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Abstract: By relating the two-dimensional U(N) Principal Chiral Model to a simple
linear system we obtain a free-field parametrisation of solutions. Obvious symmetry
transformations on the free-field data give symmetries of the model. In this way all
known “hidden symmetries” and&klund transformations, as well as a host of new
symmetries, arise.

1. Introduction

The definition ofcomplete integrabilityor field theories remains rather imprecise. One
usually looks for structures analogous to those existing in completely integrable hamil-
tonian systems with finitely many degrees of freedom, such as a Lax—pair representation
or conserved quantities equal in number to the number of degrees of freedom. A very
transparent notion of integrability is that completely integrable nonlinear systems are ac-
tually simple linear systems in disguise. For example, the Inverse Scattering Transform
for two dimensional integrable systems such as the KdV equation establishes a corre-
spondence between the nonlinear flow for a potential and a constant—coefficient linear
flow for the associated scattering data. Similarly, the twistor transform for the self-dual
Yang-Mills equations converts solutions of nonlinear equations to holomorphic data in
twistor space; and for the KP hierarchy Mulase has explicitly proven complete integra-
bility by performing a transformation to a constant—coefficient linear system [11]. In
all these examples, a map is constructed between solutions of a simple, automatically—
consistent linear system and the nonlinear system in question. This is distinct from the
Lax—pair notion of linearisation, with the nonlinear system in question arising as the
consistency condition for a linear system.

Just as the dynamics of completely integrable systems gets trivialised in an auxiliary
space, it seems that the confusing plethora of symmetry transformations of these systems
arise naturally from obvious transformations on the initial data of the associated linear
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systems. This idea has been exploited recently by one of us [16] for the KdV hierarchy:
A linearisation of KdV, mimicking Mulase’s for the KP hierarchy, was used to give a
unified description of all known symmetries.

The central feature of Mulase’s construction is a gréugn which the relevant linear
flow acts. The groug- (or at least a dense subset thereof) is assumed to be factorisable
into two subgroup&:. andG _ . For the KP hierarchz is a group of pseudo-differential
operators. For KdV and for the two-dimensional Principal Chiral Model (PCM), as we
shall see in this papeé€ is a “loop group” of smooth maps from a contatiin the
complex\ plane to some group H. This has subgroGjps(resp.G.+) of maps analytic
inside (resp. outsida}. Mulase notes that any flow ofi induces flows orG., but
the flows on the factors induced by a simple linear flom(doan be complicated and
nonlinear. This is the genesis of nonlinear integrable hierarchies; complete integrability
is just a manifestation of the system’s linear origins. The universality of this kind of
construction was noticed by Haakal [8].

We consider ort7 the linear system

dU=QU, 1)

whered is the exterior derivative on the base spaetof the hierarchy, U is &-
valued function ontM and$2 a 1-form onM with values inGG.. Consistency (Frobenius
integrability) of this system require&2 = Q A Q. In fact for KP, KdV and PCM we
have the stronger conditiaff2 = 2 A Q2 = 0, and (1) has the general solution

U=eMUy; dM=Q, Uyeg. 2)

The initial datal/y determines a solution of the linear system, and hence a solution of
the associated nonlinear hierarchy. A hierarchy is specified by a choiGewvdth a
factorisation and a choice of one-foitn

The purpose of this paper is to provide a description of the two-dimensional Prin-
cipal Chiral Model in the general framework of Mulase’s scheme. We show that for
the appropriate group G, and a choice of one-f@rwithin a certain class, solutions
of Eq. (1) give rise to solutions of PCM. Thus there is a map giving, for each allowed
choice ofQ2 and each choice of initial dat#,, a solution of PCM. The allowed choices
of Q2 are parametrised by free fields. The known hidden symmetries aciduhd trans-
formations of PCM all have their origins in natural field-independent transformations
of Up. We also reveal other symmetries, corresponding to other transformatiéis of
as well as to transformations of the free field€in

We were motivated to reconsider the symmetries of PCM by a recent paper of
Schwarz [17], in which infinitesimal hidden symmetries were reviewed. However the
mystery surrounding their origin remained. Further, Schwarz’s review did notencompass
the work of Uhlenbeck [19] or previous work on finitéa8klund transformations [9].
We wish to present all these results in a unified framework and to lift the veil obscuring
the nature of these symmetries.

2. The Principal Chiral Model

The defining equations for the U(N) PCM on two-dimensional Minkowski spete
with (real) light-cone coordinates’, z— are

0-As = %[AhA—];

3
0 A =3[A_ A, ©
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where A take values in the Lie algebra of U(N), i.e. they d/ex N antihermitian
matrices. Considering the sum and difference of the two equations in (3) yields the
alternative “conserved current” form of the PCM equations

0_A:++0:A_=0, 4)
together with the zero-curvature condition
O_Ay — O+ A_+[A_,A]=0. (5)
The latter has pure—gauge solution

Ap =g 049, (6)

whereg takes values in U(N). Substituting this into (4) yields the familiar harmonic map
equation

d_(g70sg) + 0:(9"0—_g) = 0. @)

This is manifestly invariant under the “chiral” transformatign— «a g b, for a andb
constant U(N) matrices. At some fixed paiftin space-time, we may choogér) = I,
the identity matrix. The chiral symmetry then reduces to

g—btgb. ®)
There is a further invariance of the equations under the transformation
g—gt. ©9)
Equation (3) has obvious solutions [21]
Ar=A(@@"), A_=B("), (10)

respectively left- and right—-moving diagonal matrices, i.e. taking values in the Cartan
subalgebra. (This type of solution is familiar from WZW models and for commuting
matrices the Egs. (3) indeed reduce to WZW equations.) In greater generality, the PCM
equations imply that the spectrum.éf (resp.A_) is a function ofr* (resp.z~) alone.

