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Abstract: The mathematical framework for an exact quantization of the two-dimensio-
nal coset spaceσ-models coupled to dilaton gravity, that arise from dimensional reduc-
tion of gravity and supergravity theories, is presented. Extending previous results [49]
the two-time Hamiltonian formulation is obtained, which describes the complete phase
space of the model in the isomonodromic sector. The Dirac brackets arising from the
coset constraints are calculated. Their quantization allows to relate exact solutions of the
corresponding Wheeler–DeWitt equations to solutions of a modified (Coset-)Knizhnik-
Zamolodchikov system.

On the classical level, a set of observables is identified, that is complete for essential
sectors of the theory. Quantum counterparts of these observables and their algebraic
structure are investigated. Their status in alternative quantization procedures is discussed,
employing the link with Hamiltonian Chern–Simons theory.

1. Introduction

It is an important class of physical theories, that admit the formulation as a gravity
coupled coset spaceσ-model after dimensional reduction to two dimensions. Including
pure gravity and Kaluza-Klein theories as well as extended supergravity theories, in 3+1
dimensions they are described by a set of scalar and vector fields coupled to gravity,
where the scalar fields already form a non-linearσ-model. Further reduction is achieved
by imposing additional symmetries – manifest by assuming two additional commuting
Killing vector fields, for example corresponding to the study of axisymmetric stationary
models.
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This reduction to effectively two dimensions leads to a non-linearσ-model in an
enlarged coset space, coupled to two-dimensional gravity and a dilaton field. The arising
additional scalar fields that contribute to parametrizing the coset space are a remnant of
the original vector fields and of components of the former higher-dimensional metric. For
general reason, related to boundedness of the energy, it is the maximal compact subgroup
H of G that is divided out in the coset. The first reduction of this type, discovered for
pure gravity [33], leads to the simplest coset spaceSL(2, R)/SO(2). It was generalized
up to the case of maximally extendedN = 8 supergravity, where theE8(+8)/SO(16)
arises [40, 41]. The general proceeding was analyzed in [13, 55].

In [47–49] a program was started to perform an exact quantization of these di-
mensionally reduced gravity models. Progress has been achieved using methods and
techniques similar to those developed in the theory of flat space integrable systems
[24, 26, 46]. Despite the fact that dimensional reduction via additional symmetries rep-
resents an essential truncation of the theory, these so-called midi-superspace models
under investigation are sufficiently complicated to justify the hope that their exact quan-
tization might provide insights into fundamental features of a still outstanding quantized
theory of gravitation. In particular and in contrast to previously exactly quantized mini-
superspace models, they exhibit an infinite number of degrees of freedom, which is
broadly accepted to be a sine qua non for any significant model of quantum gravity
(compare [52, 5] for a discussion of this point in the context of related models). One of
the final purposes of this approach is the identification of exact quantum states, whose
classical limit corresponds to the known classical solutions. For pure gravity this in-
cludes the quantum analogue of the Kerr solution describing the rotating black hole;
for extended supergravities recently discovered corresponding solutions have been of
particular interest exhibiting fundamental duality symmetries [17, 16], such that their
exact quantum counterparts should shed further light onto the role of these symmetries
in a quantized theory.

The main ideas of the new framework are the following: Exploiting the integrability
of the model, new fundamental variables have been identified (certain components of
the flat connection of the auxiliary linear system continued into the plane of the spectral
parameter), in terms of which the “right” and “left” moving sectors have been completely
decoupled [47]. The quantization is further performed in the framework of a general-
ized “two-time” Hamiltonian formalism, i.e. these sectors are quantized independently.
The whole procedure has been established in that sector of the theory, where the new
fundamental connection exhibits simple poles at fixed singularities.

In the present paper we achieve the consistent general formulation of the desired
coset-models in this approach. So far the formalism was mainly elaborated in the tech-
nically simplified principal model, where the cosetG/H had been replaced by the group
G itself. For the coset model the phase space spanned by the new variables is too large
and must be restricted by proper constraints. Their canonical treatment requires a Dirac
procedure, which effectively reduces the degrees of freedom. It leads to a consistent
analogous Hamiltonian formulation of the coset model allowing canonical quantization.
Exact quantum states are shown to be in correspondence to solutions of a modified
(Coset-)Knizhnik-Zamolodchikov system. Moreover, the formalism is kept general as
long as possible, without restricting to the simple pole sector. In particular, we com-
pletely extend it to the case of connections with poles of arbitrary high order at fixed
singularities, which span the isomonodromic sector of the theory. Generalization of the
scheme to the full phase space is sketched in Appendix A.

The other main result of this paper is the identification of classical and quantum ob-
servables. For the above mentioned simple pole sector, these sets are complete. Natural
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candidates for classical observables are the monodromies of the fundamental connection
in the plane of the variable spectral parameter. We determine their (quadratic) Poisson
structure. After quantization of the connection quantum counterparts of these mon-
odromy matrices are identified as monodromies of certain higher-dimensional KZ sys-
tems. Following Drinfeld [22] their algebraic structure may be determined to build some
quasi-associative braided bialgebra. The classical limit of this structure coincides with
the Poisson algebra of the classical monodromies found above. In this sense, complete
consistency of the picture is established. The weakened coassociativity leads to a quan-
tum algebra of observables with operator-valued structure constants. This might have
been avoided by directly quantizing the regularized classical algebra of monodromies, as
is common in Chern–Simons theory [2, 3], instead of recovering quantum monodromies
in the picture of the quantized connection. We discuss this link and its consequences.

The treatment of observables is performed in great detail for the simplified principal
model mentioned above. This is for the sake of clarity of the presentation, since the
arising difficulties in the coset case deserve an extra study in the sequel. However, the
main tools and strategies that will finally be required can already and more clearly be
developed and used in this context. The modifications required for the coset model are
clarified afterwards.

The paper is organized as follows. In Chap.2 we start by introducing the known linear
system associated to the model and describe the related on-shell conformal symmetry.
A short summary and generalization of the results from [47, 49] about the classical
treatment of the principal model is given without restricting to the simple pole sector.
The link to Hamiltonian Chern–Simons theory is discussed, where the same holomorphic
Poisson structure is obtained by symplectic reduction of the complexified phase space
in a holomorphic gauge fixing. This link in particular enables us to relate the status of
observables in both theories. Observables in terms of monodromy matrices are identified;
their Poisson structure is calculated and discussed. The technical part of the calculation
is shifted into Appendix B.

Chapter 3 treats the quantization of the principal model. We first briefly repeat the
quantization of the simple pole sector of this model [48, 49]. Quantum analogues of
the monodromy matrices are defined. Their algebraic structure and its classical limit are
determined and shown to be consistent with the classical results. The alternative treat-
ment in Chern–Simons theory and the identification of quantum observables in these
approaches are discussed. In Chap.4 we finally present the generalization of the formal-
ism to the coset models. A Hamiltonian formulation in terms of modified fundamental
variables is provided. The coset constraints are explicitly solved by a Dirac procedure.
Furthermore, we quantize the simple pole sector of the coset model, showing that solu-
tions of a modified Knizhnik-Zamolodchikov system identify physical quantum states,
i.e. exact solutions of the Wheeler–DeWitt equations. We close with a sketch of how
to employ the whole machinery to the simplest case of pure four-dimensional axisym-
metric stationary gravity. In particular, the existence of normalizable quantum states is
shown. Chapter 5 briefly summarizes the open problems for future work.

2. Principal σ-Model Coupled to Two-Dimensional Dilaton Gravity

The model to be studied in this paper is described by the two-dimensional Lagrangian

L = eρ
(
R + hµν tr[∂µgg−1∂νgg−1]

)
. (2.1)
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Here,hµν is the 2D (“worldsheet”) metric,e =
√| deth|, R is the Gaussian curvature of

hµν , ρ ∈ R is the dilaton field andg takes values in some real coset spaceG/H, where
H is the maximal compact subgroup ofG. The currents∂µgg−1 therefore live in a fixed
faithful representation of the algebrag on some auxiliaryd0-dimensional spaceV0. It
is well known that this type of model arises from the dimensional reduction of higher
dimensional gravities [13, 55], e.g. from 4D gravity in the presence of two commuting
Killing vectors [12]. In the latter case which describes axisymmetric stationary gravity,
the relevant symmetric space isG/H = SL(2, R)/SO(2).

Let us first briefly describe further reduction of the Lagrangian (2.1) by means
of gauge fixing and state the resulting equations of motion. The residual freedom of
coordinate transformations can be used to achieve conformal gauge of the 2D metric
hµν :

hµνdxµdxν = h(z, z̄)dzdz̄ ,

with world-sheet coordinatesz, z̄, which reduces the Lagrangian to

L = ρ
(
hR + tr[gzg

−1gz̄g
−1]

)
. (2.2)

In this gauge the Gaussian curvature takes the formR = (logh)zz̄/h. The equation of
motion forρ derived from (2.2)

ρzz̄ = 0 (2.3)

is solved byρ(z, z̄) = Im ξ(z), whereξ(z) is a (locally) holomorphic function. Then the
equations of motion forg coming from (2.2) read(

(ξ − ξ̄)gzg
−1

)
z̄

+
(
(ξ − ξ̄)gz̄g

−1
)
z

= 0 . (2.4)

We can further specialize the gauge by identifyingξ, ξ̄ with the worldsheet coordinates.
Then (2.4) turns into (

(ξ − ξ̄)gξg
−1

)
ξ̄

+
(
(ξ − ξ̄)gξ̄g

−1
)
ξ

= 0 . (2.5)

The equations of motion for the conformal factor are derived from the original
Lagrangian (2.1):

(logh)ξ =
ξ − ξ̄

4
tr(gξg

−1)2 and c.c. (2.6)

Throughout this whole chapter we will for above mentioned reasons of clarity inves-
tigate the simplified model, where the symmetric spaceG/H is replaced by the group
G itself. We will refer to this plainer model as theprincipal model.

2.1. Linear system and on-shell conformal symmetry of the model.The starting point of
our treatment is the following well-known linear system associated to Eqs. (2.5) [10, 54]:

d9

dξ
=

gξg
−1

1 − γ
9 ,

d9

dξ̄
=

gξ̄g
−1

1 +γ
9 , (2.7)

whereγ is the spacetime-coordinates dependent “variable spectral parameter”

γ =
2

ξ − ξ̄

{
w − ξ + ξ̄

2
±

√
(w − ξ)(w − ξ̄)

}
, (2.8)
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or alternativelyw ∈ C may be interpreted as a hidden “constant spectral parameter”;
9(w, ξ, ξ̄) is aGC-valued function. The variable spectral parameterγ lives on the twofold
covering of the complexw-plane, the transition between the sheets being performed by
γ 7→ 1

γ . It satisfies

∂γ

∂ξ
=

γ

ξ − ξ̄

1 +γ

1 − γ
,

∂γ

∂ξ̄
=

γ

ξ̄ − ξ

1 − γ

1 +γ
, (2.9)

such that in (2.7) it is

d

dξ
=

∂

∂ξ
+

γ

ξ − ξ̄

1 +γ

1 − γ

∂

∂γ
,

d

dξ̄
=

∂

∂ξ̄
+

γ

ξ̄ − ξ

1 − γ

1 +γ

∂

∂γ
. (2.10)

The linear system (2.7) exists due to the following on-shell Möbius symmetry of
equations of motion.1

Theorem 2.1. Letg(z, z̄), ρ(z, z̄) = Imξ(z) andh(z, z̄) be some solution of (2.3), (2.4),
(2.6) and9 be the related solution of the linear system (2.7). Then

σw[g] ≡ 9−1

(
1
γ

)
9(γ) , σw[ξ] ≡ wξ(z)

w − ξ(z)
, σw[h] ≡ h , (2.11)

also solve (2.4), (2.6).

Proof. We have

σw[gξg
−1] =

√
w − ξ̄

w − ξ
9−1

(
1
γ

)
gξg

−19

(
1
γ

)
,

σw[gξ̄g
−1] =

√
w − ξ

w − ξ̄
9−1

(
1
γ

)
gξ̄g

−19

(
1
γ

)
.

Now fulfillment of (2.4), (2.6) may be checked by straightforward calculation. �

The transformationsσw form a one-parametric abelian subgroup of the group
SL(2, R) of conformal transformations. We have

σw1σw2 = σw3 ,
1
w1

+
1
w2

=
1
w3

.

The full Möbius group may be obtained combining transformationsσw with the
(essentially trivial) transformations

ξ(z) 7→ aξ(z) + b , g(z) 7→ g(z) ,

which obviously leave the equations of motion invariant. As a result the action of an
arbitrarySL(2, R) Möbius transformationσ on a solution of the equations of motion is

ξ(z) 7→ σ[ξ] ≡ a
wξ(z)

w − ξ(z)
+ b , g(z, z̄) 7→ σ[g] ≡ 9−1

(
1
γ

)
9(γ) , (2.12)

1 A similar symmetry exists in the theory of Bianchi surfaces [11].
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leavingh invariant. In addition to the M̈obius symmetry (2.12) the model possesses the
symmetry corresponding to an arbitrary holomorphic change of the worldsheet coor-
dinatez (this symmetry disappears if we identifyz with ξ). Combining this symmetry
with (2.12) reveals the following M̈obius symmetry of Eq. (2.5)

g(ξ, ξ̄) 7→ σ[g]

(
w(ξ − b)

aw + ξ − b
,

w(ξ̄ − b)

aw + ξ̄ − b

)
, (2.13)

h(ξ, ξ̄) 7→ h

(
w(ξ − b)

aw + ξ − b
,

w(ξ̄ − b)

aw + ξ̄ − b

)
. (2.14)

Infinitesimally, the symmetry (2.13) is a subalgebra of the Virasoro symmetry of (2.5)
[42].

Note 2.1. It is known that the Ernst equation (2.4) forSL(2, R)/SO(2) may be rewritten
as a fourth order differential equation in terms of the conformal factorh. The transfor-
mation (2.14) shows that this equation is, in contrast to the Ernst equation itself, Möbius
invariant in theξ, ξ̄-plane.

2.2. Two-time Hamiltonian formulation of the principal model.Here we present a
generalized version of the “two-time” Hamiltonian formalism of the principalσ-model
proposed in [47, 48]. It is the strategy to define a new set of fundamental variables by
means of exploiting the corresponding linear system. These variables may be equipped
with a Poisson structure such that a two-time Hamiltonian formulation of the model is
achieved.

