a similar form in [32] for the particular case of constrained
cKPr,m hierarchies. Let us specifically emphasize, that all main equations of the present
SEP method (3.15)–(3.18), (3.31)–(3.37) and (3.46)–(3.47), derived above, are valid
within the general unconstrained KP hierarchy.

Acting with space derivative∂x on both sides of (3.46)-(3.47) and shifting the KP time
arguments, we get:

8
(
t− [λ−1]

)
8(t)

− 1 +λ−1∂ ln 8(t) = λ−1∂ ln
τ
(
t− [λ−1]

)
τ (t)

, (3.48)

9
(
t + [λ−1]

)
9(t)

− 1 − λ−1∂ ln 9(t) = −λ−1∂ ln
τ
(
t + [λ−1]

)
τ (t)

, (3.49)

which were obtained in [8] by studying the way theτ -function transforms under
Darboux-B̈acklund transformations. Taking into consideration that:

− λ + λ
8
(
t− [λ−1]

)
8(t)

+ ∂ ln 8(t) =
∞∑
n=2

pn(−[∂])8(t)
λn−18(t)

(3.50)

with pn(·) being the Schur polynomials (2.13), we find that Eq. (3.48) is a generating
equation for the following set of equations upon expanding in powers ofλ−1:

pn(−[∂])8(t) = vn(t)8(t); n ≥ 2, (3.51)

vn(t) ≡ pn−1(−[∂]) ∂ ln τ (t).

Note thatvn(t) are coefficients in theλ-expansion of the generating functionv(t, λ)
[33]:

v(t, λ) =
∞∑
n=1

vn+1λ
−n ≡ ∂x lnψBA(t, λ) − λ = 1̂λ∂x ln τ (t), (3.52)

where in obtaining the last equality we again used Eqs. (2.10)–(2.11) and notation (3.11).
We will later need a slight generalization of (3.52):

v(l)(t, λ) =
∞∑
n=1

σ(l)
n (t)λ−n ≡ ∂

∂tl
lnψBA(t, λ) − λl = 1̂λ

∂

∂tl
ln τ (t); l ≥ 1. (3.53)
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Clearlyσ(l)
n (t) = pn(−[∂]) ∂/∂tl ln τ andvn(t) = σ(1)

n−1(t) , n ≥ 2. The coefficientsσ(l)
n

enter the basic identity for the KP Lax operator (2.2):(
Ll/r

)
+

= Ll/r +
∞∑
n=1

σ(l)
n L

−n/r. (3.54)

Remark.Eqs. (3.51) are, clearly, valid for an arbitrary eigenfunction8 of the full KP
hierarchy. On the other hand, in ref.[3] (see also [24]) Eqs. (3.51) were presented for
the special case of8 = ψBA(t, λ) as relations equivalent to the standard KP evolution
equations∂ψBA(t, λ)/∂tn = (Ln/r)+ψBA(t, λ). In fact, as shown in [33], plugging the
BA wave function8(t) = ψBA(t, µ) into Eq. (3.48) one easily recovers the differential
Fay identity (3.12).

We now define the “ghost” symmetry flows generated by the SEP [9, 19, 24, 8]. Let∂α

be a vector field, whose action on the Lax operatorL and, accordingly, on the dressing
operatorW , is induced by a set of (adjoint) eigenfunctions8a,9a, a ∈ {α} through:

∂αL ≡
[ ∑

a∈{α}
8aD

−19a , L
]
; ∂αW ≡

( ∑
a∈{α}

8aD
−19a

)
W. (3.55)

As shown in [19], the corresponding action of the above “ghost” flows on the (adjoint)
eigenfunctions8, 9:

∂α8 =
∑

a∈{α}
8aS (8,9a) ; ∂α9 =

∑
a∈{α}

S (8a,9) 9a (3.56)

is compatible with the isospectral evolutions of8, 9. Furthermore, it is easy to see that

∂αS (8,9) =
∑

a∈{α}
S (8,9a)S (8a,9) (3.57)

is compatible with Eq. (3.56).

If ∂βW ≡
(∑

b∈{β} 8bD
−19b

)
W defines some other “ghost” flow and both flows

∂α and∂β satisfy (3.56), then: [
∂α , ∂β

]
W = 0, (3.58)

as follows from the technical identity (2.22). Equations (3.56) and (3.58) can be com-
pactly expressed by an identity ∂α −

∑
a∈{α}

8aD
−19a , ∂β −

∑
b∈{β}

8bD
−19b

 = 0

[20, 19].
Define now Y (λ, µ) ≡ ψBA (t, µ)D−1ψ∗

BA(t, λ) (cf. ref.[16]) to be pseudo-
differential operator inducing a ghost-flow∂(λ,µ)W ≡ Y (λ, µ)W according to (3.55).
In this case the “SEP” symmetry flow is generated by an infinite combination ofW1+∞
algebra generators [16]. Then, according to Eq. (3.56) the action of this flow on the BA
wave function is given by:
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Ŷ (λ, µ)
(
ψBA(t, z)

) ≡ ∂(λ,µ)
(
ψBA(t, z)

)
= ψBA (t, µ)S

(
ψBA(t, z), ψ∗

BA(t, λ)
)
.

(3.59)
Further, let us also define the action of the vertex operatorX̂ (λ, µ) on the BA function
ψBA(t, z) as generated by its action (as a vector field) on the ratio ofτ -functions entering
(2.10):

X̂ (λ, µ)ψBA (t, z) = eξ(t,z) τ (t)X̂ (λ, µ) τ (t− [z−1]) − τ (t− [z−1])X̂ (λ, µ) τ (t)
τ2(t)

.

(3.60)
The latter, upon using the shift-difference operator (3.11), can be written as

X̂ (λ, µ)ψBA (t, z) = ψBA (t, z) 1̂z
X̂ (λ, µ) τ (t)

τ (t)
. (3.61)

Let us stress that, according to (3.59)–(3.61),Ŷ (λ, µ) acts on the BA function as a
standard pseudo-differential operator, whereasX̂ (λ, µ) acts on it as a shift-difference
operator.

Now, the above results allow us to give a simple straightforward proof of the fol-
lowing version of the Adler-Shiota-van-Moerbeke proposition [15, 16]. It provides the
connection between the form of thenon-isospectral (“additional”) symmetriesof KP
hierarchies acting on the Lax operators and BA functions [9, 10], on one hand, and their
respective form when acting on KPτ -functions, on the other hand.

