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Abstract: In this paper, we study both the continuous model and the discrete model
of the Quantum Hall Effect (QHE) on the hyperbolic plane. The Hall conductivity is
identified as a geometric invariant associated to an imprimitivity algebra of observables.
We define a twisted analogue of the Kasparov map, which enables us to use the pairing
betweenK-theory and cyclic cohomology theory, to identify this geometric invariant
with a topological index, thereby proving the integrality of the Hall conductivity in this
case.

1. Introduction

The usual model of the integer quantum Hall effect involves electrons moving in a two
dimensional conductor under the influence of a magnetic field. The field is applied in a
direction orthogonal to the conductor. The Hamiltonian used is that for a single electron
moving under the influence of this magnetic field with the addition of a potential term
to represent the field due to the lattice of ions making up the conductor. For simplicity
this lattice is often assumed to be periodic in the two axis directions in the plane. The
effect of impurities can be modelled by departing from a perfectly periodic potential. The
definitive treatment from a mathematical point of view is due to Bellissard [Bel+E+S]
and Xia [Xia]. In this approach no assumption is made about the rationality of the
imposed magnetic flux while the integrality of the Hall conductance follows by showing
that it is given by the index of a Fredholm operator. Xia also exhibits the conductance
as a topological index. These demonstrations use in an essential way Connes’ non-
commutative differential geometry.

In this paper we are interested in what can be said when one replaces the usual
two dimensional conducting material with its Euclidean geometry by a two dimensional
sample with hyperbolic geometry. Physically one should think of hyperbolic space and
hence the sample as an embedded hyperboloid in Euclidean 3-space. The crystal lattice of
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the conductor is now modelled by the orbit of a freely acting discrete group. For reasons
of convenience we take this to be the fundamental group of a Riemann surface (though
aspects of our analysis work more generally). The magnetic field remains orthogonal to
the two dimensional conductor and the electric potential we take to be periodic under
the action of this discrete group (we do not attempt to model impurities). When the
magnetic flux is rational, spectral properties of Hamiltonians for a single electron have
been studied, particularly in the cases where the Hamiltonian may be defined on a finite
cover of the Riemann surface [Iengo+Li]. In this paper however we are interested in
approaching the problem using non-commutative geometry, which allows the flux to
be any real number, and the algebras of interest are not always associated with vector
bundles over the Riemann surface.

We begin by reviewing the construction of the Hamiltonian. First we take as our
principal model of hyperbolic space, the hyperbolic plane. This is the upper half-plane
H in C equipped with its usual Poincaré metric (dx2+dy2)/y2, and symplectic area form
ωH = dx∧dy/y2. The groupSL(2,R) acts transitively onH by Möbius transformations

x + iy = ζ 7→ gζ =
aζ + b
cζ + d

, for g =

(
a b
c d

)
.

Any Riemann surface of genusg greater than 1 can be realised as the quotient ofH by
the action of its fundamental group realised as a subgroup0 of SL(2,Z) ⊂ SL(2,R).

Let us now pick a 1-formη such thatdη = θωH, for some fixedθ ∈ (0, 1]. As
in geometric quantisation we may regardη as defining a connection∇ = d − iη on
a line bundleL over H, whose curvature isθωH. Physically we can think ofη as the
electromagnetic vector potential for a uniform magnetic field of strengthθ normal to
H. Using the Riemannian metric the Hamiltonian of an electron in this field is given in
suitable units by

H = Hη =
1
2
∇∗∇ =

1
2

(d− iη)∗(d− iη).

Comtet [Comtet] has shown thatH differs from a multiple of the Casimir element for
SL(2,R), 1

8J.J, by a constant, whereJ1, J2 andJ3 denote a certain representation of
generators of the Lie algebrasl(2,R), satisfying

[J1, J2] = −iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2,

so thatJ.J = J2
1 + J2

2 − J2
3 is the quadratic Casimir element. This shows very clearly

the underlyingSL(2,R)-invariance of the theory. In a real material this Hamiltonian
would be modified by the addition of a potentialV . By takingV to be invariant under
0 this perturbation is given a crystalline type structure analogous to the use of periodic
potentials invariant underZ2 in the Euclidean planeR2. Comtet has computed the spec-
trum of the unperturbed HamiltonianHη, for η = θdx/y, to be the union of finitely
many eigenvalues{(2k + 1)θ − k(k + 1) : k = 0, 1, 2 . . . < θ − 1

2}, and the continuous
spectrum [14 + θ2,∞) for those values ofθ for which the de Rham cohomology class of
θωH is integral. Its zeta function and the kernel of its resolvent are also known in this
case, [Comtet, Comtet+H]. Anyη is cohomologous toθdx/y (since they both haveωH
as differential) and forms differing by an exact formdφ give equivalent models: in fact,
multiplying the wave functions by exp(iφ) shows that the models forη andθdx/y are
unitarily equivalent. This equivalence also intertwines the0-actions so that the spectral
densities for the two models also coincide. However, it is the perturbed Hamiltonian
Hη,V = Hη + V which is the key to the quantum Hall effect on the hyperbolic plane,
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and the spectrum of this is unknown for general0-invariantV . As we noted above the
Hall effect on Riemann surfaces has also been considered [Iengo+Li], [Av+K+P+S] but
this is different from the problem we consider here.

These considerations suggest that one could mimic the non-commutative geometry
approach of Bellissard-Connes to the integer quantum Hall effect on Euclidean space
[Bel, Nak+Bel, Bel+E+S, Co2, Xia] in a hyperbolic setting. This interprets the Hall
conductivity as a non-commutative Chern character, whose integrality follows fromK-
theory. Physically such situations have been considered without the perturbing potential
(or0 is trivial) in the context of exploring edge effects for the quantum Hall effect and the
behaviour of electrons in quantum dots. Much of the mathematical machinery needed for
this has already been discussed in a geometrical context [Co, Co2, Comtet, Comtet+H]
and will be exploited here. We also discuss the discrete version of the theory [Co2], [Sun]
motivated in part by some results of [MC] in the Euclidean setting. These hyperbolic
Hall effect models occupy the first seven sections. Specifically we show that there is a
principal groupoidC∗-algebra with cocycle for the diagonal0 action onH × H which
contains the resolvent of the various Hamiltonians we consider. In order to construct
a Fredholm module for this algebra we found it useful to take a more abstract group
theoretic approach. We show that our groupoid algebra is isomorphic to a quotient of
the0 invariant part of the imprimitivity algebra for inducing from the maximal compact
subgroup ofSL(2,R) toC∗(SL(2,R), σ) (the multiplier, or group 2-cocycle,σ extends
to all of SL(2,R)). This imprimitivity algebra has a regular representation, induced by
a canonical trace, the Hilbert space of which provides a Fredholm module which is 2-
summable for a dense subalgebra of the imprimitivity algebra. We show that this dense
subalgebra contains the spectral projections corresponding to gaps in the spectrum of
our Hamiltonians. Similar results hold in the discrete model as well. The connection
between the continuous and discrete models arises from the Morita equivalence of our
quotient of the0 invariant imprimitivity algebra withC∗(0, σ).

The main results of our paper follow by extending the approach of [Xia] to cover
the hyperbolic case. In fact in Sect. 8 we prove some general theorems about theK-
groups ofC∗-algebras which generalize those arising from the hyperbolic Hall effect.
The relevance ofK-theory can be understood in the case of the integer Hall effect on
Euclidean space partly as a result of the calculation [Elliott, Bel, Co]:

K∗(C∗(Zn, σ)) ∼= K∗(C∗(Zn)) ∼= K∗(Tn)

for any multiplier (i.e. group 2-cocycle)σ on Zn. This result has lead to the twisted
groupC∗-algebrasC∗(Zn, σ) being callednoncommutative tori. This calculation was
generalized by Packer and Raeburn [PR, PR2], who computed theK-groups of the
twisted groupC∗-algebras of uniform lattices in solvable groups. More precisely, they
proved that if0 is a uniform lattice in a solvable Lie groupG, then

K∗(C∗(0, σ)) ∼= K∗+dimG(0\G, δ(Bσ)),

whereσ is any multiplier on0,K∗(0\G, δ(Bσ)) denotes the twistedK-theory of a con-
tinuous traceC∗-algebraBσ with spectrum0\G, while δ(Bσ) ∈ H3(0\G,Z) denotes
the Dixmier-Douady invariant ofBσ. (Note that the twistedK-theory was studied in
[Ros]). Packer and Raeburn proved a stabilization theorem and used the Thom isomor-
phism theorem for theK-theory ofC∗-algebras, due to Connes [Co2], to prove their
results.

In Sect. 8 we extend the main theorem of [PR, PR2] to the case when0 is a lattice
in aK-amenable Lie groupG. More precisely, we prove that for suchG and0,
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K∗(C∗(0, σ)) ∼= K∗(C∗
r (0, σ))

and
K∗(C∗(0, σ)) ∼= K∗+dim(G/K)(0\G/K, δ(Bσ)),

whereK is a maximal compact subgroup ofG, σ is any multiplier on0,K∗(0\G/K,
δ(Bσ)) is the twistedK-theory of a continuous traceC∗-algebraBσ with spectrum
0\G/K, andδ(Bσ) ∈ H3(0\G/K,Z) is the Dixmier-Douady invariant ofBσ.

Our method uses theK-amenability results of Kasparov [Kas1] and the Packer-
Raeburn stabilization theorem [PR]. In the case when0 = 0g is the fundamental group
of a Riemann surfaceΣg of genusg > 0, we deduce that the Dixmier-Douady class
δ(Bσ)) is trivial. Using this we demonstrate that for any multiplierσ on0g,

K0(C∗(0g, σ)) ∼= K0(Σg) ∼= Z2,

and that
K1(C∗(0g, σ)) ∼= K1(Σg) ∼= Z2g.

We end the discussion with an interesting conjecture for compact 3-dimensional man-
ifolds which are Eilenberg-Maclane spaces. TheseK-theoretic results have now been
generalized toC∗-dynamical systems in [Ma].

One of the most outstanding open problems about magnetic Schrödinger operators
or Hamiltonians on Euclidean space is concerned with the nature of their spectrum, and
is called theTen Martini Problem(TMP) (cf. [Sh]). More precisely, TMP asks whether,
given a multiplierσ onZ2, there is an associated Hamiltonian (i.e.a Hamiltonian which
commutes with the (0, σ) projective action of0 onL2(R2)) possessing a Cantor set type
spectrum, in the sense that the intersection of the spectrum of the Hamiltonian with some
compact interval inR is a Cantor set? One can deduce from the range of the trace onK0
of the twisted groupC∗-algebras that when the multiplier takes its values in the roots
of unity in U (1) (we say then that it is rational) that such a Hamiltonian cannot exist.
However, in the Euclidean case and for Liouville numbers, the discrete analogue of the
TMP has been been settled in the affirmative by Choi, Elliot and Yui [CEY] (cf. [Sh] for
a historical perspective). In Sect. 9 we are concerned also with the hyperbolic analogue
of the TMP, which we call theTen Dry Martini Problem(TDMP). We prove that the
Kadison constant of the twisted groupC∗-algebraC∗

r (0g, σ) is positive whenever the
multiplier is rational, where0g is now the fundamental group of a genusg Riemann
surface. We then use the results of Brüning and Sunada [BrSu] to deduce that when the
multiplier is rational, the TDMP is answered in the negative, and we leave open the more
difficult irrational case. The calculation of the range of the trace exploits a number of
results including a twisted Kasparov map onK-theory. Finally, we apply our results to
give a complete classification up to isomorphism of the twistedC∗-algebrasC∗

r (0g, σ).
In Sects. 10 and 11 we will identify the character of our Fredholm modules, the “Hall

conductivity”, for both the continuous and discrete models. This characterτc(P, P, P ) =
tr(P dP dP ) is shown to arise from Connes’ “area cocycle” and we are able to identify
it with a topological invariant, generalizing the work of Xia [Xia] in the case of the
quantum Hall effect on Euclidean space. We use the pairing betweenK-theory and
cyclic cohomology [Co], a generalization of the Connes-Moscovici index theorem [CM]
to projectively invariant elliptic operators and the twisted analogue of the Kasparov
map. In fact we obtain a general index theorem which equates the (analytical) index
arising from the Fredholm modules to a topological index. It specialises in the case of
the cyclic cocycleτc to give the surprising fact that the hyperbolic “Hall conductivity”
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τc(P, P, P ) ∈ 2(g−1)Z.This raises the obvious question of whether a real material with
a hyperbolic crystalline geometry could be manufactured and the genus of the quotient
Riemann surface measured experimentally. To be specific the model we consider here
can be understood most easily in the embedded hyperboloid version of hyperbolic space.
If we use the0-orbit of a point in the hyperboloid inR3 to represent the crystal lattice
structure of a conducting material then our discrete model corresponds to applying
a magnetic field which is everywhere normal to the hyperboloid. (This captures the
hyperbolic geometry.) Then by regarding the lattice points as the vertices of a graph
whose edges are geodesics corresponding to the generators of0 our model Hamiltonian
corresponds to allowing electrons to hop between sites on the lattice along the edges of
the graph. Then our theorem predicts that the conductivity should depend on the genus
of the Riemann surface obtained by quotienting the hyperboloid by0.

In Sect. 6 we exhibit a cyclic cocycle which plays the role of the Kubo formula for
higher genus surfaces. It has an intrinsic geometric description as a “symplectic area”
cocycle on the universal cover of the Jacobi variety of the Riemann surface. The novel
feature of the higher genus case (as opposed to genus one which is the Euclidean case)
is that the Kubo cocycle is cohomologous (but not equal) to the cyclic cocycle arising
from the Fredholm module. Given ourK-theoretic interpretation of the latter this is
sufficient to give the anticipated result that the Hall conductivity, as defined through the
Kubo cocycle, is integral and depends on the genus.

We conclude by showing how our formalism links with the non-commutative Rie-
mann surface theory described in [Klim+Les1, Klim+Les2].

2. The Geometry of the Hyperbolic Plane

The upper half-plane can be mapped by the Cayley transformz = (ζ−i)/(ζ+i) to the unit
discD equipped with the metric|dz|2/(1−|z|2)2 and symplectic formdz dz/2i(1−|z|2)2,
on whichSU(1, 1) acts, and some calculations are more easily done in that setting. In
order to preserve flexibility we shall work more abstractly with a Lie groupG acting
transitively on a spaceX ∼ G/K. Although we shall ultimately be interested in the case
of G = SL(2,R) or SU(1, 1), andK the maximal compact subgroup which stabilises
ζ = i or z = 0, those details will play little role in many of our calculations, though we
shall need to assume thatX has aG-invariant Riemannian metric and symplectic form
ωH. We shall denote by0 a discrete subgroup ofG which acts freely onX and hence
intersectsK trivially.

We shall assume thatL is a hermitian line bundle overX, with a connection,∇, or
equivalently, for each pair of pointsw andz in X, we denote byτ (z, w) the parallel
transport operator along the geodesic fromLw toLz. InH with the line bundle trivialised
andη = θdx/y one can calculate explicitly that

τ (z, w) = exp

(
i

∫ z

w

η

)
= [(z − w)/(w − z)]θ.

For generalη we haveη − θdx/y = dφ and

τ (z, w) = exp(i
∫ z

w

η) = [(z − w)/(w − z)]θ exp(i(φ(z) − φ(w))).

Parallel transport round a geodesic triangle with verticesz,w,v, gives rise to a holonomy
factor:
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$(v, w, z) = τ (v, z)−1τ (v, w)τ (w, z),

and this is clearly the same for any other choice ofη, so we may as well work in the
general case.