Thus general solutions take the form:

Ay = sz, x7) A(x%)sg Hat, )

(11)
A =5o(a*, ) BaT)5, ot a7),

whereA(z") andB(z ) are antihermitian diagonal matrices, ag@c*, z), sSo(z*, ™)
are unitary. For givem(z*), B(z~), we have seen that there exists at least one such
solution, that withsg = 55 = I. We shall see in the next section that a solutibnof the
PCM is determined by the diagonal matricé&:*) and B(z ™), together with another
free field; and our construction leads to solutions of precisely the form (11). Moreover,
we shall prove in Sect. 6 that hidden symmetries aadKBind transformations act on
the space of solutions with give#(z*) and B(z ™).
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3. Construction of Solutions

In this section we give the formulation of the PCM in the framework of Mulase’s general
scheme. Let us begin by defining a one-form on two-dimensional Minkowski spaice
with coordinates®{*, z ™),

A(x+) d$+ _

Q=—
1+ 1-AX

dz~ . (12)

Here A(z*), B(z~) are arbitrary diagonal antihermitian matrices, depending only on
z*, z~ respectively. Clearly,

dQ = QAQ =0, (13)
so that the linear equation
dU=QU (14)
is manifestly Frobenius—integrable. The general solution is
Uz, z7,A) = ME27N () (15)

+

x . . 1 x 3 3
[, A -7 [ B
Zo

.
Zo

1
1+

M(JZ+7$7,)\) = -

wherely, the initial condition, is a free (unconstrained) element of the gr@upwhich
U takes values. We need to specify this group.

Remarks.1) SinceA, B are anti-hermitian, hermitian—conjugation of (14) yields
AW = ~UM) ),
wheread/ ! satisfies
dU7(\) = —UT(Q().

We therefore obtain the condition
Ut =U=t). (16)

2) Q haspoles ak = +1, so itis analytic everywhere in theplane including the point
at oo, except in two discs with centres at= £1. We therefore introduce a contour
C, the union of two small contour§. aroundX = +1 (such that\ = 0 remains
outside both of them), dividing th&-plane into two distinct regions: the “outside”
{{A=1] > o} n{|A+1] > §} and the “inside™{|A — 1] < 6} U{|A+1| < 0}, where
0 < 1lis some small radius.

Definition. G is the group of smooth maps = V() from the contouC to GL(N, C)
satisfying the conditio® T (\*) = V=1(\).
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We are going to pretend that there exists a Birkhoff factorisation G_ G, where
G_ denotes the group of maps analytic insi@lend G+ denotes the group of maps
analytic outsideC andequal to the identity ah = co. The corresponding Lie algebra
decompositionisi = G_ @ G.. This factorisation is definitely a pretence; but the point
is that sufficiently many elements ¢f do factor this way so that the results we will
obtain using this factorisation do hold. For a more precise discussion we refer to [19, 8].

We now have the spaces in which the objects in (14),(15) take values. Cle#slg,
one-form onM with values in the Cartan subalgebra of the Lie alg&hrarhe matrix
U; U(z*,z~,\) is amap fromM to G andUy()) is an element oy (independent of
7).

Consider a solutiof/ of (14). Assuming the existence of a Birkhoff factorisation
for U, we can write

U=81y, (17)

whereS™! : M — G_ andY : M — G.. Now, applying the exterior derivative on
both sides and using (14) yields

SQS t=—dss t+dyy 1 (18)

SQS~1, which takes values in the Lie algebfa decomposes into its components in
theG_ andg. subalgebras. The above equation allows us to write separate equations
for the projections:

(SQRS™YH_ =-dsSs 1,

(SQS ™, =dyy—L

Here the suffix notation denotes the projection of an elemegitatio G... We introduce
a one-formZ taking values irg.,

(19)

Z=dyYy1=(SQS™),. (20)

Now, sinceS takes values irG_, it is analytic atA\ = +1 and has two power-series
representations, converging in discs with centresatt-1, viz.

= salaa)L+N" =) 5.6 )L - N (21)
n=0 n=0
where the coefficientsy(z*, z7), So(z*, ) are U(N)-valued matrices. Inserting these

expansions in{2.5~1), we see that only they ands, terms survive the projection to
the G. subalgebra, yielding

Z=(SQS™ ). 1ry e (22)
Define
Ay = s0A(@")sgt, A_=5B(z7 )5 " (23)

These satisfy the PCM equations (3).
The proof is immediate. From (20),

dZ=ZNZ. (24)

Inserting the form (22) in this equation yields
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0+sA_  0_A,y 1 1 1

1 1+A’+2<1—A 1+A>[A“AL'O'

Since Y takes values i, for consistency this equation needs to hold for all values
of A away from+1. In other words, the coefficients ?;% andﬁ must be separately
zero. This yields precisely the two equations in (3) as integrability conditions.

Note that the solutions (23) have precisely the form (11). We have seen that for given
diagonal matricesi(z*) and B(z~), a solution of the linear field—independent system
(14) determines a solution of the PCM in the spectral clasd ahd B.

In fact the general solution of (14) takes the form (15), wherethéactor contains
only spectral information (i.e4, B). Everything else is encoded in the free element
Uo(\) € G. So the freely—specifiable dafad(z*), B(z~), Up(\)} corresponds to a
solution of the PCM. Given any choice of these three fields, a solution of the PCM can
be constructed in the following stages:

(a) Construct the correspondidfz*,z~, \) from (15).

(b) Perform the factorisation (17) to obta#fx™, z—, \).

(c) Performthetwo expansions (21)to extractthe coefficigjfts’, 2 ~) andso(z™, 2 7).
(d) Insert these in (23) to obtain a solution of the PCM.

