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Abstract: By relating the two-dimensional U(N) Principal Chiral Model to a simple
linear system we obtain a free-field parametrisation of solutions. Obvious symmetry
transformations on the free-field data give symmetries of the model. In this way all
known “hidden symmetries” and B̈acklund transformations, as well as a host of new
symmetries, arise.

1. Introduction

The definition ofcomplete integrabilityfor field theories remains rather imprecise. One
usually looks for structures analogous to those existing in completely integrable hamil-
tonian systems with finitely many degrees of freedom, such as a Lax–pair representation
or conserved quantities equal in number to the number of degrees of freedom. A very
transparent notion of integrability is that completely integrable nonlinear systems are ac-
tually simple linear systems in disguise. For example, the Inverse Scattering Transform
for two dimensional integrable systems such as the KdV equation establishes a corre-
spondence between the nonlinear flow for a potential and a constant–coefficient linear
flow for the associated scattering data. Similarly, the twistor transform for the self-dual
Yang-Mills equations converts solutions of nonlinear equations to holomorphic data in
twistor space; and for the KP hierarchy Mulase has explicitly proven complete integra-
bility by performing a transformation to a constant–coefficient linear system [11]. In
all these examples, a map is constructed between solutions of a simple, automatically–
consistent linear system and the nonlinear system in question. This is distinct from the
Lax–pair notion of linearisation, with the nonlinear system in question arising as the
consistency condition for a linear system.

Just as the dynamics of completely integrable systems gets trivialised in an auxiliary
space, it seems that the confusing plethora of symmetry transformations of these systems
arise naturally from obvious transformations on the initial data of the associated linear
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systems. This idea has been exploited recently by one of us [16] for the KdV hierarchy:
A linearisation of KdV, mimicking Mulase’s for the KP hierarchy, was used to give a
unified description of all known symmetries.

The central feature of Mulase’s construction is a groupG on which the relevant linear
flow acts. The groupG (or at least a dense subset thereof) is assumed to be factorisable
into two subgroupsG+ andG−. For the KP hierarchyG is a group of pseudo-differential
operators. For KdV and for the two-dimensional Principal Chiral Model (PCM), as we
shall see in this paper,G is a “loop group” of smooth maps from a contourC in the
complexλ plane to some group H. This has subgroupsG− (resp.G+) of maps analytic
inside (resp. outside)C. Mulase notes that any flow onG induces flows onG±, but
the flows on the factors induced by a simple linear flow onG can be complicated and
nonlinear. This is the genesis of nonlinear integrable hierarchies; complete integrability
is just a manifestation of the system’s linear origins. The universality of this kind of
construction was noticed by Haaket al [8].

We consider onG the linear system

d U = � U, (1)

whered is the exterior derivative on the base spaceM of the hierarchy, U is aG-
valued function onM and� a 1-form onM with values inG+. Consistency (Frobenius
integrability) of this system requiresd� = � ∧ �. In fact for KP, KdV and PCM we
have the stronger conditiond� = � ∧ � = 0, and (1) has the general solution

U = eMU0 ; dM = �, U0 ∈ G. (2)

The initial dataU0 determines a solution of the linear system, and hence a solution of
the associated nonlinear hierarchy. A hierarchy is specified by a choice ofG with a
factorisation and a choice of one-form�.

The purpose of this paper is to provide a description of the two-dimensional Prin-
cipal Chiral Model in the general framework of Mulase’s scheme. We show that for
the appropriate group G, and a choice of one-form� within a certain class, solutions
of Eq. (1) give rise to solutions of PCM. Thus there is a map giving, for each allowed
choice of� and each choice of initial dataU0, a solution of PCM. The allowed choices
of � are parametrised by free fields. The known hidden symmetries and Bäcklund trans-
formations of PCM all have their origins in natural field-independent transformations
of U0. We also reveal other symmetries, corresponding to other transformations ofU0
as well as to transformations of the free fields in�.

We were motivated to reconsider the symmetries of PCM by a recent paper of
Schwarz [17], in which infinitesimal hidden symmetries were reviewed. However the
mystery surrounding their origin remained. Further, Schwarz’s review did not encompass
the work of Uhlenbeck [19] or previous work on finite Bäcklund transformations [9].
We wish to present all these results in a unified framework and to lift the veil obscuring
the nature of these symmetries.

2. The Principal Chiral Model

The defining equations for the U(N) PCM on two-dimensional Minkowski spaceM
with (real) light-cone coordinatesx+, x− are

∂−A+ = 1
2[A+, A−],

∂+A− = 1
2[A−, A+],

(3)
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whereA± take values in the Lie algebra of U(N), i.e. they areN × N antihermitian
matrices. Considering the sum and difference of the two equations in (3) yields the
alternative “conserved current” form of the PCM equations

∂−A+ + ∂+A− = 0 , (4)

together with the zero-curvature condition

∂−A+ − ∂+A− + [A−, A+] = 0 . (5)

The latter has pure–gauge solution

A± = g−1∂±g , (6)

whereg takes values in U(N). Substituting this into (4) yields the familiar harmonic map
equation

∂−(g−1∂+g) + ∂+(g−1∂−g) = 0. (7)

This is manifestly invariant under the “chiral” transformationg 7→ a g b, for a andb
constant U(N) matrices. At some fixed pointx0 in space-time, we may chooseg(x0) = I,
the identity matrix. The chiral symmetry then reduces to

g 7→ b−1 g b. (8)

There is a further invariance of the equations under the transformation

g 7→ g−1 . (9)

Equation (3) has obvious solutions [21]

A+ = A(x+) , A− = B(x−) , (10)

respectively left- and right–moving diagonal matrices, i.e. taking values in the Cartan
subalgebra. (This type of solution is familiar from WZW models and for commuting
matrices the Eqs. (3) indeed reduce to WZW equations.) In greater generality, the PCM
equations imply that the spectrum ofA+ (resp.A−) is a function ofx+ (resp.x−) alone.
Thus general solutions take the form:

A+ = s0(x+, x−)A(x+)s−1
0 (x+, x−)

A− = s̃0(x+, x−)B(x−)s̃−1
0 (x+, x−),

(11)

whereA(x+) andB(x−) are antihermitian diagonal matrices, ands0(x+, x−), s̃0(x+, x−)
are unitary. For givenA(x+), B(x−), we have seen that there exists at least one such
solution, that withs0 = s̃0 = I. We shall see in the next section that a solutionA± of the
PCM is determined by the diagonal matricesA(x+) andB(x−), together with another
free field; and our construction leads to solutions of precisely the form (11). Moreover,
we shall prove in Sect. 6 that hidden symmetries and Bäcklund transformations act on
the space of solutions with givenA(x+) andB(x−).
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3. Construction of Solutions

