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Abstract: We develop a generalised theory of bundles and connections on them in
which the role of gauge group is played by a coalgebra and the role of principal bundle
by an algebra. The theory provides a unifying point of view which includes quantum
group gauge theory, embeddable quantum homogeneous spaces and braided group gauge
theory, the latter being introduced now by these means. Examples include ones in which
the gauge groups are the braided line and the quantum plane.

1. Introduction

In a recent paper [Brz96b] it was shown by the first author that a generalisation of the
quantum group principal bundles introduced in [BM93] is needed if one wants to include
certain “embeddable” quantum homogeneous spaces, such as the full family of quantum
two-spheres of Podleś [Pod87]. A one-parameter specialisation of this family was used
in [BM93] in construction of theq-monopole, but the general members of the family do
not have the required canonical fibering. The required generalised notion of quantum
principal bundles proposed in [Brz96b], also termed aC-Galois extension (cf. [Sch92]),
consists of an algebraP , a coalgebraC with a distinguished elemente and a right action
of P onP ⊗C satisfying certain conditions. In the present paper we develop a version
of such “coalgebra principal bundles” based on a mapψ : C ⊗P → P ⊗C ande ∈ C,
and giving now a theory of connections on them.

Another motivation for the paper is the search for a generalisation of gauge theory
powerful enough to include braided groups [Maj91, Maj93b, Maj93a] as the gauge
group. Although not quantum groups, braided groups do have at least a coalgebra and
hence can be covered in our theory. We describe the main elements of such a braided
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principal bundle theory as arising in this way. This is a first step towards a theory of
braided-Lie algebra valued gauge fields, Chern-Simons and Yang-Mills actions, to be
considered elsewhere.

As well as providing a unifying point of view which includes our previous quantum
group gauge theory [BM93], the theory of embeddable homogeneous spaces [Brz96b]
and braided group gauge theory, our coalgebra bundles have their own characteristic
properties. In particular, the axioms obeyed byψ involve the algebra and coalgebra
in a symmetrical way, opening up the possibility of an interesting self-duality of the
construction. This becomes manifest when we are given a characterκ on P ; then we
have also the possibility of a dual “algebra principal bundle”, corresponding in the finite-
dimensional case to a coalgebra principal bundle with the fibreP ∗, total spaceC∗ and
the structure mapψ∗. This is a new phenomenon which is not possible within the realm
of ordinary (non-Abelian) gauge theory. Moreover, the axioms obeyed byψ correspond
in the finite-dimensional case to the factorisation of an algebra intoP opC∗, which is a
common situation [Maj90]. Indeed, all bicrossproduct quantum groups [Maj90] provide
a dual pair of examples.

Finally, we note that some steps towards a theory of fibrations based on algebra
factorisations have appeared independently in [CKM94], including topological consid-
erations which may be useful in further work. However, we really need the present
coalgebra treatment for our infinite-dimensional algebraic examples, for our treatment
of differential calculus and in order to include quantum and braided group gauge the-
ories. We demonstrate the various stages of our formalism on some concrete examples
based on the braided line and quantum plane.

Preliminaries. All vector spaces are taken over a fieldk of generic characteristic and
all algebras have the unit denoted by 1.C denotes a coalgebra with the coproduct
1 : C → C ⊗ C and the counitε : C → k which satisfy the standard axioms. For the
coproduct we use the Sweedler notation

1c = c(1)⊗ c(2), 12c = (1⊗ id) ◦1c = c(1)⊗ c(2)⊗ c(3), etc.,

wherec ∈ C, and the summation sign and the indices are suppressed.
A vector spaceP is a rightC-comodule if there exists a map1R : P → P ⊗ C,

such that (1R ⊗ id) ◦1R = (id⊗1) ◦1R, and (id⊗ ε) ◦1R = id. For1R we use the
explicit notation

1Ru = u(0̄)⊗ u(1̄),

whereu ∈ P andu(0̄) ⊗ u(1̄) ∈ P ⊗C (summation understood). Fore ∈ C, we denote
by P coC

e the vector subspace ofP of all elementsu ∈ P such that1Ru = u⊗ e.
H denotes a Hopf algebra with productµ : H ⊗ H → H, unit 1, coproduct

1 : H → H ⊗ H, counitε : H → k and antipodeS : H → H. We use Sweedler’s
sigma notation as before. Similarly as for a coalgebra, we can define rightH-comodules.
We say that a rightH-comoduleP is a rightH-comodule algebra ifP is an algebra and
1R is an algebra map.

If P is an algebra then by�nP we denote theP -bimodule of universaln-forms on
P , which is defined as�nP = �1P ⊗P · · · ⊗P �1P (n-fold tensor product overP ).
By the natural identificationP ⊗P P = P we have [Con85, Kar87]

�nP = {ω ∈ P⊗n+1 : ∀i ∈ {1, . . . , n}, µiω = 0},
whereµi denotes a multiplication inP acting on thei andi+ 1 factors inP⊗n+1. �P =⊕

n=0 �nP , where�0P = P , is a differential algebra with the universal differential
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d : P → �1P , du = 1⊗u − u⊗ 1. When extended to�nP ⊂ P⊗ n+1, d explicitly
reads:

d
(
u0⊗u1⊗ . . .⊗un

)
=

n+1∑
k=0

(−1)ku0 ⊗ . . .⊗ uk−1⊗ 1⊗uk ⊗ . . .⊗ un. (1)

�n(P ) denotes a bimodule ofn-forms onP obtained from�nP as an appropriate
quotient.

Finally, if C is a coalgebra andP is an algebra then we define a convolution product
∗ in the space of linear mapsC → P by f ∗ g(c) = f (c(1))g(c(2)), wheref, g : C → P
andc ∈ C. The mapf : C → P is said to be convolution invertible if there is a map
f−1 : C → P such thatf ∗ f−1 = f−1 ∗ f = η ◦ ε, whereη : k → P is given by
η : α 7→ α1.

In addition, we will also discuss examples based on the theory of braided groups
[Maj91, Maj93b, Maj93a] and the theory of bicrossproduct and double cross product
and Hopf algebras [Maj90, Maj94b], due to the second author. Chapters 6.2,7.2,9 and 10
of the text [Maj95] contain full details on these topics.

2. Coalgebraψ-Principal Bundles

In this paper we will be dealing with a particular formulation ofC-Galois extensions or
generalised quantum principal bundles. This formulation is more tractable than the one
in [Brz96b], allowing us to develop a theory of connections for it in the next section.
Yet, it is general enough to include all our main examples of interest. Our data is the
following:

Definition 2.1. We say that a coalgebraC and an algebraP areentwinedif there is a
mapψ : C ⊗ P → P ⊗ C such that

ψ ◦ (id⊗µ) = (µ⊗ id) ◦ ψ23 ◦ ψ12, ψ(c⊗ 1) = 1⊗ c, ∀c ∈ C (2)

(id⊗1) ◦ ψ = ψ12 ◦ ψ23 ◦ (1⊗ id), (id⊗ ε) ◦ ψ = ε⊗ id, (3)
whereµ denotes multiplication inP , andψ23 = id⊗ψ etc. Explicitly, we require that
the following diagrams commute:

C ⊗ P ⊗ P -id ⊗ µ
C ⊗ P

?
ψ

P ⊗ C
?
ψ ⊗ id

P ⊗ C ⊗ P
HHHjid ⊗ ψ

P ⊗ P ⊗ C���*
µ⊗ id

C ⊗ k -id ⊗ η
C ⊗ P

?
ψ

P ⊗ Ck ⊗ C -η ⊗ id

(4)

P ⊗ C ⊗ C � id ⊗1
P ⊗ C

6
ψ

C ⊗ P

6
ψ ⊗ id

C ⊗ P ⊗ C
HHHY id ⊗ ψ
C ⊗ C ⊗ P

���� 1⊗ id

P ⊗ k � id ⊗ ε
P ⊗ C

6
ψ

C ⊗ Pk ⊗ P � ε⊗ id

(5)
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whereη is the unit mapη : α 7→ α1.

In the finite-dimensional case this is exactly equivalent by partial dualisation to the
requirement that̃ψ : C∗⊗P op→ P op⊗C∗ is an algebra factorisation structure (which
is part of the theory of Hopf algebra double cross products [Maj90]). This is made precise
at the end of the section, where it provides a natural way to obtain examples of suchψ.

Proposition 2.2. LetC,P be entwined byψ. For every group-like elemente ∈ C we
have the following:

1. For any positiven, P⊗n is a right C-comodule with the coaction1n
R = ψnn+1 ◦

ψn−1n ◦ . . . ◦ ψ12 ◦ (ηC ⊗ idn) ≡ ←−ψ
n

◦ (ηC ⊗ idn), whereηC : k → C, α 7→ αe.

2. The coaction1n+1
R restricts to a coaction on�nP .

3. M = P coC
e = {u ∈ P ; 11

Ru = u⊗ e} is a subalgebra ofP .

4. The linear mapχM : P ⊗M P → P ⊗ C, u⊗M v 7→ uψ(e⊗ v) is well-defined. If
χM is a bijection we say that we have aψ-principal bundleP (M,C,ψ, e).

Proof. We writeψ(c⊗ u) =
∑

α uα ⊗ cα and henceforth we omit the summation sign.
In this notation, the conditions (4) and (5) are

(uv)α ⊗ cα = uαvβ ⊗ cαβ , 1α ⊗ cα = 1⊗ c, (6)

uα ⊗ cα(1)⊗ cα(2) = uαβ ⊗ c(1)
β ⊗ c(2)

α, ε(cα)uα = ε(c)u, (7)

for all u, v ∈ P andc ∈ C.