Note that this procedure is purely algebraic, though the factorisation may not be very
easy to perform in practice. However, it is clear that for any choicd(af"), B(z™)
(which is tantamount to fixing the spectral classAof), everyUp(\) € G corresponds

to a solution of the PCM. In fact there is a large redundancy, for a right—multiplication

Uo — Uok+; k+€Gs (25)

corresponds to a right-multiplicatiai — Uk., which does nothing to alter thg?!
factor in (17). PCM solutions therefore correspondztoorbits in G, or equivalently,
Uo(\)'s from the Grassmannia#/G.. This correspondence is, however, still redundant:
Consider a left—-multiplication by a diagonal matrix analytic inside

Up+— h_Uy; h_ e Gp_ , the maximal torus ofs_. (26)

Since this commutes with the diagonaf , it corresponds to a transformati®! —

h_ S~. However, sincé._ is a diagonal matrix, thel in (23) do not notice this
transformation; they are invariant. The correct spadéyd corresponding to solutions

of (3) in each spectral class 4f, is therefore the double cosgy _\G/G-. In particular,
natural transformations dfip(\) preserving this double coset correspondence induce
symmetry transformations on the space of PCM solutions.

4. The Extended Solution

The fact that the consistency condition (24) withgiven by (22) yields the PCM
equations is well known. Writing (20) in more familiar form,

dY =2V,

it is precisely the PCM Lax-pair [14, 21],
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1
(0+ + 1+/\A+> Y = 07

1 —
(8+1_>\A>Y—0. (27)

It is easy to check that the we have defined above has all the properties required of a
solution of this pair of equations:

1. As a function of), the only singularities of” on the entire\-plane including the
point atoo are ath = +1.

2. The solution of the system (27) is easily seen to satisfy the reality condition (16)
YT =Y 1), (28)

3. There is an invariance of the Lax syste¥i(z, A) — Y (x, A) f()\), which is usually
fixed by setting
Y(IO, >‘) =1 ; (29)

for some fixed pointg. This invariance corresponds to right—-multiplications (25) of
Uy and the condition (29) corresponds to choosing a representative point 6i the
orbit of Up in G.

4. At A =00,0,.Y =0_Y =0, soY (x, A = =) is a constant and using (29) we obtain
Y(x,A=00)=1. (30)
5. The system (27) yields the expressions
Ay =A+NYo, Y™t A_=(1-)NYo_Y (31)
which together with (29) and (6) imply that
Y(z,A=0)=¢"1. (32)

We have already seen that the. solving (3) may be recovered from power series
expansions aroundl = 1 of the S~ factor of U using the expressions (23). We now
see that solutions may equally be obtained fromYhéactor using (32) and (6). We
can also obtain solutions from théfactor by expanding arountl = co. Denoting the
leading terms consistently with (30),

Y(x,A):H@a.., (33)

wheref(x) is antihermitian, the\ = oo limit of (31) yields the expressions

A =F0+f, (34)
which identically satisfy (4) and shift the dynamical description to (5) instead, which
acquires the form

1
8_8+f + é[a_'ﬂ a+f] =0. (35)

This equation is known as the “dual formulation” of the harmonic map equation (7).
A Y (x, \) obtained from the factorisation procedure automatically yields a solution of
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this equation on expansion arouid= co. We therefore see that the factorisation (17)
produces & (z, \) which interpolates between the dual descriptions of PCM solutions;
yielding a U(N)—-valued solutiop—* of Eq. (7) on evaluation at = 0 and a Lie-algebra-
valued solutionf of the alternative equation (35) on development aroddoco. The
G.+—valuedY (z, \) thus encapsulates these dual descriptions of chiral fields and this
field was aptly named thextended solutioof the PCM by Uhlenbeck [19].

We shall later need information about the next-to-leading-order termin the expansion
of Y around\ = 0. If we substitute

Y =(I+Ap)g t+ 00N, (36)

wherey is a Lie-algebra-valued field, into (31), and use (6), we obtain the following
first-order equation fop:

Orp+[AL, p]=FA,. (37)

The consistency condition for this is just (4).

Reflecting theGG.—valued extended solutio¥i(z, A), there is also th&_—valued
S(z, A), which clearly also describes some extension of the PCM solution given by the
expression (23). UsingSS—1 = —(SQS~1)_ = —(SQS™1) + (SQ2S~1),, we find the
following flows for the components &, which we shall need later:

O+8n = Spa1A — Asspa, (38)
", s,B—A_s,
G,Sn = Z W, (39)
r=0
=5 A—AS,
8+sn = Z W, (40)
r=0
05, = 5piiB — A_Fpan. (41)

Using (23) and these equations for 0 yields the interesting flow equations:

v Ay = 50 0+ A sgt + [Ar,[Ar, 5155 ],

42
O_A_=30_B3y" + [A_,[A_, 515,11 42)

5. Symmetry Transformations Unveiled

Non-space-time symmetry transformations of the PCM were traditionally derived using
mainly guesswork inspired by analogies with other integrable models like the sine-
Gordon model. Their origin remained largely veiled in mystery and they were therefore
called “hidden symmetries”. Previous discussions of them have recently been reviewed
by Schwarz [17] and Uhlenbeck [19]. In the framework of the present paper there
is nothing “hidden” about these symmetries. As we shall see, in terms of the free-
field datalp(N), A(x*), B(z ™), the veil hiding these symmetries is entirely lifted: the
most natural field-independent transformations of these free fields, which preserve their
analyticity properties in their respective independent variables, induce the entire array
of known symmetry transformations of PCM fields and more. Moreover, the algebraic
structure of the symmetry transformations is completely transparent when acting on
the free-field data, and there is no need to compute commutators and check closure
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using the complicated action of the symmetries on physical fields. The physical fields

automatically carry representations of all the symmetry actions on the free-field data.
In this section we classify PCM symmetry transformations according to the corre-

sponding transformations of the free fields. The formulas for the induced transformations

onthe extended solutioi§ on the chiral fieldg and on the potentiald . will be derived

in the next section.

