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Abstract: The method of squared eigenfunction potentials (SEP) is developed system-
atically to describe and gain new information about the Kadomtsev—Petviashvili (KP)
hierarchy and its reductions. Interrelation to th&nction method is discussed in de-

tail. The principal result, which forms the basis of our SEP method, is the proof that any
eigenfunction of the general KP hierarchy can be represented as a spectral integral over
the Baker—Akhiezer (BA) wave function with a spectral density expressed in terms of
SEP. In fact, the spectral representations of the (adjoint) BA functions can, in turn, be
considered as defining equations for the KP hierarchy. The SEP method is subsequently
used to show how the reduction of the full KP hierarchy to the constrainediK®.(,,, )
hierarchies can be given entirely in terms of linear constraint equations on the pertinent
7-functions. The concept of SEP turns out to be crucial in providing a description of
cKP;. ,,, hierarchies in the language of the universal Sato Grassmannian and finding the
non-isospectral Virasoro symmetry generators acting on the underifiunmgctions. The

SEP method is used to write doweneralized binaryparboux-Backlund transforma-

tions for constrained KP hierarchies whose orbits are shown to correspond to a new Toda
model on asquarelattice. As a result, we obtain a series of new determinant solutions
for ther-functions generalizing the known Wronskian (multi-soliton) solutions. Finally,
applications to random matrix models in condensed matter physics are briefly discussed.

1. Introduction

The primary object of this paper is the Kadomtsev—Petviashvili (KP) integrable hierar-
chy (for comprehensive reviews, se¢.[1, 2]) and its nontrivial reductions generalizing
the familiarr-reduction to the5 L(r) Korteweg-de Vries (KdV) hierarchy. The KP hier-
archy is an infinite-dimensional system which admits different alternative formulations
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and exhibits many types of symmetries. Here we are interested in a formulation based
on the notion osquared eigenfunction potentiahd the spectral representations of the
underlying eigenfunctions it gives rise to. Because of its connection to vertex operators,
many aspects of this theory are algebraic in nature. This allows us to discuss in a sys-
tematic manner various symmetries of the hierarchy and applications to a large class of
soliton systems obtained from it via symmetry reduction.

The KP hierarchy arises as a set of compatibility conditions for the linear spectral
problem involving the pseudo-differential Lax operafoand the Baker—Akhiezer (BA)
wave functiony g 4 (¢, A). In recent years, the study of integrable systems of KP type has
undergone rapid growth due to the applications of the tau-function technique invented
by the Kyoto School [3, 4, 5]. The underlying principle of this method is to represent
the relevant soliton potentials and Hamiltonian densities in terms of isospectral flows
(with evolution parameterst) = (t1 = x, t2, . . .)) of one single function-(t) in such
a way thato? In 7(t)/0t10t,, becomes equal to the coefficient in front Bf ! in the
pseudo-differential operator expansionf.

In terms of ther-function, viewed as a function of the infinitely many KP “time”-
variables(t; = z,t,,...), the whole KP hierarchy is contained in Hirota’s fundamen-
tal bilinear identity [5] instead of the infinite system of non-linear partial differential
equations derived from the Sato-Wilson Lax operator approach.7Huaction ap-
proach bridges the way to several physical applications in view of its direct connec-
tion to physical objects, such as correlation and partition functions. Moreover, it al-
lows a coherent treatment of multi-soliton solutions. These solutions of the nonlinear
differential equations are generated by the action of the Miwa-Jimbo vertex opera-
tor /’?()\,M) [4] (cf. Eqg. (3.1) below) on the-function. This vertex operator gener-
ates an infinitesimal &cklund transformation of the KP hierarchy. The family of all
vertex operators constitutes a Lie algebra isomorphi€ igoo). The transformation
T(t) — (exp(a/’? (A, )7 (t) sends a solution of the KP hierarchy into another solution.

In this way, the action of the infinite-dimensional Lie algelsta(oo) on the solution
space of the KP equation is made explicit via tHiecBund transformation of “adding
one soliton".

This powerful formal machinery embeds many other concrete and useful structures
relevant for physical models. Recently a special class of solutions encountered in the
matrix models of discrete two-dimensional gravity was realized via the imposition of
the Virasoro type of constraints on the underlyinfunction [6, 7] (see also [8]).

A remarkable feature of the KP hierarchy is the existence of the so called additional
non-isospectral symmetries which, within the Lax operator formalism, are generated
by Orlov-Schulman pseudo-differential operators [9]. The latter are defined as purely
pseudo-differential parts of products of powers of the Lax opeiasord its “conjugate”
M-operator (cf. Egs. (5.1),(5.2) below) and their respective flows form the infinite-
dimensional Lie algebrd/1...*. In an important recent development Adler, Shiota, and
van Moerbeke [14, 15] (see also [16, 17]) obtained a formula for the KP hierarchy which

relates the action of the vertex operafof), 1) on ther-function to Orlov-Schulman
non-isospectral additional symmetry flows on the BA wave function. The coefficients

in the spectral expansion o (A, 1) act as vector fields on the spacemfunctions

1 Wi, algebra was originally introduced in physics literature [11] as a nontrivial “la¥gdimit of
the associative, buton-Lie, conformal Wy algebra [12]. It turns out to be isomorphic to the (centrally
extended) algebra of differential operators on the circle 18] the Lie algebra generated b§j(9/9z)™ for
k € Z, n > 0. Let us also recall that the “semiclassical” limit (contractien) .., of W1, is the algebra
of area-preserving diffeomorphisms on the cylinder [11].
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generatinglV 1., algebra as well. Hence, the above result relatesfhe,, algebra
acting onr(t) to the centerles®/1.., algebra of non-isospectral symmetry flows acting
on the BA functiony g (¢, A).

There exists an alternative to thefunction method characterization of the KP
hierarchy evolution equations in terms of (adjoint) eigenfunctinasfunctions whose
KP multi-time flows are governed by an infinite set of purely differential operators
{Bi} 42, (cf. Def.2.1 below). The latter, by virtue of compatibility of the multi-time
flows, have to satisfy the so called “zero-curvature” Zakharov—Shabat equations (cf.
Eq. 3.44 below). One can then show [18] that/a}l are obtained as purely differential
projections oft™ powers of a single pseudo-differential operafothus leading to the
standard Lax formulation of the KP hierarchy.

Overcoming the formal obstacle of having to define a function via an inverse deriva-
tive 9;1 Oevel succeeded in [19] to associate a well-defined (up to a constant) function
— the squared eigenfunction potential (SEP), to a pair of arbitrary eigenfunction and
adjoint eigenfunction such that thederivative of SEP coincides with the product of
the latter eigenfunctions. Consequently, a systematic formalism emerged in [19] for the
study of symmetries generated within the KP hierarchy via SEP [20]. In a particular ex-
ample, when both eigenfunctions defining the SEP are BA functions, the SEP becomes
a generating function for the above mentioned additional non-isospectral symmetries of
the KP hierarchy [9, 10, 14, 15, 16, 17].

In the SEP framework, the product of any pair of eigenfunction and adjoint eigen-
function, being ac-derivative of SEP, can be viewed as a conserved density within the
hierarchy. The transition to the important class of constrained KP hierackigs,,?,
which are Hamiltonian reductions of the general KP hierarchy and whose Lax operators
are given in Eqg. (2.20) below, can be effectuated by imposing equality between a linear
combination ofm (m > 1) conserved densities of the above mentioned type and the
i (r > 1) fundamental Hamiltonian density of the KP hierarchy. In such a case, the
symmetry generated by SEP (called “ghost” flow) is identified with/fhésospectral
flow of the original KP hierarchy.

The principal merit of our work is to reformulate the eigenfunction formalism of the
KP hierarchy in a new form called thsgjuared eigenfunction potential (SEP) method
namely, to employ SEP as a basic building block in defining the KP hierarchy. The main
ingredient of the SEP method is the proof of existence of spectral representation for any
eigenfunction involving SEP as an integration kernel (spectral density). A link is then
provided between the two alternative formulations of the KP hierarchy: one based on the
7-function and another one based on the SEP method. Furthermore, we apply the SEP
method to solve various issues in integrable models of KP type and their applications in
physics, among them, deriving new determinant solutions forthenction containing
the familiar Wronskian (multi-soliton) solutions as simple particular cases, as well as
identifying them as possible novel types of joint distribution functions in random matrix
models of condensed matter physics.

The plan of the paper is as follows. After reviewing the background material in
Sect. 2, we first prove in Sect. 3 that any eigenfunction of the general KP hierarchy
can be represented as a spectral integral over the BA wave function with a spectral

2 The cKP,. ,, integrable hierarchies appeared in different disguises from various parallel developments:
(a) symmetry reductions [23, 19, 24] of the flP hierarchy; (b) abelianizationg., free-field realizations,
in terms of finite number of fields, of both compatible first and seddRdHamiltonian structures [25, 26];
(c) a method of extracting continuum integrable hierarchies from the generalized Toda-like lattice hierarchies
[27] underlying (multi-)matrix models; (d) purely algebraic approach in terms of the zero-curvature equations
for the affine Kac-Moody algebras with non-standard gradations [28].
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density expressed in terms of SEP. When (at least one) of the eigenfunctions is a BA
functions, we obtain a closed expression for the SEP. When both of the eigenfunctions are
BA functions, the resulting SEP’s are connected straightforwardly to the bilocal vertex

operator)? (A, p) acting on ther-function. This association leads to a simple alternative
proof for the Adler, Shiota, and van Moerbeke result [14, 15, 16, 17] mentioned above.