Corollary 3.2. With definitions (3.59) and (3.60) it holds:

X̂ (λ, µ)ψBA(t, z) = Ŷ (λ, µ)
(
ψBA(t, z)

)
. (3.62)

Proof. Indeed, applying (3.7) and Lemma 3.1 to the r.h.s. of (3.61), the latter equation
can be rewritten as:

X̂ (λ, µ)ψBA (t, z) =
1
z
ψBA (t, z)ψBA (t, µ)ψ∗

BA(t−[z−1], λ) = Ŷ (λ, µ) (ψBA (t, z)) ,

(3.63)
where in order to arrive at the last equality use was made of (3.32).�

In the literature one often comes across the vertex operator defined asX̂(λ, µ) ≡
: exp

(
θ̂(λ) − θ̂(µ)

)
: = (λ − µ)X̂ (λ, µ). In such a notation the expression (3.62)

becomesX̂(λ, µ) = (λ− µ)Ŷ (λ, µ) as in [15, 16].
We conclude this section by proving the following important property of SEP:

Lemma 3.3. Under shift of the KP times, the squared eigenfunction potential obeys:

S
(
8(t− [λ−1]),9(t− [λ−1])

)− S (8(t),9(t)) = − 1
λ

8(t)9(t− [λ−1]), (3.64)

S
(
8(t + [λ−1]),9(t + [λ−1])

)− S (8(t),9(t)) =
1
λ

8(t + [λ−1])9(t). (3.65)
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Proof. According to (3.35) and (3.31):

1̂zS (8(t),9(t)) =
∫ ∫

dλ dµφ∗(λ)φ(µ)1̂zS
(
ψBA(t, λ), ψ∗

BA(t, µ)
)
, (3.66)

while from Eq. (3.10) we find that:

1̂zS
(
ψBA(t, λ), ψ∗

BA(t, µ)
)

= −1
z
ψBA(t, λ)ψ∗

BA(t− [z−1], µ). (3.67)

Inserting the above identity back in (3.66) gives (3.64).�

After expanding identities (3.64) and (3.65) in power series w.r.t.λ we obtain:

ps(−[∂])S

(
8(t),9(t)

)
= −8(t) ps−1(−[∂])9(t),

ps([∂])S

(
8(t),9(t)

)
= 9(t) ps−1([∂])8(t), s = 1, 2, . . . , (3.68)

whereps(·) are the standard Schur polynomials (2.13).

4. Constraints oncKPr,m Tau-Functions. Grassmannian Interpretation

From now on we concentrate on studying the class of constrainedcKPr,m hierarchies
for which we have: (

Lr,m

)
− =

m∑
a=1

8aD
−19a (4.1)

according to Eq. (2.20). We first note that thecKPr,m BA function satisfies, according
to (4.1), the following spectral equation:

Lr,mψBA(t, λ) = λrψBA(t, λ) = (Lr,m)+ψBA(t, λ) +
m∑

a=1

8a(t)S (ψBA(t, λ),9a(t)) .

(4.2)
Due to Eq. (3.34), the latter can be cast in the following form:

λrψBA(t, λ) = (Lr,m)+ψBA(t, λ) +
m∑

a=1

1
λ

8a(t)9a

(
t− [λ−1]

)
ψBA(t, λ)

= (Lr,m)+ψBA(t, λ)

−
m∑

a=1

[
S
(
8a(t− [λ−1]),9a(t− [λ−1])

)− S (8a(t),9a(t))
]
ψBA(t, λ), (4.3)

where the second equality in (4.3) follows from (3.64). Recalling relation (3.53) we find
that

∂τ (t)/∂tr =
m∑

a=1

S (8a(t),9a(t)) τ (t). (4.4)

Similarly, using the spectral identityLn
r,mψBA(t, λ) = λrnψBA(t, λ) and taking into

account relation (2.21) we obtain the following set of differential equations for the
cKPr,m τ -function:
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∂

∂trn
τ (t) =

[ m∑
a=1

n−1∑
i=0

S
(
Ln−1−i(8a), L∗i(9a)

)]
τ (t). (4.5)

The point we want to stress is that the constraint (4.4) (or, the equivalent relation (4.3))
contains all the information about thecKP system in addition to the regular Hirota
bilinear expression for theKP τ -function. This constraint can be given a bilinear form
as in [32]. Consider, namely, the expression:∫

dλλrψBA(t, λ)ψ∗
BA(t′, λ). (4.6)

Using (4.3) and Hirota’s equation one gets for (4.6):

m∑
a=1

8a(t)
∫
dλψ∗

BA(t′, λ)
1
λ

9a(t− [λ−1])ψBA(t, λ) =
m∑

a=1

8a(t)9(t′) (4.7)

where we also used the spectral representation (3.18) witht andt′ interchanged. Hence
we proved that the constraint (4.4) implies:

m∑
a=1

8a(t)9(t′) =
∫
dλλrψBA(t, λ)ψ∗

BA(t′, λ) (4.8)

which is the well-known bilinear expression for thecKP hierarchy [32] derived here
from the simple fundamentalτ -function constraint (4.4).

Using the differential Fay identity (3.12), Eqs. (4.5) can be equivalently written in
the form:{

∂

∂trn
−
[
∂

∂trn
,

∫ ∫
dλ dµ (λr − µr)−1

m∑
a=1

ϕ∗
a(λ)ϕa(µ)X̂ (λ, µ)

]}
τ (t) = 0

(4.9)
whereϕ(∗)

a (λ) are the “spectral densities” of the (adjoint) eigenfunctions8a(t),9a(t)
entering the pseudo-differential part of thecKPr,m Lax operator (2.20), and also we
have used the identity:[

∂

∂tl
, X̂ (λ, µ)

]
=
(
µl − λl

) X̂ (λ, µ) . (4.10)

Thus we arrive at the following statement providing an alternative definition ofcKPr,m

hierarchies intrinsically in terms ofτ -functions:

Proposition 4.1. Reduction of the full KP hierarchy (2.2) to thecKPr,m hierarchy
in terms of Lax operators (2.20) is equivalent to imposing Eqs. (4.9) as constraints
on the pertinentτ -functions, whereϕ(∗)

a (λ) are “spectral densities” of KP (adjoint)
eigenfunctions given as in Eqs. (3.16).

