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Abstract: The mathematical framework for an exact quantization of the two-dimensio-
nal coset space-models coupled to dilaton gravity, that arise from dimensional reduc-
tion of gravity and supergravity theories, is presented. Extending previous results [49]
the two-time Hamiltonian formulation is obtained, which describes the complete phase
space of the model in the isomonodromic sector. The Dirac brackets arising from the
coset constraints are calculated. Their quantization allows to relate exact solutions of the
corresponding Wheeler—DeWitt equations to solutions of a modified (Coset-)Knizhnik-
Zamolodchikov system.

On the classical level, a set of observables is identified, that is complete for essential
sectors of the theory. Quantum counterparts of these observables and their algebraic
structure are investigated. Their status in alternative quantization procedures is discussed,
employing the link with Hamiltonian Chern—Simons theory.

1. Introduction

It is an important class of physical theories, that admit the formulation as a gravity
coupled coset spaeemodel after dimensional reduction to two dimensions. Including
pure gravity and Kaluza-Klein theories as well as extended supergravity theories, in 3+1
dimensions they are described by a set of scalar and vector fields coupled to gravity,
where the scalar fields already form a non-lineanodel. Further reduction is achieved

by imposing additional symmetries — manifest by assuming two additional commuting
Killing vector fields, for example corresponding to the study of axisymmetric stationary
models.
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This reduction to effectively two dimensions leads to a non-lireanodel in an
enlarged coset space, coupled to two-dimensional gravity and a dilaton field. The arising
additional scalar fields that contribute to parametrizing the coset space are a remnant of
the original vector fields and of components of the former higher-dimensional metric. For
general reason, related to boundedness of the energy, it is the maximal compact subgroup
H of G that is divided out in the coset. The first reduction of this type, discovered for
pure gravity [33], leads to the simplest coset spaf€2, R)/SO(2). It was generalized
up to the case of maximally extendéd = 8 supergravity, where th&gg)/SO(16)
arises [40, 41]. The general proceeding was analyzed in [13, 55].

In [47-49] a program was started to perform an exact quantization of these di-
mensionally reduced gravity models. Progress has been achieved using methods and
techniques similar to those developed in the theory of flat space integrable systems
[24, 26, 46]. Despite the fact that dimensional reduction via additional symmetries rep-
resents an essential truncation of the theory, these so-called midi-superspace models
under investigation are sufficiently complicated to justify the hope that their exact quan-
tization might provide insights into fundamental features of a still outstanding quantized
theory of gravitation. In particular and in contrast to previously exactly quantized mini-
superspace models, they exhibit an infinite number of degrees of freedom, which is
broadly accepted to be a sine qua non for any significant model of quantum gravity
(compare [52, 5] for a discussion of this point in the context of related models). One of
the final purposes of this approach is the identification of exact quantum states, whose
classical limit corresponds to the known classical solutions. For pure gravity this in-
cludes the quantum analogue of the Kerr solution describing the rotating black hole;
for extended supergravities recently discovered corresponding solutions have been of
particular interest exhibiting fundamental duality symmetries [17, 16], such that their
exact quantum counterparts should shed further light onto the role of these symmetries
in a quantized theory.

The main ideas of the new framework are the following: Exploiting the integrability
of the model, new fundamental variables have been identified (certain components of
the flat connection of the auxiliary linear system continued into the plane of the spectral
parameter), in terms of which the “right” and “left” moving sectors have been completely
decoupled [47]. The quantization is further performed in the framework of a general-
ized “two-time” Hamiltonian formalism, i.e. these sectors are quantized independently.
The whole procedure has been established in that sector of the theory, where the new
fundamental connection exhibits simple poles at fixed singularities.

In the present paper we achieve the consistent general formulation of the desired
coset-models in this approach. So far the formalism was mainly elaborated in the tech-
nically simplified principal model, where the coget H had been replaced by the group
G itself. For the coset model the phase space spanned by the new variables is too large
and must be restricted by proper constraints. Their canonical treatment requires a Dirac
procedure, which effectively reduces the degrees of freedom. It leads to a consistent
analogous Hamiltonian formulation of the coset model allowing canonical quantization.
Exact quantum states are shown to be in correspondence to solutions of a modified
(Coset-)Knizhnik-Zamolodchikov system. Moreover, the formalism is kept general as
long as possible, without restricting to the simple pole sector. In particular, we com-
pletely extend it to the case of connections with poles of arbitrary high order at fixed
singularities, which span the isomonodromic sector of the theory. Generalization of the
scheme to the full phase space is sketched in Appendix A.

The other main result of this paper is the identification of classical and quantum ob-
servables. For the above mentioned simple pole sector, these sets are complete. Natural
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candidates for classical observables are the monodromies of the fundamental connection
in the plane of the variable spectral parameter. We determine their (quadratic) Poisson
structure. After quantization of the connection quantum counterparts of these mon-
odromy matrices are identified as monodromies of certain higher-dimensional KZ sys-
tems. Following Drinfeld [22] their algebraic structure may be determined to build some
guasi-associative braided bialgebra. The classical limit of this structure coincides with
the Poisson algebra of the classical monodromies found above. In this sense, complete
consistency of the picture is established. The weakened coassociativity leads to a quan-
tum algebra of observables with operator-valued structure constants. This might have
been avoided by directly quantizing the regularized classical algebra of monodromies, as
is common in Chern—Simons theory [2, 3], instead of recovering quantum monodromies
in the picture of the quantized connection. We discuss this link and its consequences.

The treatment of observables is performed in great detail for the simplified principal
model mentioned above. This is for the sake of clarity of the presentation, since the
arising difficulties in the coset case deserve an extra study in the sequel. However, the
main tools and strategies that will finally be required can already and more clearly be
developed and used in this context. The modifications required for the coset model are
clarified afterwards.

The paper is organized as follows. In Chap.2 we start by introducing the known linear
system associated to the model and describe the related on-shell conformal symmetry.
A short summary and generalization of the results from [47, 49] about the classical
treatment of the principal model is given without restricting to the simple pole sector.
The link to Hamiltonian Chern—Simons theory is discussed, where the same holomorphic
Poisson structure is obtained by symplectic reduction of the complexified phase space
in a holomorphic gauge fixing. This link in particular enables us to relate the status of
observablesin boththeories. Observables in terms of monodromy matrices are identified;
their Poisson structure is calculated and discussed. The technical part of the calculation
is shifted into Appendix B.

Chapter 3 treats the quantization of the principal model. We first briefly repeat the
guantization of the simple pole sector of this model [48, 49]. Quantum analogues of
the monodromy matrices are defined. Their algebraic structure and its classical limit are
determined and shown to be consistent with the classical results. The alternative treat-
ment in Chern—Simons theory and the identification of quantum observables in these
approaches are discussed. In Chap.4 we finally present the generalization of the formal-
ism to the coset models. A Hamiltonian formulation in terms of modified fundamental
variables is provided. The coset constraints are explicitly solved by a Dirac procedure.
Furthermore, we quantize the simple pole sector of the coset model, showing that solu-
tions of a modified Knizhnik-Zamolodchikov system identify physical quantum states,
i.e. exact solutions of the Wheeler—DeWitt equations. We close with a sketch of how
to employ the whole machinery to the simplest case of pure four-dimensional axisym-
metric stationary gravity. In particular, the existence of normalizable quantum states is
shown. Chapter 5 briefly summarizes the open problems for future work.

2. Principal o-Model Coupled to Two-Dimensional Dilaton Gravity
The model to be studied in this paper is described by the two-dimensional Lagrangian

L= ep(R + h“”tr[auggflayggfl]) . 2.1)
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Here,h,, isthe 2D (*worldsheet”) metrice = /| deth|, R is the Gaussian curvature of
h*, p € Ris the dilaton field ang takes values in some real coset spagdd, where
H is the maximal compact subgroup@f The current#),,gg~* therefore live in a fixed
faithful representation of the algebgaon some auxiliarylo-dimensional spacp. It
is well known that this type of model arises from the dimensional reduction of higher
dimensional gravities [13, 55], e.g. froni4gravity in the presence of two commuting
Killing vectors [12]. In the latter case which describes axisymmetric stationary gravity,
the relevant symmetric spaceGy H = SL(2,R)/SO(2).

Let us first briefly describe further reduction of the Lagrangian (2.1) by means
of gauge fixing and state the resulting equations of motion. The residual freedom of
coordinate transformations can be used to achieve conformal gauge abtheegic

hyw:
hyydatda” = h(z, z)dzdz

with world-sheet coordinates z, which reduces the Lagrangian to
£=p(hR+tlg.g79z71) - 2.2)

In this gauge the Gaussian curvature takes the fBrm (logh).z/h. The equation of
motion for p derived from (2.2)
p.z=0 (2.3)

is solved byp(z, z) = Im £(z), whereé(z) is a (locally) holomorphic function. Then the
equations of motion fog coming from (2.2) read

((€ = g:97Y) -+ (€ — gzg™), =0. (2.4)

We can further specialize the gauge by identifyimg_with the worldsheet coordinates.
Then (2.4) turns into

(€= geg™ ) e+ (€ —ggg™") = 0. (2.5)

The equations of motion for the conformal factor are derived from the original
Lagrangian (2.1):

€tr(ggg‘l)2 and cc. (2.6)

(oghe = £

Throughout this whole chapter we will for above mentioned reasons of clarity inves-
tigate the simplified model, where the symmetric sp@¢é{ is replaced by the group
G itself. We will refer to this plainer model as tipeincipal model.

2.1. Linear system and on-shell conformal symmetry of the matiel starting point of
our treatment is the following well-known linear system associated to Egs. (2.5) [10, 54]:

v _gegty, AV gy
¢ 1—~ ¢ 1+~y 7

@2.7)

wherev is the spacetime-coordinates dependent “variable spectral parameter”

v= o= St w-ow-9} . 28)
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or alternativelyw € C may be interpreted as a hidden “constant spectral parameter”;
Y(w, &, £)isaGe-valued function. The variable spectral parametiéres on the twofold
covering of the complex-plane, the transition between the sheets being performed by
o % It satisfies

Oy _ v 1y Oy _ v 1-nv

9 €-¢1—v' 9 E£-€l+y’
such thatin (2.7) itis

(2.9)

d_90_ v 1+7 0 d_0, v 1-7v0
¢ 06 £—¢l—noy’ ¢ 06 £—El+y 0y

The linear system (2.7) exists due to the following on-shelibMs symmetry of
equations of motion.

(2.10)

Theorem 2.1. Letg(z, 2), p(z, z) = Im&(z) andh(z, z) be some solution of (2.3), (2.4),
(2.6) andV¥ be the related solution of the linear system (2.7). Then

wé(2)

el c“lhl=h, (2.11)

g = vt (i) W), oVl =

also solve (2.4), (2.6).

o"lgeg™1 =/ 73 — gllfl <i> geg W (i) ,
o"lggg '] = Hz :Z - (i) 969~V (i) :

Now fulfillment of (2.4), (2.6) may be checked by straightforward calculation. O]

Proof. We have

The transformationg™ form a one-parametric abelian subgroup of the group
SL(2,R) of conformal transformations. We have

1 1 1
w3’ + —

w1 w2 w3

ctc2 =g

The full Mobius group may be obtained combining transformatietiswith the
(essentially trivial) transformations

§(z) —~ag(z)+b,  g(2) = g(2),

which obviously leave the equations of motion invariant. As a result the action of an
arbitrary S L(2, R) Mdbius transformatioa on a solution of the equations of motion is

wé(2)
w —&(2)

1 A similar symmetry exists in the theory of Bianchi surfaces [11].

) = oldl =a +h, g(23) e olg] = (i) v, (212)
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leavingh invariant. In addition to the Kbius symmetry (2.12) the model possesses the
symmetry corresponding to an arbitrary holomorphic change of the worldsheet coor-
dinatez (this symmetry disappears if we identifywith £). Combining this symmetry

with (2.12) reveals the following Kbius symmetry of Eq. (2.5)

(6.8 - o) (o2 HEZD ) (219
5 wE—b) w(E-b)
h(g,g)Hh(aw+§_b,&w+£_b> . (2.14)

Infinitesimally, the symmetry (2.13) is a subalgebra of the Virasoro symmetry of (2.5)
[42].