A further important observation in Sect. 3 is that the spectral representation equa-
tions for the (adjoint) BA functions themselves can be considered as defining equations
for the KP hierarchy. In other words, our formalism of spectral representations of KP
eigenfunctions can be viewed as an equivalent alternative characterization of the KP
hierarchy parallel to Hirota’s bilinear identity or Fay’s trisecant identity [14].

Our results in the constrainekP,. ,,, hierarchy case are as follows. In Sect. 4, using
the SEP framework we obtain an equivalent description (parallel to the one within the
Lax pseudo-differential operator approach)céiP,. ,,, hierarchies entirely in terms of
7-functions only. Namely, we first derive a linear equation fortheinction (Eq. (4.9)
below), involving the bilocal vertex operatd? (A, ) and a set of spectral densities,
which uniguely constrains the-function to belong to theKP,. ,,, hierarchy. Further-
more, we provide in Sect. 4 an alternative descriptiortidP,. ,, hierarchies in the
language of the universal Sato Grassmannian.

One of the advantages of the SEP approach lies in the fact that it allows for a coherent
treatment of the non-isospectral symmetries for KP-type hierarchies. We use this feature
in Sect. 5 to demonstrate how the combination of the familiar Orlov-Schulman non-
isospectral symmetry flows, operating in the full unconstrained KP hierarchy, together
with certain appropriately chosen additional SEP-generated “ghost” symmetry flows
[29, 8] gives rise to the correct non-isospectral Virasoro symmetry generators acting on
the space ofKP,. ,,, T-functions.

The SEP method is applied further in Sect. 6 to formutggaeralized multi-step
binary Darboux-Backlund (DB) transformation rules of (constrained) KP hierarchies
(one-step binary DB transformations with SEP have been introduced previously in
ref.[30]). Based on these transformation rules and using the fundamental Fay identi-
ties, we derive a series of new determinant solutions forrtifienctions generalizing
the known Wronskian (multi-soliton) solutions. The binary DB orbits define a discrete
symmetry structure facKP,. ,, hierarchies corresponding to a square lattice. We exhibit
the equivalence of these binary DB orbits with a generalized Toda modekquaae
lattice.

Our formalism offers applications to the study of random matrix models in con-
densed matter physics, which we briefly discuss in Sect. 7, where we also present some
discussion of the results and an outlook.

2. Background on General and Constrained KP Hierarchies

The calculus of the pseudo-differential operators (see e.g. [3, 2]) is one of the principal
approaches to describe the KP hierarchy of integrable nonlinear evolution equations. In
what follows the operatob is such thaf D, f] = 9f = 0f/0x and the generalized
Leibniz rule holds:

Dnf= i (;‘) @)D", nel. 2.1)
§=0

3 The standard Orlov-Schulman non-isospectral symmetry flowaad@reserve the constrained form
(2.20) ofcKPy.,,, hierarchy.
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In order to avoid confusion we shall employ the following notations: for any
(pseudo-) differential operatet and a functiory, the symbol A(f) will indicate appli-
cation (action) ofd on f, whereas the symbaol f will denote just the operator product
of A with the zero-order (multiplication) operatgr

In this approach the main object is the pseudo-differehtialoperator:

r—2 oo
L=D"+> v;D'+Y u;D"". (2.2)
=0 i=1

The Lax equations of motion:

C%L:[LLL/’“,L] . n=12,... (2.3)

describe isospectral deformations bf In (2.3) and in what follows the subscripts
(+) of any pseudo-differential operatatr = Zj a; D7 denote its purely differential
part (A+ = 3. ya; D7) or its purely pseudo-differential par( = 3,5, a_; D7),
respectively. Furthert] = (t1 = z,t,,...) collectively denotes the infinite set of
evolution parameters (KP “multi-time”) from (2.3).

The Lax operator (2.2) can be represented equivalently in terms of the so called
dressingoperatoriV:

oo
W=1+> w,D™" L=WD W (2.4)

n=1
whereupon the Lax Egs. (2.3) become equivalent to the so-called Wilson-Sato equations:
oaw _ /T

Oty

A further important object is the Baker—Akhiezer (BA) “wave” function defined via:

W—-wD"=-L""W. (2.5)

Ypalt, ) = W (V) =w(t, e, w(t, ) =1+) wi(®)A,  (2.6)
=1

where
ELN=D s ti=w 2.7)
n=1

Accordingly, there is also an adjoint BA function:

Yhalt, ) = W e 60N =0 (2, eV, wr () = 1+ wi (A, (2.8)

i=1
The (adjoint) BA functions obey the following linear system:
r 0 n/r
L(wBA(ta)\)) =A q/}BA(tv)\)a 51/)3,4(757)\) =Ly (QZ)BA(ta A))7 (29)

8 n/r
L (What ) = N 0pa N, 5 whalt, ) = = (L)1 (54 N).
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Note that Egs. (2.3) for the KP hierarchy flows can be regarded as compatibility condi-
tions for the system (2.9).

There exists another equivalent and powerful approach to the KP hierarchy based
on one single function of all evolution parameters — the so called tau-funattp{B] .
It is an alternative to using the Lax operator and the calculus of the pseudo-differential
operators. The-function is related to the BA functions (2.6)—(2.9) via:

Vpalt ) = T =) eon = e i P CIODTO - 510

7(t) 7(t)
. B Gl e ) R VP b 2 () RS O
Upalt: N = = e § Z =7 (2.11)
where
(11,1 4 ) (0 10 190
[A ]:(A ,5/\ ,5/\ ,> [0] = ( 298, 38t3"')’ (2.12)
and the Schur polynomiajs, (¢) are defined through
2z -Z)\ palti,ta, .. .). (2.13)

Taking into account (2.10) and (2.6), the expansion for the dressing operator (2.4) be-
comes:

W= Z pn 7!:21) T(t) —n, ie. U)j_(t) = RedV = _8x In T(t) (214)

The (adjoint) BA functions enter the fundamental Hirota bilinear identity:

/d)\ Ypalt, VA, ) =0, (2.15)

which generates the entire KP hierarchy. Here and in what follows integrals over spectral
parameters are understood #isi\ = ¢ 22 = Res\=.

Let us also recall that the KP hierarchy possesses an infinite set of commuting
integrals of motion w.r.t. the compatible first and second fundamental Poisson-bracket
structures whose densitidg_;, = %ResLl/’“ are expressed in terms of thefunction
(2.10) as

awﬁ Inr(t) = Res.'/". (2.16)
o

Below we shall be particularly interested in reductions of the full (unconstrained)
KP hierarchy (2.2). In this respect, it turns out that a crudid s played by the notions
of (adjoint) eigenfunctionsf KP hierarchy.

Definition 2.1. The function® (W) is called an(adjoint) eigenfunction of the Lax
operator L satisfying Sato’s flow equation (2.3) if its flows are given by the expressions:

0P _ rk/r i 8\1/_ w\k/T
Cr=L(e) i g =- (L)Y (v) @17)

Oty
for the infinitely many times;.
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Of course, according to (2.9) the (adjoint) BA functions are particular examples of (ad-
joint) eigenfunctions which, however, satisfy in addition also the corresponding spectral
equations.

In what follows a very importantile will be played by the notion of the so called
squared eigenfunction potentig@EP). As shown by Oevel [19], for an arbitrary pair of
(adjoint) eigenfunction®(t), W(t) there exists the functioff (®(t), ¥(t)), called SEP,
which possesses the following characteristics:

%S(@(t), w(t) = Res(D—1\I/(L"/T)+q>D—1) . (2.18)
The argument in [19], proving the existencesofd(t), W(t)), was built on compatibility
between isospectral flows as defined in Eq. (2.18) and (2.17).

In particular, forn = 1, Eqg. (2.18) implies that the space derivative (refall=

0/0t1) of S (®(t), ¥(¢)) is equal to the product of the underlying eigenfunctions:

0.5 (O(t), U(t)) = O(t) W(t). (2.19)
Remark. Equation (2.18) determinegs(®(t), ¥(t)) up to a shift by a trivial constant.

From Egs. (2.18)—(2.19) one sees thdt) W(¢) is a conserved density of the KP hier-
archy. This fact has a special significance for the reduction of the general KP hierarchy
to the constrainedKP,. ,,, models (see below).

Definition 2.2. The constrained KP hierarchy (denoted@sP,. ,,,) is given by a Lax
operator of the following special form:

r—2 m
L=Lym=D"+Y wD'+» &,D7Y,. (2.20)
1=0

a=1

One can easily check that the functiobg, ¥,, entering the purely pseudo-differential
part of L, ,,, (2.20), are (adjoint) eigenfunctions 6f. ,,, according to Def.2.1.

The purely pseudo-differential part of arbitrary power of &P, ,,, Lax operator
(2.20) has the following explicit form [31]:

m k—1

(L) =33 LY e, )D (L) (Wa). (2.21)

a=1 j=0

Formula (2.21) can easily be derived from the simple technical identity involving a
product of two pseudo-differential operators of the fofigD g, , i = 1, 2:

1D g1f2D"2 g5 = f1S(f2, 91)D g2 — f1D71S(f2, 91) 92, (2.22)

wheref;, g; are pairs of (adjoint) eigenfunctions of some KP Lax operator, #{th-)
being the corresponding SEP.