2.2.1. New fundamental variables and the isomonodromic sector.The main objects we
are going to consider as fundamental variables in the sequel are certain components of
the following one-form:

Definition 2.1. Let9(γ, ξ, ξ̄) be a solution of the linear system (2.7). Then theg-valued
one-formA is defined as

A := d99−1 . (2.15)

In particular, we are interested in the components

A = Aγdγ + Aξdξ + Aξ̄dξ̄ = Awdw + Ãξdξ + Ãξ̄dξ̄ , (2.16)

where(γ, ξ, ξ̄) and(w, ξ, ξ̄) respectively are considered to be independent variables. In
the sequel we shall use the shortened notationA ≡ Aγ .

Moreover, we will restrict our study to that sector of the theory, whereA is a single-
valued meromorphic function ofγ, i.e. that alsoA is single-valued and meromorphic in
γ. A solution9 of (2.7) with this property is calledisomonodromic, as its monodromies
in theγ-plane then have now-dependence due to (2.15).

Further on, we immediately get the following relations:

Lemma 2.1. The relation of the original fieldg to A is given by

gξg
−1 =

2

ξ − ξ̄
A(γ, ξ, ξ̄)

∣∣∣∣
γ=1

, gξ̄g
−1 =

2

ξ − ξ̄
A(γ, ξ, ξ̄)

∣∣∣∣
γ=−1

, (2.17)

as a corollary of (2.7) and (2.10). Moreover, the linear system (2.7) and definition (2.16)
imply
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Aw =
∂γ

∂w
A, (2.18)

Ãξ =
2A(1)

(ξ − ξ̄)(1 − γ)
, Ãξ̄ =

2A(−1)

(ξ − ξ̄)(1 +γ)
,

Aξ =
2A(1) − γ(1 +γ)A(γ)

(ξ − ξ̄)(1 − γ)
, Aξ̄ =

2A(−1) +γ(1 − γ)A(γ)

(ξ − ξ̄)(1 +γ)
.

�

Note 2.2. In the sequelA(γ) will be exploited as the basic fundamental variable. At
this point we should stress the difference between the real groupG (with algebrag)
entering the physical models and the related complexified groupGC (with algebragC).
Namely, it isA(γ ∈C) ∈ gC, whereas we will additionally impose the “imaginary cut”
iA(γ ∈ iR) ∈ g. SinceA(γ) is a (locally) holomorphic function, this implies

A(γ̄) = −A∗(−γ) , (2.19)

where∗ denotes the anti-linear conjugation ongC defined by the real formg. Together
with (2.17) this ensuresg ∈ G.

Note 2.3.The linear system (2.7) admits the normalization

9(γ =∞) = I , (2.20)

which implies regularity ofA at infinity:

A∞ := lim
γ→∞ γA(γ) = 0 . (2.21)

Furthermore, (2.7) implies an additional relation between the original fieldg and the
9-function:

9(γ =0) = gC0 , (2.22)

whereC0 is a constant matrix in the isomonodromic sector.

The definition ofA as pure gauge (2.15) implies integrability conditions on its
components, which in particular give rise to the following closed system forA(γ):

∂A

∂ξ
= [Aξ, A] +

∂Aξ

∂γ
,

∂A

∂ξ̄
= [Aξ̄, A] +

∂Aξ̄

∂γ
. (2.23)

The main advantage of the system (2.23) in comparison with the original equations
of motion in terms ofg (2.5) is that the dependence onξ and ξ̄ is now completely
decoupled. Once the system (2.23) is solved, it is easy to check that Eqs. (2.17) are
compatible and the fieldg restored by means of them satisfies (2.5).

The remaining set of equations of the principal model (2.6), which concern the con-
formal factorh, may be rewritten taking into account (2.17) as the following constraints:

Cξ := −(logh)ξ +
1

ξ − ξ̄
trA2(1) = 0 , C ξ̄ := −(logh)ξ̄ +

1

ξ̄ − ξ
trA2(−1) = 0 . (2.24)

2.2.2. Poisson structure and Hamiltonians.The described decoupling ofξ andξ̄ depen-
dence allows to treat the system (2.23), (2.24) in the framework of a manifestly covariant
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two-time Hamiltonian formalism, where the fieldA(γ), the “times”ξ, ξ̄ and the fields
(logh)ξ, (logh)ξ̄ are considered as new basic variables. The spirit of the generalized
“several-times” Hamiltonian formalism is described for example in [44, 18].

For this purpose we equipA(γ) with the following (equalξ, ξ̄) Poisson structure:

Definition 2.2. Define the Poisson bracket onA(γ) ≡ Aa(γ)ta as:{
Aa(γ) , Ab(µ)

}
= −fabc Ac(γ) − Ac(µ)

γ − µ
, (2.25)

fabc being the structure constants ofg.2

The relations {
A(γ) ,

1

ξ − ξ̄
trA2(1)

}
=

[
Aξ(γ) , A(γ)

]
, (2.26){

A(γ) ,
1

ξ̄ − ξ
trA2(−1)

}
=

[
Aξ̄(γ) , A(γ)

]
,

compared with the equations of motion (2.23) give rise to

Definition 2.3. We call the (ξ, ξ̄)-dynamics that is generated by

Hξ :=
1

ξ − ξ̄
trA2(1) , H ξ̄ :=

1

ξ̄ − ξ
trA2(−1) , (2.27)

the implicit time dependenceof the fields. The remaining (ξ, ξ̄)-dynamics is referred
to asexplicit time dependence.

In fact, the motivation for this definition arises from [47, 48], where it has been shown
that in essential sectors of the theory (simple pole singularities in the connectionA), it is
possible to identify a complete set of explicitly time-independent variables. They may be
treated as canonical variables then, such thatHξ andH ξ̄ serve as complete Hamiltonians.
This will be illustrated and generalized in the next subsections for the isomonodromic
sector of the theory, whereA(γ) is assumed to be a meromorphic function ofγ.

The extension of this framework to the whole phase space of arbitrary connections
A, that is strongly inspired from the treatment of the simple pole case, is sketched in
Appendix A. The variablesA(γ) themselves are explicitly time-dependent in general
according to (2.23) and (2.26).

Note 2.4.The quantities

B(w) = Aw(γ) + Aw

(
1
γ

)
≡ ∂γ

∂w

(
A(γ) − 1

γ2
A

(
1
γ

))
(2.28)

build a rather simple set of explicitly time-independent variables, carrying half of the
degrees of freedom of the full phase space. This may be checked by straightforward
calculation. Moreover, (2.25) implies

{Ba(w), Bb(v)} = −fabc Bc(w) − Bc(v)
w − v

. (2.29)

2 Assumingg to be semisimple, the existence of the symmetric Killing-form enables us to arbitrarily pull
up and down the algebra indices.
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Note 2.5.From the mathematical point of view, (2.25) is a rather natural structure [26],
even though it is not canonically derived from the Lagrangian (2.1). It may however be
obtained from an alternative Chern–Simons Lagrangian formulation of the model, as
is sketched in the following section. Comparison to the conventional Poisson structure
of (2.1) should be worked out on the space of observables, where due to spacetime-
diffeomorphism invariance no principal difference between one- and two-time structures
appears.

In order to gain a Hamiltonian description for the total (ξ, ξ̄)-dependence of the fields,
we employ a full covariant treatment by additionally introducing conjugate momenta
for the canonical “time” variablesξ andξ̄.

Definition 2.4. Define the (equalξ, ξ̄) Poisson bracket{
ξ, −(logh)ξ

}
=

{
ξ̄, −(logh)ξ̄

}
= 1 , (2.30)

where in the sense of a covariant theory only the explicit appearance ofξ, ξ̄ (compare
Def. 2.3) is covered by treating these previous “times” as additional canonical variables,
which obey the bracket (2.30).

This identification of the conjugate momenta for the explicitly appearing times with
the logarithmic derivatives of the conformal factor is motivated from the Lagrangian
(2.2) [56]. It implies that the dynamics inξ andξ̄ directions is completely given by the
Hamiltonian constraintsCξ andC ξ̄ defined in (2.24), i.e. for any functionalF we have

dF

dξ
= {F, Cξ} ,

dF

dξ̄
= {F, C ξ̄} . (2.31)

The remaining equations of motion (2.24) mean weak vanishing of the Hamiltonians.
This phenomena always arises in the framework of covariant Hamiltonian formalism
when time is treated as canonical variable in its own right canonically conjugated to the
Hamiltonian [35]; it is a standard way to take into account possible reparametrization
of the time variable.

2.2.3. First order poles.In this simplest case considered in [47, 49] we assume thatA(γ)
has only simple poles, i.e.

A(γ) =
N∑
j=1

Aj(ξ, ξ̄)
γ − γj

, (2.32)

where according to (2.7) allγj should satisfy (2.9), i.e.γj = γ(wj , ξ, ξ̄), wj ∈ C. Then
the equations of motion (2.23) yield

∂Aj

∂ξ
=

2

ξ − ξ̄

∑
k 6=j

[Ak, Aj ]
(1 − γk)(1 − γj)

,
∂Aj

∂ξ̄
=

2

ξ̄ − ξ

∑
k 6=j

[Ak, Aj ]
(1 +γk)(1 +γj)

,

(2.33)
and the Poisson brackets (2.25) and (2.30) reduce to

{Aa
i , Ab

j} = δijf
abcAj , (2.34)

{Aj , (logh)ξ} = {Aj , (logh)ξ̄} = 0 ,

{γj , (logh)ξ} = −∂ξγj , (2.35)

{γj , (logh)ξ̄} = −∂ξ̄γj ,
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i.e. in this case, the residuesAj together with the set of (hidden constant) positions of
the singularities{wj} give the full set of explicitly time-independent variables.

2.2.4. Higher order poles.We can also generalize the described formulation to the case,
whereA(γ) has higher order poles in theγ-plane:

A(γ) =
N∑
j=1

rj∑
k=1

Ak
j (ξ, ξ̄)

(γ − γj)k
. (2.36)

The Poisson structure (2.25) in terms ofAk
j has the following form:

{(Ak
i )a, (Al

j)b} =

{
δijf

abc(Ak+l−1
j )c for k + l − 1 ≤ rj

0 for k + l − 1 > rj
, (2.37)

building a set of mutually commuting truncated half affine algebras.
However, it turns out that forrj > 1 the variablesAk

j for k = 1, . . . rj −1 have
non-trivial Poisson brackets with (logh)ξ and (logh)ξ̄, and, therefore, are not explicitly
time-independent. The problem of identification of explicitly time-independent variables
can be solved in the following way. Consider

Aw(γ) =
∂γ

∂w
A(γ) ,

which as a function ofw is meromorphic on the twofold covering of thew-plane.
Parametrize the local expansion ofAw around one of its singularitiesγj as

Aw(γ) =
rj∑
k=1

A(w)k
j

(w − wj)k
+ O((w − wj)0) for γ ∼ γj . (2.38)

We can now formulate

Theorem 2.2. The coefficientsA(w)k
j of the local expansion ofAw have no explicit time

dependence, i.e.

∂ξA
(w)k
j = {A(w)k

j , Hξ} , ∂ξ̄A
(w)k
j = {A(w)k

j , H ξ̄} . (2.39)

They satisfy the same Poisson structure as theAk
j (2.37):{

(A(w)k
i )a , (A(w)l

j )b
}

=

{
δijf

abc(A(w)k+l−1
j )c for k + l − 1 ≤ rj

0 for k + l − 1 > rj
. (2.40)

Proof. Let us first prove (2.39). From (2.25) and the definition ofHξ it follows that

{Aw(γ), Hξ} =

{
∂wγA(γ) ,

2trA2(1)

(ξ − ξ̄)

}
=

∂wγ

(ξ − ξ̄)

[
2A(1)
1 − γ

, A(γ)

]
= [Ãξ(γ), Aw(γ)] ,

whereas from (2.15) theξ-dynamics ofAw is determined to be

∂ξA
w = [Ãξ(γ), Aw(γ)] + ∂wÃξ(γ) = [Ãξ(γ), Aw(γ)] + ∂wγ

2A(1)
(1 − γ)2

.
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As the last term is regular inγ = γj , comparison of the two previous lines shows
that theξ-dependence of the coefficients in thew-expansion around these points is
completely generated byHξ, which proves (2.39).

To show the Poisson structure (2.40), one has to consider the corresponding coeffi-
cients of singularities in (2.25). Fori 6=j, the result follows directly from (2.37), asA(w)k

j

is a function ofAl
j , l=1, . . . , rj only, such that locality remains. Fori=j, one may first

extract from (2.25) the behavior of{Aw(γ), Aw(µ)} aroundγ ∼ γj :

{(Aw)a(γ), (Aw)b(µ)} = −∂wγ∂vµfabc Ac(γ) − Ac(µ)
γ − µ

∼ fabc (Aw)c(γ)
µ − γ

∂vµ ,

to then further study the asymptotical behaviorµ ∼ γ:

{(Aw)a(γ), (Aw)b(µ)} ∼ fabc (Aw)c(γ)
v − w

,

such that (2.40) fori=j follows in the same way, as does (2.37) from (2.25). �

Thus, also in this case we have succeeded in identifying a complete set of canonical
explicitly time-independent variables.

Note 2.6.Comparing (2.36) with (2.38) shows that theA(w)k
j are related to theAl

j by
means of explicit recurrent relations that may be derived, expanding (2.36) in (w−wj).
ThenA(w)k

j is a function ofAl
j with k ≤ l ≤ rj . In particular, the residues of highest

order are related by (
∂γj

∂wj

)rj−1

A
(w)rj

j = A
rj

j ,

which explains for example, why this difference was not relevant in the case of simple
poles in the last subsection.

2.3. The link to Hamiltonian Chern–Simons theory.The treatment of the principal model
of dimensionally reduced gravity in the previous section was inspired by the fact that the
equations of motion were obtained as compatibility conditions (2.23) of special linear
systems. The interpretation of these equations as zero curvature conditions suggests
a link with Chern–Simons theory whose equations of motion also state the vanishing
of some curvature. The Chern–Simons gauge connection then lives on a space locally
parametrized simultaneously by the spectral parameterγ and one of the true space time
coordinates playing the role of time.