Let us now translate Eq. (4.9) into the language of universal Sato GrassmannianGr
[3, 34]. Consider the hyperplaneW ∈ Gr defined through a linear basis of Laurent
series{fk(λ)} in λ in terms of the BA function as generating functionF (t, λ):

W ≡ span〈f1(λ),f2(λ) , . . .〉,

fk(λ) =
∂k

∂xk
F (t, λ)

∣∣∣∣
x=t2=t3=...=0

, F (t, λ) = ψBA(t, λ). (4.11)
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In case of the standardrth KdV reduction, where the corresponding Lax operatorL =
D +

∑∞
1 uiD

−i satisfiesLr = Lr
+, the latter constraint translates to the Grassmannian

language asλrW ⊂ W [4].
Our aim now is to express thecKPr,m constraint (4.1) (cf. (2.20)) in the Grassman-

nian setting. We find from (4.3) that the generating functionF ′(t, λ):

F ′(t, λ) ≡
[
λr +

m∑
a=1

∞∑
n=1

pn(−[∂])S (8a(t),9a(t))
λn

]
ψBA(t, λ) = (Lr,m)+ψBA(t, λ)

(4.12)
defines via (4.11) a pointW ′ of Sato GrassmannianGr:

W ′ = span〈F ′(0, λ), ∂xF
′(0, λ), ∂2

xF
′(0, λ), . . .〉 (4.13)

which coincides, because of the second equality in (4.12), with the original pointW
defined throughF (t, λ) = ψBA(t, λ) (4.11). Thus, we have4:

Proposition 4.2. Let S (8a(t),9a(t)) , a = 1, . . . ,m , be m squared eigenfunction
potentials (2.18), where8a,9a are (adjoint-)eigenfunctions of the general KP hierarchy
(2.2). Then, the reduction of (2.2) to thecKPr,m hierarchy (2.20) can be equivalently
expressed as a restriction ofGr to a subset whose points (hyperplanes)W (4.11) are
subject to the following constraint:[

λr +
m∑

a=1

1̂λ S (8a(t),9a(t))

]
W ⊂ W (4.14)

with1̂λ as in (3.11) andS (8a(t),9a(t)) being given by (3.35) in terms of the generating
function (4.11) ofW.

5. Non-Isospectral Virasoro Symmetry forcKPr,1 τ -Functions

The conventional formulation of additional non-isospectral symmetries for the full KP
integrable hierarchy [9, 17] is not compatible with the reduction of the latter to the
important class of constrainedcKPr,m integrable models. In refs.[29, 8] we solved
explicitly the problem of compatibility of the Virasoro part of non-isospectral symmetries
with the underlying constraints ofcKPr,m hierarchies within the pseudo-differential Lax
operator framework. Our construction in [29, 8] involves an appropriate modification
of the standard non-isospectral symmetry flows, acting on the space ofcKPr,m Lax
operators, by adding a set of additional “ghost symmetry” flows (of the type appearing in
Eq. (3.55)). In this section, we derive the explicit form of the action of the correct modified
Virasoro non-isospectral symmetries as flows on the space ofcKPr,m τ -functions. Note
that the corresponding result for the full unconstrained KP hierarchy has been previously
obtained in [15, 16, 17].

To this end, let us first recall that the standardadditional (non-isospectral) symmetries
[9, 17] are defined as vector fields on the space of general KP Lax operators (2.2) or,
alternatively, on the dressing operators (2.4), through their flows as follows:

4 For a different criteria characterizingcKPr,m hierarchies within the Sato Grassmannian framework, see
refs.[35, 36].
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∂̄k,nL = −
[ (
MnLk

)
− , L

]
=
[ (
MnLk

)
+
, L
]

+ nMn−1Lk; ∂̄k,nW = − (MnLk
)
−W. (5.1)

HereM is a pseudo-differential operator “canonically conjugated” toL such that:[
L , M

]
= 1l,

∂

∂tl
M =

[
L

l/r
+ , M

]
. (5.2)

Within the Sato-Wilson dressing operator formalism, theM -operator can be expressed
in terms of dressing of the “bare”M (0) operator:

M (0) =
∑
l≥1

l

r
tlD

l−r = X(r) +
∑
l≥1

l + r
r
tr+lD

l; X(r) ≡
r∑

l=1

l

r
tlD

l−r (5.3)

conjugated to the “bare” Lax operatorL(0) = Dr.
The additional symmetry flows (5.1) commute with the usual KP hierarchy isospec-

tral flows given in (2.3). However, they do not commute among themselves, instead they
form a centerlessW1+∞ algebra (see e.g. [17]). One finds that the Lie algebra of op-
erators∂̄k,n is isomorphic to the Lie algebra generated by−zk(∂/∂z)n. Especially for
n = 1 this becomes an isomorphism to the centerless Virasoro algebra∂̄k,1 ∼ −Lk−1,
with [ Ll , Lk ] = (l − k)Ll+k.

As demonstrated in [29, 8], the conventional non-isospectral flows (5.1) donot
preserve the space ofcKPr,m Lax operators given by (2.20). In particular, for the Virasoro
non-isospectral symmetry algebra the transformed Lax operator∂̄k,1L belongs to a
differentclass of constrained KP hierarchies –cKPr,m(k−1) (whenk ≥ 3). The solution
to this problem is provided by the following [29, 8]:

Proposition 5.1. The correct non-isospectral symmetry flows for thecKPr,m hierar-
chies (2.20), spanning the Virasoro algebra, are given by:

∂∗
k L ≡

[
− (MLk

)
− +X (1)

k−1 , L
]
, (5.4)

i.e., with the following isomorphismLk−1 ∼ − (MLk
)
− + X (1)

k−1, whereX (1)
k−1 are

ghost-symmetry generating operators (cf. (3.55)) defined as:

X (1)
k =

m∑
i=1

k−1∑
j=0

(
j − 1

2
(k − 1)

)
Lk−1−j(8i)D

−1
(
L∗)j (9i); k ≥ 1. (5.5)

Since (auto-)Darboux-B̈acklund transformations ofcKPr,m hierarchies (see next
section) play a fundamental rôle for finding exact solutions, as well as in establishing
the link betweencKPr,m integrable models and (multi-)matrix models, it is natural
to impose the additional condition of commutativity of the non-isospectral symme-
tries with the Darboux-B̈acklund transformations. The latter condition was shown in
refs.[29, 8] to be satisfied only by the subclasscKPr,1 of constrained KP hierarchies
(it is preciselycKPr,1 hierarchies which provide the integrability structure of discrete
multi-matrix models [8]). Therefore, in the rest of this section we restrict our attention
to cKPr,1 models.
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Consider the modified non-isospectral Virasoro symmetry flows (5.4) acting on the
dressing operator of thecKPr,1 hierarchy:

∂∗
kW = − (MLk

)
−W +X (1)

k−1W. (5.6)

Taking the operator residuum on both parts of (5.6) we obtain:

∂∗
kτ (t) =

1
2r
Ŵ (2)

r(k−1)τ (t) +

[k−2∑
j=0

(
1
2

(k − 2) − j

)
S
(
Lk−2−j(8), L∗j(9)

)]
τ (t).