Note, that in agreement with Eq. (2.22) the expresdifh,) in (2.21) withL as in
(2.20) explicitly readsi(®,) = L(®o) + > 2y DS (Pg, Wp). This definition extends
naturally to higher powers df acting on®,, as well as higher powers &f acting ony,,.
Moreover, one can easily show th&t(d,) andL** (¥,) are (adjoint) eigenfunctions
of L (2.20) as well.

For three pseudo-differential operatdfs = f;D1g, , i = 1, 2, 3 the associativity
law (X1 X7) X3 = X; (X2X3) implies the following technical lemma:
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Lemma 2.1. The squared eigenfunction potenti(-, -) satisfies:
S(f,9)S(h, k) = S (h, ES(f, 9)) + S (fS(h, k), 9) (2.23)

for (adjoint) eigenfunctiong, g, h, k.

3. Spectral Representation of KP Eigenfunctions
Consider the bilocal vertex operator [4]:

5 1. 5 5 1 -  1(a—l_ 1)
RO =7 IV Xeﬁ(ﬂ[/\ N)—€EN 2oy T =)

1 - o 1(\—l_,~l) o
= _;eﬁ(tw)*ﬁ(t*[# 0N 2o T =), +5(\, ), (3.1)
where
n 0
4, + ! 2
6\ = Z)\ # Z 5% 50 (3.2)
&(t,N\) is asin (2.7), the columns . indicate Wick normal ordering w.r.t. the cre-
ation/annihilation “modes?; and -2 3 respectively, and the delta-function is defined
as
1 1 1 1
S )= Tt (3.3)
Al=% pl-2
An equivalent representation far (A, i), using Wick theorem, reads
~ 1 P
X\ = - N —0() -
(A, 1) P
b . L eftamely el HOT T for < AL (3.4)
The vertex operato?? (A, ) can be expanded as follows:
> (M )\) o1 1 /\(z+1)
X = Z Z AT Y, (3.5)

where the operatoid’®) spanW .. algebra.
From the standard representation for the (adjoint) Baker—Akhiezer wave function
(2.10),(2.11) in terms of the-function we deduce the identity:

X (\ ) (1) _

T(t) N /ll)BA(t )‘) 1/)BA (t + [)\ 1] ,LL) (36)

= _; wBA (ta M) ’(/}EA (t - [M_l]7 )‘) + 5(>\a l’L) (37)

Now, recall the Fay identity [14] for-functions:

(s0 — s1)(s2 — s3)7(t + [so] + [s1]) 7(¢ + [s2] + [s3]) + cyclic(1,2,3) =0 (3.8)
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which, in fact, is equivalent to Hirota bilinear identity (2.15). In what follows, we shall
often make use of a particular form of (3.8) upon settipg 0, dividing bys;s,s3 and
shifting the KP times#) — (¢t — [s2] — [s3]):

(s3 = s3h) 7 (t+[s1] — [s2] — [sa]) 7 ()
+ (571 = s53Y) 7 (¢ — [s2]) 7 (¢ + [s1] — [s3])
+(s3 = sy ) 7 (¢ — [sal) 7 (¢ + [s1] — [52]) = O. (3.9)

Especially, making identificatios, = ;1~1, s, = z~* andsz = A~ in (3.9) and using
(2.10)—(2.11), we arrive at the following useful lemma:

Lemma 3.1. The truncated Fay identity (3.9) is equivalent to the following bilinear
identity for (adjoint) BA functions:

;Kz (wBA(t7 )\)1/}*5,4(15 - [)‘_1]a :U/)) = _%wBA(t7 )\)’(/}*BA(t - [Z_l]7 /1')7 (310)

whereA , is the shift-difference operator acting on functions depending on the variables
t = (t1,t2,...) as follows:

A,=edo 1270000 Ry = f(t—[27Y) - £ (3.11)

The Fay identity (3.8) is also known in its differential version:

5 (7 (t+ D1 - [u1])> _

(1)

=\~ (T Gl 0 B V7 ) Gl ) sl U Ufl])) . (3.12)

() 7(t) 7(t)

Using (3.4) and multiplying both sides of (3.12) by &xp¢ (t, \) + £ (¢, 1)} we can
rewrite it as

X\ )7 ()
s ( =)

or, equivalently, using (3.6) and (3.7):

) = —Ypalt, Vpa(t, 1) (3.13)

Oy <_i Vpalt,\)Vpa (t + [)\—1]’ M)) = At Nopa (t, 1),
Oz (i bpatm) via (t =1, A)) =palt, Wpa(t,p).  (3.14)

Let ®, ¥ be a pair of an eigenfunction and an adjoint eigenfunction of the general
KP hierarchy. Our main statement in this section is:
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Proposition 3.1. Any (adjoint) eigenfunction of the general KP hierarchy possesses a
spectral representation of the form:

a(r) = / AN palt, N W(t) = / NG N AN (3.15)

with spectral densities given by

1 * - * 1 —
PN = T05a (F,0) @ (F+NT)5 0 @ ) = Soma (£,20) (1 = [A71),
(3.16)
where the multi-time’ = (¢,t5,...) is taken at some arbitrary fixed value. In other
words:

o(t) = /d)\ Ypalt, A)%ng 2@ +[A1), (3.17)

w(t) = /d)\ Vi alt, A)%wBA 2 -2 1) (3.18)

are valid for arbitrary KP (adjoint) eigenfunction®, ¥ and for an arbitrary fixed
multi-timet’. Furthermore, the r.h.s. of (3.17) and (3.18) do not depend.on

We will proceed proving the above proposition in two steps. First, let us assume that
the (adjoint-)eigenfunctions indeed possess a spectral representation of the form (3.15)
with some spectral densities*)(\) . In such a case the statement of the proposition is
contained in a much simpler lemma:

Lemma 3.2. For (adjoint) eigenfunctions possessing the spectral representation (3.15)
their respective spectral densities are given by (3.16). Consequently, in this case
Egs. (3.17) and (3.18) are valid too.

Proof. Using the spectral representation (3.15) @(t’' + [A~']) and substituting it
into the right hand side of (3.17), we get:

Jix [ dno vmat 0505 (00 vma (4 D). (39)

Recalling (3.7) we can rewrite (3.19) as:
Jan [ ot vnat) (Zoma () v (¢ = 0 +500)

- / A () At N) = (1), (3.20)

where use was made of the fundamental Hirota bilinear identity (2.15).tFhe
independence of the r.h.s. of (3.17) and (3.18) will be demonstrated explicitly in the
course of the proof of Prop.3.1 given below.]

We are now ready to take a final step of the proof of Prop.3.1 and extend the result
of Lemma (3.2) to arbitrary KP (adjoint-)eigenfunctiowithout assuming existence
of a spectral representation (3.15). To this end we need to recall the notion of SEP
(2.18)—(2.19).

Let S (d)(t),z/JgA(t, )\)) be the SEP associated with a pair of eigenfuncti® g
andyy 4 (t, A), i.€. 9,5 (@(t), Y 4(t, N) = P(t) Y5 A(t, A). Before proceeding let us
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note the following simple property ¢f (@(t), (N (2 /\)), namely, it is an “oscillatory”
type of function w.r.t\ of the form:

S (L), Palt, ) = e 6N i s (AT = eSEN [—aprAt+ OV )] (3.21)
j=1
sj+1(t) = Oxsi(t) — @(Ow; (), j=0,1,...; s=0 (3.22)

wherew’ (1) = (7(t)) 7lpj([6])r(t) are the coefficients in the-expansion of)}; , (¢, \)
(2.11). Indeed, the defining relation (2.18) for the SEP in question:

0 * — * n/r —
25 (@), 54t ) = Res( D p (L VLY. 0(OD ) (329)
implies the oscillatory form:
&) Z s;(HAI (3.24)
=0

of the latter upto an additive constant (recall, that any SEP is defined upto an addition
of a constant). Further, taking into account:

008 (P(1), Uit V) = D) Yialt, ) = e EN Y w7 (3.25)

J=0

and comparing the series in the last equality (3.25) withtthderivative of the series
(3.24), one obtains recurrence relations (3.22). Define now:

D (t,t) = - / AN Ppa(t, ) S (), YA, N)) (3.26)

We first observe thal® (¢,t') /dt,, = 0 due to Egs. (2.18) and (2.15). Heredt, t') =
) (t) does not depend on the multi-timie Moreover, it is obvious from the definition

(3.26) thatd () is an eigenfunction possessing spectral representation of the form (3.15)
and, therefore, satisfying the conditions of Lemma (3.2). Consequently, according to
(3.17), we have:

D () = / d\Ypalt, A)%%A N @ (¢ +[A7Y). (3.27)
Comparing integrands in Egs. (3.26) and (3.27) we find:

1 ~
N VBalt, )@ (t+ A7) = =S (D), ¥5alt, V) + X (8, N), (3.28)
whereX (¢, A) is a function of the “oscillatory” type (3.24) (taking into account (3.21)—
(3.22)):
X(t, \) = e €6 [i (&a(t) - CD(t)) + O()\_Z] . (3.29)
It satisfies:
Res(pa(t, )X (', \) =0 (3.30)

for arbitrary+. Inserting (3.29) in (3.30) and taking = ¢ we get®(t) — ®(t). This
concludes the proof of Prop.3.10
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Corollary 3.1. Taking into account Prop.3.1, Egs. (3.13)—(3.14) imply the following
relations:

S (bralt. ). (e ) = = T
=~ Supa (D) Al ), (33D
S (Walt ), Vst 0) = - D w1,
= St Vi (¢~ 1),
(3.32)
5 (@), it V) = 3 ¥ialt, N (1 + 1) (333)
S W alt, ), W) = Umalt, VW (1~ A1) (3:34)

where @, W are arbitrary (adjoint-)eigenfunctions anfl (-, -) are the corresponding
squared eigenfunction potentials. Moreover, we also have the following double spectral
density representation for the SER ®(t), W(t)):

S (@@ 900 = - [ [ dhdue" el vl Nmatt+ 1)

X\, 1) 7(t)

= (3.35)

=— / / dA dp @ (N)p(k)

Taking into account (3.33)—(3.34), the spectral representations (3.17)—(3.18) be-
come:

o(t) = - / NPt N) S (D), U aE, V) (3.36)
U(t) = /d)\wj‘BA(t,A)S(wBA(t’,/\),\IJ(t’)). (3.37)

Remark.Note that the expressions (3.36)—(3.37) applied for (adjoint) BA functions
yield:

bralt, ) = - / dpbmalt, 1S (P N, At 1)
Vit N) = / A At 1S (B5aE 1), A N) (3.38)

which shows that the SEP (¥pa(t', ), ¥ 4(t', 1)) can be identified with the Cauchy
kernel for each fixed KP multi-tim¢ (cf. also [21] and references therein, where the
above SEP was previously introduced in the context of the Riemann factorization prob-
lem, as well as [22] for related discussion within the dispersionless KP hierarchy).
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Remark.Going back to the spectral representation Eqgs. (3.17)—(3.18), valid for any
eigenfunction of the general KP hierarchy, we observe that they can be rewritten as
evolution equations w.r.t. the KP multi-time of the following form:

o(t) = Ut, (),

O(t.t') = / N N Uha (1, 2) er PO (3.39)
w(t) = U*(t, ¢)¥(t),
0*(t,¢) = / ANl N s (0 e S5 O (3 a0)

One can readily verify that:
Ut,t)=1, U Yt)=U(,1), (}(t =0 UE", ),  (3.41)

%ﬁ(t,t’):Li/T(A](t,t/), Lowty=-L'0¢ ). (3.42)
l

a /
From (3.41)—(3.42) we deduce that the evolution operﬁ(@rt’) (3.39) can be formally
written as a path-ordered exponential:

Ut,t') = Pexp{ ddtlLl/r(t(s))}; t(0) =th, te(1)=tp, k=12 ...

(3.43)
which precisely agrees with the formal solution of the differential evolution Eqgs. (2.17)
forthe KP eigenfunctions. Ther.h.s. of (3.43) isindependent of the particulafipéth}
connecting the point8 andt in the space of KP multi-times due to the “zero-curvature”
Zakharov—Shabat equations:

O pyr _ 9 g [ kT i/"} =0, (3.44)

Thus, our SEP method allowed us to find the explicit expression (r.h.s. of the second
Eq. (3.39)) for the formal path-ordered exponential (3.43).

Now, it is worthwhile to observe that we can revert the logic of our procedure above,
i.e, instead of starting with the Hirota bilinear identity (2.15) (or, equivalently, with
the Fay identity (3.8)) as defining the KP hierarchy and deriving from them the spectral
representation formalism (3.17)—(3.18) (or (3.36)—(3.37)) for KP eigenfunctions, we can
take the spectral representation Egs. (3.36)—(3.37) as the basic equations defining the
KP hierarchy. Namely, we have the following simple:

Proposition 3.2. Consider a pair of functions)(t, \),v*(t,\) of the multi-time
(t1,t2,...) and the spectral paramete of the form ¢®(t,\) = &N
S22 wlHAT with w§?) = 1and&(t, ) as in (2.7). Let us assume thaf)(t, )
obey the following spectral identities:

Bt = / At 1) S A 1), 07 (1, N) = / Ay (t, i) S5, \)  (3.45)

for two arbitrary multi-timest and ¢/, where by definition the functiofi(¢; A, ) is
such thata%S(t; A, 1) = Pt A) v*(¢, ). Then, Egs. (3.45) are equivalent to the Hirota
bilinear identity (2.15) and, accordingly;*)(¢, \) become (adjoint) BA functions of the
associated KP hierarchy.
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To see that Eqgs. (3.45) imply the Hirota identity (2.15), it is enough to differentiate both
sides of (3.45) w.r.tt}: 0 = 9y(t, \) /0ty = (', N) [ du(t, p) ¥* (', p). The proof
of the inverse statement of the equivalence, namely, that the Hirota bilinear identity
(2.15) imply the spectral representation Egs. (3.45), is contained in the proof of Prop.3.1
above.

Using (2.10)—(2.11), Egs. (3.33)-(3.34) can be rewritten as:

T(E+ATY) @ (¢ + A1)

AT (1) e SN = =5 (0(1), ¥pat. V) | (3.46)
7(t =\t )1
(t—[A ]A)T\(I;)(t D) e = g (att ), w00 . 347)

Remark. Spectral representations for eigenfunctions (3.36)—(3.37) as well as identities
(3.46)—(3.47) were obtained in a similar formin [32] for the particular case of constrained

cKP,.,,, hierarchies. Let us specifically emphasize, that all main equations of the present
SEP method (3.15)—(3.18), (3.31)—(3.37) and (3.46)—(3.47), derived above, are valid
within the general unconstrained KP hierarchy.

Acting with space derivativé,. on both sides of (3.46)-(3.47) and shifting the KP time
arguments, we get:

o(t—[A 1) _ 1 TE=1T)
T—l+)\ 19In o) = A 18InT, (3.48)
) 1-A"19Inw(t) = —A"19In Tt ) (3.49)

w(t) ONE.

which were obtained in [8] by studying the way thefunction transforms under
Darboux-Backlund transformations. Taking into consideration that:

o (t—[A71)

— A A=

coma =y LLIDO0 (3.50)
n=2

with p,,(-) being the Schur polynomials (2.13), we find that Eq. (3.48) is a generating
equation for the following set of equations upon expanding in poweks &f

pn(=[0]) () = vu()P(); n =2 (3.51)
Un(t) = pr—1(=[0]) OIn7(?).

Note thatv, (t) are coefficients in the.-expansion of the generating functiof, \)
[33]:

V() =Y AT = 0, INYpalt, \) — A = Ax0; InT(1), (3.52)

n=1

where in obtaining the last equality we again used Egs. (2.10)—(2.11) and notation (3.11).
We will later need a slight generalization of (3.52):

VO, ) = olpa = a% INpalt,\) — A = K*a% Inr(t); [>1. (3.53)

n=1
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Clearly o (t) = p,(~[0]) 8/0t; In T andv, () = o™ ,(#), n > 2. The coefficients?
enter the basic identity for the KP Lax operator (2.2):

l/r —7l/r O7r—n/r

(L )+—L +;anL . (3.54)
Remark.Eqgs. (3.51) are, clearly, valid for an arbitrary eigenfunctivof the full KP
hierarchy. On the other hand, in ref.[3] (see also [24]) Egs. (3.51) were presented for
the special case @b = ¢ 4(t, \) as relations equivalent to the standard KP evolution
equationsypa(t, \)/0t, = (L™ ")+ppa(t, N). In fact, as shown in [33], plugging the
BA wave function®(t) = ¥ pa(t, i) into Eq. (3.48) one easily recovers the differential
Fay identity (3.12).

We now define the “ghost” symmetry flows generated by the SEP [9, 19, 24, &), Let
be a vector field, whose action on the Lax operdt@nd, accordingly, on the dressing
operatoV, is induced by a set of (adjoint) eigenfunctiobs, ¥, a € {«} through:

O = [ 3 oD, L}; B W = ( 3 (I)aD_l\I/a)W. (3.55)

ac{a} ac{a}

As shown in [19], the corresponding action of the above “ghost” flows on the (adjoint)
eigenfunctionsb, W:

8a¢) = Z dDCLS(CD,\I’a); 8a\Il = Z S((I)a’\l;) \pa (356)
ae{a} ae{a}

is compatible with the isospectral evolutionsdafWw. Furthermore, it is easy to see that

0aS (@, W)= > §(P,W,)S (P, ¥) (3.57)
ac{a}
is compatible with Eq. (3.56).
If 0gW = (Zbew} cpbpflqu) W defines some other “ghost” flow and both flows
0, anddp satisfy (3.56), then:

[0a, 03] W =0, (3.58)

as follows from the technical identity (2.22). Equations (3.56) and (3.58) can be com-
pactly expressed by an identity

Oo— > @D N, , 05— > &D W, | =0
a€f{a} be{B}

[20, 19].