5.1. Symmetry transformations 0. We first list symmetry transformations which
leave A(z*) and B(z~) unchanged.

5.1.1. Right dressingRight-actions by elements of tli¢. subgroup (25) have already
been seen to correspond to trivial redundancies and have already been factored out. This
leaves the possibility of right—multiplyings by an element of7_,

Ug— Ugk_; k_eG_. (43)

Such transformations fall into the following classes:

a) k_ = b, a constant (i.e. an element of U(N)). This may easily be seen to induce the
transformationd” — b=1Y'b andg — b~gb, i.e. the symmetry (8).

b) If we takek_ = (I + %ﬂn) , having a simple pole at a single poikt= 1, outside
C (hereN(u) is a A-independent matrix), the transformations induced on the chiral
fields are precisely the&klund transformations of [9, 13].

c) We are presently considering the U(N) PCM. For the GIGNPCM we could con-
sider finite transformations with_ in a triangular subgroup a¥_. Such transfor-
mations induce the explicit transformations discussed by Leznov [10]. We will not
go into details of this.

d) Generak_()) infinitesimally close to the identity. This is a realisation of the algebra
G_ on the free-fieldUp()\) and is a remarkably transparent way of expressing the
action of the celebrated loop algebra of hidden symmetries [6] of the PCM. The
precise structure of this algebra has not been properly identified before.

e) General finité:_ (). This finite version of the infinitesimal symmetries in d) repro-
duces (modulo some details) the loop group action on chiral fiedat&l on extended
mapsY given by Uhlenbeck in Sect. 5 of [19].

5.1.2. Left dressingd.eft actions orl/y by elements of7o  have already been pointed

out to leave the associated solution of the PCM invariant (see (26)). We wish to consider
only left actions only that descend to the double cos&f_\G/G., i.e. actions by
elements that commute withy _. Thus we have only the transformations

Uo — h+lUy,  h+ € Go+. (44)

This is the action of an infinite-dimensional abelian group, which has not yet appeared in
the literature. The infinitesimal version of this gives an infinite set of mutually commuting
flows also commuting with the PCM flow. This is the PCM hierarchy.

5.1.3. Reparametrisations 6fy()\). These are transformations generated\byiffeo
morphisms
Uo(A) — Uo(A +€(N)). (45)
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General reparametrisations can maéyeto curves that do not enclosel. The easiest
way to preventthisis to restrict the diffeomorphisms to those thatfi¥-or infinitesimal
diffeomorphisms this condition is not strictly necessary. It turns out however that the
infinitesimal diffeomorphisms fixing-1 are technically simpler (in terms of their action
on g,Y) and these give (modulo a detail that will be explained) the “half Virasoro”
algebra described in [17]. We show how this can be extended to a full centreless Virasoro
algebra.

The only finite reparametrisations of theplane preserving-1 are

a\+b 2 12
+H°=1. 4
Uo(A)HUo<b)\+a), @+ (46)

These induce th§* action of sect. 7 of [19].

5.2. Symmetry transformations4fz*), B(x ™). We now consider symmetries that keep
Uy fixed. For symmetries acting just of(z*) it is natural to consider

a) ShiftsA(z*) — A(z*) + a(z*), wherea(z*) is a diagonal antihermitian matrix.
b) Rescalingsi(z*) — p(z*)A(z*) wherep(z*) is a scalar function.
c) Reparametrisationd(z*) — A(z* + e(z*)).

There are other possibilities. Similar symmetries exist3@r ~). All these symmetries
are new.

5.3. Other symmetry transformation$wo other symmetries of PCM should be men-
tioned. The first is a particularly significant combination of an actior/grwith an
action onA, B. The second is not strictly within the class of symmetries we have been
considering, as it acts on the coordinates as well as the fields.

5.3.4. Inversion.The transformation
Us(N) — Uo(A™) and (4, B) — (—A,—B) (47)
may easily be seen to induce the inversion symmetry (9).

5.3.5. Lorentz transformationslhe transformation

Uginvariant A~ 6.A, B~ 0_B

48
T — Gilzi (48)

induces the residual Lorentz transformations in light cone coordinates
Ap v 0:Ay, oF - 07 (49)

We can also consider more general reparametrisation$ of
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6. Induced Symmetries of PCM Fields

As we have already claimed, natural transformations on the free—field g6, A(z*),

B(x~) induce, through Birkhoff factorisation, rather complicated transformations on the
PCM fieldsY (x, M), g(x), A+ (x); and (field—independent) representations of symmetry
algebras induce (field-dependent) representations on the PCM fields. In this section we
prove this for the intereresting and not immediately obvious cases listed in the previous
section. We also comment on the relation with previous results in the literature.