(5.7)
In deriving Eq. (5.7) we used the expression forX (1)

k−1 (5.5) together with the differential
Fay identity (3.12) as well as:

Res
(
M lLk

)
= Resλ

[(
M lLk

)
(ψBA(t, λ)) ψ∗

BA(t, λ)
]

=
1
rl
Resλ

(
λkr−l(r−1) ∂

l

∂λl
ψBA(t, λ) ψ∗

BA(t, λ)

)
(5.8)

= −∂x

[
1
τ (t)

Resλ

(
1
rl
µkr−l(r−1) ∂

l

∂µl
X̂ (λ, µ) |µ=λ

)
τ (t)

]
= ∂x

(
1

rl(l + 1)

Ŵ (l+1)
(k−l)rτ (t)

τ (t)

)
.

In the chain of the identities in (5.8) we took into account Dickey’s formula for
(
M lLk

)
−

[16] (first equality in (5.8)), Eq. (3.13) (third equality in (5.8)), and formula (3.5) for
X̂ (λ, µ) to arrive at the last equality above. The Virasoro operator in the first term on
the r.h.s. of (5.7) comes from the standard Orlov-Schulman non-isospectral symmetry
flow and reads explicitly (fork ≥ −1):

Ŵ (2)
k = 2

∑
l≥1

ltl
∂

∂tl+k
− (k + 1)

∂

∂tk
+

k−1∑
l=1

∂2

∂tl∂tk−l
. (5.9)

We now express the second additional “ghost-flow” term on the r.h.s. of (5.7) as a
differential operator acting onτ (t) of a form similar to (5.9). The starting point are
the differential Eqs. (4.5) obeyed by thecKPr,1 τ -function, wherefrom we get for the
second-order derivatives:

1
τ (t)

∂2τ (t)
∂trl∂trn

=
n−1∑
i=0

[
S
(
Ln+l−1−i(8), L∗i(9)

)
− S

(
Ln−1−i(8), L∗i+l(9)

)]
+

n−1∑
i=0

l−1∑
j=0

[
S
(
Ln−1−i(8), L∗i(9)

)
S
(
Ll−1−j(8), L∗j(9)

)
− S

(
Ln−1−i(8), L∗j(9)

)
S
(
Ll−1−j(8), L∗i(9)

)]
. (5.10)

In obtaining relation (5.10) we made use of the following lemma:
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Lemma 5.1. The relation:

∂

∂tnr
S(f, g) = S (Ln(f ), g) − S

(
f, L∗n(g)

)
−

n−1∑
i=0

S
(
Ln−1−i(8), g

)
S
(
f, L∗i(9)

)
(5.11)

holds forf an eigenfunction andg an adjoint eigenfunction of the Lax operatorL ≡
Lr,1 = L+ + 8D−19 belonging to thecKPr,1 hierarchy.

Proof. We are going to show that∂/∂tnr S(f, g) = Res
(
D−1g(Ln)+fD

−1
)

is equal to
the right-hand side of Eq. (5.11) (up to a constant). We first apply∂/∂tmr on the left
hand side of Eq. (5.11). This yields

∂

∂tmr

∂

∂tnr
S(f, g) =

∂

∂tnr

∂

∂tmr
S(f, g) = −Res

(
D−1(L∗)n+ (g)LmfD−1

)
+ Res

(
D−1gLm(L)n+ (f )D−1

)
. (5.12)

After making the substitutions:

(L)n+ (f ) = Ln(f ) −
n−1∑
i=0

Ln−1−i(8)S
(
f, L∗i(9)

)
, (5.13)

(L∗)n+ (g) = L∗n(g) +
n−1∑
i=0

L∗i(9)S
(
Ln−1−i(8), g

)
, (5.14)

where use was made of (2.21), we obtain agreement with the result of applying∂/∂tmr

on the right-hand side of Eq. (5.11) and using Eq. (2.18) as well as Lemma 2.1�

Using Eqs. (4.5),(5.10) we obtain:

k−2∑
j=0

(
1
2

(k − 2) − j

)
S
(
Lk−2−j(8), L∗j(9)

)
=

1
2τ (t)

k−2∑
l=1

∂2τ

∂trl∂tr(k−1−l)
. (5.15)

Collecting (5.9) and (5.15), the final form of thecKPr,1 non-isospectral Virasoro sym-
metry flows reads:

∂∗
kτ (t) =

1
r

∑
l≥1

ltl
∂

∂tl+r(k−1)
− r(k − 1) + 1

2r
∂

∂tr(k−1)

+
1
2r

r(k−1)−1∑
l=1

∂2

∂tl∂tr(k−1)−l
+

1
2

k−2∑
l=1

∂2

∂trl∂tr(k−1−l)

]
τ (t). (5.16)

In particular, forcKP1,1 hierarchies the Virasoro non-isospectral symmetry takes the
form (Eq. (5.16) forr = 1):

∂∗
kτ (t) =

∑
l≥1

ltl
∂

∂tl+k−1
− k

2
∂

∂tk−1
+

k−2∑
l=1

∂2

∂tl∂tk−1−l

 τ (t). (5.17)
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Concluding this section it is instructive to point out the relation of (5.17) with the
so-called Virasoro constraints in conventional discrete matrix models [37, 7] spanning
the Borel subalgebra of the Virasoro algebra:

L(N )
s ZN = 0, s ≥ −1, (5.18)

L(N )
s =

∞∑
k=1

ktk
∂

∂tk+s
+ 2N

∂

∂ts
+

s−1∑
k=1

∂

∂tk

∂

∂ts−k
, s ≥ 1, (5.19)

L(N )
0 =

∞∑
k=1

ktk
∂

∂tk
+N2; L(N )

−1 =
∞∑
k=2

ktk
∂

∂tk−1
+Nt1. (5.20)

HereZN denotes the one-matrix model partition function withN indicating the size
of the corresponding (Hermitian) random matrix. On one hand, it can be identified as
aτ -function of the semi-infinite one-dimensional Toda lattice model [37]. On the other
hand, from the point of view of continuum integrable systems it was shown in [38, 8]
to beZN = τ (N,0), i.e.,N th member of the Darboux-B̈acklund orbit on the subspace of
cKP1,1 τ -functions starting from the “free” initialτ (0,0) = 1 (see the next section for
more details about Darboux-Bäcklund orbits on constrained KP hierarchies). Comparing
(5.19)–(5.20) with (5.17) one finds:

L(N )
−1 = ∂∗

0 +Nt1; L(N )
0 = ∂∗

1 +N2,

L(N )
k−1 = ∂∗

k + (2N + k/2)∂/∂tk−1, k ≥ 2. (5.21)