Define nowY (\, i) = vpa (t, 1) D715 4(t, \) (cf. ref.[16]) to be pseudo-
differential operator inducing a ghost-flod, W = Y (A, u))W according to (3.55).
In this case the “SEP” symmetry flow is generated by an infinite combinatiov, e,
algebra generators [16]. Then, according to Eq. (3.56) the action of this flow on the BA
wave function is given by:
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?(A’ /’L) (wBA(t7 Z)) = a()\,/l.) (wBA(ta Z)) = d)BA (t7 :u) S (¢BA(t7 Z)a 17Z)*BA(t7 Az) . )
3.59
Further, let us also define the action of the vertex opepﬁt()x, 1) on the BA function
¥pa(t, z) as generated by its action (as a vector field) on the ratiefahctions entering
(2.10):

e TOX QL) Tt = [71) — 7t = "D () 7).

X\ ) ¥palt,2) = 72(1)

(3.60)
The latter, upon using the shift-difference operator (3.11), can be written as

X\ 1) 7(1)
(1)

Let us stress that, according to (3.59)—(3.651][)\, 1) acts on the BA function as a
standard pseudo-differential operator, Whﬂ&(&k, 1) acts on it as a shift-difference
operator.

Now, the above results allow us to give a simple straightforward proof of the fol-
lowing version of the Adler-Shiota-van-Moerbeke proposition [15, 16]. It provides the
connection between the form of ten-isospectral (“additional”) symmetriesf KP
hierarchies acting on the Lax operators and BA functions [9, 10], on one hand, and their
respective form when acting on KRfunctions, on the other hand.

Corollary 3.2. With definitions (3.59) and (3.60) it holds:

X O\ 1) ¥pa(t,2) =vpa(t,2) A, (3.61)

X\ ) ¥palt,2) = YO\ 1) (¥palt, 2)). (3.62)

Proof. Indeed, applying (3.7) and Lemma 3.1 to the r.h.s. of (3.61), the latter equation
can be rewritten as:

~ 1 ~

X\ mvpalt,2) = —vpalt, 2)vpalt, 1) palt=[z"1, 0 =Y\ 1) @pa t, 2),
(3.63)

where in order to arrive at the last equality use was made of (3.32).

In the literature one often comes across the vertex operator defiféhag) =
: exp (é()\) - é(u)> = (A — w)X (\, p). In such a notation the expression (3.62)

becomesX (), u) = (A — )Y (\, ) as in [15, 16].
We conclude this section by proving the following important property of SEP:

Lemma 3.3. Under shift of the KP times, the squared eigenfunction potential obeys:
1
S (D — AT, Wt — A7) — S (@), ¥(1) = — POW(t — A1), (3.64)

S (Dt +[A), Wt + A7) — S (D), () = %@(t + A7) w(t). (3.65)
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Proof. According to (3.35) and (3.31):

3.5, 90) = [ [ aAdus" M6U0AS (bma(t N, iat. ), (360
while from Eqg. (3.10) we find that:
gZS (dJBA(ta )‘)7 ¢73A(t7 /~L)) = _%wBA(t: A)w%A(t - [2_1]: ;U/) (367)

Inserting the above identity back in (3.66) gives (3.64)]
After expanding identities (3.64) and (3.65) in power series vikkie obtain:

ps(—[a])S(cb(t» ww) = — () pe_s (1)),

ps([a])5<d><t>7w)>=w(t>ps_1<[a]><1><t), s=12,.... (368)

wherep,(-) are the standard Schur polynomials (2.13).

4. Constraints oncKP;. ,,, Tau-Functions. Grassmannian Interpretation

From now on we concentrate on studying the class of constraiied ,,, hierarchies
for which we have:

(Lrm) =Y @D, (4.1)
a=1

according to Eq. (2.20). We first note that &P, ,,, BA function satisfies, according
to (4.1), the following spectral equation:

Lr,m,'l/]BA(ta )‘) = )‘T'l/)BA(ta >‘) = (Lr,m)+wBA(ta )\) + Z q)a(t) S (wBA(ta )‘)a “Ila(t)) .

a=1
(4.2)
Due to Eq. (3.34), the latter can be cast in the following form:
1
NUpatA) = (Lrm)spa(t, )+ Y S @al)Wa (= A7) palt, \)
a=1

= (Lr,m)+wBA(t7 )‘)

= D[S (@alt = NI, alt = D) = S (@a(0), Wa()] ¥BaE ), (43)
a=1

where the second equality in (4.3) follows from (3.64). Recalling relation (3.53) we find
that

Or(t)/0t, = > S (®alt), Wa(t) 7(2). (4.4)
a=1
Similarly, using the spectral identity;, 5 a(t, \) = N""¥pa(t, ) and taking into
account relation (2.21) we obtain the following set of differential equations for the
cKP;. ,,, T-function:
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m n—1

(i) = [Z S s (i), L*Z(wa))] (1), (4.5)

a=1 =0

The point we want to stress is that the constraint (4.4) (or, the equivalent relation (4.3))
contains all the information about tleKP system in addition to the regular Hirota
bilinear expression for thkP r-function. This constraint can be given a bilinear form

as in [32]. Consider, namely, the expression:

/d)\)\rwBA(L)\)ng(t’, A). (4.6)

Using (4.3) and Hirota’s equation one gets for (4.6):

m

Z@ (t) / DWWl ~ N Dpalt ) =Y @u0R) @)

a=1

where we also used the spectral representation (3.18)waitl¢’ interchanged. Hence
we proved that the constraint (4.4) implies:

> @ (t)W(t) = / A" YAt N AE, N (4.8)
a=1

which is the well-known bilinear expression for tbEP hierarchy [32] derived here
from the simple fundamentalfunction constraint (4.4).

Using the differential Fay identity (3.12), Egs. (4.5) can be equivalently written in
the form:

{8f [at [ [ anas (M—M*Zs@au)%(u)xu u)]}T(t)—

(4.9)
wherep()()\) are the “spectral densities” of the (adjoint) eigenfunctidngt), ¥, ()
entering the pseudo-differential part of tbkP,. ,,, Lax operator (2.20), and also we
have used the identity:

e R = =) Fouw. (4.10)

Thus we arrive at the following statement providing an alternative definitiaif. ,,,
hierarchies intrinsically in terms of-functions:

Proposition 4.1. Reduction of the full KP hierarchy (2.2) to tleKP,. ,, hierarchy

in terms of Lax operators (2.20) is equivalent to imposing Eqgs. (4.9) as constraints
on the pertinentr-functions, wherep()()\) are “spectral densities” of KP (adjoint)
eigenfunctions given as in Egs. (3.16).

Let us now translate Eq. (4.9) into the language of universal Sato Grassmahnian
[3, 34]. Consider the hyperplang € Gr defined through a linear basis of Laurent
series{ fx(\)} in \ in terms of the BA function as generating functifift, \):

W = span fi(A)f2(N) ;.. ),
fe(N) = F(t A) ;PN =vpalt,A). (4.11)

x=to=t3=...=0
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In case of the standard" KdV reduction, where the corresponding Lax operator
D+> u; D~ satisfiesC” = L7, the latter constraint translates to the Grassmannian
language a3" W C W [4].

Our aim now is to express tlKP,. ,,, constraint (4.1) (cf. (2.20)) in the Grassman-
nian setting. We find from (4.3) that the generating funcfig(, \):

P = vy 3 IS @0LalD] )= (L)t ate

A
a=1l n=1
(4.12)
defines via (4.11) a pointy’ of Sato Grassmannigiv:
W' =span(F’(0, \), 0, F'(0,\), 02F'(0, \), ...) (4.13)

which coincides, because of the second equality in (4.12), with the original point
defined through¥ (¢, \) = ¥pa(t, \) (4.11). Thus, we have

Proposition 4.2. Let S (®,(t), ¥, (t)) , a = 1,...,m, bem squared eigenfunction
potentials (2.18), wher®,, , ¥, are (adjoint-)eigenfunctions of the general KP hierarchy
(2.2). Then, the reduction of (2.2) to tb&P,. ,,, hierarchy (2.20) can be equivalently
expressed as a restriction ¢f- to a subset whose points (hyperplangg)(4.11) are
subject to the following constraint;

AT+ AL S (@alt), Wa(t)) | WC W (4.14)

a=1

with A, asin (3.11) andb (@, (¢), ¥, (t)) being given by (3.35) in terms of the generating
function (4.11) odV.

5. Non-Isospectral Virasoro Symmetry forcKP,. ; T-Functions

The conventional formulation of additional non-isospectral symmetries for the full KP
integrable hierarchy [9, 17] is not compatible with the reduction of the latter to the
important class of constrainezkP,. ,,, integrable models. In refs.[29, 8] we solved
explicitly the problem of compatibility of the Virasoro part of non-isospectral symmetries
with the underlying constraints oKP,. ,,, hierarchies within the pseudo-differential Lax
operator framework. Our construction in [29, 8] involves an appropriate modification
of the standard non-isospectral symmetry flows, acting on the spadeRyf,, Lax
operators, by adding a set of additional “ghost symmetry” flows (of the type appearing in
Eq. (3.55)). Inthis section, we derive the explicit form of the action of the correct modified
Virasoro non-isospectral symmetries as flows on the spaci€ff ,,, 7-functions. Note
that the corresponding result for the full unconstrained KP hierarchy has been previously
obtained in [15, 16, 17].