In this section we give the formulation of the PCM in the framework of Mulase’s general
scheme. Let us begin by defining a one-form on two-dimensional Minkowski spaceM
with coordinates (x+, x−),

� = − A(x+)
1 +λ

dx+ − B(x−)
1 − λ

dx− . (12)

HereA(x+), B(x−) are arbitrary diagonal antihermitian matrices, depending only on
x+, x− respectively. Clearly,

d� = � ∧ � = 0 , (13)

so that the linear equation

d U = � U (14)

is manifestly Frobenius–integrable. The general solution is

U (x+, x−, λ) = eM (x+,x−,λ) U0(λ) , (15)

M (x+, x−, λ) = − 1
1 +λ

∫ x+

x+
0

A(y+)dy+ − 1
1 − λ

∫ x−

x−
0

B(y−)dy− ,

whereU0, the initial condition, is a free (unconstrained) element of the groupG in which
U takes values. We need to specify this group.

Remarks.1) SinceA, B are anti-hermitian, hermitian–conjugation of (14) yields

dU (λ)† = −U (λ)†�(λ∗),

whereasU−1 satisfies

dU−1(λ) = −U−1(λ)�(λ).

We therefore obtain the condition

U †(λ∗) = U−1(λ). (16)

2) � has poles atλ = ±1, so it is analytic everywhere in theλ-plane including the point
at∞, except in two discs with centres atλ = ±1. We therefore introduce a contour
C, the union of two small contoursC± aroundλ = ±1 (such thatλ = 0 remains
outside both of them), dividing theλ-plane into two distinct regions: the “outside”
{|λ−1| > δ}∩{|λ+ 1| > δ} and the “inside”{|λ−1| < δ}∪{|λ+ 1| < δ}, where
δ < 1 is some small radius.

Definition. G is the group of smooth mapsV = V (λ) from the contourC to GL(N, IC)
satisfying the conditionV †(λ∗) = V −1(λ).
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We are going to pretend that there exists a Birkhoff factorisationG = G− G+, where
G− denotes the group of maps analytic insideC andG+ denotes the group of maps
analytic outsideC andequal to the identity atλ = ∞. The corresponding Lie algebra
decomposition isG = G− ⊕ G+. This factorisation is definitely a pretence; but the point
is that sufficiently many elements ofG do factor this way so that the results we will
obtain using this factorisation do hold. For a more precise discussion we refer to [19, 8].

We now have the spaces in which the objects in (14),(15) take values. Clearly,� is a
one-form onM with values in the Cartan subalgebra of the Lie algebraG+. The matrix
U = U (x+, x−, λ) is a map fromM to G andU0(λ) is an element ofG (independent of
x±).

Consider a solutionU of (14). Assuming the existence of a Birkhoff factorisation
for U , we can write

U = S−1 Y , (17)

whereS−1 : M → G− andY : M → G+. Now, applying the exterior derivative on
both sides and using (14) yields

S�S−1 = −dSS−1 + dY Y −1. (18)

S�S−1, which takes values in the Lie algebraG, decomposes into its components in
theG− andG+ subalgebras. The above equation allows us to write separate equations
for the projections:

(S�S−1)− = −dSS−1,

(S�S−1)+ = dY Y −1.
(19)

Here the suffix notation denotes the projection of an element ofG intoG±. We introduce
a one-formZ taking values inG+,

Z = dY Y −1 = (S�S−1)+. (20)

Now, sinceS takes values inG−, it is analytic atλ = ±1 and has two power-series
representations, converging in discs with centres atλ = ±1, viz.

S =
∞∑
n=0

sn(x+, x−)(1 +λ)n =
∞∑
n=0

s̃n(x+, x−)(1 − λ)n, (21)

where the coefficientss0(x+, x−), s̃0(x+, x−) are U(N)-valued matrices. Inserting these
expansions in (S�S−1), we see that only thes0 ands̃0 terms survive the projection to
theG+ subalgebra, yielding

Z = (S�S−1)+ = −s0A(x+)s−1
0

1 +λ
dx+ − s̃0B(x−)s̃−1

0

1 − λ
dx−. (22)

Define
A+ = s0A(x+)s−1

0 , A− = s̃0B(x−)s̃−1
0 . (23)

These satisfy the PCM equations (3).

The proof is immediate. From (20),

d Z = Z ∧ Z. (24)

Inserting the form (22) in this equation yields
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∂+A−
1 − λ

− ∂−A+

1 +λ
+

1
2

(
1

1 − λ
− 1

1 +λ

)
[A+, A−] = 0 .

Since Y takes values inG+, for consistency this equation needs to hold for all values
of λ away from±1. In other words, the coefficients of11−λ and 1

1+λ must be separately
zero. This yields precisely the two equations in (3) as integrability conditions.

Note that the solutions (23) have precisely the form (11). We have seen that for given
diagonal matricesA(x+) andB(x−), a solution of the linear field–independent system
(14) determines a solution of the PCM in the spectral class ofA andB.

In fact the general solution of (14) takes the form (15), where theeM factor contains
only spectral information (i.e.A, B). Everything else is encoded in the free element
U0(λ) ∈ G. So the freely–specifiable data{A(x+), B(x−), U0(λ)} corresponds to a
solution of the PCM. Given any choice of these three fields, a solution of the PCM can
be constructed in the following stages:

(a) Construct the correspondingU (x+, x−, λ) from (15).

(b) Perform the factorisation (17) to obtainS(x+, x−, λ).

(c) Perform the two expansions (21) to extract the coefficientss0(x+, x−) ands̃0(x+, x−).

(d) Insert these in (23) to obtain a solution of the PCM.

Note that this procedure is purely algebraic, though the factorisation may not be very
easy to perform in practice. However, it is clear that for any choice ofA(x+), B(x−)
(which is tantamount to fixing the spectral class ofA±), everyU0(λ) ∈ G corresponds
to a solution of the PCM. In fact there is a large redundancy, for a right–multiplication

U0 7→ U0k+ ; k+ ∈ G+ (25)

corresponds to a right-multiplicationU 7→ Uk+, which does nothing to alter theS−1

factor in (17). PCM solutions therefore correspond toG+ orbits inG, or equivalently,
U0(λ)’s from the GrassmannianG/G+. This correspondence is, however, still redundant:
Consider a left–multiplication by a diagonal matrix analytic insideC,

U0 7→ h− U0 ; h− ∈ G0,− , the maximal torus ofG−. (26)

Since this commutes with the diagonaleM , it corresponds to a transformationS−1 7→
h− S−1. However, sinceh− is a diagonal matrix, theA± in (23) do not notice this
transformation; they are invariant. The correct space ofU0’s corresponding to solutions
of (3) in each spectral class ofA± is therefore the double cosetG0,−\G/G+. In particular,
natural transformations ofU0(λ) preserving this double coset correspondence induce
symmetry transformations on the space of PCM solutions.