6. Binary Darboux-Bäcklund Orbits on cKPr,m Hierarchies. Toda
Square-Lattice Model

Let us recall the form of the Darboux-Bäcklund and adjoint-Darboux-B̈acklund trans-
formations which preserve the constrained form of thecKPr,m hierarchy Lax oper-
ator (2.20) [38, 8],i.e., we shall discussauto-Darboux-B̈acklund transformations for
cKPr,m hierarchies (for a general discussion of DB transformations of generic KP
hierarchies without the requirement of preserving specific classes of constrained KP
hierarchies, see refs.[39, 19]):

L → L̃ = L̃+ +
m∑
i=1

8̃iD
−19̃i = TaLT

−1
a , Ta = 8aD8−1

a , (6.1)

L → L̄ = L̄+ +
m∑
i=1

8̄iD
−19̄i = T̄ ∗ −1

b LT̄ ∗
b , T̄b = 9bD9−1

b . (6.2)

Here 8a,9b are (adjoint) eigenfunctions enteringL− (2.20) with fixed indicesa, b
which henceforth will be assumeda 6= b. Accordingly, for BA functions, theτ -function,
eigenfunctions and their respective spectral “densities”, the DB transformations (6.1)
imply:

8̃a = TaL(8a), 9̃a =
1

8a
,

8̃i = Ta(8i, 9̃i = T ∗
a

−1(9i) = − 1
8a

S(8a,9i), , i 6= a, (6.3)
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ψ̃BA(t, λ) =
1
λ
Ta(ψBA(t, λ)); τ̃ (t) = 8a(t)τ (t), (6.4)

ψ̃∗
BA(t, λ) = λT ∗

a
−1(ψ∗

BA(t, λ)) = −λ 1
8a(t)

S(8a(t), ψ∗
BA(t, λ)), (6.5)

ϕ̃a(λ) = λ1+rϕa(λ); ϕ̃i(λ) = λϕi(λ), ϕ̃∗
i (λ) = λ−1ϕ∗

i (λ), i 6= a. (6.6)

For the adjoint DB transformations (6.2) we have:

8̄b = − 1
9b
, 9̄b = T̄bL

∗(9b),

8̄i = T̄ ∗ −1
b (8i) = − 1

9b
S(8i,9b), 9̄i = T̄b(9i), i 6= b, (6.7)

ψ̄BA(t, λ) = −λT̄ ∗ −1
b (ψBA(t, λ)) = λ

1
9b(t)

S(ψBA(t, λ),9b(t)), (6.8)

ψ̄∗
BA(t, λ) = − 1

λ
T̄b(ψ

∗
BA(t, λ); τ̄ (t) = 9b(t)τ (t), (6.9)

ϕ̄∗
b (λ) = −λ1+rϕ∗

b (λ); ϕ̄i(λ) = − 1
λ
ϕi(λ), ϕ̄∗

i (λ) = −λϕ∗
i (λ), i 6= b. (6.10)

We shall use the double superscript (n, k) to indicate the iteration ofn successive
Darboux-B̈acklund transformations (6.3) plusk successive adjoint-Darboux-Bäcklund
transformations (6.7). One can easily show that the result does not depend on the par-
ticular order these transformations are performed. Therefore, the set of all (n, k) DB
transformations, calledgeneralized binaryDB transformations in what follows, defines
a discrete symmetry structure on the space ofcKPr,m hierarchies corresponding to
a two-dimensional lattice. Let us note that the (1, 1) binary DB transformations were
previously introduced in ref.[30].

For one-step binary-DB transformedτ - and BA functions we get:

τ (1,1)(t) = −S
(
8(0,0)

a (t),9(0,0)
b (t)

)
τ (0,0)(t), (6.11)

ψ(1,1)
BA (t, λ) =

1 − 1
λ

8(0,0)
a (t)9(0,0)

b (t− [λ−1])

S
(
8(0,0)

a (t),9(0,0)
b (t)

)
ψ(0,0)

BA (t, λ)

=
S
(
8(0,0)

a (t− [λ−1]),9(0,0)
b (t− [λ−1])

)
S
(
8(0,0)

a (t),9(0,0)
b (t)

) ψ(0,0)
BA (t, λ), (6.12)

ψ∗
BA

(1,1)(t, λ) =

1 +
1
λ

9
(0,0)
b (t)8(0,0)

a (t + [λ−1])

S
(
8(0,0)

a (t),9(0,0)
b (t)

)
ψ∗

BA
(0,0)(t, λ)

=
S
(
8(0,0)

a (t + [λ−1]),9(0,0)
b (t + [λ−1])

)
S
(
8(0,0)

a (t),9(0,0)
b (t)

) ψ∗
BA

(0,0)(t, λ), (6.13)

where in the second equalities in (6.12) and (6.13) we used again (3.33)–(3.34) and
(3.64)–(3.65). Combining Eq. (6.11) with Eq. (4.5) forn = 1 we find the following
transformation formula for the squared eigenfunction potentials:
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m∑
i=1

S
(
8

(1,1)
i ,9(1,1)

i

)
−

m∑
i=1

S
(
8

(0,0)
i ,9(0,0)

i

)
=

∂

∂tr
ln
(
−S

(
8(0,0)

a (t),9(0,0)
b (t)

))
.

(6.14)
Let us recall again that here and belowa 6= b arefixed indices of Lax (adjoint) eigen-
functions.

Remark.Comparing formula (6.11) with (3.35) we see that one-step binary-DB transfor-
mations onτ -functions are nothing but the well-known Sato Bäcklund transformations
[4] (i.e., those generated by the bilocal vertex operatorχ̂(λ, µ) (3.1)) “averaged” with
appropriate spectral densities.

Introducing short-hand notations:

χ(i)
a (t) ≡ (L(0,0)

)i
(8(0,0)

a (t)) , χ∗
b

(i)(t) ≡ (L(0,0)
)∗i

(9(0,0)
b (t))

S(i,j)
ab (t) ≡ S

((
L(0,0)

)i
(8(0,0)

a (t)),
(
L(0,0)

)∗j
(9(0,0)

b (t))
)

(6.15)

we have:

Proposition 6.1. The following determinant formulae hold for then-step binary DB
transformed quantities:

τ (n,n)(t)
τ (0,0)(t)

= (−1)n
n−1∏
j=0

S
(
8(j,j)

a (t),9(j,j)
b (t)

)
= (−1)n det

n

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.16)

8(n,n)
a (t) = (−1)n

detn+1

∥∥∥∥S(i−1,j−1)
ab (t) χ(i−1)

a (t)
S(n,j−1)

ab (t) χ(n)
a (t)

∥∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.17)

9(n,n)
a (t) = (−1)n

detn+1

∥∥∥∥S(i−1,j−1)
ab (t) S(i−1,n)

ab (t)
χ∗

b
(j−1)(t) χ∗

b
(n)(t)

∥∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.18)

S
(
8(n,n)

a (t),9(n,n)
b (t)

)
=

detn+1

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.19)

whereχ(i)
a , χ

∗
b

(i) andS(i,j)
ab are defined in (6.15), and the matrix indicesi, j run from1

to n or n + 1 according to the indicated sizes of the determinants.