6.1. Right dressingsConsider the transformation induced by (43)6(x, \).
U= S'Y — Upew = S~ YE_. (50)
Birkhoff factorisation ofY k_ yields (in the obvious notation)
Unew = STF(YEk_)-(Yk-)+ =S}, Yoew. (51)
In other words, we have the symmetry transformation
Y — (Yk_)+, (52)

which is just the representation @f_ described by Uhlenbeck in Sect. 6 of [19] (except
that she uses a subgroup®f ). We can equivalently write

Y — (Yk_Y 7YY, (53)

Now writing k— = I + €(\) with e(\) € G_ an infinitesimal parameter, we obtain the
infinitesimal version of this,

YV s (I+ Y)Y .Y . (54)

We note that this directly gives the generating function of [4] for these transformations,
which was originally obtained by extrapolation from the leading terms in a power series
expansion [6]. Th&.. projection corresponds to taking the singular past at+1. This
may be done using a contour integral, so that this transformation takes the form

Y(x X)) 1, X)
N A

Y(z,\) — <I+ ) Y(x, ). (55)
27

Here(C.. are oriented counter-clockwise aroutid. The transformation fogy may be

read off by taking the\ — 0 limit, yielding the form of the transformation given in

[18, 17],
/ € 1 /
gHg( Zm/Y(xM(AA?Y (xk) ) (56)

The parameter of this infinitesimal transformatief)) is an arbitrary infinitesimal
G_ element. In particular, if we introduce a ba§ig*} for the Lie algebra of antihermi-
tian matrices, we can tak€\) proportional to\" 7%, r € Z . This gives an infinite set
of transformations, which we dena##, and which satisfy the commutation relations

[, 2= Z FE T, (57)
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where thef® are the structure constants defined By [T°] = }_ fetT*. Although
the commutation relations of a centreless Kac-Moody algebra thus appear, ribis is
sufficient to identify the symmetry algeb¢a with a centreless Kac-Moody algebra.
We illustrate this in two ways: first we show thatgn there exist certain linear relations
absentin a Kac-Moody algebra, and second we show tigat the J¢ are not a spanning
set.

The crucial point is that although we can certainly try to expand elemertts @i
Laurent series, and finite sums of matrices of the fofif'® are certainly inG_, the
natural way to expand an elementaf is in a Taylor series i\ + 1 (or alternatively in
A — 1). Takinge() in (56) proportional to X + 1)*7¢, for n > 0, we can define a set
of transformationd<? satisfying the relations

(Ko Kh)=> f&Ker,  nom>0. (58)

c

Considering the expansion af in powers ofA + 1 (valid in |\ + 1| < §), we find that
the J¢ are expressed as linear combinations of&ffein the following way:

Sreo=1 () K r>0

S0 (" K r<0

It is straightforward, using standard formulae for sums of binomial coefficients (see
for example [7]), to check that these linear combinations, by virtue of (58), imply the
commutation relations (57). The relation between ftfefor non-negativer can be

inverted: we find .
a — n a

Kn—z;(r)JT. (60)
Now, if our symmetry algebra were indeed a Kac-Moody algebra with generators
satisfying (57), we would be able to define the algebra elemgftéwhich certainly
exist as symmetry generators) from thig’s with non-negativer using (60). When
we substitute (60) into the infinite sum in (59) we find that we cannot reorder the
summations to express this infinite sum as a linear combination of¢tsevith > 0.
In other words, this infinite sum is not in the Kac-Moody algebra. We thus have our
first distinction between a Kac-Moody algebra and: In a Kac-Moody algebra the
elementsK’¢ and the elementg? for » < 0 need to be linearly independent, whereas
in the PCM symmetry algebi@_ they are linearly dependent via the relationship given
in (59).

The second distinction is that i%_, unlike in a regular Kac-Moody algebra, the
elements{J} are not a spanning set. Elementsf need to be analytic insidé.
There are therefore elementsthf that do not have Laurent expansions in powers;of
consider for example at{\) proportional to I\, defined with a cut from 0 tec along
half of the imaginary axis. Now, the reader may be concerned that we have claimed
thatG_ is spanned by thé(?, that the relationship between th#¢? and theJ? for
r > 0 is invertible, but that thg? (and therefore certainly thé® for » > 0) are not a
spanning setfag_ . Thereis absolutely no contradiction here. As we have seen above, the
relationship between th&¢ and theJ! for » > 0 implies that finite linear combinations
of the K2 can be written as linear combinations of tffefor » > 0, but for infinite linear
combinations of thé(? this is not the case. However, it does suggest that we should be
able in some sense to approximate elemengs ofiven by infinite sums of th& ¢’s by

a —

r

(59)
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finite sums of the/¢, which are equivalent to finite sums of th&. This is indeed the

case, as follows from a classical theorem in complex analysis, Runge’s theorem (see, for
example, [15]). Runge’s theorem implies the remarkable fact that a function analytic on
an arbitrary finite union of non-intersecting open discs can be approximated uniformly
and to any accuracy on any closed subset of the union by a polynomial. In particular,
this implies that elements G can be approximated uniformly and to any accuracy on
{IA =1 < 6} U{|A+1] < J} by afinite linear combination of thé&” for » > 0.

To conclude this section we note that the contour integral in (56) is easily evaluated
whene()\) is proportional to\": Forr < 0 the integral is evaluated by shrinkidgo a
contour around 0; for > 0 to a contour aroundo; and forr = 0 to a pair of contours
around 0 and.

6.2. The Bcklund transformation.The element_ € G_ in (43) can clearly have all
variety of singularitiesoutsideC. Trying to givek_ just one simple pole at the point
A = p outsideC, suggests the natural form [21]

b ) = (1+ i‘ffﬂi) | (61)

For the satisfaction of the reality condition (16) for elements~of we require that
NT = % = —N. These conditions are satisfied By= (1 — p)m, if 7 is a projector

satisfyingr? = = = ='. Such transformations thus correspond to finite right-dressing
transformation of the particular form

—H
Note thatt_ in fact has a singularity at = 1, as well, since{ — ) has zero determinant.
Using (50) we obtain the transformation

Uo — Us <I+/;_M7r). (62)

U 51 <1 + ‘; - Z_ Y()\)le()\)> Y(\). (63)

In order to factorise the middle factor, we introduce a hermitian projéeterP’ = P?,
independent of (but not ofz®). Using this we see that

(1 + Uit Y()\)wY‘l()\)) Y())
= (I + it P) (I = P) (I +pit Y()\)WY_l()\)> Y\

= (I+’;%5P) (I+’;%E(I—P)Y()\)w+§%5-PY()\)(I—7r)).