Tothisend, letusfirstrecall that the standadditional (non-isospectral) symmetries
[9, 17] are defined as vector fields on the space of general KP Lax operators (2.2) or,
alternatively, on the dressing operators (2.4), through their flows as follows:

4 For a different criteria characterizir@kP;- ,,, hierarchies within the Sato Grassmannian framework, see
refs.[35, 36].
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Okl = —| (M"LF)_, L]
=[ (Db, L] #ndr Y B, W = - (ML) _ W (5.0)

Here M is a pseudo-differential operator “canonically conjugatedr. teuch that:

_ 0 _ l/r
[L,M]_Jl, %M_[ L 7M] (5.2)
Within the Sato-Wilson dressing operator formalism, Mifeoperator can be expressed
in terms of dressing of the “barel/(? operator:

T

) L l+7r i _ l —r
MO =% ;tlDl =X+ Tt'rHDl’ Xn=), ;tlDl (5:3)
>1 >1 =1

conjugated to the “bare” Lax operatbf®) = D".

The additional symmetry flows (5.1) commute with the usual KP hierarchy isospec-
tral flows given in (2.3). However, they do not commute among themselves, instead they
form a centerles®V,.., algebra (see e.g. [17]). One finds that the Lie algebra of op-
eratorsdy, ,, is isomorphic to the Lie algebra generated-by*(0/02)". Especially for
n = 1 this becomes an isomorphism to the centerless Virasoro algghra: —L;_1,
with[ L, Li]1=(01 — k)Li+k-

As demonstrated in [29, 8], the conventional non-isospectral flows (5.1otlo
preserve the spacedfP,. ,,, Lax operators given by (2.20). In particular, for the Virasoro
non-isospectral symmetry algebra the transformed Lax opeéatpE belongs to a
differentclass of constrained KP hierarchieskP,. ,,.—1) (Whenk > 3). The solution
to this problem is provided by the following [29, 8]:

Proposition 5.1. The correct non-isospectral symmetry flows for ¢he,. ,,, hierar-
chies (2.20), spanning the Virasoro algebra, are given by:

oL = |- (ML)_+xPy, L], (5.4)
i.e., with the following isomorphisni,_1 ~ — (ML) + X", where X", are
ghost-symmetry generating operators (cf. (3.55)) defined as:

m k—1

*P=32 %

<j;(k—1)> Fio)p (L) (W), k=1 (55)
i=1 j=0

Since (auto-)Darboux-&#cklund transformations afKP,. ,,, hierarchies (see next
section) play a fundamentable for finding exact solutions, as well as in establishing
the link betweerckP,. ,,, integrable models and (multi-)matrix models, it is natural
to impose the additional condition of commutativity of the non-isospectral symme-
tries with the Darboux-Bcklund transformations. The latter condition was shown in
refs.[29, 8] to be satisfied only by the subclasd, 1 of constrained KP hierarchies
(it is preciselycKP,. 1 hierarchies which provide the integrability structure of discrete
multi-matrix models [8]). Therefore, in the rest of this section we restrict our attention
to cKP,. 1 models.
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Consider the modified non-isospectral Virasoro symmetry flows (5.4) acting on the
dressing operator of theKP,. ; hierarchy:

FW =— (MLF)_ W+ XD, w. (5.6)

Taking the operator residuum on both parts of (5.6) we obtain:

k—2
* 1~ 1 : —2—7J *J
0ir() = SR 0+ |3 (56 -2-) s (@07 w) |0,
=0
(5.7)
In deriving Eqg. (5.7) we used the expressionjdjl1 (5.5) together with the differential
Fay identity (3.12) as well as:

Res(M'LF) = Resy [(M'L*) (Wpa(t, \) ¥t V]
o'

1 r—Ui(r— *
= 7 Resy (A’“ & 1>8AleA(t,A)wBA(t,A)> (5.8)

_ o | 1 1 - @ 5
= -0, [T t)R€5>\ <rlu 8/AZX(>\,M) |u=>\ 7(t)

_ 1 /W((;iill))rT(t)
R R T ) '

Inthe chain of the identities in (5.8) we took into account Dickey’s formulddf L*) _

[16] (first equality in (5.8)), Eq. (3.13) (third equality in (5.8)), and formula (3.5) for
)?(/\, 1) to arrive at the last equality above. The Virasoro operator in the first term on
the r.h.s. of (5.7) comes from the standard Orlov-Schulman non-isospectral symmetry
flow and reads explicitly (fok > —1):

= 0
WP =23 "1
51 Otk

P k—1 82
—(k+1)—+ . .
(k 1 atk ; 5t18tk_l (5 9)

We now express the second additional “ghost-flow” term on the r.h.s. of (5.7) as a
differential operator acting on(t) of a form similar to (5.9). The starting point are
the differential Egs. (4.5) obeyed by th&P,. ; 7-function, wherefrom we get for the
second-order derivatives:

n—1

r(lt)a?ja(fil = Z; [5 (L””‘l"'(cpm“(xm) ~5 (L”—l—i(cbx L*M(w))}

n—11-1

+ 3 s (2 @), L(w) S (L (@), LY (W)

i=0 j=0

S (L”*H(cp), L (w)) S (Ll’l’j(qD),L*i(\IJ))} . (5.10)

In obtaining relation (5.10) we made use of the following lemma:
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Lemma 5.1. The relation:

5 9) = SL"(f).9) =S (f,.L"(9))

n—1
=Y S @),g) S (£L7W) (5.11)
=0
holds for f an eigenfunction ang an adjoint eigenfunction of the Lax operatbr=
Ly1 = L+ + ®D~1¥ belonging to theKP,.; hierarchy.

Proof. We are going to show tha/dt,,. S(f, g) = Res(D~tg(L™). fD~') is equal to
the right-hand side of Eq. (5.11) (up to a constant). We first appdt...,, on the left
hand side of Eq. (5.11). This yields

6?’” ot D= i 8tir S(f,9) = —Res(D"HL)i ()L™ D7)

+ Res(D1gL™(L)}(f)D71). (5.12)
After making the substitutions:

n—1

(L3N = L) = 3L (@)s (1,17 (W) (5.13)
=0
n—1
(L)) = L™ (g) + Y _ L™ (W)S (L™ (®), g) , (5.14)
i=0

where use was made of (2.21), we obtain agreement with the result of apgjing .
on the right-hand side of Eqg. (5.11) and using Eqg. (2.18) as well as Lemmd2.1

Using Egs. (4.5),(5.10) we obtain:

k—2

1 , . P
Z(Z(k—z)—g) (Lk 2-i(®), L J(\p)) 5 (t)zam T (5.15)

= Obr(k—1—1)

Collecting (5.9) and (5.15), the final form of tie&P,. 1 non-isospectral Virasoro sym-
metry flows reads:

Cr(k-D+1 9
orr(t) = It
k() [ ; 8tl+7(k 1) 2r Otr(k—1)
g "Dt 52 = 52

Z Ayt r(e—1)1 Z

t). 5.16
Oty 1Oty (—1— 1)] 0. (510

In particular, forcKPq 1 hierarchies the Virasoro non-isospectral symmetry takes the
form (Eq. (5.16) fon- = 1):

k—2

k0 o2
orr(t) = [Z It D 290, +; 8tlatk—1—l:| 7(t). (5.17)

>1
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Concluding this section it is instructive to point out the relation of (5.17) with the
so-called Virasoro constraints in conventional discrete matrix models [37, 7] spanning
the Borel subalgebra of the Virasoro algebra:

LMZy=0 s>-1, (5.18)
o 9 0 X9 0
(N)=§:kt—+2N + — >1 5.19
L= 2 kg — at, Z oot ‘= G619
k=1 k=1
(N):Z N2 <N>:§ :k; + Nt;. 5.20
Ly 2 kty a1 ;LYY 2 (2 s 1 ( )

Here Zy denotes the one-matrix model partition function withindicating the size

of the corresponding (Hermitian) random matrix. On one hand, it can be identified as
ar-function of the semi-infinite one-dimensional Toda lattice model [37]. On the other
hand, from the point of view of continuum integrable systems it was shown in [38, 8]
to beZy = 7V:9), i.e, N'" member of the Darboux-4&klund orbit on the subspace of
cKPy 1 7-functions starting from the “free” initiab©% = 1 (see the next section for
more details about DarbouxaBklund orbits on constrained KP hierarchies). Comparing
(5.19)—(5.20) with (5.17) one finds:

LY =05+ Nty; L5V =05 + N2,
LM =95 + (2N +k/2)0/0t) 1, k> 2. (5.21)

6. Binary Darboux-Backlund Orbits on cKP,. ,,, Hierarchies. Toda
Square-Lattice Model

Let us recall the form of the DarbouxaBklund and adjoint-Darboux&klund trans-
formations which preserve the constrained form of ¢Ké,. ,,, hierarchy Lax oper-

ator (2.20) [38, 8],.e., we shall discusauto-Darboux-Backlund transformations for
cKP, , hierarchies (for a general discussion of DB transformations of generic KP
hierarchies without the requirement of preserving specific classes of constrained KP
hierarchies, see refs.[39, 19]):

L—L=Li+Y &D YW, =T,LT,", T,=®,Dd;" (6.1)
=1
_ _ m _ _ _ _ _
L—L=Li+Y &D ", =T 'LT;, T,=W,DV," (6.2)
=1

Here ®,, ¥, are (adjoint) eigenfunctions enterig_ (2.20) with fixed indices:, b
which henceforth will be assumed? b. Accordingly, for BA functions, the-function,
eigenfunctions and their respective spectral “densities”, the DB transformations (6.1)
imply:

~ ~ 1
cba = TaL(q)a)v ‘Ila ==,
@,

- ~ 1
;=T (P, W =T N (W) = —5 5@ ), LiFa, (6.3)
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Tialt. ) = T Tusalt ) 70) = ot (6.)