4. The Extended Solution

The fact that the consistency condition (24) withZ given by (22) yields the PCM
equations is well known. Writing (20) in more familiar form,

d Y = Z Y ,

it is precisely the PCM Lax-pair [14, 21],
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∂+ +

1
1 +λ

A+

)
Y = 0,

(
∂− +

1
1 − λ

A−

)
Y = 0 . (27)

It is easy to check that theY we have defined above has all the properties required of a
solution of this pair of equations:

1. As a function ofλ, the only singularities ofY on the entireλ-plane including the
point at∞ are atλ = ±1.

2. The solution of the system (27) is easily seen to satisfy the reality condition (16)

Y †(λ∗) = Y −1(λ). (28)

3. There is an invariance of the Lax system:Y (x, λ) 7→ Y (x, λ)f (λ), which is usually
fixed by setting

Y (x0, λ) = I , (29)

for some fixed pointx0. This invariance corresponds to right–multiplications (25) of
U0 and the condition (29) corresponds to choosing a representative point on theG+
orbit of U0 in G.

4. At λ = ∞, ∂+Y = ∂−Y = 0, soY (x, λ = ∞) is a constant and using (29) we obtain

Y (x, λ = ∞) = I. (30)

5. The system (27) yields the expressions

A+ = (1 +λ)Y ∂+Y
−1 , A− = (1− λ)Y ∂−Y −1, (31)

which together with (29) and (6) imply that

Y (x, λ = 0) = g−1. (32)

We have already seen that theA± solving (3) may be recovered from power series
expansions aroundλ = ±1 of theS−1 factor ofU using the expressions (23). We now
see that solutions may equally be obtained from theY factor using (32) and (6). We
can also obtain solutions from theY factor by expanding aroundλ = ∞. Denoting the
leading terms consistently with (30),

Y (x, λ) = I +
f (x)
λ

+ . . . , (33)

wheref (x) is antihermitian, theλ = ∞ limit of (31) yields the expressions

A± = ∓∂±f , (34)

which identically satisfy (4) and shift the dynamical description to (5) instead, which
acquires the form

∂−∂+f +
1
2

[∂−f, ∂+f ] = 0 . (35)

This equation is known as the “dual formulation” of the harmonic map equation (7).
A Y (x, λ) obtained from the factorisation procedure automatically yields a solution of
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this equation on expansion aroundλ = ∞. We therefore see that the factorisation (17)
produces aY (x, λ) which interpolates between the dual descriptions of PCM solutions;
yielding a U(N)–valued solutiong−1 of Eq. (7) on evaluation atλ = 0 and a Lie-algebra-
valued solutionf of the alternative equation (35) on development aroundλ = ∞. The
G+–valuedY (x, λ) thus encapsulates these dual descriptions of chiral fields and this
field was aptly named theextended solutionof the PCM by Uhlenbeck [19].

We shall later need information about the next-to-leading-order term in the expansion
of Y aroundλ = 0. If we substitute

Y = (I + λϕ)g−1 + O(λ2), (36)

whereϕ is a Lie-algebra-valued field, into (31), and use (6), we obtain the following
first-order equation forϕ:

∂±ϕ + [A± , ϕ] = ±A±. (37)

The consistency condition for this is just (4).
Reflecting theG+–valued extended solutionY (x, λ), there is also theG−–valued

S(x, λ), which clearly also describes some extension of the PCM solution given by the
expression (23). UsingdSS−1 = −(S�S−1)− = −(S�S−1) + (S�S−1)+, we find the
following flows for the components ofS, which we shall need later:

∂+sn = sn+1A − A+sn+1, (38)

∂−sn =
n∑

r=0

srB − A−sr

2n−r+1
, (39)

∂+s̃n =
n∑

r=0

s̃rA − A+s̃r

2n−r+1
, (40)

∂−s̃n = s̃n+1B − A−s̃n+1. (41)

Using (23) and these equations forn = 0 yields the interesting flow equations:

∂+A+ = s0 ∂+A s−1
0 + [A+, [A+ , s1s

−1
0 ]] ,

∂−A− = s̃0 ∂−B s̃−1
0 + [A−, [A− , s̃1s̃

−1
0 ]] .

(42)

5. Symmetry Transformations Unveiled

Non-space-time symmetry transformations of the PCM were traditionally derived using
mainly guesswork inspired by analogies with other integrable models like the sine-
Gordon model. Their origin remained largely veiled in mystery and they were therefore
called “hidden symmetries”. Previous discussions of them have recently been reviewed
by Schwarz [17] and Uhlenbeck [19]. In the framework of the present paper there
is nothing “hidden” about these symmetries. As we shall see, in terms of the free-
field dataU0(λ), A(x+), B(x−), the veil hiding these symmetries is entirely lifted: the
most natural field-independent transformations of these free fields, which preserve their
analyticity properties in their respective independent variables, induce the entire array
of known symmetry transformations of PCM fields and more. Moreover, the algebraic
structure of the symmetry transformations is completely transparent when acting on
the free-field data, and there is no need to compute commutators and check closure
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using the complicated action of the symmetries on physical fields. The physical fields
automatically carry representations of all the symmetry actions on the free-field data.

In this section we classify PCM symmetry transformations according to the corre-
sponding transformations of the free fields. The formulas for the induced transformations
on the extended solutionsY , on the chiral fieldsg and on the potentialsA± will be derived
in the next section.