1. The map1n
R is given explicitly by

1n
R(u1⊗ . . .⊗ un) = u1

α1
⊗ . . .⊗ un

αn
⊗ eα1...αn .

Hence

(1n
R ⊗ id)1n

R (u1⊗ . . .⊗ un) = u1
α1β1
⊗ . . .⊗ un

αnβn
⊗ eβ1...βn ⊗ eα1...αn

= u1
α1β1
⊗ . . .⊗ un

αnβn
⊗ e(1)

β1...βn ⊗ e(2)
α1...αn

= u1
α1
⊗ u2

α2β2
⊗ . . .⊗ un

αnβn
⊗ eα1

(1)
β2...βn ⊗ eα1

(2)
α2...αn

= ... = u1
α1
⊗ . . .⊗ un

αn
⊗ eα1...αn

(1)⊗ eα1...αn
(2)

= (idn ⊗1)1n
R(u1⊗ . . .⊗ un),

where we used the group-like property ofe to derive the second equality and then
we used the condition (5)n times to obtain the penultimate one. We also have

(idn ⊗ ε)1n
R(u1⊗ . . .⊗ un) = u1

α1
⊗ . . .⊗ un

αn
ε(eα1...αn )

= u1
α1
⊗ . . .⊗ un−1

αn−1
⊗ unε(eα1...αn−1)

= . . . = ε(e)u1⊗ . . .⊗ un

= u1⊗ . . .⊗ un,

where we have first used the condition (5)n-times and then the group-like property
of e. Hence1n

R is a coaction.



Coalgebra Bundles 471

2. If
∑

i u
i⊗vi ∈ kerµ then (µ⊗id)

∑
i 12

R(ui⊗vi) =
∑

i u
i
αv

i
β⊗eαβ =

∑
i(u

ivi)α⊗
eα = 0, using (6). Hence the coaction preserves�1P . Similarly for �nP .

3. HereM = {u ∈ P |uα⊗ eα = u⊗ e}, and if u, v ∈ M , then (uv)α⊗ eα =
uαvβ ⊗ eαβ = uvβ ⊗ eβ = uv⊗ e as well, using (6).

4. It is easy to see thatχM is well-defined as a map fromP ⊗M P . Thus, ifx ∈M we
haveχM (u, xv) = u(xv)α⊗ eα = uxαvβ ⊗ eαβ = uxvβ ⊗ eβ = χM (ux, v), using
(6). �

We remark that parts 3 and 4 also follow from the theory of C-Galois extensions
of [Brz96b], forP (M,C,ψ, e) is such an extension. The required right action ofP on
P ⊗C is given by (µ⊗ id) ◦ ψ23 : P ⊗C ⊗P → P ⊗C.

Example 2.3.LetH be a Hopf algebra andP be a rightH-comodule algebra. The linear
mapψ : H⊗P → P ⊗H defined byψ : c⊗u→ u(0̄)⊗cu(1̄) entwinesH,P . Therefore
a quantum group principal bundleP (M,H) with universal differential structure as in
[BM93] is aψ-principal bundleP (M,H,ψ, 1).

Proof. For anyc ∈ H andu ∈ P we haveuα⊗cα = u(0̄)⊗cu(1̄). Clearly 1α⊗cα = 1⊗c.
We compute

uαvβ ⊗ cαβ = u(0̄)vβ ⊗ (cu(1̄))β = u(0̄)v(0̄)⊗ cu(1̄)v(1̄) = (uv)(0̄)⊗ c(uv)(1̄) = (uv)α⊗ cα,

hence the condition (4) is satisfied. Furthermore,ε(cα)uα = ε(cu(1̄))u(0̄) = ε(c)u and

uαβ ⊗ c(1)
β ⊗ c(2)

α = u(0̄)
β ⊗ c(1)

β ⊗ c(2)u
(1̄) = u(0̄)(0̄) ⊗ c(1)u

(0̄)(1̄)⊗ c(2)u
(1̄)

= u(0̄)⊗ (cu(1̄))(1)⊗ (cu(1̄))(2) = uα ⊗ cα(1)⊗ cα(2),

so that the condition (5) is also satisfied. Clearly the induced coaction in Proposition 2.2
coincides with the given coaction ofH. �

We can easily replaceH here by one of the braided groups introduced in [Maj91,
Maj93b]. To be concrete, we suppose that our braided groupB lives in ak-linear braided
category with well-behaved direct sums, such as that of modules over a quasitriangular
Hopf algebra or comodules over a dual-quasitriangular Hopf algebra. This background
quantum group does not enter directly into the braided group formulae but rather via the
braiding9 which it induces between any objects in the category. We refer to [Maj93a]
for an introduction to the theory and for further details. In particular, a right braided
B-module algebraP means a coactionP → P⊗B in the category which is an algebra
homomorphism to the braided tensor product algebra [Maj91]

(u⊗ b)(v⊗ c) = u9(b⊗ v)c. (8)

The coproduct1 : B → B⊗B of a braided group is itself a homomorphism to such a
braided tensor product.

Example 2.4.Let B be a braided group with braiding9 andP a right braidedB-
comodule algebra. The linear mapψ : B ⊗ P → P ⊗ B defined byψ : c ⊗ u →
9(c⊗u(0̄))u(1̄) entwinesB,P . If the induced mapχM is a bijection we say that the
associatedψ-principal bundleP (M,B,ψ, 1) is abraided group principal bundle, and
denote it byP (M,B,9).
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Proof. This is best done diagrammatically by the technique introduced in [Maj91]. Thus,
we write9 = and products byµ = . We denote coactions and coproducts by. The
proof of the main part of (4) is then the diagram:

B   P   P

P    B

=

B   P   P

P    B

B   P   P

P    B

= =

B   P   P

P    B ,

where box isψ as stated, in diagrammatic form. The first equality is the assumed ho-
momorphism property of the braided coaction. The second equality is associativity
of the product inB, and the third is functoriality of the braiding, which we use to push
the diagram into the right form. The minor condition is immediate from the axioms of a
braided comodule algebra and the properties of the unit mapη : 1→ P . Here 1denotes
the trivial object for our tensor product and necessarily commutes with the braiding in
an obvious way (such that 1is denoted consistently by omission). For the proof of (5)
we ask the reader to reflect the diagram in a mirror about a horizontal axis (i.e. view
it up-side-down and from behind) and then reverse all braid crossings (restoring them
all to ). The result is the diagrammatic proof for the main part of (5) if we relabel the
product ofP as the coproduct ofB and relabel the product ofB as the right coaction
of B onP . The minor part of (5) is immediate from properties of the braided counit.
�

Example 2.5.LetH be a Hopf algebra andπ : H → C a coalgebra surjection. If kerπ
is a minimal right ideal containing{u−ε(u)|u ∈M} thenψ : C⊗H → H⊗C defined
byψ(c⊗u) = u(1)⊗π(vu(2)) entwinesC,H, whereu ∈ H, c ∈ C andv ∈ π−1(c), and
we have aψ-principal bundleH(M,C,ψ, π(1)) in the setting of Proposition 2.2, denoted
H(M,C,ψ, π). Hence the generalised bundles over embeddable quantum homogeneous
spaces in [Brz96b] are examples ofψ-principal bundles.

Proof. In this caseuα ⊗ cα = u(1) ⊗ π(wu(2)), for anyu ∈ H, c ∈ C andw ∈ π−1(c).
Clearly 1α ⊗ cα = 1⊗ c. We compute

uαvβ ⊗ cαβ = u(1)vα ⊗ π(wu(2))
α = u(1)v(1)⊗ π(wu(2)v(2)) = (uv)α ⊗ cα,

wherew ∈ π−1(c). Hence condition (4) is satisfied. Furthermore, we haveε(cα)uα =
ε(π(wu(2)))u(1) = ε(c)u and

uαβ ⊗ c(1)
β ⊗ c(2)

α = u(1)α ⊗ π(w(1)u(2))⊗ c(2)
α = u(1)⊗ π(w(1)u(2))⊗ π(w(2)u(3))

= u(1)⊗ π(wu(2))(1)⊗ π(wu(2))(2) = uα ⊗ cα(1)⊗ cα(2),

where againw(1) ∈ π−1(c(1)) andw(2) ∈ π−1(c(2)). Therefore condition (5) is also
satisfied.

Some concrete examples of coalgebra bundles over quantum embeddable homoge-
neous spaces may be found in [Brz96b] (cf. [DK94]).
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We note that diagrams (4) and (5) are dual to each other in the following sense. The
diagrams (5) may be obtained from diagrams (4) by interchangingµ with 1, η with ε
andP with C, and by reversing the arrows. With respect to this duality property the
axioms for the mapψ are self-dual. Therefore we can dualise Proposition 2.2 to obtain
the following:

Proposition 2.6. Let C,P be entwined byψ : C ⊗P → P ⊗C. For every algebra
characterκ : P → k we have the following:

1. For any positive integern,C⊗n is a rightP -module with the action/n = (κ⊗ idn)◦
ψ12 ◦ ψ23 ◦ . . . ◦ ψnn+1 = (κ⊗ idn) ◦ −→ψ

n

.

2. The action/n maps1n(C) to itself.

3. The subspaceIκ = span{c/1u−cκ(u)|c ∈ C, u ∈ P} is a coideal. HenceM = C/Iκ
is a coalgebra. We denote the canonical surjection byπκ : C →M .