Lemma 1. The holonomy can be written as$(v, w, z) = exp
(
iθ
∫

1
ωH
)
, where1

denotes the geodesic triangle with verticesz,w andv. The holonomy is invariant under
the action ofG, that is$(v, w, z) = $(gv, gw, gz), and under cyclic permutations of
its arguments. Transposition of any two vertices inverts$. For any four pointsu ,v, w,
z in X one has

$(u, v, w)$(u,w, z) = $(u, v, z)$(v, w, z).

Proof. By definition, for a suitable trivialisation ofL one has

$(v, w, z) = exp

(
i

∫
∂1

η

)
,

and the first part follows by applying Stokes’ Theorem after noting that the result is
independent of the trivialisation. The invariance underG follows from the invariance of
the symplectic form, and the results of permutations follow from the properties of the
integral, as does the final identity. �

3. The Twisted Algebra of Kernels

The geometrical data described in the last section enables us to easily describe the first of
the twoC∗-algebras which appear in the theory. This twisted algebra of kernels, which
was introduced by Connes [Co2] is theC∗-algebraB generated by compactly supported
smooth functions onX ×X with the multiplication

k1 ∗ k2(z, w) =
∫

X

k1(z, v)k2(v, w)$(z, w, v) dv,

(wheredv denotes theG-invariant measure defined by the metric) andk∗(z, w) =
k(w, z). There is an obvious trace onB given byτB(k) =

∫
X
k(z, z) dz. The algebra

of twisted kernels is the extension of theC∗-algebra of the principal groupoidX ×X
defined by the cocycle ((v, w), (w, z)) 7→ $(v, w, z), [Ren1].

Lemma 2. The algebraB has a representationπ on the space ofL2 sections ofL defined
by

(π(k)ψ)(z) =
∫

X

k(z, w)τ (z, w)ψ(w) dw.

Proof. The parallel transportτ (z, w) ensures that the integral is in the appropriate fibre,
and the fact that it is a representation follows from a calculation using the definition of
the holonomy. �

Before describing the second algebra we need to link the geometrical data more
directly to the groupG. To do this we fix a basepointu ∈ X and introduce the function
φ fromX ×G to line bundle automorphisms defined by

φ(z, g) = $(u, g−1u, g−1z)τ (u, z)−1τ (u, g−1z).

(The ratio of parallel transports defines an operator from the fibreLg−1z to Lz.)
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Lemma 3. The functionφ satisfies

φ(z, x)φ(x−1z, y) = $(u, y−1u, y−1x−1u)φ(z, xy)

φ(z, x)τ (x−1z, x−1w) = τ (z, w)φ(w, x).

Proof. By definition we have

φ(z, x)φ(x−1z, y) = $(u, x−1u, x−1z)$(u, y−1u, y−1x−1z)τ (u, z)−1

τ (u, x−1z)τ (u, x−1z)−1τ (u, y−1x−1z)

=
$(u, x−1u, x−1z)$(u, y−1u, y−1x−1z)

$(u, y−1x−1u, y−1x−1z)
φ(z, xy).

Now by Lemma 2.1,

$(u, x−1u, x−1z)$(u, y−1u, y−1x−1z)

= $(y−1u, y−1x−1u, y−1x−1z)$(u, y−1u, y−1x−1z)

= $(u, y−1x−1u, y−1x−1z)$(u, y−1u, y−1x−1u),

from which the first result follows. For the second result we note (compressing the
notation) that

τ (x−1z, x−1w)φ(z, x)
φ(w, x)

=
$(u, x−1u, x−1z)
$(u, x−1u, x−1w)

τ (x−1z, x−1w)τ (u, x−1z)
τ (u, z)

τ (u,w)
τ (u, x−1w)

=
$(u, x−1u, x−1z)$(u, x−1z, x−1w)

$(u, x−1u, x−1w)
τ (u, x−1w)
τ (u, z)

τ (u,w)
τ (u, x−1w)

= $(x−1u, x−1z, x−1w)
τ (u,w)
τ (u, z)

= $(u, z, w)
τ (u,w)
τ (u, z)

= τ (z, w).

�

The most important aspect of the first result is that

σ(x, y) = φ(z, xy)/φ(z, x)φ(x−1z, y) = $(u, y−1u, y−1x−1u)−1 = $(u, xu, xyu)

is independent ofz. (We note also thatσ(g, 1) = σ(1, g) = σ(g, g−1) = 1. Although these
normalisations do not seriously affect matters they can sometimes be used to simplify
formulae.)

Lemma 4. The functionσ : G×G → T satisfies the cocycle identity,

σ(x, y)σ(xy, g) = σ(x, yg)σ(y, g).

Proof. This is a simple calculation along the lines of those above.�

This result means thatσ defines a projective multiplier or group 2-cocycle forG,
moreover, it is clearly continuous and identically 1 when restricted toG × K and to
K ×G.
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Lemma 5. The group G has a natural unitaryσ-representationU on theL2 sections of
L defined by

U (g)ψ(z) = φ(z, g)ψ(g−1z).

Proof. This follows immediately from Lemma 3.4. �

This projective representation induces an action ofG as automorphisms ofB.

Lemma 6. For anyg ∈ G andk ∈ B we haveU (g)π(k)U (g)−1 = π(g.k), where

g.k(z, w) = k(g−1z, g−1w).

Proof. By direct calculation and use of Lemma 3.2,

(U (g)π(k)U (g)−1ψ)(z)=
∫
φ(z, g)k(g−1z, g−1w)τ (g−1z, g−1w)φ(w, g)−1ψ(g−1w) dw

=
∫
k(g−1z, g−1w)τ (z, w)ψ(g−1w) dw,

from which the result follows. �

The second part of Lemma 3.2 can now be interpreted as saying that the parallel
transportτ behaves covariantly underU (g), that is conjugation byU (g) sendsτ (z, w) to
τ (g−1z, g−1w). Takingw = exp(−tX)z and considering the limit ast → 0 we obtain
the following result:

Corollary 1. Theσ-representationU and connection∇ are related byU (g)∇U (g)−1 =
g.∇, whereg.∇ denotes the natural action ofG on forms.

4. Various C∗-Algebras

4.1. The imprimitivity algebra.Theσ-representationU defined in the previous section
is clearly equivalent to one induced from aσ-representation,L, of the isotropy subgroup
K. Such representations are characterised by the fact that they also admit an action
of the imprimitivity algebra. In general this can be defined as one of Green’s twisted
crossed product C∗-algebras [Green], but in the case of a continuous multiplierσ there
is a simpler direct construction. The imprimitivity algebra,A = A(G,K, σ), onG/K
is a completion of the algebraA0 = Cc(G/K,G) with multiplication

(α ∗ β)(s, g) =
∫

G

α(s, x)β(x−1s, x−1g)σ(x, x−1g)−1 dx

and involution
α∗(s, g) = σ(g, g−1)α(g−1s, g−1).

(With the conventions of the last sectionσ(g, g−1) = 1 and could be omitted.) These
formulae use the unimodularity ofG and the existence of aG-invariant measure on
G/K, otherwise some Radon-Nikodym derivatives would be needed.

The algebra has a trace

trA(α) =
∫

G/K

α(s, 1)ds.
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More details may be found in [Green], where it is also shown thatA(G,K, σ) is Morita
equivalent toC∗(K,σ)⊗K(L2(G/K)), whereC∗(K,σ) denotes the twisted groupC∗-
algebra. LikeB the imprimitivity algebra is a groupoid algebra (being an extension byσ
of the algebra of the transformation groupoid forG acting onX) and most of this paper
could be understood in the context of groupoids, [Ren1].

The algebraB could have been derived fromA as a quotient, as we shall now
show. LetL be aσ-representation ofK on a Hilbert spaceHL. (Since the multiplier
of the last section is 1 whenever either of its arguments is inK, one could takeL = 1,
but the argument works more generally.) For eachL the imprimitivity algebra has a
natural∗-representation on the induced representation space ofHL-valued functions on
G satisfying the equivariance condition

ψ(gk) = σ(g, k)−1L(k)∗ψ(g)

for all g ∈ G andk ∈ K. This representation is given by

(α.ψ)(z) =
∫

G

α(zK, x)σ(x, x−1z)−1ψ(x−1z)dx.

(It may be checked thatα.ψ satisfies the same equivariance condition asψ.) The group
G has an inducedσ-representation on this function space given by

U (g)ψ(z) = σ(g, g−1z)−1ψ(g−1z).

The imprimitivity algebra incorporates both this action and the multiplication operators,
and so permits the description of quantum mechanical momentum and position operators
onG/K. The group action allows for the free Hamiltonian1

8J.J, whilst the functions
onX = G/K make it possible to add an extra potential,V .

For an appropriate choice ofL, U is equivalent to the representation in the last
section. Indeed we may identify the equivariant functions onG with sections of the line
bundleL and then we have, in the previous notation,

(α.ψ)(z) =
∫

G

α(zK, x)φ(zK, x)ψ(x−1z) dx.

In this form we may easily see the connection to the algebraB of twisted kernels.

Lemma 7. There is a∗-homomorphismα 7→ Tα, defined by

Tα(z, w) =
∫

G

α(z, x)φ(z, x)
τ (z, w)

δ(w, x−1z) dx

fromA ontoB (whereδ just restricts the integration to thosex satisfyingw = x−1z).

Proof. We calculate that

(Tα ∗ Tβ)(z, w)

=
∫
Tα(z, v)Tβ(v, w)

$(z, v, w)
τ (z, v)τ (v, w)

dv

=
∫
α(z, x)β(v, x−1y)

φ(z, x)φ(v, x−1y)
τ (z, w)

δ(v, x−1z)δ(w, y−1xz) dx dy dv

=
∫
α(z, x)β(x−1z, x−1y)

φ(z, x)φ(x−1z, x−1y)
τ (z, w)

δ(v, x−1z)δ(w, y−1z) dx dy dv
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=
∫
α(z, x)β(x−1z, x−1y)

φ(z, y)
σ(x, x−1y)τ (z, w)

δ(v, x−1z)δ(w, y−1z) dx dy dv

=
∫

(α ∗ β)(z, y)
φ(z, y)
τ (z, w)

δ(w, y−1z) dy = Tα∗β(z, w),

which proves the homomorphism property. It follows similarly that it is a∗-homomorph-
ism.

To see that it is surjective we note that if the Haar measure onK is normalised then

α(z, x) = Tα(z, x−1z)
τ (z, x−1z)
φ(z, x)

provides an inverse. (The key is to note that ifg(z)u = z andg(w)u = w thenw = x−1z
forcesx to have the formg(z)kg(w)−1 for somek ∈ K.) �

This may be interpreted as saying thatB is a quotient ofA, and this means that the
behaviour of the two algebras is very similar. For this reason we shall often merely show
the constructions in the case of one and leave it as an exercise to fill in the details for the
other. However, it will be useful to note thatB has a natural trace

trB(T ) =
∫

X

T (z, z) dz.

4.2. The regular representation.The trace gives rise to an inner product

〈α, β〉 = trA(α∗ ∗ β) =
∫

G/K×G

α(s, x)β(s, x) ds dx

onA0, and completion with respect to this gives rise to a Hilbert spaceHA on whichA0
is represented by left multiplication. Since the action is continuous this extends to give
the left regular representation ofA. This is given by the same formula as the algebra
multiplication. That is, for9 ∈ HA, one has

(α.ψ)(s, g) =
∫

G

α(s, x)ψ(x−1s, x−1g)σ(x, x−1g)−1 dx.

There is also aσ-representation ofG onHA, obtained by sendingg ∈ G to the function
(s, x) 7→ δg(x).

For any unitary characterχofK, one may define a generalized regular representation
on the spaceHχ

A of functionsψ ∈ Cc(G×G) which satisfy the condition

ψ(zk, g) = χ(k)ψ(z, g).

Since|ψ(zk, g)|2 is independent ofk, we may use the same inner product as before, and
it is easy to check that the action

(α.ψ)(z, g) =
∫

G

α(zK, x)ψ(x−1z, x−1g)σ(x, x−1g)−1 dx

respects the equivariance condition. Whenχ = 1 we obtain the regular representation.
We could similarly define the regular representation ofB and also a generalization

defined by
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(T.9)(z, w) =
∫

X

T (zK, v)9(v, w) dv

on the space of kernels9 onG×G which satisfy9(zk1, wk2) = χ(k2)9(z, w).

4.3. The0-invariant imprimitivity algebra. Let 0 be another subgroup ofG, and let
A0 denote the part of the imprimitivity algebra which commutes with the induced
representation of0. This is readily seen to consist of those functionsα ∈ A(G,K, σ)
which satisfy the conditionγ.α = α, where

(γ.α)(s, g) = σ(g, γ)σ(γ, γ−1gγ)−1α(γ−1s, γ−1gγ)

for all γ ∈ 0. To see this we note that

(δγ ∗ α)(s, g) = σ(γ, γ−1g)α(γ−1s, γ−1g),

which is identical to

(γ.α ∗ δγ)(s, g) = σ(gγ−1, γ)−1γ.α(s, gγ−1) = σ(γ, γ−1g)−1α(γ−1s, γ−1g).

Wheng = 1 the conditionγ.α(s, g) = α(s, g) reduces toα(γ−1s, 1) = α(s, 1) so that
one obtains a trace

trA0 (α) =
∫

0\G/K

α(s, 1)ds.

(More generally, the0-invariant functions are determined by their values at a single
points of each0 orbit onG/K.) Using trA0 one may define a regular representation of
A0.

In the case of the twisted kernel algebra one may likewise pick out a0-invariant sub-
algebraB0, which commutes withU (γ) for all γ ∈ 0. Using Lemma 3.2 this condition
reduces simply to the requirement that the kernel satisfiesk(γ−1z, γ−1w) = k(z, w).
The natural trace trB0 for this algebra is given by the same formula as before except that
the integration is over a fundamental domainX0 rather thanX:

τB0 (T ) =
∫

X0

T (z, z)dz.

4.4. Morita equivalence.Later we shall need someK-theory, and so it will be useful
to show that the algebraB0 is Morita equivalent to another more tractable algebra. We
shall do this by using the groupoid equivalence arguments of [M+R+W], or rather the
twisted version, [Ren2, Ren3]. We have already noted thatB is an extension of the
groupoidX × X by a cocycle defined by$, and0 invariance of$ means thatB0 is
likewise the extension ofX ×0 X by$, whereX ×0 X denotes the groupoid obtained
by factoring out the diagonal action of0. More precisely, the groupoid elements are0

orbits (x, y)0 = {(γx, γy) : γ ∈ 0}, and (x1, y1)0 and (x2, y2)0 are composable if and
only if y1 = γx2 for someγ ∈ 0, and then the composition is (x1, γy2)0.

Theorem 1. The algebraB0 is Morita equivalent to the twisted group algebraC∗(0, σ).

Proof. This result will follow immediately from [Ren2], Corollaire 5.4 (cf. [M+R+W]
Theorem 2.8) once we have established the groupoid equivalence in the following lemma.
�
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Lemma 8. The line bundleL overX provides an equivalence (in the sense of [Ren2]
Definition 5.3) between the groupoid extensions(X ×0 X)$ ofX ×0 X defined by$
and0σ of 0 defined byσ.