5.1. Symmetry transformations ofU0. We first list symmetry transformations which
leaveA(x+) andB(x−) unchanged.

5.1.1. Right dressings.Right-actions by elements of theG+ subgroup (25) have already
been seen to correspond to trivial redundancies and have already been factored out. This
leaves the possibility of right–multiplyingU0 by an element ofG−,

U0 7→ U0k− ; k− ∈ G− . (43)

Such transformations fall into the following classes:

a) k− = b, a constant (i.e. an element of U(N)). This may easily be seen to induce the
transformationsY 7→ b−1Y b andg 7→ b−1gb, i.e. the symmetry (8).

b) If we takek− =
(
I + N (µ)

λ−µ π
)

, having a simple pole at a single pointλ = µ outside

C (hereN (µ) is aλ-independent matrix), the transformations induced on the chiral
fields are precisely the B̈acklund transformations of [9, 13].

c) We are presently considering the U(N) PCM. For the GL(N,IC) PCM we could con-
sider finite transformations withk− in a triangular subgroup ofG−. Such transfor-
mations induce the explicit transformations discussed by Leznov [10]. We will not
go into details of this.

d) Generalk−(λ) infinitesimally close to the identity. This is a realisation of the algebra
G− on the free-fieldU0(λ) and is a remarkably transparent way of expressing the
action of the celebrated loop algebra of hidden symmetries [6] of the PCM. The
precise structure of this algebra has not been properly identified before.

e) General finitek−(λ). This finite version of the infinitesimal symmetries in d) repro-
duces (modulo some details) the loop group action on chiral fieldsg and on extended
mapsY given by Uhlenbeck in Sect. 5 of [19].

5.1.2. Left dressings.Left actions onU0 by elements ofG0,− have already been pointed
out to leave the associated solution of the PCM invariant (see (26)). We wish to consider
only left actions onU0 that descend to the double cosetG0,−\G/G+, i.e. actions by
elements that commute withG0,−. Thus we have only the transformations

U0 7→ h+U0; h+ ∈ G0,+. (44)

This is the action of an infinite-dimensional abelian group, which has not yet appeared in
the literature. The infinitesimal version of this gives an infinite set of mutually commuting
flows also commuting with the PCM flow. This is the PCM hierarchy.

5.1.3. Reparametrisations ofU0(λ). These are transformations generated byλ-diffeo
morphisms

U0(λ) 7→ U0(λ + ε(λ)). (45)
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General reparametrisations can moveC± to curves that do not enclose±1. The easiest
way to prevent this is to restrict the diffeomorphisms to those that fix±1. For infinitesimal
diffeomorphisms this condition is not strictly necessary. It turns out however that the
infinitesimal diffeomorphisms fixing±1 are technically simpler (in terms of their action
on g, Y ) and these give (modulo a detail that will be explained) the “half Virasoro”
algebra described in [17]. We show how this can be extended to a full centreless Virasoro
algebra.

The only finite reparametrisations of theλ-plane preserving±1 are

U0(λ) 7→ U0

(
aλ + b

bλ + a

)
, a2 + b2 = 1. (46)

These induce theS1 action of sect. 7 of [19].

5.2. Symmetry transformations ofA(x+), B(x−). We now consider symmetries that keep
U0 fixed. For symmetries acting just onA(x+) it is natural to consider

a) ShiftsA(x+) 7→ A(x+) + α(x+), whereα(x+) is a diagonal antihermitian matrix.

b) RescalingsA(x+) 7→ ρ(x+)A(x+) whereρ(x+) is a scalar function.

c) ReparametrisationsA(x+) 7→ A(x+ + ε(x+)).

There are other possibilities. Similar symmetries exist forB(x−). All these symmetries
are new.

5.3. Other symmetry transformations.Two other symmetries of PCM should be men-
tioned. The first is a particularly significant combination of an action onU0 with an
action onA, B. The second is not strictly within the class of symmetries we have been
considering, as it acts on the coordinates as well as the fields.

5.3.4. Inversion.The transformation

U0(λ) 7→ U0(λ−1) and (A, B) 7→ (−A, −B) (47)

may easily be seen to induce the inversion symmetry (9).

5.3.5. Lorentz transformations.The transformation

U0 invariant, A 7→ θ+A, B 7→ θ−B

x± 7→ θ−1
± x± (48)

induces the residual Lorentz transformations in light cone coordinates

A± 7→ θ±A± , x± 7→ θ−1
± x±. (49)

We can also consider more general reparametrisations ofx±.
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6. Induced Symmetries of PCM Fields

As we have already claimed, natural transformations on the free–field data,U0(λ), A(x+),
B(x−) induce, through Birkhoff factorisation, rather complicated transformations on the
PCM fieldsY (x, λ), g(x), A±(x); and (field–independent) representations of symmetry
algebras induce (field-dependent) representations on the PCM fields. In this section we
prove this for the intereresting and not immediately obvious cases listed in the previous
section. We also comment on the relation with previous results in the literature.

6.1. Right dressings.Consider the transformation induced by (43) onU (x, λ).

U = S−1 Y 7→ Unew = S−1 Y k−. (50)

Birkhoff factorisation ofY k− yields (in the obvious notation)

Unew = S−1 (Y k−)−(Y k−)+ = S−1
new Ynew. (51)

In other words, we have the symmetry transformation

Y 7→ (Y k−)+ , (52)

which is just the representation ofG− described by Uhlenbeck in Sect. 6 of [19] (except
that she uses a subgroup ofG−). We can equivalently write

Y 7→ (Y k−Y −1)+Y . (53)

Now writing k− = I + ε(λ) with ε(λ) ∈ G− an infinitesimal parameter, we obtain the
infinitesimal version of this,

Y 7→ (
I + (Y ε(λ)Y −1)+

)
Y . (54)

We note that this directly gives the generating function of [4] for these transformations,
which was originally obtained by extrapolation from the leading terms in a power series
expansion [6]. TheG+ projection corresponds to taking the singular part atλ = ±1. This
may be done using a contour integral, so that this transformation takes the form

Y (x, λ) 7→
(

I +
1

2πi

∫
C

Y (x, λ′)ε(λ′)Y −1(x, λ′)
λ′ − λ

dλ′
)

Y (x, λ) . (55)

HereC± are oriented counter-clockwise around±1. The transformation forg may be
read off by taking theλ → 0 limit, yielding the form of the transformation given in
[18, 17],

g 7→ g

(
I − 1

2πi

∫
C

Y (x, λ′)ε(λ′)Y −1(x, λ′)
λ′ dλ′

)
. (56)

The parameter of this infinitesimal transformation,ε(λ) is an arbitrary infinitesimal
G− element. In particular, if we introduce a basis{T a} for the Lie algebra of antihermi-
tian matrices, we can takeε(λ) proportional toλrT a, r ∈ Z . This gives an infinite set
of transformations, which we denoteJa

r , and which satisfy the commutation relations

[Ja
r , Jb

s ] =
∑

c

fab
c Jc

r+s, (57)
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where thefab
c are the structure constants defined by [T a, T b] =

∑
c fab

c T c. Although
the commutation relations of a centreless Kac-Moody algebra thus appear, this isnot
sufficient to identify the symmetry algebraG− with a centreless Kac-Moody algebra.
We illustrate this in two ways: first we show that inG− there exist certain linear relations
absent in a Kac-Moody algebra, and second we show that inG− theJa

r are not a spanning
set.