4. There is a mapζM : C ⊗P → C ⊗M C defined byζM (c⊗u) = c(1)⊗M c(2)/
1u,

whereC ⊗M C = span{c⊗ d ∈ C ⊗C|c(1)⊗πκ(c(2))⊗ d = c⊗πκ(d(1))⊗ d(2)} is
the cotensor product underM . If ζM is a bijection, we say thatC(M,P, ψ, κ) is a
dualψ-principal bundle.

Proof. 1. The explicit action is

(cn⊗ · · ·⊗ c1)/nu = cαn
n ⊗ · · ·⊗ cα1

1 κ(uα1···αn ).

Then clearly

((cn⊗ · · ·⊗ c1) /nu)/nv = cαnβn
n ⊗ · · ·⊗ cα1β1

1 κ(uα1···αn
vβ1···βn

)

= cαn
n ⊗ cαn−1βn−1

n−1 ⊗ · · ·⊗ cα1β1
1 κ((uα1···αn−1vβ1···βn−1)αn )

= · · · = cαn
n ⊗ · · ·⊗ cα1

1 κ((uv)α1···αn ) = (cn⊗ · · ·⊗ c1)/n(uv)

for all ci ∈ C andu, v ∈ P . We used (6) repeatedly.

2. We have (c(1)⊗ c(2))/2u = c(1)
β ⊗ c(2)

ακ(uαβ) = cα(1)⊗ cα(2)κ(uα) = 1(c/1u) by
(7), and similarly for higher1n(C).

3. Explicitly, Iκ = span{cακ(uα) − cκ(u)|c ∈ C, u ∈ P}. But using (7) we have
1(cακ(uα) − cκ(u)) = c(1)

β ⊗ c(2)
ακ(uαβ) − c(1)⊗ c(2)κ(u) = c(1)⊗(c(2)

ακ(uα) −
c(2)κ(u))+(c(1)

βκ(uαβ)−c(1)κ(uα))⊗ c(2)
α ∈ C ⊗ Iκ+Iκ⊗C. HenceIκ is a coideal.

4. The stated mapζM (c⊗u) = c(1)⊗ c(2)
ακ(uα) has its image inC ⊗M C since

c(1)⊗πκ(c(2))⊗ c(3)
ακ(uα) = c(1)⊗πκ(c(2)

β)κ(uαβ)⊗ c(3)
α

using (7) andπκ(Iκ) = 0. By dimensions in the finite-dimensional case, it is natural
to require that this is an isomorphism. �

This is also an example of a dual version of the theory ofC-Galois extensions. The
proposition is dual to Proposition 2.2 in the sense that all arrows are reversed. In concrete
terms, ifP,C are finite-dimensional thenψ∗ : P ∗⊗C∗ → C∗⊗P ∗ andκ ∈ P ∗ make
C∗(M∗, P ∗, ψ∗, κ) aψ∗-principal bundle. HereM∗ = {f ∈ C∗|(κ⊗ f ) ◦ ψ = f ⊗κ}.
If C,P are entwined and we have bothe ∈ C andκ : P → k, we can have both aψ-
principal bundle and a dual one at the same time. An obvious example, in the setting of
Example 2.3, isP = C = H a Hopf algebra andψ(c⊗u) = u(1)⊗ cu(2) by the coproduct.
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Then Proposition 2.2 withe = 1 gives a quantum principal bundle withM = k and right
coaction given by the coproduct. On the other hand, Proposition 2.6 withκ = ε gives a
dual bundle with action by right multiplication.

Finally, we note that there is a close connection with the theory of factorisation of
(augmented) algebras introduced in [Maj90, Maj94b] as part of a factorisation theory of
Hopf algebras. According to this theory, a factorisation of an algebraX into subalgebras
A,B (so that the productA⊗B → X is a linear isomorphism) is equivalent to a
factorisation structureψ̃ : B⊗A → A⊗B with certain properties. It was also shown
that whenA,B are augmented by algebra characters then the factorisation structure
induces a right action ofA onB and a left action ofB onA, respectively.

Proposition 2.7. LetC be finite-dimensional. Then an entwining structureψ : C ⊗P →
P ⊗C is equivalent by partial dualisation to a factorisation structureψ̃ : C∗⊗P op→
P op⊗C∗. In the augmented case, the induced coaction11

R and action/1 in Proposi-
tions 2.2 and 2.6 are the dualisations of the actions induced by the factorisation.

Proof. We use the notatioñψ(f ⊗u) = ui⊗ f i say, forf ∈ C∗ andu ∈ P . The
equivalence withψ is by ui〈f i, c〉 = uα〈f, cα〉, where〈 , 〉 denotes the evaluation
pairing. It is easy to see thatψ entwinesC,P iff ψ̃ obeys [Maj94b]cf. [Maj90]

ψ̃ ◦ (µ⊗ id) = (id⊗µ) ◦ ψ̃12 ◦ ψ̃23, ψ̃(f ⊗ 1) = 1⊗ f, (9)

ψ̃ ◦ (id⊗µ) = (µ⊗ id) ◦ ψ̃23 ◦ ψ̃12, ψ̃(1⊗u) = u⊗ 1 (10)

for all f ∈ C∗ andu ∈ P op. Thus, the first of these isui〈c, (fg)i〉 = uα〈cα, fg〉 =
uα〈cα(1), f〉〈cα(2), g〉 = uαβ〈c(1)

β , f〉〈c(2)
α, g〉 = uαi〈c(1), f

i〉〈c(2)
α, g〉 = uji〈c(1), f

i〉
〈c(2), g

j〉using (7). Similarly for (10) using (6), provided we remember to use the opposite
product onP . Such datãψ is equivalent by [Maj94b, Maj90] to the existence of an algebra
X factorising intoP opC∗. Given suchX we recoverψ̃ by uc = µ ◦ ψ̃(c⊗u) in X, and
conversely, giveñψ we defineX = P op⊗C∗ as in (8), but withψ̃. Also from this theory,
if we haveκ an algebra character onP op (or onP ) then/ = (κ⊗ id) ◦ ψ̃ is a right action
of P op onC∗, which clearly dualises to the right action ofP onC in Proposition 2.6.
Similarly, if e is a character onC∗ then. = (id⊗ e) ◦ ψ̃ is a left action ofC∗ onP op (or
onP ) which clearly dualises to the right coaction ofC in Proposition 2.2. �

An obvious setting in which factorisations arise is the braided tensor product (8)
of algebras in braided categories [Maj91, Maj93b, Maj93a], withψ̃ = 9 the braiding.
Thus ifA⊗B is a braided tensor product of algebras (e.g. of module algebras under a
background quantum group) we can look for a suitable dual coalgebraB∗ in the category
and the corresponding entwiningψ ofB∗, Aop. This provides a large class of entwining
structures.

Another source is the theory of double cross productsG ./ H of Hopf algebras in
[Maj90]. These factorise as Hopf algebras and hence, in particular, as algebras. In this
context, Proposition 2.7 can be combined with the result in [Maj90, Sect. 3.2] that the
double cross product is equivalent by partial dualisation to abicrossproductH∗I/G.
These bicrossproduct Hopf algebras (also due to the second author) provided one of the
first general constructions for non-commutative and non-cocommutative Hopf algebras,
and many examples are known.

Proposition 2.8. LetCI/P op be a bicrossproduct bialgebra [Maj90, Sect. 3.1], where
P op, C are bialgebras suitably (co)acting on each other. ThenC,P are entwined by
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ψ(c⊗u) = u(1)
(0̄)⊗u(1)

(1̄)(u(2).c).

Here. is the left action ofP op onC andu(0̄)⊗u(1̄) is the right coaction ofC onP op,
as part of the bicrossproduct construction.

Proof. We derive this result under the temporary assumption thatC is finite-dimensional.
Thus the bicrossproduct is equivalent to a double cross productP op ./ C∗ with actions
., / defined byf.u = u(0̄)〈f, u(1̄)〉 and 〈u.c, f〉 = 〈c, f/u〉 for all f ∈ C∗. Thenψ̃
for this factorisation isψ̃(f ⊗u) = f (1).u(1)⊗ f (2)/u(2) according to [Maj90, Maj94b].
The correspondence in Proposition 2.7 then givesψ as stated. Once the formula forψ is
known, one may verify directly that it entwinesC,P given the compatibility conditions
between the action and coaction of a bicrossproduct in [Maj90, Sect. 3.1].�

Now we describe trivialψ-principal bundles and gauge transformations in them.

Proposition 2.9. Let P andC be entwined byψ as in Definition 2.1 and lete be a
group-like element inC. Assume the following data:

1. A mapψC : C ⊗ C → C ⊗ C such that

(id⊗1) ◦ ψC = ψC
12 ◦ ψC

23 ◦ (1⊗ id), (id⊗ ε) ◦ ψC = ε⊗ id, (11)

andψC(e⊗ c) = 1c, for anyc ∈ C;

2. A convolution invertible map8 : C → P such that8(e) = 1 and

ψ ◦ (id ⊗8) = (8⊗ id) ◦ ψC . (12)

Then there is aψ-principal bundle overM = P coC
e with structure coalgebraC and

total spaceP . We call it thetrivial ψ-principal bundleP (M,C,8, ψ, ψC , e) associated
to our data, with trivialisation8.

