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Abstract: We develop a generalised theory of bundles and connections on them in
which the role of gauge group is played by a coalgebra and the role of principal bundle

by an algebra. The theory provides a unifying point of view which includes quantum
group gauge theory, embeddable quantum homogeneous spaces and braided group gauge
theory, the latter being introduced now by these means. Examples include ones in which
the gauge groups are the braided line and the quantum plane.

1. Introduction

In a recent paper [Brz96b] it was shown by the first author that a generalisation of the
guantum group principal bundles introduced in [BM93] is needed if one wants to include
certain “embeddable” quantum homogeneous spaces, such as the full family of quantum
two-spheres of Podi{Pod87]. A one-parameter specialisation of this family was used
in [BM93] in construction of thg-monopole, but the general members of the family do
not have the required canonical fibering. The required generalised notion of quantum
principal bundles proposed in [Brz96b], also terme&d-&alois extension (cf. [Sch92]),
consists of an algebi, a coalgebr&’ with a distinguished elementand a right action

of P on P ® C satisfying certain conditions. In the present paper we develop a version
of such “coalgebra principal bundles” based onamapC ® P — P ® C ande € C,

and giving now a theory of connections on them.

Another motivation for the paper is the search for a generalisation of gauge theory
powerful enough to include braided groups [Maj91, Maj93b, Maj93a] as the gauge
group. Although not quantum groups, braided groups do have at least a coalgebra and
hence can be covered in our theory. We describe the main elements of such a braided
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principal bundle theory as arising in this way. This is a first step towards a theory of
braided-Lie algebra valued gauge fields, Chern-Simons and Yang-Mills actions, to be
considered elsewhere.

As well as providing a unifying point of view which includes our previous quantum
group gauge theory [BM93], the theory of embeddable homogeneous spaces [Brz96b]
and braided group gauge theory, our coalgebra bundles have their own characteristic
properties. In particular, the axioms obeyed ynvolve the algebra and coalgebra
in a symmetrical way, opening up the possibility of an interesting self-duality of the
construction. This becomes manifest when we are given a characteP; then we
have also the possibility of a dual “algebra principal bundle”, corresponding in the finite-
dimensional case to a coalgebra principal bundle with the fisrgotal space”* and
the structure mag*. This is a new phenomenon which is not possible within the realm
of ordinary (non-Abelian) gauge theory. Moreover, the axioms obeyegddnrrespond
in the finite-dimensional case to the factorisation of an algebra/ite’™, which is a
common situation [Maj90]. Indeed, all bicrossproduct quantum groups [Maj90] provide
a dual pair of examples.

Finally, we note that some steps towards a theory of fibrations based on algebra
factorisations have appeared independently in [CKM94], including topological consid-
erations which may be useful in further work. However, we really need the present
coalgebra treatment for our infinite-dimensional algebraic examples, for our treatment
of differential calculus and in order to include quantum and braided group gauge the-
ories. We demonstrate the various stages of our formalism on some concrete examples
based on the braided line and quantum plane.

Preliminaries. All vector spaces are taken over a fidldf generic characteristic and
all algebras have the unit denoted byd.denotes a coalgebra with the coproduct
A C — C ® C and the counit : C' — k which satisfy the standard axioms. For the
coproduct we use the Sweedler notation

Ac =) @ c), A%c = (A®id)o Ac= ) ® cp) @ cpE), e,

wherec € C, and the summation sign and the indices are suppressed.

A vector spaceP is a rightC-comodule if there existsamapg : P — P ® C,
suchthatAr ®id)o Ag = (id® A) o Ag, and (id® €) o Ag = id. For Az we use the
explicit notation - -

Apu =19 @ u®,

whereu € P andu©® @ vV € P ® C (summation understood). Ferc C, we denote
by Pc°¢ the vector subspace &f of all elements; € P such thatl pu = u ® e.

H denotes a Hopf algebra with produet: H ® H — H, unit 1, coproduct
A H — H® H, counite : H — k and antipodes : H — H. We use Sweedler’s
sigma notation as before. Similarly as for a coalgebra, we can defindfiglbimodules.
We say that a right/-comoduleP is a right H-comodule algebra iP is an algebra and
AR is an algebra map.

If Pisan algebrathen b®™ P we denote thé’-bimodule of universah-forms on
P, which is defined a"P = Q'P®p ---®@p Q*P (n-fold tensor product ovep).
By the natural identificatio®® @ p P = P we have [Con85, Kar87]

Q"P={weP®*": Vie{l,.. . n}, pw=0},

wherey; denotes a multiplication i# acting on the andi + 1 factors inP®"*1, QP =
D, -, Q" P, whereQP = P, is a differential algebra with the universal differential
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d: P — QP du=1®u — u® 1. When extended t@"P c P®"*, d explicitly
reads:
n+l

dweu'e...eu")=> (-)ule.. . eutelove. . .ou". (1)
k=0

Q"(P) denotes a bimodule at-forms on P obtained fromQ™ P as an appropriate
quotient.

Finally, if C'is a coalgebra anf is an algebra then we define a convolution product
* in the space of linear mags — P by f * g(c) = f(cw)g(c@), wheref,g: C — P
andc € C. The mapf : C — P is said to be convolution invertible if there is a map
ft:C — Psuchthatf x f~1 = f~1x f = noe wheren : k — P is given by
n:a— al

In addition, we will also discuss examples based on the theory of braided groups
[Maj91, Maj93b, Maj93a] and the theory of bicrossproduct and double cross product
and Hopf algebras [Maj90, Maj94b], due to the second author. Chapters 6.2,7.2,9 and 10
of the text [Maj95] contain full details on these topics.

2. Coalgebra-Principal Bundles

In this paper we will be dealing with a particular formulation(®fGalois extensions or
generalised quantum principal bundles. This formulation is more tractable than the one
in [Brz96b], allowing us to develop a theory of connections for it in the next section.
Yet, it is general enough to include all our main examples of interest. Our data is the
following:

Definition 2.1. We say that a coalgebr@ and an algebraP are entwinedif there is a
mapy : C ® P — P ® C such that

Yo(d®p)=(n®id)ovzothy, P(c®1)=1®ec, Veel )
([d®A)ot) = 4120130 (A®Id), (d®e)oy =e®id, 3

wherey, denotes multiplication irP, and»3 = id ® ¢ etc. Explicitly, we require that
the following diagrams commute:

CoropP—9CL L cop ok de@n  ogp

Y ®id P P
PRC®P PC keoc —uld | pgo

id®y ®id

\P®P®C/”' (4)
PoCoC 928 poc per 9% poc

Y ®id P P
CoP®C CoP koP -—t@d  ocgp

WQ@ w AK@ id (5)

CRC®P
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wheren is the unit map) : a — al.

In the finite-dimensional case this is exactly equivalent by partial dualisation to the
requirementthap : C* @ P°? — P°P® C* is an algebra factorisation structure (which
is part of the theory of Hopf algebra double cross products [Maj90]). This is made precise
at the end of the section, where it provides a natural way to obtain examples afsuch

Proposition 2.2. Let C, P be entwined by). For every group-like elemerte C we
have the following:

1. For any positiven, P®" is a right C-comodule with the coaction’, = 41 ©

Um0 .. 0120 (e @id") = b o (ne ©id™), wherene : k — C, a — ae.
2. The coactiom’;™! restricts to a coaction o®2" P.
3. M=pPwC ={ucP; Abu=u®e}isasubalgebra of.

4. Thelinearmapy : P®y P — P ® C,u®) v — up(e ® v) is well-defined. If
X M IS a bijection we say that we have/aprincipal bundleP (M, C, 1, e).