The crucial point is that although we can certainly try to expand elements ofG− in
Laurent series, and finite sums of matrices of the formλrT a are certainly inG−, the
natural way to expand an element ofG− is in a Taylor series inλ + 1 (or alternatively in
λ − 1). Takingε(λ) in (56) proportional to (λ + 1)nT a, for n ≥ 0, we can define a set
of transformationsKa

n satisfying the relations

[Ka
n, Kb

m] =
∑

c

fab
c Kc

n+m n, m ≥ 0. (58)

Considering the expansion ofλr in powers ofλ + 1 (valid in |λ + 1| < δ), we find that
theJa

r are expressed as linear combinations of theKa
n in the following way:

Ja
r =


∑r

n=0(−1)n+r
(

r
n

)
Ka

n r ≥ 0∑∞
n=0(−1)r

(
n − r − 1
−r − 1

)
Ka

n r < 0
. (59)

It is straightforward, using standard formulae for sums of binomial coefficients (see
for example [7]), to check that these linear combinations, by virtue of (58), imply the
commutation relations (57). The relation between theJa

r for non-negativer can be
inverted: we find

Ka
n =

n∑
r=0

(
n
r

)
Ja

r . (60)

Now, if our symmetry algebra were indeed a Kac-Moody algebra with generatorsJa
r

satisfying (57), we would be able to define the algebra elementsKa
n (which certainly

exist as symmetry generators) from theJa
r ’s with non-negativer using (60). When

we substitute (60) into the infinite sum in (59) we find that we cannot reorder the
summations to express this infinite sum as a linear combination of theJa

r ’s with r ≥ 0.
In other words, this infinite sum is not in the Kac-Moody algebra. We thus have our
first distinction between a Kac-Moody algebra andG−: In a Kac-Moody algebra the
elementsKa

n and the elementsJa
r for r < 0 need to be linearly independent, whereas

in the PCM symmetry algebraG− they are linearly dependent via the relationship given
in (59).

The second distinction is that inG−, unlike in a regular Kac-Moody algebra, the
elements{Ja

r } are not a spanning set. Elements ofG− need to be analytic insideC.
There are therefore elements ofG− that do not have Laurent expansions in powers ofλ;
consider for example anε(λ) proportional to lnλ, defined with a cut from 0 to∞ along
half of the imaginary axis. Now, the reader may be concerned that we have claimed
that G− is spanned by theKa

n, that the relationship between theKa
n and theJa

r for
r ≥ 0 is invertible, but that theJa

r (and therefore certainly theJa
r for r ≥ 0) are not a

spanning set forG−. There is absolutely no contradiction here. As we have seen above, the
relationship between theKa

n and theJr
a for r ≥ 0 implies that finite linear combinations

of theKa
n can be written as linear combinations of theJa

r for r ≥ 0, but for infinite linear
combinations of theKa

n this is not the case. However, it does suggest that we should be
able in some sense to approximate elements ofG− given by infinite sums of theKa

n’s by
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finite sums of theJa
r , which are equivalent to finite sums of theKa

n. This is indeed the
case, as follows from a classical theorem in complex analysis, Runge’s theorem (see, for
example, [15]). Runge’s theorem implies the remarkable fact that a function analytic on
an arbitrary finite union of non-intersecting open discs can be approximated uniformly
and to any accuracy on any closed subset of the union by a polynomial. In particular,
this implies that elements inG− can be approximated uniformly and to any accuracy on
{|λ − 1| < δ} ∪ {|λ + 1| < δ} by a finite linear combination of theJa

r for r ≥ 0.
To conclude this section we note that the contour integral in (56) is easily evaluated

whenε(λ) is proportional toλr: For r < 0 the integral is evaluated by shrinkingC to a
contour around 0; forr > 0 to a contour around∞; and forr = 0 to a pair of contours
around 0 and∞.

6.2. The B̈acklund transformation.The elementk− ∈ G− in (43) can clearly have all
variety of singularitiesoutsideC. Trying to givek− just one simple pole at the point
λ = µ outsideC, suggests the natural form [21]

k−(λ, µ) =

(
I +

N (µ)
λ − µ

)
. (61)

For the satisfaction of the reality condition (16) for elements ofG− we require that

N † = NN†
µ−µ̄ = −N . These conditions are satisfied byN = (µ − µ̄)π, if π is a projector

satisfyingπ2 = π = π†. Such transformations thus correspond to finite right-dressing
transformation of the particular form

U0 7→ U0

(
I +

µ − µ̄

λ − µ
π

)
. (62)

Note thatk− in fact has a singularity atλ = µ̄ as well, since (I −π) has zero determinant.
Using (50) we obtain the transformation

U 7→ S−1

(
I +

µ − µ̄

λ − µ
Y (λ)πY −1(λ)

)
Y (λ) . (63)

In order to factorise the middle factor, we introduce a hermitian projectorP = P † = P 2,
independent ofλ (but not ofx±). Using this we see that(

I + µ−µ̄
λ−µ Y (λ)πY −1(λ)

)
Y (λ)

=
(
I + µ−µ̄

λ−µ P
) (

I + µ̄−µ
λ−µ̄ P

) (
I + µ−µ̄

λ−µ Y (λ)πY −1(λ)
)

Y (λ)

=
(
I + µ−µ̄

λ−µ P
) (

I + µ−µ̄
λ−µ (I − P ) Y (λ)π + µ̄−µ

λ−µ̄ PY (λ) (I − π)
)

.

To have an acceptable factorisation, all we need now is that the right-hand factor above be
regular outsideC. Specifically, we require regularity atµ andµ̄, which yields algebraic
conditions relating the projectorsP andπ, viz.

(I − P )Yµπ = 0 , PYµ(I − π) = 0,

whereYµ denotesY (λ) evaluated atλ = µ. If we write π = v(v†v)−1v† (see [9]), these
equations are solved by the expression

P = Yµv
(
v†Y †

µ Yµv
)−1

v†Y †
µ .
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Now we can read-off the induced transformation rules forY andg. These are just the
known PCM B̈acklund transformations [9, 13, 21].