Proof. Both extensions are byT. We write the elements of (X ×0 X)$ as triples
(x, y, t) ∈ X ×X × T with the first two elements representing a diagonal0 orbit. Ele-
ments are composable if their first two components are composable, and, wheny1 = γx2,

(x1, y1, t1)(x2, y2, t2) = (x1, γy2, t1t2$(x1, y1, γy2)).

The line bundle can be trivialised and written asX × C. We let (X ×0 X)$ act
on the left of the line bundle by defining (x, y, t) to act on (z, u) if z = γy for some
γ ∈ 0, and then the result of the action is (γx, τ (γx, z)tu). (One may check that this
gives an action using the relationship between parallel transport and holonomy and the
0-invariance of$.)

The twisted groupoid0σ has an underlying set0 × T, all elements are composable,
and multiplication is given by

(β, s)(γ, t) = (βγ, σ(β, γ)st).

It acts on the right ofL by

(z, u).(γ, t) = (γ−1z, φ(z, γ)−1tu).

(The fact that this defines an action follows from the definition ofσ in terms ofφ.) We
may now check that these actions commute, since, ifz = βy,

[(x, y, t)(z, u)](γ, s) = (βx, τ (βx, z)tu)(γ, s) = (γ−1βx, φ(βx, γ)−1τ (βx, z)tus),

whilst
(x, y, t)[(z, u)(γ, s)] = (x, y, t)(γ−1z, φ(z, γ)−1us)

= (γ−1βx, τ (γ−1βx, γ−1z)φ(z, γ)−1tus),

and the equality of these two follows from the second part of Lemma 3.2.

Remarks.We will observe in Sect. 9 that the algebraC∗(0, σ) is isomorphic toC∗(0, σ)
which in turn is known to be isomorphic to the imprimitivity algebra forσ-inducing from
0 toC∗(G, σ). This latter algebra, denotedC∗(G/0, G) is the completion ofCc(G/0, G)
where the latter has a multiplication analogous to that described above forCc(G/K,G)
(simply replaceK by 0 in the earlier discussion). Thus a corollary of our results in this
subsection is thatB0 is Morita equivalent toC∗(G/0, G). Furthermore our discussion
below of a Fredholm module forB0 may be modified so as to produce a Fredholm
module forC∗(G/0, G) whose character, forG = SO(n, 1), is also given by the area
cocycle. We omit the details here as they would take us too far afield (see however the
analogous discussion in the discrete case in [Co2]).

4.5. The Hamiltonian.We have asserted informally that the Hamiltonian can be accom-
modated within the algebrasA0 andB0 and we shall now provide the proof. We work
with the smaller algebraB0, the results forA0 following similarly.

Lemma 9. The HamiltonianH = 1
2∇∗.∇ commutes with the projective representation

U .
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Proof. We recall from Corollary 3.6 thatU (g)∇U (g)−1 = g.∇, so that

U (g)HU (g)−1 =
1
2

(g.∇)∗(g.∇),

and, since the Riemannian structure is invariant under the action ofG, this is justH.
�

We could also obtain the same result by writingH = 1
8J.J + 1

4B
2 (for some constant

B) and using the fact that the Casimir operator commutes with the representation, pro-
vided that we check thatJk are the representatives of the Lie algebra generators in the
representationU . Using the invariance ofH it is now not difficult to see the following
result:

Lemma 10. The HamiltonianH is affiliated to the von Neumann algebra generated by
the representationπ of B.

SinceH is G-invariant and soa fortiori also0-invariant, it is sufficient to look at
B0.

Corollary 2. The HamiltonianH is affiliated to the von Neumann algebra generated
by the representationπ of B0.

We next observe that Brüning and Sunada have proved an estimate on the Schwartz
kernel of exp(−tH) for t > 0, which implies that it isL1 in each variable separately.
Since this kernel is0-invariant (by Lemma 7.1) it follows (in exactly the same fashion as
Lemma 4 of [BrSu]) that this estimate implies that exp(−tH) is actually in the algebra
B0.

Lemma 11. The operatore−tH is an element ofB0.

Corollary 3. The spectral projections ofH corresponding to gaps in the spectrum lie
in B0.

Proof. If µ lies in a gap of the spectrum ofH then letf be a continuous approximate
step function which is identically one on the part of the spectrum ofH contained in
[0, µ] and zero on the part contained in [µ,∞). Defineg(x) = f ◦ ln(1/x) for x ∈ [0, 1].
Theng is a bounded continuous function which, when applied toe−tH gives the spectral
projection corresponding to the interval [0, µ]. �

Finally we consider the interacting HamiltonianH + V , whereV is a0-invariant
function onX. Notice that ifψ is a continuous function of compact support on (X×X)/0
thenV ψ is also such a function and hence defines an element in the groupoid algebra.
Now, by Lemma 11, the resolvent ofH lies inB0 and by writing

(z −H − V )−1 = (1− (z −H)−1V )−1(z −H)−1,

and expanding (1− (z − H)−1V )−1 in a power series, we see that the resolvent of
H + V is in the algebraB0. This entails, by a simple modification of Corollary 3, that
the spectral projections ofH +V corresponding to a gap in the spectrum also lie inB0.
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5. The Discrete Model

In this section we formulate a version of the integer quantum Hall effect on a graph in
hyperbolic space. The discussion uses a construction due to Sunada [Sun] together with
a modification of Connes’ work on Fredholm modules for the groupC∗-algebra of a
discrete subgroup of a Lie group [Co2].

The graph is obtained by taking our group0, the fundamental group of a Riemann
surface, which acts freely on hyperbolic space, fixing a base pointu and taking the orbit
throughu under the0 action. This gives the vertices of the graph. The edges of the
graph are geodesics constructed as follows. Each element of the group may be written
as a word of minimal length in the 2g generators and their inverses. Each generator and
its inverse determines a unique geodesic emanating from a vertexx and these form the
edges of the graph. Thus each wordx in the generators determines a piecewise geodesic
path fromu to x.

Sunada constructs a Hamiltonian on`2(0.u) which is a generalized Harper operator.
This construction, specialised to our case, has the following form. First we note that
we may trivialise the restriction of the line bundle to the vertices and so without loss of
generality the appropriate Hilbert space becomes`2(0.u). While the construction works
for any connection 1-formA on a line bundleL over hyperbolic space we make the
formulae explicit by restricting to the case whereA is the one formη. For each directed
edgee of the graph joiningo(e) to t(e) we define a functionτ (e) = exp(i

∫
e
η). Then

τ (e) satisfies

τ (γ.e) = τ (e)
(co(e) + d
co(e) + d

)θ(ct(e) + d

ct(e) + d

)θ

,

whereγ =
(
a b
c d

)
.We introduce the notation

sγ(w) =
(cw̄ + d
cw + d

)θ

.

Remarks 2.Note that in our earlier notation these definitions amount to

τ (e) ≡ τ (t(e), o(e)),

while the function from0 × H to U (1) given by (γ, w) 7→ sγ(w) is a projective 1-
cocycle for the0 action onH which is cohomologous to the function mapping (γ, w) 7→
φ(γ.w, γ).

Consequently there is a projective action of0 on `2(0.u) given onf ∈ `2(0.u) by

ρ̃γf (w) = sγ(γ−1w)f (γ−1w).

We have

ρ̃γ1γ2 =
sγ1γ2(γ

−1
2 γ−1

1 x)

sγ1(γ
−1
1 x)sγ2(γ

−1
2 γ−1

1 x)
ρ̃γ1ρ̃γ2,

and Sunada shows that the function multiplying ˜ργ1ρ̃γ2 is independent ofx. This is exactly
the relation found at the end of Lemma 3: the correspondence is given byφ(z, ∗) ↔
s∗(∗−1z). To obtain an explicit expression for this function, letγ3 = γ1γ2, and write

(γi) =
(
ai bi
ci di

)
for i = 1, 2, 3. Then a direct calculation shows that

ρ̃γ1γ2 = σ(γ1, γ2)ρ̃γ1ρ̃γ2,
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whereσ is given by

σ(γ1, γ2) = exp(2iθ(arg (c3w + d3) − arg (c1(γ2w) + d1) − arg (c2w̄ + d2))).

It is not difficult to see that the right hand side is independent of the choice ofw.
Following [Sun], we define our discrete Hamiltonian, forf ∈ `2(0.u), by

hτf (w) =
∑

e
o(e)=w

τ (e)f (t(e)).

Thenhτ is a generalized difference operator (Sunada shows that the Harper operator
arises in a similar fashion). One can verify by direct calculation thathτ commutes with
the projective action of0. This will, however, become readily apparent when we transfer
this construction tò2(0). Defineι : `2(0.u) → `2(0) by:

ι(f )(γ) = ρ̃(γ)f (u).

Observe that
ι(ρ̃(µ)f )(γ) = σ(γ, µ)ι(f )(γµ).

Thusι intertwines ˜ρ with theσ̄-representation:

ρ(µ)ι(f )(γ) = σ(γ, µ)ι(f )(γµ).

Henceforth we useι to identify `2(0.u) with `2(0).

Proposition 1. [Sun] The operatorhτ on `2(0.u) maps to the operatorHτ on `2(0)
underι, where

Hτf (γ) =
∑
µ∈0

σ(µ, µ−1γ)−1a(µ)f (µ−1γ)

anda is the function on0 given by

a(γ) = sγ(u)
∑

e
o(e)=u

t(e)=γ.u

τ (e).

Corollary 4. The bounded self-adjoint operatorHτ is in the algebraic twisted group
algebraC(0, σ) (the elements of finite support inC∗(0, σ)) as the functiona has finite
support. MoreoverHτ acts on the left as an element of this algebra and so commutes
with theσ̄-representationρ, as the latter acts on the right.

6. A Kubo Formula

6.1. Conductivity cocycles.In this subsection we present an argument which derives
analogues of the Kubo formula for the hyperbolic “Hall conductivity”. In Subsection 7.2
we show how to construct, from the results of this subsection, a unique cocycle which
may be compared with the character of the Fredholm module of Sect. 7.

Our reasoning here is that the Hall conductivity in the Euclidean situation is mea-
sured experimentally by determining the equilibrium ratio of the current in the direction
of the applied electric field to the Hall voltage, which is the potential difference in the
orthogonal direction. To calculate this mathematically we instead determine the compo-
nent of the induced current that is orthogonal to the applied potential. The conductivity
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can then be obtained by dividing this quantity by the magnitude of the applied field. In
the hyperbolic case it would seem at first sight that there are no preferred directions.
However interpreting the generators of the fundamental group as geodesics on hyper-
bolic space gives a family of preferred directions emanating from the base point. For
each pair of directions it is therefore natural to imitate the procedure of the Euclidean
case and mathematically this is done as follows.

The HamiltonianH in a magnetic field depends on the magnetic vector potentialA
and the functional derivativeδkH ofH with respect to the components ofA, denotedAk,
gives the current densityJk. (For simplicity we take variations within a one-parameter
family.) The expected value of the current in a state described by a projection operator
P is therefore tr(PδkH) (cf [Av+S+Y ] Eq. (3.2)). The following claim is not proved by
a rigorous argument: one needs to check various analytical details as in [Xia]. We have
refrained from doing so here as this would take us too far afield from the main point,
namely, obtaining a sensible hyperbolic Kubo formula which may be compared with the
character of the Fredholm module constructed in the next section. For the moment tr will
denote a generic trace. We will become specific after extracting a rigorous definition of
the Kubo formula.Claim.

tr(PδkH) = itr(P [∂tP, δkP ]).

Plausibility argument. By using the invariance of the trace under the adjoint action of
operators and the equation of motion we see that

tr(P [∂tP, δkP ]) = −tr([P, δkP ]∂tP )

= −itr([P, δkP ][P,H])

= itr([P, [P, δkP ]]H).

Now δkP = δk(P 2) = P (δkP ) + (δkP )P , whenceP (δkP )P = 0 and we have

[P, [P, δkP ]] = P (P (δkP ) − (δkP )P ) − (P (δkP ) − (δkP )P )P

= P (δkP ) + (δkP )P = δkP.

Consequently we may write

tr(P [∂tP, δkP ]) = itr((δkP )H) = itr(δk(PH)) − itr(P (δkH)),

and, assuming that the trace is invariant under variation ofAk, the first term vanishes
leaving the result asserted.

If the onlyt-dependence inH andP is due to the variation ofAj , a component distinct
fromAk, then∂t = ∂Aj/∂t× δj . Working in the Landau gauge so that the electrostatic
potential vanishes, the electric field is given byE = −∂A/∂t, and so∂t = −Ejδj .
Combining this with the previous argument we arrive at the following result:

Corollary 5. The conductivity for currents in thek direction induced by electric fields
in thej direction is given by−itr(P [δjP, δkP ]).

Proof. The expectation of the currentJk is given by

tr(PδkH) = itr(P [∂tP, δkP ]) = −iEj tr(P [δjP, δkP ]),

from which the result follows immediately. �
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6.2. The derivations on a Riemann surface.On a Riemann surface it is natural to
investigate changes in the potential corresponding to adding multiples of the real and
imaginary parts of holomorphic 1-forms. (For the genus 1 torus with imaginary period
this amounts to choosing forms whose integral round one sort of cycle vanishes but the
integral round the other cycle is non-trivial. This corresponds to putting a non-trivial
voltage across one cycle and measuring a current round the other.)

LetΣg = H/0be the Riemann surface determined by quotienting by0. We follow the
usual conventions (see for example [GH]) in fixing representative homology generators
corresponding to cyclesAj , Bj , j = 1, 2, . . . , g with each pairAj , Bj intersecting in
a common base point and all other intersection numbers being zero. We letaj , j =
1, 2, . . . , 2g be harmonic 1-forms dual to this homology basis (this means thataj , j =
1, . . . , g are dual toAj , j = 1, . . . , g and aj+g, j = 1, 2, . . . , g are dual toBj , j =
1, 2, . . . , g).

Definition. Let

δjτ (z, w) = i
∫ z

w

αj τ (z, w)

and

δj$(u, g−1u, g−1z) = i
∫

∂1

aj $(u, g−1u, g−1z)

where1 is a triangle with vertices at the three arguments of$.

One then calculates that

δjφ(z, g) = i

(∫
∂1

aj −
∫ z

u

aj +
∫ g−1z

u

aj

)
φ(z, g)

= i

(∫ g−1u

u

aj +
∫ g−1z

g−1u

aj −
∫ z

u

aj

)
φ(z, g).

This can also be written as

i

∫
∂Q

aj − i

∫ z

g−1z

aj ,

whereQ denotes the geodesic quadrilateral with vertices atu, g−1u, g−1z andz. By
Stokes’ Theorem the first integral can also be written as

∫
Q
daj , and this vanishes as we

choseaj to be the harmonic representative of its class, leaving just

−i
∫ z

g−1z

aj .

Using this last equation in the formula for the action of the imprimitivity algebra
(preceding Lemma 7) we see that we have a densely defined derivation on the algebrasA
andB because the action can now be written as the commutator ofαwith multiplication
by the function�j(z) = i

∫ z

u
aj :

δjα = [�j , α].

Suppose thatα is a kerneldecaying rapidly. By this we mean that it satisfies an estimate

|α(x, y)| ≤ ϕ(d(x, y)),
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whereϕ is a positive and rapidly decreasing function onR. We claim thatδjα lies
in A or B respectively: this follows by noting that the map fromH to R2g given by
Ξ : z 7→ (�1(z), . . . ,�2g(z)) is the lift to H of the Jacobi map, [GH] (this map is
usually regarded as mapping fromΣg to the Jacobi varietyJ(Σg), however we are
thinking of it as a map between the universal covers of these spaces). NowΞ is globally
Lipschitz and this means we may estimate the kernel of [�j , α]. A simple argument
shows that it also decays rapidly.