Proof. We writey(c ® u) = )" uo ® ¢* and henceforth we omit the summation sign.
In this notation, the conditions (4) and (5) are

(U)o ® c* = uqug ® B l.®c*=1®c, (6)
Ua ® (1) ® ) T uap © )’ Ve e(cua = eu, @)
forallu,v € Pandc e C.

1. The mapA’; is given explicitly by

Al ®... ®u") = u(lll ®...0u, ® e,

Hence
(AR @AY W'®...@u")=ub s ... Qul 5 ®@clingenon
= uilﬁl ®...® ugnﬁn @ e(l)ﬁlmﬁn ® e(z)al...an
=g, @ Ug,E, @ ... B Uy 5, ® Mg @ eMgran

=...= ’UJ(l)L1 R...Q® ugn ® eal"‘a”(l) ® eal”'a"(z)

(0" @ AALW ® ... @ u"),

where we used the group-like property«fo derive the second equality and then
we used the condition (5) times to obtain the penultimate one. We also have

(d" @ AR @ ...@u") = u(lxl ® ... u, (e )

-1 n—1 n Q1.0 1
Sy, ®...Quy  ®u"e(e )

Tt . @un
=ul®...0u",

where we have first used the condition {B}imes and then the group-like property
of e. HenceA% is a coaction.
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2. IfY, u'®v’ € kerpthen u®id) -, AL (W @v?) =3, uévé@eo‘ﬁ =3 W) ®
e® = 0, using (6). Hence the coaction preseré@®. Similarly for " P.

3. HereM = {u € Plua®e®* = u®e}, and ifu,v € M, then @), ®e* =
eV ® P = uvg ® ef = uv @ e as well, using (6).

4. Itis easy to see thaty, is well-defined as a map froft @, P. Thus, ifx € M we

have ar(u, 7v) = u(@v)q ® e* = uzavs ® e’ = urvg ®@ e = xar(uz, v), using
(6). O

We remark that parts 3 and 4 also follow from the theory of C-Galois extensions
of [Brz96b], for P(M, C, 1, €) is such an extension. The required right actiorPodn
P®Cisgivenby i ®id) otz : PRC®P — PRC.

Example 2.3.Let H be a Hopf algebra ank be a right//-comodule algebra. The linear
mapy : H® P — P® H defined by : c@u — v cu® entwinesH, P. Therefore
a quantum group principal bundie(A, H) with universal differential structure as in
[BM9O3] is ay-principal bundleP(M, H, 1), 1).

Proof. Foranyc € H andu € P we haveu, @¢® = u©@®cu®. Clearly 1, ®c = 1ac.
We compute

Ua Vg ® P = u(a)vg ® (cu(I))ﬁ = u©@y© ® cu®y® = (uv)(a) ® c(uv)(I) = (uv)q R ¢,
hence the condition (4) is satisfied. Furthermee, )u® = e(cu®)u® = ¢(c)u and

Uag & C(l)ﬁ ® C(z)a = u(o)g ® C(l)ﬁ ® C(z)u(l) = u(O)(O) X C(l)u(o)(l) ® C(z)u(l)
=10 @ (cu) gy ® (cu®)@) = ua ® ) ® *2),

so that the condition (5) is also satisfied. Clearly the induced coaction in Proposition 2.2
coincides with the given coaction &f. O

We can easily replac& here by one of the braided groups introduced in [Maj91,
Maj93b]. To be concrete, we suppose that our braided gibliyes in ak-linear braided
category with well-behaved direct sums, such as that of modules over a quasitriangular
Hopf algebra or comodules over a dual-quasitriangular Hopf algebra. This background
guantum group does not enter directly into the braided group formulae but rather via the
braiding¥ which it induces between any objects in the category. We refer to [Maj93a]
for an introduction to the theory and for further details. In particular, a right braided
B-module algebra@ means a coactioR® — P®B in the category which is an algebra
homomorphism to the braided tensor product algebra [Maj91]

(ub)(®c)=u¥ (e v)ec. (8)

The coproductA : B — B®B of a braided group is itself a homomorphism to such a
braided tensor product.

Example 2.4.Let B be a braided group with braiding and P a right braidedB-
comodule algebra. The linear mgp: B ® P — P ® B defined byy : c® u —
U(c® u@u® entwinesB, P. If the induced mapy,, is a bijection we say that the
associated)-principal bundleP(M, B, ), 1) is abraided group principal bundleand
denote it byP(M, B, V).
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Proof. Thisis bestdone diagrammatically by the technique introduced in [Maj91]. Thus,
we write W =X and products by, =Y. We denote coactions and coproducts\byrhe
proof of the main part of (4) is then the diagram:

BPP

where box isy as stated, in diagrammatic form. The first equality is the assumed ho-

momorphism property of the braided coactitn The second equality is associativity

of the product inB, and the third is functoriality of the braiding, which we use to push
the diagram into the right form. The minor condition is immediate from the axioms of a
braided comodule algebra and the properties of the unitypmap— P. Here 1denotes

the trivial object for our tensor product and necessarily commutes with the braiding in
an obvious way (such thati4 denoted consistently by omission). For the proof of (5)
we ask the reader to reflect the diagram in a mirror about a horizontal axis (i.e. view
it up-side-down and from behind) and then reverse all braid crossings (restoring them
all toX). The result is the diagrammatic proof for the main part of (5) if we relabel the
product of P as the coproduct o and relabel the product @® as the right coaction

of B on P. The minor part of (5) is immediate from properties of the braided counit.
O

Example 2.5.Let H be a Hopf algebra and: H — C' a coalgebra surjection. If ker

is a minimal right ideal containinfu — e(u)|u € M} theny : C® H — H ® C defined

by 1 (c ® u) = up) ® (vue) entwinesC, H, whereu € H, ¢ € C andv € 7~1(c), and

we have ap-principal bundleH (M, C, ¢, w(1)) in the setting of Proposition 2.2, denoted
H(M, C,, ). Hence the generalised bundles over embeddable quantum homogeneous
spaces in [Brz96b] are examplesywiprincipal bundles.

Proof. In this caseu, ® ¢ = u@qy ® m(wu), foranyu € H, ¢ € C andw € 7~ (c).
Clearly 1, ® ¢* = 1® c. We compute

UqVg & P = U(1)Va ® W(wu(g))a = u()v(r) @ W(wU(z)’U(z)) = (uv)q @ 7,

wherew € 7~%(c). Hence condition (4) is satisfied. Furthermore, we hdve)u,, =
e(m(wu@))uw) = e(c)u and
tag ® c)’ ® e = uqy, ® T(wayueE) © ¢ = uw © T(weyue) © T(weu)
= u() @ T(wue)a) © T(WuE)e) = ta @ @) @ ),

where againw € 7 (cw) andwp) € m*(c). Therefore condition (5) is also
satisfied.

Some concrete examples of coalgebra bundles over quantum embeddable homoge-
neous spaces may be found in [Brz96b] (cf. [DK94]).
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We note that diagrams (4) and (5) are dual to each other in the following sense. The
diagrams (5) may be obtained from diagrams (4) by interchangwigh A, n with €
and P with C, and by reversing the arrows. With respect to this duality property the
axioms for the map are self-dual. Therefore we can dualise Proposition 2.2 to obtain
the following:

Proposition 2.6. Let C, P be entwined by : C® P — P® C. For every algebra
characterx : P — k we have the following:

1. For any positive integet, C®" is a right P-module with the action™ = (x ®id™) o
oy
1209230 ... 0Py = (K ®@1d") 0 .

2. The actiond™ mapsA™(C) to itself.

3. Thesubspack, = spafc<tu—cr(u)|c € C, u € P}isacoideal. Hence/ = C/I,,
is a coalgebra. We denote the canonical surjectionrpy C — M.