The relevant Chern–Simons action reads

S =
k

4π

∫
M

tr[AdA − 2
3
A3] , (2.41)

whereA is a connection on a trivialG principal bundle over the 3-dimensional manifold
M . In the case of interest here, the manifoldM is the direct product of the Riemann
surfaceΣ, on which the spectral parameterγ lives, and the real axis, which is interpreted
as time. For this configuration, Chern–Simons theory is known to have a Hamiltonian
formulation. Choosing proper boundary conditions on the connection, the action may
be rewritten in the form
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S = − k

4π

∫
M

tr[A∂tA]dt +
k

2π

∫
M

tr[A0(dA − A2)]dt . (2.42)

The connection has been splitA = A + A0dt into spatial and time components,
whereA0 now plays the role of a Lagrangian multiplier for the constraint

F = dA − A2 = 0 . (2.43)

Usually, A0 is gauged to zero which leads to static componentsA. In particular,
any singularities of the connection are time-independent in this case and treated by
inserting static Wilson lines in the action (2.42) [61, 23]. A nontrivial and somewhat
singular gauge forA0 must be chosen, to derive the equations of motion of the described
principal model of dimensionally reduced gravity.

The further required holomorphic reduction of Chern–Simons theory can still be
described for arbitrary gauge fixing ofA0, as the results will be valid in any gauge.

2.3.1. Holomorphic reduction and Poisson bracket of the connection.For the following
we first complexify the phase space and thereby also the gauge group. This enlarged
gauge freedom may be used for a holomorphic gauge fixing then.

Denoting the spatial coordinates which locally parametrizeΣ byγ = x+iy, γ̄ = x−iy,
defining the measure ask4π dxdy ≡ −2iκ

4π dxdy = κ
4π dγdγ̄ and splitting the remaining

dynamical parts ofA into A = Aγdγ + Aγ̄dγ̄, the action (2.42) implies the Poisson
structure

{Aγ,a(γ, γ̄), Aγ̄,b(µ, µ̄)} = − iπ
κ

δabδ(2)(γ − µ) , (2.44)

where here and in the following theδ-function is understood as a real two-dimensional
δ-function:δ(2)(x + iy) ≡ i

2δ(x)δ(y), normalized such that
∫

dγdγ̄δ(2)(γ) = 1.
This Poisson structure corresponds to the Atiyah-Bott symplectic form on the space

of smooth connections on the Riemann surfaceΣ [6]:

� =
k

4π
tr

∫
Σ

δA ∧ δA .

The flatness constraints (2.43) are of the first class with respect to this bracket:

{F a(γ, γ̄), F b(µ, µ̄)} =
iπ
κ

fabcF c(γ)δ(2)(γ − µ) ,

wherefabc are the total antisymmetric structure constants ofgC. These constraints
generate the canonical gauge transformations

A 7→ gAg−1 + dgg−1 , (2.45)

which leave the symplectic structure invariant.
The phase space of the original theory is therefore reduced to the space of flat connec-

tionsA(γ, γ̄) modulo the action of the complex gauge group (2.45). If the singularities
of the connectionA are restricted to simple poles, this phase space is for instance com-
pletely described by the monodromies of the connection. As a first step to explicitly
reduce the number of degrees of freedom, we will fix the gauge freedom (2.45) inA, by
demanding

Aγ̄ = 0 , (2.46)

which makes flatness ofA(γ, γ̄) turn into holomorphy of the surviving componentAγ(γ).
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Note 2.7.The existence of corresponding gauge transformations is a nontrivial prob-
lem. In general, whenAγ̄ is gauged away,Aγdγ becomes a connection on a nontrivial
bundle overΣ. On Riemann surfaces of higher genus, this form of gauge generically
leads to multivalued holomorphic quantities exhibiting certain twist properties [50]. On
the Riemann sphere the gauge transformations preserving single-valuedness ofAγdγ
at least exist on a dense subspace of connections [6, 31]. For the purpose here, strictly
speaking we a priori restrict the phase space to the class of functions on the punctured
sphere that allow this gauge fixing. This includes e.g. all the connections with the cur-
vature exhibitingδ-function singularities treated in [23] (gauge fixed to holomorphic
connections with simple poles) as well as connections with higher order derivatives of
δ-functions in the curvature.

This gauge fixing of first-class constraints changes the Poisson structure according
to Dirac [19], leading to

Theorem 2.3. Let the Poisson structure (2.44) for the connection

A(γ, γ̄) ≡ Aγ,a(γ, γ̄)tadγ + Aγ̄,a(γ, γ̄)tadγ̄

be restricted by the constraints (2.43) and (2.46). Then the Dirac bracket for the surviving
holomorphic componentsAa(γ) ≡ Aγ,a(γ) is given by

{Aa(γ), Ab(µ)}∗ =
1

2κ
fabc Ac(γ) − Ac(µ)

γ − µ
. (2.47)

In this context, the holomorphic structure (2.47) has first been proposed by Fock and
Rosly [28].

Proof. The bracket between the constraints and the gauge-fixing condition is of the form

{F a(γ), Aγ̄,b(µ)} =
iπ
κ

δab∂γ̄δ(2)(γ − µ) +
iπ
κ

fabcAγ̄,c(γ)δ(2)(γ − µ) . (2.48)

On the constraint surface (2.46) this matrix can be inverted using∂γ̄
1
γ =−2πiδ(2)(γ),

which follows from the inhomogeneous Cauchy theorem. The Dirac bracket for the
remaining holomorphic variablesAγ(γ) then is

{Aγ,a(γ), Aγ,b(µ)}∗

= −
∑
m,n

∫
dxdx̄dydȳ(

{Aγ,a(γ), Fm(x)} ({Fm(x), Aγ̄,n(y)})−1 {Aγ̄,n(y), Aγ,b(µ)}

+ {Aγ,a(γ), Aγ̄,n(y)} ({Aγ̄,n(y), Fm(x)})−1 {Fm(x), Aγ,b(µ)}
)

= − iπ
κ

∑
m

∫
dxdx̄dydȳ((

δam∂xδ(2)(x − γ) + fmacAγ,c(x)δ(2)(x − γ)
) δmbδ(2)(y − µ)

2πi(x − y)

− (
δbm∂xδ(2)(x − µ) + fmbcAγ,c(x)δ(2)(x − µ)

) δamδ(2)(γ − y)
2πi(x − y)

)
=

1
2κ

fabc Aγ,c(γ) − Aγ,c(µ)
γ − µ

. �
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Note 2.8.For convenience in concrete calculations we still give this result in tensor no-
tation, as is explicitly explained in [26], where the relation of (2.47) to the corresponding
current algebra is discussed. This structure may be put into the form

{A(γ) ⊗, A(µ)} = [r(γ − µ), A(γ) ⊗ I + I ⊗ A(µ)] , (2.49)

with the classicalr-matrix r(γ) = − 1
2κ

�
γ , where� = ta ⊗ ta is represented asd2

0×d2
0

matrix here. For the simplest but important caseg=sl(2), it is � = 1
2I⊗I + Π, with Π

being the 4×4 permutation operator. The matrixr(γ) satisfies the classical Yang-Baxter
equation with spectral parameter

[r12(γ − µ), r13(γ) + r23(µ)] + [r13(γ), r23(µ)] = 0 . (2.50)

In shortened notation, (2.49) reads

{A(γ)0, A(µ)0̄} = [r(γ − µ), A(γ)0 + A(µ)0̄] , (2.51)

with A(γ)0 := A(γ) ⊗ I , A(µ)0̄ := I ⊗ A(µ) .

Note 2.9. In the framework of canonical and geometric quantization of Chern–Simons
theory [61, 7, 23, 31], the variablesAγ andAγ̄ are – according to (2.44) – considered
and treated as canonically conjugated coordinate and momentum, respectively. After the
holomorphic gauge fixing the surviving variableA(γ) = Aγ(γ) resembles – according
to (2.47) – a combination of angular momenta.

Note 2.10.The flatness constraints (2.43) have not been totally fixed by the choice of
gauge (2.46). Apparently this gauge still admits holomorphic gauge transformations,
which on the sphere reduce to constant gauge transformations. This freedom may also
be seen from the appearance of∂γ̄ in the matrix of constraint brackets (2.48), which
actually prevents its strict invertibility. This implies the surviving of the (global) first-
class part of the flatness constraintF , which for meromorphicA in the parametrization
(2.36) is∫

F a(γ)dγdγ̄ =
∫

∂γ̄Aa(γ)dγdγ̄ = −2πi
∑

i

(A1
i )

a = −2πiAa
∞ , (2.52)

whereA∞ = Aa
∞ta, compare (2.21). Obviously,Aa

∞ is a generator of constant gauge
transformations in the bracket (2.47).

2.3.2. Embedding the principal model.In this holomorphic structure of Chern–Simons
theory the link to the principal model can be established. As a first fact, note that the
Dirac bracket (2.47) forκ=− 1

2 equals the Poisson structure (2.25) that was used for the
Hamiltonian formulation of the principal model.

The equations of motion from Chern–Simons action (2.41) read

∂tA
γ = ∂γA0 + [Aγ , A0] , (2.53)

leading to trivial dynamics in the gaugeA0 = 0, whereas fort being replaced byξ and
the special (singular) choice of gauge
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A0(γ) := Aξ(γ) =
2Aγ(1) − γ(1 +γ)Aγ(γ)

(ξ − ξ̄)(1 − γ)
,

one exactly recovers the equations of motion (2.23).
Finally the surviving first-class constraints (2.52) that are due to former flatness on

the sphere gain a definite physical meaning in the principal model of dimensionally
reduced gravity. Arising there equivalently as regularity conditions inγ ∼ ∞ (2.21),
they are directly related to the asymptotical flatness of the corresponding solutiong
of Einstein’s equations (2.5). As first-class constraints in different pictures [12], they
generate respectively the Matzner-Misner or the Ehlers symmetry transformations of
the model.

Their actual role as a physical gauge transformation related to the local Lorentz
transformations becomes manifest in the proper treatment of the coset model below, see
Subsect.4.

2.4. The algebra of observables.A consistent treatment of the theory and in particular
the ability to extract classical and quantum predictions from the theoretical framework
requires the identification of a complete set of observables. In the model as presented so
far, observables can be defined in the sense of Dirac as objects that have vanishing Poisson
bracket with all the constraints including the Hamiltonian constraints (2.24), which even
play the most important role here. In the two-time formalism this condition shows the
observables to have no total dependence onξ andξ̄. This is a general feature of a covariant
theory, where time dynamics is nothing but unfolding of a gauge transformation, and
observables are the gauge invariant objects.

Regarding the connectionA(γ) as fundamental variables of the theory, the natural
objects to build observables from are the monodromies of the linear system (2.15). They
may be equivalently characterized as

9(γ) 7→ 9(γ)Ml , for γ running along the closed pathl , (2.54)

or

Ml = P exp

(∮
l

A(γ)dγ

)
.

These objects naturally have no total (ξ, ξ̄)-dependence; in the isomonodromic sector
we treat, thew-dependence is also absent.

For simple poles let us denote byMi ≡ Mli the monodromies corresponding to the
closed pathsli which respectively encircle the singularitiesγi and touch in one common
basepoint. From the local behavior of9(γ) aroundγ = γi,

9(γ) = Gi

(
I + O(γ − γi)

)
(γ − γi)

TiCi ,

one also extracts the relations

Ai = GiTiG
−1
i , Mi = C−1

i e2πiTiCi . (2.55)

The remaining constraint of the theory which should have vanishing Poisson bracket
with the observables is the generator of the constant gauge transformations (2.52), under
which the monodromies transform by a common constant conjugation. This justifies
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Definition 2.5. In the case, where the connectionA(γ) exhibits only simple poles at
fixed singularitieswj and with fixed eigenvalues ofAj , we call the set of Wilson loops{

tr
∏
k

Mik

∣∣∣k, (i1, . . . , ik)

}
(2.56)

theset of observables.

Note 2.11.For these connectionsA(γ), the corresponding monodromies together with
the position of the singularities and the eigenvalues ofAj generically already carry the
complete information. (It is necessary to add the set of eigenvalues ofAj – i.e. the
matricesTj or the Casimir operators of the algebra respectively – to the set of mon-
odromies, since from the monodromies only the exponentials of these eigenvalues can
be extracted.) In the presence of higher order poles in the connection, additional scatter-
ing data – so-called Stokes multipliers – are required to uniquely specify the connection
[39].

The generic case, in which the whole information is contained in the above data, is
precisely defined by the fact that no eigenvalues of the monodromy matrices coincide
[38, 39]. In particular, this excludes the case of multisolitons, where the monodromies
equal±I.

The algebraic structure of the observables (2.56) is inherited from the Poisson struc-
ture on the corresponding connectionA(γ).

Before we explicitly describe this structure, let us briefly comment on the relation
to Chern–Simons theory, where quite similarly the Poisson bracket (2.44) provides a
Poisson structure on gauge invariant objects.

2.4.1. Observables in Chern–Simons theory.In Chern–Simons theory on the punctured
sphere, the set of observables is also built from the monodromy matrices. Note that since
in the usual gaugeA0 = 0 the Hamiltonian constraint is absent, observables are identified
as gauge invariant objects, where this is invariance under local (γ-dependent) gauge
transformations. Fixing this gauge freedom by holomorphic gauge as described above,
the Dirac bracket (2.47) is now a structure on the reduced phase space of holomorphic
connectionsA(z) modulo the action ofconstantgauge transformations.

It has been explained in [2] that the canonical bracket (2.44) does not define a unique
structure on monodromy matrices due to arising ambiguities from the singularities of
this bracket (see also [59]). However, on gauge invariant objects, built from traces of
arbitrary products of monodromy matrices, these ambiguities vanish [28, 1]. Hence the
strategy there is to postulate some structure on the monodromy matrices which reduces
to the proper one [34] on gauge invariant objects.

The holomorphic Dirac bracket (2.47) allows the calculation also for the mon-
odromies themselves, as we shall show in the following. To relate this result to [28, 2],
note that in general the original Poisson bracket and reduced Dirac bracket coincide
on quantities of first class in Dirac terminology, i.e. here on gauge invariant objects. In
this sense the holomorphic reduction finally leads to the same result on the space of
observables.