Proof. The proof of the proposition is similar to the proof that the trivial quantum
principal bundle in [BM93, Example 4.2] is in fact a quantum principal bundle. First we
observe that the map

2 : M ⊗ C → P, x⊗ c 7→ x8(c)

is an isomorphism of linear spaces. Explicitly the inverse is given by

2−1 : u 7→ u(0̄)8−1(u(1̄)
(1))⊗ u(1̄)

(2),

where8−1 : C → P is a convolution inverse of8, i.e.

8−1(c(1))8(c(2)) = 8(c(1))8
−1(c(2)) = ε(c)1.

To see that the image of the above map is inM ⊗C we first notice that (12) implies that
11

R ◦8 = (8⊗ id) ◦1 and that

ψ(c(1)⊗8−1(c(2))) = 8−1(c)⊗ e. (13)

Therefore for anyu ∈ P ,

11
R(u(0̄)8−1(u(1̄))) = u(0̄)ψ(u(1̄)

(1)⊗8−1(u(1̄)
(2))) = u(0̄)8−1(u(1̄))⊗ e,



476 T. Brzezínski, S. Majid

and thusu(0̄)8−1(u(1̄)) ∈ M . Then it is easy to prove that the above maps are inverses
to each other.

We remark that2 is in fact a leftM -module and a rightC-comodule map, where
the coaction inM ⊗ C is given byx ⊗ c 7→ x ⊗ c(1) ⊗ c(2). Moreoverψ ◦ (id ⊗ 2) =
(2⊗ id) ◦ ψC

23 ◦ ψ12.
The proof thatχM in this case is a bijection follows exactly the method used in the

proof of [BM93, Example 4.2] and thus we do not repeat it here.�

Next, we consider gauge transformations.

Definition 2.10. LetP (M,C,8, ψ, ψC , e) be a trivialψ-principal bundle as in Propo-
sition 2.9. We say that a convolution invertible mapγ : C →M such thatγ(e) = 1 is a
gauge transformationif

ψC
23 ◦ ψ12 ◦ (id ⊗ γ ⊗ id) ◦ (id⊗1) = (γ ⊗ id ⊗ id) ◦ (1⊗ id) ◦ ψC . (14)

Proposition 2.11. If γ : C → M is a gauge transformation inP (M,C,8, ψ, ψC , e)
then 8′ = γ ∗ 8, where ∗ denotes the convolution product is a trivialisation of
P (M,C,8, ψ, ψC , e). The set of all gauge transformations inP (M,C,8, ψ, ψC , e)
is a group with respect to the convolution product. We say that two trivialisations8 and
8′ aregauge equivalentif there exists a gauge transformationγ such that8′ = γ ∗8.

Proof. Clearly8′ is a convolution invertible map such that8′(e) = 1. To prove that it
satisfies (12) we first introduce the notation

ψC(b⊗ c) = cA ⊗ bA (summation assumed),

in which the condition (14) reads explicitly

γ(c(1))α ⊗ c(2)A ⊗ bαA = γ(cA(1))⊗ cA(2)⊗ bA,
and then compute

ψ ◦ (id ⊗8′)(b⊗ c) = ψ(b⊗ γ(c(1))8(c(2))) = γ(c(1))α8(c(2))β ⊗ bαβ

= γ(c(1))α8(c(2)A)⊗ bαA = γ(cA(1))8(cA(2))⊗ bA
= (8′ ⊗ id) ◦ ψC(b⊗ c).

This proves the first part of the proposition.
Assume now thatγ1, γ2 are gauge transformations. Then

(γ1(c(1))γ2(c(2)))α ⊗ c(3)A ⊗ bαA = γ1(c(1))αγ2(c(2))β ⊗ c(3)A ⊗ bαβA

= γ1(c(1))αγ2(c(2)A(1))⊗ c(2)A(2)⊗ bαA

= γ1(cA(1))γ2(cA(2))⊗ cA(3)⊗ bA.
Thereforeγ1 ∗ γ2 is a gauge transformation too. Clearlyε is a gauge transformation and
thus provides the unit. Finally, to prove that ifγ is a gauge transformation then so isγ−1,
we observe that ifγ3 = γ1 ∗ γ2 andγ2 are gauge transformations then so isγ1. Indeed,
if γ1 ∗ γ2 is a gauge transformation then

(γ1(c(1))γ2(c(2)))α ⊗ c(3)A ⊗ bαA = γ1(cA(1))γ2(cA(2))⊗ cA(3)⊗ bA,
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but sinceγ2 is a gauge transformation, we obtain

γ1(c(1))αγ2(c(2)A(1))⊗ c(2)A(2)⊗ bαA = γ1(cA(1))γ2(cA(2))⊗ cA(3)⊗ bA.
Applying γ−1

2 to the second factor in the tensor product and then multiplying the first
two factors we obtain

γ1(c(1))α ⊗ c(2)A ⊗ bαA = γ1(cA(1))⊗ cA(2)⊗ bA,
i.e.γ1 is a gauge transformation as stated. Now applying this result toγ3 = ε andγ2 = γ
we deduce thatγ−1 is a gauge transformation as required. This completes the proof of
the proposition. �

Although the existence of the mapψC as in Proposition 2.9 is not guaranteed for all
coalgebras, the mapψC exists in most of the examples discussed in this section:

Example 2.12.For a quantum principal bundleP (M,H) as in Example 2.3, we define

ψH (b⊗ c) = c(1)⊗ bc(2),

for all b, c ∈ H. Then (2.9)–(2.11) reduces to the theory of trivial quantum principal
bundles and their gauge transformations in [BM93].

Proof. It is easy to see by standard Hopf algebra calculations that (11) is satisfied
by the bialgebra axiom forH = C in this case. Moreover, (12) reduces to8 being
an intertwiner of1R with 1. The condition (14) is empty. This recovers the setting
introduced in [BM93]. �

In the braided case we use the above theory to arrive at a natural definition of trivial
braided principal bundle:

Example 2.13.For a braided principal bundleP (M,B,9) as in Example 2.4, we define
a trivialisation as a convolution-invertible unital morphism8 : B → P in the braided
category such that1R ◦ 8 = (8⊗ id) ◦ 1, where1R is the braided right coaction of
B onP . We define a gauge transformation as a convolution-invertible unital morphism
γ : B → M , acting on trivialisations by the convolution product∗. This is a trivial
ψ-principal bundle with

ψB(b⊗ c) = 9(b⊗ c(1))c(2),

where1c = c(1)⊗ c(2) is the braided group coproduct.

Proof. This time, (11) follows from the braided-coproduct homomorphism property
of a braided group [Maj91]. From this and the form ofψ, we see that (12) becomes
1R ◦ 8(c) = ((8⊗ id) ◦ 9(b⊗ c(1)))c(2). Settingb = e gives the condition stated on
8 because the braiding withe = 1 is always trivial. Assuming the stated condition,
(12) then becomes8(c(1))⊗ bc(2) = ((8⊗ id) ◦9(b⊗ c(1)))c(2), which is equivalent (by
replacingc(2) by c(2)⊗Sc(3) and multiplying, whereS is the braided antipode) to

(8⊗ id) ◦9 = 9 ◦ (id ⊗8).

When all our constructions take place in a braided category, this is the functoriality
property implied by requiring that8 is a morphism in the category. The theory of trivial
ψ-bundles only requires this functoriality condition itself. Similarly, we compute the
gauge condition (14) usingψ(b⊗ γ(c)) = 9(b⊗ γ(c)) becauseγ(c) ∈ M , and operate
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on it by replacingc(2) by c(2)⊗Sc(3) and multiplying. Then it reduces to923 ◦ 912 ◦
(id⊗ γ ◦1) = (γ ◦1⊗ id)◦9. Since1 is a morphism, we see (by applying the braided
group counit) that the gauge condition (14) is equivalent to

(γ ⊗ id) ◦9 = 9 ◦ (id ⊗ γ).

As before, this is naturally implied by requiring thatγ is a morphism in our braided
category. It is clear that the convolution product∗ preserves the property of being a
morphism since1 and1R are assumed to be morphisms. �

For aψ-principal bundle over a quantum homogeneous space as in Example 2.5, we
can define a trivialisation if, for example, the map

ψC(b⊗ c) = π(v(1))⊗ π(uv(2)), (15)

whereu ∈ π−1(b), v ∈ π−1(c) is well-defined. Then a trivialisation of the bundle is a
convolution-invertible map8 : C → H obeying8 ◦ π(1) = 1 and

8(c)(1)⊗π(u8(c)(2)) = 8 ◦ π(v(1))⊗π(uv(2)) (16)

for all c ∈ C, u ∈ H, and v ∈ π−1(c). Taking u = 1 requires, in particular, the
natural intertwiner condition (8⊗ id) ◦1 = 1R ◦8. There is, similarly, a condition on
gauge transformationsγ obtained from (14). Hence our formulation of trivialψ-principal
bundles covers all the main sources ofψ-principal bundles discussed in this section.

We conclude this section with some explicit examples ofψ-principal bundles.