4. There is a mag™ : C® P — C &M C defined by(M (c®@ u) = cqy @M cp<tu,
whereC ®M C = spar{c® de C® C|C(1) & FH(C(Q)) ®d = C®7T,€(d(1)) X d(z)} is
the cotensor product unde¥/. If ¢* is a bijection, we say that'(M, P, v, k) is a
dual-principal bundle.

Proof. 1. The explicit action is
(rn® - @c)"u=cp" @ QL K(Uay-an,)-
Then clearly

((Cn - Cl) q"’u)q"v = cgn/@n ®---® C(flﬁlh‘/(ual'”anvﬁl"'ﬁn)

— Qn Qp—10n-1 a1
=c6,"® Cp_1 ®--® 1 H((u@l'“(Xn—lvﬁl“'ﬁn—l)an)

== @ R(U)agan) = (Cn @ - - ® 1)< (w)

forall ¢; € C andu,v € P. We used (6) repeatedly.

2. We have &(1)®C(2))<2u = c(l)ﬁ ® c2)*k(uag) = @) ® c*@)k(ua) = A(c<tu) by
(7), and similarly for highenn™(C).

3. Explicitly, I, = spa{c“k(us) — ck(u)lc € C, u € P}. But using (7) we have
Ak (ua) — cr(u)) = )’ ® e K(uap) — )@ cr(u) = ca)®@(ce)™r(ua) —
ek W)+ (e’ Kluag) —cays(ua)) ® c)® € C® I,+1,, ® C. Hencel, isacoideal.

4. The stated map™ (c ® u) = cqy ® c2)*k(uq) has its image il @ C since

c) © (@) ® @) Kta) = c) @ Tx(c@)”)r(tap) © c@)”

using (7) andr. () = 0. By dimensions in the finite-dimensional case, it is natural
to require that this is an isomorphism. O

This is also an example of a dual version of the theorg'dbalois extensions. The
proposition is dual to Proposition 2.2 in the sense that all arrows are reversed. In concrete
terms, if P, C' are finite-dimensional then* : P* ® C* — C* ® P* andx € P* make
C*(M™*, P*,¢*, k) ay*-principal bundle. Herd/* = {f € C*|(k® f) oty = f @ K}.

If C, P are entwined and we have bathe C andk : P — k, we can have both &-
principal bundle and a dual one at the same time. An obvious example, in the setting of
Example 2.3,is” = C' = H aHopfalgebraang(c ® u) = w1y ® cu(z) by the coproduct.
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Then Proposition 2.2 with = 1 gives a quantum principal bundle witli = k£ and right
coaction given by the coproduct. On the other hand, Proposition 2.6«with gives a
dual bundle with action by right multiplication.

Finally, we note that there is a close connection with the theory of factorisation of
(augmented) algebras introduced in [Maj90, Maj94b] as part of a factorisation theory of
Hopf algebras. According to this theory, a factorisation of an alg&birsto subalgebras
A, B (so that the producl ® B — X is a linear isomorphism) is equivalent to a
factorisation structure) : B® A — A ® B with certain properties. It was also shown
that whenA, B are augmented by algebra characters then the factorisation structure
induces a right action ol on B and a left action of3 on A, respectively.

Proposition 2.7. LetC be finite-dimensional. Then an entwining structureC' @ P —
P ® C is equivalent by partial dualisation to a factorisation structyre C* ® P°P —
P°P® C*. In the augmented case, the induced coactkipand action<! in Proposi-
tions 2.2 and 2.6 are the dualisations of the actions induced by the factorisation.

Proof. We use the notationﬂ(_f@u) = u;® f* say, forf € C* andu € P. The
equivalence withy) is by u;(f*,c) = ua(f,c*), where(, ) denotes the evaluation
pairing. It is easy to see thdtentwinesC, P iff ¢ obeys [Maj94b]cf. [Majo0]

Jo(ueid) = (id®u) o graotns, B(f®1) =10, )

do(deu) = (pwid)ogoty P(1eU)=uel (10)

for all f € C* andu € P°P. Thus, the first of these i8;(c, (fg)!) = ua{(c®, fg) =
ualc® @, )@, 9) = uaslcw’, He@® 9) = uailcq, [') c@® 9) = wileq, [*)

(c(2), 97) using (7). Similarly for (10) using (6), provided we remember to use the opposite
productonP. Such data/? is equivalent by [Maj94b, Maj90] to the existence of an algebra
X factorising intoP°PC*. Given suchX we recover) by uc = p o (c®u) in X, and
conversely, given) we defineX = PP®C* asin (8), but withy). Also from this theory,

if we haver an algebra character defP (or on P) then< = (x ® id) o ¢} is a right action

of P° on C*, which clearly dualises to the right action Bfon C' in Proposition 2.6.
Similarly, if e is a character o then> = (id ® €) o ¢ is a left action ofC* on P°P (or

on P) which clearly dualises to the right coaction@fin Proposition 2.2. [

An obvious setting in which factorisations arise is the braided tensor product (8)
of algebras in braided categories [Maj91, Maj93b, Maj93a], with ¥ the braiding.

Thus if AQ B is a braided tensor product of algebras (e.g. of module algebras under a
background quantum group) we can look for a suitable dual coald&hirathe category

and the corresponding entwiniggof B*, A°P. This provides a large class of entwining
structures.

Another source is the theory of double cross proddtts H of Hopf algebras in
[Maj90]. These factorise as Hopf algebras and hence, in particular, as algebras. In this
context, Proposition 2.7 can be combined with the result in [Maj90, Sect. 3.2] that the
double cross product is equivalent by partial dualisation biceossproductd *p<iG.

These bicrossproduct Hopf algebras (also due to the second author) provided one of the
first general constructions for non-commutative and non-cocommutative Hopf algebras,
and many examples are known.

Proposition 2.8. Let C'»1P°P be a bicrossproduct bialgebra [Maj90, Sect. 3.1], where
P°P_(C are bialgebras suitably (co)acting on each other. Tider® are entwined by
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(e ®u) = uw)? @ uwyP(uppo).

Heres is the left action ofP°® on C' andu® ® «™® is the right coaction of” on P,
as part of the bicrossproduct construction.

Proof. We derive this result under the temporary assumptiorGhafinite-dimensional.
Thus the bicrossproduct is equivalent to a double cross pradeftfcks C* with actions
>, < defined byfou = u©(f,u®) and (usc, f) = (c, fau) for all f € C*. Theny
for this factorisation is)(f @ u) = fyPue) ® f2)due) according to [Maj90, Maj94b].
The correspondence in Proposition 2.7 then gives stated. Once the formula foiis
known, one may verify directly that it entwiné€g P given the compatibility conditions
between the action and coaction of a bicrossproduct in [Maj90, Sect. 3.1[1

Now we describe trivial)-principal bundles and gauge transformations in them.

Proposition 2.9. Let P and C be entwined by} as in Definition 2.1 and let be a
group-like element i'. Assume the following data:

1. Amapy© : C ® C — C ® C such that
(d® A)oC =G ovo(Arid), (doeovC =emid,  (11)

andy (e ® ¢) = Ac, foranyc € C;
2. A convolution invertible mag : C — P such thatd(e) = 1and

Yo (id® @)= (P ®id)o©. (12)

Then there is a/-principal bundle overM = P°¢ with structure coalgebraC’ and
total spaceP. We call it thetrivial -principal bundleP (M, C, ®, v, , e) associated
to our data, with trivialisationd.