Note 2.1.Itis known that the Ernst equation (2.4) f8£.(2, R)/SO(2) may be rewritten
as a fourth order differential equation in terms of the conformal falet@he transfor-
mation (2.14) shows that this equation is, in contrast to the Ernst equation itgddi$/
invariant in theg, ¢-plane.

2.2. Two-time Hamiltonian formulation of the principal modeHere we present a
generalized version of the “two-time” Hamiltonian formalism of the principahodel
proposed in [47, 48]. It is the strategy to define a new set of fundamental variables by
means of exploiting the corresponding linear system. These variables may be equipped
with a Poisson structure such that a two-time Hamiltonian formulation of the model is
achieved.

2.2.1. New fundamental variables and the isomonodromic settm.main objects we
are going to consider as fundamental variables in the sequel are certain components of
the following one-form:

Definition 2.1. LetW(vy, ¢, g_) be a solution of the linear system (2.7). Thenghalued
one-formA is defined as
A:=duut, (2.15)

In particular, we are interested in the components
A= AVdy + ASde + ASdE = AW dw + ASde + ASdE (2.16)

where(v, &, &) and(w, &, £) respectively are considered to be independent variables. In
the sequel we shall use the shortened notatloa A”.

Moreover, we will restrict our study to that sector of the theory, wherie a single-
valued meromorphic function of i.e. that alsoA is single-valued and meromorphic in
~. A solutionW of (2.7) with this property is calledomonodromig, as its monodromies
in the~-plane then have now-dependence due to (2.15).

Further on, we immediately get the following relations:
Lemma 2.1. The relation of the original fielg to A is given by
1 _ 2 — 1 2 _
gfg - *A(Vv 57 g) } ggg - *A(% Ea 6) 9 (217)
é- - g ~y=1 6 - € y==—1

as acorollary of (2.7) and (2.10). Moreover, the linear system (2.7) and definition (2.16)
imply
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Av =9y, (2.18)
ow
e 2AQ) 6. 2ACD
E-9a-7" €A+
¢ = 24(1) — (1 +71)A0) 4E = 2AED +9(A - 1)AG)
E-oa-» € -0 +7)

O

Note 2.2.In the sequelA(v) will be exploited as the basic fundamental variable. At
this point we should stress the difference between the real geo(pith algebrag)
entering the physical models and the related complexified gtaufwith algebragc).
Namely, itisA(y € C) € gc, whereas we will additionally impose the “imaginary cut”
iA(y€iR) € g. SinceA(y) is a (locally) holomorphic function, this implies

A() = -A"(—), (2.19)

where* denotes the anti-linear conjugation gn defined by the real forrg. Together
with (2.17) this ensureg € G.

Note 2.3.The linear system (2.7) admits the normalization
Y(y=o0) =1, (2.20)
which implies regularity ofA at infinity:

A= lim A7) =0. (2.21)
y—00

Furthermore, (2.7) implies an additional relation between the original §ieldd the
Ww-function:
Y(y=0) =gCo, (2.22)

where(Cy is a constant matrix in the isomonodromic sector.

The definition of A as pure gauge (2.15) implies integrability conditions on its
components, which in particular give rise to the following closed systerd 9):

¢ 3
%:[AE’A].’.aA +8i.

o oy’ Oy
The main advantage of the system (2.23) in comparison with the original equations
of motion in terms ofg (2.5) is that the dependence grand ¢ is now completely
decoupled. Once the system (2.23) is solved, it is easy to check that Egs. (2.17) are
compatible and the field restored by means of them satisfies (2.5).
The remaining set of equations of the principal model (2.6), which concern the con-
formal factorh, may be rewritten taking into account (2.17) as the following constraints:

0A _ 3
e A (2.23)

trA%(—1)=0. (2.24)

C¢ := —(log h)gitmz(l) =0, ¢¢:=(log h)e+

2.2.2. Poisson structure and HamiltoniariBhe described decoupling @fandg_depen—
dence allows to treat the system (2.23), (2.24) in the framework of a manifestly covariant
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two-time Hamiltonian formalism, where the fiek{), the “times”¢, £ and the fields
(logh)e, (logh)s are considered as new basic variables. The spirit of the generalized
“several-times” Hamiltonian formalism is described for example in [44, 18].

For this purpose we equig(y) with the following (equak, £) Poisson structure:

Definition 2.2. Define the Poisson bracket of(v) = A%(y)t, as:

{40, A(w)} = —f“”“AC(VV) — fc(” 3 (2.25)

fe¢ being the structure constants @f

The relations

(a0, o) = a6y, a0 (2.26)
{400, 2w} = [456). a0)] |

compared with the equations of motion (2.23) give rise to
Definition 2.3. We call the £, f_)-dynamics that is generated by
1 : 1
trA%(1) , HS = ——trA%(-1), (2.27)
£—¢ £€-¢

theimplicit time dependenceof the fields. The remainingf,(g_)-dynamics is referred
to asexplicit time dependence

HS =

Infact, the motivation for this definition arises from [47, 48], where it has been shown
that in essential sectors of the theory (simple pole singularities in the connggtitis
possible to identify a complete set of explicitly time-independent variables. They may be
treated as canonical variables then, suchMfaandH ¢ serve as complete Hamiltonians.
This will be illustrated and generalized in the next subsections for the isomonodromic
sector of the theory, wheré(~) is assumed to be a meromorphic functionyof

The extension of this framework to the whole phase space of arbitrary connections
A, that is strongly inspired from the treatment of the simple pole case, is sketched in
Appendix A. The variablesi(y) themselves are explicitly time-dependent in general
according to (2.23) and (2.26).

Note 2.4. The quantities

B =are)ear (D)= (a0 -54(2)) @2
v, ow 7\

build a rather simple set of explicitly time-independent variables, carrying half of the
degrees of freedom of the full phase space. This may be checked by straightforward
calculation. Moreover, (2.25) implies

B¢(w) — B¢(v)

w—v

{B*(w), B"(v)} = —f* (2.29)

2 Assumingg to be semisimple, the existence of the symmetric Killing-form enables us to arbitrarily pull
up and down the algebra indices.
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Note 2.5. From the mathematical point of view, (2.25) is a rather natural structure [26],
even though it is not canonically derived from the Lagrangian (2.1). It may however be
obtained from an alternative Chern—Simons Lagrangian formulation of the model, as
is sketched in the following section. Comparison to the conventional Poisson structure
of (2.1) should be worked out on the space of observables, where due to spacetime-
diffeomorphism invariance no principal difference between one- and two-time structures
appears.

In order to gain a Hamiltonian description for the tog‘a@-dependence ofthe fields,
we employ a full covariant treatment by additionally introducing conjugate momenta
for the canonical “time” variable$ and¢.

Definition 2.4. Define the (equa;t,g_) Poisson bracket
{€~togh)c} = {& ~(ogh)c} =1, (2.30)

where in the sense of a covariant theory only the explicit appearan@gg_c(tompare
Def. 2.3) is covered by treating these previous “times” as additional canonical variables,
which obey the bracket (2.30).

This identification of the conjugate momenta for the explicitly appearing times with
the logarithmic derivatives of the conformal factor is motivated from the Lagrangian
(2.2) [56]. It implies that the dynamics ghand¢ directions is completely given by the

Hamiltonian constraint§¢ andC¢ defined in (2.24), i.e. for any function&l we have
dF dF
75 = {F3 CE} ’ e

={F,C*}. (2.31)
£
The remaining equations of motion (2.24) mean weak vanishing of the Hamiltonians.
This phenomena always arises in the framework of covariant Hamiltonian formalism
when time is treated as canonical variable in its own right canonically conjugated to the
Hamiltonian [35]; it is a standard way to take into account possible reparametrization
of the time variable.

2.2.3. First order poledn this simplest case considered in [47, 49] we assumeAfgt
has only simple poles, i.e.

Y 44(6,6)
Ay =S S0l (2.32)

where according to (2.7) all; should satisfy (2.9), i.ey; = v(wj,§, g_) w; € C. Then
the equations of motion (2.23) yield

[Ag, Aj] [Ar, Ajl
5 Z A=A =)’ Z L+ (2 +75)
(2.33)
and the Poisson brackets (2.25) and (2.30) reduce to
{Ag, AbY = 6,145 (2.34)
{A;, (logh)e} = {4;,(logh)s} = 0,
{v;,(logh)e} = —0¢; , (2.35)

{nj, (logh)g} = =0, ,
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i.e. in this case, the residuels together with the set of (hidden constant) positions of
the singularitiew; } give the full set of explicitly time-independent variables.

2.2.4. Higher order poled/Ve can also generalize the described formulation to the case,
where A(vy) has higher order poles in theplane:

A(y) = ZZ G (i's))k . (2.36)

7=1 k=1
The Poisson structure (2.25) in termsAfjf has the following form:

8ij fore(AS e fork+1—1<r;

fork+l—1>r; ’ (2.37)

{(Aby®, (Alyy = {

building a set of mutually commuting truncated half affine algebras.

However, it turns out that for; > 1 the variables4” for k =1,...r; —1 have
non-trivial Poisson brackets with (Idg, and (logh)z, and, therefore, are not explicitly
time-independent. The problem of identification ofexpllcnly time-independent variables
can be solved in the following way. Consider

A*a)= 2L AQ),

which as a function ofv is meromorphic on the twofold covering of the-plane.
Parametrize the local expansion4¥ around one of its singularities; as

(w)k
A(y) = Z @ +(’)((w w;)°)  for 4~ (2.38)

We can now formulate

Theorem 2.2. The coeﬁicientslgw)k of the local expansion o1 have no explicit time
dependence, i.e.

D AS = (AW FE) gl = (A FEy (2.39)

They satisfy the same Poisson structure as#tfneéZ.S?):

Wkya ¢ 4@)iyp | = 85 (AR e for g+l — 1<,
{aammye aenyy={ o izt Gao

Proof. Let us first prove (2.39). From (2.25) and the definitiorft it follows that

2
(A" (y), HE} = {am(w , Z(ZA S)}
By {214(1) }: T g
- AG)| = 1), A7) |

whereas from (2.15) the-dynamics ofA" is determined to be
2A(1)
(1-72

0 A" = [AS(y), A(M] + 0w AS(7) = [AS(7), A (] + Dy
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As the last term is regular i = ~;, comparison of the two previous lines shows
that the&-dependence of the coefficients in theexpansion around these points is
completely generated b/ ¢, which proves (2.39).

To show the Poisson structure (2.40), one has to consider the corresponding coeffi-
cients of singularities in (2.25). Fég/5, the result follows directly from (2.37), a&*)*
is a function ofAé., 1=1,...,r; only, such that locality remains. Fo¥ j, one may first
extract from (2.25) the behavior ¢f4* (), A" (n)} aroundy ~ ;:

A —A(w) fabe (A")(7) Doyt
—p p—y

{(A)* (), (A’ (W)} = —0uyDupf

)

to then further study the asymptotical behayiot ~:

A ). @y} ~ oS0

v —w
such that (2.40) fof=7 follows in the same way, as does (2.37) from (2.25). O

Thus, also in this case we have succeeded in identifying a complete set of canonical
explicitly time-independent variables.

Note 2.6. Comparing (2.36) with (2.38) shows that tH&""* are related to thel’ by
means of explicit recurrent relations that may be derived, expanding (2.36)Hm().

Then A™* s a function ofAé with £ < I < ;. In particular, the residues of highest

order are related by
67 rj—1 (w)
-7 AN = AT
() 474

which explains for example, why this difference was not relevant in the case of simple
poles in the last subsection.

2.3. The link to Hamiltonian Chern—Simons thedrie treatment of the principal model
of dimensionally reduced gravity in the previous section was inspired by the fact that the
equations of motion were obtained as compatibility conditions (2.23) of special linear
systems. The interpretation of these equations as zero curvature conditions suggests
a link with Chern—Simons theory whose equations of motion also state the vanishing
of some curvature. The Chern—Simons gauge connection then lives on a space locally
parametrized simultaneously by the spectral paramedeid one of the true space time
coordinates playing the role of time.