Formulae (6.17)–(6.19) can be further generalized to:

(
L(n,n)

)s (
8(n,n)

a (t)
)

= (−1)n
detn+1

∥∥∥∥S(i−1,j−1)
ab (t) χ(i−1)

a (t)
S(s+n,j−1)

ab (t) χ(s+n)
a (t)

∥∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.20)
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(
L(n,n)∗

)s (
9

(n,n)
b (t)

)
= (−1)n

detn+1

∥∥∥∥S(i−1,j−1)
ab (t) S(i−1,s+n)

ab (t)
χ∗

b
(j−1)(t) χ∗

b
(s+n)(t)

∥∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.21)

S
((
L(n,n)

)l
(8(n,n)

a ),
(
L(n,n)∗

)s

(9(n,n)
b )

)

=

detn+1

∥∥∥∥S(i−1,j−1)
ab (t) S(i−1,s+n)

ab (t)
S(l+n,j−1)

ab (t) S(l+n,s+n)
ab (t)

∥∥∥∥
detn

∥∥∥S(i−1,j−1)
ab (t)

∥∥∥ , (6.22)

We are now ready, with the help of (6.20)–(6.22), to write down the generalization of
Eq. (6.16) for thecKP τ -function subject to an arbitrary (n, k) binary DB transformation:

Proposition 6.2. The general discrete binary Darboux-Bäcklund orbit on the space of
cKPr,m τ -functions, generated by a fixed pair of (adjoint) eigenfunctions8a,9b and
starting from arbitrary “initial” τ (0,0), consists of the following elementsτ (n,k):

τ (n,k)

τ (0,0)
=

(
(−1)k det

k

∥∥∥S(i−1,j−1)
ab

∥∥∥)−(n−k−1)

×

Wn−k

[
det
k+1

∥∥∥∥S(i−1,j−1)
ab χ(i−1)

a

S(k,j−1)
ab χ(k)

a

∥∥∥∥ , . . . , det
k+1

∥∥∥∥ S(i−1,j−1)
ab χ(i−1)

a

S(n−1,j−1)
ab χ(n−1)

a

∥∥∥∥] , (6.23)

for n ≥ k , i, j = 1, . . . , k

τ (n,k)(t)
τ (0,0)(t)

=
(

(−1)n det
n

∥∥∥S(i−1,j−1)
ab

∥∥∥)−(k−n−1)
×

Wk−n

[
det
n+1

∥∥∥∥S(i−1,j−1)
ab S(i−1,n)

ab

χ∗
b

(j−1) χ∗
b

(n)

∥∥∥∥ , . . . , det
n+1

∥∥∥∥S(i−1,j−1)
ab S(i−1,k−1)

ab

χ∗
b

(j−1) χ∗
b

(k−1)

∥∥∥∥] , (6.24)

for n ≤ k , i, j = 1, . . . , n

whereχ(i)
a , χ

∗
b

(i) andS(i,j)
ab are as in (6.15),

andWk [f1, . . . , fk] = det
∥∥∥∂α−1fβ

∥∥∥
α,β=1,...,k

indicates the Wronskian determinant of

a set of functions{f1, . . . , fk}.

Remark.Note that the entries in the Wronskians in Eqs. (6.23)–(6.24) are determinants
themselves.

Remark.In the Appendix we write down the explicit expressions for thecKPr,m τ -
functions on the most general discrete binary Darboux-Bäcklund orbit generated via
successive (adjoint) DB transformations (6.3)–(6.10) w.r.t. an arbitrary set of (adjoint)
eigenfunctions.

In the simple case of a “free” initial system withL(0,0) = D which, accordingly, is
characterized by:

τ (0,0)(t) = 1 ;
∂

∂tn
χ(i)

a = ∂n
xχ

(i)
a ,

∂

∂tn
χ∗

b
(j) = −(−∂x)nχ∗

b
(j), (6.25)
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formula (6.16) reproduces the Fredholm determinant expressionτ = det‖δi j + ai j‖ for
theτ -function withai j ≡ ∫ x

−∞ χ(i)
a χ

∗
b

(j)dy [40, 41]. Namely, it follows that:

∂

∂tn

(
δij + ai j

)
=

n∑
l=1

∂l−1
x χ(i)

a (−∂x)n−lχ∗
b

(j) = Res
(
D−1χ∗

b
(j)Dnχ(i)

a D
−1
)
. (6.26)

The latter allows us to identifyδij + ai j with S
(
χ(i)

a , χ
∗
b

(j)) and establishes connection
between the above special case of (6.16) and the Fredholm determinant expressions for
theτ -functions of refs.[40, 41].

Now, we shall show that the (n, k) binary Darboux-B̈acklund orbit of thecKPr,2
hierarchy defines a two-dimensional Toda square-lattice system which describes two
coupled ordinary two-dimensional Toda-lattice models corresponding to the horizontal
(n, 0) and the vertical (0, k) one-dimensional sublattices of the (n, k) binary DB square-
lattice. Namely, consider:

∂x
∂

∂tr
ln τ (n,k) = ResL(n,k) = 8

(n,k)
1 9

(n,k)
1 + 8

(n,k)
2 9

(n,k)
2 =

8
(n,k)
1

8
(n−1,k)
1

− 9
(n,k)
2

9
(n,k−1)
2

,

(6.27)
where we used (6.3) and (6.7). Taking into account the expressions for the (adjoint-)DB
transformedτ -functions (6.4) and (6.9),i.e.