Proof. The proof of the proposition is similar to the proof that the trivial quantum
principal bundle in [BM93, Example 4.2] is in fact a quantum principal bundle. First we
observe that the map

O:MxC— P, x®cr— x®(c)
is an isomorphism of linear spaces. Explicitly the inverse is given by
O tium u(O)CD_l(u(l)(l)) ® u(l)(z),
where®~1: C' — P is a convolution inverse ab, i.e.
> Hew) P(c) = D)@ Hew) = (L

To see that the image of the above map 84 C' we first notice that (12) implies that
AL o ® = (® ®id) o A and that

Pleay ® D He)) =2 H) @e. (13)
Therefore for any, € P,

AR (u®) = uOpuWyy @ @ HuMp) = uQ M) we,
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and thusu@®~1(uM) € M. Then it is easy to prove that the above maps are inverses
to each other.

We remark tha® is in fact a leftA/-module and a righ€-comodule map, where
the coaction inM ® C'is given byz ® ¢ — x ® cp) ® c(z). Moreovery o (id ® ©) =
(© ®id) 0 g 0 Y12,

The proof thaty ;s in this case is a bijection follows exactly the method used in the
proof of [BM93, Example 4.2] and thus we do not repeat it here.[d

Next, we consider gauge transformations.

Definition 2.10. Let P(M, C, &, ), e) be a trivialy-principal bundle as in Propo-
sition 2.9. We say that a convolution invertible mapC — M such thaty(e) = lis a
gauge transformatioif

Yoo (id@y®id)o (id®A) = (y®id ®id) o (A @ id) o ¢°. (14)

Proposition 2.11. If v : C — M is a gauge transformation i®(M, C, ®,, ¢, e)
then ® = ~ x ®, where x denotes the convolution product is a trivialisation of
P(M,C,®,4,9° e). The set of all gauge transformations (M, C, ®, 1,1, e)
is a group with respect to the convolution product. We say that two trivialisatioasd
@’ are gauge equivalerif there exists a gauge transformatigrsuch thatd’ = ~ x ®.

Proof. Clearly @' is a convolution invertible map such th@t(c) = 1. To prove that it
satisfies (12) we first introduce the notation

P ®c)=cy @ b4 (summation assumed)
in which the condition (14) reads explicitly
Y(e@)a ® c@) 4 ® b** = y(ca@) ® ca@) @ b?,
and then compute
o (id ® )b ® ) = P(b @ (cw)P(c@)) = Y(ew)aPlc@)s © b7
= Yc@)a®(c@) 1) ® b = Y(caw)Plca@) ® b
= (' ®@id) o (b ® ¢).
This proves the first part of the proposition.
Assume now thatq, 72 are gauge transformations. Then
(lca)rzlc@))a ® @ 4 ® b** = 11(c)ar2(c@)s ® c@) 4 ® b*4
= 1(cw)arzlc@ aw) © @ a@ © 0
= vlca)ra(cae) ® ca@ ® b

Thereforey; * ;2 is a gauge transformation too. Cleatlis a gauge transformation and
thus provides the unit. Finally, to prove thatifs a gauge transformation then seyist,
we observe that i3 = 71 * 2 and~, are gauge transformations then se4sindeed,

if 71 * 2 IS a gauge transformation then

(lea)r2(c@))a ® @), @ b** = y(cam)re(cae) ® ca@ @ b?,
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but sincey, is a gauge transformation, we obtain
Tlc@)ar2(c@)a@) @ c@a@ @ b = vlca)r2(cae) ® ca@ @ b™.

Applying 72_1 to the second factor in the tensor product and then multiplying the first
two factors we obtain

Ylc)a ® c@) 4 ® b = yi(ca@) ® cae) @ b,

i.e.vy1 is a gauge transformation as stated. Now applying this restit toc and~,; =
we deduce that ! is a gauge transformation as required. This completes the proof of
the proposition. O

Although the existence of the map’ as in Proposition 2.9 is not guaranteed for all
coalgebras, the map® exists in most of the examples discussed in this section:

Example 2.12.For a quantum principal bundié(M, H) as in Example 2.3, we define
(b @A) = ey @ be),

for all b,c € H. Then (2.9)—(2.11) reduces to the theory of trivial quantum principal
bundles and their gauge transformations in [BM93].

Proof. It is easy to see by standard Hopf algebra calculations that (11) is satisfied
by the bialgebra axiom foHH = C in this case. Moreover, (12) reducesdobeing

an intertwiner of Az with A. The condition (14) is empty. This recovers the setting
introduced in [BM93]. O

In the braided case we use the above theory to arrive at a natural definition of trivial
braided principal bundle:

Example 2.13.For a braided principal bund(M, B, ¥) as in Example 2.4, we define
a trivialisation as a convolution-invertible unital morphisim: B — P in the braided
category such thahp o ® = (® ®id) o A, whereAr, is the braided right coaction of
B on P. We define a gauge transformation as a convolution-invertible unital morphism
~v : B — M, acting on trivialisations by the convolution productThis is a trivial
W-principal bundle with

PP c) = V(b @ cu)cw),

whereAc = () ® ¢(z) is the braided group coproduct.

Proof. This time, (11) follows from the braided-coproduct homomorphism property
of a braided group [Maj91]. From this and the formf we see that (12) becomes
AR o ®(c) = (P®id) o W(b® cuy))cp). Settingb = e gives the condition stated on

® because the braiding with = 1 is always trivial. Assuming the stated condition,
(12) then become®(c(1)) ® begry = (P @ id) o W(b ® cy))cre), Which is equivalent (by
replacingc(z) by c) ® Scy and multiplying, wheres is the braided antipode) to

(@ ®id) oW =Wo (id® d).

When all our constructions take place in a braided category, this is the functoriality
property implied by requiring thab is a morphism in the category. The theory of trivial
1-bundles only requires this functoriality condition itself. Similarly, we compute the
gauge condition (14) using(b ® v(c)) = W(b ® v(c)) becausey(c) € M, and operate
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on it by replacinge() by c2) ® Sczy and multiplying. Then it reduces td23 0 W12 0
(id®~o0A) = (yo A®id)o W. SinceA is a morphism, we see (by applying the braided
group counit) that the gauge condition (14) is equivalent to

(v®id)o ¥ =Wo (d® 7).

As before, this is naturally implied by requiring thatis a morphism in our braided
category. It is clear that the convolution producpreserves the property of being a
morphism sinceA andA g are assumed to be morphisms. [

For ay-principal bundle over a quantum homogeneous space as in Example 2.5, we
can define a trivialisation if, for example, the map

PO @) = (o) @ T(uve), (15)

whereu € 771(b), v € 7Y(c) is well-defined. Then a trivialisation of the bundle is a
convolution-invertible ma@ : C' — H obeying® o 7(1) = 1 and

@ (c)1) @ T(ud(c)2) = P o m(v) @ T(uv(R) (16)

forall ¢ € C,u € H, andv € 7 1(c¢). Takingu = 1 requires, in particular, the
natural intertwiner condition® ® id) o A = Ag o ®. There is, similarly, a condition on
gauge transformationsobtained from (14). Hence our formulation of triviadprincipal
bundles covers all the main sourceg/eprincipal bundles discussed in this section.