The relevant Chern—Simons action reads

g=Fr / tr{AdA — EAS] , (2.41)
ar Jos 3

T

whereA is a connection on a trivigr principal bundle over the 3-dimensional manifold

M. In the case of interest here, the manifdlfiis the direct product of the Riemann
surfaceY’, on which the spectral parametglives, and the real axis, which is interpreted

as time. For this configuration, Chern—Simons theory is known to have a Hamiltonian
formulation. Choosing proper boundary conditions on the connection, the action may
be rewritten in the form
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g = _k / tr[ A0, A]dt + L / tr[A%(dA — A?)]dt . (2.42)
47 M 2m M

The connection has been spit = A + A%t into spatial and time components,
where A° now plays the role of a Lagrangian multiplier for the constraint

F=dA—-A?=0. (2.43)

Usually, A° is gauged to zero which leads to static componehtsn particular,
any singularities of the connection are time-independent in this case and treated by
inserting static Wilson lines in the action (2.42) [61, 23]. A nontrivial and somewhat
singular gauge for® must be chosen, to derive the equations of motion of the described
principal model of dimensionally reduced gravity.

The further required holomorphic reduction of Chern—Simons theory can still be
described for arbitrary gauge fixing @f, as the results will be valid in any gauge.

2.3.1. Holomorphic reduction and Poisson bracket of the connectonthe following
we first complexify the phase space and thereby also the gauge group. This enlarged
gauge freedom may be used for a holomorphic gauge fixing then.

Denoting the spatial coordinates which locally parametlizg/ v = aHy, v = z—iy,
defining the measure a& dzdy = =2%dxdy = £ dydy and splitting the remaining
dynamical parts ofd into A = A7dy + A7dy, the action (2.42) implies the Poisson
structure

(A7, 7, AT D} =~ 75750 — g (249

where here and in the following thefunction is understood as a real two-dimensional
s-function:6@(x +iy) = £5(x)(y), normalized such thaf dydy5®@(y) = 1.

This Poisson structure corresponds to the Atiyah-Bott symplectic form on the space
of smooth connections on the Riemann surfatcgs]:

Qzﬁtr/ OA NOA .
47T ¥
The flatness constraints (2.43) are of the first class with respect to this bracket:

(F* 0,3, o ) = o) — 1)

where f?*¢ are the total antisymmetric structure constantg@f These constraints
generate the canonical gauge transformations

A gAgt+dggt, (2.45)

which leave the symplectic structure invariant.
The phase space of the original theory is therefore reduced to the space of flat connec-

tions A(~y, ) modulo the action of the complex gauge group (2.45). If the singularities
of the connectior are restricted to simple poles, this phase space is for instance com-
pletely described by the monodromies of the connection. As a first step to explicitly
reduce the number of degrees of freedom, we will fix the gauge freedom (2.45pin
demanding ~

AT=0, (2.46)

which makes flatness af(~y, 7) turn into holomorphy of the surviving componetit(v).
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Note 2.7.The existence of corresponding gauge transformations is a nontrivial prob-
lem. In general, wherl” is gauged away4”dy becomes a connection on a nontrivial
bundle over}. On Riemann surfaces of higher genus, this form of gauge generically
leads to multivalued holomorphic quantities exhibiting certain twist properties [50]. On
the Riemann sphere the gauge transformations preserving single-valuedmgssyof

at least exist on a dense subspace of connections [6, 31]. For the purpose here, strictly
speaking we a priori restrict the phase space to the class of functions on the punctured
sphere that allow this gauge fixing. This includes e.g. all the connections with the cur-
vature exhibitings-function singularities treated in [23] (gauge fixed to holomorphic
connections with simple poles) as well as connections with higher order derivatives of
d-functions in the curvature.

This gauge fixing of first-class constraints changes the Poisson structure according
to Dirac [19], leading to

Theorem 2.3. Let the Poisson structure (2.44) for the connection

A(y,7) = Ay, Ptady + AT (7, Ptady
be restricted by the constraints (2.43) and (2.46). Then the Dirac bracket for the surviving
holomorphic component4®(y) = AY:%(~) is given by

a * 1 acAc()iAc()
{A" () AV ()} = o e S
K Y

In this context, the holomorphic structure (2.47) has first been proposed by Fock and
Rosly [28].

Proof. The bracket between the constraints and the gauge-fixing condition is of the form
= iT iT =
{F(7), A" ()} = ;5“”355(2)(7 —m)+ ;f“bcA“(v)tS(z)("y —p.  (248)

On the constraint surface (2.46) this matrix can be inverted L&s;i@g —27i6@ (),

which follows from the inhomogeneous Cauchy theorem. The Dirac bracket for the
remaining holomorphic variable$”(v) then is

{AT(y), AP ()}
==> / dxdzdydy

m,n

(2.47)

(1472(), F (@)} (1P (@), AT ()})  {AT" (), A7)}
+{A0), AT ()} (AT ), F(@)}) L™ (@), A7)}

=% / dwdzdydiy
K

m

mbs2)(,, _
<(6“"”8w6(2)(5c _ ’Y) + fmacA’V,C(x)(S(Z)(:Ij _ ’Y)) 0™m%o (y U)

2mi(x — y)
am §(2)(~ _
_ ((Sbmai(s(Z)(.r _ /J/) + frnbcA'y,C(x)(s(Z)(x _ /’L)) 9™y (7 y))

2mi(z — y)
ATE(y) — AVE()
v = p '

O

— 1 abe
_ﬂf
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Note 2.8. For convenience in concrete calculations we still give this result in tensor no-
tation, as is explicitly explained in [26], where the relation of (2.47) to the corresponding
current algebra is discussed. This structure may be put into the form

{AM AW} =Ir(y — 1), A @ T+ I @ A(p)] , (2.49)
with the classical-matrix r(v) = —i% whereQ = t* ® t, is represented a§ x d3

matrix here. For the simplest but important cgsel(2), itis Q2 = %I@I + 11, with IT
being the 4< 4 permutation operator. The matrify) satisfies the classical Yang-Baxter
equation with spectral parameter

[ 20y — 1), 730) + 72201 + [1%(7), 7221 = 0. (2.50)

In shortened notation, (2.49) reads

{AM°, AW} = [r(y — ), AM)° + A@)°] (2.51)
with A(7)°:= A() @ I, AW :=1® A().

Note 2.9.In the framework of canonical and geometric quantization of Chern—Simons
theory [61, 7, 23, 31], the variablet” and A” are — according to (2.44) — considered
and treated as canonically conjugated coordinate and momentum, respectively. After the
holomorphic gauge fixing the surviving varialdg~) = A7 (y) resembles — according

to (2.47 — a combination of angular momenta.

Note 2.10.The flatness constraints (2.43) have not been totally fixed by the choice of
gauge (2.46). Apparently this gauge still admits holomorphic gauge transformations,
which on the sphere reduce to constant gauge transformations. This freedom may also
be seen from the appearancedgfin the matrix of constraint brackets (2.48), which
actually prevents its strict invertibility. This implies the surviving of the (global) first-
class part of the flatness constraiftwhich for meromorphic4 in the parametrization
(2.36) is

/ F()dydy = / D5 A% (y)drydy = —2ri Z(A})a = —2miA% (2.52)

whereA., = A% t,, compare (2.21). Obviously¢  is a generator of constant gauge
transformations in the bracket (2.47).

2.3.2. Embedding the principal modéi.this holomorphic structure of Chern—Simons
theory the link to the principal model can be established. As a first fact, note that the
Dirac bracket (2.47) for= —% equals the Poisson structure (2.25) that was used for the
Hamiltonian formulation of the principal model.

The equations of motion from Chern—Simons action (2.41) read

AT =9, A%+ A7, A" | (2.53)

leading to trivial dynamics in the gaugt = 0, whereas fot being replaced by and
the special (singular) choice of gauge
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2A7(1) — (1 +7)A"(y)
€-9a-»n

one exactly recovers the equations of motion (2.23).

Finally the surviving first-class constraints (2.52) that are due to former flatness on
the sphere gain a definite physical meaning in the principal model of dimensionally
reduced gravity. Arising there equivalently as regularity conditions i oo (2.21),
they are directly related to the asymptotical flatness of the corresponding sajution
of Einstein’s equations (2.5). As first-class constraints in different pictures [12], they
generate respectively the Matzner-Misner or the Ehlers symmetry transformations of
the model.

Their actual role as a physical gauge transformation related to the local Lorentz
transformations becomes manifest in the proper treatment of the coset model below, see
Subsect.4.

A%y) = AS(y) =

2.4. The algebra of observable#. consistent treatment of the theory and in particular
the ability to extract classical and quantum predictions from the theoretical framework
requires the identification of a complete set of observables. In the model as presented so
far, observables can be defined in the sense of Dirac as objects that have vanishing Poisson
bracket with all the constraints including the Hamiltonian constraints (2.24), which even
play the most important role here. In the two-time formalism this condition shows the
observables to have nototal dependencgamds. This is a general feature of a covariant
theory, where time dynamics is nothing but unfolding of a gauge transformation, and
observables are the gauge invariant objects.

Regarding the connectiaA(vy) as fundamental variables of the theory, the natural
objects to build observables from are the monodromies of the linear system (2.15). They
may be equivalently characterized as

W(y) — W(y)M; , for v running along the closed path (2.54)

M; = Pexp <jl{A('y)d'y) .

These objects naturally have no totél {)-dependence; in the isomonodromic sector
we treat, thev-dependence is also absent.

For simple poles let us denote By; = M,, the monodromies corresponding to the
closed pathg; which respectively encircle the singularitigsand touch in one common
basepoint. From the local behaviorg{y) aroundy = ;,

or

¥() = Gi(1+ 00 = 7)) (7 = W)™ C:
one also extracts the relations
A; =G TG, M; =07 TiC; . (2.55)
The remaining constraint of the theory which should have vanishing Poisson bracket

with the observables is the generator of the constant gauge transformations (2.52), under
which the monodromies transform by a common constant conjugation. This justifies
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Definition 2.5. In the case, where the connectigtfy) exhibits only simple poles at
fixed singularitiesv; and with fixed eigenvalues df;, we call the set of Wilson loops

k

k, (i1, . .. ,z‘k)} (2.56)

the set of observables

Note 2.11.For these connection4(), the corresponding monodromies together with

the position of the singularities and the eigenvalued pfenerically already carry the
complete information. (It is necessary to add the set of eigenvaluel ef i.e. the
matricesT; or the Casimir operators of the algebra respectively — to the set of mon-
odromies, since from the monodromies only the exponentials of these eigenvalues can
be extracted.) In the presence of higher order poles in the connection, additional scatter-
ing data — so-called Stokes multipliers — are required to uniquely specify the connection
[39].

The generic case, in which the whole information is contained in the above data, is
precisely defined by the fact that no eigenvalues of the monodromy matrices coincide
[38, 39]. In particular, this excludes the case of multisolitons, where the monodromies
equal+l.

The algebraic structure of the observables (2.56) is inherited from the Poisson struc-
ture on the corresponding connectid(ry).

Before we explicitly describe this structure, let us briefly comment on the relation
to Chern—-Simons theory, where quite similarly the Poisson bracket (2.44) provides a
Poisson structure on gauge invariant objects.

2.4.1. Observables in Chern—Simons thednyChern—Simons theory on the punctured
sphere, the set of observables is also built from the monodromy matrices. Note that since
in the usual gaugd® = 0 the Hamiltonian constraint is absent, observables are identified
as gauge invariant objects, where this is invariance under leedépendent) gauge
transformations. Fixing this gauge freedom by holomorphic gauge as described above,
the Dirac bracket (2.47) is now a structure on the reduced phase space of holomorphic
connectionsi(z) modulo the action ofonstantgauge transformations.

It has been explained in [2] that the canonical bracket (2.44) does not define a unique
structure on monodromy matrices due to arising ambiguities from the singularities of
this bracket (see also [59]). However, on gauge invariant objects, built from traces of
arbitrary products of monodromy matrices, these ambiguities vanish [28, 1]. Hence the
strategy there is to postulate some structure on the monodromy matrices which reduces
to the proper one [34] on gauge invariant objects.

The holomorphic Dirac bracket (2.47) allows the calculation also for the mon-
odromies themselves, as we shall show in the following. To relate this result to [28, 2],
note that in general the original Poisson bracket and reduced Dirac bracket coincide
on quantities of first class in Dirac terminology, i.e. here on gauge invariant objects. In
this sense the holomorphic reduction finally leads to the same result on the space of
observables.