Example 2.14.Let H be a quantum cylinderA2|0
q [x−1], i.e. a free associative algebra

generated byx, x−1 andy subject to the relationsyx = qxy, xx−1 = x−1x = 1, with a
natural Hopf algebra structure:

1x±1 = x±1⊗ x±1, 1y = 1⊗ y + y ⊗ x, etc. (17)

Consider a right idealJ inH generated byx−1 andx−1−1. Clearly,J is a coideal and
thereforeC = A2|0

q [x−1]/J is a coalgebra and a canonical epimorphismπ : H → C is
a coalgebra map.C is spanned by the elementscn = π(yn), n ∈ Z≥0, and the coproduct
and the counit are given by

1cn =
n∑

k=0

(
n
k

)
q

ck ⊗ cn−k, ε(cn) = 0. (18)

We are in the situation of Example 2.5 and thus we have the entwining structureψ :
C ⊗H → H ⊗ C, which explicitly computed comes out as

ψ(cl ⊗ xmyn) =
n∑

k=0

(
n
k

)
q

ql(k+m)xmyk ⊗ cn+l−k, (19)

where (
n
k

)
q

=
[n]q!

[n− k]q![k]q!
,

and
[n]q! = [n]q · · · [2]q[1]q, [0]q! = 1, [n]q = 1 +q + . . . + qn−1.
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From this definition ofψ one easily computes the right coaction ofC onH as well
as the fixed point subalgebraM = k[x, x−1], i.e. the algebra of functions on a cir-
cle. By Example 2.5 we have just constructed a generalised quantum principal bundle
A

2|0
q [x−1](k[x, x−1], C, ψ, c0).

Finally we note that the above bundle is trivial in the sense of Proposition 2.9. The
trivialisation8 : C → A

2|0
q [x−1] and its inverse8−1 are defined by

8(cn) = yn, 8−1(cn) = (−1)nqn(n−1)/2yn. (20)

One can easily check that the map8 satisfies the required conditions. Explicitly, the
mapψC : C ⊗ C → C ⊗ C reads

ψC(cm ⊗ cn) =
n∑

k=0

(
n
k

)
q

qkmck ⊗ cm+n−k.

Therefore

ψ ◦ (id ⊗8)(cm ⊗ cn) = ψ(cm ⊗ yn) =
n∑

k=0

(
n
k

)
q

qkmyk ⊗ cm+n−k

= (8⊗ id) ◦ ψC(cm ⊗ cn).

Since the bundle discussed in this example is trivial, we can compute its gauge group.
One easily finds that a convolution invertible mapγ : C → k[x, x−1] satisfies condition
(14) if and only ifγ(cn) = 0nx

n (no summation), wheren ∈ Z≥0, 0n ∈ k and00 = 1.
Therefore the gauge group is equivalent to the group of sequences0 = (1,01,02, ...)
with the product given by

(0 · 0′)n =
n∑

k=0

(
n
k

)
q

0k0′
n−k.

For the simplest example of a braided principal bundle, one can simply take any
braided groupB and any algebraM in the same braided category. Then the braided
tensor product algebraP = M⊗B, along with the definitions

1R = id⊗1, 8(b) = 1⊗ b, 8−1(b) = 1⊗Sb (21)

put us in the setting of Examples 2.4 and 2.13. Note first that1R is a coaction (the
tensor product of the trivial coaction and the right coregular coaction) and makesP into
a braided comodule algebra. Moreover, the induced map

χM (m⊗ b⊗n⊗ c) = m9(b⊗n)c(1)⊗ c(2)

for m,n ∈M , b, c ∈ B, is an isomorphismP ⊗M P → P ⊗P ; it has inverse

χ−1
M (m⊗ b⊗ c) = m⊗ bSc(1)⊗ 1⊗ c(2).

It is also clear that8 is a trivialisation. This is truly a trivial braided principal bundle
becauseP is just a (braided) tensor product algebra.
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Example 2.15.LetB = k[c] be the braided line generated bycwith braiding9(c⊗ c) =
qc⊗ c and the linear coproduct1c = c⊗ 1 + 1⊗ c. It lives in the braided category Vecq

of Z-graded vector spaces with braidingqdeg( ) deg( )times the usual transposition. Here
deg(c) = 1. LetM = k[x, x−1] be viewed as aZ-graded algebra as well, with deg(x) = 1.
ThenP = k[x, x−1]⊗k[c] is a trivial braided principal bundle with the coaction and
trivialisation

1R(xm⊗ cn) =
n∑

k=0

(
n
k

)
q

xm⊗ ck ⊗ cn−k, 8(cn) = 1⊗ cn. (22)

As aψ-principal bundle, this example clearly coincides with the preceding one, albeit
constructed quite differently: we identifycn = cn andy = 1⊗ c, and note that in the
braided tensor product algebrak[x, x−1]⊗k[c] we have the product (1⊗ c)(x⊗ 1) =

9(c⊗x) = q(x⊗ 1)(1⊗ c), i.e. P = A
2|0
q [x−1]. It is also clear that the coproduct

deduced in (18) can be identified with the braided line coproduct which is part of our
initial data here. This particular braided tensor product algebraP is actually the algebra
part of the bosonisation ofB = k[c] viewed as living in the category of comodules over
k[x, x−1] as a dual-quasitriangular Hopf algebra (see [Maj95, p. 510]), and becomes in
this way a Hopf algebra. This bosonisation is the Hopf algebraH which was part of the
initial data in the preceding example. Finally, gauge transformationsγ from the braided
point of view are arbitrary degree-preserving unital mapsk[c] → k[x, x−1], i.e. given
by the group of sequences0 as found before.

This example demonstrates the strength of braided group gauge theory; even the most
trivial braided quantum principal bundles may be quite complicated when constructed
by more usual Hopf algebraic means. On the other hand, the following embeddable
quantum homogeneous space does not appear to be of the braided type, nor (as far as
we know) a trivial bundle.

Example 2.16.Let P be the algebra of functions on the quantum groupGLq(2). This
is generated by elementsα, β, γ, δ andD subject to the relations

αβ = qβα, αγ = qγα, αδ = δα + (q − q−1)βγ, βγ = γβ,

βδ = qδβ, γδ = qδγ, (αδ − qβγ)D = D(αδ − qβγ) = 1.

LetC be a vector space spanned bycm,n,m ∈ Z>0, n ∈ Z with the coalgebra structure

1(ci,j) =
m∑

k=0

qk(m−k)

(
m
k

)
q−2

ck,n ⊗ cm−k,n+k, ε(cm,n) = δm0.

Let the linear mapψ : C ⊗ P → P ⊗ C be given by

ψ(ci,j ⊗ αkγlβmδnDr)

=
m∑
s=0

n∑
t=0

(
m
s

)
q−2

(
n
t

)
q−2

q(m−s)(s+t−l)+(n−t)t−i(k+l−t−s)×

αk+m−sγl+n−tβsδtDr ⊗ ci+m+n−s−t,j−r+t+s.

(23)

Thenψ entwinesP with C. Furthermore if we takee = c0,0 then the fixed point sub-

algebraPC
e is generated by 1, α, γ and hence it is isomorphic toA2|0

1/q and there is a

ψ-principal bundleP (A2|0
1/q, C, ψ, e).
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Proof. The algebraGLq(2) can be equipped with the standard Hopf algebra structure

1
(
α β
γ δ

)
=

(
α β
γ δ

)
⊗

(
α β
γ δ

)
, S

(
α β
γ δ

)
= D

(
δ −q−1β
−qγ α

)
,

ε(α) = ε(δ) = 1, ε(β) = ε(γ) = 0. We define a surjectionπ : GLq(2)→ C by

π(αkβlγmδnDr) = δm0q
lncl,n−r.

In Sect. 5 of [Brz96b] it is shown thatπ is a coalgebra map and that the dataH = GLq(2),
π,C satisfy requirements of Example 2.5. Therefore we have aψ-principal bundle with
ψ as in Example 2.5. Written explicitly thisψ is exactly as in Eq. (23).

In [Brz96b] it is also noted that the coalgebraC can be equipped with the algebra
structure ofA2|0

q−2[x−1] by settingcm,n = q−mnxnym. The coproduct inC is then the
same as in Example 2.14, Eq. (17). �

3. Connections in the Universal Differential Calculus Case

From the first assertion of Proposition 2.2 we know that the natural coaction1R = 11
R

of C on P extends to the coaction ofC on the tensor product algebraP⊗n for any
positive integern. Still most importantly this coaction can be restricted to�nP by the
second assertion of Proposition 2.2. Therefore the coalgebraC coacts on the algebra of
universal forms onP . The universal differential structure onP is covariant with respect
to the coaction1n

R in the following sense:

Proposition 3.1. Let P , C, ψ and e be as in Proposition 2.2. Letd : P → �1P be
the universal differential,du = 1⊗ u − u ⊗ 1 extended to the whole of�P as in the

Preliminaries. Then
←−
ψ

n

◦ (id⊗ d) = (d⊗ id) ◦←−ψ
n−1

for any integern > 1. Therefore
1n

R ◦ (id ⊗ d) = (d⊗ id) ◦1n−1
R .

Proof. We takeυ =
∑

i u
0,i ⊗ u1,i ⊗ . . . ⊗ un,i ∈ �nP (i.e., any adjacent product

vanishes). Using conditions (4), and the explicit form of dυ (1), for anyc ∈ C we
compute

←−
ψ

n+2

(c⊗ dυ)

=
n+1∑
k=0

(−1)k
∑

i

u0,i
α0
⊗ . . .⊗ uk−1,i

αk−1
⊗ 1β ⊗uk,i

αk
⊗ . . .⊗ un,i

αn
⊗ cα0...αk−1βαk...αn

=
n+1∑
k=0

(−1)k
∑

i

u0,i
α0
⊗ . . .⊗ uk−1,i

αk−1
⊗ 1⊗uk,i

αk
⊗ . . .⊗ un,i

αn
⊗ cα0......αn

=(d⊗ id) ◦←−ψ
n+1

(c⊗ υ). �

To discuss a theory of connections inP (M,C,ψ, e) it is important that the horizontal

one formsP�1MP be covariant under the action of12
R or, more properly,

←−
ψ

2

. The
following lemma gives a criterion for the covariance of horizontal one-forms.
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Lemma 3.2. For aψ-principal bundleP (M,C,ψ, e) assume thatψ(C⊗M ) ⊂M⊗C.