That this commutator also has the correct properties to define a derivation onA0 or
B0 follows from the fact that forγ ∈ 0,

�j(γ.z) − �j(z)

is constant independent ofz so that0 equivariance or invariance is preserved. In the
case of the torus thought of as a rectangle inR2 with opposite edges identified, one may
takeaj + iak = dz, and then

(δj + iδk)α = i[z − u, α].

Thus our argument reproduces the standard Kubo formula [Xia] in the Euclidean case.
Notice that our mapΞ from H to R2g gives the period lattice inR2g (that is the

lattice determined by the periods of the harmonic formsaj) to be the standard integer
latticeZ2g so thatJ(Σg) = R2g/Z2g. We may summarize the previous discussion as

Lemma 12. For operatorsA0, A1, A2 in B0 whose integral kernels are rapidly decaying
we have cyclic cocycles defined by

cj,k(A0, A1, A2) = trB0 (A0[δjA1, δkA2]) = trB0 (A0[�j , A1][�k, A2])

for j, k = 1, . . . , 2g.

Each of these formulae forcjk could in principle be regarded as giving a Kubo
formula so that we appear to have an embarrassment of riches. However each on their
own cannot be related to the Chern character of the Fredholm module of the next section.
A clue as to what is happening is provided by noting that each two formaj ∧ aj+g is
harmonic and hence is a multiple of the area two form onΣg, thus there is certainly
some degeneracy here and we resolve it at the end of the next section.

7. A Fredholm Module

We shall now assume thatX has a spin structure, and we writeS for the spin bundle.
The representation ofA0 can then be extended to an action onHχ

A ⊗ S as in Sect.
4.2. This module can be equipped with Fredholm structure by takingF to be Clifford
multiplication by a suitable unit vector (to be explained below), and using the product of
the trace onHχ

A and the graded trace on the Clifford algebra. (Ifε denotes the grading
operator on the spinors then the graded trace is just the composition tr◦ ε.)

The same module can also be described more explicitly: it splits intoHχ
A ⊗ S+ ⊕

Hχ
A ⊗ S− (with the superscripted sign indicating the eigenvalue ofε), and this may be

written asHθ1
A ⊕ Hθ2

A . The involutionF is then a matrix multiplication operator of the
form

F =

(
0 f1
f2 0

)
,
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with (fj .ψ)(z, g) = fj(z, g)ψ(z, g) for some suitable functionsfj ∈ Cc(G × G), sat-
isfying f1 = f−1

2 . For consistency, we require that for anyψ ∈ Hθ1
A , f1.ψ ∈ Hθ2

A .
Since

(f1.ψ)(zk, g) = f1(zk, g)ψ(zk, g) = θ1(k)f1(zk, g)ψ(z, g),

we demand thatθ2(k)f1(z, g) = θ1(k)f1(zk, g), or

f1(zk, g) = (θ−1
1 θ2)(k)f1(z, g),

andθ−1
1 θ2 is known directly from the structure ofS. (WhenX is the hyperbolic plane

it is the complex character describing the action ofK on the complex tangent space to
X atu.) A short calculation shows that

([fj , α].ψ)(z, g) =
∫

G

(
fj(z, g) − fj(x−1z, x−1g)

) α(zK, x)ψ(x−1z, x−1g)
σ(x, x−1g)

dx.

We observe in the next subsection that this module is 2-summable at least for kernels
which decay sufficiently rapidly. Assuming this fact then it follows that ((ω ∗ [fj , α] ∗
[fk, β]).ψ)(z, g) is given by∫

G×G×G

(
fj(x−1z, x−1g) − fj(y−1z, y−1g)

) (
fk(y−1z, y−1g) − fk(u−1z, u−1g)

)
ω(zK, x)α(x−1zK, x−1y)β(y−1zK, y−1u)
σ(x, x−1g)σ(x−1y, y−1g)σ(y−1u, u−1g)

ψ(u−1z, u−1g) dx dy du.

From this (and using tr to denote the usual trace on operators on our module) we can
calculate the cyclic cocycle onA as

τc(ω, α, β) = tr [εω ∗ [F, α] ∗ [F, β]] = tr [ω ∗ ([f1, α] ∗ [f2, β] − [f2, α] ∗ [f1, β])] ,

which can be expressed as∫
G/K×G×G

8(zK, x, y)
ω(zK, x)α(x−1zK, x−1y)β(y−1zK, y−1)

σ(x, x−1y)σ(y, y−1)
dzK dx dy,

where

8(zK, x, y) =
∫

G

(
f1(x−1z, x−1g) − f1(y−1z, y−1g)

) (
f2(y−1z, y−1g) − f2(z, g)

)
− (f2(x−1z, x−1g) − f2(y−1z, y−1g)

) (
f1(y−1z, y−1g) − f1(z, g)

)
dg.

(Using the equivariance offj it is easy to check that this depends onz only through
zK.) Simplifying and usingf1f2 = 1, the integrand reduces to(
f1(z, g)f2(x−1z, x−1g) + f1(x−1z, x−1g)f2(y−1z, y−1g) + f1(y−1z, y−1g)f2(z, g)

)
−(f2(z, g)f1(x−1z, x−1g)+f2(x−1z, x−1g)f1(y−1z, y−1g) + f2(y−1z, y−1g)f1(z, g)

)
.

This can also be written more compactly as∣∣∣∣∣∣
1 1 1

f1(z, g) f1(x−1z, x−1g) f1(y−1z, y−1g)
f2(z, g) f2(x−1z, x−1g) f2(y−1z, y−1g)

∣∣∣∣∣∣ ,
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or as
(1 − f1(x−1z, x−1g)f2(z, g))(1 − f1(y−1z, y−1g)f2(x−1z, x−1g))

(1 − f1(z, g)f2(y−1z, y−1g)),

which also arises naturally from an alternative expression for the cocycle.
Suppose thatϕ is aU (1) valued function on the group, which satisfiesϕ(kgh) =

χ1(k)ϕ(g)χ2(h) for k andh in K and someσ-charactersχ1 andχ2 of K. If χ−1
1 χ2 =

θ−1
1 θ2, we may takef1(z, g) = ϕ(z−1gz) to obtain a function satisfying our earlier

consistency condition.
In the case ofG = SU(1, 1) andK the diagonal subgroup, we may take the function

ϕ used by Connes [Co2], which is essentially the Mishchenko element. With the group
elements all conjugated byz it now follows as in [Co] that8(zK, x, y)/4πi is the area
of the hyperbolic geodesic triangle with verticesu, z−1yz.u andz−1xz.u. Acting with
z and recalling that, sinceu is stabilised byK, z.u can be identified withs = zK,
8(zK, x, y)/4πi is also the area of the geodesic triangle with verticess, y.s andx.s.

In the next subsection we will see that the module is 2-summable for suitably de-
caying kernels. Sincefj(γ−1z, γ−1gγ) = ϕ(z−1γγ−1gγγ−1z) = fj(z, g), F preserves
the0-invariant subspace, so that there is a similar expression for a cyclic cocycleτc,0

in that case, except thats is integrated only over the0 orbits inG/K. More precisely,
using tr0 to denote this restricted range of integration, one has:

Theorem 3. There is a 2-summable Fredholm module(F,Hχ
τ ⊗ S) over a dense sub-

algebra A0
0 of A0, stable under the holomorphic functional calculus, whose Chern

character is given by the area cocycle onH. That is, in the notation above, one has

τc,0(ω, α, β)

= −tr0 [εω ∗ [F, α] ∗ [F, β]] = −tr0 [ω ∗ ([f1, α] ∗ [f2, β] − [f2, α] ∗ [f1, β])] ,

which can be expressed as

−
∫

0\G/K×G×G

8(0zK, x, y)
ω(zK, x)α(x−1zK, x−1y)β(y−1zK, y−1)

σ(x, x−1y)σ(y, y−1)
dzK dx dy,

where8 is given as above. Therefore by the index pairing in [Co2], one has

index(PFP ) = 〈[τc,0], [P ]〉,
whereP denotes a projection inA0

0 andindex(PFP ) denotes the index of the Fredholm
operatorPFP acting on the Hilbert spacePHχ

τ ⊗ S.

We will prove Theorem 3 in the next subsection. The version of Theorem 3 which
applies toB0 is as follows:

Theorem 4. There is a dense subalgebraB0
0 of B0 stable under the holomorphic func-

tional calculus and a 2-summable Fredholm module(F,Hχ
τ ⊗ S) for B0

0 with corre-
sponding cyclic 2-cocycle

τc,0(Tω, Tα, Tβ)

= −
∫

X0×X×X

8(z, x, y)$(z, x, y)Tω(z, x)Tα(x, y)Tβ(y, z) dz dx dy.
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The character of this Fredholm module, forP a projection inB0
0 , is given in the notation

of Corollary 12 of Sect. 10, by

index(PFP ) = 2(g − 1)(rankE0 − rankE1) ∈ Z,

whereindex(PFP ) again denotes the index of the Fredholm operatorPFP acting on
the Hilbert spacePHχ

τ ⊗ S.

This theorem can be interpreted as anindex theoremequating an analytic index with
a topological index. Theorem 4 may be used to obtain the following result:

Corollary 6. Let P be a projection into a gap in the spectrum of the Hamiltonian
Hη,V . ThenP lies in a 2-summable dense subalgebraB0

0 of B0, so that in the notation
of Corollary 12 of Sect. 10 one has

index(PFP ) = 〈τc,0, [P ]〉
= 2(g − 1)(rankE0 − rankE1) ∈ Z.

The statements referring to Sect. 10 will be clear after we establish there the hyper-
bolic analogues of Xia’s results [Xia]. The proof of the claim that the spectral projections
(corresponding to gaps in the spectrum) of the Hamiltonian lie inB0

0 and the proof of
Theorem 3 are contained in the next subsection.

7.1. Proof of summability of the Fredholm module.Here we discuss the technicalities
needed for the proof of Theorem 3 and of Corollary 6. It is easy to calculate from the
formulae in the previous section that 2-summability requires finiteness of the expression
tr0([f1, α]∗[f2, α]), which equals∫

X0×G×G

[f1(z, g) − f1(x−1z, x−1g)]

[f2(z, g) − f2(x−1z, x−1g)]|α(x−1z, x−1)|2 dz dx dg,
wherez ∈ X0, a fundamental domain inH for the0 action. Lettingp : G/K → G be
a cross section and using the formulae forf1 andf2 this reduces to∫

X0×G×G

|ϕ(p(z)−1gz) − ϕ(p(z)−1gx−1z)|2|α(x−1z, x−1)|2 dz dx dg.

We are more interested in the algebra of twisted kernels as in Theorem 4, so we will
present the argument for them noting that the relation forα in terms ofTα as given in
the proof of Lemma 7 gives, by the the unitarity ofτ andϕ,

|α(x−1z, x−1)|2 = |Tα(x−1z, z)|2.
Thus the summability result forB0 implies that forA0.

Making this substitution we then get for our integral∫
X0×G×G

|ϕ(p(z)−1gz) − ϕ(p(z)−1gx−1z)|2|Tα(x−1z, z)|2 dz dx dg.

Finally we note that settingp(z)−1g = v−1 andx−1z = w it is clear that|ϕ(v−1z) −
ϕ(v−1w)| depends only on the cosetsvK andwK, allowing us to reduce the integral to
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X0×X×X

|ϕ(v−1z) − ϕ(v−1w)|2|Tα(w, z)|2 dz dwK dvK.

Only the first factor depends onv. Write v = γv0 for γ ∈ 0 andv0 ∈ X0. Then we
obtain for our integral after a change of variables:∑

γ∈0

∫
γ.X0×X×X0

|ϕ(v−1
0 z) − ϕ(v−1

0 w)|2|Tα(γw, γz)|2 dz dwK dv0K,

so that by theγ invariance of the kernelTα one obtains∫
X×X×X0

|ϕ(v−1
0 z) − ϕ(v−1

0 w)|2|Tα(w, z)|2 dz dwK dv0K.

By a further change of variable we obtain∫
X×X×X0

|ϕ(z) − ϕ(w)|2|Tα(v−1
0 w, v−1

0 z)|2 dz dwK dv0K.

Notice that, by Lemma 6,Tα(v−1
0 w, v−1

0 z) is the integral kernel for the operator obtained
by conjugating byU (v0). It follows therefore that finiteness of the triple integral is
guaranteed by the convergence of∫

X×X

|ϕ(z) − ϕ(w)|2|Tα(w, z)|2 dz dwK.

To avoid repetition let us first focus on the case of greatest interest, where we consider
the integral kernels of a spectral projectionP of the HamiltonianH+V corresponding to
a gap in the spectrum. As it is obtained from the Hamiltonian using the smooth functional
calculus from a function of compact support we can obtain a growth estimate on the
integral kernel (see below) which will ensure convergence. To lighten the notation we
let z, w ∈ X andk(z, w) denote the integral kernel as a function onX × X. Taking
χ1 = 1 so thatψ(gk) = ϕ(g) is well defined, the discussion of the previous paragraph
leads us to consider whether∫ ∫

|(ψ(z) − ψ(w))k(z, w)|2dz dw (∗)

is finite. LetX0 be a fundamental domain for the diagonal action of0 onX ×X. Then
the previous integral, for0 invariant kernels, is given by∑

γ∈0

∫ ∫
X0

|(ψ(γ.z) − ψ(γ.w))k(z, w)|2dz dw.

By an argument due to Connes [Co], we have the estimate

|ψ(γ.z) − ψ(γ.w)|2 ≤ C exp(−2d(u, γ.z) +C1d(γ.z, γ.w)).

(Hereu is the base point inX, d denotes the hyperbolic metric andC,C1 are constants.)
We claim that, in addition, the following estimate holds:

|k(z, w)|2 ≤ C2 exp(−C3d(z, w)2), (∗∗)
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whereC2, C3 are constants. This fact goes back to [CGT] although in the form we need
it here, for the HamiltoniansH + V of Sect. 4, it can be deduced from [BrSu]. This is
because [BrSu] prove (**) whenk is the kernel of the heat operatore−(H+V ). Now by
the argument of Corollary 3 there is a smooth function of compact supportg such that
g(e−(H+V )) is the spectral projectionP . To prove that the kernel ofg(e−(H+V )) satisfies
(**) it suffices to observe that we can approximateg uniformly by polynomials without
constant term, so that the kernel ofg(e−(H+V )) has the same off-diagonal decay estimate
as the kernel ofe−(H+V ), namely (**).

Hence the integral in (*) above is smaller than∑
γ∈0

∫ ∫
X0

C4 exp(−C3d(z, w)2 +C1d(z, w) − 2d(u, γ.z)) (∗ ∗ ∗)

for suitable constantsCj , j = 1, 2, 3. As the area in hyperbolic space grows like
exp(d(u, z)), convergence of the infinite sum in (***) is handled by the convergence of
the Poincare series

∑
γ∈0 exp(−2d(u, γ.z)). The convergence of the integral in (***),

over the fundamental domain, is handled by the exponential factor involving the square
of the hyperbolic distance and noting that the integration in the diagonal direction inX0
is over a finite range. (It is also possible to prove 2-summability in the case when0 is
trivial by exploiting the fact that in that case one may use kernels with restrictions on
their support.)