2.4.2. Poisson structure of monodromy matrices.The holomorphic Poisson structure
(2.47) defines a Poisson structure on the monodromy matricesMj . The result is sum-
marized in the following
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Theorem 2.4. Let A(γ) be a connection on the punctured planeγ \ {γ1, . . . , γN},
equipped with the Poisson structure{

A(γ)0, A(µ)0̄
}

=
1

γ − µ

[
�, A(γ)0 + A(µ)0̄

]
. (2.57)

Let further9 be defined as a solution of the linear system

∂γ9(γ) = A(γ)9(γ) , (2.58)

normalized at a fixed basepoints0,

9(s0) = I , (2.59)

and denote byM1, . . . , MN the monodromy matrices of9 corresponding to a set of
paths with endpoints0, which encircleγ1, . . . , γN , respectively. Ensure holomorphy of
9 at ∞ by the first-class constraint

A∞ = lim
γ→∞ γA(γ) = 0 . (2.60)

Then, in the limits0→∞, the Poisson structure of the monodromy matrices is given by{
M0

i , M 0̄
i

}
= iπ

(
M 0̄

i � M0
i − M0

i � M 0̄
i

)
, (2.61){

M0
i , M 0̄

j

}
= iπ

(
M0

i � M 0̄
j + M 0̄

j � M0
i − � M0

i M 0̄
j − M0

i M 0̄
j �

)
,

for i < j , (2.62)

where the paths defining the monodromy matricesMj are ordered with increasingj
with respect to the distinguished path[s0→∞].

At this point several comments on the result of this theorem are in order, whereas
the proof is postponed to Appendix B.

Note 2.12.The first-class constraint (2.60) generates constant gauge transformations of
the connectionA in the Poisson structure (2.57). For the connections of the type (2.36)
this reduces to the constraint (2.52). In terms of the monodromy matrices, holomorphy
of 9 at∞ is reflected by

M∞ ≡
∏

Mi = I , (2.63)

which in turn is a first-class constraint and generates the action of constant gauge trans-
formations on the monodromy matrices in the structure (2.61) and (2.62). The ordering
of this product is fixed to coincide with the ordering that defines (2.62).

The gauge transformation behavior of the fields explicitly reads{
A0

∞ , A0̄
j

}
=

[
� , A0̄

j

]
, (2.64){

M0
∞ , M 0̄

j

}
= iπ

(
M0

∞�M 0̄
j − M 0̄

j �M0
∞ − �M0

∞M 0̄
j + M0

∞M 0̄
j �

)
.

This transformation law is further inherited by arbitrary productsM =
∏

k Mjk
of

monodromies, where on the constraint surfaceM∞ = I it takes the form
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M0

∞, M 0̄
}

= −2πi
[
� , M 0̄

]
, (2.65)

resembling (2.64).
The generators of gauge transformations build the algebra{

A0
∞, A0̄

∞
}

=
[
�, A0̄

∞
]

, (2.66)

or {
M0

∞, M 0̄
∞

}
= iπ

(
M 0̄

∞ � M0
∞ − M0

∞ � M 0̄
∞

)
, (2.67)

in terms ofA∞ andM∞ respectively. In fact, the algebras (2.66) and (2.67) turn out to
be isomorphic: the quadratic bracket (2.67) linearizes if the Casimirs are split out.

As mentioned, we will further be interested in gauge invariant objects, which are
now identified by their vanishing Poisson bracket with (2.63) and which are therefore
invariant under a global common conjugation of all monodromies. Note that this includes
invariance under gauge transformations with gauge parameters (conjugation matrices)
that have nonvanishing Poisson bracket with the monodromies themselves. In accordance
with Definition 2.5, the structure (2.61), (2.62) implies

{M∞, trM} = 0 (2.68)

for an arbitrary product of monodromiesM .

Note 2.13.The evident asymmetry of (2.62) with respect to the interchange ofi andj
is due to the fact that the monodromy matrices are defined by the homotopy class of the
path, which connects the encircling path with the basepoint in the punctured plane. This
gives rise to a cyclic ordering of the monodromies.

The distinguished path [s0→∞] breaks and thereby fixes this ordering, as is explic-
itly illustrated in Fig.3 in Appendix B below. It is remnant of the so-called eyelash that
enters the definition of the analogous Poisson structure in the combinatorial approach
[28, 1, 2], being attached to every vertex and representing some freedom in this defi-
nition. However, the choice of another path [s0 → ∞] simply corresponds to a global
conjugation by some product of monodromy matrices: a shift of this eyelash byj steps
corresponds to the transformation

Mk → (M1 . . . Mj)−1Mk(M1 . . . Mj) .

Therefore the restricted Poisson structure on gauge invariant objects is independent of
this path.

Note 2.14.A seeming obstacle of the structure (2.61), (2.62) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (2.60) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (2.63), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows [58], that the structure (2.61), (2.62) restricts to
a Poisson structure fulfilling Jacobi identities on the space of gauge invariant objects. On
this space, the structure reduces to the original Goldman bracket [34] and coincides with
the restrictions of previously found and studied structures on the monodromy matrices
[28]:{

M0
i , M 0̄

i

}
= M 0̄

i r+M
0
i + M0

i r−M 0̄
i − r−M0

i M 0̄
i − M0

i M 0̄
i r+ , (2.69){

M0
i , M 0̄

j

}
= M0

i r+M
0̄
j + M 0̄

j r+M
0
i − r+M

0
i M 0̄

j − M0
i M 0̄

j r+ , for i < j ,
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wherer+ andr− :=−Πr+Π are arbitrary solutions of the classical Yang-Baxter equation

[r12, r23] + [r12, r13] + [r13, r23] = 0 , (2.70)

and the symmetric part ofr+ is required to be iπ�. Settingr+ ≡ iπ�, (2.69) reduces
to (2.61), (2.62) such that our structure is in some sense the skeleton, which may be
dressed with additional freedom that vanishes on gauge invariant objects. On the space
of monodromy matrices themselves, introduction ofr-matrices may be considered as
some regularization to restore associativity, whereas the fact that� itself does not satisfy
the classical Yang-Baxter equation is equivalent to (2.61), (2.62) not obeying Jacobi
identities.

In the Poisson structure (2.69), the generator of gauge transformationsM∞ ≡∏
i Mi

has the following Poisson brackets with any monodromyMk:

{
M0

∞, M 0̄
k

}
= M 0̄

kr+M
0
∞ − M 0̄

kM0
∞r− − r+M

0
∞M 0̄

k + M0
∞r−M 0̄

k , (2.71)

which entails the same Poisson bracket ofM∞ with an arbitrary product of monodromies
M ≡∏

k Mjk
. On the constraint surfaceM∞ =I, taking into accountr+−r− = 2iπ�, this

again implies (2.65), such thatM∞ again generates the constant gauge transformations.

Note 2.15.The subset of observables

{tr[(Mi)
m]|i, m} ∪ {wi|i} (2.72)

commutes with the whole set of observables.
For the positions of the singularities this follows just trivially from the Poisson

structure (2.25), whereas the eigenvalues of the monodromy matrices are related to
the eigenvalues of the corresponding residuesAi (2.55), which in turn provide the
Casimir operators of the mutually commuting algebras (2.34). This subset of commuting
variables thus parametrizes the symplectic leaves of (2.61), (2.62).

Note 2.16.For our treatment of the coset model below, the following additional structure
will be of importance. There is an involution ˜η on the set of observables, defined by the
cyclic shiftMi 7→ Mi±n, whereN = 2n is the total number of monodromies. The crucial
observation is now that this involution is an automorphism of the Poisson structure on
the algebra of observables:

{η̃(X1), η̃(X2)} = η̃({X1, X2}) , (2.73)

for X1, X2 being traces of arbitrary products of monodromy matrices. This is a corollary
of Note 2.13, as it follows from the invariance of the Poisson structure on gauge invariant
objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices.

Like every involution, ˜η defines a grading of the algebra into its eigenspaces of
eigenvalue±1. In particular, the even part forms a closed subalgebra.
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3. Quantization of the Principal Model

3.1. Quantization in terms of the connection.The quantization of the model looks
especially natural in the isomonodromic sector with only simple poles. This has been
performed in [48, 49], as we shall briefly summarize. In this case straightforward quanti-
zation of the linear Poisson brackets (2.34) leads to the following commutation relations:

[Aa
i , Ab

j ] = i~δijf
abcAj , (3.1)

[ξ, (logh)ξ] = [ ξ̄, (logh)ξ̄] = −i~ , (3.2)

[ξ̄, (logh)ξ] = [ξ, (logh)ξ̄] = 0.

According to (3.2), representingξ andξ̄ by multiplication operators, one can choose

(logh)ξ = i~
∂

∂ξ
, (logh)ξ̄ = i~

∂

∂ξ̄
. (3.3)

From (3.1), the residuesAj can be represented according to

Aa
j = i~taj , (3.4)

which acts on a representationVj of the algebragC.
Thus the quantum stateψ(ξ, ξ̄) in a sector with given singularities should depend on

(ξ, ξ̄) and live in the tensor-productV (N ) := V1 ⊗ . . . ⊗ VN of N representation spaces.
Denote the dimension ofVj by dj , such thatd :=dimV (N ) =

∏
dj .

3.1.1. Wheeler–DeWitt equations and Knizhnik-Zamolodchikov system.The whole “dy-
namics” of the theory is now encoded in the constraints (2.24), which accordingly play
the role of the Wheeler–DeWitt equations here:

Cξψ = C ξ̄ψ = 0 , (3.5)

which can be written out in explicit form using (2.24), (2.27), (3.3) and (3.4):

∂ψ

∂ξ
=

i~
ξ − ξ̄

∑
k 6=j

�jk

(1 − γj)(1 − γk)
ψ , (3.6)

∂ψ

∂ξ̄
=

i~
ξ̄ − ξ

∑
k 6=j

�jk

(1 +γj)(1 +γk)
ψ ,

where�jk := taj ⊗ tak is the symmetric 2-tensor ofg, acting nontrivially only onVj and
Vk.

The other constraint that restricts the physical states arrives from (2.52); its meaning
was sketched in Subsect. 2.3.2. In the quantized sector it is reflected by∑

j

taj

 ψ(ξ, ξ̄) = 0 . (3.7)

The general solution of the system (3.6) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov (KZ) system [45]:

∂ϕKZ

∂γj
= i~

∑
k 6=j

�jk

γj − γk
ϕKZ , (3.8)

with anV (N )-valued functionϕKZ(γj):
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Theorem 3.1. If ϕKZ is a solution of (3.8) obeying the constraint (3.7), and theγj depend
on (ξ, ξ̄) according to (2.8), then

ψ =
N∏
j=1

(
∂γj

∂wj

) 1
2 i~�jj

ϕKZ (3.9)

solves the constraint (Wheeler–DeWitt) equations (3.6).

The Casimir operator�jj defined above is assumed to act diagonal on the states; for
g=sl(2) for example, this is simply�jj = 1

2sj(sj − 2), classifying the representation.
Theorem 3.1 and the proof were obtained in [48]. The task of solving (3.6) reduces

to the solution of (3.8).

Note 3.1.Theγj dependence of the quantum states, introduced in Theorem 3.1, can be
understood as just a formal dependence, which covers the (ξ, ξ̄)-dependence of these
states. However, one may also split up this dynamics into several commuting flows
generated by the corresponding operators from (3.8). The full set of solutions of (3.8)
then may be interpreted as a “γj-evolution operator,” describing this dynamics. In some
sense [49] this quantum operator resembles the classicalτ -function introduced in [38].

Note 3.2.We have described how the solution of the Wheeler–DeWitt equations is
related to the solution of the KZ system (3.8) in the sector of the theory, where the
connection has only simple poles. It is therefore natural to suppose that the quantization
of the higher pole sectors that were classically presented in Subsect. 2.2.4 is achievable
in a similar way and will moreover reveal a link to the higher order KZ systems, which
were introduced in [57] in the quantization of isomonodromic deformations with exactly
the Poisson structure (2.37) on the residues.

Note 3.3.For definiteness it is convenient to assume pure imaginary singularitiesγj ∈ iR
(i.e.wj ∈R). Then classicallyAj ∈g and quantized they carry representations ofg itself,
not ofgC.

3.2. Quantum algebra of monodromy matrices.

3.2.1. Quantum monodromies.Having quantized the connectionA(γ) as described in the
previous section, it is a priori not clear how to identify quantum operators correspond-
ing to the classical monodromy matrices in this picture. As they are classically highly
nonlinear functions of theAj , arbitrarily complicated normal-ordering ambiguities may
arise in the quantum case.

The first problem is the definition of the quantum analogue of the classical9–
function. Itsd0×d0 matrix entries are now operators on thed-dimensional representation
spaceV (N ). We choose here a simple convention, replacing the classical linear system

∂γ9(γ) = A(γ)9(γ) (3.10)

by formally the same one, where all the arising matrix entries are operators now, i.e. (3.10)
remains valid for higher dimensional matricesA and 9. We have thereby fixed the
operator ordering on the right-hand side in what seems to be the most natural way. In
the same way, we define the quantum monodromy matrices:
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Definition 3.1. Thequantum monodromy matrix Mj is defined to be the r.h.s. mon-
odromy matrix of the (higher dimensional)quantum linear system(3.10):

9(γ) 7→ 9(γ)Mj for γ encirclingγj , (3.11)

where the quantum9-function is normalized as

9(γ) =

(
I + O

(
1
γ

))
γ−A∞ around γ ∼ ∞ . (3.12)

Note 3.4.The normalization condition (3.12) generalizes the one we chose in the clas-
sical case (2.59) where the basepoints0 was sent to infinity. This generalization is
necessary, because the constraint (2.60) is not fulfilled as an operator identity in the
quantum case, which means that the quantum9-function as an operator is definitely
singular atγ = ∞ with the behavior (3.12). Only its action on physical states, which
are by definition annihilated by the constraint (2.52) may be put equal to the identity for
γ = ∞.

For proceeding further we now make use of an interesting observation of [57], relating
the KZ systems withN andN +1 insertions by means of the quantum linear system
(3.10). We state this as

Theorem 3.2. Letϕ(γ1, . . . , γN ) be the evolution operator of the KZ system

∂jϕ = i~
∑
k 6=j

�jk

γj − γk
ϕ ,

and8(γ0, . . . , γN ) be the corresponding evolution operator of the KZ system with an
additional insertion atN =0. Then9(γ0, . . . , γN ) := (I ⊗ϕ−1)8 satisfies the following
system of equations:

∂09 = i~
N∑
j=1

ta0 ⊗ (ϕtaj ϕ−1)

γ0 − γj
9 , (3.13)

∂j9 = −i~
ta0 ⊗ (ϕtaj ϕ−1)

γ0 − γj
9 .

