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Abstract: In this paper, we study both the continuous model and the discrete model
of the Quantum Hall Effect (QHE) on the hyperbolic plane. The Hall conductivity is
identified as a geometric invariant associated to an imprimitivity algebra of observables.
We define a twisted analogue of the Kasparov map, which enables us to use the pairing
betweenk -theory and cyclic cohomology theory, to identify this geometric invariant
with a topological index, thereby proving the integrality of the Hall conductivity in this
case.

1. Introduction

The usual model of the integer quantum Hall effect involves electrons moving in a two
dimensional conductor under the influence of a magnetic field. The field is applied in a
direction orthogonal to the conductor. The Hamiltonian used is that for a single electron
moving under the influence of this magnetic field with the addition of a potential term
to represent the field due to the lattice of ions making up the conductor. For simplicity
this lattice is often assumed to be periodic in the two axis directions in the plane. The
effect of impurities can be modelled by departing from a perfectly periodic potential. The
definitive treatment from a mathematical point of view is due to Bellissard [Bel+E+S]
and Xia [Xia]. In this approach no assumption is made about the rationality of the
imposed magnetic flux while the integrality of the Hall conductance follows by showing
that it is given by the index of a Fredholm operator. Xia also exhibits the conductance
as a topological index. These demonstrations use in an essential way Connes’ non-
commutative differential geometry.

In this paper we are interested in what can be said when one replaces the usual
two dimensional conducting material with its Euclidean geometry by a two dimensional
sample with hyperbolic geometry. Physically one should think of hyperbolic space and
hence the sample as an embedded hyperboloid in Euclidean 3-space. The crystal lattice of
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the conductor is now modelled by the orbit of a freely acting discrete group. For reasons
of convenience we take this to be the fundamental group of a Riemann surface (though
aspects of our analysis work more generally). The magnetic field remains orthogonal to
the two dimensional conductor and the electric potential we take to be periodic under
the action of this discrete group (we do not attempt to model impurities). When the
magnetic flux is rational, spectral properties of Hamiltonians for a single electron have
been studied, particularly in the cases where the Hamiltonian may be defined on a finite
cover of the Riemann surface [lengo+Li]. In this paper however we are interested in
approaching the problem using non-commutative geometry, which allows the flux to
be any real number, and the algebras of interest are not always associated with vector
bundles over the Riemann surface.

We begin by reviewing the construction of the Hamiltonian. First we take as our
principal model of hyperbolic space, the hyperbolic plane. This is the upper half-plane
H in C equipped with its usual Poindametric (2> +dy?) /y?, and symplectic area form
wy = dx Ady/y?. The grouSL(2, R) acts transitively ofil by Mobius transformations

) aC+b b
z+zy:§»—>gg:cc+d, forg = <Zd)'

Any Riemann surface of genysgreater than 1 can be realised as the quotiefif bf
the action of its fundamental group realised as a subgfoopSL (2, Z) C SL(2, R).

Let us now pick a 1-form,; such thatdn = fwy, for some fixedd € (0,1]. As
in geometric quantisation we may regayds defining a connectiolW = d — in on
a line bundleL overH, whose curvature i8wy. Physically we can think of, as the
electromagnetic vector potential for a uniform magnetic field of strefigibrmal to
H. Using the Riemannian metric the Hamiltonian of an electron in this field is given in
suitable units by

H=H,= %V*V = %(d —in)*(d —in).

Comtet [Comtet] has shown thaf differs from a multiple of the Casimir element for
SL(2,R), %J.J, by a constant, wherg;, J» and.J; denote a certain representation of
generators of the Lie algebs#(2, R), satisfying

[J1, J2] = —iJs, [J2, J3] = iy, [J3, J1] = i)z,

so that).J = J? + J2 — JZ is the quadratic Casimir element. This shows very clearly
the underlyingSL(2, R)-invariance of the theory. In a real material this Hamiltonian
would be modified by the addition of a potentidl By takingV to be invariant under

I this perturbation is given a crystalline type structure analogous to the use of periodic
potentials invariant undét? in the Euclidean planB?. Comtet has computed the spec-
trum of the unperturbed HamiltoniaH,,, for n = 6dz/y, to be the union of finitely
many eigenvalue§(2k +1)0 — k(k+1) : £k =0,1,2... < 6 — %}, and the continuous
spectrum ﬁ + 62, 00) for those values of for which the de Rham cohomology class of
fwy is integral. Its zeta function and the kernel of its resolvent are also known in this
case, [Comtet, Comtet+H]. Anyis cohomologous tédz/y (since they both havey

as differential) and forms differing by an exact fors give equivalent models: in fact,
multiplying the wave functions by exfif) shows that the models ferandéfdz/y are
unitarily equivalent. This equivalence also intertwinesIthactions so that the spectral
densities for the two models also coincide. However, it is the perturbed Hamiltonian
H, v = H, +V which is the key to the quantum Hall effect on the hyperbolic plane,
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and the spectrum of this is unknown for gendrahvariantV. As we noted above the
Hall effect on Riemann surfaces has also been considered [lengo+Li], [Av+K+P+S] but
this is different from the problem we consider here.

These considerations suggest that one could mimic the non-commutative geometry
approach of Bellissard-Connes to the integer quantum Hall effect on Euclidean space
[Bel, Nak+Bel, Bel+E+S, Co2, Xia] in a hyperbolic setting. This interprets the Hall
conductivity as a non-commutative Chern character, whose integrality followsArom
theory. Physically such situations have been considered without the perturbing potential
(orTistrivial) in the context of exploring edge effects for the quantum Hall effect and the
behaviour of electrons in quantum dots. Much of the mathematical machinery needed for
this has already been discussed in a geometrical context [Co, Co2, Comtet, Comtet+H]
and will be exploited here. We also discuss the discrete version of the theory [Co2], [Sun]
motivated in part by some results of [MC] in the Euclidean setting. These hyperbolic
Hall effect models occupy the first seven sections. Specifically we show that there is a
principal groupoid”*-algebra with cocycle for the diagonBlaction onH x H which
contains the resolvent of the various Hamiltonians we consider. In order to construct
a Fredholm module for this algebra we found it useful to take a more abstract group
theoretic approach. We show that our groupoid algebra is isomorphic to a quotient of
thel invariant part of the imprimitivity algebra for inducing from the maximal compact
subgroup ofSL(2, R) to C*(SL(2, R), o) (the multiplier, or group 2-cocycle; extends
to all of SL(2, R)). This imprimitivity algebra has a regular representation, induced by
a canonical trace, the Hilbert space of which provides a Fredholm module which is 2-
summable for a dense subalgebra of the imprimitivity algebra. We show that this dense
subalgebra contains the spectral projections corresponding to gaps in the spectrum of
our Hamiltonians. Similar results hold in the discrete model as well. The connection
between the continuous and discrete models arises from the Morita equivalence of our
guotient of thel” invariant imprimitivity algebra withC* (T, o).

The main results of our paper follow by extending the approach of [Xia] to cover
the hyperbolic case. In fact in Sect. 8 we prove some general theorems abdéi# the
groups ofC*-algebras which generalize those arising from the hyperbolic Hall effect.
The relevance of(-theory can be understood in the case of the integer Hall effect on
Euclidean space partly as a result of the calculation [Elliott, Bel, Co]:

K.(CH(Z",0)) = K.(C™(Z"™) = K*(T")

for any multiplier {.e. group 2-cocycle)} on Z". This result has lead to the twisted
groupC*-algebrasC*(Z", o) being calledhoncommutative toriThis calculation was
generalized by Packer and Raeburn [PR, PR2], who compute& tjeups of the
twisted groupC*-algebras of uniform lattices in solvable groups. More precisely, they
proved that ifT" is a uniform lattice in a solvable Lie grou@, then

KL(CH(T,0)) = KM (I\G, 6(By)),

whereo is any multiplier o, K*(I'\G, §(B,)) denotes the twisteH -theory of a con-
tinuous trace”*-algebraB, with spectrun"\G, while §(B,) € H3(I'\G, Z) denotes
the Dixmier-Douady invariant oB,. (Note that the twisted(-theory was studied in
[Ros]). Packer and Raeburn proved a stabilization theorem and used the Thom isomor-
phism theorem for thé{-theory of C*-algebras, due to Connes [C02], to prove their
results.

In Sect. 8 we extend the main theorem of [PR, PR2] to the case Wiea lattice
in a K-amenable Lie groug:. More precisely, we prove that for su¢handr,
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K.(CH(T',0)) = K.(C:(T, 0))

and '
K. (C*(I,0)) & K**™CE/EY(M\G/K, 6(B,)),

whereK is a maximal compact subgroup 6f o is any multiplier onl", K*(T'\G/ K,
0(B,)) is the twistedK -theory of a continuous trac€*-algebraB, with spectrum
NG/K, and§(B,) € H3I'\G/K, Z) is the Dixmier-Douady invariant aB, .

Our method uses th& -amenability results of Kasparov [Kasl] and the Packer-
Raeburn stabilization theorem [PRY]. In the case whenI',, is the fundamental group
of a Riemann surface’, of genusg > 0, we deduce that the Dixmier-Douady class
d(B)) is trivial. Using this we demonstrate that for any multipseon T,

Ko(C*(Tg, 0)) ¥ KO(5y) * 72,

and that
Ki(C*(Ty, 0)) = KXZ,) > 2%,

We end the discussion with an interesting conjecture for compact 3-dimensional man-
ifolds which are Eilenberg-Maclane spaces. Th&St¢heoretic results have now been
generalized t@™*-dynamical systems in [Ma].

One of the most outstanding open problems about magnetid&aolger operators
or Hamiltonians on Euclidean space is concerned with the nature of their spectrum, and
is called theTen Martini Problem{TMP) (cf. [Sh]). More precisely, TMP asks whether,
given a multipliero onZ2, there is an associated Hamiltoniae (a Hamiltonian which
commutes with thel{, o) projective action of* on L?(R?)) possessing a Cantor set type
spectrum, in the sense that the intersection of the spectrum of the Hamiltonian with some
compact interval ifR is a Cantor set? One can deduce from the range of the trakg on
of the twisted groug”*-algebras that when the multiplier takes its values in the roots
of unity in U(1) (we say then that it is rational) that such a Hamiltonian cannot exist.
However, in the Euclidean case and for Liouville numbers, the discrete analogue of the
TMP has been been settled in the affirmative by Choi, Elliot and Yui [CEY] (cf. [Sh] for
a historical perspective). In Sect. 9 we are concerned also with the hyperbolic analogue
of the TMP, which we call thden Dry Martini Problem(TDMP). We prove that the
Kadison constant of the twisted grodjy-algebraC (", o) is positive whenever the
multiplier is rational, wherd", is now the fundamental group of a genp&iemann
surface. We then use the results ofiBing and Sunada [BrSu] to deduce that when the
multiplier is rational, the TDMP is answered in the negative, and we leave open the more
difficult irrational case. The calculation of the range of the trace exploits a number of
results including a twisted Kasparov map Grtheory. Finally, we apply our results to
give a complete classification up to isomorphism of the twistéehlgebras”; (I'y, o).

In Sects. 10 and 11 we will identify the character of our Fredholm modules, the “Hall
conductivity”, for both the continuous and discrete models. This charagt@erP, P) =
tr(P dP dP) is shown to arise from Connes’ “area cocycle” and we are able to identify
it with a topological invariant, generalizing the work of Xia [Xia] in the case of the
guantum Hall effect on Euclidean space. We use the pairing betie#reory and
cyclic cohomology [Co], a generalization of the Connes-Moscovici index theorem [CM]
to projectively invariant elliptic operators and the twisted analogue of the Kasparov
map. In fact we obtain a general index theorem which equates the (analytical) index
arising from the Fredholm modules to a topological index. It specialises in the case of
the cyclic cocycler. to give the surprising fact that the hyperbolic “Hall conductivity”
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7.(P, P, P) € 2(g—1)Z. This raises the obvious question of whether a real material with
a hyperbolic crystalline geometry could be manufactured and the genus of the quotient
Riemann surface measured experimentally. To be specific the model we consider here
can be understood most easily in the embedded hyperboloid version of hyperbolic space.
If we use thel™-orbit of a point in the hyperboloid iiR® to represent the crystal lattice
structure of a conducting material then our discrete model corresponds to applying
a magnetic field which is everywhere normal to the hyperboloid. (This captures the
hyperbolic geometry.) Then by regarding the lattice points as the vertices of a graph
whose edges are geodesics corresponding to the generafoesiofnodel Hamiltonian
corresponds to allowing electrons to hop between sites on the lattice along the edges of
the graph. Then our theorem predicts that the conductivity should depend on the genus
of the Riemann surface obtained by quotienting the hyperboloid. by

In Sect. 6 we exhibit a cyclic cocycle which plays the role of the Kubo formula for
higher genus surfaces. It has an intrinsic geometric description as a “symplectic area”
cocycle on the universal cover of the Jacobi variety of the Riemann surface. The novel
feature of the higher genus case (as opposed to genus one which is the Euclidean case)
is that the Kubo cocycle is cohomologous (but not equal) to the cyclic cocycle arising
from the Fredholm module. Given ouft-theoretic interpretation of the latter this is
sufficient to give the anticipated result that the Hall conductivity, as defined through the
Kubo cocycle, is integral and depends on the genus.

We conclude by showing how our formalism links with the non-commutative Rie-
mann surface theory described in [Klim+Les1, Klim+Les2].