Since operators with kernels which have support in a band around the diagonal are
dense in the algebrasA0 andB0 so too is the set of operators with kernels satisfying
(**). Now the finiteness of (*) is equivalent to asserting that [F, Tα] is Hilbert-Schmidt.
Definition. We denote byB0

0 the subalgebra consisting of operatorsA ∈ B0, with [F,A]
a Hilbert-Schmidt operator.

The argument of the previous paragraph shows thatB0
0 is dense. Now by [Co]B0

0 is
stable under the holomorphic functional calculus. A similar remark handles the existence
of the analogous dense subalgebraA0

0 of A0. This completes the proof of Theorem 3
and the claim concerning the spectral projections of the Hamiltonian as we promised.

7.2. The hyperbolic Connes-Kubo formula.Our aim in this subsection is to give a
geometric interpretation to the cocycles defined in lemma 12 and to prove that a suit-
able linear combination of them is cohomologous to the cocycleτc,0 arising from the
Fredholm module (F,Hχ

τ ⊗ S).
To do this we begin by introducing, for operatorsA0, A1, A2 in B0 whose kernels

k0, k1, k2 are exponentially decaying (cf Eq. (**) of the previous subsection), the cyclic
cocyclecK defined by

cK(A0, A1, A2) =
g∑

j=1

cj,j+g(A0, A1, A2)

=
g∑

j=1

∫
X0×X×X

$(z, x, y)9j(z, x, y)k0(z, x)k1(x, y)k2(y, z) dz dx dy,

where

9j(z, x, y) = (�j(x)−�j(y))(�j+g(y)−�j+g(z))−(�j+g(x)−�j+g(y))(�j(y)−�j(z)).

We claim that
∑g

j=1 9j(z, x, y) is proportional to the “symplectic area” of a triangle in
R2g with verticesΞ(x), Ξ(y), Ξ(z).
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To prove this it suffices to assume that the origin is one of the vertices of the triangle,
so supposez is the base point inH. Then we need to consider the expression

g∑
j=1

9j(z, x, y) =
g∑

j=1

(�j(x)�j+g(y) − �j+g(x)�j(y)).

Let s denote the symplectic form onR2g given by:

s(u, v) =
g∑

j=1

(ujvj+g − uj+gvj).

The so-called “symplectic area” of a triangle with vertices 0, Ξ(x), Ξ(y) may be seen
to be 1

2s(Ξ(x), Ξ(y)). To appreciate this, however, we need to utilise an argument from
[GH] (pp 333-336). In terms of the standard basis ofR2g (given in this case by vertices
in the integer period lattice arising from our choice of basis of harmonic one forms) and
corresponding coordinatesu1, u2, . . . u2g the forms is the two form onR2g given by

ωJ =
g∑

j=1

duj ∧ duj+g.

Now the “symplectic area” of a triangle inR2g with vertices 0, Ξ(x), Ξ(y) is given
by integratingωJ over the triangle and a brief calculation reveals that this yields
s(Ξ(x), Ξ(y))/2, proving our claim.

The previous argument establishes the following result.

Proposition 2. The higher genus analogue of the Kubo formula is given by the cyclic
cocycleτK onB0 defined by

τK(A0, A1, A2) =
g∑

j=1

cj,j+g(A0, A1, A2)

=
g∑

j=1

∫
X0×X×X

9j(z, x, y)$(z, x, y)k0(z, x)k1(x, y)k2(y, z) dz dx dy.

Here thekj are the kernels of theAj , j = 0, 1, 2 (three exponentially decaying elements
of B0) and

∑g
j=1 9j(z, x, y) is proportional to the “symplectic area” of the Euclidean

triangle1E in R2g with verticesΞ(x), Ξ(y), Ξ(z).

To compare the cocycleτK with the cocycleτc,0 arising from our Fredholm module
we note that the pull back formΞ∗(duj) is dual to the homology cycleAj for j = 1, . . . , g
and dual toBj−g for j = g + 1, . . . , 2g (cf. [GH]). ThusΞ∗(duj) differs fromaj by an
exact one form. HenceΞ∗(ωJ ) differs from

∑g
j=1 aj ∧ aj+g by an exact two form. But

each termaj ∧ aj+g is harmonic and hence proportional to the two formωH on H. So
we have for some constantκ, and geodesic triangle1 ⊂ H,∫

1

ωH = κ
∫

1

Ξ∗(ωJ ) = κ
∫

Ξ(1)
ωJ .

Actually a calculation reveals that one can do a little better than this and proves that
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κΞ∗(ωJ ) = ωH.

NowΞ cannot map geodesic triangles to Euclidean triangles inR2g asΞ(1) is a compact
subset of a non-flat embedded two dimensional surface inR2g. Moreover as9j(z, x, y) =
0 whenever the images ofz, x, y underΞ lie in a Lagrangian subspace (with respect to
the symplectic forms) of R2g, τK andτc,0 are not obviously proportional.

After suitable normalisation we will, however, prove they are cohomologous. First
renormaliseωJ so thatΞ∗(ωJ ) = ωH and then normalise

∑g
j=1 9j(z, x, y) so that it

equals−4πi
∫

1E
ωJ . Next we writeωJ = dθ. Considering the differenceτK − τc,0 one

sees that the key is to understand∫
Ξ(1)

ωJ −
∫

1E

ωJ =
∫

∂Ξ(1)
θ −

∫
∂1E

θ.

Now this difference of integrals around the boundary can be written as the sum of three
terms corresponding to splitting the boundaries∂Ξ(1) and∂1E into three arc segments
each. We introduce some notation for this, writing

∂Ξ(1) = Ξ(`(x, y)) ∪ Ξ(`(y, z)) ∪ Ξ(`(z, x)),

where`(x, y) is the geodesic inH joining x andy (with the obvious similar definition
of the other terms). We also write

∂1E = m(x, y) ∪m(y, z) ∪m(z, x),

wherem(x, y) is the straight line joiningΞ(x) andΞ(y) (and again the obvious definition
of the other terms). Then we have∫

∂Ξ(1)
θ −

∫
∂1E

θ = h(x, y) + h(y, z) + h(z, x),

whereh(x, y) =
∫

Ξ(`(x,y)) θ − ∫
m(x,y) θ, with similar definitions forh(y, z) andh(z, x).

Notice that we can writeh(x, y) =
∫

Dxy
ωJ , whereDxy is a disc with boundary

m(x, y) ∪ `(x, y). From this it is easy to see thath(γx, γy) = h(x, y) for γ ∈ 0.
Introduce the bilinear functionalτ1 onB0 given by

τ1(A0, A1) = −4πi
∫

X0×X

h(x, y)k0(x, y)k1(y, x) dx dy = −4πitrB0 (AhA1),

where, ifAj has kernelkj(x, y), for j = 0, 1, thenAh is the operator with kernel
h(x, y)k0(x, y). Of course this definition begs the question of whether the trace is finite.

In order to prove thatτ1 is densely defined we start with some preliminary observa-
tions. By [M+R+W] and [Ren2] there is an isomorphism

8F : B0 ∼= C∗
r (0g, σ) ⊗ K(L2(F )).

HereF denotes a fundamental domain for the action of0g on H. (Note that by the
Packer-Raeburn stabilization theorem, one hasC∗

r (0g, σ) ⊗ K ∼= K or 0g.) Now any
elementx in C∗

r (0g, σ) ⊗ K can be written as a matrix (xij), wherexij ∈ C∗
r (0g, σ).

So we can define

Nk(x) =
(∑

i,j

ν(xij)2
) 1

2
,
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where

ν(xij) =
( ∑

h∈0g

(1 + `(h)2k)|x(h)|2
) 1

2
,

and` denotes the word length function on the group0g. By a mild modification of the
argument given in [Co2], III.5.γ, one can prove that there is a subalgebraB0

∞ of B0

which containsC(0g, σ) ⊗ R, whereR denotes the algebra of smoothing operators on
F , is stable under the holomorphic functional calculus, and is such thatNk(x) < ∞ for
all x ∈ B0

∞ andk ∈ N. Then one shows as in [Co2] that the traceτ⊗Tr onC(0g, σ)⊗R,
is continuous for the normNk, for k sufficiently large, and thus extends by continuity to
B0

∞. Note that elements inB0
∞ have Schwartz kernels which have rapid decay away from

the diagonal. An alternate equivalent construction ofB0
∞ would be to use the algebra

Ag,σ as in Sect. 10, and the results of [Ji].
Summarizing this, we have

Proposition 3. The algebraB0
∞ is dense inB0, is closed under the holomorphic func-

tional calculus and is contained in the idealI of B0 consisting of operators with finite
trace.

NowτK is defined onB0
∞ whileτc,0 is defined onB0

0 as we noted earlier. Both of these
algebras contain the operators whose Schwartz kernels are supported in a band around
the diagonal. Thus the subalgebraB0

∞ ∩ B0
0 is dense and stable under the holomorphic

functional calculus. Ifb denotes the Hochschild coboundary map then a straightforward
calculation reveals thatbτ1 = τK −τc,0. The Lipschitz property of the Jacobi map means
thath(x, y) grows at worst like the square of the hyperbolic distance fromx to y so that
if A0 ∈ B0

∞ then so too doesAh. Hence we haveτ1 defined onB0
∞ ∩ B0

0 , proving the
following theorem.

Theorem 5. The Kubo cocycleτK and the Chern character cocycleτc,0 arising as the
Chern class of the Fredholm module(F,Hχ

τ ⊗ S) are cohomologous as cyclic cocycles
onB0

∞ ∩ B0
0 .

This theorem replaces the Connes-Kubo formula in genus one. The latter formula
states that the two cocycles of the theorem are equal. We see that the situation is more
complex for genusg but from the viewpoint ofK-theory as described in the next section
this theorem is enough to give integrality of the Hall conductivity defined either from
the character of our Fredholm module or from the hyperbolic Kubo formula.

8. K-Theory Aspects

In this section, we compute theK-groups of the twisted groupC∗-algebras which are
relevant to the quantum Hall effect on the hyperbolic plane as a special case of more
general theorems about theK-groups of the twisted groupC∗-algebras of groups0
which are uniform lattices inK-amenable Lie groups.

We recall that any solvable Lie group, and in fact any amenable Lie group isK-
amenable. However, it has been proved by Kasparov [Kas1] in the case of the non-
amenable groupsSO0(n, 1) and by Julg-Kasparov [JuKas] in the case ofSU(n, 1) that
these areK-amenable Lie groups. Cuntz [Cu] has shown that the class ofK-amenable
groups is closed under the operations of taking subgroups, under free products and
under direct products. Our method uses theK-amenability results of Kasparov [Kas1]
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and the Packer-Raeburn stabilization theorem [PR]. In [PR1], one can find an example
where the twistedK-theoryK∗(0\G/K, δ(Bσ)) is not isomorphic toK∗(0\G/K),
even whenG is theK-amenable solvable groupRn o R,K = {e}, 0 = Zn o Z and for
some multiplierσ on 0 with non-trivial Dixmier-Douady invariantδ(Bσ) = δ(σ) 6= 0.
However,K∗(0\G/K, δ(Bσ)) is isomorphic toK∗(0\G/K) whenever the Dixmier-
Douady invariantδ(Bσ) = δ(σ) = 0 is trivial. We identify the Dixmier-Douady invariant
δ(Bσ) with the image ofσ under the connecting homomorphismδ : H2(0, U (1)) →
H3(0,Z) of the change of coefficients exact sequence in cohomology, corresponding to
the short exact sequence of coefficient groups

1 → Z i→Re2π
√

−1

−→ U (1) → 1.

This enables us to prove vanishing theorems for the Dixmier-Douady invariant whenever
0 is a lattice in a connected Lie groupG such that dim(G/K) ≤ 3, whereK is a maximal
compact subgroup ofG, and therefore we obtain in this case

K∗(C∗(0, σ)) ∼= K∗+dim(G/K)(0\G/K),

whereσ is any multiplier on0. This is the case for the Riemann surfaces which are the
object of our study in this paper.

We begin by reviewing the concept ofK-amenable groups. LetG be a connected
Lie group andK be a maximal compact subgroup. For our purposes, we will assume
that dim(G/K) is even, and that it has aG-invariant SpinC structure. Using the SpinC

structure, we can form theG-invariant Dirac operator/∂ onG/K. It is a first order, self-
adjoint, elliptic differential operator acting onL2 sections of theZ2 graded homogeneous
bundle of spinorsS. ConsiderF = /∂ (1+/∂2)−1/2, which is a 0th order pseudo-differential
operator acting onH = L2(G/K,S). C0(G/K) acts onH by multiplication operators,
f → Mf . AlsoG acts onC0(G/K) and onH by left translation, andF isG-invariant.
Therefore (H,M,F ) defines a canonical element, called theDirac element,

αG ∈ KKG(C0(G/K),C).

Theorem 6 ([Kas2]). There is a canonical element, called theMishchenko element

βG ∈ KKG(C, C0(G/K)),

such that one has the following intersection products:

(1) αG ⊗C βG = 1C0(G/K) ∈ KKG(C0(G/K), C0(G/K)),

(2) βG ⊗C0(G/K) αG = γG ∈ KKG(C,C), whereγG is an idempotent inKKG(C,C).

The Mishchenko elementβG can be described as follows. First assume that either
G is semisimple or thatG = Rn. Then the Killing form onG defines aG-invariant
Riemannian metric of non-positive sectional curvature onG/K. LetE = C0(G/K,S∗)
be the space of continuous sections of the dual spin bundleS∗ which vanish at infinity.
LetF be a bounded operator onE defined as

Fξ(x) = c(V (x, x0))ξ(x),

whereξ ∈ E , V (x, x0) ∈ Tx(G/K) is the unit vector which is tangent to the unique
geodesic fromx0 ∈ G/K to x and c(V (x, x0)) denotes Clifford multiplication by
V (x, x0). ThenV (x, x0) is well defined outside a small neighbourhood ofx0 and can
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be extended continuously in any way to all ofG/K. AsF is adjointable it lies inL(E).
Also since

F 2ξ(x) = ‖V (x, x0)‖2ξ(x),

we see thatF 2 − 1 ∈ K(E) is a compact operator inL(E). Forg ∈ G, define

(g.F )ξ(x) = c(V (x, gx0))ξ(x).

SinceG/K has negative sectional curvature, the function onG/K defined by

x → ‖V (x, x0) − V (x, x1)‖, x0, x1 ∈ G/K,

vanishes at infinity, and so is inC0(G/K). Thereforeg.F−F ∈ K(E) and (E , F ) defines
an elementβG ∈ KKG(C, C0(G/K)). The Mishchenko elementβG is constructed by
induction in the general case.

Theorem 7 ([Kas2]). If G is amenable, thenγG = 1.

This motivates the following definition ([Kas2]).

Definition. A Lie groupG is said to beK-amenable ifγG = 1.

Theorem 8 ([Kas1, JuKas]). The non-amenable groupsSO(n, 1)andSU(n, 1)areK-
amenable.

Let 0 ⊂ G be a lattice inG andA be an algebra admitting an automorphic action of
0. Then the cross product algebra [A⊗C0(G/K)]o0, is Morita equivalent to the algebra
of continuous sections vanishing at infinityC0(0\G/K, E), whereE → 0\G/K is the
flatA-bundle defined as the quotient

(∗) E = (A×G/K)/0 → 0\G/K.
Here we consider the diagonal action of0 onA×G/K.

Theorem 9 ([Kas2]). If G is K-amenable, then(A o 0) ⊗ C0(G/K) and [A ⊗
C0(G/K)] o 0 have the sameK-theory.

Combining Theorem 9 with the remarks above, one gets the following important
corollary.