The proof is obtained by a simple calculation. �
Consider the relations (3.13). Together with the remarks of Note 3.1, it follows that

this 9 just obeys the proper quantum linear system (3.10) in a Heisenberg picture: the
(ξ, ξ̄)-dependence of the operatorsAj is generated by conjugation with the evolution-
operatorϕ. For the definition of the quantum9-function it is the Heisenberg picture
which provides the most natural framework, as only in this picture implicit and explicit
(ξ, ξ̄)-dependence of operators are treated more or less on the same footing. Thus one
may identify

Aj = i~ta0 ⊗ (ϕtaj ϕ−1) .

The operatorsta0 play the role of the classical representationta acting on the auxiliary
spaceV0, which is already required for the formulation of the classical linear system.
In this sense, the KZ system withN +1 insertions combines the classical linear system
with the quantum equations of motion that are described by the KZ system withN
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insertions. The additional insertionγ0 then plays the role ofγ. We shall use this link to
gain information about the algebraic structure of the quantum monodromy matrices.

3.2.2. Quantum group structure.We now start from the representation of the quantum
9-function due to Theorem 3.2:

9(γ, γ1, . . . , γN ) =
(
I ⊗ ϕ−1(γ1, . . . , γN )

)
8(γ, γ1, . . . , γN ) . (3.14)

This shows in particular that the quantum monodromy matrices of the principal model
defined in (3.11) equal the corresponding monodromies of the KZ system withN +1
insertions. To obtain their algebraic structure, we employ a deep result of Drinfeld about
the relation between the monodromies of the KZ connection and the braid group repre-
sentations induced by certain quasi-bialgebras [21, 22]. Before we state these relations,
we have to briefly describe the induced braid group representations.

The KZ system that is of interest here, is

∂j8 = i~
∑
k 6=j

�jk

γj − γk
8 ,

with j = 0, . . . , N , which, as explained, in a formal sense combines the classical and the
quantum degrees of freedom, the function8 living in V (N+1) := V0 ⊗V (N ). This system
naturally induces a representation of monodromy matrices, which may canonically be
lifted to a braid group representation [43]. However, for our purpose, it is sufficient to
remain on the level of the monodromy representation, which we denote byρKZ.

We further have to briefly mention two algebraic structures, which are standard
examples for braided quasi-bialgebras, where for details and exact definitions we refer
to [22, 43]. Let us denote byU~ the so-called Drinfeld-Jimbo quantum enveloping algebra
associated withg [20, 37]. This is a braided bialgebra, which includes the existence of a
comultiplication1, a counitε and a universalR-matrixRU ∈ U~⊗U~, obeying several
conditions of which the most important here is the (quantum) Yang-Baxter equation

R12
U R13

U R23
U = R23

U R13
U R12

U . (3.15)

The matrixRU can in principle be explicitly given, but is of a highly complicated
form. It is Drinfeld’s achievement to relate this structure to a braided quasi-bialgebraA~,
where the nontriviality of theR-matrix is essentially shifted into an additional element
φA ∈ A~⊗A~⊗A~, the so-called associator, which weakens the coassociativity. The
R-matrix ofA~ is simplyRA =e−π~�, where� := ta⊗ta is the symmetric 2-tensor of
g. ThisR-matrix satisfies a weaker form of (3.15), the quasi-Yang-Baxter equation

R12
Aφ312

A R13
A (φ−1

A )132R23
Aφ123

A = φ321
A R23

A (φ−1
A )231R13

Aφ213
A R12

A . (3.16)

The algebrasU~ andA~ are isomorphic as braided quasi-bialgebras [22].

There is a standard way, in which braided quasi-bialgebras induce representations
of the braid group. Each simple braidσi is represented as

ρ(σi) := φ−1
i Πi,i+1Ri,i+1φi , (3.17)

whereΠ is the permutation operator andφi is defined asφi := 1(i+1)(φ) ⊗ I⊗(N−i−2)

with 1(1) :=1,1(2) := Id and1(i+1) := (1 ⊗ Id⊗i)1(i). We will denote the restrictions of
these representations of the algebrasU~ andA~ on the monodromies, which are built
from products of simple braids, byρU andρA respectively.

Now we have collected all the ingredients to state the result of Drinfeld as:
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Theorem 3.3. The monodromy representation of the KZ system equals the described
monodromy representation of the braided quasi-bialgebraA~, which in turn is equiv-
alent to the monodromy representation of the braided bialgebraUh. This means, that
there is an automorphismu onV (N+1), such that

ρKZ = ρA = uρUu−1 . (3.18)

For the proof we refer to the original literature [22] or to the textbook of Kassel [43]. We
should stress that in this construction the deformation parameter of the quantum group
structure coincides with the true Planck constant~. �

3.2.3. Quantum algebra and classical limit.It was our aim to describe the algebraic
structure of the quantum monodromy matrices defined in (3.11). By Theorem 3.2 these
monodromy matrices have been identified among the monodromies of the KZ system
with N+1 insertions as the monodromies of the additional pointγ0 encircling the other
insertions. Exploiting the consequences of Theorem 3.3 now, the quantum algebra of
the monodromy matricesM1, . . . , MN is given by:

Theorem 3.4. The matricesMj from (3.11) satisfy

R−M0
i R−1

− M 0̄
i = M 0̄

i R+M
0
i R−1

+ , (3.19)

R+M
0
i R−1

+ M 0̄
j = M 0̄

j R+M
0
i R−1

+ , for i < j ,

where these relations are understood in a fixed representation of thed0×d0 matrix entries
of the monodromy matrices on the tensor-productV (N ) =

⊗
j Vj . TheR-matricesR±

are
R− := u0̄R

−1
U u−1

0 , R+ := ΠR−1
− Π , (3.20)

whereRU is the universalR-matrix ofU~ mentioned above,u0 is some automorphism
onV0 ⊗V (N ) andu0̄ is the corresponding one onV0̄ ⊗V (N ). The classical limit of these
R-matrices is given by

R± = I⊗I ± (i~)(iπ�) + O±(~2) . (3.21)

Note 3.5.The relations (3.19) are to be understood as follows. The notation requires
two copies 0 and̄0 of the classical auxiliary spaceV0. While the standardR-matrices
RU andRA live on these classical spaces only,R− andR+ also act nontrivially on the
quantum representation spaceV (N ), due to conjugation with the automorphismsu0, u0̄.

Proof of Theorem 3.4.Consider the monodromy representation (3.17) corresponding to
the coassociative bialgebraU . The monodromyMj for γ = γ0 encirclingγj is thereby
represented as

ρU (Mj) = (R−1
U )01(R−1

U )02 . . . Rj0
U R0j

U R0,j−1
U . . . R01

U , (3.22)

such that it is just a matter of sufficiently often exploiting the Yang-Baxter equation
(3.15) to explicitly show that the relations (3.19) hold forρU (Mj) with R− := R−1

U ,
R+ :=ΠR−1

− Π. Theorem 3.3 further implies the conjugation of theR-matrices with the
automorphismu in order to extend the result to the representationρKZ, in which the
monodromies from (3.11) were recovered.

To further prove the asymptotic behavior (3.21), it is not enough to know the classical
limit of RU – which is a classicalr-matrix simply – since the semiclassical expansion of



Quantization of Coset Spaceσ-Models Coupled to Two-Dimensional Gravity 435

the automorphismsu0, u0̄ must be taken into account. For this reason, we additionally
have to use the other part of Theorem 3.3, which relates the representationsρKZ and
ρA. The relations (3.19) for theρA(Mj) hold with R− := R−1

A , R+ := ΠR−1
− Π in a

generalized form, modified by certain conjugations with the nontrivial associatorφA.
The semiclassical expansion of the associator is given by [43]:

φA = I⊗I⊗I + O(~2) , (3.23)

which implies that the term of order~ in the semiclassical expansion of (3.19) is deter-
mined by the corresponding one inRA = e−π~�, which yields (3.21).

The last point to be ensured is that the normalization of the quantum monodromies
(3.12) aroundγ ∼ ∞ coincides with the normalization chosen in the definition of the
KZ monodromies [21] in certain asymptotic regions of the space of (γ, γ1 . . . , γN ), up
to the order~. The proof of this fact goes along the same line as the proof of (3.23).
�

We have now established the quantum algebra of the quantum monodromy matrices
by identifying the corresponding operators inside the picture of the quantized holo-
morphic connectionA(γ). The classical limit of this algebra equals exactly the classical
algebra of monodromy matrices (2.61), (2.62). Hence, we have shown the “commutativ-
ity” of the (classical and quantum) links between the connection and the monodromies
with the corresponding quantization procedures. Let us sketch this in the following
diagram:

Holomorphic connection
{Aa

i , Ab
j} = δijfabcAc

i

?

quantization

[Aa
i , Ab

j ] = i~δijfabcAc
i

?

quantum monodromies
via KZ system

Quantum algebra of monodromies

R+M0
i R−1

+ M 0̄
j = M 0̄

j R+M0
i R−1

+

PPPPq
Classical algebra
of monodromies

{M0
i , M 0̄

j } = iπ (M0
i �M 0̄

j + . . .)

















�

quantization of the
nonassociative algebra

?

Atiyah-Bott symplectic structure
{Aγ,a(γ), Aγ̄,b(µ)} ∼ δabδ(2)(γ − µ)

holomorphic gauge

Regularized algebra
of monodromies

{M0
i , M 0̄

j } = (M0
i r+ M 0̄

j + . . .)

�

^

quantization and
quasi-associative

generalization

Note 3.6.The dotted lines in this diagram depict the link to the usual way quantum
monodromies have been treated. This was done by directly quantizing their classical
algebra, which is derived from the original symplectic structure of the connection up to
certain degrees of gauge freedom: for later restriction on gauge invariant objects, this
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algebra may be described with an arbitrary classicalr-matrix, as was sketched in Note
2.14. A direct quantization of this structure is provided by a structure of the form (3.19),
where the quantumR-matrices live in the classical spaces only and admit the classical
expansionR± = I + i~r± + O±(~2) [1, 2].

Note 3.7. In contrast to this quantum algebra which underlies (2.69), in (3.19) theR-
matrices – due to the automorphismsu0, u0̄ – also act nontrivially on the quantum rep-
resentation space. Their classical matrix entries may be considered as operator-valued,
meaning that the quantum algebra can be treated alternatively as nonassociative or as
“soft.” This is in some sense the quantum reason for the fact, that the classical algebra
(2.61), (2.62) fails to satisfy Jacobi identities. However, note that (3.19) only describes
theR-matrix in any fixed representation of the monodromies; for a description of the
abstract algebra, compare the quasi-associative generalization in [2, 3], which provides
the link between the quantum structure described in the previous note and (3.19).

3.2.4. Quantum observables.Let us discuss now the quantum observables, i.e. oper-
ators commuting with all the constraints. In analogy with the classical case it is clear
that all monodromies of the quantum linear system (3.11) commute with the Hamil-
tonian constraints. Therefore, it remains to get rid of the gauge freedom (2.63), i.e. to
identify functions of monodromies commuting with quantum generators of the gauge
transformations. In the classical case the gauge transformations were generated by ma-
trix entries of the matrixA∞ or, equivalently, of the matrixM∞−I. The straightforward
quantization of the classical algebra of gauge transformations generated byA∞ (2.66)
is

[Aa
∞, Ab

∞] = fab
c Ac

∞ , (3.24)

i.e. coincides withg. In terms ofM∞, the algebra of the same gauge transformations
according to (3.19) reads

R−M0
∞R−1

− M 0̄
∞ = M 0̄

∞R+M
0
∞R−1

+ . (3.25)

The set of quantum observables is characterized as the set of operator-valued func-
tions F of components of monodromiesMj which commute with all components of
A∞:

[F ({Mj}), Aa
∞] = 0 . (3.26)

Recall that in the classical case observables were just traces of arbitrary products of
monodromiesMj . At the moment the quantum analog of this representation is not clear.
One should suppose that there is a similar situation to the case we would have arrived
at by directly quantizing the algebra of monodromies, mentioned in Note 3.6.

In this case, which has been studied in the combinatorial quantization of Chern–
Simons theory [2, 3], theR-matrices live in the classical spaces only and the transfor-
mation behavior of arbitrary products of monodromiesM under gauge transformations
generated byM∞ reads

R−M0R−1
− M 0̄

∞ = M 0̄
∞R+M

0R−1
+ .

Introducing the quantum trace trqM with characteristic relations

tr0
qR

00̄M0(R00̄)−1 = trqM
0 , (3.27)

we see that the operators trqM commute with the components ofM∞:
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[trqM, M0
∞] = 0 . (3.28)

Therefore, the quantum group generated byM∞:

R−M0
∞R−1

− M 0̄
∞ = M 0̄

∞R+M
0
∞R−1

+ (3.29)

in this approach plays the role of algebra of gauge transformations.
It appears a difference of this approach with the approach which we mainly follow

in this paper: instead of the Lie groupG generated by the algebra (3.24), the role of the
gauge group is played by its quantum deformation (3.29). A question therefore remains:
what is the proper quantum gauge group of a consistent quantum theory, the groupG
itself or its quantum deformationGq?

Note 3.8.With the notation of the quantum trace at hand, the quantum analogue of Note
2.15 can be formulated. From the abstract algebraic point of view – beyond the presented
concrete representation of the quantum monodromies – the quantum trace of powers of
the Mj build the center of the free algebra defined by (3.19) and may thus be fixed
according to the classical values.

4. Coset Model

In this final chapter we will explain, how to modify the previously presented scheme in
order to treat the coset models, which actually arise from physical theories. The field
g is required to take values in a certain representation system of the coset spaceG/H,
whereH is the maximal compact subgroup ofG.

This subgroup may be characterized by an involutionη of G as the subgroup, which
is invariant underη. The involution can further be lifted to the algebrag, e.g.η(X)=−Xt

for X ∈ g = sl(N ). The algebrag is thereby split into its eigenspaces with eigenvalues
±1, which are denoted byg = h ⊕ k, the subgroupH underlyingh. In terms of the
involution, the fieldg is restricted to satisfy:

gη(g) = I , (4.1)

which defines the special choice of a representation system of the coset space.

4.1. Classical treatment.Classically speaking, the Poisson structure for theG/H-valued
model may be obtained from the previously described Poisson structure for the principal
G-valued model by implementing additional constraints.