2. The Geometry of the Hyperbolic Plane

The upper half-plane can be mapped by the Cayley transferr(d —i) /(¢ +7) to the unit
discD equipped with the metrilz|?/(1—|z|?)? and symplectic formz dz /2i(1—|z|?)?,

on whichSU(1, 1) acts, and some calculations are more easily done in that setting. In
order to preserve flexibility we shall work more abstractly with a Lie gréupcting
transitively on a spac® ~ G/K. Although we shall ultimately be interested in the case
of G = SL(2,R) or SU(1, 1), andK the maximal compact subgroup which stabilises

¢ =i orz =0, those details will play little role in many of our calculations, though we
shall need to assume th&thas aG-invariant Riemannian metric and symplectic form
wy. We shall denote by a discrete subgroup @¥ which acts freely onX and hence
intersectsk trivially.

We shall assume that is a hermitian line bundle oveX, with a connectiony, or
equivalently, for each pair of points andz in X, we denote byr(z, w) the parallel
transport operator along the geodesic fiégmto L. InH with the line bundle trivialised
andn = 0dz/y one can calculate explicitly that

w

(2, w) = exp<i/ n) =[(z — @) /(w — 2)]°.
For general) we haven — 8dx/y = d¢ and
7(z,w) = exp( / ) = [(z —w)/(w — 2)]° exp(6(2) — ¢(w))).

Parallel transport round a geodesic triangle with vertices v, gives rise to a holonomy
factor:
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w(v,w, z) = 7(v, 2)717_(% w)T(w, 2),

and this is clearly the same for any other choice)oo we may as well work in the
general case.

Lemma 1. The holonomy can be written as(v,w, z) = exp(if [, wn), where A
denotes the geodesic triangle with vertiees) andv. The holonomy is invariant under
the action ofG, that isw(v, w, 2) = w(gv, gw, gz), and under cyclic permutations of
its arguments. Transposition of any two vertices invert$or any four points: ,v, w,
zin X one has

w(u, v, w)w(u, w, z) = w(u, v, 2)w(v, w, 2).

Proof. By definition, for a suitable trivialisation of one has

w(v,w, z) = exp(z’/ 77) ,
OA

and the first part follows by applying Stokes’ Theorem after noting that the result is
independent of the trivialisation. The invariance un@dollows from the invariance of

the symplectic form, and the results of permutations follow from the properties of the
integral, as does the final identity. [

3. The Twisted Algebra of Kernels

The geometrical data described in the last section enables us to easily describe the first of
the twoC*-algebras which appear in the theory. This twisted algebra of kernels, which
was introduced by Connes [Co2] is thé&-algebral3 generated by compactly supported
smooth functions otk x X with the multiplication

ka # oz, w) = / k(. )ka(v, w)e (2, w, ) do,
X

(where dv denotes the&-invariant measure defined by the metric) aidz, w) =
k(w, z). There is an obvious trace dh given by (k) = fx k(z, z) dz. The algebra
of twisted kernels is the extension of th&-algebra of the principal groupoid x X
defined by the cocycle{(w), (w, 2)) — w(v, w, 2), [Renl].

Lemma 2. The algebra3 has a representation on the space af? sections of. defined
by
B = [ ke ) i) du.

Proof. The parallel transport(z, w) ensures that the integral is in the appropriate fibre,
and the fact that it is a representation follows from a calculation using the definition of
the holonomy. O

Before describing the second algebra we need to link the geometrical data more
directly to the groug=. To do this we fix a basepointe X and introduce the function
¢ from X x G to line bundle automorphisms defined by

1

3z, 9) = w(u, g~ u, g 2)r(u, 2) " r(u, g 1)

(The ratio of parallel transports defines an operator from the figre, to L. .)
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Lemma 3. The functiony satisfies

¢z, 2)p(a 1z, y) = wlu,y~tu,y~ e u)d(z, ay)
Oz, 2)7(x "2, 27 w) = 7(2, w)(w, z).
Proof. By definition we have
1

7127 (u, 2) 7t
1 1 )

Oz, 2)pla 1z, y) = wlu, o~ u, 2 2)w(u, y Hu,y”
m(w, 2 12)m(u, 27 2) " (u, y
w(u, z " u, 27 2)w(u, y~tu, y e lz)

= ¢(z, vy).

w(u, y~lz—tu, y—lr—12)

Tz

Now by Lemma 2.1,

w(u, z  u, 27 2)w(u, y~tu, y e 1z)
=w(y tu,y”

= w(u,y z u, Y

Lo tu, gy e ) w(u, y e, y e )
1 1

1) w(u, ytu, y e ),

from which the first result follows. For the second result we note (compressing the
notation) that

Ttz 27 w)p(z, ) w(u,z"tu, 27 t2) @iz, o lw)r(u, 27 12)  T(u, w)
o(w, ) w(u, = u, x~1w) 7(u, 2) 7(u, 2~ 1w)

o, v, 2o, vy o ) T(u, 2 tw) T (u, w)
w(u, v u, x~1w) T(u,2) 7T(u,z7w)
7(u, w
= w(z tu, 271z, 27 w) (u, w)
m(u, z)
7(u, w
= w(u, 2, w) (u, w) = 7(z,w).
7(u, z)

O
The most important aspect of the first result is that
a(@,y) = ¢z, 2y)/ (2, 2)p(x " 2,y) = wlu, y~tu,y e )™t = wlu, wu, wyu)

is independent of. (We note also that(g, 1) = o(1, g) = o(g, g~ 1) = 1. Although these
normalisations do not seriously affect matters they can sometimes be used to simplify
formulae.)

Lemma 4. The functiors : G x G — T satisfies the cocycle identity,
o(z,y)o(zy, 9) = oz, yg9)a(y, 9)-
Proof. This is a simple calculation along the lines of those above.[]

This result means that defines a projective multiplier or group 2-cocycle far
moreover, it is clearly continuous and identically 1 when restricte@ to K and to
K x G.
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Lemma 5. The group G has a natural unitag-representatiort/ on theL? sections of

L defined by
U(9)1(2) = ¢z, 9)v(g~*2).
Proof. This follows immediately from Lemma 3.4. O
This projective representation induces an actiotr@s automorphisms @.

Lemma 6. For anyg € G andk € B we havel (¢)m(k)U(g9)~* = n(g.k), where
9-k(z,w) = k(g™*2, g7 w).

Proof. By direct calculation and use of Lemma 3.2,

U(g)r(k)U(9) ")(2)= / oz, k(g™ 2, g w)T(9 12, g w)d(w, g) Mp(g ™ tw) dw

= [kg g 0wty ) du
from which the result follows. O

The second part of Lemma 3.2 can now be interpreted as saying that the parallel
transportr behaves covariantly undéi(g), that is conjugation b¥/(¢) sends(z, w) to
(9712, g~ w). Takingw = exp(-tX)z and considering the limit as— 0 we obtain
the following result:

Corollary 1. Theo-representatioi/ and connectiolVV are related byl/ (q) VU (g) "1 =
g.V, whereg.V denotes the natural action ¢t on forms.

4. Various C*-Algebras

4.1. The imprimitivity algebraThe o-representatio®/ defined in the previous section

is clearly equivalent to one induced froraraepresentation,, of the isotropy subgroup

K. Such representations are characterised by the fact that they also admit an action
of the imprimitivity algebra. In general this can be defined as one of Green’s twisted
crossed product Calgebras [Green], but in the case of a continuous multipligrere

is a simpler direct construction. The imprimitivity algebsd,= A(G, K, o), onG/K

is a completion of the algebrd, = C.(G/ K, G) with multiplication

(a* B)(s,9) =/ a(s, 2)B(z " s, g)o(x, 2 tg) " da
el

and involution

a*(s,9) = (g, Nalg~1s,g7Y).
(With the conventions of the last sectiofig, g—*) = 1 and could be omitted.) These
formulae use the unimodularity @ and the existence of &-invariant measure on

G/ K, otherwise some Radon-Nikodym derivatives would be needed.
The algebra has a trace

trA(a)=/G/K a(s,1)ds.
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More details may be found in [Green], where it is also shown (&, K, o) is Morita
equivalent taC* (K, o) ® K(L?(G/ K)), whereC* (K, o) denotes the twisted group*-
algebra. Like the imprimitivity algebra is a groupoid algebra (being an extension by
of the algebra of the transformation groupoid oacting onX’) and most of this paper
could be understood in the context of groupoids, [Ren1].

The algebraB could have been derived frotd as a quotient, as we shall now
show. Letl. be ac-representation of{ on a Hilbert spacé{;. (Since the multiplier
of the last section is 1 whenever either of its arguments is jone could takd. = 1,
but the argument works more generally.) For edcthe imprimitivity algebra has a
natural«-representation on the induced representation spakg efalued functions on
G satisfying the equivariance condition

W(gk) = (g, k)~ L(k)*(9)
for all g € G andk € K. This representation is given by

(a.'gb)(z)=/Ga(zK,x)U(x,m*lz)*lw(x*lz)dm

(It may be checked that.) satisfies the same equivariance conditioygsThe group
G has an induced-representation on this function space given by

Ug)e(z) = (g, 9~ 2) (g™ *2).

The imprimitivity algebra incorporates both this action and the multiplication operators,
and so permits the description of quantum mechanical momentum and position operators
on G/ K. The group action allows for the free Hamiltoniéﬂ.\], whilst the functions
on X = G/K make it possible to add an extra potential,

For an appropriate choice df, U is equivalent to the representation in the last
section. Indeed we may identify the equivariant functiong:omith sections of the line
bundle£ and then we have, in the previous notation,

(a.w)(z)Z/Ga(zK,x)qS(zK,x)z/}(x*lz) dx.

In this form we may easily see the connection to the algghoatwisted kernels.
Lemma 7. There is ax-homomorphisna — T, defined by

w) = / a(z, 2)¢(z, ) a:)

TG S(w, z712) dx

from A onto B (whered just restricts the integration to thosesatisfyingw = z~12).
Proof. We calculate that

(To * Tp)(z, w)
:/Ta(z,v)Tﬁ(v,w)m
Pz, 2)p(v, 2 y)

7(z, w)

¢z, 2)p(z 2, 2~ Yy)

7(z, w)

/a(z z)B(v, ™ 1y) S, 27 12)6(w, y~tez) dx dy dv

= /a(z,x)ﬁ(m_lz,x_ly) S(v, 27 12)0(w, y~1z) da dy dv
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#(z,y)

oz, 27 1y)7(z,w)

= /a(z,x)ﬁ(x_lz,x_ly) S(v, 27 12)0(w, y~12) da dy dv

?(2,y)
7(z, w)

which proves the homomorphism property. It follows similarly that itistomomorph-
ism.
To see that it is surjective we note that if the Haar measur& ésnormalised then

= / (0% B) ) 2 s,y 12y dy = Tos(zw),

7(z, 27 1%)

(2, x)

provides an inverse. (The key is to note thaf(if)u = z andg(w)u = w thenw = 21z
forcesz to have the forny(z)kg(w) ! for somek € K.) |

a(z, ) = Ta(z, z712)

This may be interpreted as saying tlfais a quotient of4, and this means that the
behaviour of the two algebras is very similar. For this reason we shall often merely show
the constructions in the case of one and leave it as an exercise to fill in the details for the
other. However, it will be useful to note thBthas a natural trace

tr(T) = / T(z,2)d=.
X
4.2. The regular representatiohe trace gives rise to an inner product
(o, B) =tra(a” « B) = a(s,2)B(s,r)ds dx

G/KxG

on Ay, and completion with respect to this gives rise to a Hilbert spéagen which.4g

is represented by left multiplication. Since the action is continuous this extends to give
the left regular representation gf. This is given by the same formula as the algebra
multiplication. That is, for € H 4, one has

(a.1/;)(s,g)=/ afs, 2)(x s, 27 Lg)o(x, 27 g) "L du.
G

There is also a-representation aff on’H 4, obtained by sending € G to the function
(s,2) = d4(x).

For any unitary charactgrof K, one may define a generalized regular representation
on the spacéi’; of functionsy € C.(G x G) which satisfy the condition

Y(zk, g) = x(k)(z, 9)-

Sincel|y(zk, g)|? is independent of, we may use the same inner product as before, and
it is easy to check that the action

(a.w)(z,g):/ a(zK, o)z, 27 g)o(x, 27 1g) L dx
G

respects the equivariance condition. When 1 we obtain the regular representation.
We could similarly define the regular representatiolSaind also a generalization
defined by
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(TV)(z,w) = / T(K,v)¥(v, w)dv
X
on the space of kernets on G x G which satisfyW(zk1, wkz) = x(k2)¥(z, w).

4.3. Thel-invariant imprimitivity algebra. Let I' be another subgroup @¥, and let

A" denote the part of the imprimitivity algebra which commutes with the induced
representation of. This is readily seen to consist of those functiens A(G, K, o)
which satisfy the condition.a = o, where

(v-a)(s,9) = a(g, Mo (v, 79N ey s, g7)
for all v € T". To see this we note that

1

0y % a)(s,9) = o(v,7 ")y ts, v Hg),

which is identical to

s, 1g).

(v-ax6,)(s,9) = olgy 1) yals, v ) = (v, 7 g) taly”

Wheng = 1 the conditiony.a(s, g) = a(s, g) reduces tax(y s, 1) = a(s, 1) so that
one obtains a trace

tr r(a) = a(s,1)ds.
NG/K
(More generally, tha -invariant functions are determined by their values at a single
points of eachl” orbit onG/K.) Using tr,r one may define a regular representation of
AT,

In the case of the twisted kernel algebra one may likewise pick Btitaariant sub-
algebraB’, which commutes witli/ () for all ¥ € T'. Using Lemma 3.2 this condition
reduces simply to the requirement that the kernel satigfies'z, v~ tw) = k(z, w).

The natural trace g for this algebra is given by the same formula as before except that
the integration is over a fundamental dom&ip rather thanX':

TBr(T)=/X T(z,2)dz.