Vhalt: ) = XTI, (@ha(t, V) = —Ag (t) 30 5(@a(0), 5 At V), (6.5)
2aN) =ATRLO) G =AY, B =TI, i 7a. (6.6)

For the adjoint DB transformations (6.2) we have:

_ 1 —
by =——, W, =T L*(V),

vy
=Ty @) = —iS(ﬂDi, W), W =Ty(V,), iFb, (6.7)
Dialt: ) = AT} 0mat V) = Ay s SWalt V), () ©9)
Pt ) =~ T Tihal N 70 = 9070, (69)

GrN) = AT (V) @(/\)=*%%(A)7 i) = =Api(V), i 7b.(6.10)

We shall use the double superscript k) to indicate the iteration ofi successive
Darboux-Backlund transformations (6.3) pléssuccessive adjoint-DarbouxaBklund
transformations (6.7). One can easily show that the result does not depend on the par-
ticular order these transformations are performed. Therefore, the set af &)l DB
transformations, callegeneralized binarypB transformations in what follows, defines
a discrete symmetry structure on the spacelP,. ,,, hierarchies corresponding to
a two-dimensional lattice. Let us note that thel(lLbinary DB transformations were
previously introduced in ref.[30].

For one-step binary-DB transformed and BA functions we get:

70 = -5 (909, ¥POw ) 70O ), (6.11)

(0,0) (0,0) -1
DA 177® OW, 1 = [A7)) $09
o [ A s (@090, uPOw) o
$ (@09 — A1), WP - 1) )
] 5 (09, ¥Po))

90N,  (6.12)

(0,0) (0,0) AL
* (171) t7 )\ = 1 + E \IJ (t)cb (t + [ ])
Ypa Tt A) [ A g (q)(o 0)p), \y(o O)(t)>

S (@09 + ), WP+ A1)
S CRORTRI0)

] w*BA(Ol’O)(ta )‘)

%0, ), (6.13)

where in the second equalities in (6.12) and (6.13) we used again (3.33)—(3.34) and
(3.64)—(3.65). Combining Eg. (6.11) with Eq. (4.5) for= 1 we find the following
transformation formula for the squared eigenfunction potentials:
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(6.14)
Let us recall again that here and belavw b arefixedindices of Lax (adjoint) eigen-
functions.

Remark.Comparing formula (6.11) with (3.35) we see that one-step binary-DB transfor-
mations onr-functions are nothing but the well-known Satadlund transformations

[4] (i.e., those generated by the bilocal vertex oper&(©x, 1) (3.1)) “averaged” with
appropriate spectral densities.

Introducing short-hand notations:

WO = (209" @00 . GO0 = (L09) @O0
SE) =S ((L(o’o’)i (@00zy), (LOO)™ (w§°’°)(t))) (6.15)

we have:

Proposition 6.1. The following determinant formulae hold for thestep binary DB
transformed quantities:

(n,n) n—1 N -
;Tm((f)) = (1" [T 5 (0920, ¥§90) = (-2)" det

J=0

Sfjb‘l’j‘l)(t)H . (6.16)

(i—1,j-1) (i—1)
det.o || S () x& (t)H

§lua=vy o

L(t) = (—1)" e , (6.17)
det, Sffb_l’J_l)(t)‘
det,+1 ali(jfl)(t) ali(n)(t)
W) = (-1 XX . (6.18)
oo |55 0]
det,s ||SE D)
$ (@), w0 (0)) = " | , (6.19)

det, Hsgglﬂ' *%5)]

wherex®, x;® and %) are defined in (6.15), and the matrix indiceg run from1
ton or n + 1 according to the indicated sizes of the determinants.

Formulae (6.17)—(6.19) can be further generalized to:

(i—-1,j-1) (i—1)
det,on || Sn 0 O <t)H

((Sb"'n j—1) (s*n)
Sap 7T XET()
det, ||t )|

(L(mn))S (q;flm”)(t)) =(-1)" , (6.20)
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et [ S 0 5 200 |

ab .
A QNP A 0|
det, Hst(lib—l,j—l)(t) H

(L) (w) = (-1 . (6.21)

5 (20 @, (207) i)

S(Z*l,]*l)(t) S(Zfl7s+n)(t) H

b b
Szlg-n,] 71)(t) S?Zl;n,s+n) (t)

g [550]

det,+1

. (6.22)

We are now ready, with the help of (6.20)—(6.22), to write down the generalization of
Eq. (6.16) for theKP 7-function subject to an arbitrary.( k) binary DB transformation:

Proposition 6.2. The general discrete binary Darbow&gklund orbit on the space of
cKP,.,,, T-functions, generated by a fixed pair of (adjoint) eigenfunctidgs¥, and
starting from arbitrary “initial” 79, consists of the following element&-*):

k) . )Y
— 1—1,7—
00 (H) det st H) x

(i—1,j-1) X(i—l) (ilfl,jfl) X(ifl)
Wk [ggt §leg=n Ty | G8Y gl Loy } » (6:23)
forn>k , 4,j=1...)k
(n,k)(t) Lo —(k—n—1)
TOON) (o ay (1—1,]—1)”)
700/ (v dftHSab 8
(i-1j-1) gli~Ln) §li=1i=1) gli~1k-1)
Wi—n {det ab . ab oy |l ,--.,det|| “ab . ab }, (6.24)
| IV BBV | IRV BRI
for n<k , ¢j=1...,n

wherex®, x;® and 57 are as in (6.15),
and Wi [fu, ..., fi] = det’
a set of functiong f1, . .., fr}.

.....

Remark. Note that the entries in the Wronskians in Egs. (6.23)—(6.24) are determinants
themselves.

Remark.In the Appendix we write down the explicit expressions for P, ,,, 7-
functions on the most general discrete binary DarboagkBind orbit generated via
successive (adjoint) DB transformations (6.3)—(6.10) w.r.t. an arbitrary set of (adjoint)
eigenfunctions.

In the simple case of a “free” initial system wifH>® = D which, accordingly, is
characterized by:

O =g 90 - gy (6.25)

0oOpn=1 - —
T ( ) 1 atn Xa xT a ? atn
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formula (6.16) reproduces the Fredholm determinant expressiodet||J; ; + a; ;|| for
ther-function witha, ; = [*__ x¥ ;% dy [40, 41]. Namely, it follows that:

n

% (6 +ai;) = D (=0, = Res(D*lxg(j’D”XEj)Dfl) . (6.26)
" =1

The latter allows us to identif§;; +a; ; with S (x, x;) and establishes connection
between the above special case of (6.16) and the Fredholm determinant expressions for
the r-functions of refs.[40, 41].

Now, we shall show that thex( k) binary Darboux-Bcklund orbit of thecKP,. »
hierarchy defines a two-dimensional Toda square-lattice system which describes two
coupled ordinary two-dimensional Toda-lattice models corresponding to the horizontal
(n, 0) and the vertical (0k) one-dimensional sublattices of the &) binary DB square-
lattice. Namely, consider:

n,k n,k
L 7
q:)g-nfl,k) \I/(Zn,kfl)
(6.27)
where we used (6.3) and (6.7). Taking into account the expressions for the (adjoint-)DB
transformedr-functions (6.4) and (6.9).e.

ax% In 7_(n,k) - Rei(n,k) - q)g"’k)\llg_n’k) + q)(zn,k)qj(zn,k) —
r

(n+1,k) (n,k+1)
(nk) = T (nik) = T

o7 = R 2 T (6.28)

Eq. (6.27) can be rewritten in the form:

o (n*+L,k) -(n—=1,k) _ (n,k+1)(n,k—1)
Oz InTH = U A—— : (6.29)
T (T(7l7k))
or, equivalently:
9 (n,k) (n,k) 0 (n,k) — _(n+l,k),_(n—1,k) (n,k+1),_(n,k—1)
31.57' ) — Q™ ET ) = pNTLE) ) RT L, . (6.30)
T T

Similarly, Eq. (6.27) can be represented as a system of coupled equations of motion for
(" andw{"* using again (6.28):

9 <I)(n+1.,k) q)(n,k) \I,l(n+1’k) \Ij(n,k)
ax|nq>(1"v’f>:< L — | =2 2 , (6.31)

ot, q)(ln,k) q)(lnfl,k) \p(2n+1,k71) - ql(zn,kfl)

9 \_IJ(”ak""l) lIJ("’k) CD(n’kH-]') @(“»k)
Op - IN WG = — 2(n ) (nzk—l) + (nl—l ) (nl—l 5 |- (6.32)
oty iy i o o}

When ") vanishes the remaining equations """ reduce for a fixed: to the
equations of motion for the well-known Toda model on one-dimensional latticem.r.t.
(andvice versaf ®{"*) = 0).
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7. Discussion and Outlook. Relation to Random Matrix Models

In this paper we provided a new version of the eigenfunction formulation of the KP hi-
erarchy, called thequared eigenfunction potential (SEP) methetere the SEP plays

a role of a basic building block. The principal ingredient of the SEP method is the proof
of existence of spectral representation &ory KP eigenfunction as a spectral integral
over the (adjoint) BA function with spectral density explicitly given in terms of a SEP.