2.4.2. Poisson structure of monodromy matric8$he holomorphic Poisson structure
(2.47) defines a Poisson structure on the monodromy matkiGed he result is sum-
marized in the following
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Theorem 2.4. Let A(vy) be a connection on the punctured plané, {vi,...,v~},
equipped with the Poisson structure

{40, A} = [2.46)°+ A - (2.57)

YoM
Let furtherW be defined as a solution of the linear system

0, ¥(y) = AMY() , (2.58)
normalized at a fixed basepoisg,
W(sg) =1, (2.59)

and denote by\/y, ..., My the monodromy matrices @ corresponding to a set of
paths with endpoingp, which encircley,, . .., vn, respectively. Ensure holomorphy of
W at oo by the first-class constraint

Ax = 7IiﬁmOC ~A(y)=0. (2.60)
Then, in the limitsp — co, the Poisson structure of the monodromy matrices is given by
{M?, M?} =ir (M?Q MO~ MOQ M?) , (2.61)
(M0} =im (MP@ MO+ MOQ MO — @ MPM? — MPMPR)
for i<y, (2.62)

where the paths defining the monodromy matrigésare ordered with increasing
with respect to the distinguished pdtty — oc].

At this point several comments on the result of this theorem are in order, whereas
the proof is postponed to Appendix B.

Note 2.12.The first-class constraint (2.60) generates constant gauge transformations of
the connectiord in the Poisson structure (2.57). For the connections of the type (2.36)
this reduces to the constraint (2.52). In terms of the monodromy matrices, holomorphy
of U atoo is reflected by

Myo=[[M=1, (2.63)

which in turn is a first-class constraint and generates the action of constant gauge trans-
formations on the monodromy matrices in the structure (2.61) and (2.62). The ordering
of this product is fixed to coincide with the ordering that defines (2.62).

The gauge transformation behavior of the fields explicitly reads

{AgO,A?} = [sz Aﬂ , (2.64)
(M8, M0} = im (MO @M? — MIQMS, — @ME MO + MO MPR) .

This transformation law is further inherited by arbitrary produtfs= [, M;, of
monodromies, where on the constraint surfatg = I it takes the form
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{Mgo,M5} S [sz Mﬂ : (2.65)

resembling (2.64).
The generators of gauge transformations build the algebra

{AgO,AQO } = [Q,Ago} , (2.66)
> MO MO Y =ir (MO QMO — MO QMO (2.67)
{ p=ir( )

in terms of A, and M, respectively. In fact, the algebras (2.66) and (2.67) turn out to
be isomorphic: the quadratic bracket (2.67) linearizes if the Casimirs are split out.

As mentioned, we will further be interested in gauge invariant objects, which are
now identified by their vanishing Poisson bracket with (2.63) and which are therefore
invariant under a global common conjugation of all monodromies. Note that this includes
invariance under gauge transformations with gauge parameters (conjugation matrices)
that have nonvanishing Poisson bracket with the monodromies themselves. In accordance
with Definition 2.5, the structure (2.61), (2.62) implies

{Mx,trM} =0 (2.68)
for an arbitrary product of monodromiég.

Note 2.13.The evident asymmetry of (2.62) with respect to the interchangend j
is due to the fact that the monodromy matrices are defined by the homotopy class of the
path, which connects the encircling path with the basepoint in the punctured plane. This
gives rise to a cyclic ordering of the monodromies.

The distinguished path§ — oo] breaks and thereby fixes this ordering, as is explic-
itly illustrated in Fig.3 in Appendix B below. It is remnant of the so-called eyelash that
enters the definition of the analogous Poisson structure in the combinatorial approach
[28, 1, 2], being attached to every vertex and representing some freedom in this defi-
nition. However, the choice of another pat [~ oc] simply corresponds to a global
conjugation by some product of monodromy matrices: a shift of this eyelagistaps
corresponds to the transformation

My, — (My... M) My (M ... M) .

Therefore the restricted Poisson structure on gauge invariant objects is independent of
this path.

Note 2.14.A seeming obstacle of the structure (2.61), (2.62) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (2.60) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (2.63), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows [58], that the structure (2.61), (2.62) restricts to
a Poisson structure fulfilling Jacobi identities on the space of gauge invariant objects. On
this space, the structure reduces to the original Goldman bracket [34] and coincides with
the restrictions of previously found and studied structures on the monodromy matrices
[28]:

(MO, MO} = MOr MO+ MOy MOy MOMO — MOMDr (2.69)

(MO, M0} = MO MO+ MO MO — 7 MOME — MOMOrs,  for i<,
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wherer, andr_ :=—[Ir.IT are arbitrary solutions of the classical Yang-Baxter equation
(2,02 + 12,9+ 13,029 = 0, (2.70)

and the symmetric part of. is required to bezn Q2. Settingr. = i7€2, (2.69) reduces
to (2.61), (2.62) such that our structure is in some sense the skeleton, which may be
dressed with additional freedom that vanishes on gauge invariant objects. On the space
of monodromy matrices themselves, introduction-ehatrices may be considered as
some regularization to restore associativity, whereas the facetitseIf does not satisfy
the classical Yang-Baxter equation is equivalent to (2.61), (2.62) not obeying Jacobi
identities.

In the Poisson structure (2.69), the generator of gauge transformafigrs [ [, M;
has the following Poisson brackets with any monodranfy.

{Mgo, ME} = MO MO — MOMOr_ — MO MO+ MOr MO, (2.71)

which entails the same Poisson bracketff with an arbitrary product of monodromies
M =], Mj,.Onthe constraint surfad€, =I, taking into account,—_ = 2ir <, this
again implies (2.65), such thaf,, again generates the constant gauge transformations.

Note 2.15.The subset of observables
{tr[(M:)™][i, m} U {w]i} (2.72)

commutes with the whole set of observables.

For the positions of the singularities this follows just trivially from the Poisson
structure (2.25), whereas the eigenvalues of the monodromy matrices are related to
the eigenvalues of the corresponding residdeg2.55), which in turn provide the
Casimir operators of the mutually commuting algebras (2.34). This subset of commuting
variables thus parametrizes the symplectic leaves of (2.61), (2.62).

Note 2.16.For our treatment of the coset model below, the following additional structure
will be of importance. There is an involutionoh the set of observables, defined by the
cyclic shiftM; — M;.,,,whereN = 2nisthe total number of monodromies. The crucial
observation is now that this involution is an automorphism of the Poisson structure on
the algebra of observables:

{(X0), i(X2)} = i({ X1, X2}) , (2.73)

for X, X, being traces of arbitrary products of monodromy matrices. This is a corollary
of Note 2.13, as it follows from the invariance of the Poisson structure on gauge invariant
objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices.

Like every involution,n"defines a grading of the algebra into its eigenspaces of
eigenvaluetl. In particular, the even part forms a closed subalgebra.
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3. Quantization of the Principal Model

3.1. Quantization in terms of the connectioifhe quantization of the model looks

especially natural in the isomonodromic sector with only simple poles. This has been
performed in [48, 49], as we shall briefly summarize. In this case straightforward quanti-
zation of the linear Poisson brackets (2.34) leads to the following commutation relations:

[AY, Ag] = iho;; [P A;, (3.1)
[¢, (logh)e] = [€, (logh)dl = —ih, (32)
[¢, (logh)e] = [€, (logh)l = O.
According to (3.2), representirrgandf_by multiplication operators, one can choose

0 .0
(logh)e = |ha—€ , (logh)g = |h¥ (3.3)
From (3.1), the residued; can be represented according to
Aj =intg (3.4)

which acts on a representatidf of the algebrac.

Thus the quantum statg¢, £) in a sector with given singularities should depend on
(&, €) and live in the tensor-produdt™) := 11 ® ... ® Viy of N representation spaces.
Denote the dimension df; by d;, such thati: =dimy ™= [1d;.

3.1.1. Wheeler—DeWitt equations and Knizhnik-Zamolodchikov sy3teenvhole “dy-
namics” of the theory is now encoded in the constraints (2.24), which accordingly play
the role of the Wheeler—DeWitt equations here:

Cép=Cp =0, (3.5)
which can be written out in explicit form using (2.24), (2.27), (3.3) and (3.4):
i 21 3.6
ag e vj)(l w0 59
ih
05 Z (1 +%)(1 +7k) v

where2;;, 1= t§ ® {f is the symmetnc 2-tensor @f acting nontrivially only or/; and
Vi.

The other constraint that restricts the physical states arrives from (2.52); its meaning
was sketched in Subsect. 2.3.2. In the quantized sector it is reflected by

(Z t;) (€ =0. (3.7)
J

The general solution of the system (3.6) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov (KZ) system [45]:

Iz — hz

0% W )

Pz s (3.8)
'Y

with anV®™-valued functionp,, (v;):
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Theorem 3.1. If o, is a solution of (3.8) obeying the constraint (3.7), andthdepend
on (¢, &) according to (2.8), then

N 0, 1ihQ;;
— J
P JI:Il (8wj ) Pz (3.9)

solves the constraint (Wheeler—DeWitt) equations (3.6).

The Casimir operatof2;; defined above is assumed to act diagonal on the states; for
g=sl(2) for example, this is simpl§2;; = %sj(sj — 2), classifying the representation.

Theorem 3.1 and the proof were obtained in [48]. The task of solving (3.6) reduces
to the solution of (3.8).

Note 3.1.The~; dependence of the quantum states, introduced in Theorem 3.1, can be
understood as just a formal dependence, which coversttl§g-dependence of these
states. However, one may also split up this dynamics into several commuting flows
generated by the corresponding operators from (3.8). The full set of solutions of (3.8)
then may be interpreted as g;“evolution operator,” describing this dynamics. In some
sense [49] this quantum operator resembles the clasgsitaiction introduced in [38].

Note 3.2.We have described how the solution of the Wheeler—DeWitt equations is
related to the solution of the KZ system (3.8) in the sector of the theory, where the
connection has only simple poles. It is therefore natural to suppose that the quantization
of the higher pole sectors that were classically presented in Subsect. 2.2.4 is achievable
in a similar way and will moreover reveal a link to the higher order KZ systems, which
were introduced in [57] in the quantization of isomonodromic deformations with exactly
the Poisson structure (2.37) on the residues.

Note 3.3. For definiteness itis convenientto assume pure imaginary singularita®
(i.e.w; € R). Then classicallyl; € g and quantized they carry representationgitself,
not of gc.

3.2. Quantum algebra of monodromy matrices.

3.2.1. Quantum monodromigdaving quantized the connectiet{y) as described in the
previous section, it is a priori not clear how to identify quantum operators correspond-
ing to the classical monodromy matrices in this picture. As they are classically highly
nonlinear functions of thel ;, arbitrarily complicated normal-ordering ambiguities may
arise in the quantum case.

The first problem is the definition of the quantum analogue of the claséieal
function. Itsdgxdg matrix entries are now operators on thdimensional representation
spaceV ™), We choose here a simple convention, replacing the classical linear system

9, ¥(y) = A(M)Y(7) (3.10)

by formally the same one, where all the arising matrix entries are operators now, i.e. (3.10)
remains valid for higher dimensional matricdsand . We have thereby fixed the
operator ordering on the right-hand side in what seems to be the most natural way. In
the same way, we define the quantum monodromy matrices:
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Definition 3.1. Thequantum monodromy matrix M is defined to be the r.h.s. mon-
odromy matrix of the (higher dimensionagilantum linear system(3.10):

W(y) — W(y)M; for v encircling~; , (3.11)

where the quantun¥-function is normalized as

W(y) = <I +0 <i>> y~A~  aroundy ~ oo . (3.12)

Note 3.4. The normalization condition (3.12) generalizes the one we chose in the clas-
sical case (2.59) where the basepaigitwas sent to infinity. This generalization is
necessary, because the constraint (2.60) is not fulfilled as an operator identity in the
guantum case, which means that the quantisfunction as an operator is definitely
singular aty = oo with the behavior (3.12). Only its action on physical states, which
are by definition annihilated by the constraint (2.52) may be put equal to the identity for
Y = 0.