4.4. Morita equivalencelLater we shall need som&-theory, and so it will be useful

to show that the algebr&" is Morita equivalent to another more tractable algebra. We
shall do this by using the groupoid equivalence arguments of [M+R+W], or rather the
twisted version, [Ren2, Ren3]. We have already noted k& an extension of the
groupoidX x X by a cocycle defined by, andI™ invariance ofw means that3' is
likewise the extension o xr X by w, whereX xr X denotes the groupoid obtained

by factoring out the diagonal action bf More precisely, the groupoid elements are
orbits @, y)r = {(yz,vy) : v € T'}, and €1, y1)r and @2, y2)r are composable if and
only if y; = vz, for somey € T, and then the composition is4, vy2)r.

Theorem 1. The algebra3! is Morita equivalent to the twisted group algelt4(I", 7).

Proof. This result will follow immediately from [Ren2], Corollaire 5.4 (cf. [M+R+W]
Theorem 2.8) once we have established the groupoid equivalence in the following lemma.
O
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Lemma 8. The line bundleC over X provides an equivalence (in the sense of [Ren2]
Definition 5.3) between the groupoid extensi@isxr X)® of X xr X defined byw
andI'? of " defined bys.

Proof. Both extensions are b¥. We write the elements ofX xr X)® as triples
(z,y,t) € X x X x T with the first two elements representing a diagdnarbit. Ele-
ments are composable if their first two components are composable, and;when:,,

(z1, y1, ta)(w2, y2, t2) = (z1, VY2, trtow (1, y1, 7Y2))-

The line bundle can be trivialised and written &Esx C. We let (X xr X)% act
on the left of the line bundle by defining (y, t) to act on ¢, u) if z = vy for some
~ € T, and then the result of the action g, 7(vz, z)tw). (One may check that this
gives an action using the relationship between parallel transport and holonomy and the
[-invariance ofw.)

The twisted groupoid™ has an underlying s&t x T, all elements are composable,
and multiplication is given by

(8, 8)(7, 1) = (B, (B, 7)st).
It acts on the right o by

(z,u).(7: 1) = (v 2, 0z, 7) ).

(The fact that this defines an action follows from the definition @fi terms ofg.) We
may now check that these actions commute, sincezif3y,

[(x.y, )z w)](y, 8) = Bz, 7(Bz, 2)tu)(v, 8) = (v Bar, ¢(Ba, 7) 7 (Bar, 2)tus),

whilst
(@, y, )z, W), )] = (2,5, ) (2, 32, 7) " tus)

= (v B, Ty B, TPz, 7)),
and the equality of these two follows from the second part of Lemma 3.2.

Remarks.We will observe in Sect. 9 that the algelsra(T", 7) is isomorphic taC*(T", o)

which inturnis known to be isomorphic to the imprimitivity algebradeinducing from
'toC*(G, o). This latter algebra, denotéd (G/T, G) is the completion of.(G /T, G)

where the latter has a multiplication analogous to that described abowg(fay K, G)
(simply replace by I' in the earlier discussion). Thus a corollary of our results in this
subsection is thas! is Morita equivalent ta”*(G/T', G). Furthermore our discussion
below of a Fredholm module faB" may be modified so as to produce a Fredholm
module forC*(G/T, G) whose character, fa& = SO(n, 1), is also given by the area
cocycle. We omit the details here as they would take us too far afield (see however the
analogous discussion in the discrete case in [C02]).

4.5. The HamiltonianWe have asserted informally that the Hamiltonian can be accom-
modated within the algebra4" and3" and we shall now provide the proof. We work
with the smaller algebr&", the results ford" following similarly.

Lemma 9. The HamiltonianH = %V*.V commutes with the projective representation
U.
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Proof. We recall from Corollary 3.6 thdt (9)VU(g) ! = ¢.V, so that

U@HUG) = 3(0.9)"(0.9),

and, since the Riemannian structure is invariant under the acti6h tifis is justH.
O

We could also obtain the same result by writifig= §J.J + 7 B? (for some constant
B) and using the fact that the Casimir operator commutes with the representation, pro-
vided that we check thaf; are the representatives of the Lie algebra generators in the
representatiol/. Using the invariance off it is now not difficult to see the following
result:

Lemma 10. The HamiltonianH is affiliated to the von Neumann algebra generated by
the representatiom of B.

Since H is G-invariant and sa fortiori alsoI'-invariant, it is sufficient to look at
Br.

Corollary 2. The HamiltonianH is affiliated to the von Neumann algebra generated
by the representation of 3.

We next observe that Bning and Sunada have proved an estimate on the Schwartz
kernel of exp{-tH) for t > 0, which implies that it isL* in each variable separately.
Since this kernel i§-invariant (by Lemma 7.1) it follows (in exactly the same fashion as
Lemma 4 of [BrSu]) that this estimate implies that expld) is actually in the algebra

Br.

Lemma 11. The operatoe—* is an element oB".

Corollary 3. The spectral projections dff corresponding to gaps in the spectrum lie
in BT,

Proof. If 1 lies in a gap of the spectrum @f then letf be a continuous approximate
step function which is identically one on the part of the spectruni/ afontained in
[0, 1] and zero on the part contained jm po). Defineg(x) = f oIn(1/x) for z € [0, 1].
Theng is a bounded continuous function which, when appliedtd’ gives the spectral
projection corresponding to the interval [g. d

Finally we consider the interacting Hamiltoni&h + V', whereV” is aI'-invariant
function onX . Notice thatif,) is a continuous function of compact support 3h X ) /T
thenV4 is also such a function and hence defines an element in the groupoid algebra.
Now, by Lemma 11, the resolvent &f lies in B" and by writing

(z—H-V)'=(1-(z-H) V) (z-H),
and expanding (& (z — H)~'V)~ in a power series, we see that the resolvent of

H +V isinthe algebra3". This entails, by a simple modification of Corollary 3, that
the spectral projections df + V corresponding to a gap in the spectrum also li8fn
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5. The Discrete Model

In this section we formulate a version of the integer quantum Hall effect on a graph in
hyperbolic space. The discussion uses a construction due to Sunada [Sun] together with
a modification of Connes’ work on Fredholm modules for the gr6tfpalgebra of a
discrete subgroup of a Lie group [C02].

The graph is obtained by taking our grolipthe fundamental group of a Riemann
surface, which acts freely on hyperbolic space, fixing a base p@nt taking the orbit
throughw under thel™ action. This gives the vertices of the graph. The edges of the
graph are geodesics constructed as follows. Each element of the group may be written
as a word of minimal length in theggyenerators and their inverses. Each generator and
its inverse determines a unique geodesic emanating from a veeed these form the
edges of the graph. Thus each werth the generators determines a piecewise geodesic
path fromu to z.

Sunada constructs a Hamiltonian@(I".«) which is a generalized Harper operator.
This construction, specialised to our case, has the following form. First we note that
we may trivialise the restriction of the line bundle to the vertices and so without loss of
generality the appropriate Hilbert space becofés.«). While the construction works
for any connection 1-formd on a line bundlel, over hyperbolic space we make the
formulae explicit by restricting to the case whetés the one fornm. For each directed
edgee of the graph joining(e) to t(e) we define a function(e) = exp( |, 7). Then
7(e) satisfies

_ co(e) +d\? sct(e) +d\?
T(’y'e)_T(e)(co(e)+d) (C@"‘d) )
_(a b . .
wherey = (C d) .We introduce the notation
cw+d\°
s7(w) = (cw +d) '

Remarks 2.Note that in our earlier notation these definitions amount to

7(e) = 7(t(e), o(e)),
while the function fromI' x H to U(1) given by €, w) — s,(w) is a projective 1-

cocycle for thd™ action onH which is cohomologous to the function mapping¢) —
o(v-w,7).

Consequently there is a projective actioriodn ¢2(I".u) given onf € (3(I".u) by

P f () = 5, (7 w) f (7 ).

We have

5’71’72(72_1,71_13:) ﬁ ﬁ
5, (71 )5, (0 My )
and Sunada shows that the function multiplyingp-, is independent of. This is exactly
the relation found at the end of Lemma 3: the correspondence is givelizby) <

s.(x~12). To obtain an explicit expression for this function, 4gt = 172, and write
() = (OC“ ZZ> for i = 1,2, 3. Then a direct calculation shows that
1 1

Pyive =

ﬁ’Yl’Yz = U(’yla ,72)5“/1ﬁ’727
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whereo is given by
o(y1,72) = exp(26(arg (5w + ds) — arg c2(Y2w) + d1) — arg (caw + dz))).

It is not difficult to see that the right hand side is independent of the choice of
Following [Sun], we define our discrete Hamiltonian, foe ¢3(I'".w), by

hefw) =Y 7(e)f(t(e)).

o(e)=w
Thenh, is a generalized difference operator (Sunada shows that the Harper operator
arises in a similar fashion). One can verify by direct calculation thatommutes with
the projective action df'. This will, however, become readily apparent when we transfer
this construction t@?(I"). Define. : ¢3(I".u) — ¢3(T") by:

UNO) = pN S (w).

Observe that
Up() H)(Y) = oy, (v w)-

Thus. intertwinesp with the o-representation:

p)U()() = o (v, () (vm).
Henceforth we useto identify ¢2(I".«) with £2(I").

Proposition 1. [Sun] The operatorh, on ¢2(I".u) maps to the operatofl, on ¢?(I")
under:, where
Hef(y) =Y o(p, ™) alw) f(u™)

perlr
anda is the function o” given by

a(3) = 5,(u) 3 7).

8
Corollary 4. The bounded self-adjoint operatéf.. is in the algebraic twisted group
algebraC(T", o) (the elements of finite support@i*(T", )) as the functior has finite
support. Moreovel ;. acts on the left as an element of this algebra and so commutes
with theo-representatiorp, as the latter acts on the right.

6. A Kubo Formula

6.1. Conductivity cocyclesln this subsection we present an argument which derives
analogues of the Kubo formula for the hyperbolic “Hall conductivity”. In Subsection 7.2
we show how to construct, from the results of this subsection, a unique cocycle which
may be compared with the character of the Fredholm module of Sect. 7.

Our reasoning here is that the Hall conductivity in the Euclidean situation is mea-
sured experimentally by determining the equilibrium ratio of the current in the direction
of the applied electric field to the Hall voltage, which is the potential difference in the
orthogonal direction. To calculate this mathematically we instead determine the compo-
nent of the induced current that is orthogonal to the applied potential. The conductivity
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can then be obtained by dividing this quantity by the magnitude of the applied field. In
the hyperbolic case it would seem at first sight that there are no preferred directions.
However interpreting the generators of the fundamental group as geodesics on hyper-
bolic space gives a family of preferred directions emanating from the base point. For
each pair of directions it is therefore natural to imitate the procedure of the Euclidean
case and mathematically this is done as follows.

The HamiltonianH in a magnetic field depends on the magnetic vector potehtial
and the functional derivatiug, H of H with respect to the componentsffdenotedd;,,,
gives the current density,. (For simplicity we take variations within a one-parameter
family.) The expected value of the current in a state described by a projection operator
Pistherefore trPo, H) (cf [Av+S+Y ] Eq. (3.2)). The following claim is not proved by
a rigorous argument: one needs to check various analytical details as in [Xia]. We have
refrained from doing so here as this would take us too far afield from the main point,
namely, obtaining a sensible hyperbolic Kubo formula which may be compared with the
character of the Fredholm module constructed in the next section. For the moment tr will
denote a generic trace. We will become specific after extracting a rigorous definition of
the Kubo formulaClaim.

tr(Péx H) = itr(P[0: P, 01, P)).
Plausibility argumentBy using the invariance of the trace under the adjoint action of

operators and the equation of motion we see that
tr(P[0, P, 6, P]) = —tr([P, 6, P10, P)
= —itr([P, 0x P][ P, H])
=itr([P, [P, 6x P]] H).
Now 6, P = 6,(P?) = P(6;, P) + (0, P) P, whenceP (5, P)P = 0 and we have
[P, [P, 0x Pl = P(P(6x.P) — (6x P)P) — (P(.P) — (6 P)P) P
= P((SkP) + ((SkP)P =6, P.
Consequently we may write
tr(P[O: P, 0. P)) = itr((0x P)H) = itr (6, (P H)) — itr(P(6x H)),

and, assuming that the trace is invariant under variatiodgfthe first term vanishes
leaving the result asserted.

Ifthe onlyt-dependence iff andP is due to the variation ol ;, a component distinct
from Ay, thend, = 0A; /0t x §;. Working in the Landau gauge so that the electrostatic
potential vanishes, the electric field is given By= —0A/0t, and so0; = —E;J;.
Combining this with the previous argument we arrive at the following result:

Corollary 5. The conductivity for currents in thedirection induced by electric fields
in the j direction is given by-itr(P[0; P, §; P]).

Proof. The expectation of the curreti}; is given by
tr(PoRH) = itr(P[O.P, 01, P]) = —iE;tr(P[6; P, 01 P),

from which the result follows immediately. O
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6.2. The derivations on a Riemann surfac®n a Riemann surface it is natural to
investigate changes in the potential corresponding to adding multiples of the real and
imaginary parts of holomorphic 1-forms. (For the genus 1 torus with imaginary period
this amounts to choosing forms whose integral round one sort of cycle vanishes but the
integral round the other cycle is non-trivial. This corresponds to putting a non-trivial
voltage across one cycle and measuring a current round the other.)

LetX, = H/T be the Riemann surface determined by quotienting.bye follow the
usual conventions (see for example [GH]) in fixing representative homology generators
corresponding to cycled;, B;,j = 1,2,..., g with each paird;, B; intersecting in
a common base point and all other intersection numbers being zero. \Wg, jet
1,2,...,2g be harmonic 1-forms dual to this homology basis (this meansathat=
1,...,gare dual to4;,j = 1,...,g andaj+g,j = 1,2,...,¢ are dual toB;,j =
1,2,...,9).