6.3. Left dressings.Here we consider in detail the left dressings (44). Matricesh+ ∈
G0,+ commute withM , so such transformations act by left multiplication onU , i.e.
U 7→ h+ U = h+ S−1Y = S−1(Sh+ S−1)Y . Hence the action onY is given by

Y 7→ (h+S
−1)+Y = (Sh+S

−1)+Y. (64)

For an infinitesimal transformationh+ = I + ε, ε ∈ G0,+ and we have

Y 7→ (
I + (SεS−1)+

)
Y

=

(
I +

1
2πi

∫
C

S(λ′)ε(λ′)S−1(λ′)
λ′ − λ

dλ′
)

Y, (65)

implying

g 7→ g

(
I − 1

2πi

∫
C

S(λ′)ε(λ′)S−1(λ′)
λ′ dλ′

)
. (66)

In generalε has the form

ε(λ) =
∞∑
n=1

(
αn

(1 +λ)n
+

α̃n

(1 − λ)n

)
, (67)

where theαn, α̃n are constant infinitesimal diagonal matrices. The integral in (66) is
evaluated by computing the residues of the integrand atλ′ = ±1. For example, the case
α1 6= 0 with all otherαn, α̃n zero yields the transformation rules

g−1δg = −s0α1s
−1
0 ,

δA+ =
[
A+, [s1s

−1
0 , s0α1s

−1
0 ]

]
, (68)

δA− = − 1
2[A−, s0α1s

−1
0 ].

Similarly, if α2 6= 0 with all otherαn, α̃n zero we find

g−1δg = − (
s0α2s

−1
0 + [s1s

−1
0 , s0α2s

−1
0 ]

)
,

δA+ =
[
A+, [s2s

−1
0 , s0α2s

−1
0 ] − [s1s

−1
0 , s0α2s

−1
0 ]s1s

−1
0

]
, (69)

δA− = − [
A−, 1

4s0α2s
−1
0 + 1

2[s1s
−1
0 , s0α2s

−1
0 ]

]
.

The formulae forδA± are computed using the variation of the relation (6),

δA± = ∂±(g−1δg) + [A±, g−1δg], (70)

and Eqs. (38)-(41). The latter also allow one to check directly that the above transfor-
mations are indeed infinitesimal symmetries, i.e. that∂−δA+ + ∂+δA− = 0.

Now considering the sector of PCM in whichA = α1, independent ofx+, we see that
the∂+-derivations ofA± given by (3) and (42) are effected by the transformations (68).
So left dressing transformations with onlyα1 non-zero correspond tox+ translations in
this sector. Similarly the transformations (69) can be seen to be related to coordinate
translations in an extended system (described in the appendix) belonging to ahierarchy
associated to the PCM. Whenever an infinite dimensional abelian symmetry algebra
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(like G0,+) is identified in a system, it is possible to define a corresponding hierarchy.
Traditionally, for each generator in the algebra a coordinate is introduced and the flow
in each coordinate is defined as the infinitesimal action of the corresponding symmetry.
In our formulation there is an alternative way to define a PCM hierarchy. Instead of
working on a spaceM with coordinates (x+, x−), we work on a larger spaceM with
2P coordinates (x+

1, . . . , x
+
P , x−

1 , . . . , x−
P ) and replace the� of (12) by

� = −
P∑

n=1

(
An(x+

n)dx+
n

(1 +λ)n
+

Bn(x−
n )dx−

n

(1 − λ)n

)
, (71)

where theAn(x+
n), Bn(x−

n ) are all antihermitian diagonal matrices, each depending
on only one coordinate. The associated nonlinear equations are again the equations
dZ = Z ∧ Z, whereZ = (S�S−1)+ andS is a map fromM to G−. For the case
P = 2 we write out this system of equations in full in the appendix. Another possibility
of obtaining a hierarchy within our framework is to enlargeM to a space with 2NP
coordinates (xa+

n , xa−
n ), 1 ≤ n ≤ P , 1 ≤ a ≤ N , and taking

� = −
P∑

n=1

N∑
a=1

(
Aa

n(xa+
n )Hadxa+

n

(1 +λ)n
+

Ba
n(xa−

n )Hadxa−
n

(1 − λ)n

)
, (72)

where{Ha}, a = 1, . . . , N is a basis for the algebra of antihermitian, diagonalN ×
N matrices. In this hierarchy, left dressings onU0 correspond precisely to coordinate
translations in the sector with the scalar functionsAa

n, Ba
n constant.

The physical or geometric significance of these PCM hierarchies remains to be
understood. An alternative approach to defining a PCM hierarchy was given in [1].

6.4. The Virasoro symmetry.In this section we consider the symmetries of PCM associ-
ated with reparametrisations ofU0(λ). We consider the infinitesimal reparametrisations
U0(λ) → U0(λ + εmλm+1), where theεm are infinitesimal parameters andm ∈ Z, or,
equivalently, variationsδU0 = εmλm+1U ′

0(λ). The prime denotes differentiation with
respect toλ.

These variations give rise to a centreless Virasoro algebra of infinitesimal symmetries
of PCM. In [17] Schwarz documents the existence of “half” of this algebra. Schwarz’s
symmetries are associated with reparametrisations that fix the pointsλ = ±1. We shall
see that from a technical standpoint these are simpler to handle than the full set of
symmetries. But there is also a fundamental reason to make such a restriction. If we
were to consider finite reparametrisations, we would need to ensure that the contourC
remains qualitatively unchanged. The simplest way to do this is to require the points
λ = ±1 to be fixed. In [19] Uhlenbeck identifies anS1 symmetry of PCM. It is a
simple exercise to check that this symmetry corresponds, in our formalism, to global
reparametrisations of theλ-plane fixing the points±1, i.e. Möbius transformations of
the form

λ → aλ + b

bλ + a
, a2 + b2 = 1. (73)

At the level of infinitesimal symmetries, however, the need to fix±1 is really superfluous,
and so we find a full Virasoro algebra of symmetries. But as we have said above, the
symmetries fixing±1 are technically easier, which is why Schwarz was able to identify
them, and also for the more general symmetries we can be quite certain that there exists
no exponentiation.
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With this introduction, we consider the variationsδmU0 = εmλm+1U ′
0(λ). These

manifestly realise the algebra [δm, δn] = (n − m)δn+m. This realisation descends to the
physical fields. UsingU0 = e−MS−1Y we have the chain of implications

δmU0 = εmλm+1(−M ′e−MS−1Y − e−MS−1S′S−1Y + e−MS−1Y ′), (74)

δmU = eMδmU0

= εmλm+1(−M ′S−1Y − S−1S′S−1Y + S−1Y ′), (75)