These constraints were discussed in detail in [49] and may be equivalently formulated
in terms of the function9 or of the connectionA:

η

(
9

(
1
γ

))−1

g−19(γ) = C0 , (4.2)

A(γ) +
1
γ2

gη

(
A

(
1
γ

))
g−1 = 0 . (4.3)

The first line is a consequence of (4.1) withC0 = C0(w) from (2.22) also satisfying
C0η(C0) = I now. Studying the monodromies of9 shows that in the isomonodromic
sector,C0 must be gauged to a constant matrix, using the freedom of the right-hand
side multiplication of the solution of (2.7). This can be seen from Eq. (4.36) below.
Derivation of (4.2) with respect toγ then yields (4.3).
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An unpleasant feature of these constraints is that they explicitly contain the field
g, which in this framework is not among the fundamental variables. To avoid this dif-
ficulty, it is convenient to slightly modify the Hamiltonian formalism of the principal
model. Namely, let us relax the normalization condition9(γ = ∞) = I, which was
imposed in (2.20) before and consider the function9̂ related to9 by aG-valued gauge
transformationV instead:

9̂ := V(ξ, ξ̄)9 . (4.4)

Then it is9̂(γ = ∞) = V andgC0 = V−19̂(γ = 0), such that the coset constraint (4.1)
may be rewritten as:

g = V−1η(V) . (4.5)

The modified function̂9 now satisfies the linear system

d9̂

dξ
=

(
− 1 +γ

1 − γ
P+ + Q+

)
9̂,

d9̂

dξ̄
=

(
−1 − γ

1 +γ
P− + Q−

)
9̂, (4.6)

with (ξ, ξ̄)-dependent matricesP± ∈ k andQ± ∈ h which can be reconstructed fromV
on the coset constraint surface (4.5):

VξV−1 = P+ + Q+ , Vξ̄V−1 = P− + Q− .

Note 4.1. In the coset model the M̈obius symmetry (2.11) appears in especially simple
form [8]:

V 7→ 9̂(γ) , P+ 7→
√

w − ξ̄

w − ξ
P+ , P− 7→

√
w − ξ

w − ξ̄
P− , h 7→ h .

In complete analogy to the principal model, we further introduce

Definition 4.1. Define the connection̂A by

Â(γ) := ∂γ9̂(γ)9̂
−1

(γ) . (4.7)

The constraint of regularity at infinity then reads

Â∞ := lim
γ→∞ γÂ(γ) = 0 . (4.8)

The relations (2.17) between the original fields and the connectionÂ take the fol-
lowing form:

1

ξ − ξ̄
Â(γ, ξ, ξ̄)

∣∣∣∣
γ=1

= −P+ ,
1

ξ − ξ̄
Â(γ, ξ, ξ̄)

∣∣∣∣
γ=−1

= −P− . (4.9)

Hence, the coset constraints (4.5) are equivalent to

Â(±1) = −η
(
Â(±1)

)
, (4.10)

which is implied by (4.3). Let us stress again that the originally equivalent coset con-
straints (4.1), (4.5) or (4.10) are lifted to (4.3) due to the special choice ofC0 =const in
the isomonodromic sector.

The constraints (4.2) and (4.3) take simpler forms in terms of the new variables9̂

andÂ, since the fieldg is absorbed now:
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η

(
9̂

(
1
γ

))−1

9̂(γ) = C0, (4.11)

Â(γ) +
1
γ2

η

(
Â

(
1
γ

))
= 0 . (4.12)

The first of these equations is a sign of the invariance of the linear system (4.6) on the
coset constraint surface under the extended involutionη∞, introduced in [12]:

η∞(9̂(γ)) := η

(
9̂

(
1
γ

))
, (4.13)

but is difficult to handle due to the unknown matrixC0. The latter form (4.12) of the
constraint admits a complete treatment as will be described below. Note that the con-
straint of regularity at infinity (4.8) is already contained in (4.12) and is thereby naturally
embedded in the coset constraints.

The set of constraints (4.12) is complete and consistent in the following sense:

Lemma 4.1. The coset constraints (4.12) are invariant under (ξ, ξ̄)-translation on the
constraint surface.

Proof. The totalξ-dependence of̂A can be extracted from (2.23) to be

d

dξ
Â(γ) = V[Aξ(γ), A(γ)]V−1 + [VξV−1, Â(γ)] + V ∂Aξ(γ)

∂γ
V−1

=

[−2P+

1 − γ
, Â(γ)

]
+

[
(P+ + Q+), Â(γ)

]
− 2P+

(1 − γ)2
+

γ2 − 2γ − 1

(ξ − ξ̄)(1 − γ)2
Â(γ) − γ(1 +γ)

(ξ − ξ̄)(1 − γ)
∂γÂ(γ) .

Together with d
dξ

(
f

(
1
γ

))
=

(
− d

dξ f
) (

1
γ

)
for any functionf (γ), which follows

from the structure ofγξ, a short calculation reveals that on the constraint surface (4.12)
it is

d

dξ

(
Â(γ) +

1
γ2

η

(
Â

(
1
γ

)))
≈ −γξ

d

dγ

(
Â(γ) +

1
γ2

η

(
Â

(
1
γ

)))
≈ 0 .

�

In a Hamiltonian formulation these constraints therefore have weakly vanishing
Poisson bracket with the full Hamiltonian, which is required for a consistent treatment.
Let us now briefly present the Hamiltonian formulation of the coset model in terms of
the new variables.

4.1.1. Poisson structure and Hamiltonian formulation.The definition of the connection
Â already implies the relation

Â(γ) = VA(γ)V−1, (4.14)

such that from (2.23) one extracts the equations of motion for these new variables:
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∂Â

∂ξ
= V[Aξ, A]V−1 + V ∂Aξ

∂γ
V−1 + [VξV−1, Â], (4.15)

∂Â

∂ξ̄
= V[Aξ̄, A]V−1 + V ∂Aξ̄

∂γ
V−1 + [Vξ̄V−1, Â] .

In analogy with the principal model, this motivates

Definition 4.2. Define onÂ(γ) the following Poisson structure:

{
Âa(γ), Âb(µ)

}
V = −fabc Âc(γ) − Âc(µ)

γ − µ
, (4.16)

and denote byimplicit time-dependencethe(ξ, ξ̄)-dynamics, that is generated by

Ĥξ :=
1

ξ − ξ̄
trÂ2(1) − tr[Â∞(∂ξVV−1)] , (4.17)

Ĥ ξ̄ :=
1

ξ̄ − ξ
trÂ2(−1) − tr[Â∞(∂ξ̄VV−1)] ,

on the constraint surface (4.8). The remaining explicit time-dependence is then defined
to be generated in analogy to (2.30).

Note 4.2.The Poisson structures (4.16) are certainly different for differentV and, there-
fore, are different from (2.25), that was introduced in the principal model. However, this
previous treatment may be embedded in the following way. The structures (4.16) and
(2.25) are certainly equivalent if we restrict them to the functionals ofÂ that are invariant
with respect to the choice ofV, i.e. invariant with respect to the transformations

Â 7→ θ−1Âθ , (4.18)

with arbitraryθ ∈ G. These were the gauge transformations in the principal model,
generated by (2.21). Hence, on the set of observables of the principal model, the different
Poisson structures coincide. Correspondingly, the action ofHξ andĤξ from (2.27) and
(4.17) respectively differs only by the unfolding of such a gauge transformation.

For the coset model it is important to note that the gauge freedom (4.18) is restricted
toH-valued matricesθ, since only that part of the constraint (4.8) remains first-class here
and generates gauge transformations. This is part of the result of Theorem 4.1 below.

4.1.2. Solution of the constraints.Given a set of constraints (4.12) and a Poisson structure
(4.16), the canonical procedure is due to Dirac [19]. The constraints are separated into
first and second class constraints, of which the latter are explicitly solved – which
changes the Poisson bracket into the Dirac bracket – whereas the former survive in the
final theory.

In the case at hand, the essential part of the constraints is of the second class, such
that the Poisson structure has to be modified and only a small part of the constraints
survives as first-class constraints. We state the final result as

Theorem 4.1. The Dirac procedure for treating the constraints (4.12) in the Poisson
structure (4.16) yields the following Dirac bracket for the connectionÂ:
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{
Âa(γ), Âb(µ)

}∗
V = −1

2
fabc Âc(γ) − Âc(µ)

γ − µ
(4.19)

+
1
2
faη(b)c Âc(γ)

µ − 1
γ

+
1
2
fη(a)bc Âc(µ)

γ − 1
µ

,

where the notation of indices means a choice of basis withtη(a) ≡η(ta). The bracket for
the logarithmic derivatives of the conformal factor remains unchanged:{

ξ, −(logh)ξ
}∗

V
=

{
ξ̄, −(logh)ξ̄

}∗

V
= 1 . (4.20)

The structure is compatible with the (now strong) identity

Â(γ) +
1
γ2

η

(
Â

(
1
γ

))
=

1
γ

Â∞ =
1
γ

η(Â∞) , (4.21)

such that compared with (4.12) it remains the first-class constraint

Â∞ + η(Â∞) = 0 . (4.22)

Proof. The main idea of the proof is the separation of the variablesÂ(γ) into weakly
commuting halves:

81(γ) := Â(γ) +
1
γ2

η

(
Â

(
1
γ

))
− 1

γ
Â∞ ,

82(γ) := Â(γ) − 1
γ2

η

(
Â

(
1
γ

))
− 1

γ
Â∞ ,

with {
8a

1(γ), 8b
2(µ)

}
V ≈ 0 (4.23)

on the constraint surface (4.12), as follows from (4.16) by direct calculation, using the
fact thatη is an automorphism:fabc = fη(a)η(b)η(c).

The whole constraint surface is spanned by81 = 0 andÂ∞ = 0, whereas82 covers
the remaining degrees of freedom. Since81 and82 contain respectivelŷA∞ ∓ η(Â∞),
the relations (4.23) show that̂A∞ + η(Â∞) is a first-class constraint of the theory.

If we further explicitly solve the second-class constraints81 = 0, the commutativity
(4.23) implies that the Poisson bracket of82 remains unchanged by the Dirac procedure:{

8a
2(γ), 8b

2(µ)
}∗

V =
{
8a

2(γ), 8b
2(µ)

}
V .

Moreover, the Dirac bracket is by construction compatible with the vanishing of81:

{8a
1(γ), . }∗

V = 0 .

These facts may be used to easily calculate the Dirac bracket of the original variablesÂ(γ)
without explicitly inverting any matrix of constraint brackets. With the decomposition

Â(γ) =
1
2
81(γ) +

1
2
82(γ) +

1
2γ

(Â∞ + η(Â∞)) +
1

2γ
(Â∞ − η(Â∞)) ,

the result is obtained. The bracket (4.20) follows from the calculations performed in
Lemma 4.1, which imply the vanishing Poisson bracket between (logh)ξ and the con-
straints. �
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4.1.3. Final formulation and symmetries of the theory.Let us summarize the final status
of the theory and the relation of the new fundamental variablesÂ(γ) to the original
fieldsV andg respectively. We further discuss how the local and global symmetries of
the original fields become manifest in this formulation.

The formulation in terms of the new variableŝA(γ) is completely described in
Theorem 4.1, where their modified Poisson structure is given. The solved constraints
(4.21) may be considered to be valid strongly.

The remaining first-class constraint (4.22) generates the transformation

Â 7→ χ−1Âχ , (4.24)

with χ ∈ H. According to (4.9), the fieldV transforms as

V 7→ χV . (4.25)

The relation (4.5) on the coset constraint surface shows that the fieldg does not feel
this transformation. The gauge transformations generated by (4.22) are the manifestation
of a really physical gauge freedom in the decomposition of the metric into some vielbein;
they are remnant of the gauge freedom of local Lorentz transformations in general
relativity. This freedom may be fixed to choose some special gauge for the vielbein field
V.

Note 4.3. It is important to notice that the second term in the modified Hamiltonians
Ĥξ, Ĥ ξ̄ from (4.17), that makes them differ fromHξ, H ξ̄ from (2.27) becomes a pure
gauge generator after the presented solution of the constraints. This is due to the fact
thatÂ∞ ∈h according to (4.21). Sinceh andk are orthogonal with respect to the Cartan-
Killing form, the action ofHξ andĤξ just differs byh-conjugation and thus by a gauge
transformation of the coset model.

The fieldÂ now does not contain the complete information about the original fieldV,
but only the currentsVξV−1, Vξ̄V−1, which may be extracted from̂A(±1) by means of
(4.9). At first sight, one might get the impression that in contrast to (2.17), the relations
(4.9) do not even contain the full information about these currents. However, if the gauge
freedom (4.25) inV is fixed, the currents may be uniquely recovered from (4.9). For
g = sl(N ) for example, usually a triangular gauge ofV is chosen, such thatVξV−1 is
recovered from its symmetric part 2P+ = (VξV−1)+(VξV−1)t.

The fieldV moreover is determined only up to right multiplicationV 7→ Vθ from
the currentsVξV−1, Vξ̄V−1. This is a (global) symmetry of the theory, under which the
field g according to (4.5) transforms as

g 7→ θ−1gη(θ) . (4.26)

For axisymmetric stationary 4D gravity these are the so-called Ehlers transformations.
They are obviously a symmetry of the original equations of motion (2.5).

The new variablesÂ(γ) are invariant under these global transformations, which
become only manifest in the transition to the original fields. The related9̂-function
transforms due to its normalization at∞ as

9̂ 7→ 9̂θ , (4.27)

as well as the auxiliary matrixC0, which is related tô9(γ =0):
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C0 7→ η(θ)−1C0θ . (4.28)

Thereby, we have made explicit the global and local symmetries of the original fields
in the new framework.