To have an acceptable factorisation, all we need now is that the right-hand factor above be
regular outsid€. Specifically, we require regularity atandy, which yields algebraic
conditions relating the projectof? and, viz.

(I-P)Y,r=0, PY,(I-m)=0,

whereY,, denotes’(\) evaluated ah = y. If we write 7 = v(vv) 1o (see [9]), these
equations are solved by the expression

P =Y, (v1YY,0) ol
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Now we can read-off the induced transformation rulesfoandg. These are just the
known PCM Backlund transformations [9, 13, 21].

6.3. Left dressingsHere we consider in detail the left dressings (44). Matrices
Go,+ commute withM, so such transformations act by left multiplication &ni.e.
U hse U=he STY = S~Y(Shy S~1)Y. Hence the action ol is given by

Y — (heS7Y).Y = (SheS71).Y. (64)
For an infinitesimal transformatidn. = I + ¢, € € Go + and we have
Yo (I+(SeS7H.) Y

_ 1 [ SW)eW)S™HN) .,
= (I+2m_ i — dA)Y, (65)

implying
/ nNQ—1¢y/
gHg(I—l,/S(A)E(A)S (/\)d/\’). (66)
21t Je N
In generak has the form
= 70 ap,
€(\) = ; <(1 + )" + (1- )\)n) ) (67)

where thew,, a,, are constant infinitesimal diagonal matrices. The integral in (66) is
evaluated by computing the residues of the integrand at+1. For example, the case
a1 # 0 with all othera,, &, zero yields the transformation rules

g 169 = —soausy
6As = [As, [s150 1, s0a1sg 1] (68)

0A_ = —%[A,7 soalsgl].

Similarly, if ap # 0 with all othera,,, &, zero we find

g tog=— (8004285l + [318517 Soazsal]) )
0A: = [A+, [3250_17 soazso_l] — [51551, soagsal]slsal] , (69)
0A_ = — [A_, ;1150042551 + %[slsgl, 50042561]} .

The formulae fo AL are computed using the variation of the relation (6),
§AL = 0+(g~ 6g) + [Ax, 97 *6g), (70)

and Egs. (38)-(41). The latter also allow one to check directly that the above transfor-
mations are indeed infinitesimal symmetries, i.e. thafA, + 9.0 A_ = 0.

Now considering the sector of PCM in whiegh= «;, independent af*, we see that
thed,-derivations ofd . given by (3) and (42) are effected by the transformations (68).
So left dressing transformations with orly non-zero correspond to" translations in
this sector. Similarly the transformations (69) can be seen to be related to coordinate
translations in an extended system (described in the appendix) belongihgetarehy
associated to the PCM. Whenever an infinite dimensional abelian symmetry algebra
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(like Go.+) is identified in a system, it is possible to define a corresponding hierarchy.
Traditionally, for each generator in the algebra a coordinate is introduced and the flow
in each coordinate is defined as the infinitesimal action of the corresponding symmetry.
In our formulation there is an alternative way to define a PCM hierarchy. Instead of
working on a spacé with coordinates«*, ), we work on a larger spac&! with

2P coordinates«(y, ...,xzp, 21 , ...,z p) and replace the of (12) by

_ F Ap(x3)dz)  Bp(x,)dz,,
2= (T ) =

n=1

where theA, (x}), B,(z;,) are all antihermitian diagonal matrices, each depending

on only one coordinate. The associated nonlinear equations are again the equations
dZ = Z N\ Z, whereZ = (SQS1), and S is a map fromM to G_. For the case

P =2 we write out this system of equations in full in the appendix. Another possibility

of obtaining a hierarchy within our framework is to enlaty¢ to a space with X P
coordinates£%*,z%7), 1< n < P,1< a < N, and taking

n n

P N
A (29N H*dz%  BY(x% )Hdx%~
Q - _ n n n + n n n 72
Sy (HE AR, o

n=1 a=1

where{H*}, a = 1,..., N is a basis for the algebra of antihermitian, diagoNak
N matrices. In this hierarchy, left dressings Gr correspond precisely to coordinate
translations in the sector with the scalar functietfs B¢ constant.

The physical or geometric significance of these PCM hierarchies remains to be
understood. An alternative approach to defining a PCM hierarchy was given in [1].

6.4. The Virasoro symmetnin this section we consider the symmetries of PCM associ-
ated with reparametrisations Bf()\). We consider the infinitesimal reparametrisations
Uo(\) — Uo(\ + €,, A™*1), where thex,,, are infinitesimal parameters and € Z, or,
equivalently, variationgUp = €, \™*1U{()\). The prime denotes differentiation with
respect to\.

These variations give rise to a centreless Virasoro algebra of infinitesimal symmetries
of PCM. In [17] Schwarz documents the existence of “half” of this algebra. Schwarz’s
symmetries are associated with reparametrisations that fix the points1. We shall
see that from a technical standpoint these are simpler to handle than the full set of
symmetries. But there is also a fundamental reason to make such a restriction. If we
were to consider finite reparametrisations, we would need to ensure that the adntour
remains qualitatively unchanged. The simplest way to do this is to require the points
A = £1 to be fixed. In [19] Uhlenbeck identifies & symmetry of PCM. It is a
simple exercise to check that this symmetry corresponds, in our formalism, to global
reparametrisations of the-plane fixing the pointst1, i.e. Mobius transformations of
the form

al+b

_

bA+a’
Atthe level of infinitesimal symmetries, however, the need te-flis really superfluous,
and so we find a full Virasoro algebra of symmetries. But as we have said above, the
symmetries fixingt1 are technically easier, which is why Schwarz was able to identify
them, and also for the more general symmetries we can be quite certain that there exists
no exponentiation.

a2+ =1 (73)
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With this introduction, we consider the variatiofg Uy = em)\m+lU6()\). These
manifestly realise the algebré&,[, 0,,] = (n — m)dn+m. This realisation descends to the
physical fields. Using/o = e~ S~1Y we have the chain of implications

5o = €A™ H—M'e My — e Mg-15'g y + e~ Mg-1y")  (74)

Sl = eM§,,Ug

= e AN (=M'STY — 571857y + 57y, (75)
OmS = —(S6,UY Y_S

= —€m (\"H=SM'STE - §'STH+Y'Y ) S, (76)
omY = (S6,UY 1), Y

=6 (ANH=SM'STH+Y'Y ), V. (77)

In the last equation we have used the fact that fonal\™*15’ S~ takes values i _.