For proceeding further we now make use of an interesting observation of [57], relating
the KZ systems withV and NV +1 insertions by means of the quantum linear system
(3.10). We state this as

Theorem 3.2. Let (s, - - -, vn) be the evolution operator of the KZ system

. Qi
Ojp=ihy —L ¢,
e Vi — Yk

and ®(vo, . . . ,7n) be the corresponding evolution operator of the KZ system with an
additional insertion atV =0. Then¥(yo, . . ., yn) := (I ® ¢~ 1)® satisfies the following
system of equations:

N -1
. 15 @ (pts
oV = mz wq“ (3.13)
- 0=
J
£ @ (ptdpt
0,V = _ihw\p .
Yo — ;i

The proof is obtained by a simple calculation. [

Consider the relations (3.13). Together with the remarks of Note 3.1, it follows that
this W just obeys the proper quantum linear system (3.10) in a Heisenberg picture: the
(&, £)-dependence of the operatots is generated by conjugation with the evolution-
operatory. For the definition of the quantunir-function it is the Heisenberg picture
which provides the most natural framework, as only in this picture implicit and explicit
(&, £)-dependence of operators are treated more or less on the same footing. Thus one
may identify

Aj =intg @ (ptie) .

The operatorsd play the role of the classical representatiéracting on the auxiliary
spacelyp, which is already required for the formulation of the classical linear system.
In this sense, the KZ system wifkii+1 insertions combines the classical linear system
with the quantum equations of motion that are described by the KZ systemNwith
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insertions. The additional insertiog then plays the role of. We shall use this link to
gain information about the algebraic structure of the quantum monodromy matrices.

3.2.2. Quantum group structuréVe now start from the representation of the quantum
W-function due to Theorem 3.2:

WO w) = (T 00 ) ) @01, ) - (314)

This shows in particular that the quantum monodromy matrices of the principal model
defined in (3.11) equal the corresponding monodromies of the KZ systemNwith
insertions. To obtain their algebraic structure, we employ a deep result of Drinfeld about
the relation between the monodromies of the KZ connection and the braid group repre-
sentations induced by certain quasi-bialgebras [21, 22]. Before we state these relations,
we have to briefly describe the induced braid group representations.

The KZ system that is of interest here, is

. Qi
6jq):|ﬁz gk q),
e Vi — Yk

with 7 =0,..., N, which, as explained, in a formal sense combines the classical and the
quantum degrees of freedom, the functibtiving in VIN*D := V5 @ V), This system
naturally induces a representation of monodromy matrices, which may canonically be
lifted to a braid group representation [43]. However, for our purpose, it is sufficient to
remain on the level of the monodromy representation, which we dengigsby

We further have to briefly mention two algebraic structures, which are standard
examples for braided quasi-bialgebras, where for details and exact definitions we refer
to[22,43]. Letus denote 3y, the so-called Drinfeld-Jimbo quantum enveloping algebra
associated witlg [20, 37]. This is a braided bialgebra, which includes the existence of a
comultiplicationA, a counite and a universak-matrix Ry, € Uy U5, obeying several
conditions of which the most important here is the (quantum) Yang-Baxter equation

RifRIPRY = RERRL (3.15)

The matrix Ry, can in principle be explicitly given, but is of a highly complicated
form. Itis Drinfeld’s achievement to relate this structure to a braided quasi-bialggbra
where the nontriviality of the?-matrix is essentially shifted into an additional element
o4 € Ap®Ar® Ay, the so-called associator, which weakens the coassociativity. The
R-matrix of Ay, is simply R 4 =e~ ™", whereQ := t*®t, is the symmetric 2-tensor of
g. This R-matrix satisfies a weaker form of (3.15), the quasi-Yang-Baxter equation

REQXRE (L) PREOE = 6 REGAVFREGCRE . (3.16)

The algebras{; and.A; are isomorphic as braided quasi-bialgebras [22].

There is a standard way, in which braided quasi-bialgebras induce representations
of the braid group. Each simple braiglis represented as

p(o) = o7 LTV RV g, (3.17)

wherelT is the permutation operator awd is defined ag; := A Y(¢) @ 1N ~i~2)
with A®:=1, AP :=1d andA*Y := (A @ 1d®*) A, We will denote the restrictions of
these representations of the algeliiagsand.A; on the monodromies, which are built
from products of simple braids, by, andp 4 respectively.

Now we have collected all the ingredients to state the result of Drinfeld as:
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Theorem 3.3. The monodromy representation of the KZ system equals the described
monodromy representation of the braided quasi-bialgeldra which in turn is equiv-
alent to the monodromy representation of the braided bialgébraThis means, that
there is an automorphismon V®*Y, such that

prz = pa = upyu b (3.18)

For the proof we refer to the original literature [22] or to the textbook of Kassel [43]. We
should stress that in this construction the deformation parameter of the quantum group
structure coincides with the true Planck constant [

3.2.3. Quantum algebra and classical limilt was our aim to describe the algebraic
structure of the quantum monodromy matrices defined in (3.11). By Theorem 3.2 these
monodromy matrices have been identified among the monodromies of the KZ system
with N+1 insertions as the monodromies of the additional pgjrencircling the other
insertions. Exploiting the consequences of Theorem 3.3 now, the quantum algebra of
the monodromy matricekly, . .., My is given by:

Theorem 3.4. The matrices\/; from (3.11) satisfy

R_MPR™*M?® = MOR, MOR;* (3.19)
ReMPR;™M? = MORMPR fori <j,

where these relations are understood in a fixed representation @§ thé, matrix entries
of the monodromy matrices on the tensor-prodd€Y) = ®j V;. The R-matricesR+
are

R_ = ugRtuyt, R, :=IIR~'IT, (3.20)

whereRy, is the universalR-matrix oflf;, mentioned abovey, is some automorphism
onVo® V™ andug is the corresponding one dry® V). The classical limit of these
R-matrices is given by

Ry =11 + (ih)(inQ) + OL(H) . (3.21)

Note 3.5.The relations (3.19) are to be understood as follows. The notation requires
two copies 0 and of the classical auxiliary spadg. While the standardz-matrices

Ry, and R4 live on these classical spaces oy, and R also act nontrivially on the
quantum representation spac€"), due to conjugation with the automorphisms ;.

Proof of Theorem 3.4Consider the monodromy representation (3.17) corresponding to
the coassociative bialgebtd The monodromy/; for v =~ encircling-; is thereby
represented as

pu(M;) = (R MR M2, .. RIPRY R .. RO} (3.22)

such that it is just a matter of sufficiently often exploiting the Yang-Baxter equation
(3.15) to explicitly show that the relations (3.19) hold fgy();) with R_ = R,
R.:=ITR-'II. Theorem 3.3 further implies the conjugation of fRenatrices with the
automorphismu in order to extend the result to the representagign, in which the
monodromies from (3.11) were recovered.

To further prove the asymptotic behavior (3.21), itis not enough to know the classical
limit of R;; —which is a classical-matrix simply — since the semiclassical expansion of
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the automorphisms, ug must be taken into account. For this reason, we additionally
have to use the other part of Theorem 3.3, which relates the represeniatoasd

pa. The relations (3.19) for thp4(M;) hold with R_ := R, R, := IR_'IT in a
generalized form, modified by certain conjugations with the nontrivial assoebator
The semiclassical expansion of the associator is given by [43]:

dba=IRII + O, (3.23)

which implies that the term of ordérin the semiclassical expansion of (3.19) is deter-
mined by the corresponding one Ry = e~ ™", which yields (3.21).

The last point to be ensured is that the normalization of the quantum monodromies
(3.12) aroundy ~ oo coincides with the normalization chosen in the definition of the
KZ monodromies [21] in certain asymptotic regions of the space ofy( .. .,vn), Up
to the orderh. The proof of this fact goes along the same line as the proof of (3.23).
O

We have now established the quantum algebra of the quantum monodromy matrices
by identifying the corresponding operators inside the picture of the quantized holo-
morphic connectiom (). The classical limit of this algebra equals exactly the classical
algebra of monodromy matrices (2.61), (2.62). Hence, we have shown the “commutativ-
ity” of the (classical and quantum) links between the connection and the monodromies
with the corresponding quantization procedures. Let us sketch this in the following
diagram:

Atiyah-Bott symplectic structure
{Ara(y), AV ()} ~ 5905 (y — 1)
holomorphic gauge
v

Holomorphic connection

, [A2, ALy =g pebeas T

Regularized algebra Classical algebra
of monodromies of monodromies
{MD, M9}y = (MPrs MO +..) {MD, M9} =im (MY QMO +..)
guantization
Y
quantization and ", [Aa, Ab] = ihd;, fabeAc quantization of the
quasi-associative. v J v nonassociative algebra
generalization". quantum monodromies
via KZ system
Y

« _
Quantum algebra of monodromies
ReMPR; MO = MORMORL?

Note 3.6. The dotted lines in this diagram depict the link to the usual way quantum
monodromies have been treated. This was done by directly quantizing their classical
algebra, which is derived from the original symplectic structure of the connection up to
certain degrees of gauge freedom: for later restriction on gauge invariant objects, this
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algebra may be described with an arbitrary classiealatrix, as was sketched in Note
2.14. A direct quantization of this structure is provided by a structure of the form (3.19),
where the quantun®-matrices live in the classical spaces only and admit the classical
expansionRy = I +ihry + O (R?) [1, 2].

Note 3.7.In contrast to this quantum algebra which underlies (2.69), in (3.19Rthe
matrices — due to the automorphisms uy — also act nontrivially on the quantum rep-
resentation space. Their classical matrix entries may be considered as operator-valued,
meaning that the quantum algebra can be treated alternatively as nonassociative or as
“soft.” This is in some sense the quantum reason for the fact, that the classical algebra
(2.61), (2.62) fails to satisfy Jacobi identities. However, note that (3.19) only describes
the R-matrix in any fixed representation of the monodromies; for a description of the
abstract algebra, compare the quasi-associative generalization in [2, 3], which provides
the link between the quantum structure described in the previous note and (3.19).

3.2.4. Quantum observables.et us discuss now the quantum observables, i.e. oper-
ators commuting with all the constraints. In analogy with the classical case it is clear
that all monodromies of the quantum linear system (3.11) commute with the Hamil-
tonian constraints. Therefore, it remains to get rid of the gauge freedom (2.63), i.e. to
identify functions of monodromies commuting with quantum generators of the gauge
transformations. In the classical case the gauge transformations were generated by ma-
trix entries of the matriX ., or, equivalently, of the matriX/,.—I. The straightforward
guantization of the classical algebra of gauge transformations generated (3.66)
is

[A%, A% = fePAS, (3.24)
i.e. coincides withg. In terms of M, the algebra of the same gauge transformations
according to (3.19) reads

R_M°R™*M° = M R.MO R, . (3.25)

The set of quantum observables is characterized as the set of operator-valued func-
tions F' of components of monodromi€d; which commute with all components of
A
[F({M;}), A%]=0. (3.26)

Recall that in the classical case observables were just traces of arbitrary products of
monodromies)/;. At the moment the quantum analog of this representation is not clear.
One should suppose that there is a similar situation to the case we would have arrived
at by directly quantizing the algebra of monodromies, mentioned in Note 3.6.

In this case, which has been studied in the combinatorial quantization of Chern—
Simons theory [2, 3], thé&2-matrices live in the classical spaces only and the transfor-
mation behavior of arbitrary products of monodromié¢sunder gauge transformations
generated by/, reads

R_M°R=*M° = M° R, M°R;*.
Introducing the quantum trace, ¥/ with characteristic relations
trd ROMO(R®) ™ = tr, MO, (3.27)

we see that the operatorg A commute with the components &1
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[tr,M,M2]=0. (3.28)
Therefore, the quantum group generatediby. :
R_M® R™*M° = M® R, MO R;? (3.29)

in this approach plays the role of algebra of gauge transformations.

It appears a difference of this approach with the approach which we mainly follow
in this paper: instead of the Lie grodpgenerated by the algebra (3.24), the role of the
gauge group is played by its quantum deformation (3.29). A question therefore remains:
what is the proper quantum gauge group of a consistent quantum theory, the(group
itself or its quantum deformatio@,?