Definition. Let

0;7(z,w) = i/z o 7(z, w)

w

and

Sjw(u, g~ u, g™ 12) = Z/ ajw(u, g tu, g~ 1z)

OA
whereA is a triangle with vertices at the three argumentsaf

One then calculates that

85;d(z,9) =i </a aj — /: aj +/uglz %‘) ¢(z, 9)

A
g—l 1

:Z</u uaj+/ggluzaj/:aj> #(z, g)-

This can also be written as ;
’L/ aj — Z/ aj,
oQ g1z

where(@ denotes the geodesic quadrilateral with vertices,at 'u, g~z andz. By
Stokes’ Theorem the first integral can also be writteﬁ@daj, and this vanishes as we

chosen; to be the harmonic representative of its class, leaving just

z
—1 / (Ij.
g1z

Using this last equation in the formula for the action of the imprimitivity algebra
(preceding Lemma 7) we see that we have a densely defined derivation on the alyebras
andB because the action can now be written as the commutatonith multiplication
by the function2;(z) =i [ a;:

5ja = [Qj, Oé].
Suppose that is a kernebdecaying rapidlyBy this we mean that it satisfies an estimate

la(z, y)| < p(d(z,y)),
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wherey is a positive and rapidly decreasing function BnWe claim thatd;« lies
in A or B respectively: this follows by noting that the map frdfinto R%9 given by
2z = (Q(2),...,Q04(2)) is the lift to H of the Jacobi map, [GH] (this map is
usually regarded as mapping froly, to the Jacobi variety/(X;), however we are
thinking of it as a map between the universal covers of these spaces)=Noglobally
Lipschitz and this means we may estimate the kerneknf §]. A simple argument
shows that it also decays rapidly.

That this commutator also has the correct properties to define a derivatiéh on
BT follows from the fact that fory € T,

Q;(y.2) = 2;(2)

is constant independent efso thatl" equivariance or invariance is preserved. In the
case of the torus thought of as a rectangB4rwith opposite edges identified, one may
takea; +ia = dz, and then

(0; +i0k)a = i[z — u, a].

Thus our argument reproduces the standard Kubo formula [Xia] in the Euclidean case.
Notice that our magE from H to R? gives the period lattice ifR?9 (that is the

lattice determined by the periods of the harmonic forrysto be the standard integer

lattice Z29 so thatJ(¥,) = R%9 /729, We may summarize the previous discussion as

Lemma 12. ForoperatorsAyg, A, A, in BT whose integral kernels are rapidly decaying
we have cyclic cocycles defined by

cj k(Ao A1, Az) = trgr(Ao[d; A1, 6, A2]) = trgr(Ao[Q;, A1][ 2, A2])
forj,k=1,...,2g.

Each of these formulae far;;, could in principle be regarded as giving a Kubo
formula so that we appear to have an embarrassment of riches. However each on their
own cannot be related to the Chern character of the Fredholm module of the next section.
A clue as to what is happening is provided by noting that each two tgrma;., is
harmonic and hence is a multiple of the area two formXgn thus there is certainly
some degeneracy here and we resolve it at the end of the next section.

7. A Fredholm Module

We shall now assume thaf has a spin structure, and we wrigefor the spin bundle.
The representation oft” can then be extended to an action®f} ® S as in Sect.
4.2. This module can be equipped with Fredholm structure by taKing be Clifford
multiplication by a suitable unit vector (to be explained below), and using the product of
the trace or’ and the graded trace on the Clifford algebrac(tfenotes the grading
operator on the spinors then the graded trace is just the compositiar) tr

The same module can also be described more explicitly: it splitstfifax S* @
HY ® S~ (with the superscripted sign indicating the eigenvalue)pnd this may be

written asHi{ S3) H?j. The involutionF' is then a matrix multiplication operator of the

form 0
- 1
F‘(ﬁO)’
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with (f;.9)(z,9) = fi(2, 9)¥ (2, g) for some suitable functiong; € C.(G x G), sat-
isfying f1 = f, *. For consistency, we require that for afiye H%, f1.4 € H%.

Since
(f10)(zk, 9) = f1(zk, 9)(2k, g) = 01(F) f1(zk, 9)¥ (2, 9),
we demand that, (k) f1(z, g) = 01(k) f1(zk, g), or

fi(zk, g) = (07 102)(k) f(2, 9),

and@l_laz is known directly from the structure &f. (WhenX is the hyperbolic plane
it is the complex character describing the actiorxobn the complex tangent space to
X atu.) A short calculation shows that

a(zK, a)p(a"tz, 27 1g)

ool

(. 0l 0)(z. ) = /G (2 9) — f(e 20 2g))

We observe in the next subsection that this module is 2-summable at least for kernels
which decay sufficiently rapidly. Assuming this fact then it follows that£([ f;, o] *

[f&, B])-¥)(2, g) is given by
/G e (fiz™ 2,27 ) = w20 9) (Fely 2,07 tg) — frlu ™z, utg))
wizK, x)a(z 2K, 2 y) By 12 K,y u)

o(z, z7tg)o(x= 1y, y~tg)o(y—1u, u1lg)

From this (and using tr to denote the usual trace on operators on our module) we can
calculate the cyclic cocycle od as

Tc(w7aa6) = tr[ew* [F,Oé] * [F7ﬂ]] :tr[w*([flva] * [f27ﬁ] - [fzaa] * [flaﬁ])]7

which can be expressed as

Y(utz,u"tg) da dy du.

w(zK, )a(z 2K, 2~ ) By 12K,y )
P(zK, z,y) — =
G/KXxGXG o(z,zty)o(y,y=1)

where

(2K, 2,y) = /G (2,279 — AW 2,07 ) (f2(u 2,97 9) — fa(z, 9))

dzK dz dy,

— (fala™ 2,27 %) — faly 2,57 "9) (frly 2.y Yg) — fulz,9)) dg.

(Using the equivariance of; it is easy to check that this depends oonly through
zK.) Simplifying and usingf f> = 1, the integrand reduces to

(fulz, ) fo(z ™ 2,27 g) + fu(z ™ 2,27 2g) faly 2,y tg) + iy iz, v 9) fal2, 9))

—(folz, ) fala ™z a7 )+ fala ™ 2, 2 ) faly Y2y tg) + faly T2y M) falz, 9)) -
This can also be written more compactly as
1 1 1

f1(z,9) fi@z,27Y) fily~tz, 7 9) |,
fo(2,9) fo(x™ 2,27 1g) faly=tz,y7tg)
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or as
(11— Al 227 ) f2(z, )AL — faly Y2,y M) fa(z ™ 2,27 hg))
(1 — Az 9) 20y 2,97 29)),

which also arises naturally from an alternative expression for the cocycle.

Suppose thap is aU(1) valued function on the group, which satisfie@gh) =
x1(k)e(g9)x2(h) for k andh in K and somer-charactersg; andy. of K. If x7 " x2 =
9{102, we may takefi(z,9) = ¢(z1gz) to obtain a function satisfying our earlier
consistency condition.

In the case ofy = SU(1, 1) andK the diagonal subgroup, we may take the function
o used by Connes [Co2], which is essentially the Mishchenko element. With the group
elements all conjugated hyit now follows as in [Co] thatb(z K, x, y) /4wi is the area
of the hyperbolic geodesic triangle with vertiegs: ~yz.u andz~1zz.u. Acting with
z and recalling that, since is stabilised byK, z.u can be identified withs = 2K,
(2K, x,y)/4mi is also the area of the geodesic triangle with verticess andz.s.

In the next subsection we will see that the module is 2-summable for suitably de-
caying kernels. Sincé; (v 1z, 7 1gv) = p(z "y tgvy 1) = f5(2, 9), F preserves
the I'-invariant subspace, so that there is a similar expression for a cyclic cagycle
in that case, except thatis integrated only over thE orbits inG /K. More precisely,
using ti- to denote this restricted range of integration, one has:

Theorem 3. There is a 2-summable Fredholm mod@e HX ® S) over a dense sub-
algebra A{ of A", stable under the holomorphic functional calculus, whose Chern
character is given by the area cocycle B That is, in the notation above, one has

T(;,I‘(Wa Q, ﬁ)

= —trr[ew « [Fa] « [F, B]] = —trr [w * ([f1, o] = [f2, 8] — [f2, 0] = [f1. 8],
which can be expressed as

K -1 K -1 -1 K -1
g B . 00 1 ¥ . Ut i
MG/KxGxG o(z,z~y)o(y,y=1)

where® is given as above. Therefore by the index pairing in [Co2], one has

dzK dx dy,

index(PF P) = ([7.r],[P]),

whereP denotes a projection s} andindex(P F' P) denotes the index of the Fredholm
operator PF'P acting on the Hilbert spac®HX ® S.

We will prove Theorem 3 in the next subsection. The version of Theorem 3 which
applies toB' is as follows:

Theorem 4. There is a dense subalgebf of B' stable under the holomorphic func-
tional calculus and a 2-summable Fredholm mod{fieHX ® S) for By with corre-
sponding cyclic 2-cocycle

TC,F(TL«)7 Tou Tﬁ)

=- / (2, z, y)w(z, z, y)Tu(z, 2)Talz, y)Tp(y, 2) dz dx dy.
XrxXxX
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The character of this Fredholm module, fBra projection in53}, is given in the notation
of Corollary 12 of Sect. 10, by

index(PFP) = 2(g — 1)(rank £° — rank £Y) € Z,

whereindex(P F' P) again denotes the index of the Fredholm operdtdr P acting on
the Hilbert spacePHX ® S.

This theorem can be interpreted adrsohex theorenequating an analytic index with
a topological index. Theorem 4 may be used to obtain the following result:

Corollary 6. Let P be a projection into a gap in the spectrum of the Hamiltonian
H, v. ThenP lies in a 2-summable dense subalgeB{pof B", so that in the notation
of Corollary 12 of Sect. 10 one has
index(PFP) = (rc,r, [P])
=2(g — 1)(rank % — rank &Y € Z.
The statements referring to Sect. 10 will be clear after we establish there the hyper-
bolic analogues of Xia’s results [Xia]. The proof of the claim that the spectral projections

(corresponding to gaps in the spectrum) of the Hamiltonian li8irand the proof of
Theorem 3 are contained in the next subsection.

7.1. Proof of summability of the Fredholm moduldere we discuss the technicalities
needed for the proof of Theorem 3 and of Corollary 6. It is easy to calculate from the
formulae in the previous section that 2-summability requires finiteness of the expression
trr([ f1, a]*[ f2, a]), which equals

/ iz 9) — ez, 2g)]
XrxGxG

[f2(2, 9) — falz™t2, 27 g)l|a(z ™ 2, 27 1)|? dz du dg,

wherez € Xr, a fundamental domain [ for theI" action. Lettingp : G/K — G be
a cross section and using the formulae foand f> this reduces to

/ o(p(2) 192) — p(p(2) gr12) P |ala 2, 2P dz dar dg.
XrxGxG

We are more interested in the algebra of twisted kernels as in Theorem 4, so we will
present the argument for them noting that the relatiorfor terms ofT,, as given in
the proof of Lemma 7 gives, by the the unitarity-oénd,

(@™ 2,27 = [Ta(a™z, 2)

Thus the summability result fas" implies that forA".
Making this substitution we then get for our integral

/ o()292) — () "tz )2 T (w2, )2 dz da dy.
XrxGxG

Finally we note that setting(z) g = v=! andz—1z = w it is clear thatjp(v—12) —
o(v~1w)| depends only on the coset& andw K, allowing us to reduce the integral to



650 A. L. Carey, K. C. Hannabuss, V. Mathai, P. McCann

/ lo(™t2) — e w) A Ta(w, 2)[? dz dwK dvK.
XrxXxX

Only the first factor depends an Write v = ~yvg for v € T andwvg € Xr. Then we
obtain for our integral after a change of variables:

Z/ \go(vo_lz) — <p(vo_1w)|2|Ta(fyw,vz)|2dz dwK dvK,
~er “/.X[‘XXXXF

so that by they invariance of the kerndll}, one obtains
/ lo(vg 12) — vy *w) || Ta(w, 2)[? dz dwK dvoK.
X xXxXp
By a further change of variable we obtain

[ o0 — eIt g 2 de duk duoks
XXX xXr

Notice that, by Lemma &, (vy L, Vg 12)isthe integral kernel for the operator obtained
by conjugating byU (up). It follows therefore that finiteness of the triple integral is
guaranteed by the convergence of

/ lo(2) — p(w)|?|Tw(w, 2)|? dz dwK.
XxX

To avoid repetition let us first focus on the case of greatest interest, where we consider
the integral kernels of a spectral projectiBrof the HamiltonianH +V corresponding to
agapinthe spectrum. As itis obtained from the Hamiltonian using the smooth functional
calculus from a function of compact support we can obtain a growth estimate on the
integral kernel (see below) which will ensure convergence. To lighten the notation we
let z,w € X andk(z,w) denote the integral kernel as a function &nx X. Taking
x1 = 1 so thaty(gk) = ¢(g) is well defined, the discussion of the previous paragraph
leads us to consider whether

/ / 100(2) — () k(e w) Pz dw +)

is finite. Let X, be a fundamental domain for the diagonal actiofr @i X x X. Then
the previous integral, for invariant kernels, is given by

> [ 10602 - vtk )z do.
ver 7 Xo
By an argument due to Connes [Co], we have the estimate
[9(7.2) — Y(y.w)|? < Cexp(-2d(u,.2) + Crd(y.2, y.-w)).