Of the remaining two terms, the first hagapiece originating in the double pole &’

at\ = £1. To explicitly compute this is a simple exercise. For the second term, we use
a contour integral formula for the projection. We thus arrive at the final result

m+1y// -1
5YY-lzc, ( 1 / pmY ! (w)Y (u)du
C

2ri w—A

1 1 -1y
+H=1)™ (80 fA 551) <(1 +)\)2 - T_:_/\> + (1 +)/\ [818617 (SO fA 551)]

~ — 1 m+1 1 - —
+(50fB501) <(1_)\)2 o 1_+)\> +1_>\ [513017 (SOstol)]>' (78)

Here [ A and [ B are shorthand foj;fi+ A(y")dy* and f;: B(y~)dy~ respectively.
0 0

The g transformations are read off by settingto zero. In the expression fax,, g,

the contour integral term is evaluated, depending on the value, dfy shrinkingC

to a contour around either 0 ov. Explicitly for the SL(2) subalgebra of the Virasoro

algebra, we obtain (omitting the overall infinitesimal parameters),

g7 10_19 = ¢+(s0 [ Asy ) — (3o B3 )+ [8150_1’ (SofASEl)] - [§1§617 (gofBgal)] ;
g Y09 = — [s150 % (s0 [ Asg 1] — [5135 %, (30/ B3 )]
g7 Y019 = f—(s0 [ Asg 1)+ (30 [ B3, 1)+ [slsal, (SofAsal)] — [glgal’ (fs'ofBEal)] )

We see that in these formulae, not only do the leading coefficignts, so, s1 in the
expansions ol appear, but also the fieldsand f, coefficients in the expansions of
Y around 0 andxo respectively (see Sect. 4). The work required to check directly that
these, or any of th&,,’s, are symmetries is formidable, but we again emphasize that the
advantage of the present framework is that such direct checks are not necessary in order
to prove that the physical fields carry a representation of the full centreless Virasoro
algebra.

Schwarz [17] has previously found half a Virasoro algebra. We observe that if we
define transformationa,, = d,,+1 — d.n_1 @ substantial simplification takes place,
yielding the formula
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l m— —
Amg = —emg(zm /C p™ M p? = )Y ()Y M u)dp

(79)
+2(=1)"(so [Asgh) —2(0 /B35t )

We will see in Sect. 6 (see Egs. (83),(84)) that the second and third terms in the above
expression are individually symmetries of PCM that mutually commute and commute
with all the symmetries being considered here. Removing these terms gives exactly the
“half-Virasoro” symmetries of [17]

1 . .
Amg = —emg— /C PR = )Y (@)Y Hpydp,  meZ. (80)

Thus we see the precise nature of Schwarz’'s symmetries as combinations of reparametri-
sations preserving the poimts= +1 with certain simple symmetries that act on the3
fields but leavd/y invariant. Taking the appropriate combinations we see that for the

simplest Schwarz symmetryo,

g hog=0 - f, (81)
and using (34) and (37), N
AoAy = F2A4 +[Ay, f]. (82)
This is easily checked to be a symmetry. The symmaigyacts on the physical fields
in a much more complicated way:
g Nog = — [ —2(s0fAsg ") + 250 B3, 1),
AoAs = —4A, +[As, f1 -2 [[s155%, Al (s0 Asg )] + [A+, (5o B3] ,
AoA_ =4A_ +[A_, f1+2[[513, 1, A_], (3o B5p M| — [A—, (50 Asy )] -

6.5. Transformations of the free field$z*), B(z~). Following the by now familiar rea-
soning, an infinitesimal transformatiof(z*) — A(z*) +§ A(z*) induces the following
transformations ol g, A+, A_:

(so [6As5h)
a Ji+A =Y

89 =g (so [§A 557,
6As = 500A s5" — [As, [s150, (s0 [6A4 s5 D],
SA_ =[A_, (so [6As5M)] .

oY =

Here we have writterf § A as shorthand qug SA(y")dy*. As expected, the spectrum
0

of A_ remains invariant, while that of.. is shifted. Using the flow equations fey, s1,
it is easy to check that these are genuine symmetries, i.ethdat, + 9.0 A_ = 0.

There are a variety of possibilities férA(z*). If {H%}, a« = 1... N, is a basis of
the algebra of antihermitian diagonal matrices, we can consider variatibps) ~
(z)Y"H% a=1,...,N,m € Z.Thisgives aloop algebra of symmetries, corresponding
to translations ofd(z*). Taking dA(z*) ~ (z")™A'(z*), m € Z, gives a centreless
Virasoro algebra of symmetries, corresponding to reparametrizatiangrdj. Taking
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SA(z) ~ (z*)™A(z"), m € Z, gives an infinite dimensional abelian symmetry algebra
corresponding ta:*-dependent rescalings dff(z*). Clearly these symmetries are not
independent: The latter two families can be written in terms of the first family, but the
generators are thdield dependentombinations of the generators of the first family.
Analogous sets of symmetries can be obtained from infinitesimal variations of
B(z™).
The simple variatiod A(z*) = eA(z*), wheree is a constant infinitesimal parameter,

yields the symmetry
89 = eg(so [Asgh), (83)

whereas the transformatids — (1 +¢) B, where( is also an infinitesimal parameter,
yields
89 =Cg(S0 [ B 55 (84)

These transformations were used in Sect. (6) to make contact between our Virasoro
symmetries and those of [17].