Note 3.8. With the notation of the quantum trace at hand, the quantum analogue of Note
2.15 can be formulated. From the abstract algebraic point of view — beyond the presented
concrete representation of the quantum monodromies — the quantum trace of powers of
the M; build the center of the free algebra defined by (3.19) and may thus be fixed
according to the classical values.

4. Coset Model

In this final chapter we will explain, how to modify the previously presented scheme in
order to treat the coset models, which actually arise from physical theories. The field
g is required to take values in a certain representation system of the cosetf¥dce
whereH is the maximal compact subgroup Gf

This subgroup may be characterized by an involutjaf G as the subgroup, which
is invariant unden. The involution can further be lifted to the algelpra.g.n(X) = —X*
for X € g=sl(N). The algebra is thereby split into its eigenspaces with eigenvalues
+1, which are denoted by = h 4 ¢, the subgroupd underlyingh. In terms of the
involution, the fieldg is restricted to satisfy:

gnlg) =1, (4.1)
which defines the special choice of a representation system of the coset space.

4.1. Classical treatmentClassically speaking, the Poisson structure fodhié! -valued
model may be obtained from the previously described Poisson structure for the principal
G-valued model by implementing additional constraints.

These constraints were discussed in detail in[49] and may be equivalently formulated
in terms of the functionV or of the connectiom:

1\ L

; (w (7)) () = Co. 4.2)

A()+ 2gn <A <1>> g 1=0. 4.3)
Y Y

The first line is a consequence of (4.1) with = Cy(w) from (2.22) also satisfying
Con(Co) = I now. Studying the monodromies &@f shows that in the isomonodromic
sector,Cp must be gauged to a constant matrix, using the freedom of the right-hand
side multiplication of the solution of (2.7). This can be seen from Eq. (4.36) below.
Derivation of (4.2) with respect tg then yields (4.3).
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An unpleasant feature of these constraints is that they explicitly contain the field
g, which in this framework is not among the fundamental variables. To avoid this dif-
ficulty, it is convenient to slightly modify the Hamiltonian formalism of the principal
model. Namely, let us relax the normalization condity = o) = I, which was
imposed in (2.20) before and consider the functiorelated to¥ by aG-valued gauge
transformatior) instead: . _
U=V Y. (4.4)

Then itisW(y=o0) = V andgCy = V~1U(y = 0), such that the coset constraint (4.1)
may be rewritten as:

g=vn). (4.5)
The modified function now satisfies the linear system
A 1+~ A 1—v
dg < P Q+) CE < 1+7P—+Q> . (4.6)

with (¢, 5)-dependent matriceBy € ¢ and@+ € h which can be reconstructed frovh
on the coset constraint surface (4.5):

VeV I=P+Q., VeV '=P +Q_

Note 4.1.In the coset model the Bbius symmetry (2.11) appears in especially simple

form [8]:
P+ , ) /

In complete analogy to the principal model, we further introduce

V'_’\D(V) Py —

Definition 4.1. Define the connectioA by

A A a]
A@) = 0,9V () - (4.7)
The constraint of regularity at infinity then reads
Ay = lim vA(7)=0. (4.8)
y—00

The relations (2.17) between the original fields and the connectitake the fol-
lowing form:

—= A, =—P,, —A(, =_P_. 4.9
£ 6(755)71 £ 6(750 s (4.9)

Hence, the coset constraints (4.5) are equivalent to
A1) = —n (A(£1)) , (4.10)

which is implied by (4.3). Let us stress again that the originally equivalent coset con-
straints (4.1), (4.5) or (4.10) are lifted to (4.3) due to the special choi€gstonst in
the isomonodromic sector. R

The constraints (4.2) and (4.3) take simpler forms in terms of the new varidbles
and A, since the field; is absorbed now:



Quantization of Coset SpaeeModels Coupled to Two-Dimensional Gravity 439

. (\if (i))_lﬁf(w = o, (4.10)
AG) + %n (21 (i)) 0. (4.12)

The first of these equations is a sign of the invariance of the linear system (4.6) on the
coset constraint surface under the extended involutidnintroduced in [12]:

(W) =1 (ﬁf (i)) , 4.13)

but is difficult to handle due to the unknown matti¥. The latter form (4.12) of the
constraint admits a complete treatment as will be described below. Note that the con-
straint of regularity at infinity (4.8) is already contained in (4.12) and is thereby naturally
embedded in the coset constraints.

The set of constraints (4.12) is complete and consistent in the following sense:

Lemma 4.1. The coset constraints (4.12) are invariant und@rff)-translation on the
constraint surface.

Proof. The total¢-dependence ofl can be extracted from (2.23) to be

9A)
A0) 2 VLA A+ ey A+ v 2 D)
= |12 40)| + [P+ Q. 4]
2P, ’)/ —2y-1 (1 +7)

A(v) 0, A(v) .

Tae T eoa- 0 T e—aa-q)

Together with % (f (i)> = (—d%f) (%) for any functionf(v), which follows

vy
from the structure of¢, a short calculation reveals that on the constraint surface (4.12)

40 20 o 1)

In a Hamiltonian formulation these constraints therefore have weakly vanishing
Poisson bracket with the full Hamiltonian, which is required for a consistent treatment.
Let us now briefly present the Hamiltonian formulation of the coset model in terms of
the new variables.

4.1.1. Poisson structure and Hamiltonian formulatidrhe definition of the connection
A already implies the relation

A(y) = VARV, (4.14)

such that from (2.23) one extracts the equations of motion for these new variables:
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A AE .

T2 prAs AL+ p i1y -1 4 4.1
A - DAE .

—— = V[AS AWty vt vyt A

o [ ] o Ve ]

In analogy with the principal model, this motivates

Definition 4.2. Define onfl(y) the following Poisson structure:

{A*(7), ()}, = *f“bciAc(g — ZXC(M) : (4.16)

and denote bymplicit time-dependencethe (¢, 5_)-dynamics, that is generated by

HE¢ = : 15 rA?(1) — Ao (0:VV Y], (4.17)
B = itrflz(—l) — A (BVV )],

on the constraint surface (4.8). The remaining explicit time-dependence is then defined
to be generated in analogy to (2.30).

Note 4.2. The Poisson structures (4.16) are certainly different for diffeveand, there-

fore, are different from (2.25), that was introduced in the principal model. However, this
previous treatment may be embedded in the following way. The structures (4.16) and
(2.25) are certainly equivalent if we restrict them to the functionalt thfat are invariant

with respect to the choice 0f, i.e. invariant with respect to the transformations

A 07140 (4.18)

with arbitraryd € G. These were the gauge transformations in the principal model,
generated by (2.21). Hence, on the set of observables of the principal model, the different
Poisson structures coincide. Correspondingly, the actidii‘odind /¢ from (2.27) and
(4.17) respectively differs only by the unfolding of such a gauge transformation.

For the coset model it is important to note that the gauge freedom (4.18) is restricted
to H-valued matrice8, since only that part of the constraint (4.8) remains first-class here
and generates gauge transformations. This is part of the result of Theorem 4.1 below.

4.1.2. Solution of the constraint&iven a set of constraints (4.12) and a Poisson structure
(4.16), the canonical procedure is due to Dirac [19]. The constraints are separated into
first and second class constraints, of which the latter are explicitly solved — which
changes the Poisson bracket into the Dirac bracket — whereas the former survive in the
final theory.

In the case at hand, the essential part of the constraints is of the second class, such
that the Poisson structure has to be modified and only a small part of the constraints
survives as first-class constraints. We state the final result as

Theorem 4.1. The Dirac procedure for treating the constraints (4.12) in the Poisson
structure (4.16) yields the following Dirac bracket for the connection
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Acy) = A
T K
L pane A50) | L pnape A0
2 p-1t2 y-1

(A, A ), = 5o (4.19)

where the notation of indices means a choice of basistith=1(t*). The bracket for
the logarithmic derivatives of the conformal factor remains unchanged:

{g, —(log h)g}v = {57 —(log h)g}v =1. (4.20)
The structure is compatible with the (now strong) identity
N 1 ~ (1 1. 1 -
iy S (4(2)) = 2ae = 2utdo, (4.21)
Y Y Y v
such that compared with (4.12) it remains the first-class constraint
Ase +1(As) =0. (4.22)

Proof. The main idea of the proof is the separation of the variaﬂleﬁ) into weakly
commuting halves:

®1(7) 1= A()) + %’7 (A (i))
2(7) = Ay) - 712” (“A‘ (i))

{@4(7), P5(w)},, ~ O (4.23)

on the constraint surface (4.12), as follows from (4.16) by direct calculation, using the
fact thatn is an automorphismf@be = fn(a)n()n(e),

The whole constraint surface is spannediiy= 0 andfloo = 0, whereasb, covers
the remaining degrees of freedom. Sidegand®, contain respectivelﬁoo F n(floo),
the relations (4.23) show thalt., + n(floo) is a first-class constraint of the theory.

If we further explicitly solve the second-class constraip{s= 0, the commutativity
(4.23) implies that the Poisson bracketsf remains unchanged by the Dirac procedure:

{2300, @5}, = {950, P51}, -
Moreover, the Dirac bracket is by construction compatible with the vanishidg of
{@1(7). .}y, =0.

These facts may be used to easily calculate the Dirac bracket of the original va.fl&b)es
without explicitly inverting any matrix of constraint brackets. With the decomposition

oo s

1
v
1 A

_71400;
~

with

A) = 3040+ 50200+ 5- (o +1(A) + 5 (A = 1A

the result is obtained. The bracket (4.20) follows from the calculations performed in
Lemma 4.1, which imply the vanishing Poisson bracket betweer{lognd the con-
straints. O
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4.1.3. Final formulation and symmetries of the the@mst us summarize the final status

of the theory and the relation of the new fundamental varialdieg to the original
fieldsV andg respectively. We further discuss how the local and global symmetries of
the original fields become manifest in this formulation.

The formulation in terms of the new variableKy) is completely described in
Theorem 4.1, where their modified Poisson structure is given. The solved constraints
(4.21) may be considered to be valid strongly.

The remaining first-class constraint (4.22) generates the transformation

A X_l;lx , (4.24)
with x € H. According to (4.9), the field transforms as
Vi xV. (4.25)

The relation (4.5) on the coset constraint surface shows that thefillds not feel
this transformation. The gauge transformations generated by (4.22) are the manifestation
of areally physical gauge freedom in the decomposition of the metric into some vielbein;
they are remnant of the gauge freedom of local Lorentz transformations in general
relativity. This freedom may be fixed to choose some special gauge for the vielbein field
V.

Note 4.3.1t is important to notice that the second term in the modified Hamiltonians
H¢, H¢ from (4.17), that makes them differ fro¢, H¢ from (2.27) becomes a pure
gauge generator after the presented solution of the constraints. This is due to the fact
thatA., € h according to (4.21). Sindgandt are orthogonal with respect to the Cartan-
Killing form, the action ofH¢ and H¢ just differs byh-conjugation and thus by a gauge
transformation of the coset model.

The field A now does not contain the complete information about the originalfield
but only the current®: V1, VgV*l, which may be extracted frorﬁ(il) by means of
(4.9). At first sight, one might get the impression that in contrast to (2.17), the relations
(4.9) do not even contain the full information about these currents. However, if the gauge
freedom (4.25) inV is fixed, the currents may be uniquely recovered from (4.9). For
g = sl(N) for example, usually a triangular gaugewfs chosen, such that:V~! is
recovered from its symmetric parf2 = (Ve V- H+(V: V1)t

The fieldV moreover is determined only up to right multiplicativh— V6 from
the current®: V1, VsV 1. This is a (global) symmetry of the theory, under which the
field g according to (4.5) transforms as

g— 0" gn(0) . (4.26)

For axisymmetric stationary/4 gravity these are the so-called Ehlers transformations.
They are obviously a symmetry of the original equations of motion (2.5).

The new variablesi(y) are invariant under these global transformations, which
become only manifest in the transition to the original fields. The reldtddnction
transforms due to its normalizationat as

U 90, (4.27)

as well as the auxiliary matri&y, which is related tol(y=0):
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Co— n(0)~1Cof . (4.28)

Thereby, we have made explicit the global and local symmetries of the original fields
in the new framework.