(Hereuw is the base point itk , d denotes the hyperbolic metric a64C, are constants.)
We claim that, in addition, the following estimate holds:

[k(z, )| < Coexp(-Cad(z, w)?), (%)
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whereC5, C3 are constants. This fact goes back to [CGT] although in the form we need
it here, for the Hamiltoniangl + V' of Sect. 4, it can be deduced from [BrSu]. This is
because [BrSu] prove (**) wheh is the kernel of the heat operator*V). Now by
the argument of Corollary 3 there is a smooth function of compact suppanth that
g(e=®*V)) is the spectral projectioR. To prove that the kernel af(e —(7*Y)) satisfies
(**) it suffices to observe that we can approximateniformly by polynomials without
constant term, so that the kernelggé ~(#*")) has the same off-diagonal decay estimate
as the kernel of~(*V) namely (**).

Hence the integral in (*) above is smaller than

> [ [ cremtCoite wf s Cuttew) ~ 2012 (o)

yel

for suitable constant§’;,j = 1,2,3. As the area in hyperbolic space grows like
exp((u, z)), convergence of the infinite sum in (***) is handled by the convergence of
the Poincare serieg:Ver exp(—2d(u,v.z)). The convergence of the integral in (***),
over the fundamental domain, is handled by the exponential factor involving the square
of the hyperbolic distance and noting that the integration in the diagonal directig in

is over a finite range. (It is also possible to prove 2-summability in the case Wieen
trivial by exploiting the fact that in that case one may use kernels with restrictions on
their support.)

Since operators with kernels which have support in a band around the diagonal are
dense in the algebrad" andB" so too is the set of operators with kernels satisfying
(**). Now the finiteness of (*) is equivalent to asserting that T, ] is Hilbert-Schmidt.
Definition. We denote by} the subalgebra consisting of operatdrs B', with [F, A]

a Hilbert-Schmidt operator.

The argument of the previous paragraph shows/jas dense. Now by [CoB is
stable under the holomorphic functional calculus. A similar remark handles the existence
of the analogous dense subalgelaof A". This completes the proof of Theorem 3
and the claim concerning the spectral projections of the Hamiltonian as we promised.

7.2. The hyperbolic Connes-Kubo formul®ur aim in this subsection is to give a
geometric interpretation to the cocycles defined in lemma 12 and to prove that a suit-
able linear combination of them is cohomologous to the cocygclearising from the
Fredholm modulef, HX ® S).

To do this we begin by introducing, for operatots, A1, A, in B" whose kernels
ko, k1, ko2 are exponentially decaying (cf Eqg. (**) of the previous subsection), the cyclic
cocyclecy defined by

g
e (Ao, A1, A2) = Y ¢ jrg(Ao, A1, A)
J=1

g
= Z / w(za €, y)lllj (27 xz, y)kO(Za x)kl($7 y)kZ(y7 Z) dzdx dy7
=1 Y XrxXxX
where
Wz, 2, ) = (25(2)— Q5 (U))(€25+9 (1) 2544 (2)) = (24 () = 2+ (1))(2; (4) — 2; (2)).
We claim thatzgzl W;(z,z,y) is proportional to the “symplectic area” of a triangle in
R?9 with vertices=(z), Z(y), Z(2).
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To prove this it suffices to assume that the origin is one of the vertices of the triangle,
so suppose is the base point ifil. Then we need to consider the expression

g g
S Wiz zy) =Y ((0)Qrg (1) — Lieg(@)25(v))-

j=1 j=1

Let s denote the symplectic form d&?9 given by:

g
s(u,v) = Z(ujvﬁg — UjrgU;j)-

J=1

The so-called “symplectic area” of a triangle with vertice€Qz), = (y) may be seen

to be%s(E(x), Z(y)). To appreciate this, however, we need to utilise an argument from
[GH] (pp 333-336). In terms of the standard basi®ét (given in this case by vertices

in the integer period lattice arising from our choice of basis of harmonic one forms) and
corresponding coordinates, uo, . . . uz, the forms is the two form orR?9 given by

g
wy = E duj N\ dujsg.
j=1

Now the “symplectic area” of a triangle iR? with vertices Q.= (x), Z(y) is given
by integratingw,; over the triangle and a brief calculation reveals that this yields
s(Z(x), Z(y))/2, proving our claim.

The previous argument establishes the following result.

Proposition 2. The higher genus analogue of the Kubo formula is given by the cyclic
cocycleryx onB' defined by

g
i (Ao, A1, A2) = ¢ jrg(Ao, A1, A2)
j=1

g
=S [ )t kol e, bty 2 = do dy.
o XrxxxX

Here thek; are the kernels of the ;, j = O, 1, 2 (three exponentially decaying elements
of B') and Z?zl W;(z,z,y) is proportional to the “symplectic area” of the Euclidean
triangle A i in R?9 with vertices=(z), Z(y), Z(2).

To compare the cocycle with the cocycler, - arising from our Fredholm module
we note that the pull back for@™(du;) is dual to the homology cyclg; forj = 1,...,g
and dual taB;_, for j = g+ 1,...,2g (cf. [GH]). Thus=*(du;) differs froma; by an
exact one form. Hence*(w,) differs from»-9_, a; A aj+, by an exact two form. But
each termu; A aj+, is harmonic and hence proportional to the two fasmon H. So
we have for some constart and geodesic trianglé C H,

/WH:H/E*(WJ):K/ wy.
A A =(A)

Actually a calculation reveals that one can do a little better than this and proves that
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kE*(wy) = wh.

Now = cannot map geodesic triangles to Euclidean trianglB24ras=(A) is a compact
subset of a non-flat embedded two dimensional surfaé4invioreover asv; (z, x, y) =

0 whenever the images of x, y under= lie in a Lagrangian subspace (with respect to
the symplectic forms) of R?9, 7 andr.. - are not obviously proportional.

After suitable normalisation we will, however, prove they are cohomologous. First
renormalisew; so that=*(w;) = wg and then normalis{:?:l W;(z,z,y) so that it
equals—4ri fAE wy. Next we writew ; = df. Considering the difference; — 7. one
sees that the key is to understand

/ Wy —/ WJ:/ 0 —/ 0.
E(A) Ag 0=(A) OAR

Now this difference of integrals around the boundary can be written as the sum of three
terms corresponding to splitting the boundafiéq A) ando A g into three arc segments
each. We introduce some notation for this, writing

05(A) = Z(lz, y)) U Z(U(y, 2)) U Z(l(z, z)),

wherel(z, y) is the geodesic ifil joining = andy (with the obvious similar definition
of the other terms). We also write

AR =m(x,y) Um(y, z) Um(z, x),

wherem(x, y) is the straight line joining (x) and=(y) (and again the obvious definition
of the other terms). Then we have

/ 6 —/ 0= h(z,y) + h(y, 2) + h(z. ),
0=(A) OAR

whereh(z, y) = fﬁ(am 00— fm( 6, with similar definitions forh(y, z) andh(z, x).
Notice that we can writé(z, y) = fD wy, whereD,, is a disc with boundary

m(z,y) U {(x,y). From this it is easy to see tha(yz,vy) = h(z,y) for v € T.
Introduce the bilinear functionaj on B given by

71(Ao, Ay) = —4i / he, y)kole, ykaly, o) da dy = —dmitr g (A Ay),

XI‘XX

where, if A; has kernelk;(z,y), for j = 0,1, then A4, is the operator with kernel
h(x,y)ko(x, y). Of course this definition begs the question of whether the trace is finite.

In order to prove that; is densely defined we start with some preliminary observa-
tions. By [M+R+W] and [Ren2] there is an isomorphism

@p 1 BT > CH(T,,0) @ K(LA(F)).

Here F' denotes a fundamental domain for the actiolgfon H. (Note that by the
Packer-Raeburn stabilization theorem, one@ad",, o) ® K = K %, I'y.) Now any
elementr in C*(I'y, 0) ® K can be written as a matrix{;), wherex;; € C:(I'y, 0).

So we can define .

Ni(z) = (Z V(l“z‘j)z) g

4,3
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where

vay) = (Y @rem®lamP)”,

heT,

and/ denotes the word length function on the grdup By a mild modification of the
argument given in [Co2], 11l.5;, one can prove that there is a subalgeBEa of B"
which containsC(I',, o) ® R, whereR denotes the algebra of smoothing operators on
F, is stable under the holomorphic functional calculus, and is suchvip@t) < oo for
allz € BL_ andk € N. Then one shows as in [Co2] that the traceTr onC(I",, o) @R,
is continuous for the nornvy, for k sufficiently large, and thus extends by continuity to
BL . Note that elements i have Schwartz kernels which have rapid decay away from
the diagonal. An alternate equivalent constructioBgf would be to use the algebra
A, - asin Sect. 10, and the results of [Ji].

Summarizing this, we have

Proposition 3. The algebraB’_ is dense in3", is closed under the holomorphic func-
tional calculus and is contained in the ide&lof B" consisting of operators with finite
trace.

Now 7k is defined o8, while . - is defined o3} as we noted earlier. Both of these
algebras contain the operators whose Schwartz kernels are supported in a band around
the diagonal. Thus the subalgeltg N By is dense and stable under the holomorphic
functional calculus. Ib denotes the Hochschild coboundary map then a straightforward
calculation reveals thaty = 75 — 7. . The Lipschitz property of the Jacobi map means
thath(x, y) grows at worst like the square of the hyperbolic distance frdimy so that
if Ao € BL, then so too doed,,. Hence we have; defined onB._ N By, proving the
following theorem.

Theorem 5. The Kubo cocyclex and the Chern character cocycter arising as the
Chern class of the Fredholm modylE, HX* ® S) are cohomologous as cyclic cocycles
onBL, N Bj.

This theorem replaces the Connes-Kubo formula in genus one. The latter formula
states that the two cocycles of the theorem are equal. We see that the situation is more
complex for genug but from the viewpoint of<-theory as described in the next section
this theorem is enough to give integrality of the Hall conductivity defined either from
the character of our Fredholm module or from the hyperbolic Kubo formula.

8. K-Theory Aspects

In this section, we compute thig-groups of the twisted groug™-algebras which are
relevant to the quantum Hall effect on the hyperbolic plane as a special case of more
general theorems about té-groups of the twisted grou@™*-algebras of group§

which are uniform lattices i-amenable Lie groups.

We recall that any solvable Lie group, and in fact any amenable Lie grohp is
amenable. However, it has been proved by Kasparov [Kasl] in the case of the non-
amenable groupSQOy(n, 1) and by Julg-Kasparov [JuKas] in the casesbf(n, 1) that
these ard({-amenable Lie groups. Cuntz [Cu] has shown that the clagS-amenable
groups is closed under the operations of taking subgroups, under free products and
under direct products. Our method uses iw@amenability results of Kasparov [Kas1]
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and the Packer-Raeburn stabilization theorem [PR]. In [PR1], one can find an example
where the twisteds-theory K*(I'\G/ K, §(B,)) is not isomorphic toK*(I'\G/K),

even wher(7 is the K-amenable solvable grol®® x R, K = {e}, I' = Z™ x Z and for

some multipliers on I with non-trivial Dixmier-Douady invariané(B,) = d(c) # 0.
However, K*(I'\G/ K, 6(B,)) is isomorphic toK*(I'\G/K) whenever the Dixmier-
Douady invariant(B,) = §(c) = 0 is trivial. We identify the Dixmier-Douady invariant
§(B,) with the image ofr under the connecting homomorphism H3(I", U (1)) —

H3(T", Z) of the change of coefficients exact sequence in cohomology, corresponding to
the short exact sequence of coefficient groups

i eVl
1-72-R — U1Q)— 1L

This enables us to prove vanishing theorems for the Dixmier-Douady invariant whenever
[is alattice in a connected Lie grogpsuch that dim/ K) < 3, whereK is a maximal
compact subgroup a¥, and therefore we obtain in this case

K.(CH(T,0)) = K ™EOM\G/K),

whereo is any multiplier onl". This is the case for the Riemann surfaces which are the
object of our study in this paper.

We begin by reviewing the concept éf-amenable groups. L&t be a connected
Lie group andK be a maximal compact subgroup. For our purposes, we will assume
that dim(G/K) is even, and that it has@-invariant Spift structure. Using the Spin
structure, we can form th@-invariant Dirac operatof on G/ K. Itis a first order, self-
adjoint, elliptic differential operator acting dif sections of th&, graded homogeneous
bundle of spinors. Considetr” = @ (1+#?)~%/2, which is a ¢ order pseudo-differential
operator acting ol = L?(G /K, S). Co(G/K) acts onH by multiplication operators,

f — Mjy. Also G acts onCo(G/K) and onH by left translation, and" is G-invariant.
Therefore {, M, F') defines a canonical element, called Bieac element

ag € KKg(Co(G/K),C).

Theorem 6 ([Kas2]). There is a canonical element, called thiéshchenko element
Be € KKa(C,Co(G/K)),

such that one has the following intersection products:

(1) ac ®c Ba = loya k) € KKa(Co(G/K), Co(G/ K)),
(2) Be Bcya/k) ac =76 € KKa(C,C), whereyg is an idempotent ikl K (C, C).

The Mishchenko elemerti; can be described as follows. First assume that either
G is semisimple or thaG = R"™. Then the Killing form onG defines aG-invariant
Riemannian metric of non-positive sectional curvatur&i. LetE = Co(G/ K, S*)
be the space of continuous sections of the dual spin busidighich vanish at infinity.
Let ' be a bounded operator éhdefined as

Fé(x) = o(V(x, 20))§(2),

where¢ € &, V(z,xz0) € T,.(G/K) is the unit vector which is tangent to the unique
geodesic fromzy € G/K to xz and ¢(V (x, zo)) denotes Clifford multiplication by
V(x, x0). ThenV (z, o) is well defined outside a small neighbourhoodrgfand can
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be extended continuously in any way to all®@f . As F' is adjointable it lies inC(£).
Also since

F?¢(z) = ||V (z, 20) | % (=),
we see thaF? — 1 € k(&) is a compact operator id(€). Forg € G, define
(9-F)(x) = (V (2, gz0))§(2).
SinceG /K has negative sectional curvature, the functiorGii defined by
r — [|V(z,20) — V(z,z1)|, 0,21 € G/K,

vanishes at infinity, and so is @(G/ K). Thereforegg. F — F' € K(€) and €, F') defines
an elemens € KK(C, Co(G/K)). The Mishchenko elemeri; is constructed by
induction in the general case.