δmS = −(SδmUY −1)−S

= −εm

(
λm+1(−SM ′S−1 − S′S−1 + Y ′Y −1)

)
− S, (76)

δmY = (SδmUY −1)+Y

= εm

(
λm+1(−SM ′S−1 + Y ′Y −1)

)
+
Y. (77)

In the last equation we have used the fact that for allm, λm+1S′S−1 takes values inG−.
Of the remaining two terms, the first has aG+ piece originating in the double pole ofM ′
atλ = ±1. To explicitly compute this is a simple exercise. For the second term, we use
a contour integral formula for the projection. We thus arrive at the final result

δmY Y −1 = εm

(
1

2πi

∫
C

µm+1Y ′(µ)Y −1(µ)
µ − λ

dµ

+(−1)m
(
s0

∫
A s−1

0

) (
1

(1 +λ)2
− m + 1

1 +λ

)
+

(−1)m

1 +λ

[
s1s

−1
0 ,

(
s0

∫
A s−1

0

)]
+

(
s̃0

∫
B s̃−1

0

) (
1

(1 − λ)2
− m + 1

1 − λ

)
+

1
1 − λ

[
s̃1s̃

−1
0 ,

(
s̃0

∫
B s̃−1

0

)])
. (78)

Here
∫

A and
∫

B are shorthand for
∫ x+

x+
0

A(y+)dy+ and
∫ x−

x−
0

B(y−)dy− respectively.

The g transformations are read off by settingλ to zero. In the expression forδmg,
the contour integral term is evaluated, depending on the value ofm, by shrinkingC
to a contour around either 0 or∞. Explicitly for the SL(2) subalgebra of the Virasoro
algebra, we obtain (omitting the overall infinitesimal parameters),

g−1δ−1g = φ+(s0
∫

As−1
0 )−(s̃0

∫
Bs̃−1

0 )+
[
s1s

−1
0 , (s0

∫
As−1

0 )
]− [

s̃1s̃
−1
0 , (s̃0

∫
Bs̃−1

0 )
]
,

g−1δ0g = − [
s1s

−1
0 , (s0

∫
As−1

0 )
]−[

s̃1s̃
−1
0 , (s̃0

∫
Bs̃−1

0 )
]
,

g−1δ1g = f−(s0
∫

As−1
0 )+(s̃0

∫
Bs̃−1

0 )+
[
s1s

−1
0 , (s0

∫
As−1

0 )
]−[

s̃1s̃
−1
0 , (s̃0

∫
Bs̃−1

0 )
]
.

We see that in these formulae, not only do the leading coefficientss0, s1, s̃0, s̃1 in the
expansions ofS appear, but also the fieldsφ andf , coefficients in the expansions of
Y around 0 and∞ respectively (see Sect. 4). The work required to check directly that
these, or any of theδm’s, are symmetries is formidable, but we again emphasize that the
advantage of the present framework is that such direct checks are not necessary in order
to prove that the physical fields carry a representation of the full centreless Virasoro
algebra.

Schwarz [17] has previously found half a Virasoro algebra. We observe that if we
define transformations1m = δm+1 − δm−1 a substantial simplification takes place,
yielding the formula
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1mg = −εmg

(
1

2πi

∫
C

µm−1(µ2 − 1)Y ′(µ)Y −1(µ)dµ

+ 2(−1)m(s0
∫

A s−1
0 ) − 2(s̃0

∫
B s̃−1

0 )

)
.

(79)

We will see in Sect. 6 (see Eqs. (83),(84)) that the second and third terms in the above
expression are individually symmetries of PCM that mutually commute and commute
with all the symmetries being considered here. Removing these terms gives exactly the
“half-Virasoro” symmetries of [17]

1̃mg = −εmg
1

2πi

∫
C

µm−1(µ2 − 1)Y ′(µ)Y −1(µ)dµ, m ∈ Z. (80)

Thus we see the precise nature of Schwarz’s symmetries as combinations of reparametri-
sations preserving the pointsλ = ±1 with certain simple symmetries that act on theA, B
fields but leaveU0 invariant. Taking the appropriate combinations we see that for the
simplest Schwarz symmetrỹ10,

g−11̃0g = φ − f, (81)

and using (34) and (37),
1̃0A± = ∓2A± + [A±, f ]. (82)

This is easily checked to be a symmetry. The symmetry10 acts on the physical fields
in a much more complicated way:

g−110g = φ − f − 2(s0
∫

As−1
0 ) + 2(̃s0

∫
Bs̃−1

0 ),

10A+ = −4A+ + [A+, f ] − 2
[
[s1s

−1
0 , A+], (s0

∫
As−1

0 )
]

+
[
A+, (s̃0

∫
Bs̃−1

0 )
]
,

10A− = 4A− + [A−, f ] + 2
[
[s̃1s̃

−1
0 , A−], (s̃0

∫
Bs̃−1

0 )
] − [

A−, (s0
∫

As−1
0 )

]
.

6.5. Transformations of the free fieldsA(x+), B(x−). Following the by now familiar rea-
soning, an infinitesimal transformationA(x+) 7→ A(x+) + δA(x+) induces the following
transformations onY, g, A+, A−:

δY = − (s0
∫

δA s−1
0 )

1 +λ
Y,

δg = g (s0
∫

δA s−1
0 ),

δA+ = s0 δA s−1
0 − [

A+,
[
s1s

−1
0 , (s0

∫
δA s−1

0 )
]]

,

δA− =
[
A− , (s0

∫
δA s−1

0 )
]
.

Here we have written
∫

δA as shorthand for
∫ x+

x+
0

δA(y+)dy+. As expected, the spectrum

of A− remains invariant, while that ofA+ is shifted. Using the flow equations fors0, s1,
it is easy to check that these are genuine symmetries, i.e. that∂−δA+ + ∂+δA− = 0.

There are a variety of possibilities forδA(x+). If {Ha}, a = 1 . . . N , is a basis of
the algebra of antihermitian diagonal matrices, we can consider variationsδA(x+) ∼
(x+)mHa,a = 1, . . . , N ,m ∈ Z. This gives a loop algebra of symmetries, corresponding
to translations ofA(x+). Taking δA(x+) ∼ (x+)mA′(x+), m ∈ Z, gives a centreless
Virasoro algebra of symmetries, corresponding to reparametrizations ofA(x+). Taking
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δA(x+) ∼ (x+)mA(x+), m ∈ Z, gives an infinite dimensional abelian symmetry algebra
corresponding tox+-dependent rescalings ofA(x+). Clearly these symmetries are not
independent: The latter two families can be written in terms of the first family, but the
generators are thenfield dependentcombinations of the generators of the first family.