4.1.4. First order poles.Let us evolve the previous result for the case of simple poles
of A(y). We again parametriz&(+) by its singularities and residues:

. NooAl
A= —. (4.29)
— 7=
J
Thus
A;j=vA; vt (4.30)
Their equations of motion read
04; _ [Ar, Aj] 14
4y +[VeVTH ALl 4.31
% Z =@y ey Al 3D
[Akv A’Zi]] -1 3
+[VeV 7A4 ’
- Z )@ty T VeV Al

and are completely generated by the Hamiltoniéifsand F7¢ from (4.17).
Theorem 4.1 now implies

Corollary 4.1. Let A be parametrized as in (4.29). After the Dirac procedure, the fol-
lowing identities hold strongly:

1
Y= ; (432)
’Yj+n
Ay =n(Aj) (4.33)

whereN =2n. They may be explicitly checked to also commute with the full Hamiltonian
constraintsC¢, C¢. The remaining degrees of freedom are therefore covered by;the
and A; for 1< j <n, which are equipped with the Dirac bracket:

a — 1 abc jc
{Ag, A%} = S0 f be AS . (4.34)

The remaining first-class constraint is
2t n(A) = Y0 4y 4y (Z Aj) = 0. (4.35)
j=1 j=1

This solution of the constraints in the case of first order poles may alternatively be
carried out in terms of the monodromigs;. As was mentioned above, in the presence
of only simple poles, the variables; are generically (see Note 2.11) completely defined
by the monodromiesd/;.

Assuming that (4.32) is fulfilled, the coset constraints in the form (4.11) are equiv-
alent to
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Mjan — Co 'n(M;)Co = 0. (4.36)

There are two important points that this form of the constraints exhibits. First, it
shows the necessity to choose the matipto be constant in the isomonodromic sector.
Moreover, it uniquely relates the ordering of the monodromy matrices fixed for calcula-
tion of its Poisson brackets in Theorem 2.4 to the ordering defined by (4.32). This results
from choosing the corresponding paths pairwise symmetric um;le%.

The goal is now to calculate the Dirac bracket between monodroivigsvith
respect to (4.33), or, equivalently, with respect to (4.36). One way is clearly to repeat
the calculation of Theorem 2.4 using the Dirac bracket (4.19) instead of the Poisson
bracket (2.25). However, we can alternatively determine the Dirac bracket from simple
symmetry arguments avoiding direct calculation at least for objects that are invariant
underG-valued gauge transformations (i.e. traces of arbitrary products;pf

The involutionn> introduced by (4.13) acts al/; according to (4.11) as follows:

1™ (M;) = Con(Mjen)Co ™ . (4.37)
Therefore, the set of aff-invariant functionals of\/; may be represented as
Ms @ Mas , (4.38)

where the sed/s contains functionals which are invariant with respecitoand Mas
contains functionals changing the sign under the actiogfaf Sincen is an automor-
phism of the structure (2.61), (2.62), the definitiomef in (4.37) implies, taking into
account Note 2.16:

{Ms, Ms} € Ms, {Ms,Mps} € Mps, {Mas,Mas} C Ms. (4.39)

The constraints (4.36) are equivalent to vanishing of all functionals frtyg therefore
the part ofG-invariant variables surviving after the Dirac procedure is containédgn
The former Poisson bracket dds coincides with the Dirac bracket.

Note 4.4.The treatment of coset constraints in terms of the monodromies presented
above is invariant with respect to chang@'afince the monodromies @fare. Therefore,
this treatment also works in the former Poisson structure (2.25).

4.2. Quantum coset modelhe quantization of the coset model goes along the same
line as the quantization of the principal model described above. We again restrict to the
first order pole sector of the theory, although generalization to the whole isomonodromic
sector should be achievable according to Note 3.2.

Having solved the constraints, the remaining degrees of freedom are the singularities
v4.the residuesij forj=1,...,nandthelogarithmic derivatives of the conformal factor
h. They may be represented asin (3.3) and (3.4) again. The quantum representation space
sV =V1®...0V,.

The Wheeler-DeWitt equations (3.5) take the form:

371/) Ih 1+ vtk ~
o€ Z(l T © 2(1 pTEEev RL L R

ai: i 1+vv Vi + Vi fz
o€ Z(lw)(lwk) Z(lw)(lw) v
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with
Qr=tiety  Qp=tl9ed.
Additionally, the physical states have to be annihilated by the first-class constraint
(4.22):
Do+ 1) (g, =0. (4.41)
J J

The result of Theorem 3.1 is modified to establish a link to solutions of what we will
refer to as th&€€oset-KZ system

: 1+ j +1/v; ~
O _ i 3 Y/ Q0+ 3 2 /7{ &0 b oo (4.42)
g 4Tk 5 ViV~

The relation between solutions of the Wheeler—DeWitt equations and solutions of
the Coset-KZ system is now explicitly given by

Theorem 4.2.If ¢, is a solution of (4.42) obeying the constraint (4.41), and-the
depend or{¢, &) according to (2.8), then

Y= H 1005 )" (4.43)
- 5 8w]— Pckz .
J=1

solves the constraint (Wheeler—-DeWitt) Egs. (4.40).
This may directly be calculated in analogy to (3.9). O

The procedure of identifying observables may be outlined just as in the case of
the principal model, where this was described in great detail. Again the monodromies
of the quantum linear system are the natural candidates for building observables and
contain a complete set for the simple pole sector. In analogy to Theorem 3.2 they should
be identified with the monodromies of a certain higher-dimensional Coset-KZ system
with an additional insertion playing the role of the classigal' he actual observables
are generated from combinations of matrix entries of these monodromies that commute
with the constraint (4.41). From general reasoning according to the classical procedure,
relevant objects turn out to be the combinationgGeinvariant objects, that are also
invariant under the involution.

4.3. Application to dimensionally reduced Einstein gravitgt us finally sketch how the
previous formalism and results work for the case of axisymmetric statiodagrdvity.

In this case, the Lagrangian of general relativity is known to reduce to (2.1) with the
field g taking values ir5 (2, R) as a symmetric & 2 matrix; its symmetry corresponds

to the coset constraint (4.1).

Most of the physically reasonable solutions of the classical theory — among them in
particular the Kerr solution — lie in the isomonodromic sector and are described by first
order poles at purely imaginary singularities in the connection. The quantization of this
sector may be performed within the framework of this paper. According to (3.4) and
Note 3.3 the residued; are represented as
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A ) i, e
A-Elh<2 Y ) 7 (4.44)
! fi —3hs

whereh;, e; and f; are the Chevalley generatorsssf2, R).

Due to its non-compactnessi(2, R) admits no finite dimensional unitary repre-
sentations, but several series of infinite dimensional representations. The study of the
classical limit singles out the principal series, as was discussed in [49]. The representa-
tion space consists of complex functiof&) on the real line with the ordinarg?(R)
scalar product

(fnfe) = [ FOROK. (4.45)
and the anti-hermitian operators act as
hj = ZCJ@ + Sj, € = CJZ(’?J + SJCJ s fi = —aj . (446)

The spins; takes values; = 1+ig; with a continuous parametey € R.
The surviving first-class constraint (4.41) now takes a simple form:

Lemma 4.2. A solutionf((y, . . ., ¢,) of the constraint (4.41) is of the form

G G) =[G+ 29 F(G, -G (4.47)
J
with (; := g;j‘i and
0
~— | F=0. 4.48
ij (4.48)

J
This follows by direct calculation. [

The prefactor in (4.47) is exactly sufficient for convergence of the integral, such
that for finiteness of the norm, it is sufficient to demand boundednegswihich is
a function on the product ofi(— 1) circlesS*. In contrast to the analogos$(2, R)
representation of the principal model, where solutions of finite norm are absent due to
several redundant integration variables, a convergency factor here comes out for free.
This interestingly resembles the fact that the general reason for dividing out the maximal
compact subgroup in the physical coset models corresponds to avoiding unboundedness
of the energy in the theory.

It remains to solve the Coset-KZ system in this representation. Although the general
solution forsI(2, R) is not known, one might be able to obtain explicit results for a small
number of insertions. The Kerr solution for instance, which is of major interest, requires
only two classical insertionss,v» € iR. In this case, we may exploit Theorem 4.2
and Lemma 4.2 to explicitly reduce the WDW equation to a second order differential
equation in two variables. L&t andV; be two representations from the principal series
of sl(2,R) fixed by s; and s, and parametrize the quantum stat€, &) € V1 V5
according to:

— 1 1 A1 A2
w@MMﬂ=@ﬂWWéﬂP”@£€><JZ>FWOJM%

1 Y2 —

with
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Ay = %h$1(51 -2), A= %582(82 -2,

m+lyp—1 1 G+ig—i 1
= es, = . - c S
T Tyt =i

After some calculation the WDW equation then becomes

a’YF(rYa C) = ihDsLsz(’Y) F(’Y:C)) (450)

with

2
Do) = { 2[00 1708 + (21017 + (vl -1 8 + 5 o1

2
C |2 TP (26 1P (s 1) 8+ s

Ay} (4.50)

This form e.g. suggests expansion into a Laurent seriéomsS?* leading to recurrent
differential equations iry for the coefficients. Further study of this equation should be
a subject of future work.

Note 4.5. Equation (4.50) reduces to a Pairdequation when the principal series repre-
sentation of[(2, R) is formally replaced by the fundamental representatigyrafi(2).

In the study of four-point correlation-functions in Liouville theory a similar generaliza-
tion of the hypergeometric differential equation appeared [62].

5. Outlook

We have completed the classical two-time Hamiltonian formulation of the coset model

for the isomonodromic sector and sketched a continuous extension in Appendix A. For
the quantum theory it remains the problem of consistent quantization of the total phase
space including a proper understanding of the structures (A.8). The most important
physical problem in the investigated model is the description of states corresponding
to quantum black holes. One may certainly hope to extract first insights from a closer
study of the exact isomonodromic quantum states of the coset model identified in the
last chapter, in particular from the study of Eq. (4.50).

An open problem is the link of the employed two-time Hamiltonian formalism with
the conventional one. To rigorously relate the different Poisson structures, the canonical
approach should be compared to our model after a Wick rotation into the Lorentzian
case. This corresponds to a dimensional reduction of spatial dimensions only, such that
the model would describe colliding plane or cylindrical waves rather than stationary
black holes. It is further reasonable to suspect that proper comparison of the different
Poisson structures can only be made on the set of observables, see also Note 2.5. Recent
progress in the canonical approach has been stated in [51], where in particular the
canonical algebraic structures of the observables have been revealed. However, so far
the canonical and the isomonodromic approaches appear to favor different characteristic
observables, which still remain to be related.

As another possibility to compare our treatment with canonical approaches, the re-
lation to further restricted and already studied models should be investigated. Of major
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interest in this context would be for instance the relation to the Einstein-Rosen solu-
tions, investigated and quantized in [52, 5], where imposing of additional hypersurface
orthogonality of the Killing vector fields reduces the phase space to “one polarization,”
yet maintaining an infinite number of degrees of freedom.

An additional interesting field of future research descends from the link to broadly
studied two-dimensional dilaton gravity (see e.qg. [14, 32, 9, 27]), further allowing to
extract information about the black hole thermodynamics. Further relevance of the in-
vestigated model appeared in certain sectors of string theory [30, 53].

Acknowledgementlt is a pleasure to thank H. Nicolai, V. Schomerus and J. Teschner for enlightening discus-
sions. D. K. acknowledges support of Deutsche Forschungsgemeinschaft under contract No. Ni 290/5-1. H. S.
thanks Studienstiftung des Deutschen Volkes for financial support.

A. Extension Beyond the Isomonodromic Sector

The treatment of the isomonodromic sector presented in this paper allows a rather natural
extension to the full phase space. This general scheme recalls a continuous version of the
simple pole sector treated in Subsect.2, which in turn may be understood as a discrete
embedding into the former. We will again first describe the scheme for the principal
model and then discuss the modifications required for the coset model, see also [56].

A.1. Principal model. We start from a simply-connected domdinin the &, £-plane,
symmetric with respect to conjugatign— &, where the classical solutiof(¢, ) is
assumed to be non-singular. This regularity is reflected by corresponding properties of
the related¥-function in thew-plane. It is holomorphic and invertible in a (ring-like)

domain D of the Riemann surfacé€ of the function/(w — &)(w — &) bounded by
contoursd andi?, whereo is the involutiony — 1/~ interchanging thev-sheets of_.