8
(n,k)
1 =

τ (n+1,k)

τ (n,k)
, 9

(n,k)
2 =

τ (n,k+1)

τ (n,k)
, (6.28)

Eq. (6.27) can be rewritten in the form:

∂x
∂

∂tr
ln τ (n,k) =

τ (n+1,k)τ (n−1,k) − τ (n,k+1)τ (n,k−1)(
τ (n,k)

)2 , (6.29)

or, equivalently:

∂x
∂

∂tr
τ (n,k) − ∂xτ

(n,k) ∂

∂tr
τ (n,k) = τ (n+1,k)τ (n−1,k) − τ (n,k+1)τ (n,k−1). (6.30)

Similarly, Eq. (6.27) can be represented as a system of coupled equations of motion for
8

(n,k)
1 and9

(n,k)
2 using again (6.28):

∂x
∂

∂tr
ln 8

(n,k)
1 =

(
8

(n+1,k)
1

8
(n,k)
1

− 8
(n,k)
1

8
(n−1,k)
1

)
−
(

9
(n+1,k)
2

9
(n+1,k−1)
2

− 9
(n,k)
2

9
(n,k−1)
2

)
, (6.31)

∂x
∂

∂tr
ln 9

(n,k)
2 = −

(
9

(n,k+1)
2

9
(n,k)
2

− 9
(n,k)
2

9
(n,k−1)
2

)
+

(
8

(n,k+1)
1

8
(n−1,k+1)
1

− 8
(n,k)
1

8
(n−1,k)
1

)
. (6.32)

When9
(n,k)
2 vanishes the remaining equations for8

(n,k)
1 reduce for a fixedk to the

equations of motion for the well-known Toda model on one-dimensional lattice w.r.t.n

(andvice versaif 8
(n,k)
1 = 0).
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7. Discussion and Outlook. Relation to Random Matrix Models

In this paper we provided a new version of the eigenfunction formulation of the KP hi-
erarchy, called thesquared eigenfunction potential (SEP) method, where the SEP plays
a rôle of a basic building block. The principal ingredient of the SEP method is the proof
of existence of spectral representation forany KP eigenfunction as a spectral integral
over the (adjoint) BA function with spectral density explicitly given in terms of a SEP.
It was pointed out that the spectral representations of the (adjoint) BA functions them-
selves (being particular examples of KP eigenfunctions) can, in turn, serve as defining
relations for the whole KP hierarchy parallel to Hirota fundamental bilinear identity or
Fay identity.

The SEP method was subsequently employed to solve various issues in integrable
hierarchies of KP type both of conceptual, as well as more applied character. Many,
previously unrelated, recent developments in the theory of theτ -function of the KP
hierarchy gained from being described by the present formalism. As one of the important
illustrations of how our method works, we have shown how the SEP, acting on the
manifold of wave functionsψBA(t, λ) by generating non-isospectral symmetry algebra,
lifts to a vertex operator acting onτ -functions. This reproduced in the SEP setting the
results of [14, 15, 16, 17].

We have also employed the SEP construction in the context of Hamiltonian reduc-
tions of KP hierarchy providing:

– description of the reductions of the general KP hierarchy to the constrainedcKPr,m

hierarchies entirely in terms of linear constraint equations on the pertinentτ -
functions;

– description of constrainedcKPr,m hierarchies in the language of the universal Sato
Grassmannian;

– obtaining the explicit form of the non-isospectral Virasoro symmetry generators
acting on thecKPr,m τ -functions.

The achieved progress should result in further clarification of the status of thecKPr,m hi-
erarchies and their connection to the underlying fermionic field language. It would also
be interesting to look for the signs of the affine ˆsl(r + m + 1) symmetry encountered
in construction of thecKPr,m models by the generalized Drinfeld-Sokolov method
associated to affine Kac-Moody algebras [28].

Furthermore, as a principal application, the SEP method was used to derive a series
of new determinant solutions for theτ -functions of (constrained) KP hierarchies which
generalize the familiar Wronskian (multi-soliton) solutions. These new solutions belong
to a new type ofgeneralized binaryDarboux-B̈acklund orbits which, in turn, were shown
to correspond to a novel Toda model on asquarelattice. An important task for future
study is to find a closed Lagrangian description of this new Toda square-lattice model.

Finally, let us briefly describe another potential physical application of the present
approach.

Using the spectral representation for (adjoint) eigenfunctions (3.15) together with
(2.10)–(2.11), as well as the following form of the Fay identity forτ -functions [14]:

det
n

∥∥∥∥∥τ
(
t + [λ−1

i ] − [µ−1
j ]
)

(λi − µj)τ (t)

∥∥∥∥∥
= (−1)

n(n−1)
2

∏
i>j

(
λi − λj

) (
µi − µj

)∏
i,j

(
λi − µj

) τ
(
t +
∑

l[λ
−1
l ] −∑l[µ

−1
l ]
)

τ (t)
, (7.1)
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we obtain an equivalent “spectral” representation forτ (n,n)(t) (6.16):

τ (n,n)(t)

=
(−1)

n(n−1)
2

(n!)2

∫ n−1∏
j=0

dλj dµj

∏
i>j

(
λi − λj

) (
λr

i − λr
j

) n−1∏
j=0

(
ϕ∗

b
(0,0)(λj)e−ξ(t,λj )

)
×

1∏
i,j(λi − µj)

∏
i>j

(
µi − µj

) (
µr

i − µr
j

)
n−1∏
j=0

(
ϕa

(0,0)(µj)eξ(t,µj )
)
τ (0,0)

(
t +
∑

l

[λ−1
l ] −

∑
l

[µ−1
l ]
)
. (7.2)

Following [42], we can interpret theτ -function (7.2) as a partition function of cer-
tain random multi-matrix ensemble with the following joint distribution function of
eigenvalues:

Zn[{t}] ≡ const τ (n,n)(t) =
∫ n−1∏

j=0

dλj dµj exp{−H(t; {λ}, {µ})} , (7.3)

H(t; {λ}, {µ}) ≡
∑

j

(
H̄1(λj) +H1(µj)

)
+
∑
i>j

(
H2(λi, λj) +H2(µi, µj)

)
+
∑
i,j

H̃2(λi, µj) +Hn({λ}, {µ}), (7.4)

where the one-, two- and many-body Hamiltonians read, respectively:

H1(λ) = − lnϕ(0,0)(λ) − ξ(t, λ), H̄1(λ) = − lnϕ∗(0,0)(λ) + ξ(t, λ), (7.5)

H2(λi, λj) = − ln
(
λi − λj

)2 − ln
(r−1∑

s=0

λs
iλ

r−1−s
j

)
, H̃2(λ, µ) = ln(λ− µ), (7.6)

Hn({λ}, {µ}) = − ln τ (0,0)
(
t +
∑

l

[λ−1
l ] −

∑
l

[µ−1
l ]
)
. (7.7)

The physical implications of the above new type of joint distribution function (7.3)–
(7.7) deserves further study especially regarding critical behavior of correlations. The
emerging new interesting features of (7.3)–(7.7), absent in the joint distribution function
derived from the conventional two-matrix model [42], are as follows:

(a) the second attractive term in the two-body potentialH2 (7.6) (both forλ- andµ-
“particles”) dominating at very long distances over the customary repulsive first
term;

(b) an additional two-body attractive potentialH̃2 (7.6) between each pair ofλ- andµ-
“particles”

(c) a genuine many-body potentialHn (7.7).