Theorem 7 ([Kas2]). If G is amenable, theng = 1.
This motivates the following definition ([Kas2]).
Definition. A Lie groupG is said to beK-amenable ifyg = 1.

Theorem 8 ([Kas1, JuKas]). The non-amenable groug(n, 1) andSU(n, 1) are K -
amenable.

LetI" C G be alattice inz and A be an algebra admitting an automorphic action of
I". Thenthe cross product algebrh Co(G/ K)] x T, is Morita equivalent to the algebra
of continuous sections vanishing at infinity(I"\G/ K, £), where€ — I'\G/K is the
flat A-bundle defined as the quotient

(%) E=(AxG/K)/)T - I'\G/K.
Here we consider the diagonal actionfobn A x G/K.

Theorem 9 ([Kas2]). If G is K-amenable, ther(4 x I') ® Cyo(G/K) and [A ®
Co(G/K)] » T have the sam&-theory.

Combining Theorem 9 with the remarks above, one gets the following important
corollary.

Corollary 7. If G is K-amenable, thefA x I') ® Co(G/K) andCo(T'\G/ K, £) have
the saméek -theory. Equivalently, one has fgr= 0, 1,

Kj(Co(T\G/ K, &) = Kjrdim@ k) (A x T).

We now come to the main theorem of this section, which generalizes theorems of
[PR, PR2].

Theorem 10. Suppose thal is a lattice in aK-amenable Lie grougs and thatK is
a maximal compact subgroup 6f Then

K. (C*(T,0)) ¥ K*9™C/EY(M\G /K, §(B,)),

wheres € H?(T", U(1)) is any multiplier onl', K*(I'\G /K, §(B,)) is the twistedk -
theory of a continuous tragé*-algebraB, with spectrunT\G/ K, andd(B,) denotes
the Dixmier-Douady invariant oB,,.
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Proof. 1. Taking the casd = C and the trivial action of* onC, one sees by Corollary
7 thatC*(I") andCo(I'\ G/ K) have the sam& -theory whenys = 1.

2. Leto € H*(I',U(1)), then thetwistedcross product algebrd x, I is stably
equivalent to the cross product ¢ K) x I', whereK denotes the compact operators.
This is the Packer-Raeburn stabilization trick [PR] (note thatlttaetion onkC takes
some time to describe and we refer the reader to [PR] for details). Using Corollary 7
again, one sees thdtx, I' ® Co(G/K) andCo(T'\G/ K, £,) have the sam& -theory,
whenevelG is K-amenable, where

& =(A® K x G/K)/T — I'\G/K

is a flatA ® K-bundle ovel"\G/K andK is a maximal compact subgroup®@f In the
particular case whed = C, one sees that* (", o) ® Co(G/K) andCo(I'\G/ K, &)
have the samé& -theory whenevet is K-amenable, where

& = (K x G/K)/T — I'\G/K.

But the twistedK-theory K*(I'\G/ K, §(B,)) is by definition theK-theory of the
continuous trac€'*-algebraB, = Co(I'\G/ K, &,) with spectrunT’\G/K. Then

K. (C*(T,0)) ¥ K*MG/ K M\G/K,6(B,)). O

Remarks.Consider the flat case, whe&® = R?" x SO(2n) is the Euclidean group,
K =S0(2n), andI’ C G is a Bieberbach group, that i8,is a uniform lattice inz. One
can define a generalization of “noncommutative flat manifolds" by regaddii{g, o)
as such an object, wheseis any group 2-cocycle oR, by virtue of the fact that

K.(C*(I',0)) = K*(I'\G/K).

Our next main result says that for latticedihamenable Lie groups, the reduced and
unreduced twisted group*-algebras have canonically isomorplictheories. There-
fore all the results that we prove regarding fietheory of these reduced twisted group
C*-algebras are also valid for the unreduced twisted gi@tqalgebras.

Theorem 11. Leto € H?(I',U(1)) be a multiplier onI" and T be a lattice in ak -
amenable Lie group. Then the canonical morphSH{I", 0) — C*(T", o) induces an
isomorphism

K. (C*(T',0)) = K.(C:(T', 0)).

Proof. We note that by the Packer-Raeburn trick, one has
C'T,o) @ K==L xT

and
CiT,o) @ K=K x, T,

wherex,. denotes the reduced crossed product. Sihisea lattice in aK -amenable Lie
group, the canonical morphisi x I' — K x,. I" induces an isomorphism (cf. [Cu])

K,(KxTI) = K.(Cx,.T),

which proves the result. O
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We now specialize to the case whérn= SOy(2,1), K = SO(2) andI' =T, C G
is the fundamental group of a Riemann surface of ggnusl, Y, or whenG = R?,
K ={e} andg = 1, withT'; beingZ?2.

Corollary 8. Leto € H*(I'y, U(1)) be any multiplier or",. Then
1. Ko(Cy(Ty, 0)) ¥ Ko(C(Ty)) ¥ K°(X,) = 72
2. Ki(Cr(Ty, 0)) ¥ Ka(Cr(Ty)) ¥ KH(X) > Z29.

Proof. In dimension 2 the Chern character is an isomorphism over the integers and
therefore we see that

K%(X,) = HY(%,,2) ® H*(Z,,Z) ¥ 77,
and that
KY%,) ¥ HY%,,7) = 7%.
By Theorem 10 we have
K;(CH(Ty) ¥ K/(X,) forj=0,1,

and
KJ(C:(FWU)) = Ki(ng 6(30)), ] = O» 17

whereB,, = C(Xy, &;). Finally, becausé, is alocally trivial flat bundle o€*-algebras
over X, with fibre C (= compact operators), it has a Dixmier-Douady invarit,)
which can be viewed as the obstructionig being Morita equivalent ta’(X,). But

§(B,) = 6(0) € H¥(%,,Z) = 0.
ThereforeB,, is Morita equivalent t&”'(X;) and we conclude that
K;(CH(Ty,0) > KI(X,) =01 O

Corollary 9. Let G be a connected Lie group and a maximal compact subgroup
such thatdim(G/K) = 3. LetT" be a uniform lattice inG' ando € H(I", U(1)) be any
multiplier onT'. If G is K-amenable, then

() K;(CHT,0) ¥ K;(C;(I) ¥ K7I\G/K),  forj=0,1 (mod 2)
Proof. By Theorem 10, we see that
K;(C(I)) = K7 MG/ B(r\G/K),  forj=0,1 (mod 2)

By the Packer-Raeburn stabilization triak;(I", o) is Morita equivalent toC .. T,
and becaus&r is K-amenable x I' ® Co(G/K) is Morita equivalent toB, =
C(T\G/K,¢&,), whereé&, is as before, a locally trivial bundle @f'*-algebras over
I'\G/K with fibre IC. Finally, the Dixmier-Douady invariant

§(By) =6(0) € HY(I'\G/K,Z) ¥ HT,Z).
Suppose now thdt\G/ K is not orientable ThenH3(I'\G/ K, Z) = {0} and therefore

d(B,) = d(c) = 0. HenceB, is Morita equivalent ta”(I'\G/K) and we havex) in
this case.
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Suppose next thdf\G/K is orientable The short exact sequence of coefficient
groups
i eZ"F
1—-7Z—-R —>1U(1)—> 1

gives rise to a long exact sequence of cohomology groups (the change of coefficient
groups sequence)

e /1, 4
(#5) .- — H3(T,R)S 5 BT, UQ) S HAT, 2) 5 (T, R) — - - - .

SinceI'\G/K is oriented, we see that3(I',Z) = Z and H3(T',R) = R are both
generated by the fundamental orientation clas§$'off/K, [['\G/K], and since
i.[T\G/K] = [T\G/ K], we see that, is injective. Therefore by the exactness of)
at H3(I", Z), one ha$(c) = 0 for alloc € H3(I", U(1)), and so we see th#k, is Morita
equivalent taC(I'\G/ K), and again we havein this case. O

Corollary 10. Let M = K(I',1) be an Eilenberg—Maclane space which is connected
locally-symmetric, compact, 3-dimensional manifoldz ¥ H?(T", U (1)) is any multi-
plier onT, then one has

K/(C2(T,0) = Kj(CH(D) 2 K7(M), j=0,1

Proof. SinceM is locally symmetric, it is of the fornr\G/ K, whereG is a connected

Lie group, K is a maximal compact subgroup such that ditpfX) = 3 andl" C G is

a uniform lattice inG.. We need to verify that; = 1. According to Thurston’s list of

3-dimensional geometries or locally homogeneous spaces, one has

1. G =R3x SO(3), G/K =R3, ¢ = 1 sinceR® andSO(3) are amenable, and so is
their semidirect product.

2. G =S0y(3,1), G/K =H?3, 75 = 1 by Kasparov’s theorem.

3. G =SM(2,1) xR, G/K = H? x R,v¢ = 1 since it's the semidirect product of
K-amenable groups.

4. G = Heis G/K = Heis ~¢ = 1, since Heis is nilpotent and hence an amenable
group.

5. G = Solv, G/K = Solv, v = 1, since Solv is a solvable group and hence an
amenable group.

6. G = SOn(2, 1) x R, G/K = SOy(2, 1). Firstly, Yoy = L sinceSOy(2, 1) is the
semidirect product of th& -amenable groupS0Oy(2, 1) andZ. Also~v4 = 1, since
its the semidirect product of th€-amenable groupSOy(2, 1) andR.

The other two locally homogeneous spaces in Thurston’s list are not locally sym-
metric. We now apply Corollary 9 to deduce Corollary 10. (J

An interesting question is whether Corollary 10 is true without the locally symmetric
assumption o/ . We formulate this in terms of a conjecture.

Conjecture. LetM = K(I', 1) be a connected, compact, 3-dimensional manifold which
is an Eilenberg-Maclane space with fundamental grdupThen for any multiplier
o € H*(',U(1))onT, one has

K;(CH(T,0)) % Kj(CH(I) ® K7*Y(M), j=0,1.
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Remarks.Selected portions of our proof of Corollary 9 go through in the situation
described in the conjecture. More precisely, the proof of Corollary 9 shows that the
Dixmier-Douady invarians(c) = 0 for allo € H?(I", U (1)) for I" as in the conjecture.

9. Range of the Trace and the Kadison Constant

In this section, we will prove some structural theorems for the twisted gf6ualgebras
thatare relevantto the “Martini” problems described in the introduction. The first of these
calculates the range of the canonical trace mafgof the twisted groug'*-algebras.

We use in an essential way the results of the previous section as well as a twisted version
of the L2-index theorem of Atiyah [At], which is due to Gromov [Gr2]. This enables us

to deduce information about projections in the twisted grétipalgebras. In the case

of no twisting, this follows because the Baum-Connes conjecture is known to be true
while these results are also well known for the case of the irrational rotation algebras.
However, our approach here is novel, and as we will show elsewhere [Ma], enables a
generalization of most of the known results.

9.1. Twisted Kasparov mapSuppose thal’, is a discrete, cocompact subgroup of
SOy(2,1). That is,I'y is the fundamental group of a Riemann surfdgg of genus
g > 1. Then for any € H*(T',, U(1)), thetwisted Kasparov isomorphism

(*) to - Ko(Xg) = Ko(C (g, 0))

is defined as follows. Her&o(X,;) denotes the<-homology group of®,. SinceX,

is spin, it isK-oriented and by Poincarduality, theX groupsK”(X,) are naturally
isomorphic to the correspondirfg-homology groupss;(X,) for j = 0, 1. Explicitly,

let & — X, be a vector bundle over, defining an element] in K°(%,). Under
Poincaé duality, E] corresponds to the twisted Dirac operadr: L3(X,,S* ® £) —

L2(X,, 8~ ® &), whereS* denote the} spinor bundles oveE,. Thatis,

PD: K%%,) — Ko(%,)
[€] — [P%]

is the Poinca duality isomorphism. By Corollary 8 of the previous section, there is a
canonical isomorphism
Ko(Cr (g, 0)) = K*(Xy).

Both of these maps are assembled to yield the twisted Kasparov map as in (*).
We next describe this map more explicitly. Givelif] € Ko(X,) as above, the lift

of this operator tdll = ¥, the universal cover ofy,
Pt LA(H, S @ &) — LX(H, S © £)
is aT'g-invariant operator. Consider now the short exact sequence of coefficient groups
i eV -1
1—-72—-R — U@1)— 1,

which givesrise to along exact sequence of conomology groups (the change of coefficient
groups sequence)
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i 2mV/-1
(%) - = HY(T,, Z)HYT,,R)" = "H(I',,U(1))>0.

Therefore for any multiplies € HZ(Fg, U(1)) of 'y, there is a 2-formw on X, such
thate?™v~1,([w]) = o. Of course the choice af is not unique, but this will not affect
the results that we are concerned with. Letenote the lift ofv to the universal covel.
Since the hyperbolic plari# is contractible, it follows thab = dn, wheren is a 1-form
on H which is not in general, invariant. Now letV = d — in denote a connection on
the trivial complex line bundle oH. Note that the curvature &F is V2 = iw. Consider
now the operator

Peo VYV LHH,S" ® &) — L(H,S- ®&).