We conclude this section with some explicit exampleg-gfrincipal bundles.
Example 2.14 Let H be a quantum cyIindeAﬁ‘o[mfl], i.e. a free associative algebra
generated by, 2 ~1 andy subject to the relationgr = qxy, xa~! = 271z = 1, with a
natural Hopf algebra structure:

Artl=atl ot Ay=loy+tyow, et 17

Consider arightideal in H generated by — 1 andz—! — 1. Clearly,J is a coideal and

thereforeC = Aﬁ‘o[x—l]/J is a coalgebra and a canonical epimorphismHd — C'is
a coalgebra mag. is spanned by the elemenrts = w(y"), n € Z>o, and the coproduct
and the counit are given by

n

Ac,, = Z (Z) . Ck R Crnk, e(cy) = 0. (18)

k=0

We are in the situation of Example 2.5 and thus we have the entwining strugture
C ® H — H ® C, which explicitly computed comes out as

¢(Cl 29 xmyn) = Z <Z> ql(k+m)xmyk Q Cp+i—k, (19)
k=0 q
where
(0) 76
k v [n— K] k]!
and

[n]g! =[n]q---[2]4[1]4, [O]4! =1, [n]y=1+qg+...+ L
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From this definition ofiy one easily computes the right coaction@fon H as well
as the fixed point subalgebrd = k[z,z~1], i.e. the algebra of functions on a cir-
cle. By Example 2.5 we have just constructed a generalised quantum principal bundle
AF L= (klz, 7Y, C, v, co).
Finally we note that the above bundle is trivial in the sense of Proposition 2.9. The

trivialisation® : C — Ag‘o[afl] and its inverseb ! are defined by

P(cn) =y", D Hcn) = (—1)"g D2y, (20)
One can easily check that the méypsatisfies the required conditions. Explicitly, the
mapy© : C ® C — C ® C reads

n

wc(cm & cn) = Z <Z> qkmck & Cman—k-
q

k=0
Therefore

o (id ® P)(em ® en) = Y(em ®Y") =D (Z) "™ Y* @ coman—tk
k=0

q
= (@ ®id) 0 Y (cm @ cn).
Since the bundle discussed in this example is trivial, we can compute its gauge group.
One easily finds that a convolution invertible mapC — k[z, 1] satisfies condition
(14) if and only ify(c,) = T'pa™ (N0 summation), where € Zx, T',, € k andI'p = 1.

Therefore the gauge group is equivalent to the group of sequéheefl, 'y, ', ...)
with the product given by

(F . F/)n = Z (Z) FkF;L_k.
q

k=0

For the simplest example of a braided principal bundle, one can simply take any
braided groupB and any algebrad/ in the same braided category. Then the braided
tensor product algebr& = M ® B, along with the definitions

Ap=id®A, ®@B)=10b, & (b)=125b (21)

put us in the setting of Examples 2.4 and 2.13. Note first thatis a coaction (the
tensor product of the trivial coaction and the right coregular coaction) and niaikes
a braided comodule algebra. Moreover, the induced map

xm(m@ben®c)=m¥(be n)cy ® cpe)
form,n € M, b,c € B, is an isomorphisnP @,; P — P ® P; it has inverse
X_Ml(m®b®c) = m®b§0@® 1®0@.

It is also clear thatd is a trivialisation. This is truly a trivial braided principal bundle
becauseP is just a (braided) tensor product algebra.
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Example 2.15.Let B = k[c] be the braided line generated bwith braiding¥(c ® c) =
gc® c and the linear coprodugtc = c® 1+ 1® c. Itlives in the braided category Vgc
of Z-graded vector spaces with braidig#f9()9e90times the usual transposition. Here
degg) = 1. LetM = k[z, 2] be viewed as &-graded algebra as well, with deg(= 1.
Then P = k[x, 2~ Y ®k[c] is a trivial braided principal bundle with the coaction and
trivialisation

Ap(z™®@c") = Z (Z) "R @R, D) = 1@ (22)
k=0 q

As ai-principal bundle, this example clearly coincides with the preceding one, albeit
constructed quite differently: we identify* = ¢, andy = 1® ¢, and note that in the
braided tensor product algebkfr, z~1®k[c] we have the product (b c)(z ® 1) =
V() = qrzel)(l®c), ie. P = Aé'o[fl]. It is also clear that the coproduct
deduced in (18) can be identified with the braided line coproduct which is part of our
initial data here. This particular braided tensor product algétissactually the algebra
part of the bosonisation d¢ = k[c] viewed as living in the category of comodules over
k[x, z~1] as a dual-quasitriangular Hopf algebra (see [Maj95, p. 510]), and becomes in
this way a Hopf algebra. This bosonisation is the Hopf algébmahich was part of the
initial data in the preceding example. Finally, gauge transformatidram the braided
point of view are arbitrary degree-preserving unital map$ — k[x, 1], i.e. given

by the group of sequencé&sas found before.

This example demonstrates the strength of braided group gauge theory; even the most
trivial braided quantum principal bundles may be quite complicated when constructed
by more usual Hopf algebraic means. On the other hand, the following embeddable
guantum homogeneous space does not appear to be of the braided type, nor (as far as
we know) a trivial bundle.

Example 2.16.Let P be the algebra of functions on the quantum gréiip,(2). This
is generated by elements 3, -y, 6 and D subject to the relations

af=qBa, ay=gqyva, ad=da+(@—q By,  By=1985,

B6=qé3,  v6=qdy,  (ad—gBy)D=D(ad—qBy)=1
Let C be a vector space spanneddyy,,, m € Zso, n € Z with the coalgebra structure

m . m
A(Ciyj) = Z qk( ") ( k > Ckyn & Cm—k n+ks 6(Cm,n) = Omo-
k=0 f]72

Let the linear map) : C ® P — P ® C be given by
leij © a4 76" D)

m n
- Z Z m n q(mfs)(s+tfl)+(n7t)t7i(k:+l7tfs) « (23)
S ) 2 t -2

s=0 t=0

ak+m787l+n7t635tDr @ CitmAn—s—t,j—r+t+s-
Thenty entwinesP with C. Furthermore if we take = cg o then the fixed point sub-
algebraP® is generated by,kv,y and hence it is isomorphic tﬂi‘ﬁ] and there is a

-principal bundIeP(Ail/(;, C,1,e).
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Proof. The algebraiL,(2) can be equipped with the standard Hopf algebra structure

S5 D=0 Do D s Dl W)
e() = €(6) = 1,¢(B) = e(v) = 0. We define a surjection : GL,(2) — C by
m(a*B'y™ 6" D") = 100" Ct 1

In Sect. 5 of [Brz96b] it is shown thatis a coalgebra map and that the d&tas G'L,(2),
m, C satisfy requirements of Example 2.5. Therefore we hayegxincipal bundle with
1 as in Example 2.5. Written explicitly thig is exactly as in Eq. (23).
In [Brz96b] it is also noted that the coalgelracan be equipped with the algebra

structure ofAj‘,Oz[x—l] by settingc,, , = ¢~™"z™y™. The coproduct irC is then the
same as in Example 2.14, Eq. (17). O

3. Connections in the Universal Differential Calculus Case

From the first assertion of Proposition 2.2 we know that the natural coastion A%
of C on P extends to the coaction @f on the tensor product algebf2®” for any
positive integemn. Still most importantly this coaction can be restrictedX6P by the
second assertion of Proposition 2.2. Therefore the coalgeéloacts on the algebra of
universal forms orP. The universal differential structure dnis covariant with respect
to the coactiom; in the following sense:

Proposition 3.1. Let P, C, ¢ and e be as in Proposition 2.2. Let : P — QP be
the universal differentialdu = 1 ® v — v ® 1 extended to the whole 6fP as in the

—n . n-1
Preliminaries. Theny) o(id®d)=(d®id)o 9 for any integem > 1. Therefore
A%o(id®d)=(d®id)o A%

Proof. We takev = 3", u% @ v @ ... ® u™ € Q"P (i.e., any adjacent product
vanishes). Using conditions (4), and the explicit form ef @), for anyc € C we
compute

n+2
¢ (c®dv)
n+l

=Y DY wdie. . eub N olioull @, @ul @ coerion e
k=0 i

n+l

:Z(_l)k Zugg R...Q U’;;}f X 1®UZ7Z R...® ugf ®Cao ...... an
k=0 i

o n+l
z(did)o v (c®v). O

To discuss atheory of connectiongtM, C, 1, e) itis important that the horizontal
2

one formsPQM P be covariant under the action m% or, more properlyz . The
following lemma gives a criterion for the covariance of horizontal one-forms.
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Lemma 3.2. For asy-principal bundleP (M, C, v, e) assumethap(Co M) C M C.
2

Theny (C ® PQIMP)c PQ'MP®C.