4.1.4. First order poles.Let us evolve the previous result for the case of simple poles
of Â(γ). We again parametrizêA(γ) by its singularities and residues:

Â(γ) =
N∑
j=1

Âj

γ − γj
. (4.29)

Thus
Âj = VAjV−1 . (4.30)

Their equations of motion read

∂Âj

∂ξ
=

2

ξ − ξ̄

∑
k 6=j

[Âk, Âj ]
(1 − γk)(1 − γj)

+ [VξV−1, Âj ] , (4.31)

∂Âj

∂ξ̄
=

2

ξ̄ − ξ

∑
k 6=j

[Âk, Âj ]
(1 +γk)(1 +γj)

+ [Vξ̄V−1, Âj ] ,

and are completely generated by the HamiltoniansĤξ andĤ ξ̄ from (4.17).
Theorem 4.1 now implies

Corollary 4.1. Let Â be parametrized as in (4.29). After the Dirac procedure, the fol-
lowing identities hold strongly:

γj =
1

γj+n
, (4.32)

Âj = η(Âj+n) , (4.33)

whereN =2n. They may be explicitly checked to also commute with the full Hamiltonian
constraintsCξ, C ξ̄. The remaining degrees of freedom are therefore covered by theγj

andÂj for 1≤j ≤n, which are equipped with the Dirac bracket:{
Âa

i , Âb
j

}∗
V =

1
2
δijf

abcÂc
j . (4.34)

The remaining first-class constraint is

1
2

(
Â∞ + η(Â∞)

)
=

n∑
j=1

Âj + η

 n∑
j=1

Âj

 = 0 . (4.35)

This solution of the constraints in the case of first order poles may alternatively be
carried out in terms of the monodromiesMj . As was mentioned above, in the presence
of only simple poles, the variablesAj are generically (see Note 2.11) completely defined
by the monodromiesMj .

Assuming that (4.32) is fulfilled, the coset constraints in the form (4.11) are equiv-
alent to
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Mj+n − C−1
0 η(Mj)C0 = 0 . (4.36)

There are two important points that this form of the constraints exhibits. First, it
shows the necessity to choose the matrixC0 to be constant in the isomonodromic sector.
Moreover, it uniquely relates the ordering of the monodromy matrices fixed for calcula-
tion of its Poisson brackets in Theorem 2.4 to the ordering defined by (4.32). This results
from choosing the corresponding paths pairwise symmetric underγ 7→ 1

γ .
The goal is now to calculate the Dirac bracket between monodromiesMj with

respect to (4.33), or, equivalently, with respect to (4.36). One way is clearly to repeat
the calculation of Theorem 2.4 using the Dirac bracket (4.19) instead of the Poisson
bracket (2.25). However, we can alternatively determine the Dirac bracket from simple
symmetry arguments avoiding direct calculation at least for objects that are invariant
underG-valued gauge transformations (i.e. traces of arbitrary products ofMj).

The involutionη∞ introduced by (4.13) acts onMj according to (4.11) as follows:

η∞(Mj) = C0η(Mj+n)C−1
0 . (4.37)

Therefore, the set of allG-invariant functionals ofMj may be represented as

MS ⊕ MAS , (4.38)

where the setMS contains functionals which are invariant with respect toη∞ andMAS
contains functionals changing the sign under the action ofη∞. Sinceη is an automor-
phism of the structure (2.61), (2.62), the definition ofη∞ in (4.37) implies, taking into
account Note 2.16:

{MS, MS} ⊆ MS , {MS, MAS} ⊆ MAS , {MAS, MAS} ⊆ MS . (4.39)

The constraints (4.36) are equivalent to vanishing of all functionals fromMAS; therefore
the part ofG-invariant variables surviving after the Dirac procedure is contained inMS.
The former Poisson bracket onMS coincides with the Dirac bracket.

Note 4.4.The treatment of coset constraints in terms of the monodromies presented
above is invariant with respect to change ofV since the monodromies of9̂ are. Therefore,
this treatment also works in the former Poisson structure (2.25).

4.2. Quantum coset model.The quantization of the coset model goes along the same
line as the quantization of the principal model described above. We again restrict to the
first order pole sector of the theory, although generalization to the whole isomonodromic
sector should be achievable according to Note 3.2.

Having solved the constraints, the remaining degrees of freedom are the singularities
γj , the residueŝAj for j =1, . . . , n and the logarithmic derivatives of the conformal factor
h. They may be represented as in (3.3) and (3.4) again. The quantum representation space
is V (n) := V1 ⊗ . . . ⊗ Vn .

The Wheeler–DeWitt equations (3.5) take the form:

∂ψ

∂ξ
=

i~
ξ − ξ̄

∑
j,k

1 +γjγk

(1−γj)(1−γk)
�jk −

∑
j,k

γj + γk

(1−γj)(1−γk)
�̃jk

 ψ ,

(4.40)

∂ψ

∂ξ̄
=

i~
ξ̄ − ξ

∑
j,k

1 +γjγk

(1 +γj)(1 +γk)
�jk +

∑
j,k

γj + γk

(1 +γj)(1 +γk)
�̃jk

 ψ ,
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with
�jk = taj ⊗ tak �̃jk := tη(a)

j ⊗ tak .

Additionally, the physical states have to be annihilated by the first-class constraint
(4.22): ∑

j

taj +
∑

j

tη(a)
j

 ψ(ξ, ξ̄) = 0 . (4.41)

The result of Theorem 3.1 is modified to establish a link to solutions of what we will
refer to as theCoset-KZ system:

∂ϕCKZ

∂γj
= i~

∑
k 6=j

1 +γk/γj

γj − γk
�jk +

∑
k

γk + 1/γj

γjγk − 1
�̃jk

 ϕCKZ . (4.42)

The relation between solutions of the Wheeler–DeWitt equations and solutions of
the Coset-KZ system is now explicitly given by

Theorem 4.2. If ϕCKZ is a solution of (4.42) obeying the constraint (4.41), and theγj

depend on(ξ, ξ̄) according to (2.8), then

ψ =
n∏

j=1

(
γ−1

j

∂γj

∂wj

)i~�jj

ϕCKZ (4.43)

solves the constraint (Wheeler–DeWitt) Eqs. (4.40).

This may directly be calculated in analogy to (3.9). �

The procedure of identifying observables may be outlined just as in the case of
the principal model, where this was described in great detail. Again the monodromies
of the quantum linear system are the natural candidates for building observables and
contain a complete set for the simple pole sector. In analogy to Theorem 3.2 they should
be identified with the monodromies of a certain higher-dimensional Coset-KZ system
with an additional insertion playing the role of the classicalγ. The actual observables
are generated from combinations of matrix entries of these monodromies that commute
with the constraint (4.41). From general reasoning according to the classical procedure,
relevant objects turn out to be the combinations ofG-invariant objects, that are also
invariant under the involutionη∞.

4.3. Application to dimensionally reduced Einstein gravity.Let us finally sketch how the
previous formalism and results work for the case of axisymmetric stationary 4D gravity.
In this case, the Lagrangian of general relativity is known to reduce to (2.1) with the
field g taking values inSL(2, R) as a symmetric 2×2 matrix; its symmetry corresponds
to the coset constraint (4.1).

Most of the physically reasonable solutions of the classical theory – among them in
particular the Kerr solution – lie in the isomonodromic sector and are described by first
order poles at purely imaginary singularities in the connection. The quantization of this
sector may be performed within the framework of this paper. According to (3.4) and
Note 3.3 the residueŝAj are represented as
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Âj ≡ i~
( 1

2hj ej

fj − 1
2hj

)
, (4.44)

wherehj , ej andfj are the Chevalley generators ofsl(2, R).
Due to its non-compactness,sl(2, R) admits no finite dimensional unitary repre-

sentations, but several series of infinite dimensional representations. The study of the
classical limit singles out the principal series, as was discussed in [49]. The representa-
tion space consists of complex functionsf (ζ) on the real line with the ordinaryL2(R)
scalar product

〈f1, f2〉 :=
∫

R
f1(ζ)f2(ζ)dζ , (4.45)

and the anti-hermitian operators act as

hj ≡ 2ζj∂j + sj , ej ≡ ζ2
j ∂j + sjζj , fj ≡ −∂j . (4.46)

The spinsj takes valuessj =1+iqj with a continuous parameterqj ∈ R.
The surviving first-class constraint (4.41) now takes a simple form:

Lemma 4.2. A solutionf (ζ1, . . . , ζn) of the constraint (4.41) is of the form

f (ζ1, . . . , ζn) =
∏
j

(ζ2
j + 1)−

1
2 sj F (ζ̃1, . . . , ζ̃n) , (4.47)

with ζ̃j := ζj+i
ζj−i and ∑

j

∂

∂ζ̃j

 F = 0 . (4.48)

This follows by direct calculation. �
The prefactor in (4.47) is exactly sufficient for convergence of the integral, such

that for finiteness of the norm, it is sufficient to demand boundedness ofF which is
a function on the product of (n − 1) circlesS1. In contrast to the analogoussl(2, R)
representation of the principal model, where solutions of finite norm are absent due to
several redundant integration variables, a convergency factor here comes out for free.
This interestingly resembles the fact that the general reason for dividing out the maximal
compact subgroup in the physical coset models corresponds to avoiding unboundedness
of the energy in the theory.

It remains to solve the Coset-KZ system in this representation. Although the general
solution forsl(2, R) is not known, one might be able to obtain explicit results for a small
number of insertions. The Kerr solution for instance, which is of major interest, requires
only two classical insertionsγ1, γ2 ∈ iR. In this case, we may exploit Theorem 4.2
and Lemma 4.2 to explicitly reduce the WDW equation to a second order differential
equation in two variables. LetV1 andV2 be two representations from the principal series
of sl(2, R) fixed by s1 and s2 and parametrize the quantum stateψ(ξ, ξ̄) ∈ V1 ⊗V2
according to:

ψ(ξ, ξ̄, ζ1, ζ2) = (ζ2
1 + 1)−

1
2 s1(ζ2

2 + 1)−
1
2 s2

(
γ1

γ2
1 − 1

)11
(

γ2

γ2
2 − 1

)12

F (γ, ζ) , (4.49)

with
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11 ≡ i
2

~s1(s1 − 2) , 12 ≡ i
2

~s2(s2 − 2) ,

γ ≡ γ1 + 1
γ1 − 1

γ2 − 1
γ2 + 1

∈ S1 , ζ ≡ ζ1 + i
ζ1 − i

ζ2 − i
ζ2 + i

∈ S1 .

After some calculation the WDW equation then becomes

∂γF (γ, ζ) = i~Ds1,s2(γ) F (γ, ζ) , (4.50)

with

Ds1,s2(γ) =

{
1

γ−1

[
2ζ(ζ−1)2∂2

ζ +
(
2(ζ−1)2 + (s1+s2)(ζ2−1)

)
∂ζ +

ζ2+1
2ζ

s1s2

]
− 1

γ + 1

[
2ζ(ζ + 1)2∂2

ζ +
(
2(ζ + 1)2 + (s1+s2)(ζ2−1)

)
∂ζ +

ζ2+1
2ζ

s1s2

]
+

4
γ

(ζ2∂2
ζ + ζ∂ζ)

}
. (4.51)

This form e.g. suggests expansion into a Laurent series inζ on S1 leading to recurrent
differential equations inγ for the coefficients. Further study of this equation should be
a subject of future work.

Note 4.5.Equation (4.50) reduces to a Painlevé equation when the principal series repre-
sentation ofsl(2, R) is formally replaced by the fundamental representation ofg=su(2).
In the study of four-point correlation-functions in Liouville theory a similar generaliza-
tion of the hypergeometric differential equation appeared [62].

5. Outlook

We have completed the classical two-time Hamiltonian formulation of the coset model
for the isomonodromic sector and sketched a continuous extension in Appendix A. For
the quantum theory it remains the problem of consistent quantization of the total phase
space including a proper understanding of the structures (A.8). The most important
physical problem in the investigated model is the description of states corresponding
to quantum black holes. One may certainly hope to extract first insights from a closer
study of the exact isomonodromic quantum states of the coset model identified in the
last chapter, in particular from the study of Eq. (4.50).

An open problem is the link of the employed two-time Hamiltonian formalism with
the conventional one. To rigorously relate the different Poisson structures, the canonical
approach should be compared to our model after a Wick rotation into the Lorentzian
case. This corresponds to a dimensional reduction of spatial dimensions only, such that
the model would describe colliding plane or cylindrical waves rather than stationary
black holes. It is further reasonable to suspect that proper comparison of the different
Poisson structures can only be made on the set of observables, see also Note 2.5. Recent
progress in the canonical approach has been stated in [51], where in particular the
canonical algebraic structures of the observables have been revealed. However, so far
the canonical and the isomonodromic approaches appear to favor different characteristic
observables, which still remain to be related.

As another possibility to compare our treatment with canonical approaches, the re-
lation to further restricted and already studied models should be investigated. Of major
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interest in this context would be for instance the relation to the Einstein-Rosen solu-
tions, investigated and quantized in [52, 5], where imposing of additional hypersurface
orthogonality of the Killing vector fields reduces the phase space to “one polarization,”
yet maintaining an infinite number of degrees of freedom.

An additional interesting field of future research descends from the link to broadly
studied two-dimensional dilaton gravity (see e.g. [14, 32, 9, 27]), further allowing to
extract information about the black hole thermodynamics. Further relevance of the in-
vestigated model appeared in certain sectors of string theory [30, 53].
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A. Extension Beyond the Isomonodromic Sector

The treatment of the isomonodromic sector presented in this paper allows a rather natural
extension to the full phase space. This general scheme recalls a continuous version of the
simple pole sector treated in Subsect.2, which in turn may be understood as a discrete
embedding into the former. We will again first describe the scheme for the principal
model and then discuss the modifications required for the coset model, see also [56].

A.1. Principal model.We start from a simply-connected domain� in the ξ, ξ̄-plane,
symmetric with respect to conjugationξ 7→ ξ̄, where the classical solutiong(ξ, ξ̄) is
assumed to be non-singular. This regularity is reflected by corresponding properties of
the related9-function in thew-plane. It is holomorphic and invertible in a (ring-like)
domainD of the Riemann surfaceL of the function

√
(w − ξ)(w − ξ̄) bounded by

contoursl andlσ, whereσ is the involutionγ 7→ 1/γ interchanging thew-sheets ofL.
To simplify the following formulas we further assume the spectral parameter current

A(γ) to be holomorphic on the whole second sheet ofL, such that it may be represented
inside ofl (we denote this simply-connected domain byD0) by a Cauchy integral over
l:

A(µ) =
∮

l

A(w, ξ, ξ̄)dw

γ(w) − µ
, (A.1)

which is the continuous analog of the simple pole ansatz (2.32) in the isomonodromic
sector;A(w), w ∈ l is a density corresponding to the residuesAj from (2.32).