It does not commute with thi, action, but it does commute with the projective action
of T'y, which is defined by the multiplies, and by a mild generalization of the index
theorem of [CM], it has &',-L?-index,

indr‘g (5; ® V) S KO((C(F(], U) 0 R)7

whereR denotes the algebra of smoothing operators. Then observe thatitited
Kasparov maps merely

1o ([Pe]) = ju(indr, (DF © V)) € Ko(C*(Ty, 0)),
wherej : C(I'y,0) ® R — C;(T'y, 0) ® K is the natural inclusion map, and
Js 1 Ko(C(I'y, 0) ® R) — Ko(Cr: (g, 0))

is the induced map oK.
The canonical trace ofi(I"y, o) induces a linear map

[tr] : Ko(C7(Ty,0)) — R

which is called thérace mapin K-theory. Explicitly, first tr extends to matrices with
entries inC*(I'y, o) as (with Trace denoting matrix trace):

tr(f ® r) = Trace)tr(f).

Then the extension of tr t&y is given by [tr]([e] — [f]) = tr(e) — tr(f), wheree, f
are idempotent matrices with entriesGf(I'y, o).

9.2. The isomorphism classes of algeb@s(l'y,s). Let o € Z*T,,U(1)) be
a multiplier onT,. If o/ € Z*I,,U(1)) is another multiplier o', such that
[0] = [0'] € HX(T,,U(1)), then it can be easily shown th@t (', o) = C*(T'y, o).
Thatis, theisomorphism classes of te-algebrag"* (T, o) are naturally parametrized
by H*(I'y, U(1)). ButH*(I'y, U(1)) = H*(X,,U(1)) = U(1) and the isomorphism is
given explicitly by p] —< [0],[24] >, where p] is now viewed as &ech 2-cocycle
on Y, with coefficients inU(1), and ;] denotes the fundamental class of the gepius
Riemann surface. We summarize this below.
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Lemma 13. The isomorphism classes of twisted grétipalgebrasC*(I'y, o) are nat-
urally parametrized by/(1) = R/Z = (0, 1]. The classification map is given explicitly

by
[o] =< [o],[X] >,

where[o] is now viewed as &ech 2-cocycle oty with coefficients ir/ (1), and[ %]
denotes the fundamental class of the gepB$emann surface.

9.3. Range of the trace map dty. We can now state the first major theorem of this
section.

Theorem 12. The range of the trace map is
[tr](Ko(Cr (T, 0))) = Z6 + Z,

where2rd =< o,[X,] > € (0, 1] is the result of pairing the multiplies onT'; with the
fundamental class of,.

Proof. We first observe that by the results of the previous section the twisted Kasparov
map is an isomorphism. Therefore to compute the range of the trace méjp,adn
suffices to compute the range of the trace map on elements of the form

1o ([Pz0] — [Dea])

for any element
[Pe0] = [P2r] € Ko(Z).

By the twisted analogue of the? index theorem of Atiyah [At] and Singer [Si] for
elliptic operators on a covering space that are invariant under the projective action of
the fundamental group defined byand which is due to Gromov [Gr2] (see also [Ma]
for a proof of a further generalization), one has

® [Gindr, (7% @ V) = 5 (A(5,) ch@)el) [2,))
We next simplify the right hand side of)Yusing

Az =1,
ch(€) = rank& + ¢1(&),

el =1 + [w].

Therefore one has

(1] [5)) |, (ex(€). [Z0)
27

[tr](indr, (P © V)) = ranke 2t

and we see that

([w] [X]) (c1(E%) — ea(EY), [Z))
2 27

[tr]( 110 ([P2] — [P:]) = (rankE® — ranke™)

It follows that the range of the trace map éf is Z% +7Z =70 + 7Z, because

([w], [Xg])

—0ecZ. O
2T <
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We will now discuss some applications of this result. We begin by studying projec-
tions in the twisted group'*-algebra, which is a problem of independent interest.

Proposition 4. Leto € H*(X,,R/Z) be a multiplier onl',, and27x6 =< o0,[%,] >€
(0, 1] be the result of pairingr with the fundamental class a&f,. If 8 = p/q is rational,
then there are only — 1 unitary equivalence classes of projections, other thamd 1,
in the reduced twisted groug*-algebraC;:(T'y, o).

Proof. By assumptiond = p/q. Let P be a projection irC}(I'y, o). Then 1- P is also
a projection inC}(T'y, o) and one has

1=tr(Q) =tr(P) +tr(1 — P).

Each term in the above equation is non-negative. By the previous theorem, it follows
thattr(P) € {0,1/q,2/q,...1}. By faithfulness and normality of the trace tr, it follows
that there are only — 1 unitary equivalence classes of projections, other than those of
0and 1inC} (g, 0). O

Our second application will involve the Kadison constant of a twisted grotp
algebra, which we will now recall. Th€adison constanvf C: (", o) is defined by:

Co(T'y) = inf{tr(P) : P is a non-zero projection irC’(Iy,0) ® L}.

Recall from earlier sections the following Hamiltonians:
1 1
H7] = E(d - Zﬂ)*(d - ”7) = EV*Vv

and

Hyy = Hy+V,
whereV is anyT g-invariant potential offl. The operatord?,, and H,, i are invariant
under the projectivel],, o)-action.

Proposition 5. Leto € H%(X,,R/Z) be a multiplier onl',, and27r6 =< ¢,[%,] >€

(0, 1] be the result of pairingr with the fundamental class éf,. If 8 = p/q is rational,
then the spectrum of any associated Hamiltorfigny has a band structure, inthe sense
that the intersection of the resolvent set with any compact intend&lhas only a finite
number of components. In particular, the intersectiorv@ff,, 1) with any compact
interval inR is never a Cantor set.

Proof. By the previous proposition, it follows that one has the estiragi@ ;) > 1/q >
0. Then one applies the main result iriBmg-Sunada [BrSu] to deduce the proposition.
O

This leaves open the question of whether there are Hamiltonians with Cantor spec-
trum wherd is irrational. In the Euclidean case, this is usually known agémeMartini
Problem and is to date, not completely solved, though much progress has been made
(cf. [Sh]). We pose a generalization of this problem to the hyperbolic case (which also
includes the Euclidean case):

Conjecture (The Ten Dry Martini Problem). Leto € H2(X,,R/Z) be a multiplier
onT,, and27f =< o¢,[Xy] >€ (0, 1] be the result of pairingr with the fundamental
classofY,. If fisirrational, then there is an associated Hamiltonil i with a Cantor
set type spectrum, in the sense that the intersection(&f, /) with some compact
interval inRR is a Cantor set.
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We will next apply the range of the trace Theorem 12 to deduce results about the
discrete HamiltoniarnH -, as in Sect. 5.

Proposition 6. Leto € H3(X,,R/Z) be a multiplier onl',, and27f =< 0,[¥,] >€
(0, 1] be the result of pairingr with the fundamental class &f,. If § = p/q is rational,
then the spectrum of the associated discrete Hamiltoiarhas a band structure, in
the sense that the intersection of the resolvent set Wittas only a finite number of
components. In particular, the intersection«d(ff ) with any compact interval ilR is
never a Cantor set.

Proof. From the estimat€’,(I';) > 1/¢ > 0, the main result in [Sun] implies the
proposition. [

This leads us to our next conjecture.

Conjecture (The Discrete Ten Dry Martini Problem). Leto € H?*(X,,R/Z) be a
multiplier onT'y, and 276 =< o,[X,] >€ (0, 1] be the result of pairingr with the
fundamental class af,. If 0 is irrational, then the associated Hamiltoniat, has
Cantor spectrum.

9.4. On the classification of twisted groafy-algebras. We will now use the range of

the trace found in Theorem 12 to give a complete classification, up to isomorphism, of
the twisted groug’'*-algebras"™ (T, o). A similar complete classification, up to Morita
equivalence, is contained in [Ma].

Proposition 7 (Isomorphism classification of twisted groupC*-algebras). Let

0,0’ € H¥(X,,R/Z) be multipliers onl",, and 270 =< o,[%,] >€ (0,1], 2r0’' =<
o', [24] >€ (0, 1] be the result of pairingr, o’ with the fundamental class &f,. Then
C*(Ty,0) = C*(I'y,0’)ifand only if¢’ € {6,1—6}.

Proof. Let tr and tf denote the canonical traces 6fi(I'y, o) andC*(I'y, ¢’) respec-
tively. Let
¢:C*(Ty,0) = C*(Ty,0")

be an isomorphism, and let
s 1 Ko(C™(Ty, 0)) — Ko(C™(T'g,0"))
denote the induced map dty. By Theorem 12, the range of the trace mapignis
[tr](Ko(C*(Ty,0)) =ZO+Z

and
[tr'[(Ko(C*(Ty,0"))) = 26" + Z.

So there are element®] € Ko(C*(I'y,0)) and [P'] € Ko(C*(I'y,0’)) such that
[tr]([ P]) = 6 and [tr]([ P']) = ¢'. Clearly one has t5 ¢ = tr’, which induces the identity
[tr] o ¢, = [tr']in Ko(C*(I'y,0’)). In Sect. 8, we have proved thal(C*(I'y, 0)) =
72 ¥ Ko(C*(T'y,0")). In the basis above, one has

6. 1 Z[P) © L% Ko(C*(Ty,0)) — Ko(C*(Ty,0")) = Z[P'] @ Z.

Since¢,[1] = [1] and ¢, € GL (2, Z), one sees that there is an integesuch that



Quantum Hall Effect on Hyperbolic Plane 665

_ 1n
=041}

Assembling these results, one las [tr]([ P]) = [tr](¢.[P]) = [tr'l(n[1] &£ [P']) =
n+ 6. Sinced, d’ € (0, 1], one deduces thét € {6,1 — 6}.

Lety : ¥, — X, be an orientation reversing diffeomorphism. We can assume
without loss of generality that has a fixed pointo € X,. This is because there is an
orientation preserving diffeomorphispof X', whose value at the poigi(xo) is equal to
xo; infactn can be chosento be isotopic to the identity (cf. exercise A2, chapter 1, [Helg]).
The compositiom o ¢ is then an orientation reversing diffeomorphism*gfwith fixed
point 2. Theny induces an automorphisg, : 'y — T', of the fundamental group
m1(Xg, xo) = I'y. We first evaluate< y*o, [ Y] >=< 0,¢.[Xy] >= < 0,[XYy] > =<
o,[X4] >, sincey is orientation reversing. By Lemma 13 we see that = 0 €
H(T',, U(1)). Therefore the automorphisim of 'y induces an isomorphism of twisted
groupC*-algebras

C*(Ty,0) = C*(Ty,9p"0) = C*(T'y, 0).

Therefore if¢’ € {8,1— 6}, one hass*(I'y, o) = C*(I'y, o), completing the proof of
the proposition. O

9.5. Twisted ICC group von Neumann algebras and typfatitors. Recall that an ICC
groupT is one in which every non-trivial conjugacy class is infinite. There are many
examples of ICC groups, such as free groups, fundamental groups of compact surfaces,
etc. It is well known that the group von Neumann algebras of these groups arestype Il
factors [Tak]. We will now prove that a similar result holds for the twisted group von
Neumann algebras (this result probably exists in the literature but for completeness we
reproduce a proof). We briefly recall some definitions. B&t(T", o) denote the twisted
group von Neumann algebra, wheres a multiplier onl”, which is by definition theveak
closure of C*(T', 0), or equivalently, the weak closure of the algebraic group algebra
C(I", o) in the o-regular representation ai(T"). Let Proj(V *(T", o)) denote the set of

all projections inW*(I", o). Then one has

Proposition 8. LetT be an ICC group, and € H?(T", R/Z) be a multiplier or". Then
W*(T', o) is a ll; factor. In particular,tr(Proj(W*(T, ¢))) =[O, 1].

Proof. By the commutant theorem for the reguarepresentation we see that the com-
mutant of W *(T", o) is identified withiW*(T", ). We need to compute the cen#€l", o)

of W*(T', o), which is equal to the intersectidti(I", o) = W*([', o) N W*(T, o). Let

T : T — B((4(I")) denote the left projectivel( o)-action. Regard: € W*(I', ) as

T = EWEF x(y)T (7). SinceW*(T', o) is theweakclosure of C(T", o), it follows that
(x(7))er € A(). Nowz € Z(I', 0) if and only if z commutes withl'(y), v’ € T.
But

T(y)x =Y 2(no(y . NTH7)
~yer
I ) T SR VA O
~yer

and
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2T() = 2oy, Y)T()
yer

=" ay ol AT ().
yer

Therefore we see that(y' Y)o(v',y' ) = z(vy )o(yy ,+') forally’ € T. So
|x('y'7l'y'y’)| = |z(v)| for all " € T'. That is,|z(-)| is constant on each conjugacy class.
Now sincez € ¢2(I), it follows thatz vanishes on each infinite conjugacy class. Since
" is an ICC group, it follows that(y) = 0 for ally # 1. SoZ(T", ¢) is 1-dimensional
andW*(T', o) is a ll; factor. |

10. The Topological Index and the Index Theorem

This section identifies the Hall conductivity(P, P, P) = (P dP dP) with a topolog-
ical invariant, generalizing the work of [Xia]. Suppose thgtis a discrete, cocompact
subgroup ofS0Gy(2,1). That is,I'y is the fundamental group of a Riemann surfage
of genusg > 1. Then for any € HZ(I‘g, U(1)), thetwisted Kasparov isomorphism

Ho - Ko(zg) - K,(C:(FQ,O'))

is defined as in the previous section. We note in the following section (using a result of
[Ji]) that given any projectio® in C (T, o) there is both a projectiof in the samex,
class but lying in a dense subalgebra, stable under the holomorphic functional calculus,
and a Fredholm module for this dense subalgebra, which may be pairef tatbbtain
an analytic index. On the other hand, by the results of the current section, given any such
projectionP there is a topological index that we can associate to it. The main result we
prove here is that the (analytic index) = (topological index).