Corollary 7. If G isK-amenable, then(Ao 0) ⊗C0(G/K) andC0(0\G/K, E) have
the sameK-theory. Equivalently, one has forj = 0, 1,

Kj(C0(0\G/K, E)) ∼= Kj+dim(G/K)(Ao 0).

We now come to the main theorem of this section, which generalizes theorems of
[PR, PR2].

Theorem 10. Suppose that0 is a lattice in aK-amenable Lie groupG and thatK is
a maximal compact subgroup ofG. Then

K∗(C∗(0, σ)) ∼= K∗+dim(G/K)(0\G/K, δ(Bσ)),

whereσ ∈ H2(0, U (1)) is any multiplier on0, K∗(0\G/K, δ(Bσ)) is the twistedK-
theory of a continuous traceC∗-algebraBσ with spectrum0\G/K, andδ(Bσ) denotes
the Dixmier-Douady invariant ofBσ.
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Proof. 1. Taking the caseA = C and the trivial action of0 onC, one sees by Corollary
7 thatC∗(0) andC0(0\G/K) have the sameK-theory whenγG = 1.

2. Let σ ∈ H2(0, U (1)), then thetwistedcross product algebraA oσ 0 is stably
equivalent to the cross product (A ⊗ K) o 0, whereK denotes the compact operators.
This is the Packer-Raeburn stabilization trick [PR] (note that the0 action onK takes
some time to describe and we refer the reader to [PR] for details). Using Corollary 7
again, one sees thatAoσ 0 ⊗C0(G/K) andC0(0\G/K, Eσ) have the sameK-theory,
wheneverG isK-amenable, where

Eσ = (A⊗ K ×G/K)/0 → 0\G/K
is a flatA⊗K-bundle over0\G/K andK is a maximal compact subgroup ofG. In the
particular case whenA = C, one sees thatC∗(0, σ) ⊗ C0(G/K) andC0(0\G/K, Eσ)
have the sameK-theory wheneverG isK-amenable, where

Eσ = (K ×G/K)/0 → 0\G/K.
But the twistedK-theoryK∗(0\G/K, δ(Bσ)) is by definition theK-theory of the
continuous traceC∗-algebraBσ = C0(0\G/K, Eσ) with spectrum0\G/K. Then

K∗(C∗(0, σ)) ∼= K∗+dim(G/K)(0\G/K, δ(Bσ)). �

Remarks.Consider the flat case, whenG = R2n o SO(2n) is the Euclidean group,
K = SO(2n), and0 ⊂ G is a Bieberbach group, that is,0 is a uniform lattice inG. One
can define a generalization of “noncommutative flat manifolds" by regardingC∗(0, σ)
as such an object, whereσ is any group 2-cocycle on0, by virtue of the fact that

K∗(C∗(0, σ)) ∼= K∗(0\G/K).

Our next main result says that for lattices inK-amenable Lie groups, the reduced and
unreduced twisted groupC∗-algebras have canonically isomorphicK-theories. There-
fore all the results that we prove regarding theK-theory of these reduced twisted group
C∗-algebras are also valid for the unreduced twisted groupC∗-algebras.

Theorem 11. Let σ ∈ H2(0, U (1)) be a multiplier on0 and 0 be a lattice in aK-
amenable Lie group. Then the canonical morphismC∗(0, σ) → C∗

r (0, σ) induces an
isomorphism

K∗(C∗(0, σ)) ∼= K∗(C∗
r (0, σ)).

Proof. We note that by the Packer-Raeburn trick, one has

C∗(0, σ) ⊗ K ∼= K o 0

and
C∗

r (0, σ) ⊗ K ∼= K or 0,

whereor denotes the reduced crossed product. Since0 is a lattice in aK-amenable Lie
group, the canonical morphismK o 0 → K or 0 induces an isomorphism (cf. [Cu])

K∗(K o 0) ∼= K∗(K or 0),

which proves the result. �
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We now specialize to the case whenG = SO0(2, 1),K = SO(2) and0 = 0g ⊂ G
is the fundamental group of a Riemann surface of genusg > 1, Σg, or whenG = R2,
K = {e} andg = 1, with01 beingZ2.

Corollary 8. Letσ ∈ H2(0g, U (1)) be any multiplier on0g. Then

1. K0(C∗
r (0g, σ)) ∼= K0(C∗

r (0g)) ∼= K0(Σg) ∼= Z2

2. K1(C∗
r (0g, σ)) ∼= K1(C∗

r (0g)) ∼= K1(Σg) ∼= Z2g.

Proof. In dimension 2 the Chern character is an isomorphism over the integers and
therefore we see that

K0(Σg) ∼= H0(Σg,Z) ⊕H2(Σg,Z) ∼= Z2,

and that

K1(Σg) ∼= H1(Σg,Z) ∼= Z2g.

By Theorem 10 we have

Kj(C∗
r (0g)) ∼= Kj(Σg) for j = 0, 1,

and
Kj(C∗

r (0g, σ)) ∼= Kj(Σg, δ(Bσ)), j = 0, 1,

whereBσ = C(Σg, Eσ). Finally, becauseEσ is a locally trivial flat bundle ofC∗-algebras
overΣg, with fibreK (= compact operators), it has a Dixmier-Douady invariantδ(Bσ)
which can be viewed as the obstruction toBσ being Morita equivalent toC(Σg). But

δ(Bσ) = δ(σ) ∈ H3(Σg,Z) = 0.

ThereforeBσ is Morita equivalent toC(Σg) and we conclude that

Kj(C∗
r (0g, σ)) ∼= Kj(Σg) j = 0, 1. �

Corollary 9. Let G be a connected Lie group andK a maximal compact subgroup
such thatdim(G/K) = 3. Let0 be a uniform lattice inG andσ ∈ H2(0, U (1)) be any
multiplier on0. If G isK-amenable, then

(∗) Kj(C∗
r (0, σ)) ∼= Kj(C∗

r (0)) ∼= Kj+1(0\G/K), for j = 0, 1 (mod 2).

Proof. By Theorem 10, we see that

Kj(C∗
r (0)) ∼= Kj+dim(G/K)(0\G/K), for j = 0, 1 (mod 2).

By the Packer-Raeburn stabilization trick,C∗
r (0, σ) is Morita equivalent toK or 0,

and becauseG is K-amenable,K o 0 ⊗ C0(G/K) is Morita equivalent toBσ =
C(0\G/K, Eσ), whereEσ is as before, a locally trivial bundle ofC∗-algebras over
0\G/K with fibreK. Finally, the Dixmier-Douady invariant

δ(Bσ) = δ(σ) ∈ H3(0\G/K,Z) ∼= H3(0,Z).

Suppose now that0\G/K is not orientable. ThenH3(0\G/K,Z) = {0} and therefore
δ(Bσ) = δ(σ) = 0. HenceBσ is Morita equivalent toC(0\G/K) and we have (∗) in
this case.
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Suppose next that0\G/K is orientable. The short exact sequence of coefficient
groups

1 → Z i→Re2π
√

−1

−→ U (1) → 1

gives rise to a long exact sequence of cohomology groups (the change of coefficient
groups sequence)

(∗∗) · · · → H2(0,R)
e2π

√
−1∗−→ H2(0, U (1))

δ→H3(0,Z)
i∗→H3(0,R) → · · · .

Since0\G/K is oriented, we see thatH3(0,Z) ∼= Z andH3(0,R) ∼= R are both
generated by the fundamental orientation class of0\G/K, [0\G/K], and since
i∗[0\G/K] = [0\G/K], we see thati∗ is injective. Therefore by the exactness of (∗∗)
atH3(0,Z), one hasδ(σ) = 0 for allσ ∈ H2(0, U (1)), and so we see thatBσ is Morita
equivalent toC(0\G/K), and again we have (∗) in this case. �

Corollary 10. LetM = K(0, 1) be an Eilenberg–Maclane space which is connected
locally-symmetric, compact, 3-dimensional manifold. Ifσ ∈ H2(0, U (1)) is any multi-
plier on0, then one has

Kj(C∗
r (0, σ)) ∼= Kj(C∗

r (0)) ∼= Kj+1(M ), j = 0, 1.

Proof. SinceM is locally symmetric, it is of the form0\G/K, whereG is a connected
Lie group,K is a maximal compact subgroup such that dim(G/K) = 3 and0 ⊂ G is
a uniform lattice inG. We need to verify thatγG = 1. According to Thurston’s list of
3-dimensional geometries or locally homogeneous spaces, one has

1. G = R3 o SO(3), G/K = R3, γG = 1 sinceR3 andSO(3) are amenable, and so is
their semidirect product.

2. G = SO0(3, 1), G/K = H3, γG = 1 by Kasparov’s theorem.

3. G = SO0(2, 1) o R, G/K = H2 × R, γG = 1 since it’s the semidirect product of
K-amenable groups.

4. G = Heis, G/K = Heis, γG = 1, since Heis is nilpotent and hence an amenable
group.

5. G = Solv, G/K = Solv, γG = 1, since Solv is a solvable group and hence an
amenable group.

6. G = ˜SO0(2, 1) o R, G/K = ˜SO0(2, 1). Firstly,γ ˜SO0(2,1)
= 1 since ˜SO0(2, 1) is the

semidirect product of theK-amenable groupsSO0(2, 1) andZ. Also γG = 1, since

its the semidirect product of theK-amenable groups˜SO0(2, 1) andR.

The other two locally homogeneous spaces in Thurston’s list are not locally sym-
metric. We now apply Corollary 9 to deduce Corollary 10. �

An interesting question is whether Corollary 10 is true without the locally symmetric
assumption onM . We formulate this in terms of a conjecture.

Conjecture. LetM = K(0, 1)be a connected, compact, 3-dimensional manifold which
is an Eilenberg-Maclane space with fundamental group0. Then for any multiplier
σ ∈ H2(0, U (1)) on0, one has

Kj(C∗
r (0, σ)) ∼= Kj(C∗

r (0)) ∼= Kj+1(M ), j = 0, 1.
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Remarks.Selected portions of our proof of Corollary 9 go through in the situation
described in the conjecture. More precisely, the proof of Corollary 9 shows that the
Dixmier-Douady invariantδ(σ) = 0 for all σ ∈ H2(0, U (1)) for 0 as in the conjecture.

9. Range of the Trace and the Kadison Constant

In this section, we will prove some structural theorems for the twisted groupC∗-algebras
that are relevant to the “Martini” problems described in the introduction. The first of these
calculates the range of the canonical trace map onK0 of the twisted groupC∗-algebras.
We use in an essential way the results of the previous section as well as a twisted version
of theL2-index theorem of Atiyah [At], which is due to Gromov [Gr2]. This enables us
to deduce information about projections in the twisted groupC∗-algebras. In the case
of no twisting, this follows because the Baum-Connes conjecture is known to be true
while these results are also well known for the case of the irrational rotation algebras.
However, our approach here is novel, and as we will show elsewhere [Ma], enables a
generalization of most of the known results.

9.1. Twisted Kasparov map.Suppose that0g is a discrete, cocompact subgroup of
SO0(2, 1). That is,0g is the fundamental group of a Riemann surfaceΣg of genus
g > 1. Then for anyσ ∈ H2(0g, U (1)), thetwisted Kasparov isomorphism,

(∗) µσ : K•(Σg) → K•(C∗
r (0g, σ))

is defined as follows. HereK0(Σg) denotes theK-homology group ofΣg. SinceΣg

is spin, it isK-oriented and by Poincaré duality, theK groupsKj(Σg) are naturally
isomorphic to the correspondingK-homology groupsKj(Σg) for j = 0, 1. Explicitly,
let E → Σg be a vector bundle overΣg defining an element [E ] in K0(Σg). Under
Poincaŕe duality, [E ] corresponds to the twisted Dirac operator/∂+

E : L2(Σg,S+ ⊗ E) →
L2(Σg,S− ⊗ E), whereS± denote the1

2 spinor bundles overΣg. That is,

PD : K0(Σg) → K0(Σg)

[E ] → [/∂+
E ]

is the Poincaŕe duality isomorphism. By Corollary 8 of the previous section, there is a
canonical isomorphism

K•(C∗
r (0g, σ)) ∼= K•(Σg).

Both of these maps are assembled to yield the twisted Kasparov map as in (*).
We next describe this map more explicitly. Given [/∂+

E ] ∈ K0(Σg) as above, the lift
of this operator toH = Σ̃g, the universal cover ofΣg,

/̃∂+
E : L2(H, S̃+ ⊗ E) → L2(H, S̃− ⊗ E)

is a0g-invariant operator. Consider now the short exact sequence of coefficient groups

1 → Z i→Re2π
√

−1

−→ U (1) → 1,

which gives rise to a long exact sequence of cohomology groups (the change of coefficient
groups sequence)
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(∗∗) · · · → H2(0g,Z)
i∗→H2(0g,R)

e2π
√

−1∗−→ H2(0g, U (1))
δ→0.

Therefore for any multiplierσ ∈ H2(0g, U (1)) of 0g, there is a 2-formω onΣg such
thate2π

√−1∗([ω]) = σ. Of course the choice ofω is not unique, but this will not affect
the results that we are concerned with. Letω̃ denote the lift ofω to the universal coverH.
Since the hyperbolic planeH is contractible, it follows that̃ω = dη, whereη is a 1-form
on H which is not in general0g invariant. Now let∇ = d− iη denote a connection on
the trivial complex line bundle onH. Note that the curvature of∇ is ∇2 = iω. Consider
now the operator

/̃∂+
E ⊗ ∇ : L2(H, S̃+ ⊗ E) → L2(H, S̃− ⊗ E).

It does not commute with the0g action, but it does commute with the projective action
of 0g which is defined by the multiplierσ, and by a mild generalization of the index
theorem of [CM], it has a0g-L2-index,

ind0g
(/̃∂+

E ⊗ ∇) ∈ K0(C(0g, σ) ⊗ R),

whereR denotes the algebra of smoothing operators. Then observe that thetwisted
Kasparov mapis merely

µσ([/∂E+ ]) = j∗(ind0g (/̃∂+
E ⊗ ∇)) ∈ K0(C∗(0g, σ)),

wherej : C(0g, σ) ⊗ R → C∗
r (0g, σ) ⊗ K is the natural inclusion map, and

j∗ : K0(C(0g, σ) ⊗ R) → K0(C∗
r (0g, σ))

is the induced map onK0.
The canonical trace onC∗

r (0g, σ) induces a linear map

[tr] : K0(C∗
r (0g, σ)) → R

which is called thetrace mapin K-theory. Explicitly, first tr extends to matrices with
entries inC∗(0g, σ) as (with Trace denoting matrix trace):

tr(f ⊗ r) = Trace(r)tr(f ).

Then the extension of tr toK0 is given by [tr]([e] − [f ]) = tr(e) − tr(f ), wheree, f
are idempotent matrices with entries inC∗(0g, σ).