To simplify the following formulas we further assume the spectral parameter current
A(~) to be holomorphic on the whole second sheef aduch that it may be represented
inside ofl (we denote this simply-connected domainy) by a Cauchy integral over
l: _
Ay = AW EDdw

1 (W) —p

which is the continuous analog of the simple pole ansatz (2.32) in the isomonodromic
sector;A(w), w € [ is a density corresponding to the residugsfrom (2.32).

From (A.1),A(w) is not uniquely defined by the values#fy), v € Do, in particular,
it may not coincide with the boundary values 4fv) on . To fix A(w), we postulate
the following deformation equations which are a continuous version of the discrete
deformation Egs. (2.33):

(A.1)

OAw) 2 [A(), A(w)]
TR (Y N5, o, L (A-2)
OAw) 2 [A(v), A@w)]

weEl.

o6 £—¢ ), @)@ Hyw)

It is easy to check that (A.2) together with (A.1) imply the deformation Egs. (2.23)
for A(v).
The Poisson structure ofi(w) is also a direct continuous analog of (2.34):
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{AYw), A°(v)} = — f2%¢ A% (w)d(w — v) , w,v €l (A.3)

whered(w) is a one-dimensionatfunction living on the contout (and should, strictly
speaking, be defined %6(3) with an arbitrary affine parametealongl). This structure
in turn induces the proper holomorphic bracket (2.25)461):

a b — _ pabc AC(w/)dw/
(G0N A GO =1 e Gt 0
A(() ~ A ()

V(w) = (V)

- _fabc

The nice feature ofA(w) in contrast toA(y) is that A(w) (as its discrete analog
A;) is explicitly (¢, £) independent, i.e. the whole dependencedéy) on ¢ and¢ is
generated by the Hamiltonians (2.27) (note that the pejinrtst1 lie inside ofDp):

e_ 1 { .A(w)dw]2 e 1 { A(w)dw]2
e hiwm) o T o)

We may now also identify a continuous family of observables, generalizing the
construction of Sect.2. Defind(v) inside and outside aDg by the Cauchy formula
(A.1) and construct the related functiodg,(y € Do) and Wou(y € Do) according to
\Ifwllfl = A(~). Then the continuous monodromy matrix

(A.4)

M(w) = Wou(w) ¥, (w) wel (A.5)

is (&, g_)-independent, since both, andw,; satisfy the linear system (2.7). Calculations
similar to those in Appendix B yield the following Poisson bracketsibfw):

{MO(v), MO(w)} = ir ( — MO(v) 2 MO(w) + MO(w) © MO(v) (A.6)
+Q MO(0)MO(w) — MO(w)MO(w) Q) ,
for v<w, wvwel,

where the points of contourare ordered with respect to a fixed poing, playing the
role of the eyelash in the discrete case.
The brackets (A.6), are again valid up to the first-class constraint generated by

Ay = 714 A(w)dw | (A7)

and therefore satisfy Jacobi identities only being restricted to the gauge-invariant objects.
Againthere appear two fundamental ways of quantization. In terpds(@£.3) would

be replaced by a possibly centrally extended affine algebra. Alternatively, the Poisson

algebra of observables (A.6) may be quantized directly after regularization analogously

to (2.69):

{MO(v), MO(w)} = — MO°(v) ry MO(w) + MO(w) r—_ M°(v)
+r_ Mo(v)Ma(w) — MO(U)ME(w) re+ v<w, v,wéel,

leading to:
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R_M°(w)R=*M°) = MO)R. M(w)R7E, w<w. (A.8)

Embedding of the isomonodromic sector into the presented extension looks espe-
cially simple if all the singularities, . .., vy are assumed to belong to the contéur
The densityA(w) is then parametrized as

Aw) = =3 Ajo(w — w;) (A.9)

J=N

where the residued; are the same as in (4.29). The Poisson structure (A.3) is the
directly inherited from (2.34) and (A.9):

N
{A*w), A)} =D F*A;6(w — w;)d(v — wy)

J=1

= — o A(v)é(v — w) .

The monodromyM (w) here is a step function dnwith jumps atw = wj;. Fixing the
eyelash betweefy and~, itis

M(w):M]_~--Mj s for ’LUE]’}/j,’}/jH_[,

Note A.1.Isomonodromic solutions with higher order poles are embedded into the gen-
eral scheme by inserting higher order derivativesfafnctions into (A.9). The definition
(A.1) already shows that the proper object in this case is the conne@ﬂmg—sz, in
accordance with the results from Subsect.2.

Note A.2.The representation (A.1) gains a well known meaning when the model is
truncated to a real scalar fiel where A(w) becomes independent ¢f¢ and the
equation of motion (2.5) reduces to the Euler-Darboux equation

Oedp — 0o
0:05p — ———— =0, (A.10)
T 29
for ¢ = logg. Solutions of this equation may be represented as [15]
_ f(w)dw (A11)

SV w-9w-9°

with 27i f(w) = qb(§:§_=w) defined on the axig = g‘_and continued analytically. After
differentiating in¢ and integrating by parts i, this representation takes the form

De6 = 2 f(w)dw

=V -9w -9’

and thus equals (2.17) witd(£1) defined by (A.1) after identification of (w) and
A(w).
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A.2. Coset modelln analogy to the discrete case, the coset model is most conveniently
described in terms of modified variables

A=nW)An(VY).

Due to the symmetry (4.12) between the valuesfl(ﬁ) on different sheets of, we
can no longer assumé(y) to be holomorphic inDg, but have to replace theby [ U [7
enclosingD in the formulas of the last section. The coset constraints in termiwoj
take the form R R

A(w) = n(Aw?)), wel, (A.12)
and allow rather simple solution via a Dirac procedure, such that the phase space is
reduced to the values o&(w) on! only, equipped with the Dirac bracket

{A%w), A(0)}3, = —% e Aw)d(w —v),  v,wel. (A.13)

Via the Cauchy representation (A.1) on the contbur(?, this bracket further gives
the previously derived Dirac bracket (4.19) dfy). It remains thej-valued first class
constraint

(At + ) dw =0,

generalizing (4.22). The Hamiltonians finally also take the form (A.4) witheing
replaced by U (?. In terms of the observabléd (w), restriction to the coset leads to

M(w”):C’aln(M(w))Co, weEl,

with some constant matriky playing the same role as in (4.36).

B. Poisson Structure of Monodromy Matrices

This appendix is devoted to the proof of Theorem 2.4, which was obtained in collabora-

tion with H. Nicolai2 For simplicity of the presentation, we give the calculation for the

case, where the Casimir elementdiffers from the permutation operatdf by some

scalar multiple of the identity only, which is the case gor s((V, R) for example. The

procedure may easily be extended (concerning the notation mainly) to the general case.
Here, the Poisson-structure of the connection is given by

[A()® AG)} = ﬁ LT, A() @ T+1® AGD)] |

and the statement to be proven reads:

{M; § M} =im [ I, M;M; 1], (B.1)
{M;§ My} = in I (M;M; @ T+1 @ MiM; — My M; — Mo M; ), (B.2)
for i <j.

We first calculate the Poisson structure of matrix entries of the fundtiardifferent
pointss; ands,. These points are defined on the Riemann surface givanlypaths,

3 After completion we learned about related results in [4, 36].
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connecting them to a common base-paigt at which ¥ is taken to be normalized
according to (2.59). The limi¢g — oo will be treated later on.
For the calculation, we make use of the standard formula

(0T 06} = ()8 96) [ [z »
(W70 @ wH02)) { A # AGe2) b (G0) © W(2)) |

where the integrand may be rewritten as

I
M2 — {1

This expression is completely regular, evengder= u,. However, if the appearance
of the derivation operators is exploited by partial integration, the integrals will split up
into parts that exhibit singularities in coinciding pointgs = . Thus, we restrict to
distinguished endpoints ands,, choosing the defining pathsy[— s1] and [so — s3]
nonintersecting in the punctured plane from the very beginning. Singularities remain in
the common endpoints of the pathssat As a regularization, one of these coinciding
endpoints is shifted by a small (complex) amosaltitat is put to zero afterwards. Then,
partial integration can be carried out properly, leaving only boundary terms, that lead to
surviving simple line integrals, whereas the remaining double integrals cancel exactly.
The arising singularities in = 0 regularize each other such that the sum is independent
of the way,e tends to zero. In a comprehensive form, the result may be stated as

(00 + 02 (¥ 02D W(12) © W) W02 ) -

Theorem B.1. Lets; ands; be different points on the punctured plane, defined as points
on the covering by nonintersecting pafag— s1] and[so — s2] with common basepoint

sp at whichW is normalized. Then, the Poisson bracket between matrix entri&gsef

and Y(s,) is given by

{W(s1) ¢ W(s2)} = \P(sl)w(sz)) x (B.3)

(
{ [t (viwe o v w)

- / au If (200 © V) ¥(s2))
o | H—s2

52

+ d'u

ERIOE A ?]

— S0
S1 H
+ lim (/ / ) du
=0 sote n—=

This expression is regular and independent of the limit procedure.]

W)@ ) ¢
- ( ) |

Note B.1.The result of the regularization is the complete fixing of the relative directions
of the paths §o — s1] and [sp — s2] approaching the basepoisy, that is determined by
the form in whiche arises in the last term in (B.3). In other words, the path$ so — s2]

must pass through the basepaigtraightforwardly, as is indicated in Fig.1.

The result of Theorem B.1 may be further simplified in the lisggit= 0o, where the
third term of (B.3) vanishes:
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52
S L/\\/

Fig. 1. Choice of paths

Lemma B.1. For a fixed points on the punctured plane and(+) holomorphic at
v =00, itis

. s 1
lim < / dp [n, W) ® \rl(ﬂ)] ) = 0. (B.4)
S0— 00 S0 ,LL — S0
The proof is obtained by estimating the integrand as a holomorphic functigranél
S0- O

To proceed in calculating the Poisson bracket between monodromy matrices, we
choose pointsy, s2, s3 andsy, pairwise coinciding on the punctured planesasv s,
andssz ~ sg4, but distinguished on the covering and defining the monodromy matrices
M; and Mj:

W(sz) = W(s1)M; , W(sq) = W(s3)M; . (B.5)
Then, (B.3) leads to:

oreany= oo [ gt (wevie)] @
: [ (e vi)] one )

~aea) [ ant (st ew )| 0ne

onen| [ at (s evie)| ae .

which is understood in the limié — 0 andsy — oo and for paths §; — so — s;],
1=1,2;5 = 3,4, chosen fixed and in accordance with the conditions of Theorem B.1
and Note B.1.

Proof of (B.1).Consider first the casie= j. Then a proper choice of paths is illustrated
in Fig.2.

The expression (B.6) allows to pst = s3 ands,; = s4 and to split the integration
paths into paths encircling, and~;, respectively:

{M; § My} = (M; @ M) X — X (M; @ M;) — (M; 1) X (I ® M;)
+(IQM)X(M; QL)+ (IQM;)Y (M;®1) — (M; )Y (I M;) ,

with



454 D. Korotkin, H. Samtleben

Fig. 2. Choice of paths fof M; € M;}

x=g a2 (e vin).

y = / (W e )

The path of the integral neither passes througknor intersects the pathd — oc]; such

that thisintegral vanishes in the linsg— oo. This choice of path uniquely determines the
orientation of the remaining paths K, which encirclesg. The corresponding integrals

can be easily evaluated due to Cauchy’s theorem and single-valuedness of the integrands.
This proves formula (B.1). O

Proof of (B.2).This case is treated in complete analogy. A suitable form of the paths
is shown in Fig.3, which in particular illustrates the asymmetric position of the paths
defining respectively/; andM;, with respect to the marked patéy - oo].

Fig. 3. Paths for{ M; © M}
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Similar reasoning as above yields

{Mz @M]} = —(M1®M])X — X(MZ®MJ)
+(M;eNX(IM;)+ ([ @M)X(M;®1) , (B.7)

where again several integrals have already vanished in theslimitoo. Evaluating the
remaining terms proves formula (B.2). O
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