Then
←−
ψ

2

(C ⊗ P�1MP ) ⊂ P�1MP ⊗ C.

Proof. Using (6) one easily finds that for anyu, v ∈ P , x, y ∈M andc ∈ C,

←−
ψ

2

(c⊗ ux⊗ yv) = uαxβ ⊗ yγvδ ⊗ cαβγδ.

If we assume further thatxβ , yγ ∈M then the result follows. �

We will see later that the hypothesis of Lemma 3.2 is automatically satisfied for
braided principal bundles of Example 2.4. In contrast, it is not necessarily satisfied for
ψ-bundles on quantum embeddable homogeneous spaces of Example 2.5. For example,
one can easily check that it is satisfied for the bundle discussed in Example 2.16. On the
other hand theψ-principal bundle over the quantum hyperboloid, which is an embeddable
homogeneous space ofEq(2) [BCGST96] fails to fulfil requirements of Lemma 3.2.

The covariance of�P and P�1MP enables us to define a connection in
P (M,C,ψ, e) in a way similar to the definition of a connection in a quantum prin-
cipal bundleP (M,H) (compare [BM93]).

Definition 3.3. LetP (M,C,ψ, e) be a generalised quantum principal bundle such that
ψ(C ⊗M ) ⊂ M ⊗ C. A connection inP (M,C,ψ, e) is a leftP -module projection

Π : �1P → �1P such thatkerΠ = P�1MP and
←−
ψ

2

(id ⊗Π) = (Π ⊗ id)
←−
ψ

2

.

It is clear that for a usual quantum principal bundleP (M,H), Definition 3.3 co-
incides with the definition of a connection given in [BM93]. Thus, the condition in

Lemma 3.2 always holds forψ as in Example 2.3, while
←−
ψ

2

(id⊗Π) = (Π ⊗ id)
←−
ψ

2

if
and only if12

RΠ = (Π ⊗ id)12
R, which was the condition in [BM93].

In what follows we assume that the condition in Lemma 3.2 is satisfied. A connection
Π in P (M,C,ψ, e) can be equivalently described as follows. First we define a map
φ : C ⊗ P ⊗ kerε→ P ⊗ kerε⊗ C by the commutative diagram

C ⊗�1P -
←−
ψ

2

�1P ⊗ C

?

χ⊗ id

P ⊗ kerε⊗ C?

id ⊗ χ

C ⊗ P ⊗ kerε -φ

whereχ(u ⊗ v) = uψ(e ⊗ v). The mapφ is clearly well-defined. Indeed, becauseχM

is a bijection, kerχ = P�1MP and then
←−
ψ

2

(C ⊗ kerχ) ⊂ kerχ⊗C, by Lemma 3.2.
Thereforeφ(0) = 0.

By definition ofP (M,C,ψ, e) we have a short exact sequence of leftP -module
maps

0→ P�1MP → �1P
χ→ P ⊗ kerε→ 0. (24)
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The exactness of the above sequence is clear since the fact thatχM is bijective implies

thatχ is surjective and kerχ = P�1MP . By definition,χ intertwines
←−
ψ

2

with φ.

Proposition 3.4. The existence of a connectionΠ in P (M,C,ψ, e) is equivalent to the
existence of a leftP -module splittingσ : P ⊗ kerε→ �1P of the above sequence such

that
←−
ψ

2

◦ (id ⊗ σ) = (σ ⊗ id) ◦ φ.

Proof. Clearly the existence of a leftP -module projection is equivalent to the existence
of a left P -module splitting. It remains to check the required covariance properties.
Assume thatσ has the required properties, then

←−
ψ

2

◦ (id ⊗Π) =
←−
ψ

2

◦ (id ⊗ σ) ◦ (id ⊗ χ)

= (σ ⊗ id) ◦ φ ◦ (id ⊗ χ) = (σ ◦ χ⊗ id) ◦←−ψ
2

= (Π ⊗ id) ◦←−ψ
2

.

Conversely, ifΠ has the required properties, then one easily finds that

←−
ψ

2

◦ (id ⊗ σ ◦ χ) = (σ ⊗ id) ◦ φ ◦ (id ⊗ χ).

Sinceχ is a surjection the required property ofσ follows. �

To each connection we can associate its connection one-formω : kerε → �1P by
settingω(c) = σ(1⊗ c). 1 Similarly to the quantum bundle case of [BM93] we have

Proposition 3.5. LetΠ be a connection onP (M,C,ψ, e). Then, for allc ∈ kerε, the
connection 1-formω : kerε→ �1P has the following properties:

1. χ ◦ ω(c) = 1⊗ c,
2. For any b ∈ C,

←−
ψ

2

(b ⊗ ω(c)) = c(1)
αc

(2)
βγω(eγ) ⊗ bαβ , where c(1)⊗M c(2)

(summation understood) denotes thetranslation map τ (c) = χ−1
M (1 ⊗ c) in

P (M,C,ψ, e).

Conversely, ifω is any linear mapω : kerε→ �1P obeying conditions 1-2, then there is
a unique connectionΠ = µ ◦ (id⊗ω) ◦χ in P (M,C,ψ, e) such thatω is its connection
1-form.

Proof. For anyb⊗ u⊗ c ∈ C ⊗ P ⊗ kerε the mapφ is explicitly given by

φ(b⊗ u⊗ c) = uαc
(1)

βc
(2)

γδ ⊗ eδ ⊗ bαβγ .

Therefore ifω is a connection one-form then

←−
ψ

2

(b⊗ ω(c)) =
←−
ψ

2

◦ (id ⊗ σ)(b⊗ 1⊗ c)
= σ(c(1)

αc
(2)

βγ ⊗ eγ)⊗ bαβ

= c(1)
αc

(2)
βγω(eγ)⊗ bαβ .

Conversely, ifω : kerε → �1P satisfies condition 1 thenσ = (µ ⊗ id) ◦ (id ⊗ ω)
gives a leftP -module splitting of (24). Furthermore, Condition 2 implies

1 We can equivalently think of a connection 1-form as a mapC → �1
P given byω(c − eε(c)). This was

the point of view adopted in [BM93].
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(σ ⊗ id) ◦ φ(b⊗ u⊗ c) = σ(uαc
(1)

βc
(2)

γδ ⊗ eδ)⊗ cαβγ

= uαc
(1)

βc
(2)

γδω(eδ)⊗ cαβγ

= uα
←−
ψ

2

(bα ⊗ ω(c)) = (µ⊗ id) ◦←−ψ
3

(b⊗ u⊗ ω(c))

=
←−
ψ

2

(b⊗ uω(c)) =
←−
ψ

2

◦ (id ⊗ σ)(b⊗ u⊗ c). �
Example 3.6.For a quantum principal bundleP (M,H), Condition 2 in Proposition 3.5
is equivalent to theAdR-covariance ofω.

Proof. Using the definition ofψ in Example 2.3 one finds

c(1)
αc

(2)
βγ ⊗ eγ ⊗ bαβ = c(1)

αc
(2)

β
(0̄)⊗ c(2)

β
(1̄)⊗ bαβ

= c(1)(0̄)c(2)
β

(0̄)⊗ c(2)
β

(1̄)⊗ bβc(1)(1̄)

= c(1)(0̄)c(2)(0̄)(0̄) ⊗ c(2)(0̄)(1̄) ⊗ bc(1)(1̄)c(2)(1̄)

= χM (c(1)(0̄) ⊗M c(2)(0̄))⊗ bc(1)(1̄)c(2)(1̄).

From the covariance properties of the translation map [Brz96a] it then follows that

c(1)
αc

(2)
βγ ⊗ eγ ⊗ bαβ = χM (τ (c(2)))⊗ b(Sc(1))c(3) = 1⊗ c(2)⊗ bS(c(1))c(3).

This also follows from covariance ofχM as intertwining12
R projected toP ⊗M P with

the tensor product coaction11
R⊗AdR onP ⊗H. Hence Condition 2 may be written

as
←−
ψ

2

(b⊗ ω(c)) = ω(c(2))⊗ b(Sc(1))c(3)

which is equivalent to12
R ◦ ω = (ω ⊗ id) ◦AdR. �

Example 3.7.For a braided group principal bundleP (M,B,9) in Example 2.4, Lem-
ma 3.2 holds. Moreover, Condition 2 in Proposition 3.5 is equivalent toAdR-covariance
of ω, whereAdR is the braided adjoint coaction as in [Maj94a].