9.2. The isomorphism classes of algebrasC∗(0g, σ). Let σ ∈ Z2(0g, U (1)) be
a multiplier on 0g. If σ′ ∈ Z2(0g, U (1)) is another multiplier on0g such that
[σ] = [σ′] ∈ H2(0g, U (1)), then it can be easily shown thatC∗(0g, σ) ∼= C∗(0g, σ

′).
That is, the isomorphism classes of theC∗-algebrasC∗(0g, σ) are naturally parametrized
byH2(0g, U (1)). ButH2(0g, U (1)) ∼= H2(Σg, U (1)) ∼= U (1) and the isomorphism is
given explicitly by [σ] →< [σ], [Σg] >, where [σ] is now viewed as ǎCech 2-cocycle
onΣg with coefficients inU (1), and [Σg] denotes the fundamental class of the genusg
Riemann surface. We summarize this below.
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Lemma 13. The isomorphism classes of twisted groupC∗-algebrasC∗(0g, σ) are nat-
urally parametrized byU (1) ∼= R/Z ∼= (0, 1]. The classification map is given explicitly
by

[σ] →< [σ], [Σg] >,

where[σ] is now viewed as ǎCech 2-cocycle onΣg with coefficients inU (1), and[Σg]
denotes the fundamental class of the genusg Riemann surface.

9.3. Range of the trace map onK0. We can now state the first major theorem of this
section.

Theorem 12. The range of the trace map is

[tr](K0(C∗
r (0g, σ))) = Zθ + Z,

where2πθ =< σ, [Σg] > ∈ (0, 1] is the result of pairing the multiplierσ on0g with the
fundamental class ofΣg.

Proof. We first observe that by the results of the previous section the twisted Kasparov
map is an isomorphism. Therefore to compute the range of the trace map onK0, it
suffices to compute the range of the trace map on elements of the form

µσ([/∂+
E0] − [/∂+

E1])

for any element
[/∂+

E0] − [/∂+
E1] ∈ K0(Σg).

By the twisted analogue of theL2 index theorem of Atiyah [At] and Singer [Si] for
elliptic operators on a covering space that are invariant under the projective action of
the fundamental group defined byσ, and which is due to Gromov [Gr2] (see also [Ma]
for a proof of a further generalization), one has

(∗) [tr](ind0g (/̃∂+
E ⊗ ∇)) =

1
2π

〈Â(Σg) ch(E)e[ω] , [Σg]〉.

We next simplify the right hand side of (∗) using

Â(Σg) = 1,

ch(E) = rankE + c1(E),

e[ω] = 1 + [ω].

Therefore one has

[tr](ind0g
(/̃∂+

E ⊗ ∇)) = rankE 〈[ω], [Σg]〉
2π

+
〈c1(E), [Σg]〉

2π
,

and we see that

[tr](µσ([/∂+
E0] − [/∂+

E1])) = (rankE0 − rankE1)
〈[ω], [Σg]〉

2π
+

〈c1(E0) − c1(E1), [Σg]〉
2π

.

It follows that the range of the trace map onK0 is Z 〈[ω],[Σg ]〉
2π + Z = Zθ + Z, because

〈[ω], [Σg]〉
2π

− θ ∈ Z. �
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We will now discuss some applications of this result. We begin by studying projec-
tions in the twisted groupC∗-algebra, which is a problem of independent interest.

Proposition 4. Letσ ∈ H2(Σg,R/Z) be a multiplier on0g, and2πθ =< σ, [Σg] >∈
(0, 1] be the result of pairingσ with the fundamental class ofΣg. If θ = p/q is rational,
then there are onlyq− 1 unitary equivalence classes of projections, other than0 and1,
in the reduced twisted groupC∗-algebraC∗

r (0g, σ).

Proof. By assumption,θ = p/q. LetP be a projection inC∗
r (0g, σ). Then 1−P is also

a projection inC∗
r (0g, σ) and one has

1 = tr(1) = tr(P ) + tr(1− P ).

Each term in the above equation is non-negative. By the previous theorem, it follows
that tr(P ) ∈ {0, 1/q, 2/q, . . . 1}. By faithfulness and normality of the trace tr, it follows
that there are onlyq − 1 unitary equivalence classes of projections, other than those of
0 and 1 inC∗

r (0g, σ). �
Our second application will involve the Kadison constant of a twisted groupC∗-

algebra, which we will now recall. TheKadison constantof C∗
r (0g, σ) is defined by:

Cσ(0g) = inf{tr(P ) : P is a non-zero projection inC∗
r (0g, σ) ⊗ K}.

Recall from earlier sections the following Hamiltonians:

Hη =
1
2

(d− iη)∗(d− iη) =
1
2
∇∗∇,

and
Hη,V = Hη + V,

whereV is any0g-invariant potential onH. The operatorsHη andHη,V are invariant
under the projective (0g, σ)-action.

Proposition 5. Letσ ∈ H2(Σg,R/Z) be a multiplier on0g, and2πθ =< σ, [Σg] >∈
(0, 1] be the result of pairingσ with the fundamental class ofΣg. If θ = p/q is rational,
then the spectrum of any associated HamiltonianHη,V has a band structure, in the sense
that the intersection of the resolvent set with any compact interval inR has only a finite
number of components. In particular, the intersection ofσ(Hη,V ) with any compact
interval inR is never a Cantor set.

Proof. By the previous proposition, it follows that one has the estimateCσ(0g) ≥ 1/q >
0. Then one applies the main result in Brüning-Sunada [BrSu] to deduce the proposition.
�

This leaves open the question of whether there are Hamiltonians with Cantor spec-
trum whenθ is irrational. In the Euclidean case, this is usually known as theTen Martini
Problem, and is to date, not completely solved, though much progress has been made
(cf. [Sh]). We pose a generalization of this problem to the hyperbolic case (which also
includes the Euclidean case):

Conjecture (The Ten Dry Martini Problem). Let σ ∈ H2(Σg,R/Z) be a multiplier
on 0g, and2πθ =< σ, [Σg] >∈ (0, 1] be the result of pairingσ with the fundamental
class ofΣg. If θ is irrational, then there is an associated HamiltonianHη,V with a Cantor
set type spectrum, in the sense that the intersection ofσ(Hη,V ) with some compact
interval inR is a Cantor set.
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We will next apply the range of the trace Theorem 12 to deduce results about the
discrete HamiltonianHτ , as in Sect. 5.

Proposition 6. Letσ ∈ H2(Σg,R/Z) be a multiplier on0g, and2πθ =< σ, [Σg] >∈
(0, 1] be the result of pairingσ with the fundamental class ofΣg. If θ = p/q is rational,
then the spectrum of the associated discrete HamiltonianHτ has a band structure, in
the sense that the intersection of the resolvent set withR has only a finite number of
components. In particular, the intersection ofσ(Hτ ) with any compact interval inR is
never a Cantor set.

Proof. From the estimateCσ(0g) ≥ 1/q > 0, the main result in [Sun] implies the
proposition. �

This leads us to our next conjecture.

Conjecture (The Discrete Ten Dry Martini Problem). Let σ ∈ H2(Σg,R/Z) be a
multiplier on 0g, and 2πθ =< σ, [Σg] >∈ (0, 1] be the result of pairingσ with the
fundamental class ofΣg. If θ is irrational, then the associated HamiltonianHτ has
Cantor spectrum.

9.4. On the classification of twisted groupC∗-algebras. We will now use the range of
the trace found in Theorem 12 to give a complete classification, up to isomorphism, of
the twisted groupC∗-algebrasC∗(0, σ). A similar complete classification, up to Morita
equivalence, is contained in [Ma].

Proposition 7 (Isomorphism classification of twisted groupC∗-algebras). Let
σ, σ′ ∈ H2(Σg,R/Z) be multipliers on0g, and2πθ =< σ, [Σg] >∈ (0, 1], 2πθ′ =<
σ′, [Σg] >∈ (0, 1] be the result of pairingσ, σ′ with the fundamental class ofΣg. Then
C∗(0g, σ) ∼= C∗(0g, σ

′) if and only ifθ′ ∈ {θ, 1 − θ}.

Proof. Let tr and tr′ denote the canonical traces onC∗(0g, σ) andC∗(0g, σ
′) respec-

tively. Let
φ : C∗(0g, σ) → C∗(0g, σ

′)

be an isomorphism, and let

φ∗ : K0(C∗(0g, σ)) → K0(C∗(0g, σ
′))

denote the induced map onK0. By Theorem 12, the range of the trace map onK0 is

[tr](K0(C∗(0g, σ))) = Zθ + Z

and
[tr ′](K0(C∗(0g, σ

′))) = Zθ′ + Z.

So there are elements [P ] ∈ K0(C∗(0g, σ)) and [P ′] ∈ K0(C∗(0g, σ
′)) such that

[tr]([P ]) = θ and [tr′]([P ′]) = θ′. Clearly one has tr◦φ = tr′, which induces the identity
[tr] ◦ φ∗ = [tr′] in K0(C∗(0g, σ

′)). In Sect. 8, we have proved thatK0(C∗(0g, σ)) ∼=
Z2 ∼= K0(C∗(0g, σ

′)). In the basis above, one has

φ∗ : Z[P ] ⊕ Z ∼= K0(C∗(0g, σ)) → K0(C∗(0g, σ
′)) ∼= Z[P ′] ⊕ Z.

Sinceφ∗[1] = [1] andφ∗ ∈ GL (2,Z), one sees that there is an integern such that
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φ∗ =

(
1 n

0 ±1

)
.

Assembling these results, one hasθ = [tr]([P ]) = [tr](φ∗[P ]) = [tr ′](n[1] ± [P ′]) =
n± θ′. Sinceθ, θ′ ∈ (0, 1], one deduces thatθ′ ∈ {θ, 1 − θ}.

Let ψ : Σg → Σg be an orientation reversing diffeomorphism. We can assume
without loss of generality thatψ has a fixed pointx0 ∈ Σg. This is because there is an
orientation preserving diffeomorphismη ofΣg whose value at the pointψ(x0) is equal to
x0; in factη can be chosen to be isotopic to the identity (cf. exercise A2, chapter 1, [Helg]).
The compositionη ◦ψ is then an orientation reversing diffeomorphism ofΣg with fixed
point x0. Thenψ induces an automorphismψ∗ : 0g → 0g of the fundamental group
π1(Σg, x0) ∼= 0g. We first evaluate< ψ∗σ, [Σg] >=< σ,ψ∗[Σg] >= < σ, [Σg] > =<
σ̄, [Σg] >, sinceψ is orientation reversing. By Lemma 13 we see thatψ∗σ = σ̄ ∈
H2(0g, U (1)). Therefore the automorphismψ∗ of 0g induces an isomorphism of twisted
groupC∗-algebras

C∗(0g, σ) ∼= C∗(0g, ψ
∗σ) ∼= C∗(0g, σ̄).

Therefore ifθ′ ∈ {θ, 1 − θ}, one hasC∗(0g, σ) ∼= C∗(0g, σ
′), completing the proof of

the proposition. �

9.5. Twisted ICC group von Neumann algebras and type II1 factors. Recall that an ICC
group0 is one in which every non-trivial conjugacy class is infinite. There are many
examples of ICC groups, such as free groups, fundamental groups of compact surfaces,
etc. It is well known that the group von Neumann algebras of these groups are type II1
factors [Tak]. We will now prove that a similar result holds for the twisted group von
Neumann algebras (this result probably exists in the literature but for completeness we
reproduce a proof). We briefly recall some definitions. LetW ∗(0, σ) denote the twisted
group von Neumann algebra, whereσ is a multiplier on0, which is by definition theweak
closure ofC∗(0, σ), or equivalently, the weak closure of the algebraic group algebra
C(0, σ) in theσ-regular representation oǹ2(0). Let Proj(W ∗(0, σ)) denote the set of
all projections inW ∗(0, σ). Then one has

Proposition 8. Let0 be an ICC group, andσ ∈ H2(0,R/Z) be a multiplier on0. Then
W ∗(0, σ) is a II1 factor. In particular,tr(Proj(W ∗(0, σ))) = [0, 1].

Proof. By the commutant theorem for the regularσ-representation we see that the com-
mutant ofW ∗(0, σ) is identified withW ∗(0, σ̄). We need to compute the centreZ(0, σ)
of W ∗(0, σ), which is equal to the intersectionZ(0, σ) = W ∗(0, σ) ∩ W ∗(0, σ̄). Let
T : 0 → B(`2(0)) denote the left projective (0, σ)-action. Regardx ∈ W ∗(0, σ̄) as
x =

∑
γ∈0 x(γ)T (γ). SinceW ∗(0, σ) is theweakclosure ofC(0, σ), it follows that

(x(γ))γ∈0 ∈ `2(0). Now x ∈ Z(0, σ) if and only if x commutes withT (γ′), γ′ ∈ 0.
But

T (γ′)x =
∑
γ∈0

x(γ)σ(γ′, γ)T (γ′γ)

=
∑
γ∈0

x(γ′−1

γ)σ(γ′, γ′−1

γ)T (γ),

and
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xT (γ′) =
∑
γ∈0

x(γ)σ(γ, γ′)T (γγ′)

=
∑
γ∈0

x(γγ′−1

)σ(γγ′−1

, γ′)T (γ).

Therefore we see thatx(γ′−1
γ)σ(γ′, γ′−1

γ) = x(γγ′−1
)σ(γγ′−1

, γ′) for all γ′ ∈ 0. So
|x(γ′−1

γγ′)| = |x(γ)| for all γ′ ∈ 0. That is,|x(·)| is constant on each conjugacy class.
Now sincex ∈ `2(0), it follows thatx vanishes on each infinite conjugacy class. Since
0 is an ICC group, it follows thatx(γ) = 0 for all γ 6= 1. SoZ(0, σ) is 1-dimensional
andW ∗(0, σ) is a II1 factor. �

10. The Topological Index and the Index Theorem

This section identifies the Hall conductivityτc(P, P, P ) = τ (P dP dP ) with a topolog-
ical invariant, generalizing the work of [Xia]. Suppose that0g is a discrete, cocompact
subgroup ofSO0(2, 1). That is,0g is the fundamental group of a Riemann surfaceΣg

of genusg > 1. Then for anyσ ∈ H2(0g, U (1)), thetwisted Kasparov isomorphism,

µσ : K•(Σg) → K•(C∗
r (0g, σ))

is defined as in the previous section. We note in the following section (using a result of
[Ji]) that given any projectionP inC∗

r (0, σ) there is both a projectioñP in the sameK0
class but lying in a dense subalgebra, stable under the holomorphic functional calculus,
and a Fredholm module for this dense subalgebra, which may be paired withP̃ to obtain
an analytic index. On the other hand, by the results of the current section, given any such
projectionP there is a topological index that we can associate to it. The main result we
prove here is that the (analytic index) = (topological index).

The first step in the proof is to show that given an additive group cocyclec ∈ Z2(0g)
we may define canonical pairings withK0(Σg) andK0(C∗

r (0g, σ)) which are related
by the twisted Kasparov isomorphism. We do this by generalizing some of the results
of Connes and Connes-Moscovici to the twisted case. The group 2-cocyclec may be
regarded as a skew-symmetrized function on0g × 0g × 0g, so that we can modify
a standard construction in [CM] to obtain a cyclic 2-cocycleτc on C(0g, σ) ⊗ R by
defining:

τc(f0⊗r0, f1⊗r1, f2⊗r2) = Tr(r0r1r2)
∑

g0g1g2=1

f0(g0)f1(g1)f2(g2)c(1, g1, g1g2)σ(g1, g2).

Note thatτc extends toC(0g, σ) ⊗ L2, (whereL2 denotes Hilbert-Schmidt operators)
and by the pairing theory of [Co] one gets an additive map

[τc] : K0(C(0g, σ) ⊗ R) → R.

Explicitly, [τc]([e] − [f ]) = τ̃c(e, · · · , e) − τ̃c(f, · · · , f ), wheree, f are idempotent
matrices with entries in (C(0g, σ) ⊗ R)∼, the unital algebra obtained by adding the
identity toC(0g, σ)⊗R andτ̃c denotes the canonical extension ofτc to (C(0g, σ)⊗R)∼.