From (A.1),A(w) is not uniquely defined by the values ofA(γ), γ ∈ D0, in particular,
it may not coincide with the boundary values ofA(γ) on l. To fix A(w), we postulate
the following deformation equations which are a continuous version of the discrete
deformation Eqs. (2.33):

∂A(w)
∂ξ

=
2

ξ − ξ̄

∮
l

[A(v), A(w)]
(1 − γ(v))(1 − γ(w))

dv , (A.2)

∂A(w)

∂ξ̄
=

2

ξ̄ − ξ

∮
l

[A(v), A(w)]
(1 +γ(v))(1 +γ(w))

dv , w ∈ l .

It is easy to check that (A.2) together with (A.1) imply the deformation Eqs. (2.23)
for A(γ).

The Poisson structure onA(w) is also a direct continuous analog of (2.34):
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{Aa(w), Ab(v)} = −fabcAc(w)δ(w − v) , w, v ∈ l, (A.3)

whereδ(w) is a one-dimensionalδ-function living on the contourl (and should, strictly
speaking, be defined asds

dw δ(s) with an arbitrary affine parametersalongl). This structure
in turn induces the proper holomorphic bracket (2.25) forA(γ):

{Aa(γ(w)), Ab(γ(v))} = −fabc

∮
l

Ac(w′)dw′

(γ(w′) − γ(w))(γ(w′) − γ(v))

= −fabc Acγ((w)) − Ac(γ(v))
γ(w) − γ(v)

.

The nice feature ofA(w) in contrast toA(γ) is thatA(w) (as its discrete analog
Aj) is explicitly (ξ, ξ̄) independent, i.e. the whole dependence ofA(w) on ξ and ξ̄ is
generated by the Hamiltonians (2.27) (note that the pointsγ = ±1 lie inside ofD0):

Hξ =
1

ξ − ξ̄
tr

[∮
l

A(w)dw

1 − γ(w)

]2

, H ξ̄ =
1

ξ̄ − ξ
tr

[∮
l

A(w)dw

1 +γ(w)

]2

. (A.4)

We may now also identify a continuous family of observables, generalizing the
construction of Sect.2. DefineA(γ) inside and outside ofD0 by the Cauchy formula
(A.1) and construct the related functions9in(γ ∈ D0) and9out(γ 6∈ D0) according to
9γ9−1 = A(γ). Then the continuous monodromy matrix

M (w) ≡ 9out(w)9−1
in (w) , w ∈ l (A.5)

is (ξ, ξ̄)-independent, since both9in and9out satisfy the linear system (2.7). Calculations
similar to those in Appendix B yield the following Poisson brackets forM (w):

{M0(v), M 0̄(w)} = iπ
(

− M0(v) � M 0̄(w) + M 0̄(w) � M0(v) (A.6)

+ � M0(v)M 0̄(w) − M0(v)M 0̄(w) �
)

,

for v ≤ w , v, w ∈ l ,

where the points of contourl are ordered with respect to a fixed pointw0, playing the
role of the eyelash in the discrete case.

The brackets (A.6), are again valid up to the first-class constraint generated by

A∞ =
∮

l

A(w)dw , (A.7)

and therefore satisfy Jacobi identities only being restricted to the gauge-invariant objects.
Again there appear two fundamental ways of quantization. In terms ofA, (A.3) would

be replaced by a possibly centrally extended affine algebra. Alternatively, the Poisson
algebra of observables (A.6) may be quantized directly after regularization analogously
to (2.69):

{M0(v), M 0̄(w)} = −M0(v) r+ M 0̄(w) + M 0̄(w) r− M0(v)

+ r− M0(v)M 0̄(w) − M0(v)M 0̄(w) r+ v ≤ w, v, w ∈ l ,

leading to:
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R−M0(w)R−1
− M 0̄(v) = M 0̄(v)R+M

0(w)R−1
+ , v ≤ w . (A.8)

Embedding of the isomonodromic sector into the presented extension looks espe-
cially simple if all the singularitiesγ1, . . . , γN are assumed to belong to the contourl.
The densityA(w) is then parametrized as

A(w) = −
n∑

j=N

Ajδ(w − wj) , (A.9)

where the residuesAj are the same as in (4.29). The Poisson structure (A.3) is the
directly inherited from (2.34) and (A.9):

{Aa(w), Ab(v)} =
N∑
j=1

fabcAjδ(w − wj)δ(v − wj)

= −fabcAc(v)δ(v − w) .

The monodromyM (w) here is a step function onl with jumps atw = wj . Fixing the
eyelash betweenγN andγ1 it is

M (w) = M1 . . . Mj , for w ∈]γj , γj+1[ .

Note A.1. Isomonodromic solutions with higher order poles are embedded into the gen-
eral scheme by inserting higher order derivatives ofδ-functions into (A.9). The definition
(A.1) already shows that the proper object in this case is the connectionAw = ∂γ

∂wA, in
accordance with the results from Subsect.2.

Note A.2.The representation (A.1) gains a well known meaning when the model is
truncated to a real scalar fieldg, whereA(w) becomes independent ofξ, ξ̄ and the
equation of motion (2.5) reduces to the Euler-Darboux equation

∂ξ∂ξ̄φ − ∂ξφ − ∂ξ̄φ

2(ξ − ξ̄)
= 0 , (A.10)

for φ = logg. Solutions of this equation may be represented as [15]

φ =
∮

l

f (w)dw√
(w − ξ)(w − ξ̄)

, (A.11)

with 2πif (w) ≡ φ(ξ = ξ̄ =w) defined on the axisξ = ξ̄ and continued analytically. After
differentiating inξ and integrating by parts inw, this representation takes the form

∂ξφ =
2

ξ − ξ̄

∮
l

f ′(w)dw√
(w − ξ)(w − ξ̄)

,

and thus equals (2.17) withA(±1) defined by (A.1) after identification off ′(w) and
A(w).
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A.2. Coset model.In analogy to the discrete case, the coset model is most conveniently
described in terms of modified variables

Â = η(V)Aη(V−1) .

Due to the symmetry (4.12) between the values ofÂ(γ) on different sheets ofL, we
can no longer assumêA(γ) to be holomorphic inD0, but have to replace thel by l ∪ lσ

enclosingD in the formulas of the last section. The coset constraints in terms ofÂ(w)
take the form

Â(w) = η
(Â(wσ)

)
, w ∈ l , (A.12)

and allow rather simple solution via a Dirac procedure, such that the phase space is
reduced to the values of̂A(w) on l only, equipped with the Dirac bracket

{Âa(w), Âb(v)}∗
V = −1

2
fabcÂc(w)δ(w − v) , v, w ∈ l . (A.13)

Via the Cauchy representation (A.1) on the contourl ∪ lσ, this bracket further gives
the previously derived Dirac bracket (4.19) onÂ(γ). It remains theh-valued first class
constraint ∮

l

(
Â(w) + η(Â(w))

)
dw = 0 ,

generalizing (4.22). The Hamiltonians finally also take the form (A.4) withl being
replaced byl ∪ lσ. In terms of the observablesM (w), restriction to the coset leads to

M (wσ) = C−1
0 η

(
M (w)

)
C0 , w ∈ l ,

with some constant matrixC0 playing the same role as in (4.36).

B. Poisson Structure of Monodromy Matrices

This appendix is devoted to the proof of Theorem 2.4, which was obtained in collabora-
tion with H. Nicolai.3 For simplicity of the presentation, we give the calculation for the
case, where the Casimir element� differs from the permutation operatorΠ by some
scalar multiple of the identity only, which is the case forg = sl(N, R) for example. The
procedure may easily be extended (concerning the notation mainly) to the general case.

Here, the Poisson-structure of the connection is given by

{A(γ) ⊗, A(µ)} =
1

γ − µ
[Π, A(γ) ⊗ I + I ⊗ A(µ)] ,

and the statement to be proven reads:

{Mi
⊗, Mi} = iπ [ Π, MiMi ⊗ I ] , (B.1)

{Mi
⊗, Mj} = iπΠ

(
MjMi ⊗ I + I ⊗ MiMj − Mi⊗Mj − Mj ⊗Mi

)
, (B.2)

for i < j .

We first calculate the Poisson structure of matrix entries of the function9 at different
pointss1 ands2. These points are defined on the Riemann surface given by9 by paths,

3 After completion we learned about related results in [4, 36].
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connecting them to a common base-points0, at which9 is taken to be normalized
according to (2.59). The limits0→∞ will be treated later on.

For the calculation, we make use of the standard formula

{9(s1) ⊗, 9(s2)} =
(
9(s1) ⊗ 9(s2)

) ∫ s1

s0

∫ s2

s0

dµ1dµ2 ×[(
9−1(µ1) ⊗ 9−1(µ2)

) {
A(µ1) ⊗, A(µ2)

} (
9(µ1) ⊗ 9(µ2)

)]
,

where the integrand may be rewritten as

Π

µ2 − µ1

(
∂µ1 + ∂µ2

)(
9−1(µ2)9(µ1) ⊗ 9−1(µ1)9(µ2)

)
.

This expression is completely regular, even forµ1 = µ2. However, if the appearance
of the derivation operators is exploited by partial integration, the integrals will split up
into parts that exhibit singularities in coinciding pointsµ1 = µ2. Thus, we restrict to
distinguished endpointss1 ands2, choosing the defining paths [s0 → s1] and [s0 → s2]
nonintersecting in the punctured plane from the very beginning. Singularities remain in
the common endpoints of the paths ats0. As a regularization, one of these coinciding
endpoints is shifted by a small (complex) amountε that is put to zero afterwards. Then,
partial integration can be carried out properly, leaving only boundary terms, that lead to
surviving simple line integrals, whereas the remaining double integrals cancel exactly.
The arising singularities inε = 0 regularize each other such that the sum is independent
of the way,ε tends to zero. In a comprehensive form, the result may be stated as

Theorem B.1. Lets1 ands2 be different points on the punctured plane, defined as points
on the covering by nonintersecting paths[s0→s1] and[s0→s2] with common basepoint
s0 at which9 is normalized. Then, the Poisson bracket between matrix entries of9(s1)
and9(s2) is given by

{9(s1) ⊗, 9(s2)} =
(
9(s1) ⊗ 9(s2)

)
× (B.3){ ∫ s2

s0

dµ
Π

µ − s1

(
9−1(µ)9(s1) ⊗ 9−1(s1)9(µ)

)
−

∫ s1

s0

dµ
Π

µ − s2

(
9−1(s2)9(µ) ⊗ 9−1(µ)9(s2)

)
+

∫ s2

s0

dµ
1

µ − s0

[
Π , 9(µ) ⊗ 9−1(µ)

]
+ lim

ε→0

(∫ s0−ε

s2

+
∫ s1

s0+ε

)
dµ

Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

) }
.

This expression is regular and independent of the limit procedure.�

Note B.1.The result of the regularization is the complete fixing of the relative directions
of the paths [s0→s1] and [s0→s2] approaching the basepoints0, that is determined by
the form in whichε arises in the last term in (B.3). In other words, the path [s1→s0→s2]
must pass through the basepoints0 straightforwardly, as is indicated in Fig.1.

The result of Theorem B.1 may be further simplified in the limits0→∞, where the
third term of (B.3) vanishes:
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s1
s0

s2

Fig. 1.Choice of paths

Lemma B.1. For a fixed points on the punctured plane and9(γ) holomorphic at
γ = ∞, it is

lim
s0→∞

( ∫ s

s0

dµ
1

µ − s0

[
Π, 9(µ) ⊗ 9−1(µ)

] )
= 0 . (B.4)

The proof is obtained by estimating the integrand as a holomorphic function ofγ and
s0. �

To proceed in calculating the Poisson bracket between monodromy matrices, we
choose pointss1, s2, s3 ands4, pairwise coinciding on the punctured plane ass1 ∼ s2
ands3 ∼ s4, but distinguished on the covering and defining the monodromy matrices
Mi andMj :

9(s2) = 9(s1)Mi , 9(s4) = 9(s3)Mj . (B.5)

Then, (B.3) leads to:

{Mi
⊗, Mj} = (Mi ⊗ Mj)

[∫
s4→s0→s2

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)]
(B.6)

+

[∫
s3→s0→s1

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)]
(Mi ⊗ Mj)

− (I ⊗ Mj)

[∫
s4→s0→s1

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)]
(Mi ⊗ I)

− (Mi ⊗ I)

[∫
s3→s0→s2

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)]
(I ⊗ Mj) ,

which is understood in the limitε → 0 ands0 → ∞ and for paths [sj → s0 → si] ,
i = 1, 2;j = 3, 4, chosen fixed and in accordance with the conditions of Theorem B.1
and Note B.1.

Proof of (B.1).Consider first the casei = j. Then a proper choice of paths is illustrated
in Fig.2.

The expression (B.6) allows to puts1 = s3 ands2 = s4 and to split the integration
paths into paths encirclings0 andγi, respectively:

{Mi
⊗, Mi} = (Mi⊗Mi)X − X(Mi⊗Mi) − (Mi⊗I)X(I⊗Mi)

+ (I⊗Mi)X(Mi⊗I) + (I⊗Mi)Y (Mi⊗I) − (Mi⊗I)Y (I⊗Mi) ,

with
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s0

s3∼ s4

s1∼ s2

γi

∞
Fig. 2.Choice of paths for{Mi

⊗, Mi}

X =
1
2

∮
s0

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)
,

Y =
∫ s2

s1

dµ
Π

µ − s0

(
9(µ) ⊗ 9−1(µ)

)
.

The path of the integralY neither passes throughs0 nor intersects the path [s0→∞]; such
that this integral vanishes in the limits0→∞. This choice of path uniquely determines the
orientation of the remaining paths inX, which encircles0. The corresponding integrals
can be easily evaluated due to Cauchy’s theorem and single-valuedness of the integrands.
This proves formula (B.1). �

Proof of (B.2).This case is treated in complete analogy. A suitable form of the paths
is shown in Fig.3, which in particular illustrates the asymmetric position of the paths
defining respectivelyMi andMj , with respect to the marked path [s0→∞].

s3∼ s4s1∼ s2

s0

∞

γjγi

Fig. 3.Paths for{Mi
⊗, Mj}
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Similar reasoning as above yields

{Mi
⊗, Mj} = −(Mi⊗Mj)X − X(Mi⊗Mj)

+ (Mi⊗I)X(I⊗Mj) + (I⊗Mj)X(Mi⊗I) , (B.7)

where again several integrals have already vanished in the limits0→∞. Evaluating the
remaining terms proves formula (B.2). �
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