Proof. The braided group adjoint action is studied extensively in [Maj94a] as the basis
of a theory of braided Lie algebras; we turn the diagrams up-side-down for the braided
adjoint coaction and its properties (or see earlier works by the second author). Firstly,
ψ(B⊗M ) ⊂M ⊗B is immediate since by properties ofe = 1,9(B⊗M ) ⊂M ⊗B.
Also clear is that11

R coincides with the given braided coaction ofB on P and12
R

coincides with the braided tensor product coaction onP ⊗P . 12
R projects to a coaction

on P ⊗M P by Lemma 3.2. We show first thatχM : P ⊗M P → P ⊗B intertwines
this coaction with the braided tensor product coaction11

R⊗AdR. We work with rep-
resentatives inP ⊗P and use the notation [Maj93a] as in the proof of Example 2.4.
Branches labelled1 are the coproduct ofB; otherwise they are the given coaction of
B onP . Thus,

S S S

P     P

= 

P   P   B

= 

P     P P     P

= 

P     P

P   P   BP   P   B P   P   B

P     P

P   P   B

∆

∆
∆

∆

∆

= 
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where the upper box on the left isχM and the lower box is the braided adjoint coac-
tion AdR. S denotes the braided antipode ofB. The tensor product11

R⊗AdR uses
the braiding and the product ofB according to the theory of braided groups [Maj93b].
The first equality uses the homomorphism property of the given coaction ofB on P .
The second uses the comodule axiom. The third identifies an “antipode loop” and can-
cels it (using associativity and coassociativity, and the braided antipode axioms). The
fourth equality uses the comodule axiom in reverse and also pushes the diagram into
the form where we recognise the braided tensor product coaction12

R followed byχM .
Using this intertwining property ofχM , we write the right hand side of Condition 2 in
Proposition 3.5 as

τ

ω ω

χ

τ τ

χ

Ad

ω ω

Ad

ω

P    P   B

B     B

= 

B     B

P    P   B

= 

B     B B     B

P    P   B

= 

P    P   B

?
= 

B     B B     B

P    P   B

whereτ = χ−1
M (1⊗( )). The left hand side

←−
ψ

2

(b⊗ω(c)) is shown on the right hand side
of the diagram (using associativity of the product inB). Hence equality is equivalent to
12

R ◦ ω = (ω ⊗ id) ◦AdR. �

We remark that in the framework withC∗ in place ofC as explained in Proposi-
tion 2.7, we can use forC∗ braided groups of enveloping algebra type, in particular
U (L) associated to a braided-Lie algebraL in [Maj94a] with braided-Lie bracket based
on the properties of the braided adjoint action. In this case one could takeω ∈ L⊗�1P
with the corresponding covariance properties. Using the braided Killing form also in
[Maj94a] one has the possibility (for the first time) to write down scalar Lagrangians
built functorially fromω and its curvature. On the other hand, for a theory of trivial
bundles (in order to have familiar formulae for gauge fields on the base) one needs to
restrict trivialisations and gauge transforms in such a way thatω retains its values inL.
This aspect requires further work, to be developed elsewhere.

Example 3.8.ConsiderH(M,C, π), theψ-principal bundle associated to an embed-
dable quantum homogeneous space in Example 2.5. Assume thatψ(C⊗M ) ⊂M ⊗C.
Condition 2 in Proposition 3.5 is equivalent to

12
R ◦ ω ◦ π = (ω ⊗ id) ◦ (π ⊗ π) ◦AdR. (25)

In particular, this implies that any linear inclusioni : M → H such thatπ ◦ i = id and
ε(c) = ε ◦ i(c) gives rise to the canonical connection 1-formω(c) = (Si(c)(1))di(c)(2),
provided that

(id ⊗ π) ◦AdR ◦ i = (i⊗ id) ◦ (π ⊗ π) ◦AdR ◦ i.

Proof. In this caseψ(c⊗ v) = v(1)⊗ π(uv(2)), andτ (c) = Su(1)⊗M u(2), for anyc ∈ C,
v ∈ H andu ∈ π−1(c). Also e = π(1). The transformation property ofω now reads
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←−
ψ

2

(b⊗ ω(c)) = (Su(1))αu(2)βγω(π(1)γ)⊗ π(v)αβ

= (Su(2))u(3)βγω(π(1)γ)⊗ π(vSu(1))
β

= (Su(2))u(3)γω(π(1)γ)⊗ π(v(Su(1))u(4))

= (Su(2))u(3)ω(π(u(4)))⊗ π(v(Su(1))u(5))

= ω(π(u(2)))⊗ π(v(Su(1))u(3)),

wherev ∈ π−1(b). Choosingv = 1 we obtain property (25). The converse is obviously
true. �

Before we describe some concrete examples of connections we construct connections
in the trivialψ-bundles of Proposition 2.9.

Proposition 3.9. Let P (M,C,8, ψ, ψC , e) be a trivial coalgebraψ-principal bundle
such thatψ(C ⊗M ) ⊂M ⊗C. Letβ : C → �1M be a linear map,β(e) = 0 and such
that

ψC
34 ◦ ψ23 ◦ ψ12 ◦ (id ⊗ β ⊗ id) ◦ (id ⊗1) = (β ⊗ id ⊗ id) ◦ (1⊗ id) ◦ ψC . (26)

Then the mapω : kerε→ �1P ,

ω = 8−1 ∗ d8 + 8−1 ∗ β ∗8 (27)

is a connection one-form inP (M,C,8, ψ, ψC , e). In particular for β = 0 we have a
trivial connection inP (M,C,8, ψ, ψC , e).

Proof. To prove the proposition we will show thatω satisfies conditions specified in
Proposition 3.5. Firstly, however, we observe that the translation map inP (M,C,8, ψ,
ψC , e) is given by

τ (c) = 8−1(c(1))⊗M 8(c(2)). (28)

Indeed, a trivial computation shows thatχM (τ (c)) = 1 ⊗ c, as required. The same
computation shows that for anyc ∈ kerε,

χ(8−1(c(1))d8(c(2)) + 8−1(c(1))β(c(2))8(c(3))) = χ(8−1(c(1))⊗8(c(2))) = 1⊗ c,
and therefore Condition 1 of Proposition 3.5 is satisfied byω.

Now we prove that Condition 2 of Proposition 3.5 holds for8−1∗d8 and8−1∗β∗8
separately. For the former the left hand side of Condition 2 reads

LHS =
←−
ψ

2

(b⊗8−1(c(1))⊗8(c(2))) = 8−1(c(1))α ⊗8(c(2))β ⊗ bαβ

= 8−1(c(1))α ⊗8(c(2)A)⊗ bαA

On the other hand we use the definition ofτ (28) and the properties of8 to write the
right-hand side of condition 2 as follows:

RHS = 8−1(c(1))α8(c(2))βγ8−1(eγ
(1))⊗8(eγ

(2))⊗ bαβ

= 8−1(c(1))α8(c(2))βγδ8
−1(eδ)⊗8(eγ)⊗ bαβ

= 8−1(c(1))α8(c(2)A)γδ8
−1(eδ)⊗8(eγ)⊗ bαA

= 8−1(c(1))α8(c(2)A(1))8
−1(c(2)A(2))⊗8(c(2)A(3))⊗ bαA

= 8−1(c(1))α ⊗8(c(2)A)⊗ bαA = LHS.
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To compute the action of
←−
ψ

2

on the second part ofω we will use the shorthand notation

←−
ψ

2

(b⊗ ρ) = ρα ⊗ bα,

for anyb ∈ C andρ ∈ �1P . In this notation Eq. (26) explicitly reads

β(c(1))α ⊗ c(2)A ⊗ bαA = β(cA(1))⊗ cA(2)⊗ bA.

Using the similar steps as in computation of the action of
←−
ψ

2

on the first part ofω we
find that the right hand side of Condition 2 reads

8−1(c(1))αβ(c(2)A(1))8(c(2)A(2))⊗ bαA,

while the left hand side is

8−1(c(1))αβ(c(2))α8(c(3)A)⊗ bααA = 8−1(c(1))αβ(c(2)A(1))8(c(2)A(2))⊗ bαA.

From Proposition 3.5 we now deduce thatω is a connection one-form as stated. �

Using similar arguments as in [BM93] we can easily show that the behaviour ofβ
under gauge transformations is exactly the same as in the case of quantum principal
bundles. For example, if we make a gauge transformation of8, 8 7→ γ ∗ 8 and then
view ω in this new trivialisation then the local connection one-fromβ will undergo the
gauge transformation

β 7→ γ−1 ∗ dγ + γ−1 ∗ β ∗ γ. (29)

As before, we can specialise this theory to our various sources ofψ-principal bun-
dles. For quantum principal bundles we recover the formalism in [BM93]. For braided
principal bundles we make a computation similar to the one forγ in Example 2.13,
finding that (26) is naturally ensured by requiring thatβ : B → �1M is a morphism
in our braided category. Then the same formulae (27) and transformation law (29) etc.
apply in the braided case. Indeed, they do not involve any braiding directly.

Now we construct explicit examples of connections in one of the bundles described
at the end of Sect. 2.

Example 3.10.Consider the quantum cylinder bundleA2|0
q [x−1](k[x, x−1], k[c], ψ, 1)

in Example 2.14. Thenψ(k[c] ⊗ k[x, x−1]) ⊂ k[x, x−1] ⊗ k[c]. The most general
connection of the type described in Proposition 3.9 has the form

ω(cn)=
n−1∑
k=0

(−1)k
(
n
k

)
q

qk(k−1)/2ykdyn−k

+
∑

i

n∑
m=0

m∑
k=0

(−1)kqk((k−1)/2+i)

(
n
m

)
q

(
m
k

)
q

0i,m−kx
iyk(dxm−k−i)yn−m,(30)

where for alli ∈ Z, n ∈ Z≥0, 0n,i ∈ k, 00,i = 0.