One of the most important issues here is to exhibit the explicit form of the generalized
multi-matrix model behind (7.3)–(7.7).
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A. Appendix: The Most General cKPr,m Binary Darboux-Bäcklund Orbit

Let us first introduce a few convenient compact notations for Wronskian and related
Wronskian-like determinants:

Wk ≡ Wk [f1, . . . , fk] = det
∥∥∥∂α−1fβ

∥∥∥ , Wk(f ) ≡ Wk+1 [f1, . . . , fk, f ] , (A.1)

W̃k+1(f ) ≡ W̃ [f1, . . . , fk+1; f ] ≡ det
k+1

∥∥∥∥ ∂α−1fβ ∂α−1fk+1

S
(
fβ , f

)
S (fk+1, f )

∥∥∥∥ , (A.2)

where the matrix indicesα, β = 1, . . . , k and, as above,∂xS
(
fβ , f

)
= fβ f . The

Wronskian(-like) determinants (A.1)–(A.2) obey the following useful identities:

∂

(
Wk−1(f )
Wk

)
=
Wk(f )Wk−1

W 2
k

; ∂

(
W̃k+1(f )
Wk

)
= −W̃k(f )Wk+1

W 2
k

, (A.3)

where the first one is known as Jacobi expansion theorem (see,e.g.[43]), whereas the
second identity in (A.3) can be easily verified via induction. Equations (A.3) imply in
turn the identities:

Tk · · ·T1(f ) =
Wk(f )
Wk

, T ∗
k

−1 · · ·T ∗
1

−1(f ) = −W̃k(f )
Wk

(A.4)

with

Tj =
Wj

Wj−1
D
Wj−1

Wj
, T ∗

j
−1 = −Wj−1

Wj
D−1 Wj

Wj−1
. (A.5)

Now we can use Eqs. (A.4) to derive explicit expressions for the (adjoint) eigen-
functions andτ -functions ofcKPr,m hierarchies generated via successive (adjoint) DB
transformations (6.3)–(6.10) w.r.t. an arbitrary set of (adjoint) eigenfunctions of the
“initial” cKPr,m Lax operatorL = Lr,m (2.20). We shall denote the latter arbitrary
successive (adjoint) DB transformations by the following double-vector superscript:(

~n,~k
)

≡ ((n1, . . . , nm), (k1, . . . km)) (A.6)

indicatingn1 successive DB transformations w.r.t.81 etc., untilnm DB transformations
w.r.t. 8m and, similarly,k1 successive adjoint-DB transformations w.r.t.91 etc., until
km adjoint-DB transformations w.r.t.9m. Specifically, we have:

8

(
~n,~0
)

a = (−1)
∑m

a+1
nj

W
[
χ(0)

1 , . . . , χ(n1−1)
1 , . . . , χ(0)

a , . . . , χ
(na−1)
a , χ(na)

a , . . . , χ(0)
m , . . . , χ

(nm−1)
m

]
W
[
χ(0)

1 , . . . , χ(n1−1)
1 , . . . , χ(0)

a , . . . , χ
(na−1)
a , . . . , χ(0)

m , . . . , χ
(nm−1)
m

] ,

(A.7)

τ

(
~n,~0
)

τ

(
~0,~0
) = W

[
χ(0)

1 , . . . , χ(n1−1)
1 , . . . , χ(0)

m , . . . , χ
(nm−1)
m

]
, (A.8)
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9

(
~n,~0
)

a =
(−1)

∑m

a+1
nj

W
[
χ(0)

1 ,...,χ
(n1−1)
1 ,...,χ(0)

a ,...,χ(na−2)
a ,...,χ(0)

m,...,χ(nm−1)
m

]
W
[
χ(0)

1 ,...,χ
(n1−1)
1 ,...,χ(0)

a ,...,χ(na−1)
a ,...,χ(0)

m,...,χ(nm−1)
m

] , for na ≥ 1

−
W̃

[
χ(0)

1 ,...,χ
(n1−1)
1 ,...,χ(0)

m,...,χ(nm−1)
m ;9

(~0,~0)
a

]
W
[
χ(0)

1 ,...,χ
(n1−1)
1 ,...,χ(0)

m,...,χ(nm−1)
m

] , for na = 0

(A.9)

where the functionsχ(s)
a are the same as in (6.15) with the superscripts (0, 0) replaced with

the corresponding double-vector ones
(
~0,~0
)

. Equations (A.7)–(A.8) already appeared

in [29] (see also refs.[44]), whereas Eq. (A.9) is derived via iterative application of the
second identity in (A.4) and taking into account (A.7).

Now, performing arbitrary successive adjoint-DB transformations onτ

(
~n,~0
)

(A.8)
according to the second Eq. (6.9) upon using the first identity in (A.4) and inserting there
the explicit expressions (A.9), we arrive at the following:

Proposition A.1. The most general discrete binary Darboux-Bäcklund orbit on the
space ofcKPr,m τ -functions is built-up of the following elements:

τ

(
~n,~k
)

τ

(
~0,~0
) =

(
−W

[
χ(0)

1 , . . . , χ(n1−1)
1 , . . . , χ(0)

a , . . . , χ
(na−1)
a

])−
∑m

a+1
kj ×

W
[
1~n

(0,a+1), . . . ,1
~n
(ka+1−1,a+1), . . . ,1

~n
(0,m), . . . ,1

~n
(km−1,m)

]
(A.10)

1~n
(l,s) ≡ W̃

[
χ(0)

1 , . . . , χ(n1−1)
1 , . . . , χ(0)

a , . . . , χ
(na−1)
a ;χ∗

s
(l)
]

(A.11)

where(
~n,~k

)
= ((n1, . . . , na, 0, . . . , 0), (0, . . . , 0, ka+1, . . . , km)) ; a = 0, 1, . . . ,m

(A.12)
and, furthermore, notations (6.15) and (A.2) are employed.

Remark.The reason for the zero entries in the labels (A.12) of the most general binary
DB transformations, preserving the spaces ofcKPr,m hierarchies (2.20), lies in the fact
that any pair of two successive (adjoint-)DB transformations w.r.t.8a,9a, i.e.both with
thesameindex, is equivalent to an identity transformation as one can easily conclude
by combining the second equation in (6.3) with the second equations in (6.4) and (6.9).
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