It was pointed out that the spectral representations of the (adjoint) BA functions them-
selves (being particular examples of KP eigenfunctions) can, in turn, serve as defining
relations for the whole KP hierarchy parallel to Hirota fundamental bilinear identity or
Fay identity.

The SEP method was subsequently employed to solve various issues in integrable
hierarchies of KP type both of conceptual, as well as more applied character. Many,
previously unrelated, recent developments in the theory ofrthenction of the KP
hierarchy gained from being described by the present formalism. As one of the important
illustrations of how our method works, we have shown how the SEP, acting on the
manifold of wave functiong s 4 (¢, A) by generating non-isospectral symmetry algebra,
lifts to a vertex operator acting onfunctions. This reproduced in the SEP setting the
results of [14, 15, 16, 17].

We have also employed the SEP construction in the context of Hamiltonian reduc-
tions of KP hierarchy providing:

— description of the reductions of the general KP hierarchy to the constrelitfed,,
hierarchies entirely in terms of linear constraint equations on the pertinent
functions;

— description of constrainetkP,. ,,, hierarchies in the language of the universal Sato
Grassmannian;

— obtaining the explicit form of the non-isospectral Virasoro symmetry generators
acting on theKP,. ,,, 7-functions.

The achieved progress should result in further clarification of the statusate,, hi-
erarchies and their connection to the underlying fermionic field language. It would also
be interesting to look for the signs of the affigfr™+ m + 1) symmetry encountered

in construction of theeKP,.,,, models by the generalized Drinfeld-Sokolov method
associated to affine Kac-Moody algebras [28].

Furthermore, as a principal application, the SEP method was used to derive a series
of new determinant solutions for thefunctions of (constrained) KP hierarchies which
generalize the familiar Wronskian (multi-soliton) solutions. These new solutions belong
to a new type ofieneralized binarparboux-Backlund orbits which, in turn, were shown
to correspond to a novel Toda model osguarelattice. An important task for future
study is to find a closed Lagrangian description of this new Toda square-lattice model.

Finally, let us briefly describe another potential physical application of the present
approach.

Using the spectral representation for (adjoint) eigenfunctions (3.15) together with
(2.10)—(2.11), as well as the following form of the Fay identity fefunctions [14]:

T(t+ AT =)
(Xi — pj)7(t)
= H71>j (>‘i _ Aj) (:“i - Mj) T(t+ Zl[)\l_l] B Zl[ﬂl—ﬂ)
Hz’,j (>‘i - Hj) 7(t) ’

det

n

=(-D (7.1)
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we obtain an equivalent “spectral” representation &™) () (6.16):

<“=”><t)

= (n|)(2 : / HdA dp; 1>I (A = A9) j::(c,oz’:((’”)(xj)eﬂw) x
T, O —WE b ta) (1 = 46)

ﬁ(wa(o’o)(uj)eg(t’“-”)) OO+ >IN = Dl ) (7.2)
J=0 l l

Following [42], we can interpret the-function (7.2) as a partition function of cer-
tain random multi-matrix ensemble with the following joint distribution function of
eigenvalues:

n—1
Zu{t1 = const 7 (p) = / [T s dis exp{—H(E A} (D)}, (7:3)
=0

H(t AN ) =D (Hu(\) + Ha(py) + > (Ho(hi, Ag) + Ha(pui, 1))
j i>j
+ Z Z§2()‘i7 ,Uj) + Hn({/\}7 {,u})v (74)

2%
where the one-, two- and many-body Hamiltonians read, respectively:
Hi(\) = - |n¢(°’°)(k) — e, Hi(N) = ~Inp* @O0 +¢(2, ), (7.5)

Ho(Ai, A7) = —In (A — ;) In(z AN ) Ho(\, 1) = In(\ — 1), (7.6)

Ha({(A Aih) = = In 7@ (143" = g 1) (7.7)
l l

The physical implications of the above new type of joint distribution function (7.3)—
(7.7) deserves further study especially regarding critical behavior of correlations. The
emerging new interesting features of (7.3)—(7.7), absent in the joint distribution function
derived from the conventional two-matrix model [42], are as follows:

(a) the second attractive term in the two-body potential(7.6) (both forA- and y-
“particles”) dominating at very long distances over the customary repulsive first
term; B

(b) an additional two-body attractive potentid} (7.6) between each pair of andu-
“particles”

(c) a genuine many-body potentidl, (7.7).

One of the mostimportantissues here is to exhibit the explicit form of the generalized
multi-matrix model behind (7.3)—(7.7).
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A. Appendix: The Most General cKP,. ,,, Binary Darboux-B acklund Orbit

Let us first introduce a few convenient compact notations for Wronskian and related
Wronskian-like determinants:

Wy, =Wy [f]_,...,fk] S det)

| W) = Wealfa o S 11, A

80471]0[3 8ailfk+1
S (fo: f) S (frrss f)

where the matrix indices,, 3 = 1,...,k and, as above), S (fs, f) = fsf . The
Wronskian(-like) determinants (A.1)—(A.2) obey the following useful identities:

Wesa(f) = Wy, .., frwai f] = det

, (A.2)

Wi—1(£)\ _ Wilf) Wi—1. Wiet()\ _ Wielf) Wi
(M) =G o (M) -G e

where the first one is known as Jacobi expansion theoremdsef43]), whereas the
second identity in (A.3) can be easily verified via induction. Equations (A.3) imply in
turn the identities:

Wi (f)

- - Wi(/)
T - Ty(F) = I T O A A AR A4
R N R R LT (A%
with
T = i pZi-1 Tt _DiZip-1 g A5
Wi w0 W; Wi (A5)

Now we can use Egs. (A.4) to derive explicit expressions for the (adjoint) eigen-
functions andr-functions ofcKP,. ,,, hierarchies generated via successive (adjoint) DB
transformations (6.3)—(6.10) w.r.t. an arbitrary set of (adjoint) eigenfunctions of the
“initial” cKP,.,,, Lax operatorL = L, ,, (2.20). We shall denote the latter arbitrary
successive (adjoint) DB transformations by the following double-vector superscript:

(7. F) = (@, ), G, - o) (A6)
indicatingn; successive DB transformations w.fit; etc., untiln,,, DB transformations

w.r.t. &, and, similarly,k; successive adjoint-DB transformations w.¥#. etc., until
k., adjoint-DB transformations w.r.t,,,. Specifically, we have:

*76 m )
CI)an ) = (—1)Za+ln‘7

0 -1 — _
W[x(l),...,x(lm L X9, XD ) O l)}

W |:X§LO)7 R ’Xg_nl_l)7 A 7X510)7 cre 7Xgn’a’_l)7 A 7X$’97,)7 R 7X$;71Lm_1):|

(A7)

— 0 -1 ~—
7—W[X(1)7--~7X(1m )77X59L)57X$Z b ) (A8)
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7,0
S
. 0 (n1—1) 0 ng —2 0 vm —1
S W[><(1)7~~-,><l 0, xra 2 O ’]
(—1)4an © (n1—1) © (na—1) ©) o =D] for ng > 1
W[x1 ,,,,, Xy © s Xa' - Xa e X Xm ] (A 9)
7 -1 n — . 6’6 .
B
_ for n, =0

0, nq—1 0) ) ’
W[x(l’:--qx(l"l D eox @ m )}

where the functiong(®) are the same as in (6.15) with the superscript8)feplaced with
the corresponding double-vector or‘(efs 6). Equations (A.7)—(A.8) already appeared

in [29] (see also refs.[44]), whereas Eqg. (A.9) is derived via iterative application of the
second identity in (A.4) and taking into account (A.7).

Now, performing arbitrary successive adjoint-DB transformations (fha) (A.8)
according to the second Eq. (6.9) upon using the firstidentity in (A.4) and inserting there
the explicit expressions (A.9), we arrive at the following:

Proposition A.1. The most general discrete binary Darbou&dRlund orbit on the
space otKP,. ,,, T-functions is built-up of the following elements:

(37)
G

3t
B!

m

- 0 -1 ]\ ek
—(—W[X(l),...,x(lnl ),...,Xgo),...,xg” l)D P x

W A ar1y - Aleror—ta1) - s Aomyr - -2 Al —1.my)  (A10)

ol
[=]]

n 17 0 11—1 —1). 1
Aﬁ,s):W{X(l),...,x(l"l L Y L QX:“} (A.11)
where

(ﬁ,E):((nl,...,na,O,...,O),(O,...70,ka+1,...,km)) © a=0,1,....m
(A.12)
and, furthermore, notations (6.15) and (A.2) are employed.

Remark.The reason for the zero entries in the labels (A.12) of the most general binary
DB transformations, preserving the spacesk®,. ,,, hierarchies (2.20), lies in the fact
that any pair of two successive (adjoint-)DB transformations vy, t.¥,, i.e.both with

the sameindex, is equivalent to an identity transformation as one can easily conclude
by combining the second equation in (6.3) with the second equations in (6.4) and (6.9).

Acknowledgementltis our pleasure to thank Leonid Dickey for interestin this work, his very useful comments
and encouragement.
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