Analogous sets of symmetries can be obtained from infinitesimal variations of
B(x−).

The simple variationδA(x+) = εA(x+), whereε is a constant infinitesimal parameter,
yields the symmetry

δg = εg(s0
∫

A s−1
0 ), (83)

whereas the transformationB 7→ (1 + ζ)B, whereζ is also an infinitesimal parameter,
yields

δg = ζg(s̃0
∫

B s̃−1
0 ). (84)

These transformations were used in Sect. (6) to make contact between our Virasoro
symmetries and those of [17].

7. Concluding Remarks

We have seen that formulating the nonlinear equations of motion (3) of the PCM in
the form of the simple linear system (1) makes the precise nature of their integrabil-
ity completely transparent. It yields a novel free-field parametrisation of the space of
solutions, which we have used to classify all the symmetries of on-shell PCM fields
in terms of natural transformations on the free-field data. The confusing cacophony of
symmetry transformations in the literature is thereby seen to arise in the most natural
fashion imaginable. We have thus demonstrated that this notion of complete integra-
bility, previously applied to traditional soliton systems, like the KP, NLS and KdV
hierarchies, encompasses the Lorentz–invariant PCM field theories. We believe that this
notion of integrability is a universal one and we expect a clarification of the nature of
the integrability of the self-dual Yang-Mills and self-dual gravity equations by similarly
reformulating the twistor constructions for these systems. Indeed Crane [3] has already
discussed a loop group of symmetries in terms of an action on free holomorphic data in
twistor space.

Our construction raises many questions.
1) Standard integrable soliton systems exhibit multiple hamiltonian structures and in-
finite numbers of conservation laws, both these phenomena being symptoms of their
integrability. These phenomena ought to have a natural explanation in terms of the asso-
ciated simple linear systems (free-field data). For the PCM, some work on such structures
exists [5].
2) The free-field parametrisation of solutions of PCM should play a critical role in the
quantisation of the theory. What is the relation with standard quantisations? (The PCM
can be quantised in different ways, using either the fieldf or the fieldg as fundamental,
giving different results [12].) How are we to understand quantum integrability?
3) There is a large body of related mathematical work, mostly focusing on the enumera-
tion and construction of solutions of the PCM in Euclidean space (for recent references
see [2]). Most of our formalism goes through for the case of Euclidean space, but the
reality conditions are different, and a little harder to handle. An important class of so-
lutions are theunitons[19, 20]. These correspond, up to the need for right dressings by
G+ elements, toY ’s with finite order poles at one of the two points±1, and regular else-
where. We wonder: What are the correspondingU0’s? (The work of Crane on self-dual
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Yang-Mills [3] may have an analog.) Is there a natural geometric understanding of our
construction? Or a relation with the constructions of [20] or [2]?
4) Is there a geometric interpretation of our PCM hierarchy?

Appendix. The PCM Hierarchy

In Sect. 6.3 we have described a procedure to generate a PCM hierarchy. In this appendix
we illustrate this procedure by obtaining the simplest integrable extension of the PCM
equation. We use the� given in (71) forP = 2. UsingZ = (S�S−1)+ we obtain the
following form for Z:

Z = −
(

A+dx+
1

1 +λ
+

(
B+

(1 +λ)2
+

[C+, B+]
1 +λ

)
dx+

2

+
A−dx−

1

1 − λ
+

(
B−

(1 − λ)2
+

[C−, B−]
1 − λ

)
dx−

2

)
.

The six fieldsA+, B+, C+, A−, B−, C− are defined in terms of the coefficients ofS and
the free fieldsA1(x+

1), A2(x+
2), B1(x−

1 ), B2(x−
2 ). They depend on the four coordinates

x+
1, x

+
2, x

−
1 , x−

2 and are constrained in virtue of their defining relations thus:A+ com-
mutes withB+, A− commutes withB− and the spectra ofA+, B+, A−, B− depend only
on x+

1, x
+
2, x

−
1 , x−

2 respectively. If we nevertheless ignore these constraints and simply
substitute the above form forZ into dZ = Z ∧ Z, we find:

1. [A+, B+] = [A−, B−] = 0.

2. The following system of evolution equations forA+, B+, A−, B−:

∂2+A+ = − 1
2[A+, [[B+, C+], C+]] − [B+, ∂1+C+ + 1

2[[A+, C+], C+]] ,

∂1−A+ = 1
2[A+, A−],

∂2−A+ = 1
2[A+,

1
2B− + [C−, B−]] ,

∂1+B+ = [B+, [A+, C+]] ,

∂1−B+ = 1
2[B+, A−],

∂2−B+ = 1
2[B+,

1
2B− + [C−, B−]] ,

∂1+A− = 1
2[A−, A+],

∂2+A− = 1
2[A−, 1

2B+ + [C+, B+]] ,

∂2−A− = − 1
2[A−, [[B−, C−], C−]] − [B−, ∂1−C− + 1

2[[A−, C−], C−]] ,

∂1+B− = 1
2[B−, A+],

∂2+B− = 1
2[B−, 1

2B+ + [C+, B+]] ,

∂1−B− = [B−, [A−, C−]] .

These evidently imply that the spectra ofA+, B+, A−, B− depend only onx1+, x2+,
x1−, x2− respectively, as required.

3. The following evolution equations forC+, C−:
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∂1+C− = − 1
4A+ − 1

2[A+, C−],

∂2+C− = − 1
8B+ + 1

4([C−, B+] − [C+, B+]) + 1
2[C−, [C+, B+]] ,

∂1−C+ = − 1
4A− − 1

2[A−, C+],

∂2−C+ = − 1
8B− + 1

4([C+, B−] − [C−, B−]) + 1
2[C+, [C−, B−]] .

(In fact, from thedZ = Z ∧ Z equation, both of theC− evolutions appear commutated
with B+ and both of theC+ evolutions appear commutated withB−.)

This system is a 4-dimensional integrable system, but its physical or geometric
interpretation is not immediately apparent. It has a variety of interesting reductions
apart from the reduction to PCM by settingB− = B+ = 0. We can consistently reduce
by takingA− = B− or A+ = B+ or both. Or we can take justB− = 0 (or B+ = 0)
in which case thex−

2 (or x+
2) dependence becomes trivial. For all these reductions, and

the full system as well, the methods of this paper give a free-field parametrisation of
solutions.
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