Proof. Using (6) one easily finds that for amyv € P, x,y € M andc € C,

2

“ aBys
P (c®@ur Q@ Yv) = Uag @ Yyvs @ 70,

If we assume further thats, y, € M then the result follows. [

We will see later that the hypothesis of Lemma 3.2 is automatically satisfied for
braided principal bundles of Example 2.4. In contrast, it is not necessarily satisfied for
1-bundles on quantum embeddable homogeneous spaces of Example 2.5. For example,
one can easily check that it is satisfied for the bundle discussed in Example 2.16. On the
other hand the-principal bundle over the quantum hyperboloid, which is an embeddable
homogeneous space Bf,(2) [BCGSTI6] fails to fulfil requirements of Lemma 3.2.

The covariance ofRP and PQ'MP enables us to define a connection in
P(M,C,4,e) in a way similar to the definition of a connection in a quantum prin-
cipal bundleP(M, H) (compare [BM93]).

Definition 3.3. Let P(M, C, v, e) be a generalised quantum principal bundle such that
Y(C ® M) ¢ M @ C. A connection inP(M, C, w,e) is a left P-module prOJectlon

I1: QP — QP such thaker IT = PQIM P and & (|d ® )= I Rid)7y .

It is clear that for a usual quantum principal bundtéM, H), Definition 3.3 co-

incides with the definition of a connection given in [BM93]. Thus, the condition in
2 2

Lemma 3.2 always holds fat as in Example 2.3, WhlI&7 (deI)=UI® id)? if
and only if A% IT = (IT @ id)A%, which was the condition in [BM93].

Inwhat follows we assume that the condition in Lemma 3.2 is satisfied. A connection
II in P(M,C,,e) can be equivalently described as follows. First we define a map
¢:C® P®kere —» P ® kere @ C by the commutative diagram

2

0]
C® QP QlreC
id® x X ®id
o
C® P ®kere - Pkere® C

wherex(u ® v) = ui(e ® v). The mapyp is clearly well-defined. Indeed, becaugg

is a bijection, kep< PQMP and thenw (C ® kery) C kery ® C, by Lemma 3.2.
Thereforep(0) =
By definition of P(M,C,4,e) we have a short exact sequence of [Bftnodule
maps
0— PQMP — QP %5 P®kere — 0. (24)
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The exactness of the above sequence is clear since the faghihatbijective implies
2
thaty is surjective and key = PQ1M P. By definition, x intertwinesﬂ with ¢.

Proposition 3.4. The existence of a connectidhin P(M, C, 1, e) is equivalent to the

existence of a lefP-module splittings : P @ kere — QP of the above sequence such
2

thaty o (id® o) = (o ®id) o ¢.

Proof. Clearly the existence of a lel?-module projection is equivalent to the existence
of a left P-module splitting. It remains to check the required covariance properties.
Assume that has the required properties, then

(—2 (_2
Y o(d®I)=1 o(id®o)o(id®x)
o2 L2
=(c®id)ogo(id®x)=(cox®id)o ¢ =(®id)o v .
Conversely, iflT has the required properties, then one easily finds that
2
Y o(d®ooyx)=(c®id)ogo(id®x).
Sincey is a surjection the required property @follows. O

To each connection we can associate its connection onedforkere — QP by
settingw(c) = (1 ® c). * Similarly to the quantum bundle case of [BM93] we have

Proposition 3.5. Let IT be a connection o’ (M, C, 1, ). Then, for allc € kere, the
connection 1-fornu : kere — QP has the following properties:

1. xow(c) =1®c,
2
2. For anyb € C, E b ® wl()) = c(l)ac(z)ng(e”*) ® b3, where ¢ @, @

(summation understood) denotes thanslation map 7(c) = x;(1 ® ¢) in
P(M,C, 1, e).

Conversely, if> is any linear mapy : kere — Q1P obeying conditions 1-2, then there is
a unique connectiofil = p o (id ® w) o x in P(M, C, 9, ) such thatv is its connection
1-form.

Proof. Foranyb ® u ® ¢ € C ® P ® kere the mapy is explicitly given by
PbRuc) = uac(l)ﬁc(z)ws ® e’ @ bP.

Therefore ifw is a connection one-form then
Y bRwE)=19% o(ld®a)b®1®c)

o(W,d?s, @ e?) @ b’
= C(l)ac(z)gyw(e”) ® P,

Conversely, ifv : kere — QP satisfies condition 1 them = (1 ® id) o (id ® w)
gives a leftP-module splitting of (24). Furthermore, Condition 2 implies

1 We can equivalently think of a connection 1-form as a réap- Qe given byw(c — ee(c)). This was
the point of view adopted in [BM93].
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(c®id)opbR@u®c) = J(uac(l)gc(z),yg ® e?) @ P

= uac(l),gc(z)ww(e‘s) ® B
(—2 <_3
Zua Y 0 Quw()=@eid)o yp (b®u® w(c))

= ?Z(b ® uw(c)) = EZ oido)(b@umc). O

Example 3.6.For a quantum principal bundi(), H), Condition 2 in Proposition 3.5
is equivalent to thedd z-covariance ofu.

Proof. Using the definition of) in Example 2.3 one finds
W, @5 @ e’ @b = B ,c@,;0 g 2D g s
= DO ,0) g (@D g MO
= VOO0 g QOO g pMHDD
=y M(C(l)(O) Qnr C(2)(0)) ® bW D),
From the covariance properties of the translation map [Brz96a] it then follows that
c(l)ac(z)ﬂfy ®e’ @b = xM(T(c@)) ® b(Scay)cE) = 1® ¢y ® bS(cqy)cm).-

This also follows from covariance gfy; as intertwiningA? projected taP @5, P with

the tensor product coactia&}% ® Adg on P ® H. Hence Condition 2 may be written
as

L2
Y (b ®w(c)) = wlcE) @ b(Sca)c)
which is equivalent ta\%, o w = (v ® id) 0 Adg. O

Example 3.7.For a braided group principal bundi&g(M, B, ¥) in Example 2.4, Lem-
ma 3.2 holds. Moreover, Condition 2 in Proposition 3.5 is equivaleAttg-covariance
of w, whereAdp, is the braided adjoint coaction as in [Maj94a].

Proof. The braided group adjoint action is studied extensively in [Maj94a] as the basis
of a theory of braided Lie algebras; we turn the diagrams up-side-down for the braided
adjoint coaction and its properties (or see earlier works by the second author). Firstly,
Y(B® M) C M @ B isimmediate since by propertiesof 1, V(B M) C M ® B.