488 T. Brzezínski, S. Majid

Proof. If we setn = 0 in formula (19) then we findψ(cl ⊗ xm) = qlmxm ⊗ cl and the
first assertion holds. This assertion also follows from Example 3.7. We identifyC = k[c]
by cn = cn, as a certain (braided) coalgebra.

It is an easy exercise to check that a mapβ : k[c] → �1k[x, x−1] satisfies condition
(26) if and only if

β(cn) =
∑

i

0n,ix
idxn−i, (31)

wherei ∈ Z, 0n,i ∈ k, 00,i = 0. Now writing the explicit definition of trivialisation8
(20), and the coproduct ofcn (18) we see thatω in (30) is as in (27) withβ given by
(31). �

From the braided bundle point of view in Example 2.15 on the same bundle, we work
in the braided category ofZ-graded spaces and are allowed forβ any degree-preserving
that vanishes on 1. This immediately fixes it in the form (31), and henceω from (27).

4. Bundles with General Differential Structures

LetP (M,C,ψ, e) be aψ-principal bundle as in Proposition 2.2. LetN be a subbimodule

of �1P such that
←−
ψ

2

(C ⊗ N ) ⊂ N ⊗ C. The map
←−
ψ

2

induces a map
←−
ψ

2

N : C ⊗
�1P/N → �1P/N ⊗C andN defines a right-covariant differential structure�1(P ) =
�1P/N onP . We say that�1(P ) is a differential structure onP (M,C,ψ, e).

Definition 4.1. Let P (M,C,ψ, e) be a coalgebraψ-principal bundle and letψ(C ⊗
M ) ⊂ M ⊗ C. Assume thatN ⊂ �1P defines a differential structure�1(P )
on P (M,C,ψ, e). A connection inP (M,C,ψ, e) is a left P -module projectionΠ :

�1(P )→ �1(P ) such thatkerΠ = P�1(M )P and
←−
ψ

2

N ◦ (id⊗Π) = (Π⊗ id)◦←−ψ
2

N .

Similarly as for the universal differential calculus case, a connection inP (M,C,ψ, e)
can be described by its connection one-form. First we consider the vector spaceM =
(P ⊗ kerε)/χ(N ) with a canonical surjectionπM : P ⊗ kerε → M. Sinceχ is a
left P -module map,χ(N ) is a leftP -sub-bimodule ofP ⊗ kerε. ThereforeM is a left
P -module andπM is a leftP -module map. The action ofP onM is defined by

u · υ =
∑

i

πM(uvi ⊗ ci),

whereu ∈ P , υ ∈M and
∑

i ui⊗ci ∈ π−1
M (υ). We denote3 = πM(1⊗kerε). The left

P -module structure ofM implies that for every elementυ ∈M, there existui ∈ P and
λi ∈ 3 such thatυ =

∑
i ui · λi. Therefore there is a natural surjectionP ⊗3→M.

We assume thatψ(C ⊗M ) ⊂M ⊗C, and hence the mapφ can be defined. For any
u ∈ P , c ∈M andb ∈ C we have

φ(b⊗ u⊗ c) = φ(b⊗ χ(n)) = (χ⊗ id) ◦←−ψ
2

(b⊗ n) ∈ χ(N )⊗ C,

wheren ∈ N is such thatχ(n) = u⊗ c. We used the fact that
←−
ψ

2

(C ⊗N ) ⊂ N ⊗ C.
Therefore we can define a mapφN : C ⊗M→M⊗ C by the diagram
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C ⊗ P ⊗ kerε -id ⊗ πM
C ⊗M - 0

?

φN

M⊗ C - 0
?

φ

P ⊗ kerε⊗ C -πM ⊗ id

The mapχ induces a mapχN : �1(P )→M by the commutative diagram

�1P -πN
�1(P ) - 0

?

χN

M - 0

?
0

?

χ

P ⊗ kerε -
πM

?
0

Clearly,χN is a leftP -module map, i.e.,χN (udv) = u · χN (dv). We can use the map
χN to obtain another description ofφN .

Lemma 4.2. The following diagram

C ⊗�1(P ) -
←−
ψ

2

N
�1(P )⊗ C

?

χN ⊗ id

M⊗ C?

id ⊗ χN

C ⊗M -φN

is commutative.

Proof. We take anyυ ∈ �1(P ), c ∈ C andυ̃ ∈ π−1
N (υ) and compute
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φN ◦ (id ⊗ χN )(c⊗ υ) = φN ◦ (id ⊗ πM)(c⊗ χ(υ̃)) = (πM ⊗ id) ◦ φ(c⊗ χ(υ̃))

= (πM ⊗ id) ◦ (χ⊗ id) ◦←−ψ
2

(c⊗ υ̃)

= (χN ⊗ id) ◦ (πN ⊗ id) ◦←−ψ
2

(c⊗ υ̃) = (χN ⊗ id) ◦←−ψ
2

N (c⊗ υ). �

Using arguments similar to the proof of Example 4.11 of [BM93] and the definition
of a coalgebraψ-principal bundleP (M,C,ψ, e) we deduce that

0→ P�1(M )P → �1(P )
χN→ M→ 0 (32)

is a short exact sequence of leftP -module maps.

Proposition 4.3. A connection inP (M,C,ψ, e) with differential structure induced by
N is equivalent to a leftP -module splittingσN of the sequence (32), such that

(σN ⊗ id) ◦ φN =
←−
ψ

2

N ◦ (id ⊗ σN ).

Proof. We use Lemma 4.2 to deduce the covariance properties ofχN and then preform
calculation similar to the proof of Proposition 3.4. �

To each connectionΠ we can associate its connection one formω : 3→ �1(P ) by
ω(λ) = σN (λ).

Similarly to the case of universal differential structure, one proves

Proposition 4.4. Let Π be a connection inP (M,C,ψ, e) with differential structure
defined byN ⊂ �1P . Then, for allλ ∈ 3 the connection 1-formω : 3→ �1(P ) has
the following properties:

1. χN ◦ ω(λ) = λ,

2. For anyb ∈ C,
←−
ψ

2

N (b⊗ω(λ)) = c̃(1)
αc̃

(2)
βδω(πM(1⊗eδ))⊗bαβ ,wherec̃(1)⊗M c̃(2)

denotes the translation mapχ−1
M (1⊗ c̃), andc̃ ∈ kerε is such thatπM(1⊗ c̃) = λ.

Conversely, ifM is isomorphic toP ⊗3 as a leftP -module andω is any linear map
ω : 3 → �1(P ) obeying Conditions 1–2, then there is a unique connectionΠ =
µ ◦ (id⊗ω) ◦ χN in P (M,C,ψ, e) such thatω is its connection 1-form.

In the setting of [BM93] the conditionP ⊗3 =M is always satisfied for quantum
principal bundles, and3 = kerε/Q, whereQ is anAdR-invariant right ideal in kerε
that generates the bicovariant differential structure on the structure quantum groupH
as in [Wor89]. The detailed analysis of braided group principal bundles with general
differential structures will be presented elsewhere. Here we remark only that it seems
natural to assume thatM = P⊗3 and then choose3 to be the space dual to the braided
Lie algebraL as discussed in Sect. 3. This choice of3 is justified by the fact that from
the properties of the mapsφ andφN it follows that the space3 is invariant under the
braided adjoint coaction (cf. Example 3.7).

We complete this section with an explicit example of differential structures and
connections on the quantum cylinder bundle in Example 2.14 (cf. Example 3.10).

Example 4.5.We consider the quantum cylinder bundle of Example 2.14 (cf. Exam-
ple 2.15) and we work with differential structures onA2|0

q classified in [BDR92]. Using
the definition ofψ (19) one easily finds that there are two differential structures for which
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the covariance condition
−→
ψ

2

(k[c] ⊗N ) ⊂ N ⊗ k[c] is satisfied. The subbimodulesN
are generated by

(1 + s)x⊗x− x2⊗ 1− 1⊗x2,

y⊗x− qxy⊗ 1− q1⊗xy + qx⊗ y
(1 + q)y ⊗ y − y2 ⊗ 1− 1⊗ y2,

wheres ∈ k is a free parameter, in the first case, and by

(1 + q)x⊗x− x2⊗ 1− 1⊗x2,

y⊗x− xy⊗ 1− q1⊗xy + x⊗ y,
(1 + q)y ⊗ y − y2 ⊗ 1− 1⊗ y2,

in the second case. In both cases the modules of 1-forms�1(A2|0
q ) are generated by

the exact one-forms dx and dy. Definitions of theN imply the following relations in
�1(A2|0

q )

xdx = sdxx, xdy = q−1dyx, ydx = qdxy, ydy = qdyy,

in the first case, and

xdx = qdxx, xdy = dyx, ydx = qdxy + (q − 1)dxy, ydy = qdyy,

in the second one. In both cases (A
2|0
q [x−1] ⊗ kerε)/χ(N ) = A

2|0
q [x−1] ⊗ 3, where

3 is a one-dimensional vector space spanned byλ = πM(1⊗ c) and can be therefore
identified with a subspace ofk[c] spanned byc. Also in both cases the most general
connection is given by

Π(dx) = 0, Π(dy) = dy + αdx,

whereα ∈ k, and extended to the whole of�1(A2|0
q [x−1]) as a leftA2|0

q [x−1]-module
map. The corresponding connection one form reads

ω(λ) = dy + αdx.

The bundle is trivial and this connection can be described by the mapβ : k[c] →
�(k[x, x−1]) as in Proposition 3.9 (cf. Eq. (31)) withβ(cn) = 0 if n 6= 1 andβ(c) = αdx.
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