7. Concluding Remarks

We have seen that formulating the nonlinear equations of motion (3) of the PCM in
the form of the simple linear system (1) makes the precise nature of their integrabil-
ity completely transparent. It yields a novel free-field parametrisation of the space of
solutions, which we have used to classify all the symmetries of on-shell PCM fields
in terms of natural transformations on the free-field data. The confusing cacophony of
symmetry transformations in the literature is thereby seen to arise in the most natural
fashion imaginable. We have thus demonstrated that this notion of complete integra-
bility, previously applied to traditional soliton systems, like the KP, NLS and KdV
hierarchies, encompasses the Lorentz—invariant PCM field theories. We believe that this
notion of integrability is a universal one and we expect a clarification of the nature of
the integrability of the self-dual Yang-Mills and self-dual gravity equations by similarly
reformulating the twistor constructions for these systems. Indeed Crane [3] has already
discussed a loop group of symmetries in terms of an action on free holomorphic data in
twistor space.

Our construction raises many questions.
1) Standard integrable soliton systems exhibit multiple hamiltonian structures and in-
finite numbers of conservation laws, both these phenomena being symptoms of their
integrability. These phenomena ought to have a natural explanation in terms of the asso-
ciated simple linear systems (free-field data). For the PCM, some work on such structures
exists [5].
2) The free-field parametrisation of solutions of PCM should play a critical role in the
guantisation of the theory. What is the relation with standard quantisations? (The PCM
can be quantised in different ways, using either the ffetd the fieldg as fundamental,
giving different results [12].) How are we to understand quantum integrability?
3) There is a large body of related mathematical work, mostly focusing on the enumera-
tion and construction of solutions of the PCM in Euclidean space (for recent references
see [2]). Most of our formalism goes through for the case of Euclidean space, but the
reality conditions are different, and a little harder to handle. An important class of so-
lutions are theunitons[19, 20]. These correspond, up to the need for right dressings by
G+ elements, t&"'s with finite order poles at one of the two pointd, and regular else-
where. We wonder: What are the correspondifgs? (The work of Crane on self-dual
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Yang-Mills [3] may have an analog.) Is there a natural geometric understanding of our
construction? Or a relation with the constructions of [20] or [2]?
4) Is there a geometric interpretation of our PCM hierarchy?

Appendix. The PCM Hierarchy

In Sect. 6.3 we have described a procedure to generate a PCM hierarchy. In this appendix
we illustrate this procedure by obtaining the simplest integrable extension of the PCM
equation. We use th@ given in (71) forP = 2. UsingZ = (SQS1). we obtain the
following form for Z:

— A*'dlI B, [C"'a B+] +
Z=- < T+x +<(1+>\)2+ T+x >d$2

Ade; ( B. [C_,B]\ . _
MY +<(1—>\)2+ 1 >dm2>'

The six fieldsA., B+, C+, A_, B_,C_ are defined in terms of the coefficients$and

the free fieldsdi(z7), A2(x3), Bi(z1 ), B2(z5 ). They depend on the four coordinates
x3,x3,%, ,x, and are constrained in virtue of their defining relations thiscom-
mutes withB.,, A_ commutes with3_ and the spectra of,, B+, A_, B_ depend only
onxy,xy,x, ,x, respectively. If we nevertheless ignore these constraints and simply
substitute the above form fdf into dZ = Z A Z, we find:

1. [A+,B:]=[A_,B_]=0.

2. The following system of evolution equations fé¢, B, A_, B_:

O2+As = —3[A4, [ By, Ci], Cill — [Bs, 014Cy + 3[[ A+, C11, CH11,
oA = 3[A A,
O A+ = 3[As, 3B_+[C_, B_]],
O1+Bs = [Bs, [A+, C4]],
O-B. = 3[B:, A_],
d>-B. = 3[B+,3B_+[C_,B_]],
A = LA AL,
92:A_ = J[A_, 1B, +[Cy, B,
9 A =—3[A_[[B-,C_1,C_ ]| - [B-,01C_+3[[A_,C_],C]],
OB_ = 3[B_, A,
92+B_ = 3[B_, 3B, +[Cs, B,
o_B_=[B_,[A_,C_]].

These evidently imply that the spectraf, B., A_, B_ depend only o*, 22*,
x1~, 2%~ respectively, as required.

3. The following evolution equations far., C_:
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OsC_ = —2A, — A, O],

92+C_ = =3B+ + 3([C_, Bs] — [C4, By]) + 5[C_,[Cy, BA]],
h-Ci=—2A_ —1[A_ C],

8-Cy=—3B_+3([Cs, B.] - [C_,B_])+ 3[C:,[C—, B_]].

(In fact, from thedZ = Z A Z equation, both of th€’_ evolutions appear commutated
with B, and both of the”; evolutions appear commutated with_.)

This system is a 4-dimensional integrable system, but its physical or geometric
interpretation is not immediately apparent. It has a variety of interesting reductions
apart from the reduction to PCM by settift) = B. = 0. We can consistently reduce
by takingA_ = B_ or A, = B, or both. Or we can take judt_ = 0 (or B+ = 0)
in which case the, (or z3) dependence becomes trivial. For all these reductions, and
the full system as well, the methods of this paper give a free-field parametrisation of
solutions.
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