Also clear is thatA}, coincides with the given braided coaction Bfon P and A%
coincides with the braided tensor product coactiodon P. A% projects to a coaction

on P ®jy; P by Lemma 3.2. We show first thaty, : P®y P — P ® B intertwines

this coaction with the braided tensor product coactidp® Adr. We work with rep-
resentatives i’ ® P and use the notation [Maj93a] as in the proof of Example 2.4.
Branches\ labelledA are the coproduct aB; otherwise they are the given coaction of
BonP. Thus,
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where the upper box on the left ig; and the lower box is the braided adjoint coac-
tion Adg. S denotes the braided antipode Bf The tensor producA}% ® Adgr uses

the braiding and the product &f according to the theory of braided groups [Maj93b].
The first equality uses the homomorphism property of the given coactiéghaf P.

The second uses the comodule axiom. The third identifies an “antipode loop” and can-
cels it (using associativity and coassociativity, and the braided antipode axioms). The
fourth equality uses the comodule axiom in reverse and also pushes the diagram into
the form where we recognise the braided tensor product coasfiofollowed by x ;.

Using this intertwining property of 5, we write the right hand side of Condition 2 in
Proposition 3.5 as

B B B B % B B B?

2
wherer = X;j(l ®()). The left hand side? (b ® w(c)) is shown on the right hand side
of the diagram (using associativity of the producf2h Hence equality is equivalent to
A% ow = (w®id) o Adg. O

We remark that in the framework with™ in place ofC as explained in Proposi-
tion 2.7, we can use fof* braided groups of enveloping algebra type, in particular
U(L) associated to a braided-Lie algeldtin [Maj94a] with braided-Lie bracket based
on the properties of the braided adjoint action. In this case one couldtaké @ QP
with the corresponding covariance properties. Using the braided Killing form also in
[Maj94a] one has the possibility (for the first time) to write down scalar Lagrangians
built functorially fromw and its curvature. On the other hand, for a theory of trivial
bundles (in order to have familiar formulae for gauge fields on the base) one needs to
restrict trivialisations and gauge transforms in such a wayuhatains its values itf.
This aspect requires further work, to be developed elsewhere.

Example 3.8.ConsiderH (M, C, 7), the ¢-principal bundle associated to an embed-

dable quantum homogeneous space in Example 2.5. Assumgthat M) ¢ M @ C.
Condition 2 in Proposition 3.5 is equivalent to

A%owon=(w®id)o (r® 7)o Adg. (25)
In particular, this implies that any linear inclusion M/ — H such thatr o4 = id and
e(c) = e o i(c) gives rise to the canonical connection 1-foirtr) = (Si(c)w))di(c)),
provided that
([d®m)oAdroi=(i®id)o (mr ® 7)o Adg 0.

Proof. In this case)(c ® v) = va) ® T(uv(), andr(c) = Su) s u), for anyc € C,
v € H andu € 7~1(c). Also e = 7(1). The transformation property of now reads
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Ez(b ® w(e)) = (Su)at) s, (T(1)) @ 7()*”

= (Su@)u)g,w(w(1)") @ m(vSu)’
(SU(z))U(3),Yw(7T(1)’Y) ® m(v(Su))uw)
(Sue)ueEw(r(ua)) ® T(v(Suw)ues)
= w(m(u@)) © m(v(Suw)um),

wherev € 7~1(b). Choosingv = 1 we obtain property (25). The converse is obviously
true. (I

Before we describe some concrete examples of connections we construct connections
in the trivialy)-bundles of Proposition 2.9.

Proposition 3.9. Let P(M, C, ®, v, ¢, e) be a trivial coalgebray)-principal bundle
such that)(C' @ M) ¢ M @ C. Let3 : C — QM be a linear mapg(e) = 0and such
that

V$3 03090 (d®ARid)o(id® A)=(Beid®id)o (A ®id) o,  (26)
Then the map : kere — Q'P,

w=® ludd+d tupxd (27)

is a connection one-form iRP(M, C, ®,, 1, €). In particular for 5 = 0 we have a
trivial connection inP(M, C, ®, 1), 1, e).

Proof. To prove the proposition we will show that satisfies conditions specified in
Proposition 3.5. Firstly, however, we observe that the translation mggpif, C, @, 1,
© €) is given by
7(c) = q)_l(C(l)) ®@um Ple). (28)
Indeed, a trivial computation shows thai;(7(c)) = 1 ® ¢, as required. The same
computation shows that for amyc kere,
X(@ 7 He)dP(cz) + @ Hew)Ble@) () = (@ Hcw) © Ple)) = 1@,

and therefore Condition 1 of Proposition 3.5 is satisfiedoby
Now we prove that Condition 2 of Proposition 3.5 holdsdor! «d® and® ~1x 5% ®
separately. For the former the left hand side of Condition 2 reads

2
-
LHS = ¢ (b® @ Ycw) ® Pc)) = @ Hew)a ® D(c@)s @ b7
= & M) ® Plepy ) ® b4

On the other hand we use the definition7of28) and the properties b to write the
right-hand side of condition 2 as follows:

RHS = & Hcw)aPc@)s, @ e (1) ®@ D" @) ® b*°
= @) a P(c@) s @ ") ® D7) @ b7
= @ Ycw)aP(cE) )16 P He") ® () @ b4
= 2 M@)o P(c@ 4 )P e@ 4@) ® Pl 4@) ® b
= & ) ® Ple) ) © b4 = LHS.
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2
To compute the action o? on the second part af we will use the shorthand notation

L2
Y (b® p)=pa ® b,
for anyb € C andp € Q1P. In this notation Eq. (26) explicitly reads

Blew)a @ c@) 4 @ b2 = Bleaq) @ ca@) @ b

2
Using the similar steps as in computation of the action%fon the first part ofv we
find that the right hand side of Condition 2 reads

O Hcw)aB(c@) 1) P(c@) 4@2) @ D™,

while the left hand side is

® Hcw)aBc@)a®(c@ 1) ® 7% = @ Hew)aBle@ 4 @) Pl 4 @) ® 0.
From Proposition 3.5 we now deduce theils a connection one-form as stated. [J

Using similar arguments as in [BM93] we can easily show that the behavigéir of
under gauge transformations is exactly the same as in the case of quantum principal
bundles. For example, if we make a gauge transformatiob,ap — ~ x ® and then
view w in this new trivialisation then the local connection one-fr@rwill undergo the
gauge transformation

By trdy+y T x By (29)

As before, we can specialise this theory to our various sourcespoincipal bun-
dles. For quantum principal bundles we recover the formalism in [BM93]. For braided
principal bundles we make a computation similar to the oneyfar Example 2.13,
finding that (26) is naturally ensured by requiring tidat B — QM is a morphism
in our braided category. Then the same formulae (27) and transformation law (29) etc.
apply in the braided case. Indeed, they do not involve any braiding directly.

Now we construct explicit examples of connections in one of the bundles described
at the end of Sect. 2.

Example 3.10.Consider the quantum cylinder bund®é/°[z—](k[z, z~1, k[c], ¥, 1)

in Example 2.14. Theny(k[c] ® k[z,z71]) C k[z,z~'] ® k[c]. The most general
connection of the type described in Proposition 3.9 has the form

n—1
W(Cn): Z(_l)k <Z) qk(kfl)/Zykdynfk
k=0 q
+ Z Z Z(_l)k:qk((kfl)/Zﬂ') (Z) <7IZ> Fi’mikxiyk(dl_m7k7i)yn7m(30)
q q

i m=0 k=0

where foralli € Z,n € Z>0,T'y; € k,Tg; = 0.
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Proof. If we setn = 0 in formula (19) then we fing(c! ® z™) = ¢!™2™ ® ¢! and the
first assertion holds. This assertion also follows from Example 3.7. We idéntify:[ ]
by ¢, = ¢", as a certain (braided) coalgebra.