The first step in the proof is to show that given an additive group cocy@l€2(l"g)
we may define canonical pairings witkip(X,) and Ko(C; (T'y, o)) which are related
by the twisted Kasparov isomorphism. We do this by generalizing some of the results
of Connes and Connes-Moscovici to the twisted case. The group 2-cacyty be
regarded as a skew-symmetrized functionignx I'y x I'y, so that we can modify
a standard construction in [CM] to obtain a cyclic 2-cocygleon C(I'y, o) ® R by
defining:

re(f0@r%, frort, Per?) = Tre%rr?) > g0 fM(91) 2 (92)e(l, 91, 9192)0 (91, g2)-

g0g192=1

Note thatr, extends taC(I',, o) ® £2, (where£? denotes Hilbert-Schmidt operators)
and by the pairing theory of [Co] one gets an additive map

[Tc] : KO(C(nga) ® R) — R.

Explicitly, [7]([e] — [fD) = Te(e,---,€e) — 7(f, -+, f), wheree, f are idempotent
matrices with entries in((T"y, o) ® R)™, the unital algebra obtained by adding the
identity toC(I'y, o) ® R and7, denotes the canonical extensiorrpfo (C(I'y, o) @R)™.

Let §f ® V be the Dirac operator defined in the previous section, which is invariant
under the projecti\g action of the fundamental group defined.l®y definition, the

(c,Tg,0)-index of P ® Vis
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[rJ(indr, (P © V) € R.

It only depends on the cohomology clask § H?(I',), and it is linear with respect to
[c]. We assemble this to give the following theorem.

Theorem 13. Given[c] € H*(',) ando € H?(T',, U(1)) a multiplier onT',, there is
a canonical additive map
([c], ) : Ko(Xy) — R,

which is defined as

(). [98]) = [=)(indr, (% © V) € R.
Moreover, it is linear with respect th].

By a generalization of the Connes-Moscovici higher index theorem [CM] to the
twisted case of elliptic operators on a covering space that are invariant under the projec-
tive action of the fundamental group defineddyy(see [Ma] for a detailed proof), one
has

) [relindr, (7% @ V) = o (A(%,) ch€)el (9, 17,))

wherey : Xy — X is the classifying map of the universal cover (which in this case is
the identity map) andd] is considered as a degree 2 cohomology clas&griVe next

simplify the right hand side of« using the fact thaﬁ(Eg) =1 and that
ch(€) = rank& + ¢, (&),
V() = c,
el = 1+ [w].

We obtain
rank&

2w
Corollary 11. Lete, [c] € H(T), be the area cocycle. Then one has

([c],[P5]) = 2(g — 1)rank € Z.

[r.J(indr, (P% © V) =

([e], [24])-

Proof. Whene, [c] € H(T',), is the area 2-cocycle, one has
([, [Zg]) = —2mx(¥g) = 4n(g—1). O

Remarks 14.These theorems have been generalized in [Ma]. They agree with Xia's
result [Xia], although our methods are different.

We next describe the canonical pairingted(C;: (T, 0)), givenc] € Hz(l"g). Since
X, is negatively curved, we know from [Ji] that

Aog = {f Ty —C| > [fMPA+I()* < occforall k> 0} :

Y€y

wherel : T, — R* denotes the length function, is a dense and spectral invariant
subalgebra of’;:(T'y, o). In particular it is closed under the smooth functional calculus,
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and is known as the algebra of rapidly decreadifdgunctions onl',. By a theorem of
[Bost], the inclusion map!, , C C*(I'y, o) induces an isomorphism

K;i(Asg) = K;(Cr(Ty,0)), j=0,1

As X, is a negatively curved manifold, we know (by [Mos] and [Gr]) that degree 2
cohomology classes if?(I",) haveboundedrepresentatives i.e. bounded 2-cocycles
onT,. Letc be a bounded 2-cocycle dn,. Then it defines a cyclic 2-cocycie on the
twisted group algebr&(T", o), by a slight modification of the standard formula [CM],
([Ma] for the general case)

(% 151 = Y 90 (91) 2 (92)e(L, g1, 9192)0 (91, 2)-
909192=1

Herecis assumed to be skew-symmetrized. Since the only difference with the expression
obtained in [CM] iso (g1, g2), and sinceo (g1, g2)| = 1, we can use Lemma 6.4, part (ii)

in [CM] and the assumption thatis bounded, to obtain the necessary estimates which
show that in factr, extends continuously to the bigger algebta,. This induces an
additive map inK -theory as before:

[7]: KO(Aa,g) —R
[7]([e]l — [fD) =Tele, s e) = Telfs -, £)
wheree, f are idempotent matrices with entries ()™~ (the unital algebra associated

to A, ,) and7, is the canonical extension ef to (4, ,)~. Observe that the twisted
Kasparov map is merely

Ho([Pe]) = ju(indr, (P © V) € Ko(C™(Ty, 0)).

Herej : C(I'y,0) ® R — C*(I'y,0) ® K is the natural inclusion map, and :
Ko(C(Ty,0) ® R) — Ko(C*(I'y,0)) is the induced map it -theory. Therefore one

has the equality
([, p'[P1) = ([7), [P])
forany [P] € Ko(As4) = Ko(C):(Ty, 0)). Using the previous corollary, one has

Corollary 12. Lete, [c] € H?(T,), be the area 2-cocycle. Thenis known to be a
bounded 2-cocycle, and one has

(7], [P]) = 2(g — 1)(rank&® — ranke?) € Z,
where[P] € Ko(As,4) = Ko(C)(T'y, 0)), and where
15 TP] = [Pgo] — [Pe] € Ko(Zy)-

Remarks 15.This generalizes the main result of Xia, [Xia].
We will next prove the existence of a canonical eleme{ i (C; (T, o), C), which
we call the twisted Mishchenko element.

Theorem 16 (The twisted Mishchenko element)There exists a unique element
[me] € KK(CX(Ty, 0),C), called thetwisted Mishchenko elemerguch that

(*) [1] ®cxry.0) [Mmo] = 2(g — 1),
where[1] € Ko(C}:(I'y, o)) denotes the module generated®y(T",, o).
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Proof. By the well definedness of the Kasparov intersection product [Kas2], the
equation §) above defines the elementf] uniquely. In the next section we con-
struct a 2-summable Fredholm modulé ), which defines an elementH(H)] €
KK(C;(T'y,0),C), and whose Chern character is the cyclic area 2-cocygle (cf.
[Co2]) defined by the area 2-cocycal®n the discrete group. We compute that

[1] ®cy(r,.0) [(F, H)] = index(F) = 7.(1,1,1) = 2(g — 1).

By unigueness (proved above), we see that] = [( F, H)], which establishes existence.
U

This completes the proof of Theorem 4 and Corollary 6 because we regard
index(PF'P) as the result of pairing an element of th&homology of X', (defined
by the twisted Mishchenko element) with an elementha{B") = Ko(C*('y, 0)).
This enables us to demonstrate the relationship between Corollary 12 and the discrete
model of the hyperbolic Hall effect.

11. A Discrete Fredholm Module and the Analytic Index

We have observed following Sunada tlhBtis an operator in the twisted algebraic group
algebraC(T", o), which is a subalgebra ol, ;. We remark that a spectral projection
into a gap in the spectrum @i is given by the smooth functional calculus applied to
H.. It follows from [Ji] that such spectral projections lie i), ,. Connes constructs a
Fredholm module fo€T" which can be adapted to the cas€¢F, o). In his construction
the Hilbert space is th€ sections of the restriction of the spinor bundle to the drbit
This space is isomorphic t = ¢*(T") @ ¢2(I") under the map @ .. The grading is the
obvious one given by the 2 matrixe. We may define the operatéras in Sect. 7 to
be multiplication by the matrix function

0 y*
v 0 )
where we restrict) to the orbitl".w.

Connes [Co2] shows that the module of the previous paragraph is 2-summable for
CT'. We show below using the same argument as in [Co2] thad@notes the left regular
o-representation of*(T", o) then [F, A(7)] is Hilbert-Schmidt. So#, F) is also a 2-
summable module fo€(T", o). We may also exploit [Co2] to determine explicitly the
character of this Fredholm module for our case. We now summarize some of the pertinent
details.

First, we are using the usual trace tr on the bounded operatdté &econd, our
module is the/? sections of the restriction of the spinor bundle to the orbit. From this
point of view F' corresponds to Clifford multiplication of a unit tangent vector to a
geodesic connecting a given vertex of the graph to a peint I'.u. We use the same
notationy(~y.u) for this unit tangent vector, regardingas a function fron".« to 7'(H),
the tangent space &f, as no confusion will arise.

Next, note that forf € H,

[F, AN = (o u) = (v u)) A F()

. Connes observes that the operator on the RHS is Hilbert-Schmidt as a result of the
convergence of the Poin@series:
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> exp(-2d(y.u, xo)).

yer

Thus ifyg, 71,72 lie in T then

tr(EA()E, ADILE, A(v2)]) = %tr(E[F, AOILE ACDILE, A(2)]).-
Now A(Yo)[ F, A(v)I[ F, A(72)] is the operator

AGOEAGDILE, A(21N() = ¢y, 72)0 (0, 1172) f (or272) ),
where((~y) denotes Clifford multiplication by

(prg ™) — @l (kT M) — (ks 1)),

with k; = 0. ..y;. We can now obtain a formula for the cyclic cocycle. Following the
calculation on p. 344 of [Co2] we find that fegy1v» # 1 the character of the cocycle
associated to our Fredholm module is zero whileskgriy2 = 1 it is given by

tr(EAGO)E AGDILE, A(2)]) = 2 ) trace€( (7))o (11, 72),

yel’

where “trace” denotes the matrix trace on the Clifford algebra and we are utilising the
fact that, for our choice of,

o(v0,1172) = o(10, 7% ) = L.

Connes proves that trae€(y)) is the Euclidean area of the triangle in the complex
plane with vertices corresponding to the tangent veohﬁrff_lv). Then the additive
group cocycle ol given by

o(1,71,7172) = Y trace€((y))

ver

is what Connes calls the “volume” or area cocyclelanThus we find that we have
computed the character of our Fredholm module to be:

7e(70, 71, 72) = (1, 71, 7172)0 (71, 72)

forvov1y2 = 1, with7, being zero whengy1v2 # 1 (the normalisation differs from [Co2]
p. 295, but conforms with [CM]). This formula extends to give a non-trivial element of
the cyclic cohomology of the smooth subalgeHra, via the formula

(S 1= Y P00 o) )l 11, 2o (s 1),

Yov1y2=1

for fo7 f17 f2 S Aa,g-
Summarizing the discussion above, we have the first result of this section.

Proposition 9. There is a 2-summable Fredholm mod{#ie{) over A, , whose Chern
character is given by the area cyclic 2-cocyele Therefore, by the index pairing in
[Co2], one has

index(P(F' @ I)P) = ([7], [P]),

whereP denotes a projection id,, , ® K(H1) andindex(P(F ® I)P) denotes the index
of the Fredholm operatoP(F' ® I)P.
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Assembling this proposition with our results from Sect. 10 we have:

Theorem 17. Let P denote a projection i, ; ® XC(H1) Then in the notation of Corol-
lary 12 of the previous section, one has

index(P(F ® I)P) = 2(g — 1)(rank £° — rank £Y) € Z,

whereindex(P(F ® I) P) denotes the index of the Fredholm operal{' ® I) P acting
on the Hilbert space’(H ® H1) and u, [ P] = [Pf0] — [P5:] € Ko(Zy).

Corollary 13. Let P be a projection into a gap in the spectrum of the discrete Hamil-
tonian H,. ThenP € A, 4, and may be regarded as a twisted convolution operator by
a functionp onT. Then in the notation of Corollary 12:

indexPFP)= Y p(o)p(y)p(12)e(L, 71, 7172)0 (71, 72)
Yov172=1

=2(g — 1)(rank £° — rank £Y) € Z.

Note that this explains the integrality of the cyclic 2-cocycle,

> pe)POP(R)e(d, 11, 1172)0 (1, 72),

Yoy172=1

in two different ways: firstly as the index of the Fredholm oper&éiP, and secondly
as the topological index 2(— 1)(ranke® — rankg?), which is also clearly an integer.

12. The Non-Commutative Unit Disc

In [Klim+Les1,2] Klimek and Lesznewski have introduced a non-commutative unit
disc and higher genus Riemann surfaces. Their disc algebra can be realised as a Toeplitz
algebra obtained by compressing the commutative algebra of functions on the disc using
the projection onto a holomorphic subspace of one of its representation spaces. We shall
describe their construction in a slightly more general setting. The algé&ly¢s/ K) acts
by multiplication (f — M (f)) on L*(G /K, ) for any quasi-invariant measuye The
groupG also has an inducedrepresentatiofil” on this space, and we shall suppose that
there is anirreducible subrepresentation on a subspace which is projected(This
is certainly true in the case considered in [Klim+Les1].) The algéha(C.(G/K))P
then gives the non-commutative analogu€’ofG/ K). Now, by definitionG also acts
and therefore defines automorphisms of this algebra. Since it commutegwiith
covariance algebr& M (C.(G/K))P x G is the same a®(C.(G/K) x G)P, which
is the compression of the imprimitivity algebrd= C.(G/K) x G. For higher genus
surfaces one simply takes theinvariant part ofPC.(G/ K) P, which is consistent with
our constructions above.

Suppose now that the irreducible subspace is defined by a reproducing kernel. In-
variance of the kernel means that it is defined by twisted convolution with a continuous
o-positive definite functiorg p or, equivalently, that

P=W(Ep) = / £p(g)W (9) dg.
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Now observe thatp can be identified with an element of the imprimitivity algebra
so the covariance algebra can be identified with the compreggiond « £p of the
imprimitivity algebra.

In the cases of interegp is theo-positive-definite function associated withC&°-
vector, and so is smooth. This means that the natural maggueM for p x A x Ep
retains the structure of a Fredholm module.
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