Let /̃∂+
E ⊗ ∇ be the Dirac operator defined in the previous section, which is invariant

under the projective action of the fundamental group defined byσ. By definition, the
(c,0g, σ)-index of /̃∂+

E ⊗ ∇ is
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[τc](ind0g (/̃∂+
E ⊗ ∇)) ∈ R.

It only depends on the cohomology class [c] ∈ H2(0g), and it is linear with respect to
[c]. We assemble this to give the following theorem.

Theorem 13. Given[c] ∈ H2(0g) andσ ∈ H2(0g, U (1)) a multiplier on0g, there is
a canonical additive map

〈[c], 〉 : K0(Σg) → R,
which is defined as

〈[c], [/∂+
E ]〉 = [τc](ind0g (/̃∂+

E ⊗ ∇)) ∈ R.

Moreover, it is linear with respect to[c].

By a generalization of the Connes-Moscovici higher index theorem [CM] to the
twisted case of elliptic operators on a covering space that are invariant under the projec-
tive action of the fundamental group defined byσ, (see [Ma] for a detailed proof), one
has

(∗) [τc](ind0g
(/̃∂+

E ⊗ ∇)) =
1

2π
〈Â(Σg) ch(E)e[ω]ψ∗(c), [Σg]〉,

whereψ : Σg → Σg is the classifying map of the universal cover (which in this case is
the identity map) and [c] is considered as a degree 2 cohomology class onΣg. We next
simplify the right hand side of (∗) using the fact that̂A(Σg) = 1 and that

ch(E) = rankE + c1(E),

ψ∗(c) = c,

e[ω] = 1 + [ω].

We obtain

[τc](ind0g
(/̃∂+

E ⊗ ∇)) =
rankE

2π
〈[c], [Σg]〉.

Corollary 11. Let c, [c] ∈ H2(0g), be the area cocycle. Then one has

〈[c], [/∂+
E ]〉 = 2(g − 1) rankE ∈ Z.

Proof. Whenc, [c] ∈ H2(0g), is the area 2-cocycle, one has

〈[c], [Σg]〉 = −2πχ(Σg) = 4π(g − 1). �

Remarks 14.These theorems have been generalized in [Ma]. They agree with Xia’s
result [Xia], although our methods are different.

We next describe the canonical pairing ofK0(C∗
r (0g, σ)), given [c] ∈ H2(0g). Since

Σg is negatively curved, we know from [Ji] that

Aσ,g =

f : 0g → C |
∑
γ∈0g

|f (γ)|2(1 + l(γ))k < ∞ for all k ≥ 0

 ,

where l : 0g → R+ denotes the length function, is a dense and spectral invariant
subalgebra ofC∗

r (0g, σ). In particular it is closed under the smooth functional calculus,
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and is known as the algebra of rapidly decreasingL2 functions on0g. By a theorem of
[Bost], the inclusion mapAσ,g ⊂ C∗

r (0g, σ) induces an isomorphism

Kj(Aσ,g) ∼= Kj(C∗
r (0g, σ)), j = 0, 1.

As Σg is a negatively curved manifold, we know (by [Mos] and [Gr]) that degree 2
cohomology classes inH2(0g) haveboundedrepresentatives i.e. bounded 2-cocycles
on0g. Let c be a bounded 2-cocycle on0g. Then it defines a cyclic 2-cocycleτc on the
twisted group algebraC(0g, σ), by a slight modification of the standard formula [CM],
([Ma] for the general case)

τc(f0, f1, f2) =
∑

g0g1g2=1

f0(g0)f1(g1)f2(g2)c(1, g1, g1g2)σ(g1, g2).

Herec is assumed to be skew-symmetrized. Since the only difference with the expression
obtained in [CM] isσ(g1, g2), and since|σ(g1, g2)| = 1, we can use Lemma 6.4, part (ii)
in [CM] and the assumption thatc is bounded, to obtain the necessary estimates which
show that in factτc extends continuously to the bigger algebraAσ,g. This induces an
additive map inK-theory as before:

[τc] : K0(Aσ,g) → R

[τc]([e] − [f ]) = τ̃c(e, · · · , e) − τ̃c(f, · · · , f ),

wheree, f are idempotent matrices with entries in (Aσ,g)∼ (the unital algebra associated
to Aσ,g) and τ̃c is the canonical extension ofτc to (Aσ,g)∼. Observe that the twisted
Kasparov map is merely

µσ([/∂E+ ]) = j∗(ind0g
(/̃∂+

E ⊗ ∇)) ∈ K0(C∗(0g, σ)).

Here j : C(0g, σ) ⊗ R → C∗(0g, σ) ⊗ K is the natural inclusion map, andj∗ :
K0(C(0g, σ) ⊗ R) → K0(C∗(0g, σ)) is the induced map inK-theory. Therefore one
has the equality

〈[c], µ−1
σ [P ]〉 = 〈[τc], [P ]〉

for any [P ] ∈ K0(Aσ,g) ∼= K0(C∗
r (0g, σ)). Using the previous corollary, one has

Corollary 12. Let c, [c] ∈ H2(0g), be the area 2-cocycle. Thenc is known to be a
bounded 2-cocycle, and one has

〈[τc], [P ]〉 = 2(g − 1)(rankE0 − rankE1) ∈ Z,

where[P ] ∈ K0(Aσ,g) ∼= K0(C∗
r (0g, σ)), and where

µ−1
σ [P ] = [/∂+

E0] − [/∂+
E1] ∈ K0(Σg).

Remarks 15.This generalizes the main result of Xia, [Xia].
We will next prove the existence of a canonical element inKK(C∗

r (0g, σ),C), which
we call the twisted Mishchenko element.

Theorem 16 (The twisted Mishchenko element).There exists a unique element
[mσ] ∈ KK(C∗

r (0g, σ),C), called thetwisted Mishchenko element, such that

(∗) [1] ⊗C∗
r (0g,σ) [mσ] = 2(g − 1),

where[1] ∈ K0(C∗
r (0g, σ)) denotes the module generated byC∗

r (0g, σ).
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Proof. By the well definedness of the Kasparov intersection product [Kas2], the
equation (∗) above defines the element [mσ] uniquely. In the next section we con-
struct a 2-summable Fredholm module (F,H), which defines an element [(F,H)] ∈
KK(C∗

r (0g, σ),C), and whose Chern character is the cyclic area 2-cocycle [τc], (cf.
[Co2]) defined by the area 2-cocyclec on the discrete group0. We compute that

[1] ⊗C∗
r (0g,σ) [(F,H)] = index(F ) = τc(1, 1, 1) = 2(g − 1).

By uniqueness (proved above), we see that [mσ] = [(F,H)], which establishes existence.
�

This completes the proof of Theorem 4 and Corollary 6 because we regard
index(PFP ) as the result of pairing an element of theK-homology ofΣg (defined
by the twisted Mishchenko element) with an element ofK0(B0) ∼= K0(C∗(0g, σ)).
This enables us to demonstrate the relationship between Corollary 12 and the discrete
model of the hyperbolic Hall effect.

11. A Discrete Fredholm Module and the Analytic Index

We have observed following Sunada thatHτ is an operator in the twisted algebraic group
algebraC(0, σ), which is a subalgebra ofAσ,g. We remark that a spectral projection
into a gap in the spectrum ofHτ is given by the smooth functional calculus applied to
Hτ . It follows from [Ji] that such spectral projections lie inAσ,g. Connes constructs a
Fredholm module forC0 which can be adapted to the case ofC(0, σ). In his construction
the Hilbert space is thè2 sections of the restriction of the spinor bundle to the orbit0.u.
This space is isomorphic toH = `2(0) ⊕ `2(0) under the mapι⊕ ι. The grading is the
obvious one given by the 2× 2 matrixε. We may define the operatorF as in Sect. 7 to
be multiplication by the matrix function(

0 ψ∗
ψ 0

)
,

where we restrictψ to the orbit0.u.
Connes [Co2] shows that the module of the previous paragraph is 2-summable for

C0. We show below using the same argument as in [Co2] that ifλ denotes the left regular
σ-representation ofC∗(0, σ) then [F, λ(γ)] is Hilbert-Schmidt. So (H, F ) is also a 2-
summable module forC(0, σ). We may also exploit [Co2] to determine explicitly the
character of this Fredholm module for our case. We now summarize some of the pertinent
details.

First, we are using the usual trace tr on the bounded operators onH. Second, our
module is thè 2 sections of the restriction of the spinor bundle to the orbit. From this
point of view F corresponds to Clifford multiplication of a unit tangent vector to a
geodesic connecting a given vertex of the graph to a pointx0 /∈ 0.u. We use the same
notationϕ(γ.u) for this unit tangent vector, regardingϕ as a function from0.u toT (H),
the tangent space ofH, as no confusion will arise.

Next, note that forf ∈ H,

[F, λ(γ)]f (γ′) = (ϕ(γ′.u) − ϕ(γ−1γ′.u))λ(γ)f (γ′)

. Connes observes that the operator on the RHS is Hilbert-Schmidt as a result of the
convergence of the Poincaré series:
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∑
γ∈0

exp(−2d(γ.u, x0)).

Thus ifγ0, γ1, γ2 lie in 0 then

tr(ελ(γ0)[F, λ(γ1)][F, λ(γ2)]) =
1
2

tr(ε[F, λ(γ0)][F, λ(γ1)][F, λ(γ2)]).

Now λ(γ0)[F, λ(γ1)][F, λ(γ2)] is the operator

(λ(γ0)[F, λ(γ1)][F, λ(γ2)]f )(γ) = ζ(γ)σ(γ1, γ2)σ(γ0, γ1γ2)f ((γ0γ1γ2)−1γ),

whereζ(γ) denotes Clifford multiplication by

(ϕ(κ−1
0 γ) − ϕ(κ−1

1 γ))(ϕ(κ−1
1 γ) − ϕ(κ−1

2 γ)),

with κj = γ0 . . . γj . We can now obtain a formula for the cyclic cocycle. Following the
calculation on p. 344 of [Co2] we find that forγ0γ1γ2 6= 1 the character of the cocycle
associated to our Fredholm module is zero while forγ0γ1γ2 = 1 it is given by

tr(ελ(γ0)[F, λ(γ1)][F, λ(γ2)]) = 2
∑
γ∈0

trace(εζ(γ))σ(γ1, γ2),

where “trace” denotes the matrix trace on the Clifford algebra and we are utilising the
fact that, for our choice ofσ,

σ(γ0, γ1γ2) = σ(γ0, γ
−1
0 ) = 1.

Connes proves that trace(εζ(γ)) is the Euclidean area of the triangle in the complex
plane with vertices corresponding to the tangent vectorsϕ(κ−1

j γ). Then the additive
group cocycle on0 given by

c(1, γ1, γ1γ2) =
∑
γ∈0

trace(εζ(γ))

is what Connes calls the “volume” or area cocycle on0. Thus we find that we have
computed the character of our Fredholm module to be:

τc(γ0, γ1, γ2) = c(1, γ1, γ1γ2)σ(γ1, γ2)

forγ0γ1γ2 = 1, withτc being zero whenγ0γ1γ2 6= 1 (the normalisation differs from [Co2]
p. 295, but conforms with [CM]). This formula extends to give a non-trivial element of
the cyclic cohomology of the smooth subalgebraAσ,g via the formula

τc(f0, f1, f2) =
∑

γ0γ1γ2=1

f0(γ0)f1(γ1)f2(γ2)c(1, γ1, γ1γ2)σ(γ1, γ2),

for f0, f1, f2 ∈ Aσ,g.
Summarizing the discussion above, we have the first result of this section.

Proposition 9. There is a 2-summable Fredholm module(F,H) overAσ,g whose Chern
character is given by the area cyclic 2-cocycleτc. Therefore, by the index pairing in
[Co2], one has

index(P (F ⊗ I)P ) = 〈[τc], [P ]〉,
whereP denotes a projection inAσ,g ⊗K(H1) andindex(P (F ⊗I)P ) denotes the index
of the Fredholm operatorP (F ⊗ I)P .
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Assembling this proposition with our results from Sect. 10 we have:

Theorem 17. LetP denote a projection inAσ,g ⊗K(H1) Then in the notation of Corol-
lary 12 of the previous section, one has

index(P (F ⊗ I)P ) = 2(g − 1)(rankE0 − rankE1) ∈ Z,

whereindex(P (F ⊗I)P ) denotes the index of the Fredholm operatorP (F ⊗I)P acting
on the Hilbert spaceP (H ⊗ H1) andµ−1

σ [P ] = [/∂+
E0] − [/∂+

E1] ∈ K0(Σg).

Corollary 13. LetP be a projection into a gap in the spectrum of the discrete Hamil-
tonianHτ . ThenP ∈ Aσ,g, and may be regarded as a twisted convolution operator by
a functionp on0. Then in the notation of Corollary 12:

index(PFP ) =
∑

γ0γ1γ2=1

p(γ0)p(γ1)p(γ2)c(1, γ1, γ1γ2)σ(γ1, γ2)

= 2(g − 1)(rankE0 − rankE1) ∈ Z.

Note that this explains the integrality of the cyclic 2-cocycle,∑
γ0γ1γ2=1

p(γ0)p(γ1)p(γ2)c(1, γ1, γ1γ2)σ(γ1, γ2),

in two different ways: firstly as the index of the Fredholm operatorPFP , and secondly
as the topological index 2(g − 1)(rankE0 − rankE1), which is also clearly an integer.

12. The Non-Commutative Unit Disc

In [Klim+Les1,2] Klimek and Lesznewski have introduced a non-commutative unit
disc and higher genus Riemann surfaces. Their disc algebra can be realised as a Toeplitz
algebra obtained by compressing the commutative algebra of functions on the disc using
the projection onto a holomorphic subspace of one of its representation spaces. We shall
describe their construction in a slightly more general setting. The algebraCc(G/K) acts
by multiplication (f 7→ M (f )) onL2(G/K,µ) for any quasi-invariant measureµ. The
groupG also has an inducedσ-representationW on this space, and we shall suppose that
there is an irreducible subrepresentation on a subspace which is projected out byP . (This
is certainly true in the case considered in [Klim+Les1].) The algebraPM (Cc(G/K))P
then gives the non-commutative analogue ofCc(G/K). Now, by definitionG also acts
and therefore defines automorphisms of this algebra. Since it commutes withP the
covariance algebraPM (Cc(G/K))P o G is the same asP (Cc(G/K) o G)P , which
is the compression of the imprimitivity algebraA = Cc(G/K) o G. For higher genus
surfaces one simply takes the0-invariant part ofPCc(G/K)P , which is consistent with
our constructions above.

Suppose now that the irreducible subspace is defined by a reproducing kernel. In-
variance of the kernel means that it is defined by twisted convolution with a continuous
σ-positive definite functionξP or, equivalently, that

P = W (ξP ) =
∫
ξP (g)W (g) dg.
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Now observe thatξP can be identified with an element of the imprimitivity algebra
so the covariance algebra can be identified with the compressionξP ∗ A ∗ ξP of the
imprimitivity algebra.

In the cases of interestξP is theσ-positive-definite function associated with aC∞-
vector, and so is smooth. This means that the natural moduleξP ∗ M for ξP ∗ A ∗ ξP
retains the structure of a Fredholm module.
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[Bost] Bost, J.: Principe d’Oka,K-théorie et syst́emes dynamiques non commutatifs. Invent. Math.
101no. 2, 261–333 (1990)
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