Itis an easy exercise to check that a nfapk[c] — Qk[z, + 1] satisfies condition
(26) if and only if

B = Z Ty iz'dz", (31)

wherei € Z, T, ; € k, To; = 0. Now writing the explicit definition of trivialisatio®
(20), and the coproduct of* (18) we see that in (30) is as in (27) with3 given by
(32). a

From the braided bundle point of view in Example 2.15 on the same bundle, we work
in the braided category &-graded spaces and are allowedfany degree-preserving
that vanishes on 1. This immediately fixes it in the form (31), and herfcem (27).

4., Bundles with General Differential Structures

LetP(M, C,1,e)be a(/; principal bundle asin Proposmon 2.2. Lgtbe asubblmodule

of Q1P such thatz/) (C @N) C N®C.The mapqp induces a mapsz C®
Q'P/N — Q'P/N ® C andN defines a right-covariant differential structueé(P) =
QP/N on P. We say tha2!(P) is a differential structure o®(M, C, v, e).

Definition 4.1. Let P(M, C, 1, e) be a coalgebra)-principal bundle and let)(C ®
M) ¢ M ® C. Assume that\" ¢ QP defines a differential structur&@*(P)
on P(M,C,1,e). A connection inP(M,C,,e) is a left P-module prOJectlonH

QY P) — QY(P) such thakerII = PQY(M)P and 1/} yol(id® Il =l ®id)o v N

Similarly as for the universal differential calculus case, a connecti&id, C, ¢, )
can be described by its connection one-form. First we consider the vector space
(P @ kere)/x(N) with a canonical surjectiom, : P ® kere — M. Sincey is a
left P-module mapy (V) is a left P-sub-bimodule of? @ kere. ThereforeM is a left
P-module andr , is a left P-module map. The action d? on M is defined by

u-v= ZWM(uvi ® b,

whereu € P,v € Mand)_, u;®c’ € T g L(w). We denoteA = (1@ kere). The left
P-module structure oM implies that for every elemente M, there exist,; € P and
A e A such thab = Do Ui M. Therefore there is a natural surjecti®® A — M.

We assume that(C' ® M) C M ® C, and hence the mafpcan be defined. For any
u € P,c € M andb € C we have

¢(b®u®c):¢(b®x(n))=(x®id)o(E2(b®n)Ex(N)@C,

: 2
wheren € N is such thaty(n) = v ® c. We used the factthap (C @ N) Cc N @ C.
Therefore we can define amap, : C ® M — M ® C by the diagram
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id ® g

C ® P ®Kkere - cCeoM 0
ON
0]
M ®id
Pxkere C - M C 0

The mapy induces a map v : 2Y(P) — M by the commutative diagram

TN
Qtp - QY(p) 0
X XN
™M Y
P ® kere - M - .0
Y
0 0

Clearly, x n is a left P-module map, i.exa(udv) = u - xa-(dv). We can use the map
xn 1o obtain another description @fy,.

Lemma 4.2. The following diagram

o
C ® QYP) Y QYP)® C
id ® xn Xy ®id
N
C oM & M&C

is commutative.

Proof. We take any € QY(P), c € C andv € w;,l(v) and compute
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on o (id @ xw)(e @ v) = dpr o (id @ Tm)(e © x(0)) = (ma @ id) 0 p(c © x(0))
2
=(mpmid)o(x®id)o ¥ (c® D)
<—2 <—2
=(w@id)o(my@id)o ¥ (c®0)=(w@id)o ¥ y(c®v). O

Using arguments similar to the proof of Example 4.11 of [BM93] and the definition
of a coalgebra)-principal bundleP (M, C, 4, e) we deduce that

0— PQYM)P — QY(P) ¥ M -0 (32)
is a short exact sequence of I[&ftmodule maps.

Proposition 4.3. A connection inP(M, C, v, ¢) with differential structure induced by
N is equivalent to a lefP-module splittings » of the sequence (32), such that

L2
(on ®@id) o dpnr = Y 5o (id ® opr).

Proof. We use Lemma 4.2 to deduce the covariance propertigg-aind then preform
calculation similar to the proof of Proposition 3.4. [

To each connectioff we can associate its connection one farmA — QY(P) by
w(A) =on(A). _ _ _
Similarly to the case of universal differential structure, one proves

Proposition 4.4. Let IT be a connection inP(M, C, 1, e) with differential structure
defined byV' ¢ Q'P. Then, for allA € A the connection 1-formy : A — Q*(P) has
the following properties:

1. xpyow(A) = A,

2
2. Foranyb € C, EN(b@)w()\)) =M, 550(m (1@ €®)) @ b8, whered® @, &2)
denotes the translation mag(j(l ® ¢), andc¢ € kere is such thatry((1 ® ¢) = A.

Conversely, itM is isomorphic toP ® A as a leftP-module andv is any linear map
w: A — QYP) obeying Conditions 1-2, then there is a unique connecfiorr
o (id®w)oxn in P(M,C,,e) such thatw is its connection 1-form.

In the setting of [BM93] the conditio®® ® A = M is always satisfied for quantum
principal bundles, and. = kere/Q, whereQ is an Ad-invariant right ideal in kee
that generates the bicovariant differential structure on the structure quantumigroup
as in [Wor89]. The detailed analysis of braided group principal bundles with general
differential structures will be presented elsewhere. Here we remark only that it seems
natural to assume thatt = P® A and then choosg to be the space dual to the braided
Lie algebral as discussed in Sect. 3. This choicetofs justified by the fact that from
the properties of the mapsandg,, it follows that the space is invariant under the
braided adjoint coaction (cf. Example 3.7).

We complete this section with an explicit example of differential structures and
connections on the quantum cylinder bundle in Example 2.14 (cf. Example 3.10).

Example 4.5.We consider the quantum cylinder bundle of Example 2.14 (cf. Exam-

ple 2.15) and we work with differential structures AEJO classified in [BDR92]. Using
the definition of) (19) one easily finds that there are two differential structures for which



Coalgebra Bundles 491

2
the covariance conditioE> (k[] ® N) C N @ k[] is satisfied. The subbimoduleé
are generated by
QL+s)z@r—2°01— 122
YRr —qry®1—qlRry+qrRy
QL+qyey-y’@l-10y
wheres € k is a free parameter, in the first case, and by

QL+z@z—2°01— 122
yr —2y®l-qlery+zQy,
A+qyoy—1y*el-10y?

in the second case. In both cases the modules of 1—f6riL(1A§‘°) are generated by
the exact one-formsadand d,. Definitions of theN imply the following relations in

4(43")
zdz = sdzz, «zdy =q¢ ldyz, ydz=qdry, ydy = qdyy,
in the first case, and
xdx = gdzz, ady=dyx, ydz=qdry+(¢— 1)dry, ydy=qdyy,

in the second one. In both caset?([z~1] ® kere)/x(N) = A2°[z71 ® A, where

A is a one-dimensional vector space spanned bym (1 ® ¢) and can be therefore
identified with a subspace @fc] spanned by. Also in both cases the most general
connection is given by

II(dx) =0, II(dy) = dy + adx,

wherea € k, and extended to the whole 8f(A2°[2—1]) as a leftA2°[z~1]-module
map. The corresponding connection one form reads

w(A) = dy + adz.

The bundle is trivial and this connection can be described by the fnag:[c] —
Q(k[z, 2~1]) as in Proposition 3.9 (cf. Eq. (31)) with(c™) = 0if n # 1 and3(c) = adz.
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